1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 STATISTIC(NumFoundPhiSCCs, 149 "Number of found Phi-composed strongly connected components"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 237 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 238 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 239 "Phi strongly connected components"), 240 cl::init(8)); 241 242 static cl::opt<bool> 243 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 244 cl::desc("Handle <= and >= in finite loops"), 245 cl::init(true)); 246 247 //===----------------------------------------------------------------------===// 248 // SCEV class definitions 249 //===----------------------------------------------------------------------===// 250 251 //===----------------------------------------------------------------------===// 252 // Implementation of the SCEV class. 253 // 254 255 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 256 LLVM_DUMP_METHOD void SCEV::dump() const { 257 print(dbgs()); 258 dbgs() << '\n'; 259 } 260 #endif 261 262 void SCEV::print(raw_ostream &OS) const { 263 switch (getSCEVType()) { 264 case scConstant: 265 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 266 return; 267 case scPtrToInt: { 268 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 269 const SCEV *Op = PtrToInt->getOperand(); 270 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 271 << *PtrToInt->getType() << ")"; 272 return; 273 } 274 case scTruncate: { 275 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 276 const SCEV *Op = Trunc->getOperand(); 277 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 278 << *Trunc->getType() << ")"; 279 return; 280 } 281 case scZeroExtend: { 282 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 283 const SCEV *Op = ZExt->getOperand(); 284 OS << "(zext " << *Op->getType() << " " << *Op << " to " 285 << *ZExt->getType() << ")"; 286 return; 287 } 288 case scSignExtend: { 289 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 290 const SCEV *Op = SExt->getOperand(); 291 OS << "(sext " << *Op->getType() << " " << *Op << " to " 292 << *SExt->getType() << ")"; 293 return; 294 } 295 case scAddRecExpr: { 296 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 297 OS << "{" << *AR->getOperand(0); 298 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 299 OS << ",+," << *AR->getOperand(i); 300 OS << "}<"; 301 if (AR->hasNoUnsignedWrap()) 302 OS << "nuw><"; 303 if (AR->hasNoSignedWrap()) 304 OS << "nsw><"; 305 if (AR->hasNoSelfWrap() && 306 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 307 OS << "nw><"; 308 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 309 OS << ">"; 310 return; 311 } 312 case scAddExpr: 313 case scMulExpr: 314 case scUMaxExpr: 315 case scSMaxExpr: 316 case scUMinExpr: 317 case scSMinExpr: 318 case scSequentialUMinExpr: { 319 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 320 const char *OpStr = nullptr; 321 switch (NAry->getSCEVType()) { 322 case scAddExpr: OpStr = " + "; break; 323 case scMulExpr: OpStr = " * "; break; 324 case scUMaxExpr: OpStr = " umax "; break; 325 case scSMaxExpr: OpStr = " smax "; break; 326 case scUMinExpr: 327 OpStr = " umin "; 328 break; 329 case scSMinExpr: 330 OpStr = " smin "; 331 break; 332 case scSequentialUMinExpr: 333 OpStr = " umin_seq "; 334 break; 335 default: 336 llvm_unreachable("There are no other nary expression types."); 337 } 338 OS << "("; 339 ListSeparator LS(OpStr); 340 for (const SCEV *Op : NAry->operands()) 341 OS << LS << *Op; 342 OS << ")"; 343 switch (NAry->getSCEVType()) { 344 case scAddExpr: 345 case scMulExpr: 346 if (NAry->hasNoUnsignedWrap()) 347 OS << "<nuw>"; 348 if (NAry->hasNoSignedWrap()) 349 OS << "<nsw>"; 350 break; 351 default: 352 // Nothing to print for other nary expressions. 353 break; 354 } 355 return; 356 } 357 case scUDivExpr: { 358 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 359 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 360 return; 361 } 362 case scUnknown: { 363 const SCEVUnknown *U = cast<SCEVUnknown>(this); 364 Type *AllocTy; 365 if (U->isSizeOf(AllocTy)) { 366 OS << "sizeof(" << *AllocTy << ")"; 367 return; 368 } 369 if (U->isAlignOf(AllocTy)) { 370 OS << "alignof(" << *AllocTy << ")"; 371 return; 372 } 373 374 Type *CTy; 375 Constant *FieldNo; 376 if (U->isOffsetOf(CTy, FieldNo)) { 377 OS << "offsetof(" << *CTy << ", "; 378 FieldNo->printAsOperand(OS, false); 379 OS << ")"; 380 return; 381 } 382 383 // Otherwise just print it normally. 384 U->getValue()->printAsOperand(OS, false); 385 return; 386 } 387 case scCouldNotCompute: 388 OS << "***COULDNOTCOMPUTE***"; 389 return; 390 } 391 llvm_unreachable("Unknown SCEV kind!"); 392 } 393 394 Type *SCEV::getType() const { 395 switch (getSCEVType()) { 396 case scConstant: 397 return cast<SCEVConstant>(this)->getType(); 398 case scPtrToInt: 399 case scTruncate: 400 case scZeroExtend: 401 case scSignExtend: 402 return cast<SCEVCastExpr>(this)->getType(); 403 case scAddRecExpr: 404 return cast<SCEVAddRecExpr>(this)->getType(); 405 case scMulExpr: 406 return cast<SCEVMulExpr>(this)->getType(); 407 case scUMaxExpr: 408 case scSMaxExpr: 409 case scUMinExpr: 410 case scSMinExpr: 411 return cast<SCEVMinMaxExpr>(this)->getType(); 412 case scSequentialUMinExpr: 413 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 414 case scAddExpr: 415 return cast<SCEVAddExpr>(this)->getType(); 416 case scUDivExpr: 417 return cast<SCEVUDivExpr>(this)->getType(); 418 case scUnknown: 419 return cast<SCEVUnknown>(this)->getType(); 420 case scCouldNotCompute: 421 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 422 } 423 llvm_unreachable("Unknown SCEV kind!"); 424 } 425 426 bool SCEV::isZero() const { 427 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 428 return SC->getValue()->isZero(); 429 return false; 430 } 431 432 bool SCEV::isOne() const { 433 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 434 return SC->getValue()->isOne(); 435 return false; 436 } 437 438 bool SCEV::isAllOnesValue() const { 439 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 440 return SC->getValue()->isMinusOne(); 441 return false; 442 } 443 444 bool SCEV::isNonConstantNegative() const { 445 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 446 if (!Mul) return false; 447 448 // If there is a constant factor, it will be first. 449 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 450 if (!SC) return false; 451 452 // Return true if the value is negative, this matches things like (-42 * V). 453 return SC->getAPInt().isNegative(); 454 } 455 456 SCEVCouldNotCompute::SCEVCouldNotCompute() : 457 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 458 459 bool SCEVCouldNotCompute::classof(const SCEV *S) { 460 return S->getSCEVType() == scCouldNotCompute; 461 } 462 463 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 464 FoldingSetNodeID ID; 465 ID.AddInteger(scConstant); 466 ID.AddPointer(V); 467 void *IP = nullptr; 468 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 469 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 470 UniqueSCEVs.InsertNode(S, IP); 471 return S; 472 } 473 474 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 475 return getConstant(ConstantInt::get(getContext(), Val)); 476 } 477 478 const SCEV * 479 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 480 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 481 return getConstant(ConstantInt::get(ITy, V, isSigned)); 482 } 483 484 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 485 const SCEV *op, Type *ty) 486 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 487 Operands[0] = op; 488 } 489 490 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 491 Type *ITy) 492 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 493 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 494 "Must be a non-bit-width-changing pointer-to-integer cast!"); 495 } 496 497 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 498 SCEVTypes SCEVTy, const SCEV *op, 499 Type *ty) 500 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 501 502 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 503 Type *ty) 504 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 505 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 506 "Cannot truncate non-integer value!"); 507 } 508 509 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 510 const SCEV *op, Type *ty) 511 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 512 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 513 "Cannot zero extend non-integer value!"); 514 } 515 516 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 517 const SCEV *op, Type *ty) 518 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 519 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 520 "Cannot sign extend non-integer value!"); 521 } 522 523 void SCEVUnknown::deleted() { 524 // Clear this SCEVUnknown from various maps. 525 SE->forgetMemoizedResults(this); 526 527 // Remove this SCEVUnknown from the uniquing map. 528 SE->UniqueSCEVs.RemoveNode(this); 529 530 // Release the value. 531 setValPtr(nullptr); 532 } 533 534 void SCEVUnknown::allUsesReplacedWith(Value *New) { 535 // Remove this SCEVUnknown from the uniquing map. 536 SE->UniqueSCEVs.RemoveNode(this); 537 538 // Update this SCEVUnknown to point to the new value. This is needed 539 // because there may still be outstanding SCEVs which still point to 540 // this SCEVUnknown. 541 setValPtr(New); 542 } 543 544 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 545 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 546 if (VCE->getOpcode() == Instruction::PtrToInt) 547 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 548 if (CE->getOpcode() == Instruction::GetElementPtr && 549 CE->getOperand(0)->isNullValue() && 550 CE->getNumOperands() == 2) 551 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 552 if (CI->isOne()) { 553 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 554 return true; 555 } 556 557 return false; 558 } 559 560 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 561 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 562 if (VCE->getOpcode() == Instruction::PtrToInt) 563 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 564 if (CE->getOpcode() == Instruction::GetElementPtr && 565 CE->getOperand(0)->isNullValue()) { 566 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 567 if (StructType *STy = dyn_cast<StructType>(Ty)) 568 if (!STy->isPacked() && 569 CE->getNumOperands() == 3 && 570 CE->getOperand(1)->isNullValue()) { 571 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 572 if (CI->isOne() && 573 STy->getNumElements() == 2 && 574 STy->getElementType(0)->isIntegerTy(1)) { 575 AllocTy = STy->getElementType(1); 576 return true; 577 } 578 } 579 } 580 581 return false; 582 } 583 584 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 585 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 586 if (VCE->getOpcode() == Instruction::PtrToInt) 587 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 588 if (CE->getOpcode() == Instruction::GetElementPtr && 589 CE->getNumOperands() == 3 && 590 CE->getOperand(0)->isNullValue() && 591 CE->getOperand(1)->isNullValue()) { 592 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 593 // Ignore vector types here so that ScalarEvolutionExpander doesn't 594 // emit getelementptrs that index into vectors. 595 if (Ty->isStructTy() || Ty->isArrayTy()) { 596 CTy = Ty; 597 FieldNo = CE->getOperand(2); 598 return true; 599 } 600 } 601 602 return false; 603 } 604 605 //===----------------------------------------------------------------------===// 606 // SCEV Utilities 607 //===----------------------------------------------------------------------===// 608 609 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 610 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 611 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 612 /// have been previously deemed to be "equally complex" by this routine. It is 613 /// intended to avoid exponential time complexity in cases like: 614 /// 615 /// %a = f(%x, %y) 616 /// %b = f(%a, %a) 617 /// %c = f(%b, %b) 618 /// 619 /// %d = f(%x, %y) 620 /// %e = f(%d, %d) 621 /// %f = f(%e, %e) 622 /// 623 /// CompareValueComplexity(%f, %c) 624 /// 625 /// Since we do not continue running this routine on expression trees once we 626 /// have seen unequal values, there is no need to track them in the cache. 627 static int 628 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 629 const LoopInfo *const LI, Value *LV, Value *RV, 630 unsigned Depth) { 631 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 632 return 0; 633 634 // Order pointer values after integer values. This helps SCEVExpander form 635 // GEPs. 636 bool LIsPointer = LV->getType()->isPointerTy(), 637 RIsPointer = RV->getType()->isPointerTy(); 638 if (LIsPointer != RIsPointer) 639 return (int)LIsPointer - (int)RIsPointer; 640 641 // Compare getValueID values. 642 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 643 if (LID != RID) 644 return (int)LID - (int)RID; 645 646 // Sort arguments by their position. 647 if (const auto *LA = dyn_cast<Argument>(LV)) { 648 const auto *RA = cast<Argument>(RV); 649 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 650 return (int)LArgNo - (int)RArgNo; 651 } 652 653 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 654 const auto *RGV = cast<GlobalValue>(RV); 655 656 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 657 auto LT = GV->getLinkage(); 658 return !(GlobalValue::isPrivateLinkage(LT) || 659 GlobalValue::isInternalLinkage(LT)); 660 }; 661 662 // Use the names to distinguish the two values, but only if the 663 // names are semantically important. 664 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 665 return LGV->getName().compare(RGV->getName()); 666 } 667 668 // For instructions, compare their loop depth, and their operand count. This 669 // is pretty loose. 670 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 671 const auto *RInst = cast<Instruction>(RV); 672 673 // Compare loop depths. 674 const BasicBlock *LParent = LInst->getParent(), 675 *RParent = RInst->getParent(); 676 if (LParent != RParent) { 677 unsigned LDepth = LI->getLoopDepth(LParent), 678 RDepth = LI->getLoopDepth(RParent); 679 if (LDepth != RDepth) 680 return (int)LDepth - (int)RDepth; 681 } 682 683 // Compare the number of operands. 684 unsigned LNumOps = LInst->getNumOperands(), 685 RNumOps = RInst->getNumOperands(); 686 if (LNumOps != RNumOps) 687 return (int)LNumOps - (int)RNumOps; 688 689 for (unsigned Idx : seq(0u, LNumOps)) { 690 int Result = 691 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 692 RInst->getOperand(Idx), Depth + 1); 693 if (Result != 0) 694 return Result; 695 } 696 } 697 698 EqCacheValue.unionSets(LV, RV); 699 return 0; 700 } 701 702 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 703 // than RHS, respectively. A three-way result allows recursive comparisons to be 704 // more efficient. 705 // If the max analysis depth was reached, return None, assuming we do not know 706 // if they are equivalent for sure. 707 static Optional<int> 708 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 709 EquivalenceClasses<const Value *> &EqCacheValue, 710 const LoopInfo *const LI, const SCEV *LHS, 711 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 712 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 713 if (LHS == RHS) 714 return 0; 715 716 // Primarily, sort the SCEVs by their getSCEVType(). 717 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 718 if (LType != RType) 719 return (int)LType - (int)RType; 720 721 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 722 return 0; 723 724 if (Depth > MaxSCEVCompareDepth) 725 return None; 726 727 // Aside from the getSCEVType() ordering, the particular ordering 728 // isn't very important except that it's beneficial to be consistent, 729 // so that (a + b) and (b + a) don't end up as different expressions. 730 switch (LType) { 731 case scUnknown: { 732 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 733 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 734 735 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 736 RU->getValue(), Depth + 1); 737 if (X == 0) 738 EqCacheSCEV.unionSets(LHS, RHS); 739 return X; 740 } 741 742 case scConstant: { 743 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 744 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 745 746 // Compare constant values. 747 const APInt &LA = LC->getAPInt(); 748 const APInt &RA = RC->getAPInt(); 749 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 750 if (LBitWidth != RBitWidth) 751 return (int)LBitWidth - (int)RBitWidth; 752 return LA.ult(RA) ? -1 : 1; 753 } 754 755 case scAddRecExpr: { 756 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 757 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 758 759 // There is always a dominance between two recs that are used by one SCEV, 760 // so we can safely sort recs by loop header dominance. We require such 761 // order in getAddExpr. 762 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 763 if (LLoop != RLoop) { 764 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 765 assert(LHead != RHead && "Two loops share the same header?"); 766 if (DT.dominates(LHead, RHead)) 767 return 1; 768 else 769 assert(DT.dominates(RHead, LHead) && 770 "No dominance between recurrences used by one SCEV?"); 771 return -1; 772 } 773 774 // Addrec complexity grows with operand count. 775 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 776 if (LNumOps != RNumOps) 777 return (int)LNumOps - (int)RNumOps; 778 779 // Lexicographically compare. 780 for (unsigned i = 0; i != LNumOps; ++i) { 781 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 782 LA->getOperand(i), RA->getOperand(i), DT, 783 Depth + 1); 784 if (X != 0) 785 return X; 786 } 787 EqCacheSCEV.unionSets(LHS, RHS); 788 return 0; 789 } 790 791 case scAddExpr: 792 case scMulExpr: 793 case scSMaxExpr: 794 case scUMaxExpr: 795 case scSMinExpr: 796 case scUMinExpr: 797 case scSequentialUMinExpr: { 798 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 799 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 800 801 // Lexicographically compare n-ary expressions. 802 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 803 if (LNumOps != RNumOps) 804 return (int)LNumOps - (int)RNumOps; 805 806 for (unsigned i = 0; i != LNumOps; ++i) { 807 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 808 LC->getOperand(i), RC->getOperand(i), DT, 809 Depth + 1); 810 if (X != 0) 811 return X; 812 } 813 EqCacheSCEV.unionSets(LHS, RHS); 814 return 0; 815 } 816 817 case scUDivExpr: { 818 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 819 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 820 821 // Lexicographically compare udiv expressions. 822 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 823 RC->getLHS(), DT, Depth + 1); 824 if (X != 0) 825 return X; 826 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 827 RC->getRHS(), DT, Depth + 1); 828 if (X == 0) 829 EqCacheSCEV.unionSets(LHS, RHS); 830 return X; 831 } 832 833 case scPtrToInt: 834 case scTruncate: 835 case scZeroExtend: 836 case scSignExtend: { 837 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 838 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 839 840 // Compare cast expressions by operand. 841 auto X = 842 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 843 RC->getOperand(), DT, Depth + 1); 844 if (X == 0) 845 EqCacheSCEV.unionSets(LHS, RHS); 846 return X; 847 } 848 849 case scCouldNotCompute: 850 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 851 } 852 llvm_unreachable("Unknown SCEV kind!"); 853 } 854 855 /// Given a list of SCEV objects, order them by their complexity, and group 856 /// objects of the same complexity together by value. When this routine is 857 /// finished, we know that any duplicates in the vector are consecutive and that 858 /// complexity is monotonically increasing. 859 /// 860 /// Note that we go take special precautions to ensure that we get deterministic 861 /// results from this routine. In other words, we don't want the results of 862 /// this to depend on where the addresses of various SCEV objects happened to 863 /// land in memory. 864 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 865 LoopInfo *LI, DominatorTree &DT) { 866 if (Ops.size() < 2) return; // Noop 867 868 EquivalenceClasses<const SCEV *> EqCacheSCEV; 869 EquivalenceClasses<const Value *> EqCacheValue; 870 871 // Whether LHS has provably less complexity than RHS. 872 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 873 auto Complexity = 874 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 875 return Complexity && *Complexity < 0; 876 }; 877 if (Ops.size() == 2) { 878 // This is the common case, which also happens to be trivially simple. 879 // Special case it. 880 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 881 if (IsLessComplex(RHS, LHS)) 882 std::swap(LHS, RHS); 883 return; 884 } 885 886 // Do the rough sort by complexity. 887 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 888 return IsLessComplex(LHS, RHS); 889 }); 890 891 // Now that we are sorted by complexity, group elements of the same 892 // complexity. Note that this is, at worst, N^2, but the vector is likely to 893 // be extremely short in practice. Note that we take this approach because we 894 // do not want to depend on the addresses of the objects we are grouping. 895 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 896 const SCEV *S = Ops[i]; 897 unsigned Complexity = S->getSCEVType(); 898 899 // If there are any objects of the same complexity and same value as this 900 // one, group them. 901 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 902 if (Ops[j] == S) { // Found a duplicate. 903 // Move it to immediately after i'th element. 904 std::swap(Ops[i+1], Ops[j]); 905 ++i; // no need to rescan it. 906 if (i == e-2) return; // Done! 907 } 908 } 909 } 910 } 911 912 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 913 /// least HugeExprThreshold nodes). 914 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 915 return any_of(Ops, [](const SCEV *S) { 916 return S->getExpressionSize() >= HugeExprThreshold; 917 }); 918 } 919 920 //===----------------------------------------------------------------------===// 921 // Simple SCEV method implementations 922 //===----------------------------------------------------------------------===// 923 924 /// Compute BC(It, K). The result has width W. Assume, K > 0. 925 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 926 ScalarEvolution &SE, 927 Type *ResultTy) { 928 // Handle the simplest case efficiently. 929 if (K == 1) 930 return SE.getTruncateOrZeroExtend(It, ResultTy); 931 932 // We are using the following formula for BC(It, K): 933 // 934 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 935 // 936 // Suppose, W is the bitwidth of the return value. We must be prepared for 937 // overflow. Hence, we must assure that the result of our computation is 938 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 939 // safe in modular arithmetic. 940 // 941 // However, this code doesn't use exactly that formula; the formula it uses 942 // is something like the following, where T is the number of factors of 2 in 943 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 944 // exponentiation: 945 // 946 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 947 // 948 // This formula is trivially equivalent to the previous formula. However, 949 // this formula can be implemented much more efficiently. The trick is that 950 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 951 // arithmetic. To do exact division in modular arithmetic, all we have 952 // to do is multiply by the inverse. Therefore, this step can be done at 953 // width W. 954 // 955 // The next issue is how to safely do the division by 2^T. The way this 956 // is done is by doing the multiplication step at a width of at least W + T 957 // bits. This way, the bottom W+T bits of the product are accurate. Then, 958 // when we perform the division by 2^T (which is equivalent to a right shift 959 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 960 // truncated out after the division by 2^T. 961 // 962 // In comparison to just directly using the first formula, this technique 963 // is much more efficient; using the first formula requires W * K bits, 964 // but this formula less than W + K bits. Also, the first formula requires 965 // a division step, whereas this formula only requires multiplies and shifts. 966 // 967 // It doesn't matter whether the subtraction step is done in the calculation 968 // width or the input iteration count's width; if the subtraction overflows, 969 // the result must be zero anyway. We prefer here to do it in the width of 970 // the induction variable because it helps a lot for certain cases; CodeGen 971 // isn't smart enough to ignore the overflow, which leads to much less 972 // efficient code if the width of the subtraction is wider than the native 973 // register width. 974 // 975 // (It's possible to not widen at all by pulling out factors of 2 before 976 // the multiplication; for example, K=2 can be calculated as 977 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 978 // extra arithmetic, so it's not an obvious win, and it gets 979 // much more complicated for K > 3.) 980 981 // Protection from insane SCEVs; this bound is conservative, 982 // but it probably doesn't matter. 983 if (K > 1000) 984 return SE.getCouldNotCompute(); 985 986 unsigned W = SE.getTypeSizeInBits(ResultTy); 987 988 // Calculate K! / 2^T and T; we divide out the factors of two before 989 // multiplying for calculating K! / 2^T to avoid overflow. 990 // Other overflow doesn't matter because we only care about the bottom 991 // W bits of the result. 992 APInt OddFactorial(W, 1); 993 unsigned T = 1; 994 for (unsigned i = 3; i <= K; ++i) { 995 APInt Mult(W, i); 996 unsigned TwoFactors = Mult.countTrailingZeros(); 997 T += TwoFactors; 998 Mult.lshrInPlace(TwoFactors); 999 OddFactorial *= Mult; 1000 } 1001 1002 // We need at least W + T bits for the multiplication step 1003 unsigned CalculationBits = W + T; 1004 1005 // Calculate 2^T, at width T+W. 1006 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1007 1008 // Calculate the multiplicative inverse of K! / 2^T; 1009 // this multiplication factor will perform the exact division by 1010 // K! / 2^T. 1011 APInt Mod = APInt::getSignedMinValue(W+1); 1012 APInt MultiplyFactor = OddFactorial.zext(W+1); 1013 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1014 MultiplyFactor = MultiplyFactor.trunc(W); 1015 1016 // Calculate the product, at width T+W 1017 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1018 CalculationBits); 1019 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1020 for (unsigned i = 1; i != K; ++i) { 1021 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1022 Dividend = SE.getMulExpr(Dividend, 1023 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1024 } 1025 1026 // Divide by 2^T 1027 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1028 1029 // Truncate the result, and divide by K! / 2^T. 1030 1031 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1032 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1033 } 1034 1035 /// Return the value of this chain of recurrences at the specified iteration 1036 /// number. We can evaluate this recurrence by multiplying each element in the 1037 /// chain by the binomial coefficient corresponding to it. In other words, we 1038 /// can evaluate {A,+,B,+,C,+,D} as: 1039 /// 1040 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1041 /// 1042 /// where BC(It, k) stands for binomial coefficient. 1043 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1044 ScalarEvolution &SE) const { 1045 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1046 } 1047 1048 const SCEV * 1049 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1050 const SCEV *It, ScalarEvolution &SE) { 1051 assert(Operands.size() > 0); 1052 const SCEV *Result = Operands[0]; 1053 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1054 // The computation is correct in the face of overflow provided that the 1055 // multiplication is performed _after_ the evaluation of the binomial 1056 // coefficient. 1057 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1058 if (isa<SCEVCouldNotCompute>(Coeff)) 1059 return Coeff; 1060 1061 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1062 } 1063 return Result; 1064 } 1065 1066 //===----------------------------------------------------------------------===// 1067 // SCEV Expression folder implementations 1068 //===----------------------------------------------------------------------===// 1069 1070 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1071 unsigned Depth) { 1072 assert(Depth <= 1 && 1073 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1074 1075 // We could be called with an integer-typed operands during SCEV rewrites. 1076 // Since the operand is an integer already, just perform zext/trunc/self cast. 1077 if (!Op->getType()->isPointerTy()) 1078 return Op; 1079 1080 // What would be an ID for such a SCEV cast expression? 1081 FoldingSetNodeID ID; 1082 ID.AddInteger(scPtrToInt); 1083 ID.AddPointer(Op); 1084 1085 void *IP = nullptr; 1086 1087 // Is there already an expression for such a cast? 1088 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1089 return S; 1090 1091 // It isn't legal for optimizations to construct new ptrtoint expressions 1092 // for non-integral pointers. 1093 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1094 return getCouldNotCompute(); 1095 1096 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1097 1098 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1099 // is sufficiently wide to represent all possible pointer values. 1100 // We could theoretically teach SCEV to truncate wider pointers, but 1101 // that isn't implemented for now. 1102 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1103 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1104 return getCouldNotCompute(); 1105 1106 // If not, is this expression something we can't reduce any further? 1107 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1108 // Perform some basic constant folding. If the operand of the ptr2int cast 1109 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1110 // left as-is), but produce a zero constant. 1111 // NOTE: We could handle a more general case, but lack motivational cases. 1112 if (isa<ConstantPointerNull>(U->getValue())) 1113 return getZero(IntPtrTy); 1114 1115 // Create an explicit cast node. 1116 // We can reuse the existing insert position since if we get here, 1117 // we won't have made any changes which would invalidate it. 1118 SCEV *S = new (SCEVAllocator) 1119 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1120 UniqueSCEVs.InsertNode(S, IP); 1121 registerUser(S, Op); 1122 return S; 1123 } 1124 1125 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1126 "non-SCEVUnknown's."); 1127 1128 // Otherwise, we've got some expression that is more complex than just a 1129 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1130 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1131 // only, and the expressions must otherwise be integer-typed. 1132 // So sink the cast down to the SCEVUnknown's. 1133 1134 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1135 /// which computes a pointer-typed value, and rewrites the whole expression 1136 /// tree so that *all* the computations are done on integers, and the only 1137 /// pointer-typed operands in the expression are SCEVUnknown. 1138 class SCEVPtrToIntSinkingRewriter 1139 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1140 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1141 1142 public: 1143 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1144 1145 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1146 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1147 return Rewriter.visit(Scev); 1148 } 1149 1150 const SCEV *visit(const SCEV *S) { 1151 Type *STy = S->getType(); 1152 // If the expression is not pointer-typed, just keep it as-is. 1153 if (!STy->isPointerTy()) 1154 return S; 1155 // Else, recursively sink the cast down into it. 1156 return Base::visit(S); 1157 } 1158 1159 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1160 SmallVector<const SCEV *, 2> Operands; 1161 bool Changed = false; 1162 for (auto *Op : Expr->operands()) { 1163 Operands.push_back(visit(Op)); 1164 Changed |= Op != Operands.back(); 1165 } 1166 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1167 } 1168 1169 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1170 SmallVector<const SCEV *, 2> Operands; 1171 bool Changed = false; 1172 for (auto *Op : Expr->operands()) { 1173 Operands.push_back(visit(Op)); 1174 Changed |= Op != Operands.back(); 1175 } 1176 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1177 } 1178 1179 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1180 assert(Expr->getType()->isPointerTy() && 1181 "Should only reach pointer-typed SCEVUnknown's."); 1182 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1183 } 1184 }; 1185 1186 // And actually perform the cast sinking. 1187 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1188 assert(IntOp->getType()->isIntegerTy() && 1189 "We must have succeeded in sinking the cast, " 1190 "and ending up with an integer-typed expression!"); 1191 return IntOp; 1192 } 1193 1194 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1195 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1196 1197 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1198 if (isa<SCEVCouldNotCompute>(IntOp)) 1199 return IntOp; 1200 1201 return getTruncateOrZeroExtend(IntOp, Ty); 1202 } 1203 1204 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1205 unsigned Depth) { 1206 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1207 "This is not a truncating conversion!"); 1208 assert(isSCEVable(Ty) && 1209 "This is not a conversion to a SCEVable type!"); 1210 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1211 Ty = getEffectiveSCEVType(Ty); 1212 1213 FoldingSetNodeID ID; 1214 ID.AddInteger(scTruncate); 1215 ID.AddPointer(Op); 1216 ID.AddPointer(Ty); 1217 void *IP = nullptr; 1218 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1219 1220 // Fold if the operand is constant. 1221 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1222 return getConstant( 1223 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1224 1225 // trunc(trunc(x)) --> trunc(x) 1226 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1227 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1228 1229 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1230 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1231 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1232 1233 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1234 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1235 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1236 1237 if (Depth > MaxCastDepth) { 1238 SCEV *S = 1239 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1240 UniqueSCEVs.InsertNode(S, IP); 1241 registerUser(S, Op); 1242 return S; 1243 } 1244 1245 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1246 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1247 // if after transforming we have at most one truncate, not counting truncates 1248 // that replace other casts. 1249 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1250 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1251 SmallVector<const SCEV *, 4> Operands; 1252 unsigned numTruncs = 0; 1253 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1254 ++i) { 1255 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1256 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1257 isa<SCEVTruncateExpr>(S)) 1258 numTruncs++; 1259 Operands.push_back(S); 1260 } 1261 if (numTruncs < 2) { 1262 if (isa<SCEVAddExpr>(Op)) 1263 return getAddExpr(Operands); 1264 else if (isa<SCEVMulExpr>(Op)) 1265 return getMulExpr(Operands); 1266 else 1267 llvm_unreachable("Unexpected SCEV type for Op."); 1268 } 1269 // Although we checked in the beginning that ID is not in the cache, it is 1270 // possible that during recursion and different modification ID was inserted 1271 // into the cache. So if we find it, just return it. 1272 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1273 return S; 1274 } 1275 1276 // If the input value is a chrec scev, truncate the chrec's operands. 1277 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1278 SmallVector<const SCEV *, 4> Operands; 1279 for (const SCEV *Op : AddRec->operands()) 1280 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1281 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1282 } 1283 1284 // Return zero if truncating to known zeros. 1285 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1286 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1287 return getZero(Ty); 1288 1289 // The cast wasn't folded; create an explicit cast node. We can reuse 1290 // the existing insert position since if we get here, we won't have 1291 // made any changes which would invalidate it. 1292 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1293 Op, Ty); 1294 UniqueSCEVs.InsertNode(S, IP); 1295 registerUser(S, Op); 1296 return S; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // signed overflow as long as the value of the recurrence within the 1301 // loop does not exceed this limit before incrementing. 1302 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 if (SE->isKnownPositive(Step)) { 1307 *Pred = ICmpInst::ICMP_SLT; 1308 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1309 SE->getSignedRangeMax(Step)); 1310 } 1311 if (SE->isKnownNegative(Step)) { 1312 *Pred = ICmpInst::ICMP_SGT; 1313 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1314 SE->getSignedRangeMin(Step)); 1315 } 1316 return nullptr; 1317 } 1318 1319 // Get the limit of a recurrence such that incrementing by Step cannot cause 1320 // unsigned overflow as long as the value of the recurrence within the loop does 1321 // not exceed this limit before incrementing. 1322 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1323 ICmpInst::Predicate *Pred, 1324 ScalarEvolution *SE) { 1325 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1326 *Pred = ICmpInst::ICMP_ULT; 1327 1328 return SE->getConstant(APInt::getMinValue(BitWidth) - 1329 SE->getUnsignedRangeMax(Step)); 1330 } 1331 1332 namespace { 1333 1334 struct ExtendOpTraitsBase { 1335 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1336 unsigned); 1337 }; 1338 1339 // Used to make code generic over signed and unsigned overflow. 1340 template <typename ExtendOp> struct ExtendOpTraits { 1341 // Members present: 1342 // 1343 // static const SCEV::NoWrapFlags WrapType; 1344 // 1345 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1346 // 1347 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1348 // ICmpInst::Predicate *Pred, 1349 // ScalarEvolution *SE); 1350 }; 1351 1352 template <> 1353 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1354 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1355 1356 static const GetExtendExprTy GetExtendExpr; 1357 1358 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1359 ICmpInst::Predicate *Pred, 1360 ScalarEvolution *SE) { 1361 return getSignedOverflowLimitForStep(Step, Pred, SE); 1362 } 1363 }; 1364 1365 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1366 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1367 1368 template <> 1369 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1370 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1371 1372 static const GetExtendExprTy GetExtendExpr; 1373 1374 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1375 ICmpInst::Predicate *Pred, 1376 ScalarEvolution *SE) { 1377 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1378 } 1379 }; 1380 1381 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1382 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1383 1384 } // end anonymous namespace 1385 1386 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1387 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1388 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1389 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1390 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1391 // expression "Step + sext/zext(PreIncAR)" is congruent with 1392 // "sext/zext(PostIncAR)" 1393 template <typename ExtendOpTy> 1394 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1395 ScalarEvolution *SE, unsigned Depth) { 1396 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1397 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1398 1399 const Loop *L = AR->getLoop(); 1400 const SCEV *Start = AR->getStart(); 1401 const SCEV *Step = AR->getStepRecurrence(*SE); 1402 1403 // Check for a simple looking step prior to loop entry. 1404 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1405 if (!SA) 1406 return nullptr; 1407 1408 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1409 // subtraction is expensive. For this purpose, perform a quick and dirty 1410 // difference, by checking for Step in the operand list. 1411 SmallVector<const SCEV *, 4> DiffOps; 1412 for (const SCEV *Op : SA->operands()) 1413 if (Op != Step) 1414 DiffOps.push_back(Op); 1415 1416 if (DiffOps.size() == SA->getNumOperands()) 1417 return nullptr; 1418 1419 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1420 // `Step`: 1421 1422 // 1. NSW/NUW flags on the step increment. 1423 auto PreStartFlags = 1424 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1425 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1426 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1427 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1428 1429 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1430 // "S+X does not sign/unsign-overflow". 1431 // 1432 1433 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1434 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1435 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1436 return PreStart; 1437 1438 // 2. Direct overflow check on the step operation's expression. 1439 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1440 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1441 const SCEV *OperandExtendedStart = 1442 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1443 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1444 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1445 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1446 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1447 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1448 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1449 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1450 } 1451 return PreStart; 1452 } 1453 1454 // 3. Loop precondition. 1455 ICmpInst::Predicate Pred; 1456 const SCEV *OverflowLimit = 1457 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1458 1459 if (OverflowLimit && 1460 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1461 return PreStart; 1462 1463 return nullptr; 1464 } 1465 1466 // Get the normalized zero or sign extended expression for this AddRec's Start. 1467 template <typename ExtendOpTy> 1468 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1469 ScalarEvolution *SE, 1470 unsigned Depth) { 1471 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1472 1473 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1474 if (!PreStart) 1475 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1476 1477 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1478 Depth), 1479 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1480 } 1481 1482 // Try to prove away overflow by looking at "nearby" add recurrences. A 1483 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1484 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1485 // 1486 // Formally: 1487 // 1488 // {S,+,X} == {S-T,+,X} + T 1489 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1490 // 1491 // If ({S-T,+,X} + T) does not overflow ... (1) 1492 // 1493 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1494 // 1495 // If {S-T,+,X} does not overflow ... (2) 1496 // 1497 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1498 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1499 // 1500 // If (S-T)+T does not overflow ... (3) 1501 // 1502 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1503 // == {Ext(S),+,Ext(X)} == LHS 1504 // 1505 // Thus, if (1), (2) and (3) are true for some T, then 1506 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1507 // 1508 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1509 // does not overflow" restricted to the 0th iteration. Therefore we only need 1510 // to check for (1) and (2). 1511 // 1512 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1513 // is `Delta` (defined below). 1514 template <typename ExtendOpTy> 1515 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1516 const SCEV *Step, 1517 const Loop *L) { 1518 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1519 1520 // We restrict `Start` to a constant to prevent SCEV from spending too much 1521 // time here. It is correct (but more expensive) to continue with a 1522 // non-constant `Start` and do a general SCEV subtraction to compute 1523 // `PreStart` below. 1524 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1525 if (!StartC) 1526 return false; 1527 1528 APInt StartAI = StartC->getAPInt(); 1529 1530 for (unsigned Delta : {-2, -1, 1, 2}) { 1531 const SCEV *PreStart = getConstant(StartAI - Delta); 1532 1533 FoldingSetNodeID ID; 1534 ID.AddInteger(scAddRecExpr); 1535 ID.AddPointer(PreStart); 1536 ID.AddPointer(Step); 1537 ID.AddPointer(L); 1538 void *IP = nullptr; 1539 const auto *PreAR = 1540 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1541 1542 // Give up if we don't already have the add recurrence we need because 1543 // actually constructing an add recurrence is relatively expensive. 1544 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1545 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1546 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1547 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1548 DeltaS, &Pred, this); 1549 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1550 return true; 1551 } 1552 } 1553 1554 return false; 1555 } 1556 1557 // Finds an integer D for an expression (C + x + y + ...) such that the top 1558 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1559 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1560 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1561 // the (C + x + y + ...) expression is \p WholeAddExpr. 1562 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1563 const SCEVConstant *ConstantTerm, 1564 const SCEVAddExpr *WholeAddExpr) { 1565 const APInt &C = ConstantTerm->getAPInt(); 1566 const unsigned BitWidth = C.getBitWidth(); 1567 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1568 uint32_t TZ = BitWidth; 1569 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1570 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1571 if (TZ) { 1572 // Set D to be as many least significant bits of C as possible while still 1573 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1574 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1575 } 1576 return APInt(BitWidth, 0); 1577 } 1578 1579 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1580 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1581 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1582 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1583 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1584 const APInt &ConstantStart, 1585 const SCEV *Step) { 1586 const unsigned BitWidth = ConstantStart.getBitWidth(); 1587 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1588 if (TZ) 1589 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1590 : ConstantStart; 1591 return APInt(BitWidth, 0); 1592 } 1593 1594 const SCEV * 1595 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1596 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1597 "This is not an extending conversion!"); 1598 assert(isSCEVable(Ty) && 1599 "This is not a conversion to a SCEVable type!"); 1600 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1601 Ty = getEffectiveSCEVType(Ty); 1602 1603 // Fold if the operand is constant. 1604 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1605 return getConstant( 1606 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1607 1608 // zext(zext(x)) --> zext(x) 1609 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1610 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1611 1612 // Before doing any expensive analysis, check to see if we've already 1613 // computed a SCEV for this Op and Ty. 1614 FoldingSetNodeID ID; 1615 ID.AddInteger(scZeroExtend); 1616 ID.AddPointer(Op); 1617 ID.AddPointer(Ty); 1618 void *IP = nullptr; 1619 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1620 if (Depth > MaxCastDepth) { 1621 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1622 Op, Ty); 1623 UniqueSCEVs.InsertNode(S, IP); 1624 registerUser(S, Op); 1625 return S; 1626 } 1627 1628 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1629 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1630 // It's possible the bits taken off by the truncate were all zero bits. If 1631 // so, we should be able to simplify this further. 1632 const SCEV *X = ST->getOperand(); 1633 ConstantRange CR = getUnsignedRange(X); 1634 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1635 unsigned NewBits = getTypeSizeInBits(Ty); 1636 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1637 CR.zextOrTrunc(NewBits))) 1638 return getTruncateOrZeroExtend(X, Ty, Depth); 1639 } 1640 1641 // If the input value is a chrec scev, and we can prove that the value 1642 // did not overflow the old, smaller, value, we can zero extend all of the 1643 // operands (often constants). This allows analysis of something like 1644 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1645 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1646 if (AR->isAffine()) { 1647 const SCEV *Start = AR->getStart(); 1648 const SCEV *Step = AR->getStepRecurrence(*this); 1649 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1650 const Loop *L = AR->getLoop(); 1651 1652 if (!AR->hasNoUnsignedWrap()) { 1653 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1654 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1655 } 1656 1657 // If we have special knowledge that this addrec won't overflow, 1658 // we don't need to do any further analysis. 1659 if (AR->hasNoUnsignedWrap()) 1660 return getAddRecExpr( 1661 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1662 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1663 1664 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1665 // Note that this serves two purposes: It filters out loops that are 1666 // simply not analyzable, and it covers the case where this code is 1667 // being called from within backedge-taken count analysis, such that 1668 // attempting to ask for the backedge-taken count would likely result 1669 // in infinite recursion. In the later case, the analysis code will 1670 // cope with a conservative value, and it will take care to purge 1671 // that value once it has finished. 1672 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1673 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1674 // Manually compute the final value for AR, checking for overflow. 1675 1676 // Check whether the backedge-taken count can be losslessly casted to 1677 // the addrec's type. The count is always unsigned. 1678 const SCEV *CastedMaxBECount = 1679 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1680 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1681 CastedMaxBECount, MaxBECount->getType(), Depth); 1682 if (MaxBECount == RecastedMaxBECount) { 1683 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1684 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1685 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1686 SCEV::FlagAnyWrap, Depth + 1); 1687 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1688 SCEV::FlagAnyWrap, 1689 Depth + 1), 1690 WideTy, Depth + 1); 1691 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1692 const SCEV *WideMaxBECount = 1693 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1694 const SCEV *OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1702 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1703 // Return the expression with the addrec on the outside. 1704 return getAddRecExpr( 1705 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1), 1707 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1708 AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 return getAddRecExpr( 1724 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1725 Depth + 1), 1726 getSignExtendExpr(Step, Ty, Depth + 1), L, 1727 AR->getNoWrapFlags()); 1728 } 1729 } 1730 } 1731 1732 // Normally, in the cases we can prove no-overflow via a 1733 // backedge guarding condition, we can also compute a backedge 1734 // taken count for the loop. The exceptions are assumptions and 1735 // guards present in the loop -- SCEV is not great at exploiting 1736 // these to compute max backedge taken counts, but can still use 1737 // these to prove lack of overflow. Use this fact to avoid 1738 // doing extra work that may not pay off. 1739 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1740 !AC.assumptions().empty()) { 1741 1742 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1743 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1744 if (AR->hasNoUnsignedWrap()) { 1745 // Same as nuw case above - duplicated here to avoid a compile time 1746 // issue. It's not clear that the order of checks does matter, but 1747 // it's one of two issue possible causes for a change which was 1748 // reverted. Be conservative for the moment. 1749 return getAddRecExpr( 1750 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1751 Depth + 1), 1752 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1753 AR->getNoWrapFlags()); 1754 } 1755 1756 // For a negative step, we can extend the operands iff doing so only 1757 // traverses values in the range zext([0,UINT_MAX]). 1758 if (isKnownNegative(Step)) { 1759 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1760 getSignedRangeMin(Step)); 1761 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1762 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1763 // Cache knowledge of AR NW, which is propagated to this 1764 // AddRec. Negative step causes unsigned wrap, but it 1765 // still can't self-wrap. 1766 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1767 // Return the expression with the addrec on the outside. 1768 return getAddRecExpr( 1769 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1770 Depth + 1), 1771 getSignExtendExpr(Step, Ty, Depth + 1), L, 1772 AR->getNoWrapFlags()); 1773 } 1774 } 1775 } 1776 1777 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1778 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1779 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1780 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1781 const APInt &C = SC->getAPInt(); 1782 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1783 if (D != 0) { 1784 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1785 const SCEV *SResidual = 1786 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1787 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1788 return getAddExpr(SZExtD, SZExtR, 1789 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1790 Depth + 1); 1791 } 1792 } 1793 1794 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1795 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1796 return getAddRecExpr( 1797 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1798 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1799 } 1800 } 1801 1802 // zext(A % B) --> zext(A) % zext(B) 1803 { 1804 const SCEV *LHS; 1805 const SCEV *RHS; 1806 if (matchURem(Op, LHS, RHS)) 1807 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1808 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1809 } 1810 1811 // zext(A / B) --> zext(A) / zext(B). 1812 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1813 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1814 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1815 1816 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1817 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1818 if (SA->hasNoUnsignedWrap()) { 1819 // If the addition does not unsign overflow then we can, by definition, 1820 // commute the zero extension with the addition operation. 1821 SmallVector<const SCEV *, 4> Ops; 1822 for (const auto *Op : SA->operands()) 1823 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1824 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1825 } 1826 1827 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1828 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1829 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1830 // 1831 // Often address arithmetics contain expressions like 1832 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1833 // This transformation is useful while proving that such expressions are 1834 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1835 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1836 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1837 if (D != 0) { 1838 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1839 const SCEV *SResidual = 1840 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1841 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1842 return getAddExpr(SZExtD, SZExtR, 1843 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1844 Depth + 1); 1845 } 1846 } 1847 } 1848 1849 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1850 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1851 if (SM->hasNoUnsignedWrap()) { 1852 // If the multiply does not unsign overflow then we can, by definition, 1853 // commute the zero extension with the multiply operation. 1854 SmallVector<const SCEV *, 4> Ops; 1855 for (const auto *Op : SM->operands()) 1856 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1857 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1858 } 1859 1860 // zext(2^K * (trunc X to iN)) to iM -> 1861 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1862 // 1863 // Proof: 1864 // 1865 // zext(2^K * (trunc X to iN)) to iM 1866 // = zext((trunc X to iN) << K) to iM 1867 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1868 // (because shl removes the top K bits) 1869 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1870 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1871 // 1872 if (SM->getNumOperands() == 2) 1873 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1874 if (MulLHS->getAPInt().isPowerOf2()) 1875 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1876 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1877 MulLHS->getAPInt().logBase2(); 1878 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1879 return getMulExpr( 1880 getZeroExtendExpr(MulLHS, Ty), 1881 getZeroExtendExpr( 1882 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1883 SCEV::FlagNUW, Depth + 1); 1884 } 1885 } 1886 1887 // The cast wasn't folded; create an explicit cast node. 1888 // Recompute the insert position, as it may have been invalidated. 1889 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1890 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1891 Op, Ty); 1892 UniqueSCEVs.InsertNode(S, IP); 1893 registerUser(S, Op); 1894 return S; 1895 } 1896 1897 const SCEV * 1898 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1899 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1900 "This is not an extending conversion!"); 1901 assert(isSCEVable(Ty) && 1902 "This is not a conversion to a SCEVable type!"); 1903 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1904 Ty = getEffectiveSCEVType(Ty); 1905 1906 // Fold if the operand is constant. 1907 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1908 return getConstant( 1909 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1910 1911 // sext(sext(x)) --> sext(x) 1912 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1913 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1914 1915 // sext(zext(x)) --> zext(x) 1916 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1917 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1918 1919 // Before doing any expensive analysis, check to see if we've already 1920 // computed a SCEV for this Op and Ty. 1921 FoldingSetNodeID ID; 1922 ID.AddInteger(scSignExtend); 1923 ID.AddPointer(Op); 1924 ID.AddPointer(Ty); 1925 void *IP = nullptr; 1926 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1927 // Limit recursion depth. 1928 if (Depth > MaxCastDepth) { 1929 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1930 Op, Ty); 1931 UniqueSCEVs.InsertNode(S, IP); 1932 registerUser(S, Op); 1933 return S; 1934 } 1935 1936 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1937 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1938 // It's possible the bits taken off by the truncate were all sign bits. If 1939 // so, we should be able to simplify this further. 