1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/Pass.h"
116 #include "llvm/Support/Casting.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Compiler.h"
119 #include "llvm/Support/Debug.h"
120 #include "llvm/Support/ErrorHandling.h"
121 #include "llvm/Support/KnownBits.h"
122 #include "llvm/Support/SaveAndRestore.h"
123 #include "llvm/Support/raw_ostream.h"
124 #include <algorithm>
125 #include <cassert>
126 #include <climits>
127 #include <cstddef>
128 #include <cstdint>
129 #include <cstdlib>
130 #include <map>
131 #include <memory>
132 #include <tuple>
133 #include <utility>
134 #include <vector>
135 
136 using namespace llvm;
137 
138 #define DEBUG_TYPE "scalar-evolution"
139 
140 STATISTIC(NumArrayLenItCounts,
141           "Number of trip counts computed with array length");
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::desc("Maximum number of iterations SCEV will "
152                                  "symbolically execute a constant "
153                                  "derived loop"),
154                         cl::init(100));
155 
156 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
157 static cl::opt<bool> VerifySCEV(
158     "verify-scev", cl::Hidden,
159     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
160 static cl::opt<bool>
161     VerifySCEVMap("verify-scev-maps", cl::Hidden,
162                   cl::desc("Verify no dangling value in ScalarEvolution's "
163                            "ExprValueMap (slow)"));
164 
165 static cl::opt<bool> VerifyIR(
166     "scev-verify-ir", cl::Hidden,
167     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
168     cl::init(false));
169 
170 static cl::opt<unsigned> MulOpsInlineThreshold(
171     "scev-mulops-inline-threshold", cl::Hidden,
172     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
173     cl::init(32));
174 
175 static cl::opt<unsigned> AddOpsInlineThreshold(
176     "scev-addops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining addition operands into a SCEV"),
178     cl::init(500));
179 
180 static cl::opt<unsigned> MaxSCEVCompareDepth(
181     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
182     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
183     cl::init(32));
184 
185 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
186     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
188     cl::init(2));
189 
190 static cl::opt<unsigned> MaxValueCompareDepth(
191     "scalar-evolution-max-value-compare-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive value complexity comparisons"),
193     cl::init(2));
194 
195 static cl::opt<unsigned>
196     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
197                   cl::desc("Maximum depth of recursive arithmetics"),
198                   cl::init(32));
199 
200 static cl::opt<unsigned> MaxConstantEvolvingDepth(
201     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
202     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
203 
204 static cl::opt<unsigned>
205     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
206                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
207                  cl::init(8));
208 
209 static cl::opt<unsigned>
210     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
211                   cl::desc("Max coefficients in AddRec during evolving"),
212                   cl::init(8));
213 
214 static cl::opt<unsigned>
215     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
216                   cl::desc("Size of the expression which is considered huge"),
217                   cl::init(4096));
218 
219 //===----------------------------------------------------------------------===//
220 //                           SCEV class definitions
221 //===----------------------------------------------------------------------===//
222 
223 //===----------------------------------------------------------------------===//
224 // Implementation of the SCEV class.
225 //
226 
227 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
228 LLVM_DUMP_METHOD void SCEV::dump() const {
229   print(dbgs());
230   dbgs() << '\n';
231 }
232 #endif
233 
234 void SCEV::print(raw_ostream &OS) const {
235   switch (static_cast<SCEVTypes>(getSCEVType())) {
236   case scConstant:
237     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
238     return;
239   case scTruncate: {
240     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
241     const SCEV *Op = Trunc->getOperand();
242     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
243        << *Trunc->getType() << ")";
244     return;
245   }
246   case scZeroExtend: {
247     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
248     const SCEV *Op = ZExt->getOperand();
249     OS << "(zext " << *Op->getType() << " " << *Op << " to "
250        << *ZExt->getType() << ")";
251     return;
252   }
253   case scSignExtend: {
254     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
255     const SCEV *Op = SExt->getOperand();
256     OS << "(sext " << *Op->getType() << " " << *Op << " to "
257        << *SExt->getType() << ")";
258     return;
259   }
260   case scAddRecExpr: {
261     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
262     OS << "{" << *AR->getOperand(0);
263     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
264       OS << ",+," << *AR->getOperand(i);
265     OS << "}<";
266     if (AR->hasNoUnsignedWrap())
267       OS << "nuw><";
268     if (AR->hasNoSignedWrap())
269       OS << "nsw><";
270     if (AR->hasNoSelfWrap() &&
271         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
272       OS << "nw><";
273     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
274     OS << ">";
275     return;
276   }
277   case scAddExpr:
278   case scMulExpr:
279   case scUMaxExpr:
280   case scSMaxExpr: {
281     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
282     const char *OpStr = nullptr;
283     switch (NAry->getSCEVType()) {
284     case scAddExpr: OpStr = " + "; break;
285     case scMulExpr: OpStr = " * "; break;
286     case scUMaxExpr: OpStr = " umax "; break;
287     case scSMaxExpr: OpStr = " smax "; break;
288     }
289     OS << "(";
290     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
291          I != E; ++I) {
292       OS << **I;
293       if (std::next(I) != E)
294         OS << OpStr;
295     }
296     OS << ")";
297     switch (NAry->getSCEVType()) {
298     case scAddExpr:
299     case scMulExpr:
300       if (NAry->hasNoUnsignedWrap())
301         OS << "<nuw>";
302       if (NAry->hasNoSignedWrap())
303         OS << "<nsw>";
304     }
305     return;
306   }
307   case scUDivExpr: {
308     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
309     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
310     return;
311   }
312   case scUnknown: {
313     const SCEVUnknown *U = cast<SCEVUnknown>(this);
314     Type *AllocTy;
315     if (U->isSizeOf(AllocTy)) {
316       OS << "sizeof(" << *AllocTy << ")";
317       return;
318     }
319     if (U->isAlignOf(AllocTy)) {
320       OS << "alignof(" << *AllocTy << ")";
321       return;
322     }
323 
324     Type *CTy;
325     Constant *FieldNo;
326     if (U->isOffsetOf(CTy, FieldNo)) {
327       OS << "offsetof(" << *CTy << ", ";
328       FieldNo->printAsOperand(OS, false);
329       OS << ")";
330       return;
331     }
332 
333     // Otherwise just print it normally.