1940 const SCEV *X = ST->getOperand(); 1941 ConstantRange CR = getSignedRange(X); 1942 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1943 unsigned NewBits = getTypeSizeInBits(Ty); 1944 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1945 CR.sextOrTrunc(NewBits))) 1946 return getTruncateOrSignExtend(X, Ty, Depth); 1947 } 1948 1949 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1950 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1951 if (SA->hasNoSignedWrap()) { 1952 // If the addition does not sign overflow then we can, by definition, 1953 // commute the sign extension with the addition operation. 1954 SmallVector<const SCEV *, 4> Ops; 1955 for (const auto *Op : SA->operands()) 1956 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1957 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1958 } 1959 1960 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1961 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1962 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1963 // 1964 // For instance, this will bring two seemingly different expressions: 1965 // 1 + sext(5 + 20 * %x + 24 * %y) and 1966 // sext(6 + 20 * %x + 24 * %y) 1967 // to the same form: 1968 // 2 + sext(4 + 20 * %x + 24 * %y) 1969 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1970 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1971 if (D != 0) { 1972 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1973 const SCEV *SResidual = 1974 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1975 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1976 return getAddExpr(SSExtD, SSExtR, 1977 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1978 Depth + 1); 1979 } 1980 } 1981 } 1982 // If the input value is a chrec scev, and we can prove that the value 1983 // did not overflow the old, smaller, value, we can sign extend all of the 1984 // operands (often constants). This allows analysis of something like 1985 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1986 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1987 if (AR->isAffine()) { 1988 const SCEV *Start = AR->getStart(); 1989 const SCEV *Step = AR->getStepRecurrence(*this); 1990 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1991 const Loop *L = AR->getLoop(); 1992 1993 if (!AR->hasNoSignedWrap()) { 1994 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1995 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1996 } 1997 1998 // If we have special knowledge that this addrec won't overflow, 1999 // we don't need to do any further analysis. 2000 if (AR->hasNoSignedWrap()) 2001 return getAddRecExpr( 2002 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2003 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 return getAddRecExpr( 2047 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2048 Depth + 1), 2049 getSignExtendExpr(Step, Ty, Depth + 1), L, 2050 AR->getNoWrapFlags()); 2051 } 2052 // Similar to above, only this time treat the step value as unsigned. 2053 // This covers loops that count up with an unsigned step. 2054 OperandExtendedAdd = 2055 getAddExpr(WideStart, 2056 getMulExpr(WideMaxBECount, 2057 getZeroExtendExpr(Step, WideTy, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1), 2059 SCEV::FlagAnyWrap, Depth + 1); 2060 if (SAdd == OperandExtendedAdd) { 2061 // If AR wraps around then 2062 // 2063 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2064 // => SAdd != OperandExtendedAdd 2065 // 2066 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2067 // (SAdd == OperandExtendedAdd => AR is NW) 2068 2069 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2070 2071 // Return the expression with the addrec on the outside. 2072 return getAddRecExpr( 2073 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2074 Depth + 1), 2075 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2076 AR->getNoWrapFlags()); 2077 } 2078 } 2079 } 2080 2081 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2082 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2083 if (AR->hasNoSignedWrap()) { 2084 // Same as nsw case above - duplicated here to avoid a compile time 2085 // issue. It's not clear that the order of checks does matter, but 2086 // it's one of two issue possible causes for a change which was 2087 // reverted. Be conservative for the moment. 2088 return getAddRecExpr( 2089 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2090 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2091 } 2092 2093 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2094 // if D + (C - D + Step * n) could be proven to not signed wrap 2095 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2096 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2097 const APInt &C = SC->getAPInt(); 2098 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2099 if (D != 0) { 2100 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2101 const SCEV *SResidual = 2102 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2103 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2104 return getAddExpr(SSExtD, SSExtR, 2105 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2106 Depth + 1); 2107 } 2108 } 2109 2110 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2111 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2112 return getAddRecExpr( 2113 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2114 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2317 (this->*Extension)(RHS, WideTy, 0), 2318 SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3123 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1), 3125 getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1), 3127 SCEV::FlagAnyWrap, Depth + 1); 3128 3129 if (Ops[0]->isAllOnesValue()) { 3130 // If we have a mul by -1 of an add, try distributing the -1 among the 3131 // add operands. 3132 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3133 SmallVector<const SCEV *, 4> NewOps; 3134 bool AnyFolded = false; 3135 for (const SCEV *AddOp : Add->operands()) { 3136 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3137 Depth + 1); 3138 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3139 NewOps.push_back(Mul); 3140 } 3141 if (AnyFolded) 3142 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3143 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3144 // Negation preserves a recurrence's no self-wrap property. 3145 SmallVector<const SCEV *, 4> Operands; 3146 for (const SCEV *AddRecOp : AddRec->operands()) 3147 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3148 Depth + 1)); 3149 3150 return getAddRecExpr(Operands, AddRec->getLoop(), 3151 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3152 } 3153 } 3154 } 3155 } 3156 3157 // Skip over the add expression until we get to a multiply. 3158 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3159 ++Idx; 3160 3161 // If there are mul operands inline them all into this expression. 3162 if (Idx < Ops.size()) { 3163 bool DeletedMul = false; 3164 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3165 if (Ops.size() > MulOpsInlineThreshold) 3166 break; 3167 // If we have an mul, expand the mul operands onto the end of the 3168 // operands list. 3169 Ops.erase(Ops.begin()+Idx); 3170 Ops.append(Mul->op_begin(), Mul->op_end()); 3171 DeletedMul = true; 3172 } 3173 3174 // If we deleted at least one mul, we added operands to the end of the 3175 // list, and they are not necessarily sorted. Recurse to resort and 3176 // resimplify any operands we just acquired. 3177 if (DeletedMul) 3178 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3179 } 3180 3181 // If there are any add recurrences in the operands list, see if any other 3182 // added values are loop invariant. If so, we can fold them into the 3183 // recurrence. 3184 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3185 ++Idx; 3186 3187 // Scan over all recurrences, trying to fold loop invariants into them. 3188 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3189 // Scan all of the other operands to this mul and add them to the vector 3190 // if they are loop invariant w.r.t. the recurrence. 3191 SmallVector<const SCEV *, 8> LIOps; 3192 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3193 const Loop *AddRecLoop = AddRec->getLoop(); 3194 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3195 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3196 LIOps.push_back(Ops[i]); 3197 Ops.erase(Ops.begin()+i); 3198 --i; --e; 3199 } 3200 3201 // If we found some loop invariants, fold them into the recurrence. 3202 if (!LIOps.empty()) { 3203 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3204 SmallVector<const SCEV *, 4> NewOps; 3205 NewOps.reserve(AddRec->getNumOperands()); 3206 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3207 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3208 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 3211 // Build the new addrec. Propagate the NUW and NSW flags if both the 3212 // outer mul and the inner addrec are guaranteed to have no overflow. 3213 // 3214 // No self-wrap cannot be guaranteed after changing the step size, but 3215 // will be inferred if either NUW or NSW is true. 3216 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3217 const SCEV *NewRec = getAddRecExpr( 3218 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3219 3220 // If all of the other operands were loop invariant, we are done. 3221 if (Ops.size() == 1) return NewRec; 3222 3223 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3224 for (unsigned i = 0;; ++i) 3225 if (Ops[i] == AddRec) { 3226 Ops[i] = NewRec; 3227 break; 3228 } 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 } 3231 3232 // Okay, if there weren't any loop invariants to be folded, check to see 3233 // if there are multiple AddRec's with the same loop induction variable 3234 // being multiplied together. If so, we can fold them. 3235 3236 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3237 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3238 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3239 // ]]],+,...up to x=2n}. 3240 // Note that the arguments to choose() are always integers with values 3241 // known at compile time, never SCEV objects. 3242 // 3243 // The implementation avoids pointless extra computations when the two 3244 // addrec's are of different length (mathematically, it's equivalent to 3245 // an infinite stream of zeros on the right). 3246 bool OpsModified = false; 3247 for (unsigned OtherIdx = Idx+1; 3248 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3249 ++OtherIdx) { 3250 const SCEVAddRecExpr *OtherAddRec = 3251 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3252 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3253 continue; 3254 3255 // Limit max number of arguments to avoid creation of unreasonably big 3256 // SCEVAddRecs with very complex operands. 3257 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3258 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3259 continue; 3260 3261 bool Overflow = false; 3262 Type *Ty = AddRec->getType(); 3263 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3264 SmallVector<const SCEV*, 7> AddRecOps; 3265 for (int x = 0, xe = AddRec->getNumOperands() + 3266 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3267 SmallVector <const SCEV *, 7> SumOps; 3268 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3269 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3270 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3271 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3272 z < ze && !Overflow; ++z) { 3273 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3274 uint64_t Coeff; 3275 if (LargerThan64Bits) 3276 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3277 else 3278 Coeff = Coeff1*Coeff2; 3279 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3280 const SCEV *Term1 = AddRec->getOperand(y-z); 3281 const SCEV *Term2 = OtherAddRec->getOperand(z); 3282 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3283 SCEV::FlagAnyWrap, Depth + 1)); 3284 } 3285 } 3286 if (SumOps.empty()) 3287 SumOps.push_back(getZero(Ty)); 3288 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3289 } 3290 if (!Overflow) { 3291 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3292 SCEV::FlagAnyWrap); 3293 if (Ops.size() == 2) return NewAddRec; 3294 Ops[Idx] = NewAddRec; 3295 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3296 OpsModified = true; 3297 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3298 if (!AddRec) 3299 break; 3300 } 3301 } 3302 if (OpsModified) 3303 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3304 3305 // Otherwise couldn't fold anything into this recurrence. Move onto the 3306 // next one. 3307 } 3308 3309 // Okay, it looks like we really DO need an mul expr. Check to see if we 3310 // already have one, otherwise create a new one. 3311 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3312 } 3313 3314 /// Represents an unsigned remainder expression based on unsigned division. 3315 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3316 const SCEV *RHS) { 3317 assert(getEffectiveSCEVType(LHS->getType()) == 3318 getEffectiveSCEVType(RHS->getType()) && 3319 "SCEVURemExpr operand types don't match!"); 3320 3321 // Short-circuit easy cases 3322 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3323 // If constant is one, the result is trivial 3324 if (RHSC->getValue()->isOne()) 3325 return getZero(LHS->getType()); // X urem 1 --> 0 3326 3327 // If constant is a power of two, fold into a zext(trunc(LHS)). 3328 if (RHSC->getAPInt().isPowerOf2()) { 3329 Type *FullTy = LHS->getType(); 3330 Type *TruncTy = 3331 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3332 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3333 } 3334 } 3335 3336 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3337 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3338 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3339 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3340 } 3341 3342 /// Get a canonical unsigned division expression, or something simpler if 3343 /// possible. 3344 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3345 const SCEV *RHS) { 3346 assert(!LHS->getType()->isPointerTy() && 3347 "SCEVUDivExpr operand can't be pointer!"); 3348 assert(LHS->getType() == RHS->getType() && 3349 "SCEVUDivExpr operand types don't match!"); 3350 3351 FoldingSetNodeID ID; 3352 ID.AddInteger(scUDivExpr); 3353 ID.AddPointer(LHS); 3354 ID.AddPointer(RHS); 3355 void *IP = nullptr; 3356 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3357 return S; 3358 3359 // 0 udiv Y == 0 3360 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3361 if (LHSC->getValue()->isZero()) 3362 return LHS; 3363 3364 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3365 if (RHSC->getValue()->isOne()) 3366 return LHS; // X udiv 1 --> x 3367 // If the denominator is zero, the result of the udiv is undefined. Don't 3368 // try to analyze it, because the resolution chosen here may differ from 3369 // the resolution chosen in other parts of the compiler. 3370 if (!RHSC->getValue()->isZero()) { 3371 // Determine if the division can be folded into the operands of 3372 // its operands. 3373 // TODO: Generalize this to non-constants by using known-bits information. 3374 Type *Ty = LHS->getType(); 3375 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3376 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3377 // For non-power-of-two values, effectively round the value up to the 3378 // nearest power of two. 3379 if (!RHSC->getAPInt().isPowerOf2()) 3380 ++MaxShiftAmt; 3381 IntegerType *ExtTy = 3382 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3383 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3384 if (const SCEVConstant *Step = 3385 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3386 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3387 const APInt &StepInt = Step->getAPInt(); 3388 const APInt &DivInt = RHSC->getAPInt(); 3389 if (!StepInt.urem(DivInt) && 3390 getZeroExtendExpr(AR, ExtTy) == 3391 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3392 getZeroExtendExpr(Step, ExtTy), 3393 AR->getLoop(), SCEV::FlagAnyWrap)) { 3394 SmallVector<const SCEV *, 4> Operands; 3395 for (const SCEV *Op : AR->operands()) 3396 Operands.push_back(getUDivExpr(Op, RHS)); 3397 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3398 } 3399 /// Get a canonical UDivExpr for a recurrence. 3400 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3401 // We can currently only fold X%N if X is constant. 3402 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3403 if (StartC && !DivInt.urem(StepInt) && 3404 getZeroExtendExpr(AR, ExtTy) == 3405 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3406 getZeroExtendExpr(Step, ExtTy), 3407 AR->getLoop(), SCEV::FlagAnyWrap)) { 3408 const APInt &StartInt = StartC->getAPInt(); 3409 const APInt &StartRem = StartInt.urem(StepInt); 3410 if (StartRem != 0) { 3411 const SCEV *NewLHS = 3412 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3413 AR->getLoop(), SCEV::FlagNW); 3414 if (LHS != NewLHS) { 3415 LHS = NewLHS; 3416 3417 // Reset the ID to include the new LHS, and check if it is 3418 // already cached. 3419 ID.clear(); 3420 ID.AddInteger(scUDivExpr); 3421 ID.AddPointer(LHS); 3422 ID.AddPointer(RHS); 3423 IP = nullptr; 3424 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3425 return S; 3426 } 3427 } 3428 } 3429 } 3430 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3431 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3432 SmallVector<const SCEV *, 4> Operands; 3433 for (const SCEV *Op : M->operands()) 3434 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3435 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3436 // Find an operand that's safely divisible. 3437 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3438 const SCEV *Op = M->getOperand(i); 3439 const SCEV *Div = getUDivExpr(Op, RHSC); 3440 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3441 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3442 Operands[i] = Div; 3443 return getMulExpr(Operands); 3444 } 3445 } 3446 } 3447 3448 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3449 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3450 if (auto *DivisorConstant = 3451 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3452 bool Overflow = false; 3453 APInt NewRHS = 3454 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3455 if (Overflow) { 3456 return getConstant(RHSC->getType(), 0, false); 3457 } 3458 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3459 } 3460 } 3461 3462 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3463 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3464 SmallVector<const SCEV *, 4> Operands; 3465 for (const SCEV *Op : A->operands()) 3466 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3467 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3468 Operands.clear(); 3469 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3470 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3471 if (isa<SCEVUDivExpr>(Op) || 3472 getMulExpr(Op, RHS) != A->getOperand(i)) 3473 break; 3474 Operands.push_back(Op); 3475 } 3476 if (Operands.size() == A->getNumOperands()) 3477 return getAddExpr(Operands); 3478 } 3479 } 3480 3481 // Fold if both operands are constant. 3482 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3483 Constant *LHSCV = LHSC->getValue(); 3484 Constant *RHSCV = RHSC->getValue(); 3485 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3486 RHSCV))); 3487 } 3488 } 3489 } 3490 3491 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3492 // changes). Make sure we get a new one. 3493 IP = nullptr; 3494 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3495 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3496 LHS, RHS); 3497 UniqueSCEVs.InsertNode(S, IP); 3498 registerUser(S, {LHS, RHS}); 3499 return S; 3500 } 3501 3502 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3503 APInt A = C1->getAPInt().abs(); 3504 APInt B = C2->getAPInt().abs(); 3505 uint32_t ABW = A.getBitWidth(); 3506 uint32_t BBW = B.getBitWidth(); 3507 3508 if (ABW > BBW) 3509 B = B.zext(ABW); 3510 else if (ABW < BBW) 3511 A = A.zext(BBW); 3512 3513 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3514 } 3515 3516 /// Get a canonical unsigned division expression, or something simpler if 3517 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3518 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3519 /// it's not exact because the udiv may be clearing bits. 3520 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3521 const SCEV *RHS) { 3522 // TODO: we could try to find factors in all sorts of things, but for now we 3523 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3524 // end of this file for inspiration. 3525 3526 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3527 if (!Mul || !Mul->hasNoUnsignedWrap()) 3528 return getUDivExpr(LHS, RHS); 3529 3530 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3531 // If the mulexpr multiplies by a constant, then that constant must be the 3532 // first element of the mulexpr. 3533 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3534 if (LHSCst == RHSCst) { 3535 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3536 return getMulExpr(Operands); 3537 } 3538 3539 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3540 // that there's a factor provided by one of the other terms. We need to 3541 // check. 3542 APInt Factor = gcd(LHSCst, RHSCst); 3543 if (!Factor.isIntN(1)) { 3544 LHSCst = 3545 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3546 RHSCst = 3547 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3548 SmallVector<const SCEV *, 2> Operands; 3549 Operands.push_back(LHSCst); 3550 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3551 LHS = getMulExpr(Operands); 3552 RHS = RHSCst; 3553 Mul = dyn_cast<SCEVMulExpr>(LHS); 3554 if (!Mul) 3555 return getUDivExactExpr(LHS, RHS); 3556 } 3557 } 3558 } 3559 3560 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3561 if (Mul->getOperand(i) == RHS) { 3562 SmallVector<const SCEV *, 2> Operands; 3563 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3564 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3565 return getMulExpr(Operands); 3566 } 3567 } 3568 3569 return getUDivExpr(LHS, RHS); 3570 } 3571 3572 /// Get an add recurrence expression for the specified loop. Simplify the 3573 /// expression as much as possible. 3574 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3575 const Loop *L, 3576 SCEV::NoWrapFlags Flags) { 3577 SmallVector<const SCEV *, 4> Operands; 3578 Operands.push_back(Start); 3579 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3580 if (StepChrec->getLoop() == L) { 3581 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3582 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3583 } 3584 3585 Operands.push_back(Step); 3586 return getAddRecExpr(Operands, L, Flags); 3587 } 3588 3589 /// Get an add recurrence expression for the specified loop. Simplify the 3590 /// expression as much as possible. 3591 const SCEV * 3592 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3593 const Loop *L, SCEV::NoWrapFlags Flags) { 3594 if (Operands.size() == 1) return Operands[0]; 3595 #ifndef NDEBUG 3596 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3597 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3598 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3599 "SCEVAddRecExpr operand types don't match!"); 3600 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3601 } 3602 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3603 assert(isLoopInvariant(Operands[i], L) && 3604 "SCEVAddRecExpr operand is not loop-invariant!"); 3605 #endif 3606 3607 if (Operands.back()->isZero()) { 3608 Operands.pop_back(); 3609 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3610 } 3611 3612 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3613 // use that information to infer NUW and NSW flags. However, computing a 3614 // BE count requires calling getAddRecExpr, so we may not yet have a 3615 // meaningful BE count at this point (and if we don't, we'd be stuck 3616 // with a SCEVCouldNotCompute as the cached BE count). 3617 3618 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3619 3620 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3621 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3622 const Loop *NestedLoop = NestedAR->getLoop(); 3623 if (L->contains(NestedLoop) 3624 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3625 : (!NestedLoop->contains(L) && 3626 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3627 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3628 Operands[0] = NestedAR->getStart(); 3629 // AddRecs require their operands be loop-invariant with respect to their 3630 // loops. Don't perform this transformation if it would break this 3631 // requirement. 3632 bool AllInvariant = all_of( 3633 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3634 3635 if (AllInvariant) { 3636 // Create a recurrence for the outer loop with the same step size. 3637 // 3638 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3639 // inner recurrence has the same property. 3640 SCEV::NoWrapFlags OuterFlags = 3641 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3642 3643 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3644 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3645 return isLoopInvariant(Op, NestedLoop); 3646 }); 3647 3648 if (AllInvariant) { 3649 // Ok, both add recurrences are valid after the transformation. 3650 // 3651 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3652 // the outer recurrence has the same property. 3653 SCEV::NoWrapFlags InnerFlags = 3654 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3655 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3656 } 3657 } 3658 // Reset Operands to its original state. 3659 Operands[0] = NestedAR; 3660 } 3661 } 3662 3663 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3664 // already have one, otherwise create a new one. 3665 return getOrCreateAddRecExpr(Operands, L, Flags); 3666 } 3667 3668 const SCEV * 3669 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3670 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3671 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3672 // getSCEV(Base)->getType() has the same address space as Base->getType() 3673 // because SCEV::getType() preserves the address space. 3674 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3675 const bool AssumeInBoundsFlags = [&]() { 3676 if (!GEP->isInBounds()) 3677 return false; 3678 3679 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3680 // but to do that, we have to ensure that said flag is valid in the entire 3681 // defined scope of the SCEV. 3682 auto *GEPI = dyn_cast<Instruction>(GEP); 3683 // TODO: non-instructions have global scope. We might be able to prove 3684 // some global scope cases 3685 return GEPI && isSCEVExprNeverPoison(GEPI); 3686 }(); 3687 3688 SCEV::NoWrapFlags OffsetWrap = 3689 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3690 3691 Type *CurTy = GEP->getType(); 3692 bool FirstIter = true; 3693 SmallVector<const SCEV *, 4> Offsets; 3694 for (const SCEV *IndexExpr : IndexExprs) { 3695 // Compute the (potentially symbolic) offset in bytes for this index. 3696 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3697 // For a struct, add the member offset. 3698 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3699 unsigned FieldNo = Index->getZExtValue(); 3700 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3701 Offsets.push_back(FieldOffset); 3702 3703 // Update CurTy to the type of the field at Index. 3704 CurTy = STy->getTypeAtIndex(Index); 3705 } else { 3706 // Update CurTy to its element type. 3707 if (FirstIter) { 3708 assert(isa<PointerType>(CurTy) && 3709 "The first index of a GEP indexes a pointer"); 3710 CurTy = GEP->getSourceElementType(); 3711 FirstIter = false; 3712 } else { 3713 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3714 } 3715 // For an array, add the element offset, explicitly scaled. 3716 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3717 // Getelementptr indices are signed. 3718 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3719 3720 // Multiply the index by the element size to compute the element offset. 3721 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3722 Offsets.push_back(LocalOffset); 3723 } 3724 } 3725 3726 // Handle degenerate case of GEP without offsets. 3727 if (Offsets.empty()) 3728 return BaseExpr; 3729 3730 // Add the offsets together, assuming nsw if inbounds. 3731 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3732 // Add the base address and the offset. We cannot use the nsw flag, as the 3733 // base address is unsigned. However, if we know that the offset is 3734 // non-negative, we can use nuw. 3735 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3736 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3737 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3738 assert(BaseExpr->getType() == GEPExpr->getType() && 3739 "GEP should not change type mid-flight."); 3740 return GEPExpr; 3741 } 3742 3743 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3744 ArrayRef<const SCEV *> Ops) { 3745 FoldingSetNodeID ID; 3746 ID.AddInteger(SCEVType); 3747 for (const SCEV *Op : Ops) 3748 ID.AddPointer(Op); 3749 void *IP = nullptr; 3750 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3751 } 3752 3753 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3754 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3755 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3756 } 3757 3758 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3759 SmallVectorImpl<const SCEV *> &Ops) { 3760 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3761 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3762 if (Ops.size() == 1) return Ops[0]; 3763 #ifndef NDEBUG 3764 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3765 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3766 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3767 "Operand types don't match!"); 3768 assert(Ops[0]->getType()->isPointerTy() == 3769 Ops[i]->getType()->isPointerTy() && 3770 "min/max should be consistently pointerish"); 3771 } 3772 #endif 3773 3774 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3775 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3776 3777 // Sort by complexity, this groups all similar expression types together. 3778 GroupByComplexity(Ops, &LI, DT); 3779 3780 // Check if we have created the same expression before. 3781 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3782 return S; 3783 } 3784 3785 // If there are any constants, fold them together. 3786 unsigned Idx = 0; 3787 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3788 ++Idx; 3789 assert(Idx < Ops.size()); 3790 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3791 if (Kind == scSMaxExpr) 3792 return APIntOps::smax(LHS, RHS); 3793 else if (Kind == scSMinExpr) 3794 return APIntOps::smin(LHS, RHS); 3795 else if (Kind == scUMaxExpr) 3796 return APIntOps::umax(LHS, RHS); 3797 else if (Kind == scUMinExpr) 3798 return APIntOps::umin(LHS, RHS); 3799 llvm_unreachable("Unknown SCEV min/max opcode"); 3800 }; 3801 3802 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3803 // We found two constants, fold them together! 3804 ConstantInt *Fold = ConstantInt::get( 3805 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3806 Ops[0] = getConstant(Fold); 3807 Ops.erase(Ops.begin()+1); // Erase the folded element 3808 if (Ops.size() == 1) return Ops[0]; 3809 LHSC = cast<SCEVConstant>(Ops[0]); 3810 } 3811 3812 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3813 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3814 3815 if (IsMax ? IsMinV : IsMaxV) { 3816 // If we are left with a constant minimum(/maximum)-int, strip it off. 3817 Ops.erase(Ops.begin()); 3818 --Idx; 3819 } else if (IsMax ? IsMaxV : IsMinV) { 3820 // If we have a max(/min) with a constant maximum(/minimum)-int, 3821 // it will always be the extremum. 3822 return LHSC; 3823 } 3824 3825 if (Ops.size() == 1) return Ops[0]; 3826 } 3827 3828 // Find the first operation of the same kind 3829 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3830 ++Idx; 3831 3832 // Check to see if one of the operands is of the same kind. If so, expand its 3833 // operands onto our operand list, and recurse to simplify. 3834 if (Idx < Ops.size()) { 3835 bool DeletedAny = false; 3836 while (Ops[Idx]->getSCEVType() == Kind) { 3837 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3838 Ops.erase(Ops.begin()+Idx); 3839 Ops.append(SMME->op_begin(), SMME->op_end()); 3840 DeletedAny = true; 3841 } 3842 3843 if (DeletedAny) 3844 return getMinMaxExpr(Kind, Ops); 3845 } 3846 3847 // Okay, check to see if the same value occurs in the operand list twice. If 3848 // so, delete one. Since we sorted the list, these values are required to 3849 // be adjacent. 3850 llvm::CmpInst::Predicate GEPred = 3851 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3852 llvm::CmpInst::Predicate LEPred = 3853 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3854 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3855 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3856 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3857 if (Ops[i] == Ops[i + 1] || 3858 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3859 // X op Y op Y --> X op Y 3860 // X op Y --> X, if we know X, Y are ordered appropriately 3861 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3862 --i; 3863 --e; 3864 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3865 Ops[i + 1])) { 3866 // X op Y --> Y, if we know X, Y are ordered appropriately 3867 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3868 --i; 3869 --e; 3870 } 3871 } 3872 3873 if (Ops.size() == 1) return Ops[0]; 3874 3875 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3876 3877 // Okay, it looks like we really DO need an expr. Check to see if we 3878 // already have one, otherwise create a new one. 3879 FoldingSetNodeID ID; 3880 ID.AddInteger(Kind); 3881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3882 ID.AddPointer(Ops[i]); 3883 void *IP = nullptr; 3884 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3885 if (ExistingSCEV) 3886 return ExistingSCEV; 3887 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3888 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3889 SCEV *S = new (SCEVAllocator) 3890 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3891 3892 UniqueSCEVs.InsertNode(S, IP); 3893 registerUser(S, Ops); 3894 return S; 3895 } 3896 3897 namespace { 3898 3899 class SCEVSequentialMinMaxDeduplicatingVisitor final 3900 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3901 Optional<const SCEV *>> { 3902 using RetVal = Optional<const SCEV *>; 3903 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3904 3905 ScalarEvolution &SE; 3906 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3907 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3908 SmallPtrSet<const SCEV *, 16> SeenOps; 3909 3910 bool canRecurseInto(SCEVTypes Kind) const { 3911 // We can only recurse into the SCEV expression of the same effective type 3912 // as the type of our root SCEV expression. 3913 return RootKind == Kind || NonSequentialRootKind == Kind; 3914 }; 3915 3916 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3917 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3918 "Only for min/max expressions."); 3919 SCEVTypes Kind = S->getSCEVType(); 3920 3921 if (!canRecurseInto(Kind)) 3922 return S; 3923 3924 auto *NAry = cast<SCEVNAryExpr>(S); 3925 SmallVector<const SCEV *> NewOps; 3926 bool Changed = 3927 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3928 3929 if (!Changed) 3930 return S; 3931 if (NewOps.empty()) 3932 return None; 3933 3934 return isa<SCEVSequentialMinMaxExpr>(S) 3935 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3936 : SE.getMinMaxExpr(Kind, NewOps); 3937 } 3938 3939 RetVal visit(const SCEV *S) { 3940 // Has the whole operand been seen already? 3941 if (!SeenOps.insert(S).second) 3942 return None; 3943 return Base::visit(S); 3944 } 3945 3946 public: 3947 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3948 SCEVTypes RootKind) 3949 : SE(SE), RootKind(RootKind), 3950 NonSequentialRootKind( 3951 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3952 RootKind)) {} 3953 3954 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3955 SmallVectorImpl<const SCEV *> &NewOps) { 3956 bool Changed = false; 3957 SmallVector<const SCEV *> Ops; 3958 Ops.reserve(OrigOps.size()); 3959 3960 for (const SCEV *Op : OrigOps) { 3961 RetVal NewOp = visit(Op); 3962 if (NewOp != Op) 3963 Changed = true; 3964 if (NewOp) 3965 Ops.emplace_back(*NewOp); 3966 } 3967 3968 if (Changed) 3969 NewOps = std::move(Ops); 3970 return Changed; 3971 } 3972 3973 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3974 3975 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3976 3977 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3978 3979 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3980 3981 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3982 3983 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3984 3985 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3986 3987 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3988 3989 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3990 3991 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3992 return visitAnyMinMaxExpr(Expr); 3993 } 3994 3995 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3996 return visitAnyMinMaxExpr(Expr); 3997 } 3998 3999 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4000 return visitAnyMinMaxExpr(Expr); 4001 } 4002 4003 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4004 return visitAnyMinMaxExpr(Expr); 4005 } 4006 4007 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4008 return visitAnyMinMaxExpr(Expr); 4009 } 4010 4011 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4012 4013 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4014 }; 4015 4016 } // namespace 4017 4018 const SCEV * 4019 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4020 SmallVectorImpl<const SCEV *> &Ops) { 4021 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4022 "Not a SCEVSequentialMinMaxExpr!"); 4023 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4024 if (Ops.size() == 1) 4025 return Ops[0]; 4026 if (Ops.size() == 2 && 4027 any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); })) 4028 return getMinMaxExpr( 4029 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4030 Ops); 4031 #ifndef NDEBUG 4032 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4033 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4034 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4035 "Operand types don't match!"); 4036 assert(Ops[0]->getType()->isPointerTy() == 4037 Ops[i]->getType()->isPointerTy() && 4038 "min/max should be consistently pointerish"); 4039 } 4040 #endif 4041 4042 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4043 // so we can *NOT* do any kind of sorting of the expressions! 4044 4045 // Check if we have created the same expression before. 4046 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4047 return S; 4048 4049 // FIXME: there are *some* simplifications that we can do here. 4050 4051 // Keep only the first instance of an operand. 4052 { 4053 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4054 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4055 if (Changed) 4056 return getSequentialMinMaxExpr(Kind, Ops); 4057 } 4058 4059 // Check to see if one of the operands is of the same kind. If so, expand its 4060 // operands onto our operand list, and recurse to simplify. 4061 { 4062 unsigned Idx = 0; 4063 bool DeletedAny = false; 4064 while (Idx < Ops.size()) { 4065 if (Ops[Idx]->getSCEVType() != Kind) { 4066 ++Idx; 4067 continue; 4068 } 4069 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4070 Ops.erase(Ops.begin() + Idx); 4071 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4072 DeletedAny = true; 4073 } 4074 4075 if (DeletedAny) 4076 return getSequentialMinMaxExpr(Kind, Ops); 4077 } 4078 4079 // Okay, it looks like we really DO need an expr. Check to see if we 4080 // already have one, otherwise create a new one. 4081 FoldingSetNodeID ID; 4082 ID.AddInteger(Kind); 4083 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4084 ID.AddPointer(Ops[i]); 4085 void *IP = nullptr; 4086 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4087 if (ExistingSCEV) 4088 return ExistingSCEV; 4089 4090 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4091 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4092 SCEV *S = new (SCEVAllocator) 4093 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4094 4095 UniqueSCEVs.InsertNode(S, IP); 4096 registerUser(S, Ops); 4097 return S; 4098 } 4099 4100 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4101 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4102 return getSMaxExpr(Ops); 4103 } 4104 4105 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4106 return getMinMaxExpr(scSMaxExpr, Ops); 4107 } 4108 4109 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4110 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4111 return getUMaxExpr(Ops); 4112 } 4113 4114 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4115 return getMinMaxExpr(scUMaxExpr, Ops); 4116 } 4117 4118 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4119 const SCEV *RHS) { 4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4121 return getSMinExpr(Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4125 return getMinMaxExpr(scSMinExpr, Ops); 4126 } 4127 4128 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4129 bool Sequential) { 4130 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4131 return getUMinExpr(Ops, Sequential); 4132 } 4133 4134 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4135 bool Sequential) { 4136 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4137 : getMinMaxExpr(scUMinExpr, Ops); 4138 } 4139 4140 const SCEV * 4141 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4142 ScalableVectorType *ScalableTy) { 4143 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4144 Constant *One = ConstantInt::get(IntTy, 1); 4145 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4146 // Note that the expression we created is the final expression, we don't 4147 // want to simplify it any further Also, if we call a normal getSCEV(), 4148 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4149 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4150 } 4151 4152 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4153 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4154 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4155 // We can bypass creating a target-independent constant expression and then 4156 // folding it back into a ConstantInt. This is just a compile-time 4157 // optimization. 4158 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4159 } 4160 4161 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4162 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4163 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4164 // We can bypass creating a target-independent constant expression and then 4165 // folding it back into a ConstantInt. This is just a compile-time 4166 // optimization. 4167 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4168 } 4169 4170 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4171 StructType *STy, 4172 unsigned FieldNo) { 4173 // We can bypass creating a target-independent constant expression and then 4174 // folding it back into a ConstantInt. This is just a compile-time 4175 // optimization. 4176 return getConstant( 4177 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4178 } 4179 4180 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4181 // Don't attempt to do anything other than create a SCEVUnknown object 4182 // here. createSCEV only calls getUnknown after checking for all other 4183 // interesting possibilities, and any other code that calls getUnknown 4184 // is doing so in order to hide a value from SCEV canonicalization. 4185 4186 FoldingSetNodeID ID; 4187 ID.AddInteger(scUnknown); 4188 ID.AddPointer(V); 4189 void *IP = nullptr; 4190 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4191 assert(cast<SCEVUnknown>(S)->getValue() == V && 4192 "Stale SCEVUnknown in uniquing map!"); 4193 return S; 4194 } 4195 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4196 FirstUnknown); 4197 FirstUnknown = cast<SCEVUnknown>(S); 4198 UniqueSCEVs.InsertNode(S, IP); 4199 return S; 4200 } 4201 4202 //===----------------------------------------------------------------------===// 4203 // Basic SCEV Analysis and PHI Idiom Recognition Code 4204 // 4205 4206 /// Test if values of the given type are analyzable within the SCEV 4207 /// framework. This primarily includes integer types, and it can optionally 4208 /// include pointer types if the ScalarEvolution class has access to 4209 /// target-specific information. 4210 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4211 // Integers and pointers are always SCEVable. 4212 return Ty->isIntOrPtrTy(); 4213 } 4214 4215 /// Return the size in bits of the specified type, for which isSCEVable must 4216 /// return true. 4217 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4218 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4219 if (Ty->isPointerTy()) 4220 return getDataLayout().getIndexTypeSizeInBits(Ty); 4221 return getDataLayout().getTypeSizeInBits(Ty); 4222 } 4223 4224 /// Return a type with the same bitwidth as the given type and which represents 4225 /// how SCEV will treat the given type, for which isSCEVable must return 4226 /// true. For pointer types, this is the pointer index sized integer type. 4227 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4228 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4229 4230 if (Ty->isIntegerTy()) 4231 return Ty; 4232 4233 // The only other support type is pointer. 4234 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4235 return getDataLayout().getIndexType(Ty); 4236 } 4237 4238 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4239 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4240 } 4241 4242 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4243 const SCEV *B) { 4244 /// For a valid use point to exist, the defining scope of one operand 4245 /// must dominate the other. 4246 bool PreciseA, PreciseB; 4247 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4248 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4249 if (!PreciseA || !PreciseB) 4250 // Can't tell. 4251 return false; 4252 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4253 DT.dominates(ScopeB, ScopeA); 4254 } 4255 4256 4257 const SCEV *ScalarEvolution::getCouldNotCompute() { 4258 return CouldNotCompute.get(); 4259 } 4260 4261 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4262 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4263 auto *SU = dyn_cast<SCEVUnknown>(S); 4264 return SU && SU->getValue() == nullptr; 4265 }); 4266 4267 return !ContainsNulls; 4268 } 4269 4270 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4271 HasRecMapType::iterator I = HasRecMap.find(S); 4272 if (I != HasRecMap.end()) 4273 return I->second; 4274 4275 bool FoundAddRec = 4276 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4277 HasRecMap.insert({S, FoundAddRec}); 4278 return FoundAddRec; 4279 } 4280 4281 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4282 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4283 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4284 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4285 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4286 if (!Add) 4287 return {S, nullptr}; 4288 4289 if (Add->getNumOperands() != 2) 4290 return {S, nullptr}; 4291 4292 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4293 if (!ConstOp) 4294 return {S, nullptr}; 4295 4296 return {Add->getOperand(1), ConstOp->getValue()}; 4297 } 4298 4299 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4300 /// by the value and offset from any ValueOffsetPair in the set. 4301 ScalarEvolution::ValueOffsetPairSetVector * 4302 ScalarEvolution::getSCEVValues(const SCEV *S) { 4303 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4304 if (SI == ExprValueMap.end()) 4305 return nullptr; 4306 #ifndef NDEBUG 4307 if (VerifySCEVMap) { 4308 // Check there is no dangling Value in the set returned. 4309 for (const auto &VE : SI->second) 4310 assert(ValueExprMap.count(VE.first)); 4311 } 4312 #endif 4313 return &SI->second; 4314 } 4315 4316 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4317 /// cannot be used separately. eraseValueFromMap should be used to remove 4318 /// V from ValueExprMap and ExprValueMap at the same time. 4319 void ScalarEvolution::eraseValueFromMap(Value *V) { 4320 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4321 if (I != ValueExprMap.end()) { 4322 const SCEV *S = I->second; 4323 // Remove {V, 0} from the set of ExprValueMap[S] 4324 if (auto *SV = getSCEVValues(S)) 4325 SV->remove({V, nullptr}); 4326 4327 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4328 const SCEV *Stripped; 4329 ConstantInt *Offset; 4330 std::tie(Stripped, Offset) = splitAddExpr(S); 4331 if (Offset != nullptr) { 4332 if (auto *SV = getSCEVValues(Stripped)) 4333 SV->remove({V, Offset}); 4334 } 4335 ValueExprMap.erase(V); 4336 } 4337 } 4338 4339 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4340 // A recursive query may have already computed the SCEV. It should be 4341 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4342 // inferred nowrap flags. 4343 auto It = ValueExprMap.find_as(V); 4344 if (It == ValueExprMap.end()) { 4345 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4346 ExprValueMap[S].insert({V, nullptr}); 4347 } 4348 } 4349 4350 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4351 /// create a new one. 4352 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4353 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4354 4355 const SCEV *S = getExistingSCEV(V); 4356 if (S == nullptr) { 4357 S = createSCEV(V); 4358 // During PHI resolution, it is possible to create two SCEVs for the same 4359 // V, so it is needed to double check whether V->S is inserted into 4360 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4361 std::pair<ValueExprMapType::iterator, bool> Pair = 4362 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4363 if (Pair.second) { 4364 ExprValueMap[S].insert({V, nullptr}); 4365 4366 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4367 // ExprValueMap. 4368 const SCEV *Stripped = S; 4369 ConstantInt *Offset = nullptr; 4370 std::tie(Stripped, Offset) = splitAddExpr(S); 4371 // If stripped is SCEVUnknown, don't bother to save 4372 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4373 // increase the complexity of the expansion code. 4374 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4375 // because it may generate add/sub instead of GEP in SCEV expansion. 4376 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4377 !isa<GetElementPtrInst>(V)) 4378 ExprValueMap[Stripped].insert({V, Offset}); 4379 } 4380 } 4381 return S; 4382 } 4383 4384 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4385 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4386 4387 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4388 if (I != ValueExprMap.end()) { 4389 const SCEV *S = I->second; 4390 assert(checkValidity(S) && 4391 "existing SCEV has not been properly invalidated"); 4392 return S; 4393 } 4394 return nullptr; 4395 } 4396 4397 /// Return a SCEV corresponding to -V = -1*V 4398 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4399 SCEV::NoWrapFlags Flags) { 4400 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4401 return getConstant( 4402 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4403 4404 Type *Ty = V->getType(); 4405 Ty = getEffectiveSCEVType(Ty); 4406 return getMulExpr(V, getMinusOne(Ty), Flags); 4407 } 4408 4409 /// If Expr computes ~A, return A else return nullptr 4410 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4411 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4412 if (!Add || Add->getNumOperands() != 2 || 4413 !Add->getOperand(0)->isAllOnesValue()) 4414 return nullptr; 4415 4416 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4417 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4418 !AddRHS->getOperand(0)->isAllOnesValue()) 4419 return nullptr; 4420 4421 return AddRHS->getOperand(1); 4422 } 4423 4424 /// Return a SCEV corresponding to ~V = -1-V 4425 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4426 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4427 4428 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4429 return getConstant( 4430 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4431 4432 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4433 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4434 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4435 SmallVector<const SCEV *, 2> MatchedOperands; 4436 for (const SCEV *Operand : MME->operands()) { 4437 const SCEV *Matched = MatchNotExpr(Operand); 4438 if (!Matched) 4439 return (const SCEV *)nullptr; 4440 MatchedOperands.push_back(Matched); 4441 } 4442 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4443 MatchedOperands); 4444 }; 4445 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4446 return Replaced; 4447 } 4448 4449 Type *Ty = V->getType(); 4450 Ty = getEffectiveSCEVType(Ty); 4451 return getMinusSCEV(getMinusOne(Ty), V); 4452 } 4453 4454 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4455 assert(P->getType()->isPointerTy()); 4456 4457 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4458 // The base of an AddRec is the first operand. 4459 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4460 Ops[0] = removePointerBase(Ops[0]); 4461 // Don't try to transfer nowrap flags for now. We could in some cases 4462 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4463 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4464 } 4465 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4466 // The base of an Add is the pointer operand. 4467 SmallVector<const SCEV *> Ops{Add->operands()}; 4468 const SCEV **PtrOp = nullptr; 4469 for (const SCEV *&AddOp : Ops) { 4470 if (AddOp->getType()->isPointerTy()) { 4471 assert(!PtrOp && "Cannot have multiple pointer ops"); 4472 PtrOp = &AddOp; 4473 } 4474 } 4475 *PtrOp = removePointerBase(*PtrOp); 4476 // Don't try to transfer nowrap flags for now. We could in some cases 4477 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4478 return getAddExpr(Ops); 4479 } 4480 // Any other expression must be a pointer base. 4481 return getZero(P->getType()); 4482 } 4483 4484 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4485 SCEV::NoWrapFlags Flags, 4486 unsigned Depth) { 4487 // Fast path: X - X --> 0. 4488 if (LHS == RHS) 4489 return getZero(LHS->getType()); 4490 4491 // If we subtract two pointers with different pointer bases, bail. 4492 // Eventually, we're going to add an assertion to getMulExpr that we 4493 // can't multiply by a pointer. 4494 if (RHS->getType()->isPointerTy()) { 4495 if (!LHS->getType()->isPointerTy() || 4496 getPointerBase(LHS) != getPointerBase(RHS)) 4497 return getCouldNotCompute(); 4498 LHS = removePointerBase(LHS); 4499 RHS = removePointerBase(RHS); 4500 } 4501 4502 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4503 // makes it so that we cannot make much use of NUW. 4504 auto AddFlags = SCEV::FlagAnyWrap; 4505 const bool RHSIsNotMinSigned = 4506 !getSignedRangeMin(RHS).isMinSignedValue(); 4507 if (hasFlags(Flags, SCEV::FlagNSW)) { 4508 // Let M be the minimum representable signed value. Then (-1)*RHS 4509 // signed-wraps if and only if RHS is M. That can happen even for 4510 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4511 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4512 // (-1)*RHS, we need to prove that RHS != M. 4513 // 4514 // If LHS is non-negative and we know that LHS - RHS does not 4515 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4516 // either by proving that RHS > M or that LHS >= 0. 4517 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4518 AddFlags = SCEV::FlagNSW; 4519 } 4520 } 4521 4522 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4523 // RHS is NSW and LHS >= 0. 4524 // 4525 // The difficulty here is that the NSW flag may have been proven 4526 // relative to a loop that is to be found in a recurrence in LHS and 4527 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4528 // larger scope than intended. 4529 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4530 4531 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4532 } 4533 4534 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4535 unsigned Depth) { 4536 Type *SrcTy = V->getType(); 4537 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4538 "Cannot truncate or zero extend with non-integer arguments!"); 4539 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4540 return V; // No conversion 4541 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4542 return getTruncateExpr(V, Ty, Depth); 4543 return getZeroExtendExpr(V, Ty, Depth); 4544 } 4545 4546 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4547 unsigned Depth) { 4548 Type *SrcTy = V->getType(); 4549 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4550 "Cannot truncate or zero extend with non-integer arguments!"); 4551 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4552 return V; // No conversion 4553 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4554 return getTruncateExpr(V, Ty, Depth); 4555 return getSignExtendExpr(V, Ty, Depth); 4556 } 4557 4558 const SCEV * 4559 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4560 Type *SrcTy = V->getType(); 4561 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4562 "Cannot noop or zero extend with non-integer arguments!"); 4563 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4564 "getNoopOrZeroExtend cannot truncate!"); 4565 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4566 return V; // No conversion 4567 return getZeroExtendExpr(V, Ty); 4568 } 4569 4570 const SCEV * 4571 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4572 Type *SrcTy = V->getType(); 4573 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4574 "Cannot noop or sign extend with non-integer arguments!"); 4575 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4576 "getNoopOrSignExtend cannot truncate!"); 4577 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4578 return V; // No conversion 4579 return getSignExtendExpr(V, Ty); 4580 } 4581 4582 const SCEV * 4583 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4584 Type *SrcTy = V->getType(); 4585 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4586 "Cannot noop or any extend with non-integer arguments!"); 4587 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4588 "getNoopOrAnyExtend cannot truncate!"); 4589 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4590 return V; // No conversion 4591 return getAnyExtendExpr(V, Ty); 4592 } 4593 4594 const SCEV * 4595 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4596 Type *SrcTy = V->getType(); 4597 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4598 "Cannot truncate or noop with non-integer arguments!"); 4599 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4600 "getTruncateOrNoop cannot extend!"); 4601 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4602 return V; // No conversion 4603 return getTruncateExpr(V, Ty); 4604 } 4605 4606 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4607 const SCEV *RHS) { 4608 const SCEV *PromotedLHS = LHS; 4609 const SCEV *PromotedRHS = RHS; 4610 4611 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4612 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4613 else 4614 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4615 4616 return getUMaxExpr(PromotedLHS, PromotedRHS); 4617 } 4618 4619 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4620 const SCEV *RHS, 4621 bool Sequential) { 4622 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4623 return getUMinFromMismatchedTypes(Ops, Sequential); 4624 } 4625 4626 const SCEV * 4627 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4628 bool Sequential) { 4629 assert(!Ops.empty() && "At least one operand must be!"); 4630 // Trivial case. 4631 if (Ops.size() == 1) 4632 return Ops[0]; 4633 4634 // Find the max type first. 4635 Type *MaxType = nullptr; 4636 for (auto *S : Ops) 4637 if (MaxType) 4638 MaxType = getWiderType(MaxType, S->getType()); 4639 else 4640 MaxType = S->getType(); 4641 assert(MaxType && "Failed to find maximum type!"); 4642 4643 // Extend all ops to max type. 4644 SmallVector<const SCEV *, 2> PromotedOps; 4645 for (auto *S : Ops) 4646 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4647 4648 // Generate umin. 4649 return getUMinExpr(PromotedOps, Sequential); 4650 } 4651 4652 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4653 // A pointer operand may evaluate to a nonpointer expression, such as null. 4654 if (!V->getType()->isPointerTy()) 4655 return V; 4656 4657 while (true) { 4658 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4659 V = AddRec->getStart(); 4660 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4661 const SCEV *PtrOp = nullptr; 4662 for (const SCEV *AddOp : Add->operands()) { 4663 if (AddOp->getType()->isPointerTy()) { 4664 assert(!PtrOp && "Cannot have multiple pointer ops"); 4665 PtrOp = AddOp; 4666 } 4667 } 4668 assert(PtrOp && "Must have pointer op"); 4669 V = PtrOp; 4670 } else // Not something we can look further into. 4671 return V; 4672 } 4673 } 4674 4675 /// Push users of the given Instruction onto the given Worklist. 4676 static void PushDefUseChildren(Instruction *I, 4677 SmallVectorImpl<Instruction *> &Worklist, 4678 SmallPtrSetImpl<Instruction *> &Visited) { 4679 // Push the def-use children onto the Worklist stack. 4680 for (User *U : I->users()) { 4681 auto *UserInsn = cast<Instruction>(U); 4682 if (Visited.insert(UserInsn).second) 4683 Worklist.push_back(UserInsn); 4684 } 4685 } 4686 4687 namespace { 4688 4689 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4690 /// expression in case its Loop is L. If it is not L then 4691 /// if IgnoreOtherLoops is true then use AddRec itself 4692 /// otherwise rewrite cannot be done. 4693 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4694 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4695 public: 4696 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4697 bool IgnoreOtherLoops = true) { 4698 SCEVInitRewriter Rewriter(L, SE); 4699 const SCEV *Result = Rewriter.visit(S); 4700 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4701 return SE.getCouldNotCompute(); 4702 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4703 ? SE.getCouldNotCompute() 4704 : Result; 4705 } 4706 4707 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4708 if (!SE.isLoopInvariant(Expr, L)) 4709 SeenLoopVariantSCEVUnknown = true; 4710 return Expr; 4711 } 4712 4713 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4714 // Only re-write AddRecExprs for this loop. 4715 if (Expr->getLoop() == L) 4716 return Expr->getStart(); 4717 SeenOtherLoops = true; 4718 return Expr; 4719 } 4720 4721 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4722 4723 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4724 4725 private: 4726 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4727 : SCEVRewriteVisitor(SE), L(L) {} 4728 4729 const Loop *L; 4730 bool SeenLoopVariantSCEVUnknown = false; 4731 bool SeenOtherLoops = false; 4732 }; 4733 4734 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4735 /// increment expression in case its Loop is L. If it is not L then 4736 /// use AddRec itself. 4737 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4738 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4739 public: 4740 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4741 SCEVPostIncRewriter Rewriter(L, SE); 4742 const SCEV *Result = Rewriter.visit(S); 4743 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4744 ? SE.getCouldNotCompute() 4745 : Result; 4746 } 4747 4748 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4749 if (!SE.isLoopInvariant(Expr, L)) 4750 SeenLoopVariantSCEVUnknown = true; 4751 return Expr; 4752 } 4753 4754 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4755 // Only re-write AddRecExprs for this loop. 4756 if (Expr->getLoop() == L) 4757 return Expr->getPostIncExpr(SE); 4758 SeenOtherLoops = true; 4759 return Expr; 4760 } 4761 4762 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4763 4764 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4765 4766 private: 4767 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4768 : SCEVRewriteVisitor(SE), L(L) {} 4769 4770 const Loop *L; 4771 bool SeenLoopVariantSCEVUnknown = false; 4772 bool SeenOtherLoops = false; 4773 }; 4774 4775 /// This class evaluates the compare condition by matching it against the 4776 /// condition of loop latch. If there is a match we assume a true value 4777 /// for the condition while building SCEV nodes. 4778 class SCEVBackedgeConditionFolder 4779 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4780 public: 4781 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4782 ScalarEvolution &SE) { 4783 bool IsPosBECond = false; 4784 Value *BECond = nullptr; 4785 if (BasicBlock *Latch = L->getLoopLatch()) { 4786 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4787 if (BI && BI->isConditional()) { 4788 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4789 "Both outgoing branches should not target same header!"); 4790 BECond = BI->getCondition(); 4791 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4792 } else { 4793 return S; 4794 } 4795 } 4796 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4797 return Rewriter.visit(S); 4798 } 4799 4800 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4801 const SCEV *Result = Expr; 4802 bool InvariantF = SE.isLoopInvariant(Expr, L); 4803 4804 if (!InvariantF) { 4805 Instruction *I = cast<Instruction>(Expr->getValue()); 4806 switch (I->getOpcode()) { 4807 case Instruction::Select: { 4808 SelectInst *SI = cast<SelectInst>(I); 4809 Optional<const SCEV *> Res = 4810 compareWithBackedgeCondition(SI->getCondition()); 4811 if (Res.hasValue()) { 4812 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4813 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4814 } 4815 break; 4816 } 4817 default: { 4818 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4819 if (Res.hasValue()) 4820 Result = Res.getValue(); 4821 break; 4822 } 4823 } 4824 } 4825 return Result; 4826 } 4827 4828 private: 4829 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4830 bool IsPosBECond, ScalarEvolution &SE) 4831 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4832 IsPositiveBECond(IsPosBECond) {} 4833 4834 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4835 4836 const Loop *L; 4837 /// Loop back condition. 4838 Value *BackedgeCond = nullptr; 4839 /// Set to true if loop back is on positive branch condition. 4840 bool IsPositiveBECond; 4841 }; 4842 4843 Optional<const SCEV *> 4844 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4845 4846 // If value matches the backedge condition for loop latch, 4847 // then return a constant evolution node based on loopback 4848 // branch taken. 4849 if (BackedgeCond == IC) 4850 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4851 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4852 return None; 4853 } 4854 4855 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4856 public: 4857 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4858 ScalarEvolution &SE) { 4859 SCEVShiftRewriter Rewriter(L, SE); 4860 const SCEV *Result = Rewriter.visit(S); 4861 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4862 } 4863 4864 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4865 // Only allow AddRecExprs for this loop. 4866 if (!SE.isLoopInvariant(Expr, L)) 4867 Valid = false; 4868 return Expr; 4869 } 4870 4871 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4872 if (Expr->getLoop() == L && Expr->isAffine()) 4873 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4874 Valid = false; 4875 return Expr; 4876 } 4877 4878 bool isValid() { return Valid; } 4879 4880 private: 4881 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4882 : SCEVRewriteVisitor(SE), L(L) {} 4883 4884 const Loop *L; 4885 bool Valid = true; 4886 }; 4887 4888 } // end anonymous namespace 4889 4890 SCEV::NoWrapFlags 4891 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4892 if (!AR->isAffine()) 4893 return SCEV::FlagAnyWrap; 4894 4895 using OBO = OverflowingBinaryOperator; 4896 4897 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4898 4899 if (!AR->hasNoSignedWrap()) { 4900 ConstantRange AddRecRange = getSignedRange(AR); 4901 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4902 4903 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4904 Instruction::Add, IncRange, OBO::NoSignedWrap); 4905 if (NSWRegion.contains(AddRecRange)) 4906 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4907 } 4908 4909 if (!AR->hasNoUnsignedWrap()) { 4910 ConstantRange AddRecRange = getUnsignedRange(AR); 4911 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4912 4913 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4914 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4915 if (NUWRegion.contains(AddRecRange)) 4916 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4917 } 4918 4919 return Result; 4920 } 4921 4922 SCEV::NoWrapFlags 4923 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4924 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4925 4926 if (AR->hasNoSignedWrap()) 4927 return Result; 4928 4929 if (!AR->isAffine()) 4930 return Result; 4931 4932 const SCEV *Step = AR->getStepRecurrence(*this); 4933 const Loop *L = AR->getLoop(); 4934 4935 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4936 // Note that this serves two purposes: It filters out loops that are 4937 // simply not analyzable, and it covers the case where this code is 4938 // being called from within backedge-taken count analysis, such that 4939 // attempting to ask for the backedge-taken count would likely result 4940 // in infinite recursion. In the later case, the analysis code will 4941 // cope with a conservative value, and it will take care to purge 4942 // that value once it has finished. 4943 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4944 4945 // Normally, in the cases we can prove no-overflow via a 4946 // backedge guarding condition, we can also compute a backedge 4947 // taken count for the loop. The exceptions are assumptions and 4948 // guards present in the loop -- SCEV is not great at exploiting 4949 // these to compute max backedge taken counts, but can still use 4950 // these to prove lack of overflow. Use this fact to avoid 4951 // doing extra work that may not pay off. 4952 4953 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4954 AC.assumptions().empty()) 4955 return Result; 4956 4957 // If the backedge is guarded by a comparison with the pre-inc value the 4958 // addrec is safe. Also, if the entry is guarded by a comparison with the 4959 // start value and the backedge is guarded by a comparison with the post-inc 4960 // value, the addrec is safe. 4961 ICmpInst::Predicate Pred; 4962 const SCEV *OverflowLimit = 4963 getSignedOverflowLimitForStep(Step, &Pred, this); 4964 if (OverflowLimit && 4965 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4966 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4967 Result = setFlags(Result, SCEV::FlagNSW); 4968 } 4969 return Result; 4970 } 4971 SCEV::NoWrapFlags 4972 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4973 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4974 4975 if (AR->hasNoUnsignedWrap()) 4976 return Result; 4977 4978 if (!AR->isAffine()) 4979 return Result; 4980 4981 const SCEV *Step = AR->getStepRecurrence(*this); 4982 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4983 const Loop *L = AR->getLoop(); 4984 4985 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4986 // Note that this serves two purposes: It filters out loops that are 4987 // simply not analyzable, and it covers the case where this code is 4988 // being called from within backedge-taken count analysis, such that 4989 // attempting to ask for the backedge-taken count would likely result 4990 // in infinite recursion. In the later case, the analysis code will 4991 // cope with a conservative value, and it will take care to purge 4992 // that value once it has finished. 4993 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4994 4995 // Normally, in the cases we can prove no-overflow via a 4996 // backedge guarding condition, we can also compute a backedge 4997 // taken count for the loop. The exceptions are assumptions and 4998 // guards present in the loop -- SCEV is not great at exploiting 4999 // these to compute max backedge taken counts, but can still use 5000 // these to prove lack of overflow. Use this fact to avoid 5001 // doing extra work that may not pay off. 5002 5003 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5004 AC.assumptions().empty()) 5005 return Result; 5006 5007 // If the backedge is guarded by a comparison with the pre-inc value the 5008 // addrec is safe. Also, if the entry is guarded by a comparison with the 5009 // start value and the backedge is guarded by a comparison with the post-inc 5010 // value, the addrec is safe. 5011 if (isKnownPositive(Step)) { 5012 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5013 getUnsignedRangeMax(Step)); 5014 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5015 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5016 Result = setFlags(Result, SCEV::FlagNUW); 5017 } 5018 } 5019 5020 return Result; 5021 } 5022 5023 namespace { 5024 5025 /// Represents an abstract binary operation. This may exist as a 5026 /// normal instruction or constant expression, or may have been 5027 /// derived from an expression tree. 5028 struct BinaryOp { 5029 unsigned Opcode; 5030 Value *LHS; 5031 Value *RHS; 5032 bool IsNSW = false; 5033 bool IsNUW = false; 5034 5035 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5036 /// constant expression. 5037 Operator *Op = nullptr; 5038 5039 explicit BinaryOp(Operator *Op) 5040 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5041 Op(Op) { 5042 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5043 IsNSW = OBO->hasNoSignedWrap(); 5044 IsNUW = OBO->hasNoUnsignedWrap(); 5045 } 5046 } 5047 5048 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5049 bool IsNUW = false) 5050 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5051 }; 5052 5053 } // end anonymous namespace 5054 5055 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5056 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5057 auto *Op = dyn_cast<Operator>(V); 5058 if (!Op) 5059 return None; 5060 5061 // Implementation detail: all the cleverness here should happen without 5062 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5063 // SCEV expressions when possible, and we should not break that. 5064 5065 switch (Op->getOpcode()) { 5066 case Instruction::Add: 5067 case Instruction::Sub: 5068 case Instruction::Mul: 5069 case Instruction::UDiv: 5070 case Instruction::URem: 5071 case Instruction::And: 5072 case Instruction::Or: 5073 case Instruction::AShr: 5074 case Instruction::Shl: 5075 return BinaryOp(Op); 5076 5077 case Instruction::Xor: 5078 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5079 // If the RHS of the xor is a signmask, then this is just an add. 5080 // Instcombine turns add of signmask into xor as a strength reduction step. 5081 if (RHSC->getValue().isSignMask()) 5082 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5083 // Binary `xor` is a bit-wise `add`. 5084 if (V->getType()->isIntegerTy(1)) 5085 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5086 return BinaryOp(Op); 5087 5088 case Instruction::LShr: 5089 // Turn logical shift right of a constant into a unsigned divide. 5090 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5091 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5092 5093 // If the shift count is not less than the bitwidth, the result of 5094 // the shift is undefined. Don't try to analyze it, because the 5095 // resolution chosen here may differ from the resolution chosen in 5096 // other parts of the compiler. 5097 if (SA->getValue().ult(BitWidth)) { 5098 Constant *X = 5099 ConstantInt::get(SA->getContext(), 5100 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5101 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5102 } 5103 } 5104 return BinaryOp(Op); 5105 5106 case Instruction::ExtractValue: { 5107 auto *EVI = cast<ExtractValueInst>(Op); 5108 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5109 break; 5110 5111 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5112 if (!WO) 5113 break; 5114 5115 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5116 bool Signed = WO->isSigned(); 5117 // TODO: Should add nuw/nsw flags for mul as well. 5118 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5119 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5120 5121 // Now that we know that all uses of the arithmetic-result component of 5122 // CI are guarded by the overflow check, we can go ahead and pretend 5123 // that the arithmetic is non-overflowing. 5124 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5125 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5126 } 5127 5128 default: 5129 break; 5130 } 5131 5132 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5133 // semantics as a Sub, return a binary sub expression. 5134 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5135 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5136 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5137 5138 return None; 5139 } 5140 5141 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5142 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5143 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5144 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5145 /// follows one of the following patterns: 5146 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5147 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5148 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5149 /// we return the type of the truncation operation, and indicate whether the 5150 /// truncated type should be treated as signed/unsigned by setting 5151 /// \p Signed to true/false, respectively. 5152 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5153 bool &Signed, ScalarEvolution &SE) { 5154 // The case where Op == SymbolicPHI (that is, with no type conversions on 5155 // the way) is handled by the regular add recurrence creating logic and 5156 // would have already been triggered in createAddRecForPHI. Reaching it here 5157 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5158 // because one of the other operands of the SCEVAddExpr updating this PHI is 5159 // not invariant). 5160 // 5161 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5162 // this case predicates that allow us to prove that Op == SymbolicPHI will 5163 // be added. 5164 if (Op == SymbolicPHI) 5165 return nullptr; 5166 5167 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5168 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5169 if (SourceBits != NewBits) 5170 return nullptr; 5171 5172 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5173 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5174 if (!SExt && !ZExt) 5175 return nullptr; 5176 const SCEVTruncateExpr *Trunc = 5177 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5178 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5179 if (!Trunc) 5180 return nullptr; 5181 const SCEV *X = Trunc->getOperand(); 5182 if (X != SymbolicPHI) 5183 return nullptr; 5184 Signed = SExt != nullptr; 5185 return Trunc->getType(); 5186 } 5187 5188 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5189 if (!PN->getType()->isIntegerTy()) 5190 return nullptr; 5191 const Loop *L = LI.getLoopFor(PN->getParent()); 5192 if (!L || L->getHeader() != PN->getParent()) 5193 return nullptr; 5194 return L; 5195 } 5196 5197 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5198 // computation that updates the phi follows the following pattern: 5199 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5200 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5201 // If so, try to see if it can be rewritten as an AddRecExpr under some 5202 // Predicates. If successful, return them as a pair. Also cache the results 5203 // of the analysis. 5204 // 5205 // Example usage scenario: 5206 // Say the Rewriter is called for the following SCEV: 5207 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5208 // where: 5209 // %X = phi i64 (%Start, %BEValue) 5210 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5211 // and call this function with %SymbolicPHI = %X. 5212 // 5213 // The analysis will find that the value coming around the backedge has 5214 // the following SCEV: 5215 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5216 // Upon concluding that this matches the desired pattern, the function 5217 // will return the pair {NewAddRec, SmallPredsVec} where: 5218 // NewAddRec = {%Start,+,%Step} 5219 // SmallPredsVec = {P1, P2, P3} as follows: 5220 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5221 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5222 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5223 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5224 // under the predicates {P1,P2,P3}. 5225 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5226 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5227 // 5228 // TODO's: 5229 // 5230 // 1) Extend the Induction descriptor to also support inductions that involve 5231 // casts: When needed (namely, when we are called in the context of the 5232 // vectorizer induction analysis), a Set of cast instructions will be 5233 // populated by this method, and provided back to isInductionPHI. This is 5234 // needed to allow the vectorizer to properly record them to be ignored by 5235 // the cost model and to avoid vectorizing them (otherwise these casts, 5236 // which are redundant under the runtime overflow checks, will be 5237 // vectorized, which can be costly). 5238 // 5239 // 2) Support additional induction/PHISCEV patterns: We also want to support 5240 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5241 // after the induction update operation (the induction increment): 5242 // 5243 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5244 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5245 // 5246 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5247 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5248 // 5249 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5250 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5251 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5252 SmallVector<const SCEVPredicate *, 3> Predicates; 5253 5254 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5255 // return an AddRec expression under some predicate. 5256 5257 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5258 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5259 assert(L && "Expecting an integer loop header phi"); 5260 5261 // The loop may have multiple entrances or multiple exits; we can analyze 5262 // this phi as an addrec if it has a unique entry value and a unique 5263 // backedge value. 5264 Value *BEValueV = nullptr, *StartValueV = nullptr; 5265 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5266 Value *V = PN->getIncomingValue(i); 5267 if (L->contains(PN->getIncomingBlock(i))) { 5268 if (!BEValueV) { 5269 BEValueV = V; 5270 } else if (BEValueV != V) { 5271 BEValueV = nullptr; 5272 break; 5273 } 5274 } else if (!StartValueV) { 5275 StartValueV = V; 5276 } else if (StartValueV != V) { 5277 StartValueV = nullptr; 5278 break; 5279 } 5280 } 5281 if (!BEValueV || !StartValueV) 5282 return None; 5283 5284 const SCEV *BEValue = getSCEV(BEValueV); 5285 5286 // If the value coming around the backedge is an add with the symbolic 5287 // value we just inserted, possibly with casts that we can ignore under 5288 // an appropriate runtime guard, then we found a simple induction variable! 5289 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5290 if (!Add) 5291 return None; 5292 5293 // If there is a single occurrence of the symbolic value, possibly 5294 // casted, replace it with a recurrence. 5295 unsigned FoundIndex = Add->getNumOperands(); 5296 Type *TruncTy = nullptr; 5297 bool Signed; 5298 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5299 if ((TruncTy = 5300 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5301 if (FoundIndex == e) { 5302 FoundIndex = i; 5303 break; 5304 } 5305 5306 if (FoundIndex == Add->getNumOperands()) 5307 return None; 5308 5309 // Create an add with everything but the specified operand. 5310 SmallVector<const SCEV *, 8> Ops; 5311 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5312 if (i != FoundIndex) 5313 Ops.push_back(Add->getOperand(i)); 5314 const SCEV *Accum = getAddExpr(Ops); 5315 5316 // The runtime checks will not be valid if the step amount is 5317 // varying inside the loop. 5318 if (!isLoopInvariant(Accum, L)) 5319 return None; 5320 5321 // *** Part2: Create the predicates 5322 5323 // Analysis was successful: we have a phi-with-cast pattern for which we 5324 // can return an AddRec expression under the following predicates: 5325 // 5326 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5327 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5328 // P2: An Equal predicate that guarantees that 5329 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5330 // P3: An Equal predicate that guarantees that 5331 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5332 // 5333 // As we next prove, the above predicates guarantee that: 5334 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5335 // 5336 // 5337 // More formally, we want to prove that: 5338 // Expr(i+1) = Start + (i+1) * Accum 5339 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5340 // 5341 // Given that: 5342 // 1) Expr(0) = Start 5343 // 2) Expr(1) = Start + Accum 5344 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5345 // 3) Induction hypothesis (step i): 5346 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5347 // 5348 // Proof: 5349 // Expr(i+1) = 5350 // = Start + (i+1)*Accum 5351 // = (Start + i*Accum) + Accum 5352 // = Expr(i) + Accum 5353 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5354 // :: from step i 5355 // 5356 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5357 // 5358 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5359 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5360 // + Accum :: from P3 5361 // 5362 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5363 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5364 // 5365 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5366 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5367 // 5368 // By induction, the same applies to all iterations 1<=i<n: 5369 // 5370 5371 // Create a truncated addrec for which we will add a no overflow check (P1). 5372 const SCEV *StartVal = getSCEV(StartValueV); 5373 const SCEV *PHISCEV = 5374 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5375 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5376 5377 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5378 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5379 // will be constant. 5380 // 5381 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5382 // add P1. 5383 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5384 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5385 Signed ? SCEVWrapPredicate::IncrementNSSW 5386 : SCEVWrapPredicate::IncrementNUSW; 5387 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5388 Predicates.push_back(AddRecPred); 5389 } 5390 5391 // Create the Equal Predicates P2,P3: 5392 5393 // It is possible that the predicates P2 and/or P3 are computable at 5394 // compile time due to StartVal and/or Accum being constants. 5395 // If either one is, then we can check that now and escape if either P2 5396 // or P3 is false. 5397 5398 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5399 // for each of StartVal and Accum 5400 auto getExtendedExpr = [&](const SCEV *Expr, 5401 bool CreateSignExtend) -> const SCEV * { 5402 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5403 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5404 const SCEV *ExtendedExpr = 5405 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5406 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5407 return ExtendedExpr; 5408 }; 5409 5410 // Given: 5411 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5412 // = getExtendedExpr(Expr) 5413 // Determine whether the predicate P: Expr == ExtendedExpr 5414 // is known to be false at compile time 5415 auto PredIsKnownFalse = [&](const SCEV *Expr, 5416 const SCEV *ExtendedExpr) -> bool { 5417 return Expr != ExtendedExpr && 5418 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5419 }; 5420 5421 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5422 if (PredIsKnownFalse(StartVal, StartExtended)) { 5423 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5424 return None; 5425 } 5426 5427 // The Step is always Signed (because the overflow checks are either 5428 // NSSW or NUSW) 5429 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5430 if (PredIsKnownFalse(Accum, AccumExtended)) { 5431 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5432 return None; 5433 } 5434 5435 auto AppendPredicate = [&](const SCEV *Expr, 5436 const SCEV *ExtendedExpr) -> void { 5437 if (Expr != ExtendedExpr && 5438 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5439 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5440 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5441 Predicates.push_back(Pred); 5442 } 5443 }; 5444 5445 AppendPredicate(StartVal, StartExtended); 5446 AppendPredicate(Accum, AccumExtended); 5447 5448 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5449 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5450 // into NewAR if it will also add the runtime overflow checks specified in 5451 // Predicates. 5452 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5453 5454 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5455 std::make_pair(NewAR, Predicates); 5456 // Remember the result of the analysis for this SCEV at this locayyytion. 5457 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5458 return PredRewrite; 5459 } 5460 5461 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5462 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5463 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5464 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5465 if (!L) 5466 return None; 5467 5468 // Check to see if we already analyzed this PHI. 5469 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5470 if (I != PredicatedSCEVRewrites.end()) { 5471 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5472 I->second; 5473 // Analysis was done before and failed to create an AddRec: 5474 if (Rewrite.first == SymbolicPHI) 5475 return None; 5476 // Analysis was done before and succeeded to create an AddRec under 5477 // a predicate: 5478 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5479 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5480 return Rewrite; 5481 } 5482 5483 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5484 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5485 5486 // Record in the cache that the analysis failed 5487 if (!Rewrite) { 5488 SmallVector<const SCEVPredicate *, 3> Predicates; 5489 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5490 return None; 5491 } 5492 5493 return Rewrite; 5494 } 5495 5496 // FIXME: This utility is currently required because the Rewriter currently 5497 // does not rewrite this expression: 5498 // {0, +, (sext ix (trunc iy to ix) to iy)} 5499 // into {0, +, %step}, 5500 // even when the following Equal predicate exists: 5501 // "%step == (sext ix (trunc iy to ix) to iy)". 5502 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5503 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5504 if (AR1 == AR2) 5505 return true; 5506 5507 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5508 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5509 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5510 return false; 5511 return true; 5512 }; 5513 5514 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5515 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5516 return false; 5517 return true; 5518 } 5519 5520 /// A helper function for createAddRecFromPHI to handle simple cases. 5521 /// 5522 /// This function tries to find an AddRec expression for the simplest (yet most 5523 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5524 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5525 /// technique for finding the AddRec expression. 5526 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5527 Value *BEValueV, 5528 Value *StartValueV) { 5529 const Loop *L = LI.getLoopFor(PN->getParent()); 5530 assert(L && L->getHeader() == PN->getParent()); 5531 assert(BEValueV && StartValueV); 5532 5533 auto BO = MatchBinaryOp(BEValueV, DT); 5534 if (!BO) 5535 return nullptr; 5536 5537 if (BO->Opcode != Instruction::Add) 5538 return nullptr; 5539 5540 const SCEV *Accum = nullptr; 5541 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5542 Accum = getSCEV(BO->RHS); 5543 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5544 Accum = getSCEV(BO->LHS); 5545 5546 if (!Accum) 5547 return nullptr; 5548 5549 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5550 if (BO->IsNUW) 5551 Flags = setFlags(Flags, SCEV::FlagNUW); 5552 if (BO->IsNSW) 5553 Flags = setFlags(Flags, SCEV::FlagNSW); 5554 5555 const SCEV *StartVal = getSCEV(StartValueV); 5556 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5557 insertValueToMap(PN, PHISCEV); 5558 5559 // We can add Flags to the post-inc expression only if we 5560 // know that it is *undefined behavior* for BEValueV to 5561 // overflow. 5562 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5563 assert(isLoopInvariant(Accum, L) && 5564 "Accum is defined outside L, but is not invariant?"); 5565 if (isAddRecNeverPoison(BEInst, L)) 5566 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5567 } 5568 5569 return PHISCEV; 5570 } 5571 5572 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5573 const Loop *L = LI.getLoopFor(PN->getParent()); 5574 if (!L || L->getHeader() != PN->getParent()) 5575 return nullptr; 5576 5577 // The loop may have multiple entrances or multiple exits; we can analyze 5578 // this phi as an addrec if it has a unique entry value and a unique 5579 // backedge value. 5580 Value *BEValueV = nullptr, *StartValueV = nullptr; 5581 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5582 Value *V = PN->getIncomingValue(i); 5583 if (L->contains(PN->getIncomingBlock(i))) { 5584 if (!BEValueV) { 5585 BEValueV = V; 5586 } else if (BEValueV != V) { 5587 BEValueV = nullptr; 5588 break; 5589 } 5590 } else if (!StartValueV) { 5591 StartValueV = V; 5592 } else if (StartValueV != V) { 5593 StartValueV = nullptr; 5594 break; 5595 } 5596 } 5597 if (!BEValueV || !StartValueV) 5598 return nullptr; 5599 5600 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5601 "PHI node already processed?"); 5602 5603 // First, try to find AddRec expression without creating a fictituos symbolic 5604 // value for PN. 5605 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5606 return S; 5607 5608 // Handle PHI node value symbolically. 5609 const SCEV *SymbolicName = getUnknown(PN); 5610 insertValueToMap(PN, SymbolicName); 5611 5612 // Using this symbolic name for the PHI, analyze the value coming around 5613 // the back-edge. 5614 const SCEV *BEValue = getSCEV(BEValueV); 5615 5616 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5617 // has a special value for the first iteration of the loop. 5618 5619 // If the value coming around the backedge is an add with the symbolic 5620 // value we just inserted, then we found a simple induction variable! 5621 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5622 // If there is a single occurrence of the symbolic value, replace it 5623 // with a recurrence. 5624 unsigned FoundIndex = Add->getNumOperands(); 5625 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5626 if (Add->getOperand(i) == SymbolicName) 5627 if (FoundIndex == e) { 5628 FoundIndex = i; 5629 break; 5630 } 5631 5632 if (FoundIndex != Add->getNumOperands()) { 5633 // Create an add with everything but the specified operand. 5634 SmallVector<const SCEV *, 8> Ops; 5635 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5636 if (i != FoundIndex) 5637 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5638 L, *this)); 5639 const SCEV *Accum = getAddExpr(Ops); 5640 5641 // This is not a valid addrec if the step amount is varying each 5642 // loop iteration, but is not itself an addrec in this loop. 5643 if (isLoopInvariant(Accum, L) || 5644 (isa<SCEVAddRecExpr>(Accum) && 5645 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5646 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5647 5648 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5649 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5650 if (BO->IsNUW) 5651 Flags = setFlags(Flags, SCEV::FlagNUW); 5652 if (BO->IsNSW) 5653 Flags = setFlags(Flags, SCEV::FlagNSW); 5654 } 5655 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5656 // If the increment is an inbounds GEP, then we know the address 5657 // space cannot be wrapped around. We cannot make any guarantee 5658 // about signed or unsigned overflow because pointers are 5659 // unsigned but we may have a negative index from the base 5660 // pointer. We can guarantee that no unsigned wrap occurs if the 5661 // indices form a positive value. 5662 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5663 Flags = setFlags(Flags, SCEV::FlagNW); 5664 5665 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5666 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5667 Flags = setFlags(Flags, SCEV::FlagNUW); 5668 } 5669 5670 // We cannot transfer nuw and nsw flags from subtraction 5671 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5672 // for instance. 5673 } 5674 5675 const SCEV *StartVal = getSCEV(StartValueV); 5676 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5677 5678 // Okay, for the entire analysis of this edge we assumed the PHI 5679 // to be symbolic. We now need to go back and purge all of the 5680 // entries for the scalars that use the symbolic expression. 5681 forgetMemoizedResults(SymbolicName); 5682 insertValueToMap(PN, PHISCEV); 5683 5684 // We can add Flags to the post-inc expression only if we 5685 // know that it is *undefined behavior* for BEValueV to 5686 // overflow. 5687 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5688 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5689 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5690 5691 return PHISCEV; 5692 } 5693 } 5694 } else { 5695 // Otherwise, this could be a loop like this: 5696 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5697 // In this case, j = {1,+,1} and BEValue is j. 5698 // Because the other in-value of i (0) fits the evolution of BEValue 5699 // i really is an addrec evolution. 5700 // 5701 // We can generalize this saying that i is the shifted value of BEValue 5702 // by one iteration: 5703 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5704 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5705 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5706 if (Shifted != getCouldNotCompute() && 5707 Start != getCouldNotCompute()) { 5708 const SCEV *StartVal = getSCEV(StartValueV); 5709 if (Start == StartVal) { 5710 // Okay, for the entire analysis of this edge we assumed the PHI 5711 // to be symbolic. We now need to go back and purge all of the 5712 // entries for the scalars that use the symbolic expression. 5713 forgetMemoizedResults(SymbolicName); 5714 insertValueToMap(PN, Shifted); 5715 return Shifted; 5716 } 5717 } 5718 } 5719 5720 // Remove the temporary PHI node SCEV that has been inserted while intending 5721 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5722 // as it will prevent later (possibly simpler) SCEV expressions to be added 5723 // to the ValueExprMap. 5724 eraseValueFromMap(PN); 5725 5726 return nullptr; 5727 } 5728 5729 // Checks if the SCEV S is available at BB. S is considered available at BB 5730 // if S can be materialized at BB without introducing a fault. 5731 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5732 BasicBlock *BB) { 5733 struct CheckAvailable { 5734 bool TraversalDone = false; 5735 bool Available = true; 5736 5737 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5738 BasicBlock *BB = nullptr; 5739 DominatorTree &DT; 5740 5741 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5742 : L(L), BB(BB), DT(DT) {} 5743 5744 bool setUnavailable() { 5745 TraversalDone = true; 5746 Available = false; 5747 return false; 5748 } 5749 5750 bool follow(const SCEV *S) { 5751 switch (S->getSCEVType()) { 5752 case scConstant: 5753 case scPtrToInt: 5754 case scTruncate: 5755 case scZeroExtend: 5756 case scSignExtend: 5757 case scAddExpr: 5758 case scMulExpr: 5759 case scUMaxExpr: 5760 case scSMaxExpr: 5761 case scUMinExpr: 5762 case scSMinExpr: 5763 case scSequentialUMinExpr: 5764 // These expressions are available if their operand(s) is/are. 5765 return true; 5766 5767 case scAddRecExpr: { 5768 // We allow add recurrences that are on the loop BB is in, or some 5769 // outer loop. This guarantees availability because the value of the 5770 // add recurrence at BB is simply the "current" value of the induction 5771 // variable. We can relax this in the future; for instance an add 5772 // recurrence on a sibling dominating loop is also available at BB. 5773 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5774 if (L && (ARLoop == L || ARLoop->contains(L))) 5775 return true; 5776 5777 return setUnavailable(); 5778 } 5779 5780 case scUnknown: { 5781 // For SCEVUnknown, we check for simple dominance. 5782 const auto *SU = cast<SCEVUnknown>(S); 5783 Value *V = SU->getValue(); 5784 5785 if (isa<Argument>(V)) 5786 return false; 5787 5788 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5789 return false; 5790 5791 return setUnavailable(); 5792 } 5793 5794 case scUDivExpr: 5795 case scCouldNotCompute: 5796 // We do not try to smart about these at all. 5797 return setUnavailable(); 5798 } 5799 llvm_unreachable("Unknown SCEV kind!"); 5800 } 5801 5802 bool isDone() { return TraversalDone; } 5803 }; 5804 5805 CheckAvailable CA(L, BB, DT); 5806 SCEVTraversal<CheckAvailable> ST(CA); 5807 5808 ST.visitAll(S); 5809 return CA.Available; 5810 } 5811 5812 // Try to match a control flow sequence that branches out at BI and merges back 5813 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5814 // match. 5815 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5816 Value *&C, Value *&LHS, Value *&RHS) { 5817 C = BI->getCondition(); 5818 5819 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5820 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5821 5822 if (!LeftEdge.isSingleEdge()) 5823 return false; 5824 5825 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5826 5827 Use &LeftUse = Merge->getOperandUse(0); 5828 Use &RightUse = Merge->getOperandUse(1); 5829 5830 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5831 LHS = LeftUse; 5832 RHS = RightUse; 5833 return true; 5834 } 5835 5836 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5837 LHS = RightUse; 5838 RHS = LeftUse; 5839 return true; 5840 } 5841 5842 return false; 5843 } 5844 5845 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5846 auto IsReachable = 5847 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5848 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5849 const Loop *L = LI.getLoopFor(PN->getParent()); 5850 5851 // We don't want to break LCSSA, even in a SCEV expression tree. 5852 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5853 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5854 return nullptr; 5855 5856 // Try to match 5857 // 5858 // br %cond, label %left, label %right 5859 // left: 5860 // br label %merge 5861 // right: 5862 // br label %merge 5863 // merge: 5864 // V = phi [ %x, %left ], [ %y, %right ] 5865 // 5866 // as "select %cond, %x, %y" 5867 5868 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5869 assert(IDom && "At least the entry block should dominate PN"); 5870 5871 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5872 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5873 5874 if (BI && BI->isConditional() && 5875 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5876 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5877 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5878 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5879 } 5880 5881 return nullptr; 5882 } 5883 5884 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5885 if (const SCEV *S = createAddRecFromPHI(PN)) 5886 return S; 5887 5888 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5889 return S; 5890 5891 // If the PHI has a single incoming value, follow that value, unless the 5892 // PHI's incoming blocks are in a different loop, in which case doing so 5893 // risks breaking LCSSA form. Instcombine would normally zap these, but 5894 // it doesn't have DominatorTree information, so it may miss cases. 5895 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5896 if (LI.replacementPreservesLCSSAForm(PN, V)) 5897 return getSCEV(V); 5898 5899 // If it's not a loop phi, we can't handle it yet. 5900 return getUnknown(PN); 5901 } 5902 5903 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5904 SCEVTypes RootKind) { 5905 struct FindClosure { 5906 const SCEV *OperandToFind; 5907 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5908 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5909 5910 bool Found = false; 5911 5912 bool canRecurseInto(SCEVTypes Kind) const { 5913 // We can only recurse into the SCEV expression of the same effective type 5914 // as the type of our root SCEV expression, and into zero-extensions. 5915 return RootKind == Kind || NonSequentialRootKind == Kind || 5916 scZeroExtend == Kind; 5917 }; 5918 5919 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5920 : OperandToFind(OperandToFind), RootKind(RootKind), 5921 NonSequentialRootKind( 5922 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5923 RootKind)) {} 5924 5925 bool follow(const SCEV *S) { 5926 Found = S == OperandToFind; 5927 5928 return !isDone() && canRecurseInto(S->getSCEVType()); 5929 } 5930 5931 bool isDone() const { return Found; } 5932 }; 5933 5934 FindClosure FC(OperandToFind, RootKind); 5935 visitAll(Root, FC); 5936 return FC.Found; 5937 } 5938 5939 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5940 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5941 // Try to match some simple smax or umax patterns. 5942 auto *ICI = Cond; 5943 5944 Value *LHS = ICI->getOperand(0); 5945 Value *RHS = ICI->getOperand(1); 5946 5947 switch (ICI->getPredicate()) { 5948 case ICmpInst::ICMP_SLT: 5949 case ICmpInst::ICMP_SLE: 5950 case ICmpInst::ICMP_ULT: 5951 case ICmpInst::ICMP_ULE: 5952 std::swap(LHS, RHS); 5953 LLVM_FALLTHROUGH; 5954 case ICmpInst::ICMP_SGT: 5955 case ICmpInst::ICMP_SGE: 5956 case ICmpInst::ICMP_UGT: 5957 case ICmpInst::ICMP_UGE: 5958 // a > b ? a+x : b+x -> max(a, b)+x 5959 // a > b ? b+x : a+x -> min(a, b)+x 5960 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5961 bool Signed = ICI->isSigned(); 5962 const SCEV *LA = getSCEV(TrueVal); 5963 const SCEV *RA = getSCEV(FalseVal); 5964 const SCEV *LS = getSCEV(LHS); 5965 const SCEV *RS = getSCEV(RHS); 5966 if (LA->getType()->isPointerTy()) { 5967 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5968 // Need to make sure we can't produce weird expressions involving 5969 // negated pointers. 5970 if (LA == LS && RA == RS) 5971 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5972 if (LA == RS && RA == LS) 5973 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5974 } 5975 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5976 if (Op->getType()->isPointerTy()) { 5977 Op = getLosslessPtrToIntExpr(Op); 5978 if (isa<SCEVCouldNotCompute>(Op)) 5979 return Op; 5980 } 5981 if (Signed) 5982 Op = getNoopOrSignExtend(Op, I->getType()); 5983 else 5984 Op = getNoopOrZeroExtend(Op, I->getType()); 5985 return Op; 5986 }; 5987 LS = CoerceOperand(LS); 5988 RS = CoerceOperand(RS); 5989 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5990 break; 5991 const SCEV *LDiff = getMinusSCEV(LA, LS); 5992 const SCEV *RDiff = getMinusSCEV(RA, RS); 5993 if (LDiff == RDiff) 5994 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5995 LDiff); 5996 LDiff = getMinusSCEV(LA, RS); 5997 RDiff = getMinusSCEV(RA, LS); 5998 if (LDiff == RDiff) 5999 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6000 LDiff); 6001 } 6002 break; 6003 case ICmpInst::ICMP_NE: 6004 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6005 std::swap(TrueVal, FalseVal); 6006 LLVM_FALLTHROUGH; 6007 case ICmpInst::ICMP_EQ: 6008 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6009 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6010 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6011 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6012 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6013 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6014 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6015 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6016 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6017 return getAddExpr(getUMaxExpr(X, C), Y); 6018 } 6019 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6020 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6021 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6022 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6023 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6024 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6025 const SCEV *X = getSCEV(LHS); 6026 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6027 X = ZExt->getOperand(); 6028 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6029 const SCEV *FalseValExpr = getSCEV(FalseVal); 6030 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6031 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6032 /*Sequential=*/true); 6033 } 6034 } 6035 break; 6036 default: 6037 break; 6038 } 6039 6040 return getUnknown(I); 6041 } 6042 6043 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6044 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6045 // For now, only deal with i1-typed `select`s. 6046 if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) || 6047 !TrueVal->getType()->isIntegerTy(1) || 6048 !FalseVal->getType()->isIntegerTy(1)) 6049 return getUnknown(V); 6050 6051 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6052 // --> C + (umin_seq cond, x - C) 6053 // 6054 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6055 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6056 // --> C + (umin_seq ~cond, x - C) 6057 if (isa<ConstantInt>(TrueVal) || isa<ConstantInt>(FalseVal)) { 6058 const SCEV *CondExpr = getSCEV(Cond); 6059 const SCEV *TrueExpr = getSCEV(TrueVal); 6060 const SCEV *FalseExpr = getSCEV(FalseVal); 6061 const SCEV *X, *C; 6062 if (isa<ConstantInt>(TrueVal)) { 6063 CondExpr = getNotSCEV(CondExpr); 6064 X = FalseExpr; 6065 C = TrueExpr; 6066 } else { 6067 X = TrueExpr; 6068 C = FalseExpr; 6069 } 6070 return getAddExpr( 6071 C, getUMinExpr(CondExpr, getMinusSCEV(X, C), /*Sequential=*/true)); 6072 } 6073 6074 return getUnknown(V); 6075 } 6076 6077 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6078 Value *TrueVal, 6079 Value *FalseVal) { 6080 // Handle "constant" branch or select. This can occur for instance when a 6081 // loop pass transforms an inner loop and moves on to process the outer loop. 6082 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6083 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6084 6085 if (auto *I = dyn_cast<Instruction>(V)) { 6086 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6087 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6088 I, ICI, TrueVal, FalseVal); 6089 if (!isa<SCEVUnknown>(S)) 6090 return S; 6091 } 6092 } 6093 6094 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6095 } 6096 6097 /// Expand GEP instructions into add and multiply operations. This allows them 6098 /// to be analyzed by regular SCEV code. 6099 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6100 // Don't attempt to analyze GEPs over unsized objects. 6101 if (!GEP->getSourceElementType()->isSized()) 6102 return getUnknown(GEP); 6103 6104 SmallVector<const SCEV *, 4> IndexExprs; 6105 for (Value *Index : GEP->indices()) 6106 IndexExprs.push_back(getSCEV(Index)); 6107 return getGEPExpr(GEP, IndexExprs); 6108 } 6109 6110 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6111 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6112 return C->getAPInt().countTrailingZeros(); 6113 6114 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6115 return GetMinTrailingZeros(I->getOperand()); 6116 6117 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6118 return std::min(GetMinTrailingZeros(T->getOperand()), 6119 (uint32_t)getTypeSizeInBits(T->getType())); 6120 6121 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6122 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6123 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6124 ? getTypeSizeInBits(E->getType()) 6125 : OpRes; 6126 } 6127 6128 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6129 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6130 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6131 ? getTypeSizeInBits(E->getType()) 6132 : OpRes; 6133 } 6134 6135 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6136 // The result is the min of all operands results. 6137 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6138 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6139 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6140 return MinOpRes; 6141 } 6142 6143 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6144 // The result is the sum of all operands results. 6145 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6146 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6147 for (unsigned i = 1, e = M->getNumOperands(); 6148 SumOpRes != BitWidth && i != e; ++i) 6149 SumOpRes = 6150 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6151 return SumOpRes; 6152 } 6153 6154 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6155 // The result is the min of all operands results. 6156 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6157 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6158 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6159 return MinOpRes; 6160 } 6161 6162 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6163 // The result is the min of all operands results. 6164 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6165 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6166 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6167 return MinOpRes; 6168 } 6169 6170 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6171 // The result is the min of all operands results. 6172 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6173 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6174 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6175 return MinOpRes; 6176 } 6177 6178 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6179 // For a SCEVUnknown, ask ValueTracking. 6180 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6181 return Known.countMinTrailingZeros(); 6182 } 6183 6184 // SCEVUDivExpr 6185 return 0; 6186 } 6187 6188 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6189 auto I = MinTrailingZerosCache.find(S); 6190 if (I != MinTrailingZerosCache.end()) 6191 return I->second; 6192 6193 uint32_t Result = GetMinTrailingZerosImpl(S); 6194 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6195 assert(InsertPair.second && "Should insert a new key"); 6196 return InsertPair.first->second; 6197 } 6198 6199 /// Helper method to assign a range to V from metadata present in the IR. 6200 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6201 if (Instruction *I = dyn_cast<Instruction>(V)) 6202 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6203 return getConstantRangeFromMetadata(*MD); 6204 6205 return None; 6206 } 6207 6208 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6209 SCEV::NoWrapFlags Flags) { 6210 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6211 AddRec->setNoWrapFlags(Flags); 6212 UnsignedRanges.erase(AddRec); 6213 SignedRanges.erase(AddRec); 6214 } 6215 } 6216 6217 ConstantRange ScalarEvolution:: 6218 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6219 const DataLayout &DL = getDataLayout(); 6220 6221 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6222 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6223 6224 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6225 // use information about the trip count to improve our available range. Note 6226 // that the trip count independent cases are already handled by known bits. 6227 // WARNING: The definition of recurrence used here is subtly different than 6228 // the one used by AddRec (and thus most of this file). Step is allowed to 6229 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6230 // and other addrecs in the same loop (for non-affine addrecs). The code 6231 // below intentionally handles the case where step is not loop invariant. 6232 auto *P = dyn_cast<PHINode>(U->getValue()); 6233 if (!P) 6234 return FullSet; 6235 6236 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6237 // even the values that are not available in these blocks may come from them, 6238 // and this leads to false-positive recurrence test. 6239 for (auto *Pred : predecessors(P->getParent())) 6240 if (!DT.isReachableFromEntry(Pred)) 6241 return FullSet; 6242 6243 BinaryOperator *BO; 6244 Value *Start, *Step; 6245 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6246 return FullSet; 6247 6248 // If we found a recurrence in reachable code, we must be in a loop. Note 6249 // that BO might be in some subloop of L, and that's completely okay. 6250 auto *L = LI.getLoopFor(P->getParent()); 6251 assert(L && L->getHeader() == P->getParent()); 6252 if (!L->contains(BO->getParent())) 6253 // NOTE: This bailout should be an assert instead. However, asserting 6254 // the condition here exposes a case where LoopFusion is querying SCEV 6255 // with malformed loop information during the midst of the transform. 6256 // There doesn't appear to be an obvious fix, so for the moment bailout 6257 // until the caller issue can be fixed. PR49566 tracks the bug. 6258 return FullSet; 6259 6260 // TODO: Extend to other opcodes such as mul, and div 6261 switch (BO->getOpcode()) { 6262 default: 6263 return FullSet; 6264 case Instruction::AShr: 6265 case Instruction::LShr: 6266 case Instruction::Shl: 6267 break; 6268 }; 6269 6270 if (BO->getOperand(0) != P) 6271 // TODO: Handle the power function forms some day. 6272 return FullSet; 6273 6274 unsigned TC = getSmallConstantMaxTripCount(L); 6275 if (!TC || TC >= BitWidth) 6276 return FullSet; 6277 6278 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6279 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6280 assert(KnownStart.getBitWidth() == BitWidth && 6281 KnownStep.getBitWidth() == BitWidth); 6282 6283 // Compute total shift amount, being careful of overflow and bitwidths. 6284 auto MaxShiftAmt = KnownStep.getMaxValue(); 6285 APInt TCAP(BitWidth, TC-1); 6286 bool Overflow = false; 6287 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6288 if (Overflow) 6289 return FullSet; 6290 6291 switch (BO->getOpcode()) { 6292 default: 6293 llvm_unreachable("filtered out above"); 6294 case Instruction::AShr: { 6295 // For each ashr, three cases: 6296 // shift = 0 => unchanged value 6297 // saturation => 0 or -1 6298 // other => a value closer to zero (of the same sign) 6299 // Thus, the end value is closer to zero than the start. 6300 auto KnownEnd = KnownBits::ashr(KnownStart, 6301 KnownBits::makeConstant(TotalShift)); 6302 if (KnownStart.isNonNegative()) 6303 // Analogous to lshr (simply not yet canonicalized) 6304 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6305 KnownStart.getMaxValue() + 1); 6306 if (KnownStart.isNegative()) 6307 // End >=u Start && End <=s Start 6308 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6309 KnownEnd.getMaxValue() + 1); 6310 break; 6311 } 6312 case Instruction::LShr: { 6313 // For each lshr, three cases: 6314 // shift = 0 => unchanged value 6315 // saturation => 0 6316 // other => a smaller positive number 6317 // Thus, the low end of the unsigned range is the last value produced. 6318 auto KnownEnd = KnownBits::lshr(KnownStart, 6319 KnownBits::makeConstant(TotalShift)); 6320 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6321 KnownStart.getMaxValue() + 1); 6322 } 6323 case Instruction::Shl: { 6324 // Iff no bits are shifted out, value increases on every shift. 6325 auto KnownEnd = KnownBits::shl(KnownStart, 6326 KnownBits::makeConstant(TotalShift)); 6327 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6328 return ConstantRange(KnownStart.getMinValue(), 6329 KnownEnd.getMaxValue() + 1); 6330 break; 6331 } 6332 }; 6333 return FullSet; 6334 } 6335 6336 /// Determine the range for a particular SCEV. If SignHint is 6337 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6338 /// with a "cleaner" unsigned (resp. signed) representation. 6339 const ConstantRange & 6340 ScalarEvolution::getRangeRef(const SCEV *S, 6341 ScalarEvolution::RangeSignHint SignHint) { 6342 DenseMap<const SCEV *, ConstantRange> &Cache = 6343 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6344 : SignedRanges; 6345 ConstantRange::PreferredRangeType RangeType = 6346 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6347 ? ConstantRange::Unsigned : ConstantRange::Signed; 6348 6349 // See if we've computed this range already. 