334     U->getValue()->printAsOperand(OS, false);
335     return;
336   }
337   case scCouldNotCompute:
338     OS << "***COULDNOTCOMPUTE***";
339     return;
340   }
341   llvm_unreachable("Unknown SCEV kind!");
342 }
343 
344 Type *SCEV::getType() const {
345   switch (static_cast<SCEVTypes>(getSCEVType())) {
346   case scConstant:
347     return cast<SCEVConstant>(this)->getType();
348   case scTruncate:
349   case scZeroExtend:
350   case scSignExtend:
351     return cast<SCEVCastExpr>(this)->getType();
352   case scAddRecExpr:
353   case scMulExpr:
354   case scUMaxExpr:
355   case scSMaxExpr:
356     return cast<SCEVNAryExpr>(this)->getType();
357   case scAddExpr:
358     return cast<SCEVAddExpr>(this)->getType();
359   case scUDivExpr:
360     return cast<SCEVUDivExpr>(this)->getType();
361   case scUnknown:
362     return cast<SCEVUnknown>(this)->getType();
363   case scCouldNotCompute:
364     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
365   }
366   llvm_unreachable("Unknown SCEV kind!");
367 }
368 
369 bool SCEV::isZero() const {
370   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
371     return SC->getValue()->isZero();
372   return false;
373 }
374 
375 bool SCEV::isOne() const {
376   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
377     return SC->getValue()->isOne();
378   return false;
379 }
380 
381 bool SCEV::isAllOnesValue() const {
382   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
383     return SC->getValue()->isMinusOne();
384   return false;
385 }
386 
387 bool SCEV::isNonConstantNegative() const {
388   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
389   if (!Mul) return false;
390 
391   // If there is a constant factor, it will be first.
392   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
393   if (!SC) return false;
394 
395   // Return true if the value is negative, this matches things like (-42 * V).
396   return SC->getAPInt().isNegative();
397 }
398 
399 SCEVCouldNotCompute::SCEVCouldNotCompute() :
400   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
401 
402 bool SCEVCouldNotCompute::classof(const SCEV *S) {
403   return S->getSCEVType() == scCouldNotCompute;
404 }
405 
406 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
407   FoldingSetNodeID ID;
408   ID.AddInteger(scConstant);
409   ID.AddPointer(V);
410   void *IP = nullptr;
411   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
412   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
413   UniqueSCEVs.InsertNode(S, IP);
414   return S;
415 }
416 
417 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
418   return getConstant(ConstantInt::get(getContext(), Val));
419 }
420 
421 const SCEV *
422 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
423   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
424   return getConstant(ConstantInt::get(ITy, V, isSigned));
425 }
426 
427 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
428                            unsigned SCEVTy, const SCEV *op, Type *ty)
429   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
430 
431 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
432                                    const SCEV *op, Type *ty)
433   : SCEVCastExpr(ID, scTruncate, op, ty) {
434   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
435          "Cannot truncate non-integer value!");
436 }
437 
438 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
439                                        const SCEV *op, Type *ty)
440   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
441   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
442          "Cannot zero extend non-integer value!");
443 }
444 
445 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
446                                        const SCEV *op, Type *ty)
447   : SCEVCastExpr(ID, scSignExtend, op, ty) {
448   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
449          "Cannot sign extend non-integer value!");
450 }
451 
452 void SCEVUnknown::deleted() {
453   // Clear this SCEVUnknown from various maps.
454   SE->forgetMemoizedResults(this);
455 
456   // Remove this SCEVUnknown from the uniquing map.
457   SE->UniqueSCEVs.RemoveNode(this);
458 
459   // Release the value.
460   setValPtr(nullptr);
461 }
462 
463 void SCEVUnknown::allUsesReplacedWith(Value *New) {
464   // Remove this SCEVUnknown from the uniquing map.
465   SE->UniqueSCEVs.RemoveNode(this);
466 
467   // Update this SCEVUnknown to point to the new value. This is needed
468   // because there may still be outstanding SCEVs which still point to
469   // this SCEVUnknown.