6350 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6351 if (I != Cache.end()) 6352 return I->second; 6353 6354 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6355 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6356 6357 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6358 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6359 using OBO = OverflowingBinaryOperator; 6360 6361 // If the value has known zeros, the maximum value will have those known zeros 6362 // as well. 6363 uint32_t TZ = GetMinTrailingZeros(S); 6364 if (TZ != 0) { 6365 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6366 ConservativeResult = 6367 ConstantRange(APInt::getMinValue(BitWidth), 6368 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6369 else 6370 ConservativeResult = ConstantRange( 6371 APInt::getSignedMinValue(BitWidth), 6372 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6373 } 6374 6375 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6376 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6377 unsigned WrapType = OBO::AnyWrap; 6378 if (Add->hasNoSignedWrap()) 6379 WrapType |= OBO::NoSignedWrap; 6380 if (Add->hasNoUnsignedWrap()) 6381 WrapType |= OBO::NoUnsignedWrap; 6382 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6383 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6384 WrapType, RangeType); 6385 return setRange(Add, SignHint, 6386 ConservativeResult.intersectWith(X, RangeType)); 6387 } 6388 6389 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6390 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6391 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6392 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6393 return setRange(Mul, SignHint, 6394 ConservativeResult.intersectWith(X, RangeType)); 6395 } 6396 6397 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6398 Intrinsic::ID ID; 6399 switch (S->getSCEVType()) { 6400 case scUMaxExpr: 6401 ID = Intrinsic::umax; 6402 break; 6403 case scSMaxExpr: 6404 ID = Intrinsic::smax; 6405 break; 6406 case scUMinExpr: 6407 case scSequentialUMinExpr: 6408 ID = Intrinsic::umin; 6409 break; 6410 case scSMinExpr: 6411 ID = Intrinsic::smin; 6412 break; 6413 default: 6414 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6415 } 6416 6417 const auto *NAry = cast<SCEVNAryExpr>(S); 6418 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6419 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6420 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6421 return setRange(S, SignHint, 6422 ConservativeResult.intersectWith(X, RangeType)); 6423 } 6424 6425 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6426 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6427 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6428 return setRange(UDiv, SignHint, 6429 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6430 } 6431 6432 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6433 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6434 return setRange(ZExt, SignHint, 6435 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6436 RangeType)); 6437 } 6438 6439 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6440 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6441 return setRange(SExt, SignHint, 6442 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6443 RangeType)); 6444 } 6445 6446 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6447 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6448 return setRange(PtrToInt, SignHint, X); 6449 } 6450 6451 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6452 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6453 return setRange(Trunc, SignHint, 6454 ConservativeResult.intersectWith(X.truncate(BitWidth), 6455 RangeType)); 6456 } 6457 6458 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6459 // If there's no unsigned wrap, the value will never be less than its 6460 // initial value. 6461 if (AddRec->hasNoUnsignedWrap()) { 6462 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6463 if (!UnsignedMinValue.isZero()) 6464 ConservativeResult = ConservativeResult.intersectWith( 6465 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6466 } 6467 6468 // If there's no signed wrap, and all the operands except initial value have 6469 // the same sign or zero, the value won't ever be: 6470 // 1: smaller than initial value if operands are non negative, 6471 // 2: bigger than initial value if operands are non positive. 6472 // For both cases, value can not cross signed min/max boundary. 6473 if (AddRec->hasNoSignedWrap()) { 6474 bool AllNonNeg = true; 6475 bool AllNonPos = true; 6476 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6477 if (!isKnownNonNegative(AddRec->getOperand(i))) 6478 AllNonNeg = false; 6479 if (!isKnownNonPositive(AddRec->getOperand(i))) 6480 AllNonPos = false; 6481 } 6482 if (AllNonNeg) 6483 ConservativeResult = ConservativeResult.intersectWith( 6484 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6485 APInt::getSignedMinValue(BitWidth)), 6486 RangeType); 6487 else if (AllNonPos) 6488 ConservativeResult = ConservativeResult.intersectWith( 6489 ConstantRange::getNonEmpty( 6490 APInt::getSignedMinValue(BitWidth), 6491 getSignedRangeMax(AddRec->getStart()) + 1), 6492 RangeType); 6493 } 6494 6495 // TODO: non-affine addrec 6496 if (AddRec->isAffine()) { 6497 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6498 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6499 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6500 auto RangeFromAffine = getRangeForAffineAR( 6501 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6502 BitWidth); 6503 ConservativeResult = 6504 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6505 6506 auto RangeFromFactoring = getRangeViaFactoring( 6507 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6508 BitWidth); 6509 ConservativeResult = 6510 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6511 } 6512 6513 // Now try symbolic BE count and more powerful methods. 6514 if (UseExpensiveRangeSharpening) { 6515 const SCEV *SymbolicMaxBECount = 6516 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6517 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6518 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6519 AddRec->hasNoSelfWrap()) { 6520 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6521 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6522 ConservativeResult = 6523 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6524 } 6525 } 6526 } 6527 6528 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6529 } 6530 6531 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6532 6533 // Check if the IR explicitly contains !range metadata. 6534 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6535 if (MDRange.hasValue()) 6536 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6537 RangeType); 6538 6539 // Use facts about recurrences in the underlying IR. Note that add 6540 // recurrences are AddRecExprs and thus don't hit this path. This 6541 // primarily handles shift recurrences. 6542 auto CR = getRangeForUnknownRecurrence(U); 6543 ConservativeResult = ConservativeResult.intersectWith(CR); 6544 6545 // See if ValueTracking can give us a useful range. 6546 const DataLayout &DL = getDataLayout(); 6547 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6548 if (Known.getBitWidth() != BitWidth) 6549 Known = Known.zextOrTrunc(BitWidth); 6550 6551 // ValueTracking may be able to compute a tighter result for the number of 6552 // sign bits than for the value of those sign bits. 6553 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6554 if (U->getType()->isPointerTy()) { 6555 // If the pointer size is larger than the index size type, this can cause 6556 // NS to be larger than BitWidth. So compensate for this. 6557 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6558 int ptrIdxDiff = ptrSize - BitWidth; 6559 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6560 NS -= ptrIdxDiff; 6561 } 6562 6563 if (NS > 1) { 6564 // If we know any of the sign bits, we know all of the sign bits. 6565 if (!Known.Zero.getHiBits(NS).isZero()) 6566 Known.Zero.setHighBits(NS); 6567 if (!Known.One.getHiBits(NS).isZero()) 6568 Known.One.setHighBits(NS); 6569 } 6570 6571 if (Known.getMinValue() != Known.getMaxValue() + 1) 6572 ConservativeResult = ConservativeResult.intersectWith( 6573 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6574 RangeType); 6575 if (NS > 1) 6576 ConservativeResult = ConservativeResult.intersectWith( 6577 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6578 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6579 RangeType); 6580 6581 // A range of Phi is a subset of union of all ranges of its input. 6582 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) 6583 if (!PendingPhiRanges.count(Phi)) 6584 sharpenPhiSCCRange(Phi, ConservativeResult, SignHint); 6585 6586 return setRange(U, SignHint, std::move(ConservativeResult)); 6587 } 6588 6589 return setRange(S, SignHint, std::move(ConservativeResult)); 6590 } 6591 6592 bool ScalarEvolution::collectSCC(const PHINode *Phi, 6593 SmallVectorImpl<const PHINode *> &SCC) const { 6594 assert(SCC.empty() && "Precondition: SCC should be empty."); 6595 auto Bail = [&]() { 6596 SCC.clear(); 6597 SCC.push_back(Phi); 6598 return false; 6599 }; 6600 SmallPtrSet<const PHINode *, 4> Reachable; 6601 { 6602 // First, find all PHI nodes that are reachable from Phi. 6603 SmallVector<const PHINode *, 4> Worklist; 6604 Reachable.insert(Phi); 6605 Worklist.push_back(Phi); 6606 while (!Worklist.empty()) { 6607 if (Reachable.size() > MaxPhiSCCAnalysisSize) 6608 // Too many nodes to process. Assume that SCC is composed of Phi alone. 6609 return Bail(); 6610 auto *Curr = Worklist.pop_back_val(); 6611 for (auto &Op : Curr->operands()) { 6612 if (auto *PhiOp = dyn_cast<PHINode>(&*Op)) { 6613 if (PendingPhiRanges.count(PhiOp)) 6614 // Do not want to deal with this situation, so conservatively bail. 6615 return Bail(); 6616 if (Reachable.insert(PhiOp).second) 6617 Worklist.push_back(PhiOp); 6618 } 6619 } 6620 } 6621 } 6622 { 6623 // Out of reachable nodes, find those from which Phi is also reachable. This 6624 // defines a SCC. 6625 SmallVector<const PHINode *, 4> Worklist; 6626 SmallPtrSet<const PHINode *, 4> SCCSet; 6627 SCCSet.insert(Phi); 6628 SCC.push_back(Phi); 6629 Worklist.push_back(Phi); 6630 while (!Worklist.empty()) { 6631 auto *Curr = Worklist.pop_back_val(); 6632 for (auto *User : Curr->users()) 6633 if (auto *PN = dyn_cast<PHINode>(User)) 6634 if (Reachable.count(PN) && SCCSet.insert(PN).second) { 6635 Worklist.push_back(PN); 6636 SCC.push_back(PN); 6637 } 6638 } 6639 } 6640 return true; 6641 } 6642 6643 void 6644 ScalarEvolution::sharpenPhiSCCRange(const PHINode *Phi, 6645 ConstantRange &ConservativeResult, 6646 ScalarEvolution::RangeSignHint SignHint) { 6647 // Collect strongly connected component (further on - SCC ) composed of Phis. 6648 // Analyze all values that are incoming to this SCC (we call them roots). 6649 // All SCC elements have range that is not wider than union of ranges of 6650 // roots. 6651 SmallVector<const PHINode *, 8> SCC; 6652 if (collectSCC(Phi, SCC)) 6653 ++NumFoundPhiSCCs; 6654 6655 // Collect roots: inputs of SCC nodes that come from outside of SCC. 6656 SmallPtrSet<Value *, 4> Roots; 6657 const SmallPtrSet<const PHINode *, 8> SCCSet(SCC.begin(), SCC.end()); 6658 for (auto *PN : SCC) 6659 for (auto &Op : PN->operands()) { 6660 auto *PhiInput = dyn_cast<PHINode>(Op); 6661 if (!PhiInput || !SCCSet.count(PhiInput)) 6662 Roots.insert(Op); 6663 } 6664 6665 // Mark SCC elements as pending to avoid infinite recursion if there is a 6666 // cyclic dependency through some instruction that is not a PHI. 6667 for (auto *PN : SCC) { 6668 bool Inserted = PendingPhiRanges.insert(PN).second; 6669 assert(Inserted && "PHI is already pending?"); 6670 (void)Inserted; 6671 } 6672 6673 auto BitWidth = ConservativeResult.getBitWidth(); 6674 ConstantRange RangeFromRoots(BitWidth, /*isFullSet=*/false); 6675 for (auto *Root : Roots) { 6676 auto OpRange = getRangeRef(getSCEV(Root), SignHint); 6677 RangeFromRoots = RangeFromRoots.unionWith(OpRange); 6678 // No point to continue if we already have a full set. 6679 if (RangeFromRoots.isFullSet()) 6680 break; 6681 } 6682 ConstantRange::PreferredRangeType RangeType = 6683 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned 6684 : ConstantRange::Signed; 6685 ConservativeResult = 6686 ConservativeResult.intersectWith(RangeFromRoots, RangeType); 6687 6688 DenseMap<const SCEV *, ConstantRange> &Cache = 6689 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6690 : SignedRanges; 6691 // Entire SCC has the same range. 6692 for (auto *PN : SCC) { 6693 bool Erased = PendingPhiRanges.erase(PN); 6694 assert(Erased && "Failed to erase Phi properly?"); 6695 (void)Erased; 6696 auto *PNSCEV = getSCEV(const_cast<PHINode *>(PN)); 6697 auto I = Cache.find(PNSCEV); 6698 if (I == Cache.end()) 6699 setRange(PNSCEV, SignHint, ConservativeResult); 6700 else { 6701 auto SharpenedRange = 6702 I->second.intersectWith(ConservativeResult, RangeType); 6703 setRange(PNSCEV, SignHint, SharpenedRange); 6704 } 6705 } 6706 } 6707 6708 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6709 // values that the expression can take. Initially, the expression has a value 6710 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6711 // argument defines if we treat Step as signed or unsigned. 6712 static ConstantRange getRangeForAffineARHelper(APInt Step, 6713 const ConstantRange &StartRange, 6714 const APInt &MaxBECount, 6715 unsigned BitWidth, bool Signed) { 6716 // If either Step or MaxBECount is 0, then the expression won't change, and we 6717 // just need to return the initial range. 6718 if (Step == 0 || MaxBECount == 0) 6719 return StartRange; 6720 6721 // If we don't know anything about the initial value (i.e. StartRange is 6722 // FullRange), then we don't know anything about the final range either. 6723 // Return FullRange. 6724 if (StartRange.isFullSet()) 6725 return ConstantRange::getFull(BitWidth); 6726 6727 // If Step is signed and negative, then we use its absolute value, but we also 6728 // note that we're moving in the opposite direction. 6729 bool Descending = Signed && Step.isNegative(); 6730 6731 if (Signed) 6732 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6733 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6734 // This equations hold true due to the well-defined wrap-around behavior of 6735 // APInt. 6736 Step = Step.abs(); 6737 6738 // Check if Offset is more than full span of BitWidth. If it is, the 6739 // expression is guaranteed to overflow. 6740 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6741 return ConstantRange::getFull(BitWidth); 6742 6743 // Offset is by how much the expression can change. Checks above guarantee no 6744 // overflow here. 6745 APInt Offset = Step * MaxBECount; 6746 6747 // Minimum value of the final range will match the minimal value of StartRange 6748 // if the expression is increasing and will be decreased by Offset otherwise. 6749 // Maximum value of the final range will match the maximal value of StartRange 6750 // if the expression is decreasing and will be increased by Offset otherwise. 6751 APInt StartLower = StartRange.getLower(); 6752 APInt StartUpper = StartRange.getUpper() - 1; 6753 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6754 : (StartUpper + std::move(Offset)); 6755 6756 // It's possible that the new minimum/maximum value will fall into the initial 6757 // range (due to wrap around). This means that the expression can take any 6758 // value in this bitwidth, and we have to return full range. 6759 if (StartRange.contains(MovedBoundary)) 6760 return ConstantRange::getFull(BitWidth); 6761 6762 APInt NewLower = 6763 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6764 APInt NewUpper = 6765 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6766 NewUpper += 1; 6767 6768 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6769 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6770 } 6771 6772 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6773 const SCEV *Step, 6774 const SCEV *MaxBECount, 6775 unsigned BitWidth) { 6776 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6777 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6778 "Precondition!"); 6779 6780 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6781 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6782 6783 // First, consider step signed. 6784 ConstantRange StartSRange = getSignedRange(Start); 6785 ConstantRange StepSRange = getSignedRange(Step); 6786 6787 // If Step can be both positive and negative, we need to find ranges for the 6788 // maximum absolute step values in both directions and union them. 6789 ConstantRange SR = 6790 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6791 MaxBECountValue, BitWidth, /* Signed = */ true); 6792 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6793 StartSRange, MaxBECountValue, 6794 BitWidth, /* Signed = */ true)); 6795 6796 // Next, consider step unsigned. 6797 ConstantRange UR = getRangeForAffineARHelper( 6798 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6799 MaxBECountValue, BitWidth, /* Signed = */ false); 6800 6801 // Finally, intersect signed and unsigned ranges. 6802 return SR.intersectWith(UR, ConstantRange::Smallest); 6803 } 6804 6805 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6806 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6807 ScalarEvolution::RangeSignHint SignHint) { 6808 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6809 assert(AddRec->hasNoSelfWrap() && 6810 "This only works for non-self-wrapping AddRecs!"); 6811 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6812 const SCEV *Step = AddRec->getStepRecurrence(*this); 6813 // Only deal with constant step to save compile time. 6814 if (!isa<SCEVConstant>(Step)) 6815 return ConstantRange::getFull(BitWidth); 6816 // Let's make sure that we can prove that we do not self-wrap during 6817 // MaxBECount iterations. We need this because MaxBECount is a maximum 6818 // iteration count estimate, and we might infer nw from some exit for which we 6819 // do not know max exit count (or any other side reasoning). 6820 // TODO: Turn into assert at some point. 6821 if (getTypeSizeInBits(MaxBECount->getType()) > 6822 getTypeSizeInBits(AddRec->getType())) 6823 return ConstantRange::getFull(BitWidth); 6824 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6825 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6826 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6827 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6828 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6829 MaxItersWithoutWrap)) 6830 return ConstantRange::getFull(BitWidth); 6831 6832 ICmpInst::Predicate LEPred = 6833 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6834 ICmpInst::Predicate GEPred = 6835 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6836 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6837 6838 // We know that there is no self-wrap. Let's take Start and End values and 6839 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6840 // the iteration. They either lie inside the range [Min(Start, End), 6841 // Max(Start, End)] or outside it: 6842 // 6843 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6844 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6845 // 6846 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6847 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6848 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6849 // Start <= End and step is positive, or Start >= End and step is negative. 6850 const SCEV *Start = AddRec->getStart(); 6851 ConstantRange StartRange = getRangeRef(Start, SignHint); 6852 ConstantRange EndRange = getRangeRef(End, SignHint); 6853 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6854 // If they already cover full iteration space, we will know nothing useful 6855 // even if we prove what we want to prove. 6856 if (RangeBetween.isFullSet()) 6857 return RangeBetween; 6858 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6859 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6860 : RangeBetween.isWrappedSet(); 6861 if (IsWrappedSet) 6862 return ConstantRange::getFull(BitWidth); 6863 6864 if (isKnownPositive(Step) && 6865 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6866 return RangeBetween; 6867 else if (isKnownNegative(Step) && 6868 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6869 return RangeBetween; 6870 return ConstantRange::getFull(BitWidth); 6871 } 6872 6873 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6874 const SCEV *Step, 6875 const SCEV *MaxBECount, 6876 unsigned BitWidth) { 6877 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6878 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6879 6880 struct SelectPattern { 6881 Value *Condition = nullptr; 6882 APInt TrueValue; 6883 APInt FalseValue; 6884 6885 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6886 const SCEV *S) { 6887 Optional<unsigned> CastOp; 6888 APInt Offset(BitWidth, 0); 6889 6890 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6891 "Should be!"); 6892 6893 // Peel off a constant offset: 6894 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6895 // In the future we could consider being smarter here and handle 6896 // {Start+Step,+,Step} too. 6897 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6898 return; 6899 6900 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6901 S = SA->getOperand(1); 6902 } 6903 6904 // Peel off a cast operation 6905 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6906 CastOp = SCast->getSCEVType(); 6907 S = SCast->getOperand(); 6908 } 6909 6910 using namespace llvm::PatternMatch; 6911 6912 auto *SU = dyn_cast<SCEVUnknown>(S); 6913 const APInt *TrueVal, *FalseVal; 6914 if (!SU || 6915 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6916 m_APInt(FalseVal)))) { 6917 Condition = nullptr; 6918 return; 6919 } 6920 6921 TrueValue = *TrueVal; 6922 FalseValue = *FalseVal; 6923 6924 // Re-apply the cast we peeled off earlier 6925 if (CastOp.hasValue()) 6926 switch (*CastOp) { 6927 default: 6928 llvm_unreachable("Unknown SCEV cast type!"); 6929 6930 case scTruncate: 6931 TrueValue = TrueValue.trunc(BitWidth); 6932 FalseValue = FalseValue.trunc(BitWidth); 6933 break; 6934 case scZeroExtend: 6935 TrueValue = TrueValue.zext(BitWidth); 6936 FalseValue = FalseValue.zext(BitWidth); 6937 break; 6938 case scSignExtend: 6939 TrueValue = TrueValue.sext(BitWidth); 6940 FalseValue = FalseValue.sext(BitWidth); 6941 break; 6942 } 6943 6944 // Re-apply the constant offset we peeled off earlier 6945 TrueValue += Offset; 6946 FalseValue += Offset; 6947 } 6948 6949 bool isRecognized() { return Condition != nullptr; } 6950 }; 6951 6952 SelectPattern StartPattern(*this, BitWidth, Start); 6953 if (!StartPattern.isRecognized()) 6954 return ConstantRange::getFull(BitWidth); 6955 6956 SelectPattern StepPattern(*this, BitWidth, Step); 6957 if (!StepPattern.isRecognized()) 6958 return ConstantRange::getFull(BitWidth); 6959 6960 if (StartPattern.Condition != StepPattern.Condition) { 6961 // We don't handle this case today; but we could, by considering four 6962 // possibilities below instead of two. I'm not sure if there are cases where 6963 // that will help over what getRange already does, though. 6964 return ConstantRange::getFull(BitWidth); 6965 } 6966 6967 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6968 // construct arbitrary general SCEV expressions here. This function is called 6969 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6970 // say) can end up caching a suboptimal value. 6971 6972 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6973 // C2352 and C2512 (otherwise it isn't needed). 6974 6975 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6976 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6977 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6978 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6979 6980 ConstantRange TrueRange = 6981 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6982 ConstantRange FalseRange = 6983 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6984 6985 return TrueRange.unionWith(FalseRange); 6986 } 6987 6988 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6989 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6990 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6991 6992 // Return early if there are no flags to propagate to the SCEV. 6993 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6994 if (BinOp->hasNoUnsignedWrap()) 6995 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6996 if (BinOp->hasNoSignedWrap()) 6997 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6998 if (Flags == SCEV::FlagAnyWrap) 6999 return SCEV::FlagAnyWrap; 7000 7001 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 7002 } 7003 7004 const Instruction * 7005 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 7006 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 7007 return &*AddRec->getLoop()->getHeader()->begin(); 7008 if (auto *U = dyn_cast<SCEVUnknown>(S)) 7009 if (auto *I = dyn_cast<Instruction>(U->getValue())) 7010 return I; 7011 return nullptr; 7012 } 7013 7014 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 7015 /// \p Ops remains unmodified. 7016 static void collectUniqueOps(const SCEV *S, 7017 SmallVectorImpl<const SCEV *> &Ops) { 7018 SmallPtrSet<const SCEV *, 4> Unique; 7019 auto InsertUnique = [&](const SCEV *S) { 7020 if (Unique.insert(S).second) 7021 Ops.push_back(S); 7022 }; 7023 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 7024 for (auto *Op : S2->operands()) 7025 InsertUnique(Op); 7026 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 7027 for (auto *Op : S2->operands()) 7028 InsertUnique(Op); 7029 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 7030 for (auto *Op : S2->operands()) 7031 InsertUnique(Op); 7032 } 7033 7034 const Instruction * 7035 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 7036 bool &Precise) { 7037 Precise = true; 7038 // Do a bounded search of the def relation of the requested SCEVs. 7039 SmallSet<const SCEV *, 16> Visited; 7040 SmallVector<const SCEV *> Worklist; 7041 auto pushOp = [&](const SCEV *S) { 7042 if (!Visited.insert(S).second) 7043 return; 7044 // Threshold of 30 here is arbitrary. 7045 if (Visited.size() > 30) { 7046 Precise = false; 7047 return; 7048 } 7049 Worklist.push_back(S); 7050 }; 7051 7052 for (auto *S : Ops) 7053 pushOp(S); 7054 7055 const Instruction *Bound = nullptr; 7056 while (!Worklist.empty()) { 7057 auto *S = Worklist.pop_back_val(); 7058 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7059 if (!Bound || DT.dominates(Bound, DefI)) 7060 Bound = DefI; 7061 } else { 7062 SmallVector<const SCEV *, 4> Ops; 7063 collectUniqueOps(S, Ops); 7064 for (auto *Op : Ops) 7065 pushOp(Op); 7066 } 7067 } 7068 return Bound ? Bound : &*F.getEntryBlock().begin(); 7069 } 7070 7071 const Instruction * 7072 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7073 bool Discard; 7074 return getDefiningScopeBound(Ops, Discard); 7075 } 7076 7077 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7078 const Instruction *B) { 7079 if (A->getParent() == B->getParent() && 7080 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7081 B->getIterator())) 7082 return true; 7083 7084 auto *BLoop = LI.getLoopFor(B->getParent()); 7085 if (BLoop && BLoop->getHeader() == B->getParent() && 7086 BLoop->getLoopPreheader() == A->getParent() && 7087 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7088 A->getParent()->end()) && 7089 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7090 B->getIterator())) 7091 return true; 7092 return false; 7093 } 7094 7095 7096 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7097 // Only proceed if we can prove that I does not yield poison. 7098 if (!programUndefinedIfPoison(I)) 7099 return false; 7100 7101 // At this point we know that if I is executed, then it does not wrap 7102 // according to at least one of NSW or NUW. If I is not executed, then we do 7103 // not know if the calculation that I represents would wrap. Multiple 7104 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7105 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7106 // derived from other instructions that map to the same SCEV. We cannot make 7107 // that guarantee for cases where I is not executed. So we need to find a 7108 // upper bound on the defining scope for the SCEV, and prove that I is 7109 // executed every time we enter that scope. When the bounding scope is a 7110 // loop (the common case), this is equivalent to proving I executes on every 7111 // iteration of that loop. 7112 SmallVector<const SCEV *> SCEVOps; 7113 for (const Use &Op : I->operands()) { 7114 // I could be an extractvalue from a call to an overflow intrinsic. 7115 // TODO: We can do better here in some cases. 7116 if (isSCEVable(Op->getType())) 7117 SCEVOps.push_back(getSCEV(Op)); 7118 } 7119 auto *DefI = getDefiningScopeBound(SCEVOps); 7120 return isGuaranteedToTransferExecutionTo(DefI, I); 7121 } 7122 7123 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7124 // If we know that \c I can never be poison period, then that's enough. 7125 if (isSCEVExprNeverPoison(I)) 7126 return true; 7127 7128 // For an add recurrence specifically, we assume that infinite loops without 7129 // side effects are undefined behavior, and then reason as follows: 7130 // 7131 // If the add recurrence is poison in any iteration, it is poison on all 7132 // future iterations (since incrementing poison yields poison). If the result 7133 // of the add recurrence is fed into the loop latch condition and the loop 7134 // does not contain any throws or exiting blocks other than the latch, we now 7135 // have the ability to "choose" whether the backedge is taken or not (by 7136 // choosing a sufficiently evil value for the poison feeding into the branch) 7137 // for every iteration including and after the one in which \p I first became 7138 // poison. There are two possibilities (let's call the iteration in which \p 7139 // I first became poison as K): 7140 // 7141 // 1. In the set of iterations including and after K, the loop body executes 7142 // no side effects. In this case executing the backege an infinte number 7143 // of times will yield undefined behavior. 7144 // 7145 // 2. In the set of iterations including and after K, the loop body executes 7146 // at least one side effect. In this case, that specific instance of side 7147 // effect is control dependent on poison, which also yields undefined 7148 // behavior. 7149 7150 auto *ExitingBB = L->getExitingBlock(); 7151 auto *LatchBB = L->getLoopLatch(); 7152 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7153 return false; 7154 7155 SmallPtrSet<const Instruction *, 16> Pushed; 7156 SmallVector<const Instruction *, 8> PoisonStack; 7157 7158 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7159 // things that are known to be poison under that assumption go on the 7160 // PoisonStack. 7161 Pushed.insert(I); 7162 PoisonStack.push_back(I); 7163 7164 bool LatchControlDependentOnPoison = false; 7165 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7166 const Instruction *Poison = PoisonStack.pop_back_val(); 7167 7168 for (auto *PoisonUser : Poison->users()) { 7169 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7170 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7171 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7172 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7173 assert(BI->isConditional() && "Only possibility!"); 7174 if (BI->getParent() == LatchBB) { 7175 LatchControlDependentOnPoison = true; 7176 break; 7177 } 7178 } 7179 } 7180 } 7181 7182 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7183 } 7184 7185 ScalarEvolution::LoopProperties 7186 ScalarEvolution::getLoopProperties(const Loop *L) { 7187 using LoopProperties = ScalarEvolution::LoopProperties; 7188 7189 auto Itr = LoopPropertiesCache.find(L); 7190 if (Itr == LoopPropertiesCache.end()) { 7191 auto HasSideEffects = [](Instruction *I) { 7192 if (auto *SI = dyn_cast<StoreInst>(I)) 7193 return !SI->isSimple(); 7194 7195 return I->mayThrow() || I->mayWriteToMemory(); 7196 }; 7197 7198 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7199 /*HasNoSideEffects*/ true}; 7200 7201 for (auto *BB : L->getBlocks()) 7202 for (auto &I : *BB) { 7203 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7204 LP.HasNoAbnormalExits = false; 7205 if (HasSideEffects(&I)) 7206 LP.HasNoSideEffects = false; 7207 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7208 break; // We're already as pessimistic as we can get. 7209 } 7210 7211 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7212 assert(InsertPair.second && "We just checked!"); 7213 Itr = InsertPair.first; 7214 } 7215 7216 return Itr->second; 7217 } 7218 7219 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7220 // A mustprogress loop without side effects must be finite. 7221 // TODO: The check used here is very conservative. It's only *specific* 7222 // side effects which are well defined in infinite loops. 7223 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7224 } 7225 7226 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7227 if (!isSCEVable(V->getType())) 7228 return getUnknown(V); 7229 7230 if (Instruction *I = dyn_cast<Instruction>(V)) { 7231 // Don't attempt to analyze instructions in blocks that aren't 7232 // reachable. Such instructions don't matter, and they aren't required 7233 // to obey basic rules for definitions dominating uses which this 7234 // analysis depends on. 7235 if (!DT.isReachableFromEntry(I->getParent())) 7236 return getUnknown(UndefValue::get(V->getType())); 7237 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7238 return getConstant(CI); 7239 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7240 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7241 else if (!isa<ConstantExpr>(V)) 7242 return getUnknown(V); 7243 7244 Operator *U = cast<Operator>(V); 7245 if (auto BO = MatchBinaryOp(U, DT)) { 7246 switch (BO->Opcode) { 7247 case Instruction::Add: { 7248 // The simple thing to do would be to just call getSCEV on both operands 7249 // and call getAddExpr with the result. However if we're looking at a 7250 // bunch of things all added together, this can be quite inefficient, 7251 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7252 // Instead, gather up all the operands and make a single getAddExpr call. 7253 // LLVM IR canonical form means we need only traverse the left operands. 7254 SmallVector<const SCEV *, 4> AddOps; 7255 do { 7256 if (BO->Op) { 7257 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7258 AddOps.push_back(OpSCEV); 7259 break; 7260 } 7261 7262 // If a NUW or NSW flag can be applied to the SCEV for this 7263 // addition, then compute the SCEV for this addition by itself 7264 // with a separate call to getAddExpr. We need to do that 7265 // instead of pushing the operands of the addition onto AddOps, 7266 // since the flags are only known to apply to this particular 7267 // addition - they may not apply to other additions that can be 7268 // formed with operands from AddOps. 7269 const SCEV *RHS = getSCEV(BO->RHS); 7270 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7271 if (Flags != SCEV::FlagAnyWrap) { 7272 const SCEV *LHS = getSCEV(BO->LHS); 7273 if (BO->Opcode == Instruction::Sub) 7274 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7275 else 7276 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7277 break; 7278 } 7279 } 7280 7281 if (BO->Opcode == Instruction::Sub) 7282 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7283 else 7284 AddOps.push_back(getSCEV(BO->RHS)); 7285 7286 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7287 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7288 NewBO->Opcode != Instruction::Sub)) { 7289 AddOps.push_back(getSCEV(BO->LHS)); 7290 break; 7291 } 7292 BO = NewBO; 7293 } while (true); 7294 7295 return getAddExpr(AddOps); 7296 } 7297 7298 case Instruction::Mul: { 7299 SmallVector<const SCEV *, 4> MulOps; 7300 do { 7301 if (BO->Op) { 7302 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7303 MulOps.push_back(OpSCEV); 7304 break; 7305 } 7306 7307 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7308 if (Flags != SCEV::FlagAnyWrap) { 7309 MulOps.push_back( 7310 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 7311 break; 7312 } 7313 } 7314 7315 MulOps.push_back(getSCEV(BO->RHS)); 7316 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7317 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7318 MulOps.push_back(getSCEV(BO->LHS)); 7319 break; 7320 } 7321 BO = NewBO; 7322 } while (true); 7323 7324 return getMulExpr(MulOps); 7325 } 7326 case Instruction::UDiv: 7327 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7328 case Instruction::URem: 7329 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7330 case Instruction::Sub: { 7331 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7332 if (BO->Op) 7333 Flags = getNoWrapFlagsFromUB(BO->Op); 7334 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 7335 } 7336 case Instruction::And: 7337 // For an expression like x&255 that merely masks off the high bits, 7338 // use zext(trunc(x)) as the SCEV expression. 7339 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7340 if (CI->isZero()) 7341 return getSCEV(BO->RHS); 7342 if (CI->isMinusOne()) 7343 return getSCEV(BO->LHS); 7344 const APInt &A = CI->getValue(); 7345 7346 // Instcombine's ShrinkDemandedConstant may strip bits out of 7347 // constants, obscuring what would otherwise be a low-bits mask. 7348 // Use computeKnownBits to compute what ShrinkDemandedConstant 7349 // knew about to reconstruct a low-bits mask value. 7350 unsigned LZ = A.countLeadingZeros(); 7351 unsigned TZ = A.countTrailingZeros(); 7352 unsigned BitWidth = A.getBitWidth(); 7353 KnownBits Known(BitWidth); 7354 computeKnownBits(BO->LHS, Known, getDataLayout(), 7355 0, &AC, nullptr, &DT); 7356 7357 APInt EffectiveMask = 7358 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7359 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7360 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7361 const SCEV *LHS = getSCEV(BO->LHS); 7362 const SCEV *ShiftedLHS = nullptr; 7363 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7364 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7365 // For an expression like (x * 8) & 8, simplify the multiply. 7366 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7367 unsigned GCD = std::min(MulZeros, TZ); 7368 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7369 SmallVector<const SCEV*, 4> MulOps; 7370 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7371 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7372 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7373 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7374 } 7375 } 7376 if (!ShiftedLHS) 7377 ShiftedLHS = getUDivExpr(LHS, MulCount); 7378 return getMulExpr( 7379 getZeroExtendExpr( 7380 getTruncateExpr(ShiftedLHS, 7381 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7382 BO->LHS->getType()), 7383 MulCount); 7384 } 7385 } 7386 // Binary `and` is a bit-wise `umin`. 7387 if (BO->LHS->getType()->isIntegerTy(1)) 7388 return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7389 break; 7390 7391 case Instruction::Or: 7392 // If the RHS of the Or is a constant, we may have something like: 7393 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7394 // optimizations will transparently handle this case. 7395 // 7396 // In order for this transformation to be safe, the LHS must be of the 7397 // form X*(2^n) and the Or constant must be less than 2^n. 7398 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7399 const SCEV *LHS = getSCEV(BO->LHS); 7400 const APInt &CIVal = CI->getValue(); 7401 if (GetMinTrailingZeros(LHS) >= 7402 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7403 // Build a plain add SCEV. 7404 return getAddExpr(LHS, getSCEV(CI), 7405 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7406 } 7407 } 7408 // Binary `or` is a bit-wise `umax`. 7409 if (BO->LHS->getType()->isIntegerTy(1)) 7410 return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 7411 break; 7412 7413 case Instruction::Xor: 7414 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7415 // If the RHS of xor is -1, then this is a not operation. 7416 if (CI->isMinusOne()) 7417 return getNotSCEV(getSCEV(BO->LHS)); 7418 7419 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7420 // This is a variant of the check for xor with -1, and it handles 7421 // the case where instcombine has trimmed non-demanded bits out 7422 // of an xor with -1. 7423 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7424 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7425 if (LBO->getOpcode() == Instruction::And && 7426 LCI->getValue() == CI->getValue()) 7427 if (const SCEVZeroExtendExpr *Z = 7428 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7429 Type *UTy = BO->LHS->getType(); 7430 const SCEV *Z0 = Z->getOperand(); 7431 Type *Z0Ty = Z0->getType(); 7432 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7433 7434 // If C is a low-bits mask, the zero extend is serving to 7435 // mask off the high bits. Complement the operand and 7436 // re-apply the zext. 7437 if (CI->getValue().isMask(Z0TySize)) 7438 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7439 7440 // If C is a single bit, it may be in the sign-bit position 7441 // before the zero-extend. In this case, represent the xor 7442 // using an add, which is equivalent, and re-apply the zext. 7443 APInt Trunc = CI->getValue().trunc(Z0TySize); 7444 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7445 Trunc.isSignMask()) 7446 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7447 UTy); 7448 } 7449 } 7450 break; 7451 7452 case Instruction::Shl: 7453 // Turn shift left of a constant amount into a multiply. 7454 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7455 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7456 7457 // If the shift count is not less than the bitwidth, the result of 7458 // the shift is undefined. Don't try to analyze it, because the 7459 // resolution chosen here may differ from the resolution chosen in 7460 // other parts of the compiler. 7461 if (SA->getValue().uge(BitWidth)) 7462 break; 7463 7464 // We can safely preserve the nuw flag in all cases. It's also safe to 7465 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7466 // requires special handling. It can be preserved as long as we're not 7467 // left shifting by bitwidth - 1. 7468 auto Flags = SCEV::FlagAnyWrap; 7469 if (BO->Op) { 7470 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7471 if ((MulFlags & SCEV::FlagNSW) && 7472 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7473 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7474 if (MulFlags & SCEV::FlagNUW) 7475 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7476 } 7477 7478 Constant *X = ConstantInt::get( 7479 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7480 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7481 } 7482 break; 7483 7484 case Instruction::AShr: { 7485 // AShr X, C, where C is a constant. 7486 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7487 if (!CI) 7488 break; 7489 7490 Type *OuterTy = BO->LHS->getType(); 7491 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7492 // If the shift count is not less than the bitwidth, the result of 7493 // the shift is undefined. Don't try to analyze it, because the 7494 // resolution chosen here may differ from the resolution chosen in 7495 // other parts of the compiler. 7496 if (CI->getValue().uge(BitWidth)) 7497 break; 7498 7499 if (CI->isZero()) 7500 return getSCEV(BO->LHS); // shift by zero --> noop 7501 7502 uint64_t AShrAmt = CI->getZExtValue(); 7503 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7504 7505 Operator *L = dyn_cast<Operator>(BO->LHS); 7506 if (L && L->getOpcode() == Instruction::Shl) { 7507 // X = Shl A, n 7508 // Y = AShr X, m 7509 // Both n and m are constant. 7510 7511 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7512 if (L->getOperand(1) == BO->RHS) 7513 // For a two-shift sext-inreg, i.e. n = m, 7514 // use sext(trunc(x)) as the SCEV expression. 7515 return getSignExtendExpr( 7516 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7517 7518 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7519 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7520 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7521 if (ShlAmt > AShrAmt) { 7522 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7523 // expression. We already checked that ShlAmt < BitWidth, so 7524 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7525 // ShlAmt - AShrAmt < Amt. 7526 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7527 ShlAmt - AShrAmt); 7528 return getSignExtendExpr( 7529 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7530 getConstant(Mul)), OuterTy); 7531 } 7532 } 7533 } 7534 break; 7535 } 7536 } 7537 } 7538 7539 switch (U->getOpcode()) { 7540 case Instruction::Trunc: 7541 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7542 7543 case Instruction::ZExt: 7544 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7545 7546 case Instruction::SExt: 7547 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7548 // The NSW flag of a subtract does not always survive the conversion to 7549 // A + (-1)*B. By pushing sign extension onto its operands we are much 7550 // more likely to preserve NSW and allow later AddRec optimisations. 7551 // 7552 // NOTE: This is effectively duplicating this logic from getSignExtend: 7553 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7554 // but by that point the NSW information has potentially been lost. 7555 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7556 Type *Ty = U->getType(); 7557 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7558 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7559 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7560 } 7561 } 7562 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7563 7564 case Instruction::BitCast: 7565 // BitCasts are no-op casts so we just eliminate the cast. 7566 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7567 return getSCEV(U->getOperand(0)); 7568 break; 7569 7570 case Instruction::PtrToInt: { 7571 // Pointer to integer cast is straight-forward, so do model it. 7572 const SCEV *Op = getSCEV(U->getOperand(0)); 7573 Type *DstIntTy = U->getType(); 7574 // But only if effective SCEV (integer) type is wide enough to represent 7575 // all possible pointer values. 7576 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7577 if (isa<SCEVCouldNotCompute>(IntOp)) 7578 return getUnknown(V); 7579 return IntOp; 7580 } 7581 case Instruction::IntToPtr: 7582 // Just don't deal with inttoptr casts. 7583 return getUnknown(V); 7584 7585 case Instruction::SDiv: 7586 // If both operands are non-negative, this is just an udiv. 7587 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7588 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7589 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7590 break; 7591 7592 case Instruction::SRem: 7593 // If both operands are non-negative, this is just an urem. 7594 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7595 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7596 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7597 break; 7598 7599 case Instruction::GetElementPtr: 7600 return createNodeForGEP(cast<GEPOperator>(U)); 7601 7602 case Instruction::PHI: 7603 return createNodeForPHI(cast<PHINode>(U)); 7604 7605 case Instruction::Select: 7606 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7607 U->getOperand(2)); 7608 7609 case Instruction::Call: 7610 case Instruction::Invoke: 7611 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7612 return getSCEV(RV); 7613 7614 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7615 switch (II->getIntrinsicID()) { 7616 case Intrinsic::abs: 7617 return getAbsExpr( 7618 getSCEV(II->getArgOperand(0)), 7619 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7620 case Intrinsic::umax: 7621 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7622 getSCEV(II->getArgOperand(1))); 7623 case Intrinsic::umin: 7624 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7625 getSCEV(II->getArgOperand(1))); 7626 case Intrinsic::smax: 7627 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7628 getSCEV(II->getArgOperand(1))); 7629 case Intrinsic::smin: 7630 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7631 getSCEV(II->getArgOperand(1))); 7632 case Intrinsic::usub_sat: { 7633 const SCEV *X = getSCEV(II->getArgOperand(0)); 7634 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7635 const SCEV *ClampedY = getUMinExpr(X, Y); 7636 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7637 } 7638 case Intrinsic::uadd_sat: { 7639 const SCEV *X = getSCEV(II->getArgOperand(0)); 7640 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7641 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7642 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7643 } 7644 case Intrinsic::start_loop_iterations: 7645 // A start_loop_iterations is just equivalent to the first operand for 7646 // SCEV purposes. 7647 return getSCEV(II->getArgOperand(0)); 7648 default: 7649 break; 7650 } 7651 } 7652 break; 7653 } 7654 7655 return getUnknown(V); 7656 } 7657 7658 //===----------------------------------------------------------------------===// 7659 // Iteration Count Computation Code 7660 // 7661 7662 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7663 bool Extend) { 7664 if (isa<SCEVCouldNotCompute>(ExitCount)) 7665 return getCouldNotCompute(); 7666 7667 auto *ExitCountType = ExitCount->getType(); 7668 assert(ExitCountType->isIntegerTy()); 7669 7670 if (!Extend) 7671 return getAddExpr(ExitCount, getOne(ExitCountType)); 7672 7673 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7674 1 + ExitCountType->getScalarSizeInBits()); 7675 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7676 getOne(WiderType)); 7677 } 7678 7679 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7680 if (!ExitCount) 7681 return 0; 7682 7683 ConstantInt *ExitConst = ExitCount->getValue(); 7684 7685 // Guard against huge trip counts. 7686 if (ExitConst->getValue().getActiveBits() > 32) 7687 return 0; 7688 7689 // In case of integer overflow, this returns 0, which is correct. 7690 return ((unsigned)ExitConst->getZExtValue()) + 1; 7691 } 7692 7693 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7694 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7695 return getConstantTripCount(ExitCount); 7696 } 7697 7698 unsigned 7699 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7700 const BasicBlock *ExitingBlock) { 7701 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7702 assert(L->isLoopExiting(ExitingBlock) && 7703 "Exiting block must actually branch out of the loop!"); 7704 const SCEVConstant *ExitCount = 7705 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7706 return getConstantTripCount(ExitCount); 7707 } 7708 7709 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7710 const auto *MaxExitCount = 7711 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7712 return getConstantTripCount(MaxExitCount); 7713 } 7714 7715 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7716 // We can't infer from Array in Irregular Loop. 7717 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7718 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7719 return getCouldNotCompute(); 7720 7721 // FIXME: To make the scene more typical, we only analysis loops that have 7722 // one exiting block and that block must be the latch. To make it easier to 7723 // capture loops that have memory access and memory access will be executed 7724 // in each iteration. 7725 const BasicBlock *LoopLatch = L->getLoopLatch(); 7726 assert(LoopLatch && "See defination of simplify form loop."); 7727 if (L->getExitingBlock() != LoopLatch) 7728 return getCouldNotCompute(); 7729 7730 const DataLayout &DL = getDataLayout(); 7731 SmallVector<const SCEV *> InferCountColl; 7732 for (auto *BB : L->getBlocks()) { 7733 // Go here, we can know that Loop is a single exiting and simplified form 7734 // loop. Make sure that infer from Memory Operation in those BBs must be 7735 // executed in loop. First step, we can make sure that max execution time 7736 // of MemAccessBB in loop represents latch max excution time. 7737 // If MemAccessBB does not dom Latch, skip. 7738 // Entry 7739 // │ 7740 // ┌─────▼─────┐ 7741 // │Loop Header◄─────┐ 7742 // └──┬──────┬─┘ │ 7743 // │ │ │ 7744 // ┌────────▼──┐ ┌─▼─────┐ │ 7745 // │MemAccessBB│ │OtherBB│ │ 7746 // └────────┬──┘ └─┬─────┘ │ 7747 // │ │ │ 7748 // ┌─▼──────▼─┐ │ 7749 // │Loop Latch├─────┘ 7750 // └────┬─────┘ 7751 // ▼ 7752 // Exit 7753 if (!DT.dominates(BB, LoopLatch)) 7754 continue; 7755 7756 for (Instruction &Inst : *BB) { 7757 // Find Memory Operation Instruction. 7758 auto *GEP = getLoadStorePointerOperand(&Inst); 7759 if (!GEP) 7760 continue; 7761 7762 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7763 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7764 if (!ElemSize) 7765 continue; 7766 7767 // Use a existing polynomial recurrence on the trip count. 7768 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7769 if (!AddRec) 7770 continue; 7771 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7772 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7773 if (!ArrBase || !Step) 7774 continue; 7775 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7776 7777 // Only handle { %array + step }, 7778 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7779 if (AddRec->getStart() != ArrBase) 7780 continue; 7781 7782 // Memory operation pattern which have gaps. 7783 // Or repeat memory opreation. 7784 // And index of GEP wraps arround. 7785 if (Step->getAPInt().getActiveBits() > 32 || 7786 Step->getAPInt().getZExtValue() != 7787 ElemSize->getAPInt().getZExtValue() || 7788 Step->isZero() || Step->getAPInt().isNegative()) 7789 continue; 7790 7791 // Only infer from stack array which has certain size. 7792 // Make sure alloca instruction is not excuted in loop. 7793 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7794 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7795 continue; 7796 7797 // Make sure only handle normal array. 7798 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7799 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7800 if (!Ty || !ArrSize || !ArrSize->isOne()) 7801 continue; 7802 7803 // FIXME: Since gep indices are silently zext to the indexing type, 7804 // we will have a narrow gep index which wraps around rather than 7805 // increasing strictly, we shoule ensure that step is increasing 7806 // strictly by the loop iteration. 7807 // Now we can infer a max execution time by MemLength/StepLength. 7808 const SCEV *MemSize = 7809 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7810 auto *MaxExeCount = 7811 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7812 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7813 continue; 7814 7815 // If the loop reaches the maximum number of executions, we can not 7816 // access bytes starting outside the statically allocated size without 7817 // being immediate UB. But it is allowed to enter loop header one more 7818 // time. 7819 auto *InferCount = dyn_cast<SCEVConstant>( 7820 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7821 // Discard the maximum number of execution times under 32bits. 7822 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7823 continue; 7824 7825 InferCountColl.push_back(InferCount); 7826 } 7827 } 7828 7829 if (InferCountColl.size() == 0) 7830 return getCouldNotCompute(); 7831 7832 return getUMinFromMismatchedTypes(InferCountColl); 7833 } 7834 7835 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7836 SmallVector<BasicBlock *, 8> ExitingBlocks; 7837 L->getExitingBlocks(ExitingBlocks); 7838 7839 Optional<unsigned> Res = None; 7840 for (auto *ExitingBB : ExitingBlocks) { 7841 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7842 if (!Res) 7843 Res = Multiple; 7844 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7845 } 7846 return Res.getValueOr(1); 7847 } 7848 7849 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7850 const SCEV *ExitCount) { 7851 if (ExitCount == getCouldNotCompute()) 7852 return 1; 7853 7854 // Get the trip count 7855 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7856 7857 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7858 if (!TC) 7859 // Attempt to factor more general cases. Returns the greatest power of 7860 // two divisor. If overflow happens, the trip count expression is still 7861 // divisible by the greatest power of 2 divisor returned. 7862 return 1U << std::min((uint32_t)31, 7863 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7864 7865 ConstantInt *Result = TC->getValue(); 7866 7867 // Guard against huge trip counts (this requires checking 7868 // for zero to handle the case where the trip count == -1 and the 7869 // addition wraps). 7870 if (!Result || Result->getValue().getActiveBits() > 32 || 7871 Result->getValue().getActiveBits() == 0) 7872 return 1; 7873 7874 return (unsigned)Result->getZExtValue(); 7875 } 7876 7877 /// Returns the largest constant divisor of the trip count of this loop as a 7878 /// normal unsigned value, if possible. This means that the actual trip count is 7879 /// always a multiple of the returned value (don't forget the trip count could 7880 /// very well be zero as well!). 7881 /// 7882 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7883 /// multiple of a constant (which is also the case if the trip count is simply 7884 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7885 /// if the trip count is very large (>= 2^32). 7886 /// 7887 /// As explained in the comments for getSmallConstantTripCount, this assumes 7888 /// that control exits the loop via ExitingBlock. 7889 unsigned 7890 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7891 const BasicBlock *ExitingBlock) { 7892 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7893 assert(L->isLoopExiting(ExitingBlock) && 7894 "Exiting block must actually branch out of the loop!"); 7895 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7896 return getSmallConstantTripMultiple(L, ExitCount); 7897 } 7898 7899 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7900 const BasicBlock *ExitingBlock, 7901 ExitCountKind Kind) { 7902 switch (Kind) { 7903 case Exact: 7904 case SymbolicMaximum: 7905 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7906 case ConstantMaximum: 7907 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7908 }; 7909 llvm_unreachable("Invalid ExitCountKind!"); 7910 } 7911 7912 const SCEV * 7913 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7914 SmallVector<const SCEVPredicate *, 4> &Preds) { 7915 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7916 } 7917 7918 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7919 ExitCountKind Kind) { 7920 switch (Kind) { 7921 case Exact: 7922 return getBackedgeTakenInfo(L).getExact(L, this); 7923 case ConstantMaximum: 7924 return getBackedgeTakenInfo(L).getConstantMax(this); 7925 case SymbolicMaximum: 7926 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7927 }; 7928 llvm_unreachable("Invalid ExitCountKind!"); 7929 } 7930 7931 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7932 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7933 } 7934 7935 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7936 static void PushLoopPHIs(const Loop *L, 7937 SmallVectorImpl<Instruction *> &Worklist, 7938 SmallPtrSetImpl<Instruction *> &Visited) { 7939 BasicBlock *Header = L->getHeader(); 7940 7941 // Push all Loop-header PHIs onto the Worklist stack. 7942 for (PHINode &PN : Header->phis()) 7943 if (Visited.insert(&PN).second) 7944 Worklist.push_back(&PN); 7945 } 7946 7947 const ScalarEvolution::BackedgeTakenInfo & 7948 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7949 auto &BTI = getBackedgeTakenInfo(L); 7950 if (BTI.hasFullInfo()) 7951 return BTI; 7952 7953 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7954 7955 if (!Pair.second) 7956 return Pair.first->second; 7957 7958 BackedgeTakenInfo Result = 7959 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7960 7961 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7962 } 7963 7964 ScalarEvolution::BackedgeTakenInfo & 7965 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7966 // Initially insert an invalid entry for this loop. If the insertion 7967 // succeeds, proceed to actually compute a backedge-taken count and 7968 // update the value. The temporary CouldNotCompute value tells SCEV 7969 // code elsewhere that it shouldn't attempt to request a new 7970 // backedge-taken count, which could result in infinite recursion. 7971 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7972 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7973 if (!Pair.second) 7974 return Pair.first->second; 7975 7976 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7977 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7978 // must be cleared in this scope. 7979 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7980 7981 // In product build, there are no usage of statistic. 7982 (void)NumTripCountsComputed; 7983 (void)NumTripCountsNotComputed; 7984 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7985 const SCEV *BEExact = Result.getExact(L, this); 7986 if (BEExact != getCouldNotCompute()) { 7987 assert(isLoopInvariant(BEExact, L) && 7988 isLoopInvariant(Result.getConstantMax(this), L) && 7989 "Computed backedge-taken count isn't loop invariant for loop!"); 7990 ++NumTripCountsComputed; 7991 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7992 isa<PHINode>(L->getHeader()->begin())) { 7993 // Only count loops that have phi nodes as not being computable. 7994 ++NumTripCountsNotComputed; 7995 } 7996 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7997 7998 // Now that we know more about the trip count for this loop, forget any 7999 // existing SCEV values for PHI nodes in this loop since they are only 8000 // conservative estimates made without the benefit of trip count 8001 // information. This invalidation is not necessary for correctness, and is 8002 // only done to produce more precise results. 8003 if (Result.hasAnyInfo()) { 8004 // Invalidate any expression using an addrec in this loop. 8005 SmallVector<const SCEV *, 8> ToForget; 8006 auto LoopUsersIt = LoopUsers.find(L); 8007 if (LoopUsersIt != LoopUsers.end()) 8008 append_range(ToForget, LoopUsersIt->second); 8009 forgetMemoizedResults(ToForget); 8010 8011 // Invalidate constant-evolved loop header phis. 8012 for (PHINode &PN : L->getHeader()->phis()) 8013 ConstantEvolutionLoopExitValue.erase(&PN); 8014 } 8015 8016 // Re-lookup the insert position, since the call to 8017 // computeBackedgeTakenCount above could result in a 8018 // recusive call to getBackedgeTakenInfo (on a different 8019 // loop), which would invalidate the iterator computed 8020 // earlier. 8021 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8022 } 8023 8024 void ScalarEvolution::forgetAllLoops() { 8025 // This method is intended to forget all info about loops. It should 8026 // invalidate caches as if the following happened: 8027 // - The trip counts of all loops have changed arbitrarily 8028 // - Every llvm::Value has been updated in place to produce a different 8029 // result. 8030 BackedgeTakenCounts.clear(); 8031 PredicatedBackedgeTakenCounts.clear(); 8032 BECountUsers.clear(); 8033 LoopPropertiesCache.clear(); 8034 ConstantEvolutionLoopExitValue.clear(); 8035 ValueExprMap.clear(); 8036 ValuesAtScopes.clear(); 8037 ValuesAtScopesUsers.clear(); 8038 LoopDispositions.clear(); 8039 BlockDispositions.clear(); 8040 UnsignedRanges.clear(); 8041 SignedRanges.clear(); 8042 ExprValueMap.clear(); 8043 HasRecMap.clear(); 8044 MinTrailingZerosCache.clear(); 8045 PredicatedSCEVRewrites.clear(); 8046 } 8047 8048 void ScalarEvolution::forgetLoop(const Loop *L) { 8049 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8050 SmallVector<Instruction *, 32> Worklist; 8051 SmallPtrSet<Instruction *, 16> Visited; 8052 SmallVector<const SCEV *, 16> ToForget; 8053 8054 // Iterate over all the loops and sub-loops to drop SCEV information. 8055 while (!LoopWorklist.empty()) { 8056 auto *CurrL = LoopWorklist.pop_back_val(); 8057 8058 // Drop any stored trip count value. 8059 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8060 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8061 8062 // Drop information about predicated SCEV rewrites for this loop. 8063 for (auto I = PredicatedSCEVRewrites.begin(); 8064 I != PredicatedSCEVRewrites.end();) { 8065 std::pair<const SCEV *, const Loop *> Entry = I->first; 8066 if (Entry.second == CurrL) 8067 PredicatedSCEVRewrites.erase(I++); 8068 else 8069 ++I; 8070 } 8071 8072 auto LoopUsersItr = LoopUsers.find(CurrL); 8073 if (LoopUsersItr != LoopUsers.end()) { 8074 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8075 LoopUsersItr->second.end()); 8076 } 8077 8078 // Drop information about expressions based on loop-header PHIs. 8079 PushLoopPHIs(CurrL, Worklist, Visited); 8080 8081 while (!Worklist.empty()) { 8082 Instruction *I = Worklist.pop_back_val(); 8083 8084 ValueExprMapType::iterator It = 8085 ValueExprMap.find_as(static_cast<Value *>(I)); 8086 if (It != ValueExprMap.end()) { 8087 eraseValueFromMap(It->first); 8088 ToForget.push_back(It->second); 8089 if (PHINode *PN = dyn_cast<PHINode>(I)) 8090 ConstantEvolutionLoopExitValue.erase(PN); 8091 } 8092 8093 PushDefUseChildren(I, Worklist, Visited); 8094 } 8095 8096 LoopPropertiesCache.erase(CurrL); 8097 // Forget all contained loops too, to avoid dangling entries in the 8098 // ValuesAtScopes map. 8099 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8100 } 8101 forgetMemoizedResults(ToForget); 8102 } 8103 8104 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8105 while (Loop *Parent = L->getParentLoop()) 8106 L = Parent; 8107 forgetLoop(L); 8108 } 8109 8110 void ScalarEvolution::forgetValue(Value *V) { 8111 Instruction *I = dyn_cast<Instruction>(V); 8112 if (!I) return; 8113 8114 // Drop information about expressions based on loop-header PHIs. 8115 SmallVector<Instruction *, 16> Worklist; 8116 SmallPtrSet<Instruction *, 8> Visited; 8117 SmallVector<const SCEV *, 8> ToForget; 8118 Worklist.push_back(I); 8119 Visited.insert(I); 8120 8121 while (!Worklist.empty()) { 8122 I = Worklist.pop_back_val(); 8123 ValueExprMapType::iterator It = 8124 ValueExprMap.find_as(static_cast<Value *>(I)); 8125 if (It != ValueExprMap.end()) { 8126 eraseValueFromMap(It->first); 8127 ToForget.push_back(It->second); 8128 if (PHINode *PN = dyn_cast<PHINode>(I)) 8129 ConstantEvolutionLoopExitValue.erase(PN); 8130 } 8131 8132 PushDefUseChildren(I, Worklist, Visited); 8133 } 8134 forgetMemoizedResults(ToForget); 8135 } 8136 8137 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8138 LoopDispositions.clear(); 8139 } 8140 8141 /// Get the exact loop backedge taken count considering all loop exits. A 8142 /// computable result can only be returned for loops with all exiting blocks 8143 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8144 /// is never skipped. This is a valid assumption as long as the loop exits via 8145 /// that test. For precise results, it is the caller's responsibility to specify 8146 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8147 const SCEV * 8148 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8149 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8150 // If any exits were not computable, the loop is not computable. 8151 if (!isComplete() || ExitNotTaken.empty()) 8152 return SE->getCouldNotCompute(); 8153 8154 const BasicBlock *Latch = L->getLoopLatch(); 8155 // All exiting blocks we have collected must dominate the only backedge. 8156 if (!Latch) 8157 return SE->getCouldNotCompute(); 8158 8159 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8160 // count is simply a minimum out of all these calculated exit counts. 8161 SmallVector<const SCEV *, 2> Ops; 8162 for (auto &ENT : ExitNotTaken) { 8163 const SCEV *BECount = ENT.ExactNotTaken; 8164 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8165 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8166 "We should only have known counts for exiting blocks that dominate " 8167 "latch!"); 8168 8169 Ops.push_back(BECount); 8170 8171 if (Preds) 8172 for (auto *P : ENT.Predicates) 8173 Preds->push_back(P); 8174 8175 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8176 "Predicate should be always true!"); 8177 } 8178 8179 return SE->getUMinFromMismatchedTypes(Ops); 8180 } 8181 8182 /// Get the exact not taken count for this loop exit. 8183 const SCEV * 8184 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8185 ScalarEvolution *SE) const { 8186 for (auto &ENT : ExitNotTaken) 8187 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8188 return ENT.ExactNotTaken; 8189 8190 return SE->getCouldNotCompute(); 8191 } 8192 8193 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8194 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8195 for (auto &ENT : ExitNotTaken) 8196 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8197 return ENT.MaxNotTaken; 8198 8199 return SE->getCouldNotCompute(); 8200 } 8201 8202 /// getConstantMax - Get the constant max backedge taken count for the loop. 8203 const SCEV * 8204 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8205 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8206 return !ENT.hasAlwaysTruePredicate(); 8207 }; 8208 8209 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8210 return SE->getCouldNotCompute(); 8211 8212 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8213 isa<SCEVConstant>(getConstantMax())) && 8214 "No point in having a non-constant max backedge taken count!"); 8215 return getConstantMax(); 8216 } 8217 8218 const SCEV * 8219 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8220 ScalarEvolution *SE) { 8221 if (!SymbolicMax) 8222 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8223 return SymbolicMax; 8224 } 8225 8226 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8227 ScalarEvolution *SE) const { 8228 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8229 return !ENT.hasAlwaysTruePredicate(); 8230 }; 8231 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8232 } 8233 8234 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8235 : ExitLimit(E, E, false, None) { 8236 } 8237 8238 ScalarEvolution::ExitLimit::ExitLimit( 8239 const SCEV *E, const SCEV *M, bool MaxOrZero, 8240 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8241 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8242 // If we prove the max count is zero, so is the symbolic bound. This happens 8243 // in practice due to differences in a) how context sensitive we've chosen 8244 // to be and b) how we reason about bounds impied by UB. 8245 if (MaxNotTaken->isZero()) 8246 ExactNotTaken = MaxNotTaken; 8247 8248 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8249 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8250 "Exact is not allowed to be less precise than Max"); 8251 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8252 isa<SCEVConstant>(MaxNotTaken)) && 8253 "No point in having a non-constant max backedge taken count!"); 8254 for (auto *PredSet : PredSetList) 8255 for (auto *P : *PredSet) 8256 addPredicate(P); 8257 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8258 "Backedge count should be int"); 8259 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8260 "Max backedge count should be int"); 8261 } 8262 8263 ScalarEvolution::ExitLimit::ExitLimit( 8264 const SCEV *E, const SCEV *M, bool MaxOrZero, 8265 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8266 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8267 } 8268 8269 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8270 bool MaxOrZero) 8271 : ExitLimit(E, M, MaxOrZero, None) { 8272 } 8273 8274 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8275 /// computable exit into a persistent ExitNotTakenInfo array. 8276 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8277 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8278 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8279 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8280 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8281 8282 ExitNotTaken.reserve(ExitCounts.size()); 8283 std::transform( 8284 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8285 [&](const EdgeExitInfo &EEI) { 8286 BasicBlock *ExitBB = EEI.first; 8287 const ExitLimit &EL = EEI.second; 8288 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8289 EL.Predicates); 8290 }); 8291 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8292 isa<SCEVConstant>(ConstantMax)) && 8293 "No point in having a non-constant max backedge taken count!"); 8294 } 8295 8296 /// Compute the number of times the backedge of the specified loop will execute. 8297 ScalarEvolution::BackedgeTakenInfo 8298 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8299 bool AllowPredicates) { 8300 SmallVector<BasicBlock *, 8> ExitingBlocks; 8301 L->getExitingBlocks(ExitingBlocks); 8302 8303 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8304 8305 SmallVector<EdgeExitInfo, 4> ExitCounts; 8306 bool CouldComputeBECount = true; 8307 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8308 const SCEV *MustExitMaxBECount = nullptr; 8309 const SCEV *MayExitMaxBECount = nullptr; 8310 bool MustExitMaxOrZero = false; 8311 8312 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8313 // and compute maxBECount. 8314 // Do a union of all the predicates here. 8315 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8316 BasicBlock *ExitBB = ExitingBlocks[i]; 8317 8318 // We canonicalize untaken exits to br (constant), ignore them so that 8319 // proving an exit untaken doesn't negatively impact our ability to reason 8320 // about the loop as whole. 8321 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8322 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8323 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8324 if (ExitIfTrue == CI->isZero()) 8325 continue; 8326 } 8327 8328 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8329 8330 assert((AllowPredicates || EL.Predicates.empty()) && 8331 "Predicated exit limit when predicates are not allowed!"); 8332 8333 // 1. For each exit that can be computed, add an entry to ExitCounts. 8334 // CouldComputeBECount is true only if all exits can be computed. 8335 if (EL.ExactNotTaken == getCouldNotCompute()) 8336 // We couldn't compute an exact value for this exit, so 8337 // we won't be able to compute an exact value for the loop. 8338 CouldComputeBECount = false; 8339 else 8340 ExitCounts.emplace_back(ExitBB, EL); 8341 8342 // 2. Derive the loop's MaxBECount from each exit's max number of 8343 // non-exiting iterations. Partition the loop exits into two kinds: 8344 // LoopMustExits and LoopMayExits. 8345 // 8346 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8347 // is a LoopMayExit. If any computable LoopMustExit is found, then 8348 // MaxBECount is the minimum EL.MaxNotTaken of computable 8349 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8350 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8351 // computable EL.MaxNotTaken. 8352 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8353 DT.dominates(ExitBB, Latch)) { 8354 if (!MustExitMaxBECount) { 8355 MustExitMaxBECount = EL.MaxNotTaken; 8356 MustExitMaxOrZero = EL.MaxOrZero; 8357 } else { 8358 MustExitMaxBECount = 8359 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8360 } 8361 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8362 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8363 MayExitMaxBECount = EL.MaxNotTaken; 8364 else { 8365 MayExitMaxBECount = 8366 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8367 } 8368 } 8369 } 8370 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8371 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8372 // The loop backedge will be taken the maximum or zero times if there's 8373 // a single exit that must be taken the maximum or zero times. 8374 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8375 8376 // Remember which SCEVs are used in exit limits for invalidation purposes. 8377 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8378 // and MaxBECount, which must be SCEVConstant. 8379 for (const auto &Pair : ExitCounts) 8380 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8381 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8382 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8383 MaxBECount, MaxOrZero); 8384 } 8385 8386 ScalarEvolution::ExitLimit 8387 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8388 bool AllowPredicates) { 8389 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8390 // If our exiting block does not dominate the latch, then its connection with 8391 // loop's exit limit may be far from trivial. 8392 const BasicBlock *Latch = L->getLoopLatch(); 8393 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8394 return getCouldNotCompute(); 8395 8396 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8397 Instruction *Term = ExitingBlock->getTerminator(); 8398 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8399 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8400 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8401 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8402 "It should have one successor in loop and one exit block!"); 8403 // Proceed to the next level to examine the exit condition expression. 8404 return computeExitLimitFromCond( 8405 L, BI->getCondition(), ExitIfTrue, 8406 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8407 } 8408 8409 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8410 // For switch, make sure that there is a single exit from the loop. 8411 BasicBlock *Exit = nullptr; 8412 for (auto *SBB : successors(ExitingBlock)) 8413 if (!L->contains(SBB)) { 8414 if (Exit) // Multiple exit successors. 8415 return getCouldNotCompute(); 8416 Exit = SBB; 8417 } 8418 assert(Exit && "Exiting block must have at least one exit"); 8419 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8420 /*ControlsExit=*/IsOnlyExit); 8421 } 8422 8423 return getCouldNotCompute(); 8424 } 8425 8426 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8427 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8428 bool ControlsExit, bool AllowPredicates) { 8429 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8430 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8431 ControlsExit, AllowPredicates); 8432 } 8433 8434 Optional<ScalarEvolution::ExitLimit> 8435 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8436 bool ExitIfTrue, bool ControlsExit, 8437 bool AllowPredicates) { 8438 (void)this->L; 8439 (void)this->ExitIfTrue; 8440 (void)this->AllowPredicates; 8441 8442 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8443 this->AllowPredicates == AllowPredicates && 8444 "Variance in assumed invariant key components!"); 8445 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8446 if (Itr == TripCountMap.end()) 8447 return None; 8448 return Itr->second; 8449 } 8450 8451 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8452 bool ExitIfTrue, 8453 bool ControlsExit, 8454 bool AllowPredicates, 8455 const ExitLimit &EL) { 8456 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8457 this->AllowPredicates == AllowPredicates && 8458 "Variance in assumed invariant key components!"); 8459 8460 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8461 assert(InsertResult.second && "Expected successful insertion!"); 8462 (void)InsertResult; 8463 (void)ExitIfTrue; 8464 } 8465 8466 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8467 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8468 bool ControlsExit, bool AllowPredicates) { 8469 8470 if (auto MaybeEL = 8471 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8472 return *MaybeEL; 8473 8474 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8475 ControlsExit, AllowPredicates); 8476 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8477 return EL; 8478 } 8479 8480 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8481 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8482 bool ControlsExit, bool AllowPredicates) { 8483 // Handle BinOp conditions (And, Or). 8484 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8485 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8486 return *LimitFromBinOp; 8487 8488 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8489 // Proceed to the next level to examine the icmp. 8490 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8491 ExitLimit EL = 8492 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8493 if (EL.hasFullInfo() || !AllowPredicates) 8494 return EL; 8495 8496 // Try again, but use SCEV predicates this time. 8497 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8498 /*AllowPredicates=*/true); 8499 } 8500 8501 // Check for a constant condition. These are normally stripped out by 8502 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8503 // preserve the CFG and is temporarily leaving constant conditions 8504 // in place. 8505 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8506 if (ExitIfTrue == !CI->getZExtValue()) 8507 // The backedge is always taken. 8508 return getCouldNotCompute(); 8509 else 8510 // The backedge is never taken. 8511 return getZero(CI->getType()); 8512 } 8513 8514 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8515 // with a constant step, we can form an equivalent icmp predicate and figure 8516 // out how many iterations will be taken before we exit. 8517 const WithOverflowInst *WO; 8518 const APInt *C; 8519 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8520 match(WO->getRHS(), m_APInt(C))) { 8521 ConstantRange NWR = 8522 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8523 WO->getNoWrapKind()); 8524 CmpInst::Predicate Pred; 8525 APInt NewRHSC, Offset; 8526 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8527 if (!ExitIfTrue) 8528 Pred = ICmpInst::getInversePredicate(Pred); 8529 auto *LHS = getSCEV(WO->getLHS()); 8530 if (Offset != 0) 8531 LHS = getAddExpr(LHS, getConstant(Offset)); 8532 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8533 ControlsExit, AllowPredicates); 8534 if (EL.hasAnyInfo()) return EL; 8535 } 8536 8537 // If it's not an integer or pointer comparison then compute it the hard way. 8538 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8539 } 8540 8541 Optional<ScalarEvolution::ExitLimit> 8542 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8543 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8544 bool ControlsExit, bool AllowPredicates) { 8545 // Check if the controlling expression for this loop is an And or Or. 8546 Value *Op0, *Op1; 8547 bool IsAnd = false; 8548 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8549 IsAnd = true; 8550 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8551 IsAnd = false; 8552 else 8553 return None; 8554 8555 // EitherMayExit is true in these two cases: 8556 // br (and Op0 Op1), loop, exit 8557 // br (or Op0 Op1), exit, loop 8558 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8559 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8560 ControlsExit && !EitherMayExit, 8561 AllowPredicates); 8562 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8563 ControlsExit && !EitherMayExit, 8564 AllowPredicates); 8565 8566 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8567 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8568 if (isa<ConstantInt>(Op1)) 8569 return Op1 == NeutralElement ? EL0 : EL1; 8570 if (isa<ConstantInt>(Op0)) 8571 return Op0 == NeutralElement ? EL1 : EL0; 8572 8573 const SCEV *BECount = getCouldNotCompute(); 8574 const SCEV *MaxBECount = getCouldNotCompute(); 8575 if (EitherMayExit) { 8576 // Both conditions must be same for the loop to continue executing. 8577 // Choose the less conservative count. 8578 if (EL0.ExactNotTaken != getCouldNotCompute() && 8579 EL1.ExactNotTaken != getCouldNotCompute()) { 8580 BECount = getUMinFromMismatchedTypes( 8581 EL0.ExactNotTaken, EL1.ExactNotTaken, 8582 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8583 8584 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8585 // it should have been simplified to zero (see the condition (3) above) 8586 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8587 BECount->isZero()); 8588 } 8589 if (EL0.MaxNotTaken == getCouldNotCompute()) 8590 MaxBECount = EL1.MaxNotTaken; 8591 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8592 MaxBECount = EL0.MaxNotTaken; 8593 else 8594 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8595 } else { 8596 // Both conditions must be same at the same time for the loop to exit. 8597 // For now, be conservative. 8598 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8599 BECount = EL0.ExactNotTaken; 8600 } 8601 8602 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8603 // to be more aggressive when computing BECount than when computing 8604 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8605 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8606 // to not. 8607 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8608 !isa<SCEVCouldNotCompute>(BECount)) 8609 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8610 8611 return ExitLimit(BECount, MaxBECount, false, 8612 { &EL0.Predicates, &EL1.Predicates }); 8613 } 8614 8615 ScalarEvolution::ExitLimit 8616 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8617 ICmpInst *ExitCond, 8618 bool ExitIfTrue, 8619 bool ControlsExit, 8620 bool AllowPredicates) { 8621 // If the condition was exit on true, convert the condition to exit on false 8622 ICmpInst::Predicate Pred; 8623 if (!ExitIfTrue) 8624 Pred = ExitCond->getPredicate(); 8625 else 8626 Pred = ExitCond->getInversePredicate(); 8627 const ICmpInst::Predicate OriginalPred = Pred; 8628 8629 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8630 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8631 8632 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8633 AllowPredicates); 8634 if (EL.hasAnyInfo()) return EL; 8635 8636 auto *ExhaustiveCount = 8637 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8638 8639 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8640 return ExhaustiveCount; 8641 8642 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8643 ExitCond->getOperand(1), L, OriginalPred); 8644 } 8645 ScalarEvolution::ExitLimit 8646 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8647 ICmpInst::Predicate Pred, 8648 const SCEV *LHS, const SCEV *RHS, 8649 bool ControlsExit, 8650 bool AllowPredicates) { 8651 8652 // Try to evaluate any dependencies out of the loop. 8653 LHS = getSCEVAtScope(LHS, L); 8654 RHS = getSCEVAtScope(RHS, L); 8655 8656 // At this point, we would like to compute how many iterations of the 8657 // loop the predicate will return true for these inputs. 8658 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8659 // If there is a loop-invariant, force it into the RHS. 8660 std::swap(LHS, RHS); 8661 Pred = ICmpInst::getSwappedPredicate(Pred); 8662 } 8663 8664 bool ControllingFiniteLoop = 8665 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8666 // Simplify the operands before analyzing them. 8667 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8668 (EnableFiniteLoopControl ? ControllingFiniteLoop 8669 : false)); 8670 8671 // If we have a comparison of a chrec against a constant, try to use value 8672 // ranges to answer this query. 8673 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8674 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8675 if (AddRec->getLoop() == L) { 8676 // Form the constant range. 8677 ConstantRange CompRange = 8678 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8679 8680 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8681 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8682 } 8683 8684 // If this loop must exit based on this condition (or execute undefined 8685 // behaviour), and we can prove the test sequence produced must repeat 8686 // the same values on self-wrap of the IV, then we can infer that IV 8687 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8688 // loop. 8689 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8690 // TODO: We can peel off any functions which are invertible *in L*. Loop 8691 // invariant terms are effectively constants for our purposes here. 8692 auto *InnerLHS = LHS; 8693 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8694 InnerLHS = ZExt->getOperand(); 8695 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8696 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8697 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8698 StrideC && StrideC->getAPInt().isPowerOf2()) { 8699 auto Flags = AR->getNoWrapFlags(); 8700 Flags = setFlags(Flags, SCEV::FlagNW); 8701 SmallVector<const SCEV*> Operands{AR->operands()}; 8702 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8704 } 8705 } 8706 } 8707 8708 switch (Pred) { 8709 case ICmpInst::ICMP_NE: { // while (X != Y) 8710 // Convert to: while (X-Y != 0) 8711 if (LHS->getType()->isPointerTy()) { 8712 LHS = getLosslessPtrToIntExpr(LHS); 8713 if (isa<SCEVCouldNotCompute>(LHS)) 8714 return LHS; 8715 } 8716 if (RHS->getType()->isPointerTy()) { 8717 RHS = getLosslessPtrToIntExpr(RHS); 8718 if (isa<SCEVCouldNotCompute>(RHS)) 8719 return RHS; 8720 } 8721 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8722 AllowPredicates); 8723 if (EL.hasAnyInfo()) return EL; 8724 break; 8725 } 8726 case ICmpInst::ICMP_EQ: { // while (X == Y) 8727 // Convert to: while (X-Y == 0) 8728 if (LHS->getType()->isPointerTy()) { 8729 LHS = getLosslessPtrToIntExpr(LHS); 8730 if (isa<SCEVCouldNotCompute>(LHS)) 8731 return LHS; 8732 } 8733 if (RHS->getType()->isPointerTy()) { 8734 RHS = getLosslessPtrToIntExpr(RHS); 8735 if (isa<SCEVCouldNotCompute>(RHS)) 8736 return RHS; 8737 } 8738 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8739 if (EL.hasAnyInfo()) return EL; 8740 break; 8741 } 8742 case ICmpInst::ICMP_SLT: 8743 case ICmpInst::ICMP_ULT: { // while (X < Y) 8744 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8745 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8746 AllowPredicates); 8747 if (EL.hasAnyInfo()) return EL; 8748 break; 8749 } 8750 case ICmpInst::ICMP_SGT: 8751 case ICmpInst::ICMP_UGT: { // while (X > Y) 8752 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8753 ExitLimit EL = 8754 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8755 AllowPredicates); 8756 if (EL.hasAnyInfo()) return EL; 8757 break; 8758 } 8759 default: 8760 break; 8761 } 8762 8763 return getCouldNotCompute(); 8764 } 8765 8766 ScalarEvolution::ExitLimit 8767 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8768 SwitchInst *Switch, 8769 BasicBlock *ExitingBlock, 8770 bool ControlsExit) { 8771 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8772 8773 // Give up if the exit is the default dest of a switch. 8774 if (Switch->getDefaultDest() == ExitingBlock) 8775 return getCouldNotCompute(); 8776 8777 assert(L->contains(Switch->getDefaultDest()) && 8778 "Default case must not exit the loop!"); 8779 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8780 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8781 8782 // while (X != Y) --> while (X-Y != 0) 8783 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8784 if (EL.hasAnyInfo()) 8785 return EL; 8786 8787 return getCouldNotCompute(); 8788 } 8789 8790 static ConstantInt * 8791 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8792 ScalarEvolution &SE) { 8793 const SCEV *InVal = SE.getConstant(C); 8794 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8795 assert(isa<SCEVConstant>(Val) && 8796 "Evaluation of SCEV at constant didn't fold correctly?"); 8797 return cast<SCEVConstant>(Val)->getValue(); 8798 } 8799 8800 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8801 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8802 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8803 if (!RHS) 8804 return getCouldNotCompute(); 8805 8806 const BasicBlock *Latch = L->getLoopLatch(); 8807 if (!Latch) 8808 return getCouldNotCompute(); 8809 8810 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8811 if (!Predecessor) 8812 return getCouldNotCompute(); 8813 8814 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8815 // Return LHS in OutLHS and shift_opt in OutOpCode. 8816 auto MatchPositiveShift = 8817 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8818 8819 using namespace PatternMatch; 8820 8821 ConstantInt *ShiftAmt; 8822 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8823 OutOpCode = Instruction::LShr; 8824 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8825 OutOpCode = Instruction::AShr; 8826 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8827 OutOpCode = Instruction::Shl; 8828 else 8829 return false; 8830 8831 return ShiftAmt->getValue().isStrictlyPositive(); 8832 }; 8833 8834 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8835 // 8836 // loop: 8837 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8838 // %iv.shifted = lshr i32 %iv, <positive constant> 8839 // 8840 // Return true on a successful match. Return the corresponding PHI node (%iv 8841 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8842 auto MatchShiftRecurrence = 8843 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8844 Optional<Instruction::BinaryOps> PostShiftOpCode; 8845 8846 { 8847 Instruction::BinaryOps OpC; 8848 Value *V; 8849 8850 // If we encounter a shift instruction, "peel off" the shift operation, 8851 // and remember that we did so. Later when we inspect %iv's backedge 8852 // value, we will make sure that the backedge value uses the same 8853 // operation. 8854 // 8855 // Note: the peeled shift operation does not have to be the same 8856 // instruction as the one feeding into the PHI's backedge value. We only 8857 // really care about it being the same *kind* of shift instruction -- 8858 // that's all that is required for our later inferences to hold. 8859 if (MatchPositiveShift(LHS, V, OpC)) { 8860 PostShiftOpCode = OpC; 8861 LHS = V; 8862 } 8863 } 8864 8865 PNOut = dyn_cast<PHINode>(LHS); 8866 if (!PNOut || PNOut->getParent() != L->getHeader()) 8867 return false; 8868 8869 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8870 Value *OpLHS; 8871 8872 return 8873 // The backedge value for the PHI node must be a shift by a positive 8874 // amount 8875 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8876 8877 // of the PHI node itself 8878 OpLHS == PNOut && 8879 8880 // and the kind of shift should be match the kind of shift we peeled 8881 // off, if any. 8882 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8883 }; 8884 8885 PHINode *PN; 8886 Instruction::BinaryOps OpCode; 8887 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8888 return getCouldNotCompute(); 8889 8890 const DataLayout &DL = getDataLayout(); 8891 8892 // The key rationale for this optimization is that for some kinds of shift 8893 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8894 // within a finite number of iterations. If the condition guarding the 8895 // backedge (in the sense that the backedge is taken if the condition is true) 8896 // is false for the value the shift recurrence stabilizes to, then we know 8897 // that the backedge is taken only a finite number of times. 8898 8899 ConstantInt *StableValue = nullptr; 8900 switch (OpCode) { 8901 default: 8902 llvm_unreachable("Impossible case!"); 8903 8904 case Instruction::AShr: { 8905 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8906 // bitwidth(K) iterations. 8907 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8908 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8909 Predecessor->getTerminator(), &DT); 8910 auto *Ty = cast<IntegerType>(RHS->getType()); 8911 if (Known.isNonNegative()) 8912 StableValue = ConstantInt::get(Ty, 0); 8913 else if (Known.isNegative()) 8914 StableValue = ConstantInt::get(Ty, -1, true); 8915 else 8916 return getCouldNotCompute(); 8917 8918 break; 8919 } 8920 case Instruction::LShr: 8921 case Instruction::Shl: 8922 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8923 // stabilize to 0 in at most bitwidth(K) iterations. 8924 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8925 break; 8926 } 8927 8928 auto *Result = 8929 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8930 assert(Result->getType()->isIntegerTy(1) && 8931 "Otherwise cannot be an operand to a branch instruction"); 8932 8933 if (Result->isZeroValue()) { 8934 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8935 const SCEV *UpperBound = 8936 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8937 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8938 } 8939 8940 return getCouldNotCompute(); 8941 } 8942 8943 /// Return true if we can constant fold an instruction of the specified type, 8944 /// assuming that all operands were constants. 8945 static bool CanConstantFold(const Instruction *I) { 8946 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8947 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8948 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8949 return true; 8950 8951 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8952 if (const Function *F = CI->getCalledFunction()) 8953 return canConstantFoldCallTo(CI, F); 8954 return false; 8955 } 8956 8957 /// Determine whether this instruction can constant evolve within this loop 8958 /// assuming its operands can all constant evolve. 8959 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8960 // An instruction outside of the loop can't be derived from a loop PHI. 8961 if (!L->contains(I)) return false; 8962 8963 if (isa<PHINode>(I)) { 8964 // We don't currently keep track of the control flow needed to evaluate 8965 // PHIs, so we cannot handle PHIs inside of loops. 8966 return L->getHeader() == I->getParent(); 8967 } 8968 8969 // If we won't be able to constant fold this expression even if the operands 8970 // are constants, bail early. 8971 return CanConstantFold(I); 8972 } 8973 8974 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8975 /// recursing through each instruction operand until reaching a loop header phi. 8976 static PHINode * 8977 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8978 DenseMap<Instruction *, PHINode *> &PHIMap, 8979 unsigned Depth) { 8980 if (Depth > MaxConstantEvolvingDepth) 8981 return nullptr; 8982 8983 // Otherwise, we can evaluate this instruction if all of its operands are 8984 // constant or derived from a PHI node themselves. 8985 PHINode *PHI = nullptr; 8986 for (Value *Op : UseInst->operands()) { 8987 if (isa<Constant>(Op)) continue; 8988 8989 Instruction *OpInst = dyn_cast<Instruction>(Op); 8990 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8991 8992 PHINode *P = dyn_cast<PHINode>(OpInst); 8993 if (!P) 8994 // If this operand is already visited, reuse the prior result. 8995 // We may have P != PHI if this is the deepest point at which the 8996 // inconsistent paths meet. 8997 P = PHIMap.lookup(OpInst); 8998 if (!P) { 8999 // Recurse and memoize the results, whether a phi is found or not. 9000 // This recursive call invalidates pointers into PHIMap. 9001 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 9002 PHIMap[OpInst] = P; 9003 } 9004 if (!P) 9005 return nullptr; // Not evolving from PHI 9006 if (PHI && PHI != P) 9007 return nullptr; // Evolving from multiple different PHIs. 9008 PHI = P; 9009 } 9010 // This is a expression evolving from a constant PHI! 9011 return PHI; 9012 } 9013 9014 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 9015 /// in the loop that V is derived from. We allow arbitrary operations along the 9016 /// way, but the operands of an operation must either be constants or a value 9017 /// derived from a constant PHI. If this expression does not fit with these 9018 /// constraints, return null. 9019 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 9020 Instruction *I = dyn_cast<Instruction>(V); 9021 if (!I || !canConstantEvolve(I, L)) return nullptr; 9022 9023 if (PHINode *PN = dyn_cast<PHINode>(I)) 9024 return PN; 9025 9026 // Record non-constant instructions contained by the loop. 9027 DenseMap<Instruction *, PHINode *> PHIMap; 9028 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9029 } 9030 9031 /// EvaluateExpression - Given an expression that passes the 9032 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9033 /// in the loop has the value PHIVal. If we can't fold this expression for some 9034 /// reason, return null. 9035 static Constant *EvaluateExpression(Value *V, const Loop *L, 9036 DenseMap<Instruction *, Constant *> &Vals, 9037 const DataLayout &DL, 9038 const TargetLibraryInfo *TLI) { 9039 // Convenient constant check, but redundant for recursive calls. 9040 if (Constant *C = dyn_cast<Constant>(V)) return C; 9041 Instruction *I = dyn_cast<Instruction>(V); 9042 if (!I) return nullptr; 9043 9044 if (Constant *C = Vals.lookup(I)) return C; 9045 9046 // An instruction inside the loop depends on a value outside the loop that we 9047 // weren't given a mapping for, or a value such as a call inside the loop. 9048 if (!canConstantEvolve(I, L)) return nullptr; 9049 9050 // An unmapped PHI can be due to a branch or another loop inside this loop, 9051 // or due to this not being the initial iteration through a loop where we 9052 // couldn't compute the evolution of this particular PHI last time. 9053 if (isa<PHINode>(I)) return nullptr; 9054 9055 std::vector<Constant*> Operands(I->getNumOperands()); 9056 9057 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9058 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9059 if (!Operand) { 9060 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9061 if (!Operands[i]) return nullptr; 9062 continue; 9063 } 9064 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9065 Vals[Operand] = C; 9066 if (!C) return nullptr; 9067 Operands[i] = C; 9068 } 9069 9070 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9071 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9072 Operands[1], DL, TLI); 9073 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9074 if (!LI->isVolatile()) 9075 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9076 } 9077 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9078 } 9079 9080 9081 // If every incoming value to PN except the one for BB is a specific Constant, 9082 // return that, else return nullptr. 9083 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9084 Constant *IncomingVal = nullptr; 9085 9086 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9087 if (PN->getIncomingBlock(i) == BB) 9088 continue; 9089 9090 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9091 if (!CurrentVal) 9092 return nullptr; 9093 9094 if (IncomingVal != CurrentVal) { 9095 if (IncomingVal) 9096 return nullptr; 9097 IncomingVal = CurrentVal; 9098 } 9099 } 9100 9101 return IncomingVal; 9102 } 9103 9104 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9105 /// in the header of its containing loop, we know the loop executes a 9106 /// constant number of times, and the PHI node is just a recurrence 9107 /// involving constants, fold it. 9108 Constant * 9109 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9110 const APInt &BEs, 9111 const Loop *L) { 9112 auto I = ConstantEvolutionLoopExitValue.find(PN); 9113 if (I != ConstantEvolutionLoopExitValue.end()) 9114 return I->second; 9115 9116 if (BEs.ugt(MaxBruteForceIterations)) 9117 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9118 9119 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9120 9121 DenseMap<Instruction *, Constant *> CurrentIterVals; 9122 BasicBlock *Header = L->getHeader(); 9123 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9124 9125 BasicBlock *Latch = L->getLoopLatch(); 9126 if (!Latch) 9127 return nullptr; 9128 9129 for (PHINode &PHI : Header->phis()) { 9130 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9131 CurrentIterVals[&PHI] = StartCST; 9132 } 9133 if (!CurrentIterVals.count(PN)) 9134 return RetVal = nullptr; 9135 9136 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9137 9138 // Execute the loop symbolically to determine the exit value. 9139 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9140 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9141 9142 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9143 unsigned IterationNum = 0; 9144 const DataLayout &DL = getDataLayout(); 9145 for (; ; ++IterationNum) { 9146 if (IterationNum == NumIterations) 9147 return RetVal = CurrentIterVals[PN]; // Got exit value! 9148 9149 // Compute the value of the PHIs for the next iteration. 9150 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9151 DenseMap<Instruction *, Constant *> NextIterVals; 9152 Constant *NextPHI = 9153 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9154 if (!NextPHI) 9155 return nullptr; // Couldn't evaluate! 9156 NextIterVals[PN] = NextPHI; 9157 9158 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9159 9160 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9161 // cease to be able to evaluate one of them or if they stop evolving, 9162 // because that doesn't necessarily prevent us from computing PN. 9163 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9164 for (const auto &I : CurrentIterVals) { 9165 PHINode *PHI = dyn_cast<PHINode>(I.first); 9166 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9167 PHIsToCompute.emplace_back(PHI, I.second); 9168 } 9169 // We use two distinct loops because EvaluateExpression may invalidate any 9170 // iterators into CurrentIterVals. 9171 for (const auto &I : PHIsToCompute) { 9172 PHINode *PHI = I.first; 9173 Constant *&NextPHI = NextIterVals[PHI]; 9174 if (!NextPHI) { // Not already computed. 9175 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9176 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9177 } 9178 if (NextPHI != I.second) 9179 StoppedEvolving = false; 9180 } 9181 9182 // If all entries in CurrentIterVals == NextIterVals then we can stop 9183 // iterating, the loop can't continue to change. 9184 if (StoppedEvolving) 9185 return RetVal = CurrentIterVals[PN]; 9186 9187 CurrentIterVals.swap(NextIterVals); 9188 } 9189 } 9190 9191 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9192 Value *Cond, 9193 bool ExitWhen) { 9194 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9195 if (!PN) return getCouldNotCompute(); 9196 9197 // If the loop is canonicalized, the PHI will have exactly two entries. 9198 // That's the only form we support here. 9199 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9200 9201 DenseMap<Instruction *, Constant *> CurrentIterVals; 9202 BasicBlock *Header = L->getHeader(); 9203 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9204 9205 BasicBlock *Latch = L->getLoopLatch(); 9206 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9207 9208 for (PHINode &PHI : Header->phis()) { 9209 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9210 CurrentIterVals[&PHI] = StartCST; 9211 } 9212 if (!CurrentIterVals.count(PN)) 9213 return getCouldNotCompute(); 9214 9215 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9216 // the loop symbolically to determine when the condition gets a value of 9217 // "ExitWhen". 9218 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9219 const DataLayout &DL = getDataLayout(); 9220 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9221 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9222 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9223 9224 // Couldn't symbolically evaluate. 9225 if (!CondVal) return getCouldNotCompute(); 9226 9227 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9228 ++NumBruteForceTripCountsComputed; 9229 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9230 } 9231 9232 // Update all the PHI nodes for the next iteration. 9233 DenseMap<Instruction *, Constant *> NextIterVals; 9234 9235 // Create a list of which PHIs we need to compute. We want to do this before 9236 // calling EvaluateExpression on them because that may invalidate iterators 9237 // into CurrentIterVals. 9238 SmallVector<PHINode *, 8> PHIsToCompute; 9239 for (const auto &I : CurrentIterVals) { 9240 PHINode *PHI = dyn_cast<PHINode>(I.first); 9241 if (!PHI || PHI->getParent() != Header) continue; 9242 PHIsToCompute.push_back(PHI); 9243 } 9244 for (PHINode *PHI : PHIsToCompute) { 9245 Constant *&NextPHI = NextIterVals[PHI]; 9246 if (NextPHI) continue; // Already computed! 9247 9248 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9249 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9250 } 9251 CurrentIterVals.swap(NextIterVals); 9252 } 9253 9254 // Too many iterations were needed to evaluate. 9255 return getCouldNotCompute(); 9256 } 9257 9258 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9259 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9260 ValuesAtScopes[V]; 9261 // Check to see if we've folded this expression at this loop before. 9262 for (auto &LS : Values) 9263 if (LS.first == L) 9264 return LS.second ? LS.second : V; 9265 9266 Values.emplace_back(L, nullptr); 9267 9268 // Otherwise compute it. 9269 const SCEV *C = computeSCEVAtScope(V, L); 9270 for (auto &LS : reverse(ValuesAtScopes[V])) 9271 if (LS.first == L) { 9272 LS.second = C; 9273 if (!isa<SCEVConstant>(C)) 9274 ValuesAtScopesUsers[C].push_back({L, V}); 9275 break; 9276 } 9277 return C; 9278 } 9279 9280 /// This builds up a Constant using the ConstantExpr interface. That way, we 9281 /// will return Constants for objects which aren't represented by a 9282 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9283 /// Returns NULL if the SCEV isn't representable as a Constant. 9284 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9285 switch (V->getSCEVType()) { 9286 case scCouldNotCompute: 9287 case scAddRecExpr: 9288 return nullptr; 9289 case scConstant: 9290 return cast<SCEVConstant>(V)->getValue(); 9291 case scUnknown: 9292 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9293 case scSignExtend: { 9294 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9295 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9296 return ConstantExpr::getSExt(CastOp, SS->getType()); 9297 return nullptr; 9298 } 9299 case scZeroExtend: { 9300 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9301 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9302 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9303 return nullptr; 9304 } 9305 case scPtrToInt: { 9306 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9307 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9308 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9309 9310 return nullptr; 9311 } 9312 case scTruncate: { 9313 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9314 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9315 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9316 return nullptr; 9317 } 9318 case scAddExpr: { 9319 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9320 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9321 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9322 unsigned AS = PTy->getAddressSpace(); 9323 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9324 C = ConstantExpr::getBitCast(C, DestPtrTy); 9325 } 9326 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9327 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9328 if (!C2) 9329 return nullptr; 9330 9331 // First pointer! 9332 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9333 unsigned AS = C2->getType()->getPointerAddressSpace(); 9334 std::swap(C, C2); 9335 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9336 // The offsets have been converted to bytes. We can add bytes to an 9337 // i8* by GEP with the byte count in the first index. 9338 C = ConstantExpr::getBitCast(C, DestPtrTy); 9339 } 9340 9341 // Don't bother trying to sum two pointers. We probably can't 9342 // statically compute a load that results from it anyway. 9343 if (C2->getType()->isPointerTy()) 9344 return nullptr; 9345 9346 if (C->getType()->isPointerTy()) { 9347 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9348 C, C2); 9349 } else { 9350 C = ConstantExpr::getAdd(C, C2); 9351 } 9352 } 9353 return C; 9354 } 9355 return nullptr; 9356 } 9357 case scMulExpr: { 9358 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9359 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9360 // Don't bother with pointers at all. 9361 if (C->getType()->isPointerTy()) 9362 return nullptr; 9363 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9364 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9365 if (!C2 || C2->getType()->isPointerTy()) 9366 return nullptr; 9367 C = ConstantExpr::getMul(C, C2); 9368 } 9369 return C; 9370 } 9371 return nullptr; 9372 } 9373 case scUDivExpr: { 9374 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9375 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9376 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9377 if (LHS->getType() == RHS->getType()) 9378 return ConstantExpr::getUDiv(LHS, RHS); 9379 return nullptr; 9380 } 9381 case scSMaxExpr: 9382 case scUMaxExpr: 9383 case scSMinExpr: 9384 case scUMinExpr: 9385 case scSequentialUMinExpr: 9386 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9387 } 9388 llvm_unreachable("Unknown SCEV kind!"); 9389 } 9390 9391 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9392 if (isa<SCEVConstant>(V)) return V; 9393 9394 // If this instruction is evolved from a constant-evolving PHI, compute the 9395 // exit value from the loop without using SCEVs. 9396 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9397 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9398 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9399 const Loop *CurrLoop = this->LI[I->getParent()]; 9400 // Looking for loop exit value. 9401 if (CurrLoop && CurrLoop->getParentLoop() == L && 9402 PN->getParent() == CurrLoop->getHeader()) { 9403 // Okay, there is no closed form solution for the PHI node. Check 9404 // to see if the loop that contains it has a known backedge-taken 9405 // count. If so, we may be able to force computation of the exit 9406 // value. 9407 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9408 // This trivial case can show up in some degenerate cases where 9409 // the incoming IR has not yet been fully simplified. 9410 if (BackedgeTakenCount->isZero()) { 9411 Value *InitValue = nullptr; 9412 bool MultipleInitValues = false; 9413 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9414 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9415 if (!InitValue) 9416 InitValue = PN->getIncomingValue(i); 9417 else if (InitValue != PN->getIncomingValue(i)) { 9418 MultipleInitValues = true; 9419 break; 9420 } 9421 } 9422 } 9423 if (!MultipleInitValues && InitValue) 9424 return getSCEV(InitValue); 9425 } 9426 // Do we have a loop invariant value flowing around the backedge 9427 // for a loop which must execute the backedge? 9428 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9429 isKnownPositive(BackedgeTakenCount) && 9430 PN->getNumIncomingValues() == 2) { 9431 9432 unsigned InLoopPred = 9433 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9434 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9435 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9436 return getSCEV(BackedgeVal); 9437 } 9438 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9439 // Okay, we know how many times the containing loop executes. If 9440 // this is a constant evolving PHI node, get the final value at 9441 // the specified iteration number. 9442 Constant *RV = getConstantEvolutionLoopExitValue( 9443 PN, BTCC->getAPInt(), CurrLoop); 9444 if (RV) return getSCEV(RV); 9445 } 9446 } 9447 9448 // If there is a single-input Phi, evaluate it at our scope. If we can 9449 // prove that this replacement does not break LCSSA form, use new value. 9450 if (PN->getNumOperands() == 1) { 9451 const SCEV *Input = getSCEV(PN->getOperand(0)); 9452 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9453 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9454 // for the simplest case just support constants. 9455 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9456 } 9457 } 9458 9459 // Okay, this is an expression that we cannot symbolically evaluate 9460 // into a SCEV. Check to see if it's possible to symbolically evaluate 9461 // the arguments into constants, and if so, try to constant propagate the 9462 // result. This is particularly useful for computing loop exit values. 9463 if (CanConstantFold(I)) { 9464 SmallVector<Constant *, 4> Operands; 9465 bool MadeImprovement = false; 9466 for (Value *Op : I->operands()) { 9467 if (Constant *C = dyn_cast<Constant>(Op)) { 9468 Operands.push_back(C); 9469 continue; 9470 } 9471 9472 // If any of the operands is non-constant and if they are 9473 // non-integer and non-pointer, don't even try to analyze them 9474 // with scev techniques. 9475 if (!isSCEVable(Op->getType())) 9476 return V; 9477 9478 const SCEV *OrigV = getSCEV(Op); 9479 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9480 MadeImprovement |= OrigV != OpV; 9481 9482 Constant *C = BuildConstantFromSCEV(OpV); 9483 if (!C) return V; 9484 if (C->getType() != Op->getType()) 9485 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9486 Op->getType(), 9487 false), 9488 C, Op->getType()); 9489 Operands.push_back(C); 9490 } 9491 9492 // Check to see if getSCEVAtScope actually made an improvement. 9493 if (MadeImprovement) { 9494 Constant *C = nullptr; 9495 const DataLayout &DL = getDataLayout(); 9496 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9497 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9498 Operands[1], DL, &TLI); 9499 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9500 if (!Load->isVolatile()) 9501 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9502 DL); 9503 } else 9504 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9505 if (!C) return V; 9506 return getSCEV(C); 9507 } 9508 } 9509 } 9510 9511 // This is some other type of SCEVUnknown, just return it. 9512 return V; 9513 } 9514 9515 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9516 const auto *Comm = cast<SCEVNAryExpr>(V); 9517 // Avoid performing the look-up in the common case where the specified 9518 // expression has no loop-variant portions. 9519 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9520 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9521 if (OpAtScope != Comm->getOperand(i)) { 9522 // Okay, at least one of these operands is loop variant but might be 9523 // foldable. Build a new instance of the folded commutative expression. 9524 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9525 Comm->op_begin()+i); 9526 NewOps.push_back(OpAtScope); 9527 9528 for (++i; i != e; ++i) { 9529 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9530 NewOps.push_back(OpAtScope); 9531 } 9532 if (isa<SCEVAddExpr>(Comm)) 9533 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9534 if (isa<SCEVMulExpr>(Comm)) 9535 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9536 if (isa<SCEVMinMaxExpr>(Comm)) 9537 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9538 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9539 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9540 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9541 } 9542 } 9543 // If we got here, all operands are loop invariant. 9544 return Comm; 9545 } 9546 9547 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9548 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9549 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9550 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9551 return Div; // must be loop invariant 9552 return getUDivExpr(LHS, RHS); 9553 } 9554 9555 // If this is a loop recurrence for a loop that does not contain L, then we 9556 // are dealing with the final value computed by the loop. 9557 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9558 // First, attempt to evaluate each operand. 9559 // Avoid performing the look-up in the common case where the specified 9560 // expression has no loop-variant portions. 9561 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9562 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9563 if (OpAtScope == AddRec->getOperand(i)) 9564 continue; 9565 9566 // Okay, at least one of these operands is loop variant but might be 9567 // foldable. Build a new instance of the folded commutative expression. 9568 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9569 AddRec->op_begin()+i); 9570 NewOps.push_back(OpAtScope); 9571 for (++i; i != e; ++i) 9572 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9573 9574 const SCEV *FoldedRec = 9575 getAddRecExpr(NewOps, AddRec->getLoop(), 9576 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9577 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9578 // The addrec may be folded to a nonrecurrence, for example, if the 9579 // induction variable is multiplied by zero after constant folding. Go 9580 // ahead and return the folded value. 9581 if (!AddRec) 9582 return FoldedRec; 9583 break; 9584 } 9585 9586 // If the scope is outside the addrec's loop, evaluate it by using the 9587 // loop exit value of the addrec. 9588 if (!AddRec->getLoop()->contains(L)) { 9589 // To evaluate this recurrence, we need to know how many times the AddRec 9590 // loop iterates. Compute this now. 9591 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9592 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9593 9594 // Then, evaluate the AddRec. 9595 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9596 } 9597 9598 return AddRec; 9599 } 9600 9601 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9602 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9603 if (Op == Cast->getOperand()) 9604 return Cast; // must be loop invariant 9605 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9606 } 9607 9608 llvm_unreachable("Unknown SCEV type!"); 9609 } 9610 9611 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9612 return getSCEVAtScope(getSCEV(V), L); 9613 } 9614 9615 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9616 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9617 return stripInjectiveFunctions(ZExt->getOperand()); 9618 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9619 return stripInjectiveFunctions(SExt->getOperand()); 9620 return S; 9621 } 9622 9623 /// Finds the minimum unsigned root of the following equation: 9624 /// 9625 /// A * X = B (mod N) 9626 /// 9627 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9628 /// A and B isn't important. 