470   setValPtr(New);
471 }
472 
473 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
474   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
475     if (VCE->getOpcode() == Instruction::PtrToInt)
476       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
477         if (CE->getOpcode() == Instruction::GetElementPtr &&
478             CE->getOperand(0)->isNullValue() &&
479             CE->getNumOperands() == 2)
480           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
481             if (CI->isOne()) {
482               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
483                                  ->getElementType();
484               return true;
485             }
486 
487   return false;
488 }
489 
490 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
491   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
492     if (VCE->getOpcode() == Instruction::PtrToInt)
493       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
494         if (CE->getOpcode() == Instruction::GetElementPtr &&
495             CE->getOperand(0)->isNullValue()) {
496           Type *Ty =
497             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
498           if (StructType *STy = dyn_cast<StructType>(Ty))
499             if (!STy->isPacked() &&
500                 CE->getNumOperands() == 3 &&
501                 CE->getOperand(1)->isNullValue()) {
502               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
503                 if (CI->isOne() &&
504                     STy->getNumElements() == 2 &&
505                     STy->getElementType(0)->isIntegerTy(1)) {
506                   AllocTy = STy->getElementType(1);
507                   return true;
508                 }
509             }
510         }
511 
512   return false;
513 }
514 
515 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
516   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
517     if (VCE->getOpcode() == Instruction::PtrToInt)
518       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
519         if (CE->getOpcode() == Instruction::GetElementPtr &&
520             CE->getNumOperands() == 3 &&
521             CE->getOperand(0)->isNullValue() &&
522             CE->getOperand(1)->isNullValue()) {
523           Type *Ty =
524             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
525           // Ignore vector types here so that ScalarEvolutionExpander doesn't
526           // emit getelementptrs that index into vectors.
527           if (Ty->isStructTy() || Ty->isArrayTy()) {
528             CTy = Ty;
529             FieldNo = CE->getOperand(2);
530             return true;
531           }
532         }
533 
534   return false;
535 }
536 
537 //===----------------------------------------------------------------------===//
538 //                               SCEV Utilities
539 //===----------------------------------------------------------------------===//
540 
541 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
542 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
543 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
544 /// have been previously deemed to be "equally complex" by this routine.  It is
545 /// intended to avoid exponential time complexity in cases like:
546 ///
547 ///   %a = f(%x, %y)
548 ///   %b = f(%a, %a)
549 ///   %c = f(%b, %b)
550 ///
551 ///   %d = f(%x, %y)
552 ///   %e = f(%d, %d)
553 ///   %f = f(%e, %e)
554 ///
555 ///   CompareValueComplexity(%f, %c)
556 ///
557 /// Since we do not continue running this routine on expression trees once we
558 /// have seen unequal values, there is no need to track them in the cache.
559 static int
560 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
561                        const LoopInfo *const LI, Value *LV, Value *RV,
562                        unsigned Depth) {
563   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
564     return 0;
565 
566   // Order pointer values after integer values. This helps SCEVExpander form
567   // GEPs.
568   bool LIsPointer = LV->getType()->isPointerTy(),
569        RIsPointer = RV->getType()->isPointerTy();
570   if (LIsPointer != RIsPointer)
571     return (int)LIsPointer - (int)RIsPointer;
572 
573   // Compare getValueID values.
574   unsigned LID = LV->getValueID(), RID = RV->getValueID();
575   if (LID != RID)
576     return (int)LID - (int)RID;
577 
578   // Sort arguments by their position.
579   if (const auto *LA = dyn_cast<Argument>(LV)) {
580     const auto *RA = cast<Argument>(RV);
581     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
582     return (int)LArgNo - (int)RArgNo;
583   }
584 
585   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
586     const auto *RGV = cast<GlobalValue>(RV);
587 
588     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
589       auto LT = GV->getLinkage();
590       return !(GlobalValue::isPrivateLinkage(LT) ||
591                GlobalValue::isInternalLinkage(LT));
592     };
593 
594     // Use the names to distinguish the two values, but only if the
595     // names are semantically important.
596     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
597       return LGV->getName().compare(RGV->getName());
598   }
599 
600   // For instructions, compare their loop depth, and their operand count.  This
601   // is pretty loose.
602   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
603     const auto *RInst = cast<Instruction>(RV);
604 
605     // Compare loop depths.
606     const BasicBlock *LParent = LInst->getParent(),
607                      *RParent = RInst->getParent();
608     if (LParent != RParent) {
609       unsigned LDepth = LI->getLoopDepth(LParent),
610                RDepth = LI->getLoopDepth(RParent);
611       if (LDepth != RDepth)
612         return (int)LDepth - (int)RDepth;
613     }
614 
615     // Compare the number of operands.
616     unsigned LNumOps = LInst->getNumOperands(),
617              RNumOps = RInst->getNumOperands();
618     if (LNumOps != RNumOps)
619       return (int)LNumOps - (int)RNumOps;
620 
621     for (unsigned Idx : seq(0u, LNumOps)) {
622       int Result =
623           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
624                                  RInst->getOperand(Idx), Depth + 1);
625       if (Result != 0)
626         return Result;
627     }
628   }
629 
630   EqCacheValue.unionSets(LV, RV);
631   return 0;
632 }
633 
634 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
635 // than RHS, respectively. A three-way result allows recursive comparisons to be
636 // more efficient.
637 static int CompareSCEVComplexity(
638     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
639     EquivalenceClasses<const Value *> &EqCacheValue,
640     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
641     DominatorTree &DT, unsigned Depth = 0) {
642   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
643   if (LHS == RHS)
644     return 0;
645 
646   // Primarily, sort the SCEVs by their getSCEVType().
647   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
648   if (LType != RType)
649     return (int)LType - (int)RType;
650 
651   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
652     return 0;
653   // Aside from the getSCEVType() ordering, the particular ordering
654   // isn't very important except that it's beneficial to be consistent,
655   // so that (a + b) and (b + a) don't end up as different expressions.
656   switch (static_cast<SCEVTypes>(LType)) {
657   case scUnknown: {
658     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
659     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
660 
661     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
662                                    RU->getValue(), Depth + 1);
663     if (X == 0)
664       EqCacheSCEV.unionSets(LHS, RHS);
665     return X;
666   }
667 
668   case scConstant: {
669     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
670     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
671 
672     // Compare constant values.
673     const APInt &LA = LC->getAPInt();
674     const APInt &RA = RC->getAPInt();
675     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
676     if (LBitWidth != RBitWidth)
677       return (int)LBitWidth - (int)RBitWidth;
678     return LA.ult(RA) ? -1 : 1;
679   }
680 
681   case scAddRecExpr: {
682     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
683     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
684 
685     // There is always a dominance between two recs that are used by one SCEV,
686     // so we can safely sort recs by loop header dominance. We require such
687     // order in getAddExpr.
688     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
689     if (LLoop != RLoop) {
690       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
691       assert(LHead != RHead && "Two loops share the same header?");
692       if (DT.dominates(LHead, RHead))
693         return 1;
694       else
695         assert(DT.dominates(RHead, LHead) &&
696                "No dominance between recurrences used by one SCEV?");
697       return -1;
698     }
699 
700     // Addrec complexity grows with operand count.
701     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
702     if (LNumOps != RNumOps)
703       return (int)LNumOps - (int)RNumOps;
704 
705     // Lexicographically compare.
706     for (unsigned i = 0; i != LNumOps; ++i) {
707       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
708                                     LA->getOperand(i), RA->getOperand(i), DT,
709                                     Depth + 1);
710       if (X != 0)
711         return X;
712     }
713     EqCacheSCEV.unionSets(LHS, RHS);
714     return 0;
715   }
716 
717   case scAddExpr:
718   case scMulExpr:
719   case scSMaxExpr:
720   case scUMaxExpr: {
721     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
722     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
723 
724     // Lexicographically compare n-ary expressions.
725     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
726     if (LNumOps != RNumOps)
727       return (int)LNumOps - (int)RNumOps;
728 
729     for (unsigned i = 0; i != LNumOps; ++i) {
730       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
731                                     LC->getOperand(i), RC->getOperand(i), DT,
732                                     Depth + 1);
733       if (X != 0)
734         return X;
735     }
736     EqCacheSCEV.unionSets(LHS, RHS);
737     return 0;
738   }
739 
740   case scUDivExpr: {
741     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
742     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
743 
744     // Lexicographically compare udiv expressions.
745     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
746                                   RC->getLHS(), DT, Depth + 1);
747     if (X != 0)
748       return X;
749     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
750                               RC->getRHS(), DT, Depth + 1);
751     if (X == 0)
752       EqCacheSCEV.unionSets(LHS, RHS);
753     return X;
754   }
755 
756   case scTruncate:
757   case scZeroExtend:
758   case scSignExtend: {
759     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
760     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
761 
762     // Compare cast expressions by operand.
763     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
764                                   LC->getOperand(), RC->getOperand(), DT,
765                                   Depth + 1);
766     if (X == 0)
767       EqCacheSCEV.unionSets(LHS, RHS);
768     return X;
769   }
770 
771   case scCouldNotCompute:
772     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
773   }
774   llvm_unreachable("Unknown SCEV kind!");
775 }
776 
777 /// Given a list of SCEV objects, order them by their complexity, and group
778 /// objects of the same complexity together by value.  When this routine is
779 /// finished, we know that any duplicates in the vector are consecutive and that
780 /// complexity is monotonically increasing.
781 ///
782 /// Note that we go take special precautions to ensure that we get deterministic
783 /// results from this routine.  In other words, we don't want the results of
784 /// this to depend on where the addresses of various SCEV objects happened to
785 /// land in memory.
786 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
787                               LoopInfo *LI, DominatorTree &DT) {
788   if (Ops.size() < 2) return;  // Noop
789 
790   EquivalenceClasses<const SCEV *> EqCacheSCEV;
791   EquivalenceClasses<const Value *> EqCacheValue;
792   if (Ops.size() == 2) {
793     // This is the common case, which also happens to be trivially simple.
794     // Special case it.
795     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
796     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
797       std::swap(LHS, RHS);
798     return;
799   }
800 
801   // Do the rough sort by complexity.
802   std::stable_sort(Ops.begin(), Ops.end(),
803                    [&](const SCEV *LHS, const SCEV *RHS) {
804                      return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
805                                                   LHS, RHS, DT) < 0;
806                    });
807 
808   // Now that we are sorted by complexity, group elements of the same
809   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
810   // be extremely short in practice.  Note that we take this approach because we
811   // do not want to depend on the addresses of the objects we are grouping.
812   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
813     const SCEV *S = Ops[i];
814     unsigned Complexity = S->getSCEVType();
815 
816     // If there are any objects of the same complexity and same value as this
817     // one, group them.
818     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
819       if (Ops[j] == S) { // Found a duplicate.
820         // Move it to immediately after i'th element.
821         std::swap(Ops[i+1], Ops[j]);
822         ++i;   // no need to rescan it.
823         if (i == e-2) return;  // Done!
824       }
825     }
826   }
827 }
828 
829 // Returns the size of the SCEV S.
830 static inline int sizeOfSCEV(const SCEV *S) {
831   struct FindSCEVSize {
832     int Size = 0;
833 
834     FindSCEVSize() = default;
835 
836     bool follow(const SCEV *S) {
837       ++Size;
838       // Keep looking at all operands of S.