9629 /// 9630 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9631 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9632 ScalarEvolution &SE) { 9633 uint32_t BW = A.getBitWidth(); 9634 assert(BW == SE.getTypeSizeInBits(B->getType())); 9635 assert(A != 0 && "A must be non-zero."); 9636 9637 // 1. D = gcd(A, N) 9638 // 9639 // The gcd of A and N may have only one prime factor: 2. The number of 9640 // trailing zeros in A is its multiplicity 9641 uint32_t Mult2 = A.countTrailingZeros(); 9642 // D = 2^Mult2 9643 9644 // 2. Check if B is divisible by D. 9645 // 9646 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9647 // is not less than multiplicity of this prime factor for D. 9648 if (SE.GetMinTrailingZeros(B) < Mult2) 9649 return SE.getCouldNotCompute(); 9650 9651 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9652 // modulo (N / D). 9653 // 9654 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9655 // (N / D) in general. The inverse itself always fits into BW bits, though, 9656 // so we immediately truncate it. 9657 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9658 APInt Mod(BW + 1, 0); 9659 Mod.setBit(BW - Mult2); // Mod = N / D 9660 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9661 9662 // 4. Compute the minimum unsigned root of the equation: 9663 // I * (B / D) mod (N / D) 9664 // To simplify the computation, we factor out the divide by D: 9665 // (I * B mod N) / D 9666 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9667 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9668 } 9669 9670 /// For a given quadratic addrec, generate coefficients of the corresponding 9671 /// quadratic equation, multiplied by a common value to ensure that they are 9672 /// integers. 9673 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9674 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9675 /// were multiplied by, and BitWidth is the bit width of the original addrec 9676 /// coefficients. 9677 /// This function returns None if the addrec coefficients are not compile- 9678 /// time constants. 9679 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9680 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9681 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9682 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9683 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9684 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9685 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9686 << *AddRec << '\n'); 9687 9688 // We currently can only solve this if the coefficients are constants. 9689 if (!LC || !MC || !NC) { 9690 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9691 return None; 9692 } 9693 9694 APInt L = LC->getAPInt(); 9695 APInt M = MC->getAPInt(); 9696 APInt N = NC->getAPInt(); 9697 assert(!N.isZero() && "This is not a quadratic addrec"); 9698 9699 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9700 unsigned NewWidth = BitWidth + 1; 9701 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9702 << BitWidth << '\n'); 9703 // The sign-extension (as opposed to a zero-extension) here matches the 9704 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9705 N = N.sext(NewWidth); 9706 M = M.sext(NewWidth); 9707 L = L.sext(NewWidth); 9708 9709 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9710 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9711 // L+M, L+2M+N, L+3M+3N, ... 9712 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9713 // 9714 // The equation Acc = 0 is then 9715 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9716 // In a quadratic form it becomes: 9717 // N n^2 + (2M-N) n + 2L = 0. 9718 9719 APInt A = N; 9720 APInt B = 2 * M - A; 9721 APInt C = 2 * L; 9722 APInt T = APInt(NewWidth, 2); 9723 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9724 << "x + " << C << ", coeff bw: " << NewWidth 9725 << ", multiplied by " << T << '\n'); 9726 return std::make_tuple(A, B, C, T, BitWidth); 9727 } 9728 9729 /// Helper function to compare optional APInts: 9730 /// (a) if X and Y both exist, return min(X, Y), 9731 /// (b) if neither X nor Y exist, return None, 9732 /// (c) if exactly one of X and Y exists, return that value. 9733 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9734 if (X.hasValue() && Y.hasValue()) { 9735 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9736 APInt XW = X->sextOrSelf(W); 9737 APInt YW = Y->sextOrSelf(W); 9738 return XW.slt(YW) ? *X : *Y; 9739 } 9740 if (!X.hasValue() && !Y.hasValue()) 9741 return None; 9742 return X.hasValue() ? *X : *Y; 9743 } 9744 9745 /// Helper function to truncate an optional APInt to a given BitWidth. 9746 /// When solving addrec-related equations, it is preferable to return a value 9747 /// that has the same bit width as the original addrec's coefficients. If the 9748 /// solution fits in the original bit width, truncate it (except for i1). 9749 /// Returning a value of a different bit width may inhibit some optimizations. 9750 /// 9751 /// In general, a solution to a quadratic equation generated from an addrec 9752 /// may require BW+1 bits, where BW is the bit width of the addrec's 9753 /// coefficients. The reason is that the coefficients of the quadratic 9754 /// equation are BW+1 bits wide (to avoid truncation when converting from 9755 /// the addrec to the equation). 9756 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9757 if (!X.hasValue()) 9758 return None; 9759 unsigned W = X->getBitWidth(); 9760 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9761 return X->trunc(BitWidth); 9762 return X; 9763 } 9764 9765 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9766 /// iterations. The values L, M, N are assumed to be signed, and they 9767 /// should all have the same bit widths. 9768 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9769 /// where BW is the bit width of the addrec's coefficients. 9770 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9771 /// returned as such, otherwise the bit width of the returned value may 9772 /// be greater than BW. 9773 /// 9774 /// This function returns None if 9775 /// (a) the addrec coefficients are not constant, or 9776 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9777 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9778 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9779 static Optional<APInt> 9780 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9781 APInt A, B, C, M; 9782 unsigned BitWidth; 9783 auto T = GetQuadraticEquation(AddRec); 9784 if (!T.hasValue()) 9785 return None; 9786 9787 std::tie(A, B, C, M, BitWidth) = *T; 9788 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9789 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9790 if (!X.hasValue()) 9791 return None; 9792 9793 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9794 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9795 if (!V->isZero()) 9796 return None; 9797 9798 return TruncIfPossible(X, BitWidth); 9799 } 9800 9801 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9802 /// iterations. The values M, N are assumed to be signed, and they 9803 /// should all have the same bit widths. 9804 /// Find the least n such that c(n) does not belong to the given range, 9805 /// while c(n-1) does. 9806 /// 9807 /// This function returns None if 9808 /// (a) the addrec coefficients are not constant, or 9809 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9810 /// bounds of the range. 9811 static Optional<APInt> 9812 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9813 const ConstantRange &Range, ScalarEvolution &SE) { 9814 assert(AddRec->getOperand(0)->isZero() && 9815 "Starting value of addrec should be 0"); 9816 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9817 << Range << ", addrec " << *AddRec << '\n'); 9818 // This case is handled in getNumIterationsInRange. Here we can assume that 9819 // we start in the range. 9820 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9821 "Addrec's initial value should be in range"); 9822 9823 APInt A, B, C, M; 9824 unsigned BitWidth; 9825 auto T = GetQuadraticEquation(AddRec); 9826 if (!T.hasValue()) 9827 return None; 9828 9829 // Be careful about the return value: there can be two reasons for not 9830 // returning an actual number. First, if no solutions to the equations 9831 // were found, and second, if the solutions don't leave the given range. 9832 // The first case means that the actual solution is "unknown", the second 9833 // means that it's known, but not valid. If the solution is unknown, we 9834 // cannot make any conclusions. 9835 // Return a pair: the optional solution and a flag indicating if the 9836 // solution was found. 9837 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9838 // Solve for signed overflow and unsigned overflow, pick the lower 9839 // solution. 9840 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9841 << Bound << " (before multiplying by " << M << ")\n"); 9842 Bound *= M; // The quadratic equation multiplier. 9843 9844 Optional<APInt> SO = None; 9845 if (BitWidth > 1) { 9846 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9847 "signed overflow\n"); 9848 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9849 } 9850 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9851 "unsigned overflow\n"); 9852 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9853 BitWidth+1); 9854 9855 auto LeavesRange = [&] (const APInt &X) { 9856 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9857 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9858 if (Range.contains(V0->getValue())) 9859 return false; 9860 // X should be at least 1, so X-1 is non-negative. 9861 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9862 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9863 if (Range.contains(V1->getValue())) 9864 return true; 9865 return false; 9866 }; 9867 9868 // If SolveQuadraticEquationWrap returns None, it means that there can 9869 // be a solution, but the function failed to find it. We cannot treat it 9870 // as "no solution". 9871 if (!SO.hasValue() || !UO.hasValue()) 9872 return { None, false }; 9873 9874 // Check the smaller value first to see if it leaves the range. 9875 // At this point, both SO and UO must have values. 9876 Optional<APInt> Min = MinOptional(SO, UO); 9877 if (LeavesRange(*Min)) 9878 return { Min, true }; 9879 Optional<APInt> Max = Min == SO ? UO : SO; 9880 if (LeavesRange(*Max)) 9881 return { Max, true }; 9882 9883 // Solutions were found, but were eliminated, hence the "true". 9884 return { None, true }; 9885 }; 9886 9887 std::tie(A, B, C, M, BitWidth) = *T; 9888 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9889 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9890 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9891 auto SL = SolveForBoundary(Lower); 9892 auto SU = SolveForBoundary(Upper); 9893 // If any of the solutions was unknown, no meaninigful conclusions can 9894 // be made. 9895 if (!SL.second || !SU.second) 9896 return None; 9897 9898 // Claim: The correct solution is not some value between Min and Max. 9899 // 9900 // Justification: Assuming that Min and Max are different values, one of 9901 // them is when the first signed overflow happens, the other is when the 9902 // first unsigned overflow happens. Crossing the range boundary is only 9903 // possible via an overflow (treating 0 as a special case of it, modeling 9904 // an overflow as crossing k*2^W for some k). 9905 // 9906 // The interesting case here is when Min was eliminated as an invalid 9907 // solution, but Max was not. The argument is that if there was another 9908 // overflow between Min and Max, it would also have been eliminated if 9909 // it was considered. 9910 // 9911 // For a given boundary, it is possible to have two overflows of the same 9912 // type (signed/unsigned) without having the other type in between: this 9913 // can happen when the vertex of the parabola is between the iterations 9914 // corresponding to the overflows. This is only possible when the two 9915 // overflows cross k*2^W for the same k. In such case, if the second one 9916 // left the range (and was the first one to do so), the first overflow 9917 // would have to enter the range, which would mean that either we had left 9918 // the range before or that we started outside of it. Both of these cases 9919 // are contradictions. 9920 // 9921 // Claim: In the case where SolveForBoundary returns None, the correct 9922 // solution is not some value between the Max for this boundary and the 9923 // Min of the other boundary. 9924 // 9925 // Justification: Assume that we had such Max_A and Min_B corresponding 9926 // to range boundaries A and B and such that Max_A < Min_B. If there was 9927 // a solution between Max_A and Min_B, it would have to be caused by an 9928 // overflow corresponding to either A or B. It cannot correspond to B, 9929 // since Min_B is the first occurrence of such an overflow. If it 9930 // corresponded to A, it would have to be either a signed or an unsigned 9931 // overflow that is larger than both eliminated overflows for A. But 9932 // between the eliminated overflows and this overflow, the values would 9933 // cover the entire value space, thus crossing the other boundary, which 9934 // is a contradiction. 9935 9936 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9937 } 9938 9939 ScalarEvolution::ExitLimit 9940 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9941 bool AllowPredicates) { 9942 9943 // This is only used for loops with a "x != y" exit test. The exit condition 9944 // is now expressed as a single expression, V = x-y. So the exit test is 9945 // effectively V != 0. We know and take advantage of the fact that this 9946 // expression only being used in a comparison by zero context. 9947 9948 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9949 // If the value is a constant 9950 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9951 // If the value is already zero, the branch will execute zero times. 9952 if (C->getValue()->isZero()) return C; 9953 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9954 } 9955 9956 const SCEVAddRecExpr *AddRec = 9957 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9958 9959 if (!AddRec && AllowPredicates) 9960 // Try to make this an AddRec using runtime tests, in the first X 9961 // iterations of this loop, where X is the SCEV expression found by the 9962 // algorithm below. 9963 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9964 9965 if (!AddRec || AddRec->getLoop() != L) 9966 return getCouldNotCompute(); 9967 9968 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9969 // the quadratic equation to solve it. 9970 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9971 // We can only use this value if the chrec ends up with an exact zero 9972 // value at this index. When solving for "X*X != 5", for example, we 9973 // should not accept a root of 2. 9974 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9975 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9976 return ExitLimit(R, R, false, Predicates); 9977 } 9978 return getCouldNotCompute(); 9979 } 9980 9981 // Otherwise we can only handle this if it is affine. 9982 if (!AddRec->isAffine()) 9983 return getCouldNotCompute(); 9984 9985 // If this is an affine expression, the execution count of this branch is 9986 // the minimum unsigned root of the following equation: 9987 // 9988 // Start + Step*N = 0 (mod 2^BW) 9989 // 9990 // equivalent to: 9991 // 9992 // Step*N = -Start (mod 2^BW) 9993 // 9994 // where BW is the common bit width of Start and Step. 9995 9996 // Get the initial value for the loop. 9997 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9998 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9999 10000 // For now we handle only constant steps. 10001 // 10002 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 10003 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 10004 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 10005 // We have not yet seen any such cases. 10006 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 10007 if (!StepC || StepC->getValue()->isZero()) 10008 return getCouldNotCompute(); 10009 10010 // For positive steps (counting up until unsigned overflow): 10011 // N = -Start/Step (as unsigned) 10012 // For negative steps (counting down to zero): 10013 // N = Start/-Step 10014 // First compute the unsigned distance from zero in the direction of Step. 10015 bool CountDown = StepC->getAPInt().isNegative(); 10016 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 10017 10018 // Handle unitary steps, which cannot wraparound. 10019 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 10020 // N = Distance (as unsigned) 10021 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10022 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10023 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10024 10025 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10026 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10027 // case, and see if we can improve the bound. 10028 // 10029 // Explicitly handling this here is necessary because getUnsignedRange 10030 // isn't context-sensitive; it doesn't know that we only care about the 10031 // range inside the loop. 10032 const SCEV *Zero = getZero(Distance->getType()); 10033 const SCEV *One = getOne(Distance->getType()); 10034 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10035 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10036 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10037 // as "unsigned_max(Distance + 1) - 1". 10038 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10039 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10040 } 10041 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 10042 } 10043 10044 // If the condition controls loop exit (the loop exits only if the expression 10045 // is true) and the addition is no-wrap we can use unsigned divide to 10046 // compute the backedge count. In this case, the step may not divide the 10047 // distance, but we don't care because if the condition is "missed" the loop 10048 // will have undefined behavior due to wrapping. 10049 if (ControlsExit && AddRec->hasNoSelfWrap() && 10050 loopHasNoAbnormalExits(AddRec->getLoop())) { 10051 const SCEV *Exact = 10052 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10053 const SCEV *Max = getCouldNotCompute(); 10054 if (Exact != getCouldNotCompute()) { 10055 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10056 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10057 } 10058 return ExitLimit(Exact, Max, false, Predicates); 10059 } 10060 10061 // Solve the general equation. 10062 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10063 getNegativeSCEV(Start), *this); 10064 10065 const SCEV *M = E; 10066 if (E != getCouldNotCompute()) { 10067 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10068 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10069 } 10070 return ExitLimit(E, M, false, Predicates); 10071 } 10072 10073 ScalarEvolution::ExitLimit 10074 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10075 // Loops that look like: while (X == 0) are very strange indeed. We don't 10076 // handle them yet except for the trivial case. This could be expanded in the 10077 // future as needed. 10078 10079 // If the value is a constant, check to see if it is known to be non-zero 10080 // already. If so, the backedge will execute zero times. 10081 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10082 if (!C->getValue()->isZero()) 10083 return getZero(C->getType()); 10084 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10085 } 10086 10087 // We could implement others, but I really doubt anyone writes loops like 10088 // this, and if they did, they would already be constant folded. 10089 return getCouldNotCompute(); 10090 } 10091 10092 std::pair<const BasicBlock *, const BasicBlock *> 10093 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10094 const { 10095 // If the block has a unique predecessor, then there is no path from the 10096 // predecessor to the block that does not go through the direct edge 10097 // from the predecessor to the block. 10098 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10099 return {Pred, BB}; 10100 10101 // A loop's header is defined to be a block that dominates the loop. 10102 // If the header has a unique predecessor outside the loop, it must be 10103 // a block that has exactly one successor that can reach the loop. 10104 if (const Loop *L = LI.getLoopFor(BB)) 10105 return {L->getLoopPredecessor(), L->getHeader()}; 10106 10107 return {nullptr, nullptr}; 10108 } 10109 10110 /// SCEV structural equivalence is usually sufficient for testing whether two 10111 /// expressions are equal, however for the purposes of looking for a condition 10112 /// guarding a loop, it can be useful to be a little more general, since a 10113 /// front-end may have replicated the controlling expression. 10114 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10115 // Quick check to see if they are the same SCEV. 10116 if (A == B) return true; 10117 10118 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10119 // Not all instructions that are "identical" compute the same value. For 10120 // instance, two distinct alloca instructions allocating the same type are 10121 // identical and do not read memory; but compute distinct values. 10122 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10123 }; 10124 10125 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10126 // two different instructions with the same value. Check for this case. 10127 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10128 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10129 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10130 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10131 if (ComputesEqualValues(AI, BI)) 10132 return true; 10133 10134 // Otherwise assume they may have a different value. 10135 return false; 10136 } 10137 10138 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10139 const SCEV *&LHS, const SCEV *&RHS, 10140 unsigned Depth, 10141 bool ControllingFiniteLoop) { 10142 bool Changed = false; 10143 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10144 // '0 != 0'. 10145 auto TrivialCase = [&](bool TriviallyTrue) { 10146 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10147 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10148 return true; 10149 }; 10150 // If we hit the max recursion limit bail out. 10151 if (Depth >= 3) 10152 return false; 10153 10154 // Canonicalize a constant to the right side. 10155 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10156 // Check for both operands constant. 10157 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10158 if (ConstantExpr::getICmp(Pred, 10159 LHSC->getValue(), 10160 RHSC->getValue())->isNullValue()) 10161 return TrivialCase(false); 10162 else 10163 return TrivialCase(true); 10164 } 10165 // Otherwise swap the operands to put the constant on the right. 10166 std::swap(LHS, RHS); 10167 Pred = ICmpInst::getSwappedPredicate(Pred); 10168 Changed = true; 10169 } 10170 10171 // If we're comparing an addrec with a value which is loop-invariant in the 10172 // addrec's loop, put the addrec on the left. Also make a dominance check, 10173 // as both operands could be addrecs loop-invariant in each other's loop. 10174 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10175 const Loop *L = AR->getLoop(); 10176 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10177 std::swap(LHS, RHS); 10178 Pred = ICmpInst::getSwappedPredicate(Pred); 10179 Changed = true; 10180 } 10181 } 10182 10183 // If there's a constant operand, canonicalize comparisons with boundary 10184 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10185 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10186 const APInt &RA = RC->getAPInt(); 10187 10188 bool SimplifiedByConstantRange = false; 10189 10190 if (!ICmpInst::isEquality(Pred)) { 10191 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10192 if (ExactCR.isFullSet()) 10193 return TrivialCase(true); 10194 else if (ExactCR.isEmptySet()) 10195 return TrivialCase(false); 10196 10197 APInt NewRHS; 10198 CmpInst::Predicate NewPred; 10199 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10200 ICmpInst::isEquality(NewPred)) { 10201 // We were able to convert an inequality to an equality. 10202 Pred = NewPred; 10203 RHS = getConstant(NewRHS); 10204 Changed = SimplifiedByConstantRange = true; 10205 } 10206 } 10207 10208 if (!SimplifiedByConstantRange) { 10209 switch (Pred) { 10210 default: 10211 break; 10212 case ICmpInst::ICMP_EQ: 10213 case ICmpInst::ICMP_NE: 10214 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10215 if (!RA) 10216 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10217 if (const SCEVMulExpr *ME = 10218 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10219 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10220 ME->getOperand(0)->isAllOnesValue()) { 10221 RHS = AE->getOperand(1); 10222 LHS = ME->getOperand(1); 10223 Changed = true; 10224 } 10225 break; 10226 10227 10228 // The "Should have been caught earlier!" messages refer to the fact 10229 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10230 // should have fired on the corresponding cases, and canonicalized the 10231 // check to trivial case. 10232 10233 case ICmpInst::ICMP_UGE: 10234 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10235 Pred = ICmpInst::ICMP_UGT; 10236 RHS = getConstant(RA - 1); 10237 Changed = true; 10238 break; 10239 case ICmpInst::ICMP_ULE: 10240 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10241 Pred = ICmpInst::ICMP_ULT; 10242 RHS = getConstant(RA + 1); 10243 Changed = true; 10244 break; 10245 case ICmpInst::ICMP_SGE: 10246 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10247 Pred = ICmpInst::ICMP_SGT; 10248 RHS = getConstant(RA - 1); 10249 Changed = true; 10250 break; 10251 case ICmpInst::ICMP_SLE: 10252 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10253 Pred = ICmpInst::ICMP_SLT; 10254 RHS = getConstant(RA + 1); 10255 Changed = true; 10256 break; 10257 } 10258 } 10259 } 10260 10261 // Check for obvious equality. 10262 if (HasSameValue(LHS, RHS)) { 10263 if (ICmpInst::isTrueWhenEqual(Pred)) 10264 return TrivialCase(true); 10265 if (ICmpInst::isFalseWhenEqual(Pred)) 10266 return TrivialCase(false); 10267 } 10268 10269 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10270 // adding or subtracting 1 from one of the operands. This can be done for 10271 // one of two reasons: 10272 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10273 // 2) The loop is finite, with this comparison controlling the exit. Since the 10274 // loop is finite, the bound cannot include the corresponding boundary 10275 // (otherwise it would loop forever). 10276 switch (Pred) { 10277 case ICmpInst::ICMP_SLE: 10278 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10279 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10280 SCEV::FlagNSW); 10281 Pred = ICmpInst::ICMP_SLT; 10282 Changed = true; 10283 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10284 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10285 SCEV::FlagNSW); 10286 Pred = ICmpInst::ICMP_SLT; 10287 Changed = true; 10288 } 10289 break; 10290 case ICmpInst::ICMP_SGE: 10291 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10292 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10293 SCEV::FlagNSW); 10294 Pred = ICmpInst::ICMP_SGT; 10295 Changed = true; 10296 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10297 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10298 SCEV::FlagNSW); 10299 Pred = ICmpInst::ICMP_SGT; 10300 Changed = true; 10301 } 10302 break; 10303 case ICmpInst::ICMP_ULE: 10304 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10305 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10306 SCEV::FlagNUW); 10307 Pred = ICmpInst::ICMP_ULT; 10308 Changed = true; 10309 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10310 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10311 Pred = ICmpInst::ICMP_ULT; 10312 Changed = true; 10313 } 10314 break; 10315 case ICmpInst::ICMP_UGE: 10316 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10317 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10318 Pred = ICmpInst::ICMP_UGT; 10319 Changed = true; 10320 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10321 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10322 SCEV::FlagNUW); 10323 Pred = ICmpInst::ICMP_UGT; 10324 Changed = true; 10325 } 10326 break; 10327 default: 10328 break; 10329 } 10330 10331 // TODO: More simplifications are possible here. 10332 10333 // Recursively simplify until we either hit a recursion limit or nothing 10334 // changes. 10335 if (Changed) 10336 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10337 ControllingFiniteLoop); 10338 10339 return Changed; 10340 } 10341 10342 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10343 return getSignedRangeMax(S).isNegative(); 10344 } 10345 10346 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10347 return getSignedRangeMin(S).isStrictlyPositive(); 10348 } 10349 10350 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10351 return !getSignedRangeMin(S).isNegative(); 10352 } 10353 10354 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10355 return !getSignedRangeMax(S).isStrictlyPositive(); 10356 } 10357 10358 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10359 return getUnsignedRangeMin(S) != 0; 10360 } 10361 10362 std::pair<const SCEV *, const SCEV *> 10363 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10364 // Compute SCEV on entry of loop L. 10365 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10366 if (Start == getCouldNotCompute()) 10367 return { Start, Start }; 10368 // Compute post increment SCEV for loop L. 10369 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10370 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10371 return { Start, PostInc }; 10372 } 10373 10374 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10375 const SCEV *LHS, const SCEV *RHS) { 10376 // First collect all loops. 10377 SmallPtrSet<const Loop *, 8> LoopsUsed; 10378 getUsedLoops(LHS, LoopsUsed); 10379 getUsedLoops(RHS, LoopsUsed); 10380 10381 if (LoopsUsed.empty()) 10382 return false; 10383 10384 // Domination relationship must be a linear order on collected loops. 10385 #ifndef NDEBUG 10386 for (auto *L1 : LoopsUsed) 10387 for (auto *L2 : LoopsUsed) 10388 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10389 DT.dominates(L2->getHeader(), L1->getHeader())) && 10390 "Domination relationship is not a linear order"); 10391 #endif 10392 10393 const Loop *MDL = 10394 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10395 [&](const Loop *L1, const Loop *L2) { 10396 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10397 }); 10398 10399 // Get init and post increment value for LHS. 10400 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10401 // if LHS contains unknown non-invariant SCEV then bail out. 10402 if (SplitLHS.first == getCouldNotCompute()) 10403 return false; 10404 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10405 // Get init and post increment value for RHS. 10406 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10407 // if RHS contains unknown non-invariant SCEV then bail out. 10408 if (SplitRHS.first == getCouldNotCompute()) 10409 return false; 10410 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10411 // It is possible that init SCEV contains an invariant load but it does 10412 // not dominate MDL and is not available at MDL loop entry, so we should 10413 // check it here. 10414 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10415 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10416 return false; 10417 10418 // It seems backedge guard check is faster than entry one so in some cases 10419 // it can speed up whole estimation by short circuit 10420 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10421 SplitRHS.second) && 10422 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10423 } 10424 10425 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10426 const SCEV *LHS, const SCEV *RHS) { 10427 // Canonicalize the inputs first. 10428 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10429 10430 if (isKnownViaInduction(Pred, LHS, RHS)) 10431 return true; 10432 10433 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10434 return true; 10435 10436 // Otherwise see what can be done with some simple reasoning. 10437 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10438 } 10439 10440 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10441 const SCEV *LHS, 10442 const SCEV *RHS) { 10443 if (isKnownPredicate(Pred, LHS, RHS)) 10444 return true; 10445 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10446 return false; 10447 return None; 10448 } 10449 10450 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10451 const SCEV *LHS, const SCEV *RHS, 10452 const Instruction *CtxI) { 10453 // TODO: Analyze guards and assumes from Context's block. 10454 return isKnownPredicate(Pred, LHS, RHS) || 10455 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10456 } 10457 10458 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10459 const SCEV *LHS, 10460 const SCEV *RHS, 10461 const Instruction *CtxI) { 10462 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10463 if (KnownWithoutContext) 10464 return KnownWithoutContext; 10465 10466 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10467 return true; 10468 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10469 ICmpInst::getInversePredicate(Pred), 10470 LHS, RHS)) 10471 return false; 10472 return None; 10473 } 10474 10475 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10476 const SCEVAddRecExpr *LHS, 10477 const SCEV *RHS) { 10478 const Loop *L = LHS->getLoop(); 10479 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10480 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10481 } 10482 10483 Optional<ScalarEvolution::MonotonicPredicateType> 10484 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10485 ICmpInst::Predicate Pred) { 10486 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10487 10488 #ifndef NDEBUG 10489 // Verify an invariant: inverting the predicate should turn a monotonically 10490 // increasing change to a monotonically decreasing one, and vice versa. 10491 if (Result) { 10492 auto ResultSwapped = 10493 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10494 10495 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10496 assert(ResultSwapped.getValue() != Result.getValue() && 10497 "monotonicity should flip as we flip the predicate"); 10498 } 10499 #endif 10500 10501 return Result; 10502 } 10503 10504 Optional<ScalarEvolution::MonotonicPredicateType> 10505 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10506 ICmpInst::Predicate Pred) { 10507 // A zero step value for LHS means the induction variable is essentially a 10508 // loop invariant value. We don't really depend on the predicate actually 10509 // flipping from false to true (for increasing predicates, and the other way 10510 // around for decreasing predicates), all we care about is that *if* the 10511 // predicate changes then it only changes from false to true. 10512 // 10513 // A zero step value in itself is not very useful, but there may be places 10514 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10515 // as general as possible. 10516 10517 // Only handle LE/LT/GE/GT predicates. 10518 if (!ICmpInst::isRelational(Pred)) 10519 return None; 10520 10521 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10522 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10523 "Should be greater or less!"); 10524 10525 // Check that AR does not wrap. 10526 if (ICmpInst::isUnsigned(Pred)) { 10527 if (!LHS->hasNoUnsignedWrap()) 10528 return None; 10529 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10530 } else { 10531 assert(ICmpInst::isSigned(Pred) && 10532 "Relational predicate is either signed or unsigned!"); 10533 if (!LHS->hasNoSignedWrap()) 10534 return None; 10535 10536 const SCEV *Step = LHS->getStepRecurrence(*this); 10537 10538 if (isKnownNonNegative(Step)) 10539 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10540 10541 if (isKnownNonPositive(Step)) 10542 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10543 10544 return None; 10545 } 10546 } 10547 10548 Optional<ScalarEvolution::LoopInvariantPredicate> 10549 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10550 const SCEV *LHS, const SCEV *RHS, 10551 const Loop *L) { 10552 10553 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10554 if (!isLoopInvariant(RHS, L)) { 10555 if (!isLoopInvariant(LHS, L)) 10556 return None; 10557 10558 std::swap(LHS, RHS); 10559 Pred = ICmpInst::getSwappedPredicate(Pred); 10560 } 10561 10562 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10563 if (!ArLHS || ArLHS->getLoop() != L) 10564 return None; 10565 10566 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10567 if (!MonotonicType) 10568 return None; 10569 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10570 // true as the loop iterates, and the backedge is control dependent on 10571 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10572 // 10573 // * if the predicate was false in the first iteration then the predicate 10574 // is never evaluated again, since the loop exits without taking the 10575 // backedge. 10576 // * if the predicate was true in the first iteration then it will 10577 // continue to be true for all future iterations since it is 10578 // monotonically increasing. 10579 // 10580 // For both the above possibilities, we can replace the loop varying 10581 // predicate with its value on the first iteration of the loop (which is 10582 // loop invariant). 10583 // 10584 // A similar reasoning applies for a monotonically decreasing predicate, by 10585 // replacing true with false and false with true in the above two bullets. 10586 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10587 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10588 10589 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10590 return None; 10591 10592 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10593 } 10594 10595 Optional<ScalarEvolution::LoopInvariantPredicate> 10596 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10597 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10598 const Instruction *CtxI, const SCEV *MaxIter) { 10599 // Try to prove the following set of facts: 10600 // - The predicate is monotonic in the iteration space. 10601 // - If the check does not fail on the 1st iteration: 10602 // - No overflow will happen during first MaxIter iterations; 10603 // - It will not fail on the MaxIter'th iteration. 10604 // If the check does fail on the 1st iteration, we leave the loop and no 10605 // other checks matter. 10606 10607 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10608 if (!isLoopInvariant(RHS, L)) { 10609 if (!isLoopInvariant(LHS, L)) 10610 return None; 10611 10612 std::swap(LHS, RHS); 10613 Pred = ICmpInst::getSwappedPredicate(Pred); 10614 } 10615 10616 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10617 if (!AR || AR->getLoop() != L) 10618 return None; 10619 10620 // The predicate must be relational (i.e. <, <=, >=, >). 10621 if (!ICmpInst::isRelational(Pred)) 10622 return None; 10623 10624 // TODO: Support steps other than +/- 1. 10625 const SCEV *Step = AR->getStepRecurrence(*this); 10626 auto *One = getOne(Step->getType()); 10627 auto *MinusOne = getNegativeSCEV(One); 10628 if (Step != One && Step != MinusOne) 10629 return None; 10630 10631 // Type mismatch here means that MaxIter is potentially larger than max 10632 // unsigned value in start type, which mean we cannot prove no wrap for the 10633 // indvar. 10634 if (AR->getType() != MaxIter->getType()) 10635 return None; 10636 10637 // Value of IV on suggested last iteration. 10638 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10639 // Does it still meet the requirement? 10640 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10641 return None; 10642 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10643 // not exceed max unsigned value of this type), this effectively proves 10644 // that there is no wrap during the iteration. To prove that there is no 10645 // signed/unsigned wrap, we need to check that 10646 // Start <= Last for step = 1 or Start >= Last for step = -1. 10647 ICmpInst::Predicate NoOverflowPred = 10648 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10649 if (Step == MinusOne) 10650 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10651 const SCEV *Start = AR->getStart(); 10652 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10653 return None; 10654 10655 // Everything is fine. 10656 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10657 } 10658 10659 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10660 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10661 if (HasSameValue(LHS, RHS)) 10662 return ICmpInst::isTrueWhenEqual(Pred); 10663 10664 // This code is split out from isKnownPredicate because it is called from 10665 // within isLoopEntryGuardedByCond. 10666 10667 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10668 const ConstantRange &RangeRHS) { 10669 return RangeLHS.icmp(Pred, RangeRHS); 10670 }; 10671 10672 // The check at the top of the function catches the case where the values are 10673 // known to be equal. 10674 if (Pred == CmpInst::ICMP_EQ) 10675 return false; 10676 10677 if (Pred == CmpInst::ICMP_NE) { 10678 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10679 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10680 return true; 10681 auto *Diff = getMinusSCEV(LHS, RHS); 10682 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10683 } 10684 10685 if (CmpInst::isSigned(Pred)) 10686 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10687 10688 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10689 } 10690 10691 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10692 const SCEV *LHS, 10693 const SCEV *RHS) { 10694 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10695 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10696 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10697 // OutC1 and OutC2. 10698 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10699 APInt &OutC1, APInt &OutC2, 10700 SCEV::NoWrapFlags ExpectedFlags) { 10701 const SCEV *XNonConstOp, *XConstOp; 10702 const SCEV *YNonConstOp, *YConstOp; 10703 SCEV::NoWrapFlags XFlagsPresent; 10704 SCEV::NoWrapFlags YFlagsPresent; 10705 10706 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10707 XConstOp = getZero(X->getType()); 10708 XNonConstOp = X; 10709 XFlagsPresent = ExpectedFlags; 10710 } 10711 if (!isa<SCEVConstant>(XConstOp) || 10712 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10713 return false; 10714 10715 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10716 YConstOp = getZero(Y->getType()); 10717 YNonConstOp = Y; 10718 YFlagsPresent = ExpectedFlags; 10719 } 10720 10721 if (!isa<SCEVConstant>(YConstOp) || 10722 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10723 return false; 10724 10725 if (YNonConstOp != XNonConstOp) 10726 return false; 10727 10728 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10729 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10730 10731 return true; 10732 }; 10733 10734 APInt C1; 10735 APInt C2; 10736 10737 switch (Pred) { 10738 default: 10739 break; 10740 10741 case ICmpInst::ICMP_SGE: 10742 std::swap(LHS, RHS); 10743 LLVM_FALLTHROUGH; 10744 case ICmpInst::ICMP_SLE: 10745 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10746 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10747 return true; 10748 10749 break; 10750 10751 case ICmpInst::ICMP_SGT: 10752 std::swap(LHS, RHS); 10753 LLVM_FALLTHROUGH; 10754 case ICmpInst::ICMP_SLT: 10755 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10756 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10757 return true; 10758 10759 break; 10760 10761 case ICmpInst::ICMP_UGE: 10762 std::swap(LHS, RHS); 10763 LLVM_FALLTHROUGH; 10764 case ICmpInst::ICMP_ULE: 10765 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10766 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10767 return true; 10768 10769 break; 10770 10771 case ICmpInst::ICMP_UGT: 10772 std::swap(LHS, RHS); 10773 LLVM_FALLTHROUGH; 10774 case ICmpInst::ICMP_ULT: 10775 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10776 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10777 return true; 10778 break; 10779 } 10780 10781 return false; 10782 } 10783 10784 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10785 const SCEV *LHS, 10786 const SCEV *RHS) { 10787 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10788 return false; 10789 10790 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10791 // the stack can result in exponential time complexity. 10792 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10793 10794 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10795 // 10796 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10797 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10798 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10799 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10800 // use isKnownPredicate later if needed. 10801 return isKnownNonNegative(RHS) && 10802 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10803 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10804 } 10805 10806 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10807 ICmpInst::Predicate Pred, 10808 const SCEV *LHS, const SCEV *RHS) { 10809 // No need to even try if we know the module has no guards. 10810 if (!HasGuards) 10811 return false; 10812 10813 return any_of(*BB, [&](const Instruction &I) { 10814 using namespace llvm::PatternMatch; 10815 10816 Value *Condition; 10817 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10818 m_Value(Condition))) && 10819 isImpliedCond(Pred, LHS, RHS, Condition, false); 10820 }); 10821 } 10822 10823 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10824 /// protected by a conditional between LHS and RHS. This is used to 10825 /// to eliminate casts. 10826 bool 10827 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10828 ICmpInst::Predicate Pred, 10829 const SCEV *LHS, const SCEV *RHS) { 10830 // Interpret a null as meaning no loop, where there is obviously no guard 10831 // (interprocedural conditions notwithstanding). 10832 if (!L) return true; 10833 10834 if (VerifyIR) 10835 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10836 "This cannot be done on broken IR!"); 10837 10838 10839 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10840 return true; 10841 10842 BasicBlock *Latch = L->getLoopLatch(); 10843 if (!Latch) 10844 return false; 10845 10846 BranchInst *LoopContinuePredicate = 10847 dyn_cast<BranchInst>(Latch->getTerminator()); 10848 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10849 isImpliedCond(Pred, LHS, RHS, 10850 LoopContinuePredicate->getCondition(), 10851 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10852 return true; 10853 10854 // We don't want more than one activation of the following loops on the stack 10855 // -- that can lead to O(n!) time complexity. 10856 if (WalkingBEDominatingConds) 10857 return false; 10858 10859 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10860 10861 // See if we can exploit a trip count to prove the predicate. 10862 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10863 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10864 if (LatchBECount != getCouldNotCompute()) { 10865 // We know that Latch branches back to the loop header exactly 10866 // LatchBECount times. This means the backdege condition at Latch is 10867 // equivalent to "{0,+,1} u< LatchBECount". 10868 Type *Ty = LatchBECount->getType(); 10869 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10870 const SCEV *LoopCounter = 10871 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10872 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10873 LatchBECount)) 10874 return true; 10875 } 10876 10877 // Check conditions due to any @llvm.assume intrinsics. 10878 for (auto &AssumeVH : AC.assumptions()) { 10879 if (!AssumeVH) 10880 continue; 10881 auto *CI = cast<CallInst>(AssumeVH); 10882 if (!DT.dominates(CI, Latch->getTerminator())) 10883 continue; 10884 10885 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10886 return true; 10887 } 10888 10889 // If the loop is not reachable from the entry block, we risk running into an 10890 // infinite loop as we walk up into the dom tree. These loops do not matter 10891 // anyway, so we just return a conservative answer when we see them. 10892 if (!DT.isReachableFromEntry(L->getHeader())) 10893 return false; 10894 10895 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10896 return true; 10897 10898 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10899 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10900 assert(DTN && "should reach the loop header before reaching the root!"); 10901 10902 BasicBlock *BB = DTN->getBlock(); 10903 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10904 return true; 10905 10906 BasicBlock *PBB = BB->getSinglePredecessor(); 10907 if (!PBB) 10908 continue; 10909 10910 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10911 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10912 continue; 10913 10914 Value *Condition = ContinuePredicate->getCondition(); 10915 10916 // If we have an edge `E` within the loop body that dominates the only 10917 // latch, the condition guarding `E` also guards the backedge. This 10918 // reasoning works only for loops with a single latch. 10919 10920 BasicBlockEdge DominatingEdge(PBB, BB); 10921 if (DominatingEdge.isSingleEdge()) { 10922 // We're constructively (and conservatively) enumerating edges within the 10923 // loop body that dominate the latch. The dominator tree better agree 10924 // with us on this: 10925 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10926 10927 if (isImpliedCond(Pred, LHS, RHS, Condition, 10928 BB != ContinuePredicate->getSuccessor(0))) 10929 return true; 10930 } 10931 } 10932 10933 return false; 10934 } 10935 10936 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10937 ICmpInst::Predicate Pred, 10938 const SCEV *LHS, 10939 const SCEV *RHS) { 10940 if (VerifyIR) 10941 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10942 "This cannot be done on broken IR!"); 10943 10944 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10945 // the facts (a >= b && a != b) separately. A typical situation is when the 10946 // non-strict comparison is known from ranges and non-equality is known from 10947 // dominating predicates. If we are proving strict comparison, we always try 10948 // to prove non-equality and non-strict comparison separately. 10949 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10950 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10951 bool ProvedNonStrictComparison = false; 10952 bool ProvedNonEquality = false; 10953 10954 auto SplitAndProve = 10955 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10956 if (!ProvedNonStrictComparison) 10957 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10958 if (!ProvedNonEquality) 10959 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10960 if (ProvedNonStrictComparison && ProvedNonEquality) 10961 return true; 10962 return false; 10963 }; 10964 10965 if (ProvingStrictComparison) { 10966 auto ProofFn = [&](ICmpInst::Predicate P) { 10967 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10968 }; 10969 if (SplitAndProve(ProofFn)) 10970 return true; 10971 } 10972 10973 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10974 auto ProveViaGuard = [&](const BasicBlock *Block) { 10975 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10976 return true; 10977 if (ProvingStrictComparison) { 10978 auto ProofFn = [&](ICmpInst::Predicate P) { 10979 return isImpliedViaGuard(Block, P, LHS, RHS); 10980 }; 10981 if (SplitAndProve(ProofFn)) 10982 return true; 10983 } 10984 return false; 10985 }; 10986 10987 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10988 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10989 const Instruction *CtxI = &BB->front(); 10990 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10991 return true; 10992 if (ProvingStrictComparison) { 10993 auto ProofFn = [&](ICmpInst::Predicate P) { 10994 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10995 }; 10996 if (SplitAndProve(ProofFn)) 10997 return true; 10998 } 10999 return false; 11000 }; 11001 11002 // Starting at the block's predecessor, climb up the predecessor chain, as long 11003 // as there are predecessors that can be found that have unique successors 11004 // leading to the original block. 11005 const Loop *ContainingLoop = LI.getLoopFor(BB); 11006 const BasicBlock *PredBB; 11007 if (ContainingLoop && ContainingLoop->getHeader() == BB) 11008 PredBB = ContainingLoop->getLoopPredecessor(); 11009 else 11010 PredBB = BB->getSinglePredecessor(); 11011 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11012 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11013 if (ProveViaGuard(Pair.first)) 11014 return true; 11015 11016 const BranchInst *LoopEntryPredicate = 11017 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11018 if (!LoopEntryPredicate || 11019 LoopEntryPredicate->isUnconditional()) 11020 continue; 11021 11022 if (ProveViaCond(LoopEntryPredicate->getCondition(), 11023 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 11024 return true; 11025 } 11026 11027 // Check conditions due to any @llvm.assume intrinsics. 11028 for (auto &AssumeVH : AC.assumptions()) { 11029 if (!AssumeVH) 11030 continue; 11031 auto *CI = cast<CallInst>(AssumeVH); 11032 if (!DT.dominates(CI, BB)) 11033 continue; 11034 11035 if (ProveViaCond(CI->getArgOperand(0), false)) 11036 return true; 11037 } 11038 11039 return false; 11040 } 11041 11042 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11043 ICmpInst::Predicate Pred, 11044 const SCEV *LHS, 11045 const SCEV *RHS) { 11046 // Interpret a null as meaning no loop, where there is obviously no guard 11047 // (interprocedural conditions notwithstanding). 11048 if (!L) 11049 return false; 11050 11051 // Both LHS and RHS must be available at loop entry. 11052 assert(isAvailableAtLoopEntry(LHS, L) && 11053 "LHS is not available at Loop Entry"); 11054 assert(isAvailableAtLoopEntry(RHS, L) && 11055 "RHS is not available at Loop Entry"); 11056 11057 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11058 return true; 11059 11060 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11061 } 11062 11063 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11064 const SCEV *RHS, 11065 const Value *FoundCondValue, bool Inverse, 11066 const Instruction *CtxI) { 11067 // False conditions implies anything. Do not bother analyzing it further. 11068 if (FoundCondValue == 11069 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11070 return true; 11071 11072 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11073 return false; 11074 11075 auto ClearOnExit = 11076 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11077 11078 // Recursively handle And and Or conditions. 11079 const Value *Op0, *Op1; 11080 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11081 if (!Inverse) 11082 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11083 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11084 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11085 if (Inverse) 11086 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11087 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11088 } 11089 11090 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11091 if (!ICI) return false; 11092 11093 // Now that we found a conditional branch that dominates the loop or controls 11094 // the loop latch. Check to see if it is the comparison we are looking for. 11095 ICmpInst::Predicate FoundPred; 11096 if (Inverse) 11097 FoundPred = ICI->getInversePredicate(); 11098 else 11099 FoundPred = ICI->getPredicate(); 11100 11101 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11102 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11103 11104 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11105 } 11106 11107 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11108 const SCEV *RHS, 11109 ICmpInst::Predicate FoundPred, 11110 const SCEV *FoundLHS, const SCEV *FoundRHS, 11111 const Instruction *CtxI) { 11112 // Balance the types. 11113 if (getTypeSizeInBits(LHS->getType()) < 11114 getTypeSizeInBits(FoundLHS->getType())) { 11115 // For unsigned and equality predicates, try to prove that both found 11116 // operands fit into narrow unsigned range. If so, try to prove facts in 11117 // narrow types. 11118 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11119 !FoundRHS->getType()->isPointerTy()) { 11120 auto *NarrowType = LHS->getType(); 11121 auto *WideType = FoundLHS->getType(); 11122 auto BitWidth = getTypeSizeInBits(NarrowType); 11123 const SCEV *MaxValue = getZeroExtendExpr( 11124 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11125 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11126 MaxValue) && 11127 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11128 MaxValue)) { 11129 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11130 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11131 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11132 TruncFoundRHS, CtxI)) 11133 return true; 11134 } 11135 } 11136 11137 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11138 return false; 11139 if (CmpInst::isSigned(Pred)) { 11140 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11141 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11142 } else { 11143 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11144 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11145 } 11146 } else if (getTypeSizeInBits(LHS->getType()) > 11147 getTypeSizeInBits(FoundLHS->getType())) { 11148 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11149 return false; 11150 if (CmpInst::isSigned(FoundPred)) { 11151 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11152 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11153 } else { 11154 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11155 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11156 } 11157 } 11158 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11159 FoundRHS, CtxI); 11160 } 11161 11162 bool ScalarEvolution::isImpliedCondBalancedTypes( 11163 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11164 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11165 const Instruction *CtxI) { 11166 assert(getTypeSizeInBits(LHS->getType()) == 11167 getTypeSizeInBits(FoundLHS->getType()) && 11168 "Types should be balanced!"); 11169 // Canonicalize the query to match the way instcombine will have 11170 // canonicalized the comparison. 11171 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11172 if (LHS == RHS) 11173 return CmpInst::isTrueWhenEqual(Pred); 11174 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11175 if (FoundLHS == FoundRHS) 11176 return CmpInst::isFalseWhenEqual(FoundPred); 11177 11178 // Check to see if we can make the LHS or RHS match. 11179 if (LHS == FoundRHS || RHS == FoundLHS) { 11180 if (isa<SCEVConstant>(RHS)) { 11181 std::swap(FoundLHS, FoundRHS); 11182 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11183 } else { 11184 std::swap(LHS, RHS); 11185 Pred = ICmpInst::getSwappedPredicate(Pred); 11186 } 11187 } 11188 11189 // Check whether the found predicate is the same as the desired predicate. 11190 if (FoundPred == Pred) 11191 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11192 11193 // Check whether swapping the found predicate makes it the same as the 11194 // desired predicate. 11195 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11196 // We can write the implication 11197 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11198 // using one of the following ways: 11199 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11200 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11201 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11202 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11203 // Forms 1. and 2. require swapping the operands of one condition. Don't 11204 // do this if it would break canonical constant/addrec ordering. 11205 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11206 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11207 CtxI); 11208 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11209 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11210 11211 // There's no clear preference between forms 3. and 4., try both. Avoid 11212 // forming getNotSCEV of pointer values as the resulting subtract is 11213 // not legal. 11214 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11215 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11216 FoundLHS, FoundRHS, CtxI)) 11217 return true; 11218 11219 if (!FoundLHS->getType()->isPointerTy() && 11220 !FoundRHS->getType()->isPointerTy() && 11221 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11222 getNotSCEV(FoundRHS), CtxI)) 11223 return true; 11224 11225 return false; 11226 } 11227 11228 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11229 CmpInst::Predicate P2) { 11230 assert(P1 != P2 && "Handled earlier!"); 11231 return CmpInst::isRelational(P2) && 11232 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11233 }; 11234 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11235 // Unsigned comparison is the same as signed comparison when both the 11236 // operands are non-negative or negative. 