839       return true;
840     }
841 
842     bool isDone() const {
843       return false;
844     }
845   };
846 
847   FindSCEVSize F;
848   SCEVTraversal<FindSCEVSize> ST(F);
849   ST.visitAll(S);
850   return F.Size;
851 }
852 
853 /// Returns true if the subtree of \p S contains at least HugeExprThreshold
854 /// nodes.
855 static bool isHugeExpression(const SCEV *S) {
856   return S->getExpressionSize() >= HugeExprThreshold;
857 }
858 
859 /// Returns true of \p Ops contains a huge SCEV (see definition above).
860 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
861   return any_of(Ops, isHugeExpression);
862 }
863 
864 namespace {
865 
866 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
867 public:
868   // Computes the Quotient and Remainder of the division of Numerator by
869   // Denominator.
870   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
871                      const SCEV *Denominator, const SCEV **Quotient,
872                      const SCEV **Remainder) {
873     assert(Numerator && Denominator && "Uninitialized SCEV");
874 
875     SCEVDivision D(SE, Numerator, Denominator);
876 
877     // Check for the trivial case here to avoid having to check for it in the
878     // rest of the code.
879     if (Numerator == Denominator) {
880       *Quotient = D.One;
881       *Remainder = D.Zero;
882       return;
883     }
884 
885     if (Numerator->isZero()) {
886       *Quotient = D.Zero;
887       *Remainder = D.Zero;
888       return;
889     }
890 
891     // A simple case when N/1. The quotient is N.
892     if (Denominator->isOne()) {
893       *Quotient = Numerator;
894       *Remainder = D.Zero;
895       return;
896     }
897 
898     // Split the Denominator when it is a product.
899     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
900       const SCEV *Q, *R;
901       *Quotient = Numerator;
902       for (const SCEV *Op : T->operands()) {
903         divide(SE, *Quotient, Op, &Q, &R);
904         *Quotient = Q;
905 
906         // Bail out when the Numerator is not divisible by one of the terms of
907         // the Denominator.
908         if (!R->isZero()) {
909           *Quotient = D.Zero;
910           *Remainder = Numerator;
911           return;
912         }
913       }
914       *Remainder = D.Zero;
915       return;
916     }
917 
918     D.visit(Numerator);
919     *Quotient = D.Quotient;
920     *Remainder = D.Remainder;
921   }
922 
923   // Except in the trivial case described above, we do not know how to divide
924   // Expr by Denominator for the following functions with empty implementation.
925   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
926   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
927   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
928   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
929   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
930   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
931   void visitUnknown(const SCEVUnknown *Numerator) {}
932   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
933 
934   void visitConstant(const SCEVConstant *Numerator) {
935     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
936       APInt NumeratorVal = Numerator->getAPInt();
937       APInt DenominatorVal = D->getAPInt();
938       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
939       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
940 
941       if (NumeratorBW > DenominatorBW)
942         DenominatorVal = DenominatorVal.sext(NumeratorBW);
943       else if (NumeratorBW < DenominatorBW)
944         NumeratorVal = NumeratorVal.sext(DenominatorBW);
945 
946       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
947       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
948       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
949       Quotient = SE.getConstant(QuotientVal);
950       Remainder = SE.getConstant(RemainderVal);
951       return;
952     }
953   }
954 
955   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
956     const SCEV *StartQ, *StartR, *StepQ, *StepR;
957     if (!Numerator->isAffine())
958       return cannotDivide(Numerator);
959     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
960     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
961     // Bail out if the types do not match.
962     Type *Ty = Denominator->getType();
963     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
964         Ty != StepQ->getType() || Ty != StepR->getType())
965       return cannotDivide(Numerator);
966     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
967                                 Numerator->getNoWrapFlags());
968     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
969                                  Numerator->getNoWrapFlags());
970   }
971 
972   void visitAddExpr(const SCEVAddExpr *Numerator) {
973     SmallVector<const SCEV *, 2> Qs, Rs;
974     Type *Ty = Denominator->getType();
975 
976     for (const SCEV *Op : Numerator->operands()) {
977       const SCEV *Q, *R;
978       divide(SE, Op, Denominator, &Q, &R);
979 
980       // Bail out if types do not match.
981       if (Ty != Q->getType() || Ty != R->getType())
982         return cannotDivide(Numerator);
983 
984       Qs.push_back(Q);
985       Rs.push_back(R);
986     }
987 
988     if (Qs.size() == 1) {
989       Quotient = Qs[0];
990       Remainder = Rs[0];
991       return;
992     }
993 
994     Quotient = SE.getAddExpr(Qs);
995     Remainder = SE.getAddExpr(Rs);
996   }
997 
998   void visitMulExpr(const SCEVMulExpr *Numerator) {
999     SmallVector<const SCEV *, 2> Qs;
1000     Type *Ty = Denominator->getType();
1001 
1002     bool FoundDenominatorTerm = false;
1003     for (const SCEV *Op : Numerator->operands()) {
1004       // Bail out if types do not match.
1005       if (Ty != Op->getType())
1006         return cannotDivide(Numerator);
1007 
1008       if (FoundDenominatorTerm) {
1009         Qs.push_back(Op);
1010         continue;
1011       }
1012 
1013       // Check whether Denominator divides one of the product operands.
1014       const SCEV *Q, *R;
1015       divide(SE, Op, Denominator, &Q, &R);
1016       if (!R->isZero()) {
1017         Qs.push_back(Op);
1018         continue;
1019       }
1020 
1021       // Bail out if types do not match.
1022       if (Ty != Q->getType())
1023         return cannotDivide(Numerator);
1024 
1025       FoundDenominatorTerm = true;
1026       Qs.push_back(Q);
1027     }
1028 
1029     if (FoundDenominatorTerm) {
1030       Remainder = Zero;
1031       if (Qs.size() == 1)
1032         Quotient = Qs[0];
1033       else
1034         Quotient = SE.getMulExpr(Qs);
1035       return;
1036     }
1037 
1038     if (!isa<SCEVUnknown>(Denominator))
1039       return cannotDivide(Numerator);
1040 
1041     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1042     ValueToValueMap RewriteMap;
1043     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1044         cast<SCEVConstant>(Zero)->getValue();
1045     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1046 
1047     if (Remainder->isZero()) {
1048       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1049       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1050           cast<SCEVConstant>(One)->getValue();
1051       Quotient =
1052           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1053       return;
1054     }
1055 
1056     // Quotient is (Numerator - Remainder) divided by Denominator.
1057     const SCEV *Q, *R;
1058     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1059     // This SCEV does not seem to simplify: fail the division here.
1060     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1061       return cannotDivide(Numerator);
1062     divide(SE, Diff, Denominator, &Q, &R);
1063     if (R != Zero)
1064       return cannotDivide(Numerator);
1065     Quotient = Q;
1066   }
1067 
1068 private:
1069   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1070                const SCEV *Denominator)
1071       : SE(S), Denominator(Denominator) {
1072     Zero = SE.getZero(Denominator->getType());
1073     One = SE.getOne(Denominator->getType());
1074 
1075     // We generally do not know how to divide Expr by Denominator. We
1076     // initialize the division to a "cannot divide" state to simplify the rest
1077     // of the code.
1078     cannotDivide(Numerator);
1079   }
1080 
1081   // Convenience function for giving up on the division. We set the quotient to
1082   // be equal to zero and the remainder to be equal to the numerator.
1083   void cannotDivide(const SCEV *Numerator) {
1084     Quotient = Zero;
1085     Remainder = Numerator;
1086   }
1087 
1088   ScalarEvolution &SE;
1089   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1090 };
1091 
1092 } // end anonymous namespace
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                      Simple SCEV method implementations
1096 //===----------------------------------------------------------------------===//
1097 
1098 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1099 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1100                                        ScalarEvolution &SE,
1101                                        Type *ResultTy) {
1102   // Handle the simplest case efficiently.
1103   if (K == 1)
1104     return SE.getTruncateOrZeroExtend(It, ResultTy);
1105 
1106   // We are using the following formula for BC(It, K):
1107   //
1108   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1109   //
1110   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1111   // overflow.  Hence, we must assure that the result of our computation is
1112   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1113   // safe in modular arithmetic.
1114   //
1115   // However, this code doesn't use exactly that formula; the formula it uses
1116   // is something like the following, where T is the number of factors of 2 in
1117   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1118   // exponentiation:
1119   //
1120   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1121   //
1122   // This formula is trivially equivalent to the previous formula.  However,
1123   // this formula can be implemented much more efficiently.  The trick is that
1124   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1125   // arithmetic.  To do exact division in modular arithmetic, all we have
1126   // to do is multiply by the inverse.  Therefore, this step can be done at
1127   // width W.
1128   //
1129   // The next issue is how to safely do the division by 2^T.  The way this
1130   // is done is by doing the multiplication step at a width of at least W + T
1131   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1132   // when we perform the division by 2^T (which is equivalent to a right shift
1133   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1134   // truncated out after the division by 2^T.
1135   //
1136   // In comparison to just directly using the first formula, this technique
1137   // is much more efficient; using the first formula requires W * K bits,
1138   // but this formula less than W + K bits. Also, the first formula requires
1139   // a division step, whereas this formula only requires multiplies and shifts.
1140   //
1141   // It doesn't matter whether the subtraction step is done in the calculation
1142   // width or the input iteration count's width; if the subtraction overflows,
1143   // the result must be zero anyway.  We prefer here to do it in the width of
1144   // the induction variable because it helps a lot for certain cases; CodeGen
1145   // isn't smart enough to ignore the overflow, which leads to much less
1146   // efficient code if the width of the subtraction is wider than the native
1147   // register width.
1148   //
1149   // (It's possible to not widen at all by pulling out factors of 2 before
1150   // the multiplication; for example, K=2 can be calculated as
1151   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1152   // extra arithmetic, so it's not an obvious win, and it gets
1153   // much more complicated for K > 3.)
1154 
1155   // Protection from insane SCEVs; this bound is conservative,
1156   // but it probably doesn't matter.
1157   if (K > 1000)
1158     return SE.getCouldNotCompute();
1159 
1160   unsigned W = SE.getTypeSizeInBits(ResultTy);
1161 
1162   // Calculate K! / 2^T and T; we divide out the factors of two before
1163   // multiplying for calculating K! / 2^T to avoid overflow.
1164   // Other overflow doesn't matter because we only care about the bottom
1165   // W bits of the result.
1166   APInt OddFactorial(W, 1);
1167   unsigned T = 1;
1168   for (unsigned i = 3; i <= K; ++i) {
1169     APInt Mult(W, i);
1170     unsigned TwoFactors = Mult.countTrailingZeros();
1171     T += TwoFactors;
1172     Mult.lshrInPlace(TwoFactors);
1173     OddFactorial *= Mult;
1174   }
1175 
1176   // We need at least W + T bits for the multiplication step
1177   unsigned CalculationBits = W + T;
1178 
1179   // Calculate 2^T, at width T+W.