11237 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11238 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11239 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11240 // Create local copies that we can freely swap and canonicalize our 11241 // conditions to "le/lt". 11242 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11243 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11244 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11245 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11246 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11247 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11248 std::swap(CanonicalLHS, CanonicalRHS); 11249 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11250 } 11251 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11252 "Must be!"); 11253 assert((ICmpInst::isLT(CanonicalFoundPred) || 11254 ICmpInst::isLE(CanonicalFoundPred)) && 11255 "Must be!"); 11256 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11257 // Use implication: 11258 // x <u y && y >=s 0 --> x <s y. 11259 // If we can prove the left part, the right part is also proven. 11260 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11261 CanonicalRHS, CanonicalFoundLHS, 11262 CanonicalFoundRHS); 11263 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11264 // Use implication: 11265 // x <s y && y <s 0 --> x <u y. 11266 // If we can prove the left part, the right part is also proven. 11267 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11268 CanonicalRHS, CanonicalFoundLHS, 11269 CanonicalFoundRHS); 11270 } 11271 11272 // Check if we can make progress by sharpening ranges. 11273 if (FoundPred == ICmpInst::ICMP_NE && 11274 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11275 11276 const SCEVConstant *C = nullptr; 11277 const SCEV *V = nullptr; 11278 11279 if (isa<SCEVConstant>(FoundLHS)) { 11280 C = cast<SCEVConstant>(FoundLHS); 11281 V = FoundRHS; 11282 } else { 11283 C = cast<SCEVConstant>(FoundRHS); 11284 V = FoundLHS; 11285 } 11286 11287 // The guarding predicate tells us that C != V. If the known range 11288 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11289 // range we consider has to correspond to same signedness as the 11290 // predicate we're interested in folding. 11291 11292 APInt Min = ICmpInst::isSigned(Pred) ? 11293 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11294 11295 if (Min == C->getAPInt()) { 11296 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11297 // This is true even if (Min + 1) wraps around -- in case of 11298 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11299 11300 APInt SharperMin = Min + 1; 11301 11302 switch (Pred) { 11303 case ICmpInst::ICMP_SGE: 11304 case ICmpInst::ICMP_UGE: 11305 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11306 // RHS, we're done. 11307 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11308 CtxI)) 11309 return true; 11310 LLVM_FALLTHROUGH; 11311 11312 case ICmpInst::ICMP_SGT: 11313 case ICmpInst::ICMP_UGT: 11314 // We know from the range information that (V `Pred` Min || 11315 // V == Min). We know from the guarding condition that !(V 11316 // == Min). This gives us 11317 // 11318 // V `Pred` Min || V == Min && !(V == Min) 11319 // => V `Pred` Min 11320 // 11321 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11322 11323 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11324 return true; 11325 break; 11326 11327 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11328 case ICmpInst::ICMP_SLE: 11329 case ICmpInst::ICMP_ULE: 11330 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11331 LHS, V, getConstant(SharperMin), CtxI)) 11332 return true; 11333 LLVM_FALLTHROUGH; 11334 11335 case ICmpInst::ICMP_SLT: 11336 case ICmpInst::ICMP_ULT: 11337 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11338 LHS, V, getConstant(Min), CtxI)) 11339 return true; 11340 break; 11341 11342 default: 11343 // No change 11344 break; 11345 } 11346 } 11347 } 11348 11349 // Check whether the actual condition is beyond sufficient. 11350 if (FoundPred == ICmpInst::ICMP_EQ) 11351 if (ICmpInst::isTrueWhenEqual(Pred)) 11352 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11353 return true; 11354 if (Pred == ICmpInst::ICMP_NE) 11355 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11356 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11357 return true; 11358 11359 // Otherwise assume the worst. 11360 return false; 11361 } 11362 11363 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11364 const SCEV *&L, const SCEV *&R, 11365 SCEV::NoWrapFlags &Flags) { 11366 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11367 if (!AE || AE->getNumOperands() != 2) 11368 return false; 11369 11370 L = AE->getOperand(0); 11371 R = AE->getOperand(1); 11372 Flags = AE->getNoWrapFlags(); 11373 return true; 11374 } 11375 11376 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11377 const SCEV *Less) { 11378 // We avoid subtracting expressions here because this function is usually 11379 // fairly deep in the call stack (i.e. is called many times). 11380 11381 // X - X = 0. 11382 if (More == Less) 11383 return APInt(getTypeSizeInBits(More->getType()), 0); 11384 11385 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11386 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11387 const auto *MAR = cast<SCEVAddRecExpr>(More); 11388 11389 if (LAR->getLoop() != MAR->getLoop()) 11390 return None; 11391 11392 // We look at affine expressions only; not for correctness but to keep 11393 // getStepRecurrence cheap. 11394 if (!LAR->isAffine() || !MAR->isAffine()) 11395 return None; 11396 11397 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11398 return None; 11399 11400 Less = LAR->getStart(); 11401 More = MAR->getStart(); 11402 11403 // fall through 11404 } 11405 11406 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11407 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11408 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11409 return M - L; 11410 } 11411 11412 SCEV::NoWrapFlags Flags; 11413 const SCEV *LLess = nullptr, *RLess = nullptr; 11414 const SCEV *LMore = nullptr, *RMore = nullptr; 11415 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11416 // Compare (X + C1) vs X. 11417 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11418 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11419 if (RLess == More) 11420 return -(C1->getAPInt()); 11421 11422 // Compare X vs (X + C2). 11423 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11424 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11425 if (RMore == Less) 11426 return C2->getAPInt(); 11427 11428 // Compare (X + C1) vs (X + C2). 11429 if (C1 && C2 && RLess == RMore) 11430 return C2->getAPInt() - C1->getAPInt(); 11431 11432 return None; 11433 } 11434 11435 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11436 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11437 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11438 // Try to recognize the following pattern: 11439 // 11440 // FoundRHS = ... 11441 // ... 11442 // loop: 11443 // FoundLHS = {Start,+,W} 11444 // context_bb: // Basic block from the same loop 11445 // known(Pred, FoundLHS, FoundRHS) 11446 // 11447 // If some predicate is known in the context of a loop, it is also known on 11448 // each iteration of this loop, including the first iteration. Therefore, in 11449 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11450 // prove the original pred using this fact. 11451 if (!CtxI) 11452 return false; 11453 const BasicBlock *ContextBB = CtxI->getParent(); 11454 // Make sure AR varies in the context block. 11455 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11456 const Loop *L = AR->getLoop(); 11457 // Make sure that context belongs to the loop and executes on 1st iteration 11458 // (if it ever executes at all). 11459 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11460 return false; 11461 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11462 return false; 11463 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11464 } 11465 11466 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11467 const Loop *L = AR->getLoop(); 11468 // Make sure that context belongs to the loop and executes on 1st iteration 11469 // (if it ever executes at all). 11470 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11471 return false; 11472 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11473 return false; 11474 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11475 } 11476 11477 return false; 11478 } 11479 11480 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11481 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11482 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11483 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11484 return false; 11485 11486 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11487 if (!AddRecLHS) 11488 return false; 11489 11490 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11491 if (!AddRecFoundLHS) 11492 return false; 11493 11494 // We'd like to let SCEV reason about control dependencies, so we constrain 11495 // both the inequalities to be about add recurrences on the same loop. This 11496 // way we can use isLoopEntryGuardedByCond later. 11497 11498 const Loop *L = AddRecFoundLHS->getLoop(); 11499 if (L != AddRecLHS->getLoop()) 11500 return false; 11501 11502 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11503 // 11504 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11505 // ... (2) 11506 // 11507 // Informal proof for (2), assuming (1) [*]: 11508 // 11509 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11510 // 11511 // Then 11512 // 11513 // FoundLHS s< FoundRHS s< INT_MIN - C 11514 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11515 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11516 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11517 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11518 // <=> FoundLHS + C s< FoundRHS + C 11519 // 11520 // [*]: (1) can be proved by ruling out overflow. 11521 // 11522 // [**]: This can be proved by analyzing all the four possibilities: 11523 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11524 // (A s>= 0, B s>= 0). 11525 // 11526 // Note: 11527 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11528 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11529 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11530 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11531 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11532 // C)". 11533 11534 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11535 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11536 if (!LDiff || !RDiff || *LDiff != *RDiff) 11537 return false; 11538 11539 if (LDiff->isMinValue()) 11540 return true; 11541 11542 APInt FoundRHSLimit; 11543 11544 if (Pred == CmpInst::ICMP_ULT) { 11545 FoundRHSLimit = -(*RDiff); 11546 } else { 11547 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11548 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11549 } 11550 11551 // Try to prove (1) or (2), as needed. 11552 return isAvailableAtLoopEntry(FoundRHS, L) && 11553 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11554 getConstant(FoundRHSLimit)); 11555 } 11556 11557 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11558 const SCEV *LHS, const SCEV *RHS, 11559 const SCEV *FoundLHS, 11560 const SCEV *FoundRHS, unsigned Depth) { 11561 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11562 11563 auto ClearOnExit = make_scope_exit([&]() { 11564 if (LPhi) { 11565 bool Erased = PendingMerges.erase(LPhi); 11566 assert(Erased && "Failed to erase LPhi!"); 11567 (void)Erased; 11568 } 11569 if (RPhi) { 11570 bool Erased = PendingMerges.erase(RPhi); 11571 assert(Erased && "Failed to erase RPhi!"); 11572 (void)Erased; 11573 } 11574 }); 11575 11576 // Find respective Phis and check that they are not being pending. 11577 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11578 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11579 if (!PendingMerges.insert(Phi).second) 11580 return false; 11581 LPhi = Phi; 11582 } 11583 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11584 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11585 // If we detect a loop of Phi nodes being processed by this method, for 11586 // example: 11587 // 11588 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11589 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11590 // 11591 // we don't want to deal with a case that complex, so return conservative 11592 // answer false. 11593 if (!PendingMerges.insert(Phi).second) 11594 return false; 11595 RPhi = Phi; 11596 } 11597 11598 // If none of LHS, RHS is a Phi, nothing to do here. 11599 if (!LPhi && !RPhi) 11600 return false; 11601 11602 // If there is a SCEVUnknown Phi we are interested in, make it left. 11603 if (!LPhi) { 11604 std::swap(LHS, RHS); 11605 std::swap(FoundLHS, FoundRHS); 11606 std::swap(LPhi, RPhi); 11607 Pred = ICmpInst::getSwappedPredicate(Pred); 11608 } 11609 11610 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11611 const BasicBlock *LBB = LPhi->getParent(); 11612 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11613 11614 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11615 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11616 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11617 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11618 }; 11619 11620 if (RPhi && RPhi->getParent() == LBB) { 11621 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11622 // If we compare two Phis from the same block, and for each entry block 11623 // the predicate is true for incoming values from this block, then the 11624 // predicate is also true for the Phis. 11625 for (const BasicBlock *IncBB : predecessors(LBB)) { 11626 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11627 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11628 if (!ProvedEasily(L, R)) 11629 return false; 11630 } 11631 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11632 // Case two: RHS is also a Phi from the same basic block, and it is an 11633 // AddRec. It means that there is a loop which has both AddRec and Unknown 11634 // PHIs, for it we can compare incoming values of AddRec from above the loop 11635 // and latch with their respective incoming values of LPhi. 11636 // TODO: Generalize to handle loops with many inputs in a header. 11637 if (LPhi->getNumIncomingValues() != 2) return false; 11638 11639 auto *RLoop = RAR->getLoop(); 11640 auto *Predecessor = RLoop->getLoopPredecessor(); 11641 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11642 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11643 if (!ProvedEasily(L1, RAR->getStart())) 11644 return false; 11645 auto *Latch = RLoop->getLoopLatch(); 11646 assert(Latch && "Loop with AddRec with no latch?"); 11647 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11648 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11649 return false; 11650 } else { 11651 // In all other cases go over inputs of LHS and compare each of them to RHS, 11652 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11653 // At this point RHS is either a non-Phi, or it is a Phi from some block 11654 // different from LBB. 11655 for (const BasicBlock *IncBB : predecessors(LBB)) { 11656 // Check that RHS is available in this block. 11657 if (!dominates(RHS, IncBB)) 11658 return false; 11659 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11660 // Make sure L does not refer to a value from a potentially previous 11661 // iteration of a loop. 11662 if (!properlyDominates(L, IncBB)) 11663 return false; 11664 if (!ProvedEasily(L, RHS)) 11665 return false; 11666 } 11667 } 11668 return true; 11669 } 11670 11671 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11672 const SCEV *LHS, 11673 const SCEV *RHS, 11674 const SCEV *FoundLHS, 11675 const SCEV *FoundRHS) { 11676 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11677 // sure that we are dealing with same LHS. 11678 if (RHS == FoundRHS) { 11679 std::swap(LHS, RHS); 11680 std::swap(FoundLHS, FoundRHS); 11681 Pred = ICmpInst::getSwappedPredicate(Pred); 11682 } 11683 if (LHS != FoundLHS) 11684 return false; 11685 11686 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11687 if (!SUFoundRHS) 11688 return false; 11689 11690 Value *Shiftee, *ShiftValue; 11691 11692 using namespace PatternMatch; 11693 if (match(SUFoundRHS->getValue(), 11694 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11695 auto *ShifteeS = getSCEV(Shiftee); 11696 // Prove one of the following: 11697 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11698 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11699 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11700 // ---> LHS <s RHS 11701 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11702 // ---> LHS <=s RHS 11703 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11704 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11705 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11706 if (isKnownNonNegative(ShifteeS)) 11707 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11708 } 11709 11710 return false; 11711 } 11712 11713 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11714 const SCEV *LHS, const SCEV *RHS, 11715 const SCEV *FoundLHS, 11716 const SCEV *FoundRHS, 11717 const Instruction *CtxI) { 11718 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11719 return true; 11720 11721 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11722 return true; 11723 11724 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11725 return true; 11726 11727 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11728 CtxI)) 11729 return true; 11730 11731 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11732 FoundLHS, FoundRHS); 11733 } 11734 11735 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11736 template <typename MinMaxExprType> 11737 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11738 const SCEV *Candidate) { 11739 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11740 if (!MinMaxExpr) 11741 return false; 11742 11743 return is_contained(MinMaxExpr->operands(), Candidate); 11744 } 11745 11746 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11747 ICmpInst::Predicate Pred, 11748 const SCEV *LHS, const SCEV *RHS) { 11749 // If both sides are affine addrecs for the same loop, with equal 11750 // steps, and we know the recurrences don't wrap, then we only 11751 // need to check the predicate on the starting values. 11752 11753 if (!ICmpInst::isRelational(Pred)) 11754 return false; 11755 11756 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11757 if (!LAR) 11758 return false; 11759 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11760 if (!RAR) 11761 return false; 11762 if (LAR->getLoop() != RAR->getLoop()) 11763 return false; 11764 if (!LAR->isAffine() || !RAR->isAffine()) 11765 return false; 11766 11767 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11768 return false; 11769 11770 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11771 SCEV::FlagNSW : SCEV::FlagNUW; 11772 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11773 return false; 11774 11775 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11776 } 11777 11778 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11779 /// expression? 11780 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11781 ICmpInst::Predicate Pred, 11782 const SCEV *LHS, const SCEV *RHS) { 11783 switch (Pred) { 11784 default: 11785 return false; 11786 11787 case ICmpInst::ICMP_SGE: 11788 std::swap(LHS, RHS); 11789 LLVM_FALLTHROUGH; 11790 case ICmpInst::ICMP_SLE: 11791 return 11792 // min(A, ...) <= A 11793 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11794 // A <= max(A, ...) 11795 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11796 11797 case ICmpInst::ICMP_UGE: 11798 std::swap(LHS, RHS); 11799 LLVM_FALLTHROUGH; 11800 case ICmpInst::ICMP_ULE: 11801 return 11802 // min(A, ...) <= A 11803 // FIXME: what about umin_seq? 11804 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11805 // A <= max(A, ...) 11806 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11807 } 11808 11809 llvm_unreachable("covered switch fell through?!"); 11810 } 11811 11812 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11813 const SCEV *LHS, const SCEV *RHS, 11814 const SCEV *FoundLHS, 11815 const SCEV *FoundRHS, 11816 unsigned Depth) { 11817 assert(getTypeSizeInBits(LHS->getType()) == 11818 getTypeSizeInBits(RHS->getType()) && 11819 "LHS and RHS have different sizes?"); 11820 assert(getTypeSizeInBits(FoundLHS->getType()) == 11821 getTypeSizeInBits(FoundRHS->getType()) && 11822 "FoundLHS and FoundRHS have different sizes?"); 11823 // We want to avoid hurting the compile time with analysis of too big trees. 11824 if (Depth > MaxSCEVOperationsImplicationDepth) 11825 return false; 11826 11827 // We only want to work with GT comparison so far. 11828 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11829 Pred = CmpInst::getSwappedPredicate(Pred); 11830 std::swap(LHS, RHS); 11831 std::swap(FoundLHS, FoundRHS); 11832 } 11833 11834 // For unsigned, try to reduce it to corresponding signed comparison. 11835 if (Pred == ICmpInst::ICMP_UGT) 11836 // We can replace unsigned predicate with its signed counterpart if all 11837 // involved values are non-negative. 11838 // TODO: We could have better support for unsigned. 11839 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11840 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11841 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11842 // use this fact to prove that LHS and RHS are non-negative. 11843 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11844 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11845 FoundRHS) && 11846 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11847 FoundRHS)) 11848 Pred = ICmpInst::ICMP_SGT; 11849 } 11850 11851 if (Pred != ICmpInst::ICMP_SGT) 11852 return false; 11853 11854 auto GetOpFromSExt = [&](const SCEV *S) { 11855 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11856 return Ext->getOperand(); 11857 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11858 // the constant in some cases. 11859 return S; 11860 }; 11861 11862 // Acquire values from extensions. 11863 auto *OrigLHS = LHS; 11864 auto *OrigFoundLHS = FoundLHS; 11865 LHS = GetOpFromSExt(LHS); 11866 FoundLHS = GetOpFromSExt(FoundLHS); 11867 11868 // Is the SGT predicate can be proved trivially or using the found context. 11869 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11870 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11871 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11872 FoundRHS, Depth + 1); 11873 }; 11874 11875 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11876 // We want to avoid creation of any new non-constant SCEV. Since we are 11877 // going to compare the operands to RHS, we should be certain that we don't 11878 // need any size extensions for this. So let's decline all cases when the 11879 // sizes of types of LHS and RHS do not match. 11880 // TODO: Maybe try to get RHS from sext to catch more cases? 11881 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11882 return false; 11883 11884 // Should not overflow. 11885 if (!LHSAddExpr->hasNoSignedWrap()) 11886 return false; 11887 11888 auto *LL = LHSAddExpr->getOperand(0); 11889 auto *LR = LHSAddExpr->getOperand(1); 11890 auto *MinusOne = getMinusOne(RHS->getType()); 11891 11892 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11893 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11894 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11895 }; 11896 // Try to prove the following rule: 11897 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11898 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11899 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11900 return true; 11901 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11902 Value *LL, *LR; 11903 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11904 11905 using namespace llvm::PatternMatch; 11906 11907 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11908 // Rules for division. 11909 // We are going to perform some comparisons with Denominator and its 11910 // derivative expressions. In general case, creating a SCEV for it may 11911 // lead to a complex analysis of the entire graph, and in particular it 11912 // can request trip count recalculation for the same loop. This would 11913 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11914 // this, we only want to create SCEVs that are constants in this section. 11915 // So we bail if Denominator is not a constant. 11916 if (!isa<ConstantInt>(LR)) 11917 return false; 11918 11919 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11920 11921 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11922 // then a SCEV for the numerator already exists and matches with FoundLHS. 11923 auto *Numerator = getExistingSCEV(LL); 11924 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11925 return false; 11926 11927 // Make sure that the numerator matches with FoundLHS and the denominator 11928 // is positive. 11929 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11930 return false; 11931 11932 auto *DTy = Denominator->getType(); 11933 auto *FRHSTy = FoundRHS->getType(); 11934 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11935 // One of types is a pointer and another one is not. We cannot extend 11936 // them properly to a wider type, so let us just reject this case. 11937 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11938 // to avoid this check. 11939 return false; 11940 11941 // Given that: 11942 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11943 auto *WTy = getWiderType(DTy, FRHSTy); 11944 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11945 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11946 11947 // Try to prove the following rule: 11948 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11949 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11950 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11951 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11952 if (isKnownNonPositive(RHS) && 11953 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11954 return true; 11955 11956 // Try to prove the following rule: 11957 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11958 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11959 // If we divide it by Denominator > 2, then: 11960 // 1. If FoundLHS is negative, then the result is 0. 11961 // 2. If FoundLHS is non-negative, then the result is non-negative. 11962 // Anyways, the result is non-negative. 11963 auto *MinusOne = getMinusOne(WTy); 11964 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11965 if (isKnownNegative(RHS) && 11966 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11967 return true; 11968 } 11969 } 11970 11971 // If our expression contained SCEVUnknown Phis, and we split it down and now 11972 // need to prove something for them, try to prove the predicate for every 11973 // possible incoming values of those Phis. 11974 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11975 return true; 11976 11977 return false; 11978 } 11979 11980 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11981 const SCEV *LHS, const SCEV *RHS) { 11982 // zext x u<= sext x, sext x s<= zext x 11983 switch (Pred) { 11984 case ICmpInst::ICMP_SGE: 11985 std::swap(LHS, RHS); 11986 LLVM_FALLTHROUGH; 11987 case ICmpInst::ICMP_SLE: { 11988 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11989 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11990 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11991 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11992 return true; 11993 break; 11994 } 11995 case ICmpInst::ICMP_UGE: 11996 std::swap(LHS, RHS); 11997 LLVM_FALLTHROUGH; 11998 case ICmpInst::ICMP_ULE: { 11999 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 12000 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 12001 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 12002 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 12003 return true; 12004 break; 12005 } 12006 default: 12007 break; 12008 }; 12009 return false; 12010 } 12011 12012 bool 12013 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12014 const SCEV *LHS, const SCEV *RHS) { 12015 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12016 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12017 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12018 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12019 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12020 } 12021 12022 bool 12023 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12024 const SCEV *LHS, const SCEV *RHS, 12025 const SCEV *FoundLHS, 12026 const SCEV *FoundRHS) { 12027 switch (Pred) { 12028 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12029 case ICmpInst::ICMP_EQ: 12030 case ICmpInst::ICMP_NE: 12031 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12032 return true; 12033 break; 12034 case ICmpInst::ICMP_SLT: 12035 case ICmpInst::ICMP_SLE: 12036 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12037 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12038 return true; 12039 break; 12040 case ICmpInst::ICMP_SGT: 12041 case ICmpInst::ICMP_SGE: 12042 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12043 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12044 return true; 12045 break; 12046 case ICmpInst::ICMP_ULT: 12047 case ICmpInst::ICMP_ULE: 12048 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12049 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12050 return true; 12051 break; 12052 case ICmpInst::ICMP_UGT: 12053 case ICmpInst::ICMP_UGE: 12054 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12055 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12056 return true; 12057 break; 12058 } 12059 12060 // Maybe it can be proved via operations? 12061 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12062 return true; 12063 12064 return false; 12065 } 12066 12067 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12068 const SCEV *LHS, 12069 const SCEV *RHS, 12070 const SCEV *FoundLHS, 12071 const SCEV *FoundRHS) { 12072 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12073 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12074 // reduce the compile time impact of this optimization. 12075 return false; 12076 12077 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12078 if (!Addend) 12079 return false; 12080 12081 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12082 12083 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12084 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12085 ConstantRange FoundLHSRange = 12086 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12087 12088 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12089 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12090 12091 // We can also compute the range of values for `LHS` that satisfy the 12092 // consequent, "`LHS` `Pred` `RHS`": 12093 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12094 // The antecedent implies the consequent if every value of `LHS` that 12095 // satisfies the antecedent also satisfies the consequent. 12096 return LHSRange.icmp(Pred, ConstRHS); 12097 } 12098 12099 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12100 bool IsSigned) { 12101 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12102 12103 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12104 const SCEV *One = getOne(Stride->getType()); 12105 12106 if (IsSigned) { 12107 APInt MaxRHS = getSignedRangeMax(RHS); 12108 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12109 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12110 12111 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12112 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12113 } 12114 12115 APInt MaxRHS = getUnsignedRangeMax(RHS); 12116 APInt MaxValue = APInt::getMaxValue(BitWidth); 12117 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12118 12119 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12120 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12121 } 12122 12123 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12124 bool IsSigned) { 12125 12126 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12127 const SCEV *One = getOne(Stride->getType()); 12128 12129 if (IsSigned) { 12130 APInt MinRHS = getSignedRangeMin(RHS); 12131 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12132 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12133 12134 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12135 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12136 } 12137 12138 APInt MinRHS = getUnsignedRangeMin(RHS); 12139 APInt MinValue = APInt::getMinValue(BitWidth); 12140 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12141 12142 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12143 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12144 } 12145 12146 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12147 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12148 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12149 // expression fixes the case of N=0. 12150 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12151 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12152 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12153 } 12154 12155 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12156 const SCEV *Stride, 12157 const SCEV *End, 12158 unsigned BitWidth, 12159 bool IsSigned) { 12160 // The logic in this function assumes we can represent a positive stride. 12161 // If we can't, the backedge-taken count must be zero. 12162 if (IsSigned && BitWidth == 1) 12163 return getZero(Stride->getType()); 12164 12165 // This code has only been closely audited for negative strides in the 12166 // unsigned comparison case, it may be correct for signed comparison, but 12167 // that needs to be established. 12168 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12169 "Stride is expected strictly positive for signed case!"); 12170 12171 // Calculate the maximum backedge count based on the range of values 12172 // permitted by Start, End, and Stride. 12173 APInt MinStart = 12174 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12175 12176 APInt MinStride = 12177 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12178 12179 // We assume either the stride is positive, or the backedge-taken count 12180 // is zero. So force StrideForMaxBECount to be at least one. 12181 APInt One(BitWidth, 1); 12182 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12183 : APIntOps::umax(One, MinStride); 12184 12185 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12186 : APInt::getMaxValue(BitWidth); 12187 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12188 12189 // Although End can be a MAX expression we estimate MaxEnd considering only 12190 // the case End = RHS of the loop termination condition. This is safe because 12191 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12192 // taken count. 12193 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12194 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12195 12196 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12197 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12198 : APIntOps::umax(MaxEnd, MinStart); 12199 12200 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12201 getConstant(StrideForMaxBECount) /* Step */); 12202 } 12203 12204 ScalarEvolution::ExitLimit 12205 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12206 const Loop *L, bool IsSigned, 12207 bool ControlsExit, bool AllowPredicates) { 12208 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12209 12210 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12211 bool PredicatedIV = false; 12212 12213 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12214 // Can we prove this loop *must* be UB if overflow of IV occurs? 12215 // Reasoning goes as follows: 12216 // * Suppose the IV did self wrap. 12217 // * If Stride evenly divides the iteration space, then once wrap 12218 // occurs, the loop must revisit the same values. 12219 // * We know that RHS is invariant, and that none of those values 12220 // caused this exit to be taken previously. Thus, this exit is 12221 // dynamically dead. 12222 // * If this is the sole exit, then a dead exit implies the loop 12223 // must be infinite if there are no abnormal exits. 12224 // * If the loop were infinite, then it must either not be mustprogress 12225 // or have side effects. Otherwise, it must be UB. 12226 // * It can't (by assumption), be UB so we have contradicted our 12227 // premise and can conclude the IV did not in fact self-wrap. 12228 if (!isLoopInvariant(RHS, L)) 12229 return false; 12230 12231 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12232 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12233 return false; 12234 12235 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12236 return false; 12237 12238 return loopIsFiniteByAssumption(L); 12239 }; 12240 12241 if (!IV) { 12242 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12243 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12244 if (AR && AR->getLoop() == L && AR->isAffine()) { 12245 auto canProveNUW = [&]() { 12246 if (!isLoopInvariant(RHS, L)) 12247 return false; 12248 12249 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12250 // We need the sequence defined by AR to strictly increase in the 12251 // unsigned integer domain for the logic below to hold. 12252 return false; 12253 12254 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12255 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12256 // If RHS <=u Limit, then there must exist a value V in the sequence 12257 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12258 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12259 // overflow occurs. This limit also implies that a signed comparison 12260 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12261 // the high bits on both sides must be zero. 12262 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12263 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12264 Limit = Limit.zext(OuterBitWidth); 12265 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12266 }; 12267 auto Flags = AR->getNoWrapFlags(); 12268 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12269 Flags = setFlags(Flags, SCEV::FlagNUW); 12270 12271 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12272 if (AR->hasNoUnsignedWrap()) { 12273 // Emulate what getZeroExtendExpr would have done during construction 12274 // if we'd been able to infer the fact just above at that time. 12275 const SCEV *Step = AR->getStepRecurrence(*this); 12276 Type *Ty = ZExt->getType(); 12277 auto *S = getAddRecExpr( 12278 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12279 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12280 IV = dyn_cast<SCEVAddRecExpr>(S); 12281 } 12282 } 12283 } 12284 } 12285 12286 12287 if (!IV && AllowPredicates) { 12288 // Try to make this an AddRec using runtime tests, in the first X 12289 // iterations of this loop, where X is the SCEV expression found by the 12290 // algorithm below. 12291 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12292 PredicatedIV = true; 12293 } 12294 12295 // Avoid weird loops 12296 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12297 return getCouldNotCompute(); 12298 12299 // A precondition of this method is that the condition being analyzed 12300 // reaches an exiting branch which dominates the latch. Given that, we can 12301 // assume that an increment which violates the nowrap specification and 12302 // produces poison must cause undefined behavior when the resulting poison 12303 // value is branched upon and thus we can conclude that the backedge is 12304 // taken no more often than would be required to produce that poison value. 12305 // Note that a well defined loop can exit on the iteration which violates 12306 // the nowrap specification if there is another exit (either explicit or 12307 // implicit/exceptional) which causes the loop to execute before the 12308 // exiting instruction we're analyzing would trigger UB. 12309 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12310 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12311 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12312 12313 const SCEV *Stride = IV->getStepRecurrence(*this); 12314 12315 bool PositiveStride = isKnownPositive(Stride); 12316 12317 // Avoid negative or zero stride values. 12318 if (!PositiveStride) { 12319 // We can compute the correct backedge taken count for loops with unknown 12320 // strides if we can prove that the loop is not an infinite loop with side 12321 // effects. Here's the loop structure we are trying to handle - 12322 // 12323 // i = start 12324 // do { 12325 // A[i] = i; 12326 // i += s; 12327 // } while (i < end); 12328 // 12329 // The backedge taken count for such loops is evaluated as - 12330 // (max(end, start + stride) - start - 1) /u stride 12331 // 12332 // The additional preconditions that we need to check to prove correctness 12333 // of the above formula is as follows - 12334 // 12335 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12336 // NoWrap flag). 12337 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12338 // no side effects within the loop) 12339 // c) loop has a single static exit (with no abnormal exits) 12340 // 12341 // Precondition a) implies that if the stride is negative, this is a single 12342 // trip loop. The backedge taken count formula reduces to zero in this case. 12343 // 12344 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12345 // then a zero stride means the backedge can't be taken without executing 12346 // undefined behavior. 12347 // 12348 // The positive stride case is the same as isKnownPositive(Stride) returning 12349 // true (original behavior of the function). 12350 // 12351 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12352 !loopHasNoAbnormalExits(L)) 12353 return getCouldNotCompute(); 12354 12355 // This bailout is protecting the logic in computeMaxBECountForLT which 12356 // has not yet been sufficiently auditted or tested with negative strides. 12357 // We used to filter out all known-non-positive cases here, we're in the 12358 // process of being less restrictive bit by bit. 12359 if (IsSigned && isKnownNonPositive(Stride)) 12360 return getCouldNotCompute(); 12361 12362 if (!isKnownNonZero(Stride)) { 12363 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12364 // if it might eventually be greater than start and if so, on which 12365 // iteration. We can't even produce a useful upper bound. 12366 if (!isLoopInvariant(RHS, L)) 12367 return getCouldNotCompute(); 12368 12369 // We allow a potentially zero stride, but we need to divide by stride 12370 // below. Since the loop can't be infinite and this check must control 12371 // the sole exit, we can infer the exit must be taken on the first 12372 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12373 // we know the numerator in the divides below must be zero, so we can 12374 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12375 // and produce the right result. 12376 // FIXME: Handle the case where Stride is poison? 12377 auto wouldZeroStrideBeUB = [&]() { 12378 // Proof by contradiction. Suppose the stride were zero. If we can 12379 // prove that the backedge *is* taken on the first iteration, then since 12380 // we know this condition controls the sole exit, we must have an 12381 // infinite loop. We can't have a (well defined) infinite loop per 12382 // check just above. 12383 // Note: The (Start - Stride) term is used to get the start' term from 12384 // (start' + stride,+,stride). Remember that we only care about the 12385 // result of this expression when stride == 0 at runtime. 12386 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12387 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12388 }; 12389 if (!wouldZeroStrideBeUB()) { 12390 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12391 } 12392 } 12393 } else if (!Stride->isOne() && !NoWrap) { 12394 auto isUBOnWrap = [&]() { 12395 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12396 // follows trivially from the fact that every (un)signed-wrapped, but 12397 // not self-wrapped value must be LT than the last value before 12398 // (un)signed wrap. Since we know that last value didn't exit, nor 12399 // will any smaller one. 12400 return canAssumeNoSelfWrap(IV); 12401 }; 12402 12403 // Avoid proven overflow cases: this will ensure that the backedge taken 12404 // count will not generate any unsigned overflow. Relaxed no-overflow 12405 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12406 // undefined behaviors like the case of C language. 12407 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12408 return getCouldNotCompute(); 12409 } 12410 12411 // On all paths just preceeding, we established the following invariant: 12412 // IV can be assumed not to overflow up to and including the exiting 12413 // iteration. We proved this in one of two ways: 12414 // 1) We can show overflow doesn't occur before the exiting iteration 12415 // 1a) canIVOverflowOnLT, and b) step of one 12416 // 2) We can show that if overflow occurs, the loop must execute UB 12417 // before any possible exit. 12418 // Note that we have not yet proved RHS invariant (in general). 12419 12420 const SCEV *Start = IV->getStart(); 12421 12422 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12423 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12424 // Use integer-typed versions for actual computation; we can't subtract 12425 // pointers in general. 12426 const SCEV *OrigStart = Start; 12427 const SCEV *OrigRHS = RHS; 12428 if (Start->getType()->isPointerTy()) { 12429 Start = getLosslessPtrToIntExpr(Start); 12430 if (isa<SCEVCouldNotCompute>(Start)) 12431 return Start; 12432 } 12433 if (RHS->getType()->isPointerTy()) { 12434 RHS = getLosslessPtrToIntExpr(RHS); 12435 if (isa<SCEVCouldNotCompute>(RHS)) 12436 return RHS; 12437 } 12438 12439 // When the RHS is not invariant, we do not know the end bound of the loop and 12440 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12441 // calculate the MaxBECount, given the start, stride and max value for the end 12442 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12443 // checked above). 12444 if (!isLoopInvariant(RHS, L)) { 12445 const SCEV *MaxBECount = computeMaxBECountForLT( 12446 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12447 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12448 false /*MaxOrZero*/, Predicates); 12449 } 12450 12451 // We use the expression (max(End,Start)-Start)/Stride to describe the 12452 // backedge count, as if the backedge is taken at least once max(End,Start) 12453 // is End and so the result is as above, and if not max(End,Start) is Start 12454 // so we get a backedge count of zero. 12455 const SCEV *BECount = nullptr; 12456 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12457 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12458 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12459 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12460 // Can we prove (max(RHS,Start) > Start - Stride? 12461 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12462 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12463 // In this case, we can use a refined formula for computing backedge taken 12464 // count. The general formula remains: 12465 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12466 // We want to use the alternate formula: 12467 // "((End - 1) - (Start - Stride)) /u Stride" 12468 // Let's do a quick case analysis to show these are equivalent under 12469 // our precondition that max(RHS,Start) > Start - Stride. 12470 // * For RHS <= Start, the backedge-taken count must be zero. 12471 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12472 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12473 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12474 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12475 // this to the stride of 1 case. 12476 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12477 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12478 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12479 // "((RHS - (Start - Stride) - 1) /u Stride". 12480 // Our preconditions trivially imply no overflow in that form. 12481 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12482 const SCEV *Numerator = 12483 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12484 BECount = getUDivExpr(Numerator, Stride); 12485 } 12486 12487 const SCEV *BECountIfBackedgeTaken = nullptr; 12488 if (!BECount) { 12489 auto canProveRHSGreaterThanEqualStart = [&]() { 12490 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12491 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12492 return true; 12493 12494 // (RHS > Start - 1) implies RHS >= Start. 12495 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12496 // "Start - 1" doesn't overflow. 12497 // * For signed comparison, if Start - 1 does overflow, it's equal 12498 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12499 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12500 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12501 // 12502 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12503 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12504 auto *StartMinusOne = getAddExpr(OrigStart, 12505 getMinusOne(OrigStart->getType())); 12506 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12507 }; 12508 12509 // If we know that RHS >= Start in the context of loop, then we know that 12510 // max(RHS, Start) = RHS at this point. 12511 const SCEV *End; 12512 if (canProveRHSGreaterThanEqualStart()) { 12513 End = RHS; 12514 } else { 12515 // If RHS < Start, the backedge will be taken zero times. So in 12516 // general, we can write the backedge-taken count as: 12517 // 12518 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12519 // 12520 // We convert it to the following to make it more convenient for SCEV: 12521 // 12522 // ceil(max(RHS, Start) - Start) / Stride 12523 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12524 12525 // See what would happen if we assume the backedge is taken. This is 12526 // used to compute MaxBECount. 12527 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12528 } 12529 12530 // At this point, we know: 12531 // 12532 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12533 // 2. The index variable doesn't overflow. 12534 // 12535 // Therefore, we know N exists such that 12536 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12537 // doesn't overflow. 12538 // 12539 // Using this information, try to prove whether the addition in 12540 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12541 const SCEV *One = getOne(Stride->getType()); 12542 bool MayAddOverflow = [&] { 12543 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12544 if (StrideC->getAPInt().isPowerOf2()) { 12545 // Suppose Stride is a power of two, and Start/End are unsigned 12546 // integers. Let UMAX be the largest representable unsigned 12547 // integer. 12548 // 12549 // By the preconditions of this function, we know 12550 // "(Start + Stride * N) >= End", and this doesn't overflow. 12551 // As a formula: 12552 // 12553 // End <= (Start + Stride * N) <= UMAX 12554 // 12555 // Subtracting Start from all the terms: 12556 // 12557 // End - Start <= Stride * N <= UMAX - Start 12558 // 12559 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12560 // 12561 // End - Start <= Stride * N <= UMAX 12562 // 12563 // Stride * N is a multiple of Stride. Therefore, 12564 // 12565 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12566 // 12567 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12568 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12569 // 12570 // End - Start <= Stride * N <= UMAX - Stride - 1 12571 // 12572 // Dropping the middle term: 12573 // 12574 // End - Start <= UMAX - Stride - 1 12575 // 12576 // Adding Stride - 1 to both sides: 12577 // 12578 // (End - Start) + (Stride - 1) <= UMAX 12579 // 12580 // In other words, the addition doesn't have unsigned overflow. 12581 // 12582 // A similar proof works if we treat Start/End as signed values. 12583 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12584 // use signed max instead of unsigned max. Note that we're trying 12585 // to prove a lack of unsigned overflow in either case. 12586 return false; 12587 } 12588 } 12589 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12590 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12591 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12592 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12593 // 12594 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12595 return false; 12596 } 12597 return true; 12598 }(); 12599 12600 const SCEV *Delta = getMinusSCEV(End, Start); 12601 if (!MayAddOverflow) { 12602 // floor((D + (S - 1)) / S) 12603 // We prefer this formulation if it's legal because it's fewer operations. 12604 BECount = 12605 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12606 } else { 12607 BECount = getUDivCeilSCEV(Delta, Stride); 12608 } 12609 } 12610 12611 const SCEV *MaxBECount; 12612 bool MaxOrZero = false; 12613 if (isa<SCEVConstant>(BECount)) { 12614 MaxBECount = BECount; 12615 } else if (BECountIfBackedgeTaken && 12616 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12617 // If we know exactly how many times the backedge will be taken if it's 12618 // taken at least once, then the backedge count will either be that or 12619 // zero. 12620 MaxBECount = BECountIfBackedgeTaken; 12621 MaxOrZero = true; 12622 } else { 12623 MaxBECount = computeMaxBECountForLT( 12624 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12625 } 12626 12627 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12628 !isa<SCEVCouldNotCompute>(BECount)) 12629 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12630 12631 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12632 } 12633 12634 ScalarEvolution::ExitLimit 12635 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12636 const Loop *L, bool IsSigned, 12637 bool ControlsExit, bool AllowPredicates) { 12638 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12639 // We handle only IV > Invariant 12640 if (!isLoopInvariant(RHS, L)) 12641 return getCouldNotCompute(); 12642 12643 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12644 if (!IV && AllowPredicates) 12645 // Try to make this an AddRec using runtime tests, in the first X 12646 // iterations of this loop, where X is the SCEV expression found by the 12647 // algorithm below. 12648 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12649 12650 // Avoid weird loops 12651 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12652 return getCouldNotCompute(); 12653 12654 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12655 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12656 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12657 12658 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12659 12660 // Avoid negative or zero stride values 12661 if (!isKnownPositive(Stride)) 12662 return getCouldNotCompute(); 12663 12664 // Avoid proven overflow cases: this will ensure that the backedge taken count 12665 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12666 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12667 // behaviors like the case of C language. 12668 if (!Stride->isOne() && !NoWrap) 12669 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12670 return getCouldNotCompute(); 12671 12672 const SCEV *Start = IV->getStart(); 12673 const SCEV *End = RHS; 12674 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12675 // If we know that Start >= RHS in the context of loop, then we know that 12676 // min(RHS, Start) = RHS at this point. 12677 if (isLoopEntryGuardedByCond( 12678 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12679 End = RHS; 12680 else 12681 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12682 } 12683 12684 if (Start->getType()->isPointerTy()) { 12685 Start = getLosslessPtrToIntExpr(Start); 12686 if (isa<SCEVCouldNotCompute>(Start)) 12687 return Start; 12688 } 12689 if (End->getType()->isPointerTy()) { 12690 End = getLosslessPtrToIntExpr(End); 12691 if (isa<SCEVCouldNotCompute>(End)) 12692 return End; 12693 } 12694 12695 // Compute ((Start - End) + (Stride - 1)) / Stride. 12696 // FIXME: This can overflow. Holding off on fixing this for now; 12697 // howManyGreaterThans will hopefully be gone soon. 12698 const SCEV *One = getOne(Stride->getType()); 12699 const SCEV *BECount = getUDivExpr( 12700 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12701 12702 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12703 : getUnsignedRangeMax(Start); 12704 12705 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12706 : getUnsignedRangeMin(Stride); 12707 12708 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12709 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12710 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12711 12712 // Although End can be a MIN expression we estimate MinEnd considering only 12713 // the case End = RHS. This is safe because in the other case (Start - End) 12714 // is zero, leading to a zero maximum backedge taken count. 12715 APInt MinEnd = 12716 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12717 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12718 12719 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12720 ? BECount 12721 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12722 getConstant(MinStride)); 12723 12724 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12725 MaxBECount = BECount; 12726 12727 return ExitLimit(BECount, MaxBECount, false, Predicates); 12728 } 12729 12730 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12731 ScalarEvolution &SE) const { 12732 if (Range.isFullSet()) // Infinite loop. 12733 return SE.getCouldNotCompute(); 12734 12735 // If the start is a non-zero constant, shift the range to simplify things. 12736 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12737 if (!SC->getValue()->isZero()) { 12738 SmallVector<const SCEV *, 4> Operands(operands()); 12739 Operands[0] = SE.getZero(SC->getType()); 12740 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12741 getNoWrapFlags(FlagNW)); 12742 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12743 return ShiftedAddRec->getNumIterationsInRange( 12744 Range.subtract(SC->getAPInt()), SE); 12745 // This is strange and shouldn't happen. 12746 return SE.getCouldNotCompute(); 12747 } 12748 12749 // The only time we can solve this is when we have all constant indices. 12750 // Otherwise, we cannot determine the overflow conditions. 12751 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12752 return SE.getCouldNotCompute(); 12753 12754 // Okay at this point we know that all elements of the chrec are constants and 12755 // that the start element is zero. 12756 12757 // First check to see if the range contains zero. If not, the first 12758 // iteration exits. 12759 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12760 if (!Range.contains(APInt(BitWidth, 0))) 12761 return SE.getZero(getType()); 12762 12763 if (isAffine()) { 12764 // If this is an affine expression then we have this situation: 12765 // Solve {0,+,A} in Range === Ax in Range 12766 12767 // We know that zero is in the range. If A is positive then we know that 12768 // the upper value of the range must be the first possible exit value. 12769 // If A is negative then the lower of the range is the last possible loop 12770 // value. Also note that we already checked for a full range. 12771 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12772 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12773 12774 // The exit value should be (End+A)/A. 12775 APInt ExitVal = (End + A).udiv(A); 12776 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12777 12778 // Evaluate at the exit value. If we really did fall out of the valid 12779 // range, then we computed our trip count, otherwise wrap around or other 12780 // things must have happened. 12781 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12782 if (Range.contains(Val->getValue())) 12783 return SE.getCouldNotCompute(); // Something strange happened 12784 12785 // Ensure that the previous value is in the range. 12786 assert(Range.contains( 12787 EvaluateConstantChrecAtConstant(this, 12788 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12789 "Linear scev computation is off in a bad way!"); 12790 return SE.getConstant(ExitValue); 12791 } 12792 12793 if (isQuadratic()) { 12794 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12795 return SE.getConstant(S.getValue()); 12796 } 12797 12798 return SE.getCouldNotCompute(); 12799 } 12800 12801 const SCEVAddRecExpr * 12802 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12803 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12804 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12805 // but in this case we cannot guarantee that the value returned will be an 12806 // AddRec because SCEV does not have a fixed point where it stops 12807 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12808 // may happen if we reach arithmetic depth limit while simplifying. So we 12809 // construct the returned value explicitly. 