1180   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1181 
1182   // Calculate the multiplicative inverse of K! / 2^T;
1183   // this multiplication factor will perform the exact division by
1184   // K! / 2^T.
1185   APInt Mod = APInt::getSignedMinValue(W+1);
1186   APInt MultiplyFactor = OddFactorial.zext(W+1);
1187   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1188   MultiplyFactor = MultiplyFactor.trunc(W);
1189 
1190   // Calculate the product, at width T+W
1191   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1192                                                       CalculationBits);
1193   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1194   for (unsigned i = 1; i != K; ++i) {
1195     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1196     Dividend = SE.getMulExpr(Dividend,
1197                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1198   }
1199 
1200   // Divide by 2^T
1201   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1202 
1203   // Truncate the result, and divide by K! / 2^T.
1204 
1205   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1206                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1207 }
1208 
1209 /// Return the value of this chain of recurrences at the specified iteration
1210 /// number.  We can evaluate this recurrence by multiplying each element in the
1211 /// chain by the binomial coefficient corresponding to it.  In other words, we
1212 /// can evaluate {A,+,B,+,C,+,D} as:
1213 ///
1214 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1215 ///
1216 /// where BC(It, k) stands for binomial coefficient.
1217 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1218                                                 ScalarEvolution &SE) const {
1219   const SCEV *Result = getStart();
1220   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1221     // The computation is correct in the face of overflow provided that the
1222     // multiplication is performed _after_ the evaluation of the binomial
1223     // coefficient.
1224     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1225     if (isa<SCEVCouldNotCompute>(Coeff))
1226       return Coeff;
1227 
1228     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1229   }
1230   return Result;
1231 }
1232 
1233 //===----------------------------------------------------------------------===//
1234 //                    SCEV Expression folder implementations
1235 //===----------------------------------------------------------------------===//
1236 
1237 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1238                                              unsigned Depth) {
1239   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1240          "This is not a truncating conversion!");
1241   assert(isSCEVable(Ty) &&
1242          "This is not a conversion to a SCEVable type!");
1243   Ty = getEffectiveSCEVType(Ty);
1244 
1245   FoldingSetNodeID ID;
1246   ID.AddInteger(scTruncate);
1247   ID.AddPointer(Op);
1248   ID.AddPointer(Ty);
1249   void *IP = nullptr;
1250   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1251 
1252   // Fold if the operand is constant.
1253   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1254     return getConstant(
1255       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1256 
1257   // trunc(trunc(x)) --> trunc(x)
1258   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1259     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1260 
1261   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1262   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1263     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1264 
1265   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1266   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1267     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1268 
1269   if (Depth > MaxCastDepth) {
1270     SCEV *S =
1271         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1272     UniqueSCEVs.InsertNode(S, IP);
1273     addToLoopUseLists(S);
1274     return S;
1275   }
1276 
1277   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1278   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1279   // if after transforming we have at most one truncate, not counting truncates
1280   // that replace other casts.
1281   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1282     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1283     SmallVector<const SCEV *, 4> Operands;
1284     unsigned numTruncs = 0;
1285     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1286          ++i) {
1287       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1288       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1289         numTruncs++;
1290       Operands.push_back(S);
1291     }
1292     if (numTruncs < 2) {
1293       if (isa<SCEVAddExpr>(Op))
1294         return getAddExpr(Operands);
1295       else if (isa<SCEVMulExpr>(Op))
1296         return getMulExpr(Operands);
1297       else
1298         llvm_unreachable("Unexpected SCEV type for Op.");
1299     }
1300     // Although we checked in the beginning that ID is not in the cache, it is
1301     // possible that during recursion and different modification ID was inserted
1302     // into the cache. So if we find it, just return it.
1303     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1304       return S;
1305   }
1306 
1307   // If the input value is a chrec scev, truncate the chrec's operands.
1308   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1309     SmallVector<const SCEV *, 4> Operands;
1310     for (const SCEV *Op : AddRec->operands())
1311       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1312     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1313   }
1314 
1315   // The cast wasn't folded; create an explicit cast node. We can reuse
1316   // the existing insert position since if we get here, we won't have
1317   // made any changes which would invalidate it.
1318   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1319                                                  Op, Ty);
1320   UniqueSCEVs.InsertNode(S, IP);
1321   addToLoopUseLists(S);
1322   return S;
1323 }
1324 
1325 // Get the limit of a recurrence such that incrementing by Step cannot cause
1326 // signed overflow as long as the value of the recurrence within the
1327 // loop does not exceed this limit before incrementing.
1328 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1329                                                  ICmpInst::Predicate *Pred,
1330                                                  ScalarEvolution *SE) {
1331   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1332   if (SE->isKnownPositive(Step)) {
1333     *Pred = ICmpInst::ICMP_SLT;
1334     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1335                            SE->getSignedRangeMax(Step));
1336   }
1337   if (SE->isKnownNegative(Step)) {
1338     *Pred = ICmpInst::ICMP_SGT;
1339     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1340                            SE->getSignedRangeMin(Step));
1341   }
1342   return nullptr;
1343 }
1344 
1345 // Get the limit of a recurrence such that incrementing by Step cannot cause
1346 // unsigned overflow as long as the value of the recurrence within the loop does
1347 // not exceed this limit before incrementing.