12810 SmallVector<const SCEV *, 3> Ops; 12811 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12812 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12813 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12814 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12815 // We know that the last operand is not a constant zero (otherwise it would 12816 // have been popped out earlier). This guarantees us that if the result has 12817 // the same last operand, then it will also not be popped out, meaning that 12818 // the returned value will be an AddRec. 12819 const SCEV *Last = getOperand(getNumOperands() - 1); 12820 assert(!Last->isZero() && "Recurrency with zero step?"); 12821 Ops.push_back(Last); 12822 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12823 SCEV::FlagAnyWrap)); 12824 } 12825 12826 // Return true when S contains at least an undef value. 12827 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12828 return SCEVExprContains(S, [](const SCEV *S) { 12829 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12830 return isa<UndefValue>(SU->getValue()); 12831 return false; 12832 }); 12833 } 12834 12835 /// Return the size of an element read or written by Inst. 12836 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12837 Type *Ty; 12838 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12839 Ty = Store->getValueOperand()->getType(); 12840 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12841 Ty = Load->getType(); 12842 else 12843 return nullptr; 12844 12845 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12846 return getSizeOfExpr(ETy, Ty); 12847 } 12848 12849 //===----------------------------------------------------------------------===// 12850 // SCEVCallbackVH Class Implementation 12851 //===----------------------------------------------------------------------===// 12852 12853 void ScalarEvolution::SCEVCallbackVH::deleted() { 12854 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12855 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12856 SE->ConstantEvolutionLoopExitValue.erase(PN); 12857 SE->eraseValueFromMap(getValPtr()); 12858 // this now dangles! 12859 } 12860 12861 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12862 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12863 12864 // Forget all the expressions associated with users of the old value, 12865 // so that future queries will recompute the expressions using the new 12866 // value. 12867 Value *Old = getValPtr(); 12868 SmallVector<User *, 16> Worklist(Old->users()); 12869 SmallPtrSet<User *, 8> Visited; 12870 while (!Worklist.empty()) { 12871 User *U = Worklist.pop_back_val(); 12872 // Deleting the Old value will cause this to dangle. Postpone 12873 // that until everything else is done. 12874 if (U == Old) 12875 continue; 12876 if (!Visited.insert(U).second) 12877 continue; 12878 if (PHINode *PN = dyn_cast<PHINode>(U)) 12879 SE->ConstantEvolutionLoopExitValue.erase(PN); 12880 SE->eraseValueFromMap(U); 12881 llvm::append_range(Worklist, U->users()); 12882 } 12883 // Delete the Old value. 12884 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12885 SE->ConstantEvolutionLoopExitValue.erase(PN); 12886 SE->eraseValueFromMap(Old); 12887 // this now dangles! 12888 } 12889 12890 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12891 : CallbackVH(V), SE(se) {} 12892 12893 //===----------------------------------------------------------------------===// 12894 // ScalarEvolution Class Implementation 12895 //===----------------------------------------------------------------------===// 12896 12897 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12898 AssumptionCache &AC, DominatorTree &DT, 12899 LoopInfo &LI) 12900 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12901 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12902 LoopDispositions(64), BlockDispositions(64) { 12903 // To use guards for proving predicates, we need to scan every instruction in 12904 // relevant basic blocks, and not just terminators. Doing this is a waste of 12905 // time if the IR does not actually contain any calls to 12906 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12907 // 12908 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12909 // to _add_ guards to the module when there weren't any before, and wants 12910 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12911 // efficient in lieu of being smart in that rather obscure case. 12912 12913 auto *GuardDecl = F.getParent()->getFunction( 12914 Intrinsic::getName(Intrinsic::experimental_guard)); 12915 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12916 } 12917 12918 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12919 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12920 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12921 ValueExprMap(std::move(Arg.ValueExprMap)), 12922 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12923 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12924 PendingMerges(std::move(Arg.PendingMerges)), 12925 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12926 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12927 PredicatedBackedgeTakenCounts( 12928 std::move(Arg.PredicatedBackedgeTakenCounts)), 12929 BECountUsers(std::move(Arg.BECountUsers)), 12930 ConstantEvolutionLoopExitValue( 12931 std::move(Arg.ConstantEvolutionLoopExitValue)), 12932 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12933 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12934 LoopDispositions(std::move(Arg.LoopDispositions)), 12935 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12936 BlockDispositions(std::move(Arg.BlockDispositions)), 12937 SCEVUsers(std::move(Arg.SCEVUsers)), 12938 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12939 SignedRanges(std::move(Arg.SignedRanges)), 12940 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12941 UniquePreds(std::move(Arg.UniquePreds)), 12942 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12943 LoopUsers(std::move(Arg.LoopUsers)), 12944 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12945 FirstUnknown(Arg.FirstUnknown) { 12946 Arg.FirstUnknown = nullptr; 12947 } 12948 12949 ScalarEvolution::~ScalarEvolution() { 12950 // Iterate through all the SCEVUnknown instances and call their 12951 // destructors, so that they release their references to their values. 12952 for (SCEVUnknown *U = FirstUnknown; U;) { 12953 SCEVUnknown *Tmp = U; 12954 U = U->Next; 12955 Tmp->~SCEVUnknown(); 12956 } 12957 FirstUnknown = nullptr; 12958 12959 ExprValueMap.clear(); 12960 ValueExprMap.clear(); 12961 HasRecMap.clear(); 12962 BackedgeTakenCounts.clear(); 12963 PredicatedBackedgeTakenCounts.clear(); 12964 12965 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12966 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12967 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12968 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12969 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12970 } 12971 12972 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12973 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12974 } 12975 12976 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12977 const Loop *L) { 12978 // Print all inner loops first 12979 for (Loop *I : *L) 12980 PrintLoopInfo(OS, SE, I); 12981 12982 OS << "Loop "; 12983 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12984 OS << ": "; 12985 12986 SmallVector<BasicBlock *, 8> ExitingBlocks; 12987 L->getExitingBlocks(ExitingBlocks); 12988 if (ExitingBlocks.size() != 1) 12989 OS << "<multiple exits> "; 12990 12991 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12992 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12993 else 12994 OS << "Unpredictable backedge-taken count.\n"; 12995 12996 if (ExitingBlocks.size() > 1) 12997 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12998 OS << " exit count for " << ExitingBlock->getName() << ": " 12999 << *SE->getExitCount(L, ExitingBlock) << "\n"; 13000 } 13001 13002 OS << "Loop "; 13003 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13004 OS << ": "; 13005 13006 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 13007 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 13008 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13009 OS << ", actual taken count either this or zero."; 13010 } else { 13011 OS << "Unpredictable max backedge-taken count. "; 13012 } 13013 13014 OS << "\n" 13015 "Loop "; 13016 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13017 OS << ": "; 13018 13019 SmallVector<const SCEVPredicate *, 4> Preds; 13020 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13021 if (!isa<SCEVCouldNotCompute>(PBT)) { 13022 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13023 OS << " Predicates:\n"; 13024 for (auto *P : Preds) 13025 P->print(OS, 4); 13026 } else { 13027 OS << "Unpredictable predicated backedge-taken count. "; 13028 } 13029 OS << "\n"; 13030 13031 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13032 OS << "Loop "; 13033 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13034 OS << ": "; 13035 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13036 } 13037 } 13038 13039 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13040 switch (LD) { 13041 case ScalarEvolution::LoopVariant: 13042 return "Variant"; 13043 case ScalarEvolution::LoopInvariant: 13044 return "Invariant"; 13045 case ScalarEvolution::LoopComputable: 13046 return "Computable"; 13047 } 13048 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13049 } 13050 13051 void ScalarEvolution::print(raw_ostream &OS) const { 13052 // ScalarEvolution's implementation of the print method is to print 13053 // out SCEV values of all instructions that are interesting. Doing 13054 // this potentially causes it to create new SCEV objects though, 13055 // which technically conflicts with the const qualifier. This isn't 13056 // observable from outside the class though, so casting away the 13057 // const isn't dangerous. 13058 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13059 13060 if (ClassifyExpressions) { 13061 OS << "Classifying expressions for: "; 13062 F.printAsOperand(OS, /*PrintType=*/false); 13063 OS << "\n"; 13064 for (Instruction &I : instructions(F)) 13065 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13066 OS << I << '\n'; 13067 OS << " --> "; 13068 const SCEV *SV = SE.getSCEV(&I); 13069 SV->print(OS); 13070 if (!isa<SCEVCouldNotCompute>(SV)) { 13071 OS << " U: "; 13072 SE.getUnsignedRange(SV).print(OS); 13073 OS << " S: "; 13074 SE.getSignedRange(SV).print(OS); 13075 } 13076 13077 const Loop *L = LI.getLoopFor(I.getParent()); 13078 13079 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13080 if (AtUse != SV) { 13081 OS << " --> "; 13082 AtUse->print(OS); 13083 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13084 OS << " U: "; 13085 SE.getUnsignedRange(AtUse).print(OS); 13086 OS << " S: "; 13087 SE.getSignedRange(AtUse).print(OS); 13088 } 13089 } 13090 13091 if (L) { 13092 OS << "\t\t" "Exits: "; 13093 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13094 if (!SE.isLoopInvariant(ExitValue, L)) { 13095 OS << "<<Unknown>>"; 13096 } else { 13097 OS << *ExitValue; 13098 } 13099 13100 bool First = true; 13101 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13102 if (First) { 13103 OS << "\t\t" "LoopDispositions: { "; 13104 First = false; 13105 } else { 13106 OS << ", "; 13107 } 13108 13109 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13110 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13111 } 13112 13113 for (auto *InnerL : depth_first(L)) { 13114 if (InnerL == L) 13115 continue; 13116 if (First) { 13117 OS << "\t\t" "LoopDispositions: { "; 13118 First = false; 13119 } else { 13120 OS << ", "; 13121 } 13122 13123 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13124 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13125 } 13126 13127 OS << " }"; 13128 } 13129 13130 OS << "\n"; 13131 } 13132 } 13133 13134 OS << "Determining loop execution counts for: "; 13135 F.printAsOperand(OS, /*PrintType=*/false); 13136 OS << "\n"; 13137 for (Loop *I : LI) 13138 PrintLoopInfo(OS, &SE, I); 13139 } 13140 13141 ScalarEvolution::LoopDisposition 13142 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13143 auto &Values = LoopDispositions[S]; 13144 for (auto &V : Values) { 13145 if (V.getPointer() == L) 13146 return V.getInt(); 13147 } 13148 Values.emplace_back(L, LoopVariant); 13149 LoopDisposition D = computeLoopDisposition(S, L); 13150 auto &Values2 = LoopDispositions[S]; 13151 for (auto &V : llvm::reverse(Values2)) { 13152 if (V.getPointer() == L) { 13153 V.setInt(D); 13154 break; 13155 } 13156 } 13157 return D; 13158 } 13159 13160 ScalarEvolution::LoopDisposition 13161 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13162 switch (S->getSCEVType()) { 13163 case scConstant: 13164 return LoopInvariant; 13165 case scPtrToInt: 13166 case scTruncate: 13167 case scZeroExtend: 13168 case scSignExtend: 13169 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13170 case scAddRecExpr: { 13171 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13172 13173 // If L is the addrec's loop, it's computable. 13174 if (AR->getLoop() == L) 13175 return LoopComputable; 13176 13177 // Add recurrences are never invariant in the function-body (null loop). 13178 if (!L) 13179 return LoopVariant; 13180 13181 // Everything that is not defined at loop entry is variant. 13182 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13183 return LoopVariant; 13184 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13185 " dominate the contained loop's header?"); 13186 13187 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13188 if (AR->getLoop()->contains(L)) 13189 return LoopInvariant; 13190 13191 // This recurrence is variant w.r.t. L if any of its operands 13192 // are variant. 13193 for (auto *Op : AR->operands()) 13194 if (!isLoopInvariant(Op, L)) 13195 return LoopVariant; 13196 13197 // Otherwise it's loop-invariant. 13198 return LoopInvariant; 13199 } 13200 case scAddExpr: 13201 case scMulExpr: 13202 case scUMaxExpr: 13203 case scSMaxExpr: 13204 case scUMinExpr: 13205 case scSMinExpr: 13206 case scSequentialUMinExpr: { 13207 bool HasVarying = false; 13208 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13209 LoopDisposition D = getLoopDisposition(Op, L); 13210 if (D == LoopVariant) 13211 return LoopVariant; 13212 if (D == LoopComputable) 13213 HasVarying = true; 13214 } 13215 return HasVarying ? LoopComputable : LoopInvariant; 13216 } 13217 case scUDivExpr: { 13218 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13219 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13220 if (LD == LoopVariant) 13221 return LoopVariant; 13222 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13223 if (RD == LoopVariant) 13224 return LoopVariant; 13225 return (LD == LoopInvariant && RD == LoopInvariant) ? 13226 LoopInvariant : LoopComputable; 13227 } 13228 case scUnknown: 13229 // All non-instruction values are loop invariant. All instructions are loop 13230 // invariant if they are not contained in the specified loop. 13231 // Instructions are never considered invariant in the function body 13232 // (null loop) because they are defined within the "loop". 13233 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13234 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13235 return LoopInvariant; 13236 case scCouldNotCompute: 13237 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13238 } 13239 llvm_unreachable("Unknown SCEV kind!"); 13240 } 13241 13242 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13243 return getLoopDisposition(S, L) == LoopInvariant; 13244 } 13245 13246 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13247 return getLoopDisposition(S, L) == LoopComputable; 13248 } 13249 13250 ScalarEvolution::BlockDisposition 13251 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13252 auto &Values = BlockDispositions[S]; 13253 for (auto &V : Values) { 13254 if (V.getPointer() == BB) 13255 return V.getInt(); 13256 } 13257 Values.emplace_back(BB, DoesNotDominateBlock); 13258 BlockDisposition D = computeBlockDisposition(S, BB); 13259 auto &Values2 = BlockDispositions[S]; 13260 for (auto &V : llvm::reverse(Values2)) { 13261 if (V.getPointer() == BB) { 13262 V.setInt(D); 13263 break; 13264 } 13265 } 13266 return D; 13267 } 13268 13269 ScalarEvolution::BlockDisposition 13270 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13271 switch (S->getSCEVType()) { 13272 case scConstant: 13273 return ProperlyDominatesBlock; 13274 case scPtrToInt: 13275 case scTruncate: 13276 case scZeroExtend: 13277 case scSignExtend: 13278 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13279 case scAddRecExpr: { 13280 // This uses a "dominates" query instead of "properly dominates" query 13281 // to test for proper dominance too, because the instruction which 13282 // produces the addrec's value is a PHI, and a PHI effectively properly 13283 // dominates its entire containing block. 13284 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13285 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13286 return DoesNotDominateBlock; 13287 13288 // Fall through into SCEVNAryExpr handling. 13289 LLVM_FALLTHROUGH; 13290 } 13291 case scAddExpr: 13292 case scMulExpr: 13293 case scUMaxExpr: 13294 case scSMaxExpr: 13295 case scUMinExpr: 13296 case scSMinExpr: 13297 case scSequentialUMinExpr: { 13298 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13299 bool Proper = true; 13300 for (const SCEV *NAryOp : NAry->operands()) { 13301 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13302 if (D == DoesNotDominateBlock) 13303 return DoesNotDominateBlock; 13304 if (D == DominatesBlock) 13305 Proper = false; 13306 } 13307 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13308 } 13309 case scUDivExpr: { 13310 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13311 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13312 BlockDisposition LD = getBlockDisposition(LHS, BB); 13313 if (LD == DoesNotDominateBlock) 13314 return DoesNotDominateBlock; 13315 BlockDisposition RD = getBlockDisposition(RHS, BB); 13316 if (RD == DoesNotDominateBlock) 13317 return DoesNotDominateBlock; 13318 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13319 ProperlyDominatesBlock : DominatesBlock; 13320 } 13321 case scUnknown: 13322 if (Instruction *I = 13323 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13324 if (I->getParent() == BB) 13325 return DominatesBlock; 13326 if (DT.properlyDominates(I->getParent(), BB)) 13327 return ProperlyDominatesBlock; 13328 return DoesNotDominateBlock; 13329 } 13330 return ProperlyDominatesBlock; 13331 case scCouldNotCompute: 13332 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13333 } 13334 llvm_unreachable("Unknown SCEV kind!"); 13335 } 13336 13337 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13338 return getBlockDisposition(S, BB) >= DominatesBlock; 13339 } 13340 13341 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13342 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13343 } 13344 13345 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13346 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13347 } 13348 13349 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13350 bool Predicated) { 13351 auto &BECounts = 13352 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13353 auto It = BECounts.find(L); 13354 if (It != BECounts.end()) { 13355 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13356 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13357 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13358 assert(UserIt != BECountUsers.end()); 13359 UserIt->second.erase({L, Predicated}); 13360 } 13361 } 13362 BECounts.erase(It); 13363 } 13364 } 13365 13366 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13367 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13368 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13369 13370 while (!Worklist.empty()) { 13371 const SCEV *Curr = Worklist.pop_back_val(); 13372 auto Users = SCEVUsers.find(Curr); 13373 if (Users != SCEVUsers.end()) 13374 for (auto *User : Users->second) 13375 if (ToForget.insert(User).second) 13376 Worklist.push_back(User); 13377 } 13378 13379 for (auto *S : ToForget) 13380 forgetMemoizedResultsImpl(S); 13381 13382 for (auto I = PredicatedSCEVRewrites.begin(); 13383 I != PredicatedSCEVRewrites.end();) { 13384 std::pair<const SCEV *, const Loop *> Entry = I->first; 13385 if (ToForget.count(Entry.first)) 13386 PredicatedSCEVRewrites.erase(I++); 13387 else 13388 ++I; 13389 } 13390 } 13391 13392 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13393 LoopDispositions.erase(S); 13394 BlockDispositions.erase(S); 13395 UnsignedRanges.erase(S); 13396 SignedRanges.erase(S); 13397 HasRecMap.erase(S); 13398 MinTrailingZerosCache.erase(S); 13399 13400 auto ExprIt = ExprValueMap.find(S); 13401 if (ExprIt != ExprValueMap.end()) { 13402 for (auto &ValueAndOffset : ExprIt->second) { 13403 if (ValueAndOffset.second == nullptr) { 13404 auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first); 13405 if (ValueIt != ValueExprMap.end()) 13406 ValueExprMap.erase(ValueIt); 13407 } 13408 } 13409 ExprValueMap.erase(ExprIt); 13410 } 13411 13412 auto ScopeIt = ValuesAtScopes.find(S); 13413 if (ScopeIt != ValuesAtScopes.end()) { 13414 for (const auto &Pair : ScopeIt->second) 13415 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13416 erase_value(ValuesAtScopesUsers[Pair.second], 13417 std::make_pair(Pair.first, S)); 13418 ValuesAtScopes.erase(ScopeIt); 13419 } 13420 13421 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13422 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13423 for (const auto &Pair : ScopeUserIt->second) 13424 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13425 ValuesAtScopesUsers.erase(ScopeUserIt); 13426 } 13427 13428 auto BEUsersIt = BECountUsers.find(S); 13429 if (BEUsersIt != BECountUsers.end()) { 13430 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13431 auto Copy = BEUsersIt->second; 13432 for (const auto &Pair : Copy) 13433 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13434 BECountUsers.erase(BEUsersIt); 13435 } 13436 } 13437 13438 void 13439 ScalarEvolution::getUsedLoops(const SCEV *S, 13440 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13441 struct FindUsedLoops { 13442 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13443 : LoopsUsed(LoopsUsed) {} 13444 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13445 bool follow(const SCEV *S) { 13446 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13447 LoopsUsed.insert(AR->getLoop()); 13448 return true; 13449 } 13450 13451 bool isDone() const { return false; } 13452 }; 13453 13454 FindUsedLoops F(LoopsUsed); 13455 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13456 } 13457 13458 void ScalarEvolution::verify() const { 13459 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13460 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13461 13462 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13463 13464 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13465 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13466 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13467 13468 const SCEV *visitConstant(const SCEVConstant *Constant) { 13469 return SE.getConstant(Constant->getAPInt()); 13470 } 13471 13472 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13473 return SE.getUnknown(Expr->getValue()); 13474 } 13475 13476 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13477 return SE.getCouldNotCompute(); 13478 } 13479 }; 13480 13481 SCEVMapper SCM(SE2); 13482 13483 while (!LoopStack.empty()) { 13484 auto *L = LoopStack.pop_back_val(); 13485 llvm::append_range(LoopStack, *L); 13486 13487 auto *CurBECount = SCM.visit( 13488 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13489 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13490 13491 if (CurBECount == SE2.getCouldNotCompute() || 13492 NewBECount == SE2.getCouldNotCompute()) { 13493 // NB! This situation is legal, but is very suspicious -- whatever pass 13494 // change the loop to make a trip count go from could not compute to 13495 // computable or vice-versa *should have* invalidated SCEV. However, we 13496 // choose not to assert here (for now) since we don't want false 13497 // positives. 13498 continue; 13499 } 13500 13501 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13502 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13503 // not propagate undef aggressively). This means we can (and do) fail 13504 // verification in cases where a transform makes the trip count of a loop 13505 // go from "undef" to "undef+1" (say). The transform is fine, since in 13506 // both cases the loop iterates "undef" times, but SCEV thinks we 13507 // increased the trip count of the loop by 1 incorrectly. 13508 continue; 13509 } 13510 13511 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13512 SE.getTypeSizeInBits(NewBECount->getType())) 13513 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13514 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13515 SE.getTypeSizeInBits(NewBECount->getType())) 13516 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13517 13518 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13519 13520 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13521 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13522 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13523 dbgs() << "Old: " << *CurBECount << "\n"; 13524 dbgs() << "New: " << *NewBECount << "\n"; 13525 dbgs() << "Delta: " << *Delta << "\n"; 13526 std::abort(); 13527 } 13528 } 13529 13530 // Collect all valid loops currently in LoopInfo. 13531 SmallPtrSet<Loop *, 32> ValidLoops; 13532 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13533 while (!Worklist.empty()) { 13534 Loop *L = Worklist.pop_back_val(); 13535 if (ValidLoops.insert(L).second) 13536 Worklist.append(L->begin(), L->end()); 13537 } 13538 for (auto &KV : ValueExprMap) { 13539 #ifndef NDEBUG 13540 // Check for SCEV expressions referencing invalid/deleted loops. 13541 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13542 assert(ValidLoops.contains(AR->getLoop()) && 13543 "AddRec references invalid loop"); 13544 } 13545 #endif 13546 13547 // Check that the value is also part of the reverse map. 13548 auto It = ExprValueMap.find(KV.second); 13549 if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) { 13550 dbgs() << "Value " << *KV.first 13551 << " is in ValueExprMap but not in ExprValueMap\n"; 13552 std::abort(); 13553 } 13554 } 13555 13556 for (const auto &KV : ExprValueMap) { 13557 for (const auto &ValueAndOffset : KV.second) { 13558 if (ValueAndOffset.second != nullptr) 13559 continue; 13560 13561 auto It = ValueExprMap.find_as(ValueAndOffset.first); 13562 if (It == ValueExprMap.end()) { 13563 dbgs() << "Value " << *ValueAndOffset.first 13564 << " is in ExprValueMap but not in ValueExprMap\n"; 13565 std::abort(); 13566 } 13567 if (It->second != KV.first) { 13568 dbgs() << "Value " << *ValueAndOffset.first 13569 << " mapped to " << *It->second 13570 << " rather than " << *KV.first << "\n"; 13571 std::abort(); 13572 } 13573 } 13574 } 13575 13576 // Verify integrity of SCEV users. 13577 for (const auto &S : UniqueSCEVs) { 13578 SmallVector<const SCEV *, 4> Ops; 13579 collectUniqueOps(&S, Ops); 13580 for (const auto *Op : Ops) { 13581 // We do not store dependencies of constants. 13582 if (isa<SCEVConstant>(Op)) 13583 continue; 13584 auto It = SCEVUsers.find(Op); 13585 if (It != SCEVUsers.end() && It->second.count(&S)) 13586 continue; 13587 dbgs() << "Use of operand " << *Op << " by user " << S 13588 << " is not being tracked!\n"; 13589 std::abort(); 13590 } 13591 } 13592 13593 // Verify integrity of ValuesAtScopes users. 13594 for (const auto &ValueAndVec : ValuesAtScopes) { 13595 const SCEV *Value = ValueAndVec.first; 13596 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13597 const Loop *L = LoopAndValueAtScope.first; 13598 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13599 if (!isa<SCEVConstant>(ValueAtScope)) { 13600 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13601 if (It != ValuesAtScopesUsers.end() && 13602 is_contained(It->second, std::make_pair(L, Value))) 13603 continue; 13604 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13605 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13606 std::abort(); 13607 } 13608 } 13609 } 13610 13611 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13612 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13613 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13614 const Loop *L = LoopAndValue.first; 13615 const SCEV *Value = LoopAndValue.second; 13616 assert(!isa<SCEVConstant>(Value)); 13617 auto It = ValuesAtScopes.find(Value); 13618 if (It != ValuesAtScopes.end() && 13619 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13620 continue; 13621 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13622 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13623 std::abort(); 13624 } 13625 } 13626 13627 // Verify integrity of BECountUsers. 13628 auto VerifyBECountUsers = [&](bool Predicated) { 13629 auto &BECounts = 13630 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13631 for (const auto &LoopAndBEInfo : BECounts) { 13632 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13633 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13634 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13635 if (UserIt != BECountUsers.end() && 13636 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13637 continue; 13638 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13639 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13640 std::abort(); 13641 } 13642 } 13643 } 13644 }; 13645 VerifyBECountUsers(/* Predicated */ false); 13646 VerifyBECountUsers(/* Predicated */ true); 13647 } 13648 13649 bool ScalarEvolution::invalidate( 13650 Function &F, const PreservedAnalyses &PA, 13651 FunctionAnalysisManager::Invalidator &Inv) { 13652 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13653 // of its dependencies is invalidated. 13654 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13655 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13656 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13657 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13658 Inv.invalidate<LoopAnalysis>(F, PA); 13659 } 13660 13661 AnalysisKey ScalarEvolutionAnalysis::Key; 13662 13663 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13664 FunctionAnalysisManager &AM) { 13665 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13666 AM.getResult<AssumptionAnalysis>(F), 13667 AM.getResult<DominatorTreeAnalysis>(F), 13668 AM.getResult<LoopAnalysis>(F)); 13669 } 13670 13671 PreservedAnalyses 13672 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13673 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13674 return PreservedAnalyses::all(); 13675 } 13676 13677 PreservedAnalyses 13678 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13679 // For compatibility with opt's -analyze feature under legacy pass manager 13680 // which was not ported to NPM. This keeps tests using 13681 // update_analyze_test_checks.py working. 13682 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13683 << F.getName() << "':\n"; 13684 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13685 return PreservedAnalyses::all(); 13686 } 13687 13688 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13689 "Scalar Evolution Analysis", false, true) 13690 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13691 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13692 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13693 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13694 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13695 "Scalar Evolution Analysis", false, true) 13696 13697 char ScalarEvolutionWrapperPass::ID = 0; 13698 13699 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13700 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13701 } 13702 13703 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13704 SE.reset(new ScalarEvolution( 13705 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13706 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13707 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13708 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13709 return false; 13710 } 13711 13712 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13713 13714 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13715 SE->print(OS); 13716 } 13717 13718 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13719 if (!VerifySCEV) 13720 return; 13721 13722 SE->verify(); 13723 } 13724 13725 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13726 AU.setPreservesAll(); 13727 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13728 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13729 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13730 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13731 } 13732 13733 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13734 const SCEV *RHS) { 13735 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13736 } 13737 13738 const SCEVPredicate * 13739 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13740 const SCEV *LHS, const SCEV *RHS) { 13741 FoldingSetNodeID ID; 13742 assert(LHS->getType() == RHS->getType() && 13743 "Type mismatch between LHS and RHS"); 13744 // Unique this node based on the arguments 13745 ID.AddInteger(SCEVPredicate::P_Compare); 13746 ID.AddInteger(Pred); 13747 ID.AddPointer(LHS); 13748 ID.AddPointer(RHS); 13749 void *IP = nullptr; 13750 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13751 return S; 13752 SCEVComparePredicate *Eq = new (SCEVAllocator) 13753 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13754 UniquePreds.InsertNode(Eq, IP); 13755 return Eq; 13756 } 13757 13758 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13759 const SCEVAddRecExpr *AR, 13760 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13761 FoldingSetNodeID ID; 13762 // Unique this node based on the arguments 13763 ID.AddInteger(SCEVPredicate::P_Wrap); 13764 ID.AddPointer(AR); 13765 ID.AddInteger(AddedFlags); 13766 void *IP = nullptr; 13767 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13768 return S; 13769 auto *OF = new (SCEVAllocator) 13770 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13771 UniquePreds.InsertNode(OF, IP); 13772 return OF; 13773 } 13774 13775 namespace { 13776 13777 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13778 public: 13779 13780 /// Rewrites \p S in the context of a loop L and the SCEV predication 13781 /// infrastructure. 13782 /// 13783 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13784 /// equivalences present in \p Pred. 13785 /// 13786 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13787 /// \p NewPreds such that the result will be an AddRecExpr. 13788 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13789 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13790 const SCEVPredicate *Pred) { 13791 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13792 return Rewriter.visit(S); 13793 } 13794 13795 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13796 if (Pred) { 13797 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13798 for (auto *Pred : U->getPredicates()) 13799 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13800 if (IPred->getLHS() == Expr && 13801 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13802 return IPred->getRHS(); 13803 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13804 if (IPred->getLHS() == Expr && 13805 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13806 return IPred->getRHS(); 13807 } 13808 } 13809 return convertToAddRecWithPreds(Expr); 13810 } 13811 13812 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13813 const SCEV *Operand = visit(Expr->getOperand()); 13814 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13815 if (AR && AR->getLoop() == L && AR->isAffine()) { 13816 // This couldn't be folded because the operand didn't have the nuw 13817 // flag. Add the nusw flag as an assumption that we could make. 13818 const SCEV *Step = AR->getStepRecurrence(SE); 13819 Type *Ty = Expr->getType(); 13820 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13821 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13822 SE.getSignExtendExpr(Step, Ty), L, 13823 AR->getNoWrapFlags()); 13824 } 13825 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13826 } 13827 13828 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13829 const SCEV *Operand = visit(Expr->getOperand()); 13830 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13831 if (AR && AR->getLoop() == L && AR->isAffine()) { 13832 // This couldn't be folded because the operand didn't have the nsw 13833 // flag. Add the nssw flag as an assumption that we could make. 13834 const SCEV *Step = AR->getStepRecurrence(SE); 13835 Type *Ty = Expr->getType(); 13836 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13837 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13838 SE.getSignExtendExpr(Step, Ty), L, 13839 AR->getNoWrapFlags()); 13840 } 13841 return SE.getSignExtendExpr(Operand, Expr->getType()); 13842 } 13843 13844 private: 13845 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13846 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13847 const SCEVPredicate *Pred) 13848 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13849 13850 bool addOverflowAssumption(const SCEVPredicate *P) { 13851 if (!NewPreds) { 13852 // Check if we've already made this assumption. 13853 return Pred && Pred->implies(P); 13854 } 13855 NewPreds->insert(P); 13856 return true; 13857 } 13858 13859 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13860 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13861 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13862 return addOverflowAssumption(A); 13863 } 13864 13865 // If \p Expr represents a PHINode, we try to see if it can be represented 13866 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13867 // to add this predicate as a runtime overflow check, we return the AddRec. 13868 // If \p Expr does not meet these conditions (is not a PHI node, or we 13869 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13870 // return \p Expr. 13871 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13872 if (!isa<PHINode>(Expr->getValue())) 13873 return Expr; 13874 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13875 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13876 if (!PredicatedRewrite) 13877 return Expr; 13878 for (auto *P : PredicatedRewrite->second){ 13879 // Wrap predicates from outer loops are not supported. 13880 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13881 if (L != WP->getExpr()->getLoop()) 13882 return Expr; 13883 } 13884 if (!addOverflowAssumption(P)) 13885 return Expr; 13886 } 13887 return PredicatedRewrite->first; 13888 } 13889 13890 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13891 const SCEVPredicate *Pred; 13892 const Loop *L; 13893 }; 13894 13895 } // end anonymous namespace 13896 13897 const SCEV * 13898 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13899 const SCEVPredicate &Preds) { 13900 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13901 } 13902 13903 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13904 const SCEV *S, const Loop *L, 13905 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13906 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13907 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13908 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13909 13910 if (!AddRec) 13911 return nullptr; 13912 13913 // Since the transformation was successful, we can now transfer the SCEV 13914 // predicates. 13915 for (auto *P : TransformPreds) 13916 Preds.insert(P); 13917 13918 return AddRec; 13919 } 13920 13921 /// SCEV predicates 13922 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13923 SCEVPredicateKind Kind) 13924 : FastID(ID), Kind(Kind) {} 13925 13926 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13927 const ICmpInst::Predicate Pred, 13928 const SCEV *LHS, const SCEV *RHS) 13929 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13930 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13931 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13932 } 13933 13934 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13935 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13936 13937 if (!Op) 13938 return false; 13939 13940 if (Pred != ICmpInst::ICMP_EQ) 13941 return false; 13942 13943 return Op->LHS == LHS && Op->RHS == RHS; 13944 } 13945 13946 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 13947 13948 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 13949 if (Pred == ICmpInst::ICMP_EQ) 13950 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13951 else 13952 OS.indent(Depth) << "Compare predicate: " << *LHS 13953 << " " << CmpInst::getPredicateName(Pred) << ") " 13954 << *RHS << "\n"; 13955 13956 } 13957 13958 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13959 const SCEVAddRecExpr *AR, 13960 IncrementWrapFlags Flags) 13961 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13962 13963 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 13964 13965 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13966 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13967 13968 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13969 } 13970 13971 bool SCEVWrapPredicate::isAlwaysTrue() const { 13972 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13973 IncrementWrapFlags IFlags = Flags; 13974 13975 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13976 IFlags = clearFlags(IFlags, IncrementNSSW); 13977 13978 return IFlags == IncrementAnyWrap; 13979 } 13980 13981 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13982 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13983 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13984 OS << "<nusw>"; 13985 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13986 OS << "<nssw>"; 13987 OS << "\n"; 13988 } 13989 13990 SCEVWrapPredicate::IncrementWrapFlags 13991 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13992 ScalarEvolution &SE) { 13993 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13994 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13995 13996 // We can safely transfer the NSW flag as NSSW. 13997 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13998 ImpliedFlags = IncrementNSSW; 13999 14000 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14001 // If the increment is positive, the SCEV NUW flag will also imply the 14002 // WrapPredicate NUSW flag. 14003 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14004 if (Step->getValue()->getValue().isNonNegative()) 14005 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14006 } 14007 14008 return ImpliedFlags; 14009 } 14010 14011 /// Union predicates don't get cached so create a dummy set ID for it. 14012 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14013 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14014 for (auto *P : Preds) 14015 add(P); 14016 } 14017 14018 bool SCEVUnionPredicate::isAlwaysTrue() const { 14019 return all_of(Preds, 14020 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14021 } 14022 14023 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14024 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14025 return all_of(Set->Preds, 14026 [this](const SCEVPredicate *I) { return this->implies(I); }); 14027 14028 return any_of(Preds, 14029 [N](const SCEVPredicate *I) { return I->implies(N); }); 14030 } 14031 14032 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14033 for (auto Pred : Preds) 14034 Pred->print(OS, Depth); 14035 } 14036 14037 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14038 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14039 for (auto Pred : Set->Preds) 14040 add(Pred); 14041 return; 14042 } 14043 14044 Preds.push_back(N); 14045 } 14046 14047 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14048 Loop &L) 14049 : SE(SE), L(L) { 14050 SmallVector<const SCEVPredicate*, 4> Empty; 14051 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14052 } 14053 14054 void ScalarEvolution::registerUser(const SCEV *User, 14055 ArrayRef<const SCEV *> Ops) { 14056 for (auto *Op : Ops) 14057 // We do not expect that forgetting cached data for SCEVConstants will ever 14058 // open any prospects for sharpening or introduce any correctness issues, 14059 // so we don't bother storing their dependencies. 14060 if (!isa<SCEVConstant>(Op)) 14061 SCEVUsers[Op].insert(User); 14062 } 14063 14064 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14065 const SCEV *Expr = SE.getSCEV(V); 14066 RewriteEntry &Entry = RewriteMap[Expr]; 14067 14068 // If we already have an entry and the version matches, return it. 14069 if (Entry.second && Generation == Entry.first) 14070 return Entry.second; 14071 14072 // We found an entry but it's stale. Rewrite the stale entry 14073 // according to the current predicate. 14074 if (Entry.second) 14075 Expr = Entry.second; 14076 14077 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14078 Entry = {Generation, NewSCEV}; 14079 14080 return NewSCEV; 14081 } 14082 14083 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14084 if (!BackedgeCount) { 14085 SmallVector<const SCEVPredicate *, 4> Preds; 14086 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14087 for (auto *P : Preds) 14088 addPredicate(*P); 14089 } 14090 return BackedgeCount; 14091 } 14092 14093 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14094 if (Preds->implies(&Pred)) 14095 return; 14096 14097 auto &OldPreds = Preds->getPredicates(); 14098 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14099 NewPreds.push_back(&Pred); 14100 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14101 updateGeneration(); 14102 } 14103 14104 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14105 return *Preds; 14106 } 14107 14108 void PredicatedScalarEvolution::updateGeneration() { 14109 // If the generation number wrapped recompute everything. 14110 if (++Generation == 0) { 14111 for (auto &II : RewriteMap) { 14112 const SCEV *Rewritten = II.second.second; 14113 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14114 } 14115 } 14116 } 14117 14118 void PredicatedScalarEvolution::setNoOverflow( 14119 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14120 const SCEV *Expr = getSCEV(V); 14121 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14122 14123 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14124 14125 // Clear the statically implied flags. 14126 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14127 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14128 14129 auto II = FlagsMap.insert({V, Flags}); 14130 if (!II.second) 14131 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14132 } 14133 14134 bool PredicatedScalarEvolution::hasNoOverflow( 14135 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14136 const SCEV *Expr = getSCEV(V); 14137 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14138 14139 Flags = SCEVWrapPredicate::clearFlags( 14140 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14141 14142 auto II = FlagsMap.find(V); 14143 14144 if (II != FlagsMap.end()) 14145 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14146 14147 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14148 } 14149 14150 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14151 const SCEV *Expr = this->getSCEV(V); 14152 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14153 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14154 14155 if (!New) 14156 return nullptr; 14157 14158 for (auto *P : NewPreds) 14159 addPredicate(*P); 14160 14161 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14162 return New; 14163 } 14164 14165 PredicatedScalarEvolution::PredicatedScalarEvolution( 14166 const PredicatedScalarEvolution &Init) 14167 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14168 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14169 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14170 for (auto I : Init.FlagsMap) 14171 FlagsMap.insert(I); 14172 } 14173 14174 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14175 // For each block. 14176 for (auto *BB : L.getBlocks()) 14177 for (auto &I : *BB) { 14178 if (!SE.isSCEVable(I.getType())) 14179 continue; 14180 14181 auto *Expr = SE.getSCEV(&I); 14182 auto II = RewriteMap.find(Expr); 14183 14184 if (II == RewriteMap.end()) 14185 continue; 14186 14187 // Don't print things that are not interesting. 14188 if (II->second.second == Expr) 14189 continue; 14190 14191 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14192 OS.indent(Depth + 2) << *Expr << "\n"; 14193 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14194 } 14195 } 14196 14197 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14198 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14199 // for URem with constant power-of-2 second operands. 14200 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14201 // 4, A / B becomes X / 8). 14202 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14203 const SCEV *&RHS) { 14204 // Try to match 'zext (trunc A to iB) to iY', which is used 14205 // for URem with constant power-of-2 second operands. Make sure the size of 14206 // the operand A matches the size of the whole expressions. 14207 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14208 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14209 LHS = Trunc->getOperand(); 14210 // Bail out if the type of the LHS is larger than the type of the 14211 // expression for now. 14212 if (getTypeSizeInBits(LHS->getType()) > 14213 getTypeSizeInBits(Expr->getType())) 14214 return false; 14215 if (LHS->getType() != Expr->getType()) 14216 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14217 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14218 << getTypeSizeInBits(Trunc->getType())); 14219 return true; 14220 } 14221 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14222 if (Add == nullptr || Add->getNumOperands() != 2) 14223 return false; 14224 14225 const SCEV *A = Add->getOperand(1); 14226 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14227 14228 if (Mul == nullptr) 14229 return false; 14230 14231 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14232 // (SomeExpr + (-(SomeExpr / B) * B)). 14233 if (Expr == getURemExpr(A, B)) { 14234 LHS = A; 14235 RHS = B; 14236 return true; 14237 } 14238 return false; 14239 }; 14240 14241 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14242 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14243 return MatchURemWithDivisor(Mul->getOperand(1)) || 14244 MatchURemWithDivisor(Mul->getOperand(2)); 14245 14246 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14247 if (Mul->getNumOperands() == 2) 14248 return MatchURemWithDivisor(Mul->getOperand(1)) || 14249 MatchURemWithDivisor(Mul->getOperand(0)) || 14250 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14251 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14252 return false; 14253 } 14254 14255 const SCEV * 14256 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14257 SmallVector<BasicBlock*, 16> ExitingBlocks; 14258 L->getExitingBlocks(ExitingBlocks); 14259 14260 // Form an expression for the maximum exit count possible for this loop. We 14261 // merge the max and exact information to approximate a version of 14262 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14263 SmallVector<const SCEV*, 4> ExitCounts; 14264 for (BasicBlock *ExitingBB : ExitingBlocks) { 14265 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14266 if (isa<SCEVCouldNotCompute>(ExitCount)) 14267 ExitCount = getExitCount(L, ExitingBB, 14268 ScalarEvolution::ConstantMaximum); 14269 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14270 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14271 "We should only have known counts for exiting blocks that " 14272 "dominate latch!"); 14273 ExitCounts.push_back(ExitCount); 14274 } 14275 } 14276 if (ExitCounts.empty()) 14277 return getCouldNotCompute(); 14278 return getUMinFromMismatchedTypes(ExitCounts); 14279 } 14280 14281 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14282 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14283 /// replacement is loop invariant in the loop of the AddRec. 14284 /// 14285 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14286 /// supported. 14287 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14288 const DenseMap<const SCEV *, const SCEV *> ⤅ 14289 14290 public: 14291 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14292 DenseMap<const SCEV *, const SCEV *> &M) 14293 : SCEVRewriteVisitor(SE), Map(M) {} 14294 14295 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14296 14297 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14298 auto I = Map.find(Expr); 14299 if (I == Map.end()) 14300 return Expr; 14301 return I->second; 14302 } 14303 14304 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14305 auto I = Map.find(Expr); 14306 if (I == Map.end()) 14307 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14308 Expr); 14309 return I->second; 14310 } 14311 }; 14312 14313 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14314 SmallVector<const SCEV *> ExprsToRewrite; 14315 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14316 const SCEV *RHS, 14317 DenseMap<const SCEV *, const SCEV *> 14318 &RewriteMap) { 14319 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14320 // replacement SCEV which isn't directly implied by the structure of that 14321 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14322 // legal. See the scoping rules for flags in the header to understand why. 14323 14324 // If LHS is a constant, apply information to the other expression. 14325 if (isa<SCEVConstant>(LHS)) { 14326 std::swap(LHS, RHS); 14327 Predicate = CmpInst::getSwappedPredicate(Predicate); 14328 } 14329 14330 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14331 // create this form when combining two checks of the form (X u< C2 + C1) and 14332 // (X >=u C1). 14333 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14334 &ExprsToRewrite]() { 14335 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14336 if (!AddExpr || AddExpr->getNumOperands() != 2) 14337 return false; 14338 14339 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14340 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14341 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14342 if (!C1 || !C2 || !LHSUnknown) 14343 return false; 14344 14345 auto ExactRegion = 14346 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14347 .sub(C1->getAPInt()); 14348 14349 // Bail out, unless we have a non-wrapping, monotonic range. 14350 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14351 return false; 14352 auto I = RewriteMap.find(LHSUnknown); 14353 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14354 RewriteMap[LHSUnknown] = getUMaxExpr( 14355 getConstant(ExactRegion.getUnsignedMin()), 14356 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14357 ExprsToRewrite.push_back(LHSUnknown); 14358 return true; 14359 }; 14360 if (MatchRangeCheckIdiom()) 14361 return; 14362 14363 // If we have LHS == 0, check if LHS is computing a property of some unknown 14364 // SCEV %v which we can rewrite %v to express explicitly. 14365 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14366 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14367 RHSC->getValue()->isNullValue()) { 14368 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14369 // explicitly express that. 14370 const SCEV *URemLHS = nullptr; 14371 const SCEV *URemRHS = nullptr; 14372 if (matchURem(LHS, URemLHS, URemRHS)) { 14373 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14374 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14375 RewriteMap[LHSUnknown] = Multiple; 14376 ExprsToRewrite.push_back(LHSUnknown); 14377 return; 14378 } 14379 } 14380 } 14381 14382 // Do not apply information for constants or if RHS contains an AddRec. 14383 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14384 return; 14385 14386 // If RHS is SCEVUnknown, make sure the information is applied to it. 14387 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14388 std::swap(LHS, RHS); 14389 Predicate = CmpInst::getSwappedPredicate(Predicate); 14390 } 14391 14392 // Limit to expressions that can be rewritten. 14393 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14394 return; 14395 14396 // Check whether LHS has already been rewritten. In that case we want to 14397 // chain further rewrites onto the already rewritten value. 14398 auto I = RewriteMap.find(LHS); 14399 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14400 14401 const SCEV *RewrittenRHS = nullptr; 14402 switch (Predicate) { 14403 case CmpInst::ICMP_ULT: 14404 RewrittenRHS = 14405 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14406 break; 14407 case CmpInst::ICMP_SLT: 14408 RewrittenRHS = 14409 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14410 break; 14411 case CmpInst::ICMP_ULE: 14412 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14413 break; 14414 case CmpInst::ICMP_SLE: 14415 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14416 break; 14417 case CmpInst::ICMP_UGT: 14418 RewrittenRHS = 14419 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14420 break; 14421 case CmpInst::ICMP_SGT: 14422 RewrittenRHS = 14423 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14424 break; 14425 case CmpInst::ICMP_UGE: 14426 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14427 break; 14428 case CmpInst::ICMP_SGE: 14429 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14430 break; 14431 case CmpInst::ICMP_EQ: 14432 if (isa<SCEVConstant>(RHS)) 14433 RewrittenRHS = RHS; 14434 break; 14435 case CmpInst::ICMP_NE: 14436 if (isa<SCEVConstant>(RHS) && 14437 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14438 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14439 break; 14440 default: 14441 break; 14442 } 14443 14444 if (RewrittenRHS) { 14445 RewriteMap[LHS] = RewrittenRHS; 14446 if (LHS == RewrittenLHS) 14447 ExprsToRewrite.push_back(LHS); 14448 } 14449 }; 14450 // First, collect conditions from dominating branches. Starting at the loop 14451 // predecessor, climb up the predecessor chain, as long as there are 14452 // predecessors that can be found that have unique successors leading to the 14453 // original header. 14454 // TODO: share this logic with isLoopEntryGuardedByCond. 14455 SmallVector<std::pair<Value *, bool>> Terms; 14456 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14457 L->getLoopPredecessor(), L->getHeader()); 14458 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14459 14460 const BranchInst *LoopEntryPredicate = 14461 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14462 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14463 continue; 14464 14465 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14466 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14467 } 14468 14469 // Now apply the information from the collected conditions to RewriteMap. 14470 // Conditions are processed in reverse order, so the earliest conditions is 14471 // processed first. This ensures the SCEVs with the shortest dependency chains 14472 // are constructed first. 14473 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14474 for (auto &E : reverse(Terms)) { 14475 bool EnterIfTrue = E.second; 14476 SmallVector<Value *, 8> Worklist; 14477 SmallPtrSet<Value *, 8> Visited; 14478 Worklist.push_back(E.first); 14479 while (!Worklist.empty()) { 14480 Value *Cond = Worklist.pop_back_val(); 14481 if (!Visited.insert(Cond).second) 14482 continue; 14483 14484 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14485 auto Predicate = 14486 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14487 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14488 getSCEV(Cmp->getOperand(1)), RewriteMap); 14489 continue; 14490 } 14491 14492 Value *L, *R; 14493 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14494 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14495 Worklist.push_back(L); 14496 Worklist.push_back(R); 14497 } 14498 } 14499 } 14500 14501 // Also collect information from assumptions dominating the loop. 14502 for (auto &AssumeVH : AC.assumptions()) { 14503 if (!AssumeVH) 14504 continue; 14505 auto *AssumeI = cast<CallInst>(AssumeVH); 14506 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14507 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14508 continue; 14509 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14510 getSCEV(Cmp->getOperand(1)), RewriteMap); 14511 } 14512 14513 if (RewriteMap.empty()) 14514 return Expr; 14515 14516 // Now that all rewrite information is collect, rewrite the collected 14517 // expressions with the information in the map. This applies information to 14518 // sub-expressions. 14519 if (ExprsToRewrite.size() > 1) { 14520 for (const SCEV *Expr : ExprsToRewrite) { 14521 const SCEV *RewriteTo = RewriteMap[Expr]; 14522 RewriteMap.erase(Expr); 14523 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14524 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14525 } 14526 } 14527 14528 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14529 return Rewriter.visit(Expr); 14530 } 14531