1348 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1349                                                    ICmpInst::Predicate *Pred,
1350                                                    ScalarEvolution *SE) {
1351   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1352   *Pred = ICmpInst::ICMP_ULT;
1353 
1354   return SE->getConstant(APInt::getMinValue(BitWidth) -
1355                          SE->getUnsignedRangeMax(Step));
1356 }
1357 
1358 namespace {
1359 
1360 struct ExtendOpTraitsBase {
1361   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1362                                                           unsigned);
1363 };
1364 
1365 // Used to make code generic over signed and unsigned overflow.
1366 template <typename ExtendOp> struct ExtendOpTraits {
1367   // Members present:
1368   //
1369   // static const SCEV::NoWrapFlags WrapType;
1370   //
1371   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1372   //
1373   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1374   //                                           ICmpInst::Predicate *Pred,
1375   //                                           ScalarEvolution *SE);
1376 };
1377 
1378 template <>
1379 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1380   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1381 
1382   static const GetExtendExprTy GetExtendExpr;
1383 
1384   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1385                                              ICmpInst::Predicate *Pred,
1386                                              ScalarEvolution *SE) {
1387     return getSignedOverflowLimitForStep(Step, Pred, SE);
1388   }
1389 };
1390 
1391 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1392     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1393 
1394 template <>
1395 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1396   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1397 
1398   static const GetExtendExprTy GetExtendExpr;
1399 
1400   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1401                                              ICmpInst::Predicate *Pred,
1402                                              ScalarEvolution *SE) {
1403     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1404   }
1405 };
1406 
1407 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1408     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1409 
1410 } // end anonymous namespace
1411 
1412 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1413 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1414 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1415 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1416 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1417 // expression "Step + sext/zext(PreIncAR)" is congruent with
1418 // "sext/zext(PostIncAR)"
1419 template <typename ExtendOpTy>
1420 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1421                                         ScalarEvolution *SE, unsigned Depth) {
1422   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1423   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1424 
1425   const Loop *L = AR->getLoop();
1426   const SCEV *Start = AR->getStart();
1427   const SCEV *Step = AR->getStepRecurrence(*SE);
1428 
1429   // Check for a simple looking step prior to loop entry.
1430   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1431   if (!SA)
1432     return nullptr;
1433 
1434   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1435   // subtraction is expensive. For this purpose, perform a quick and dirty
1436   // difference, by checking for Step in the operand list.
1437   SmallVector<const SCEV *, 4> DiffOps;
1438   for (const SCEV *Op : SA->operands())
1439     if (Op != Step)
1440       DiffOps.push_back(Op);
1441 
1442   if (DiffOps.size() == SA->getNumOperands())
1443     return nullptr;
1444 
1445   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1446   // `Step`:
1447 
1448   // 1. NSW/NUW flags on the step increment.
1449   auto PreStartFlags =
1450     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1451   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1452   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1453       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1454 
1455   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1456   // "S+X does not sign/unsign-overflow".
1457   //
1458 
1459   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1460   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1461       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1462     return PreStart;
1463 
1464   // 2. Direct overflow check on the step operation's expression.
1465   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1466   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1467   const SCEV *OperandExtendedStart =
1468       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1469                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1470   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1471     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1472       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1473       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1474       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1475       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1476     }
1477     return PreStart;
1478   }
1479 
1480   // 3. Loop precondition.
1481   ICmpInst::Predicate Pred;
1482   const SCEV *OverflowLimit =
1483       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1484 
1485   if (OverflowLimit &&
1486       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1487     return PreStart;
1488 
1489   return nullptr;
1490 }
1491 
1492 // Get the normalized zero or sign extended expression for this AddRec's Start.
1493 template <typename ExtendOpTy>
1494 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1495                                         ScalarEvolution *SE,
1496                                         unsigned Depth) {
1497   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1498 
1499   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1500   if (!PreStart)
1501     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1502 
1503   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1504                                              Depth),
1505                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1506 }
1507 
1508 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1509 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1510 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1511 //
1512 // Formally:
1513 //
1514 //     {S,+,X} == {S-T,+,X} + T
1515 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1516 //
1517 // If ({S-T,+,X} + T) does not overflow  ... (1)
1518 //
1519 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1520 //
1521 // If {S-T,+,X} does not overflow  ... (2)
1522 //
1523 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1524 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1525 //
1526 // If (S-T)+T does not overflow  ... (3)
1527 //
1528 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1529 //      == {Ext(S),+,Ext(X)} == LHS
1530 //
1531 // Thus, if (1), (2) and (3) are true for some T, then
1532 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1533 //
1534 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1535 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1536 // to check for (1) and (2).
1537 //
1538 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1539 // is `Delta` (defined below).
1540 template <typename ExtendOpTy>
1541 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1542                                                 const SCEV *Step,
1543                                                 const Loop *L) {
1544   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1545 
1546   // We restrict `Start` to a constant to prevent SCEV from spending too much
1547   // time here.  It is correct (but more expensive) to continue with a
1548   // non-constant `Start` and do a general SCEV subtraction to compute
1549   // `PreStart` below.
1550   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1551   if (!StartC)
1552     return false;
1553 
1554   APInt StartAI = StartC->getAPInt();
1555 
1556   for (unsigned Delta : {-2, -1, 1, 2}) {
1557     const SCEV *PreStart = getConstant(StartAI - Delta);
1558 
1559     FoldingSetNodeID ID;
1560     ID.AddInteger(scAddRecExpr);
1561     ID.AddPointer(PreStart);
1562     ID.AddPointer(Step);
1563     ID.AddPointer(L);
1564     void *IP = nullptr;
1565     const auto *PreAR =
1566       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1567 
1568     // Give up if we don't already have the add recurrence we need because
1569     // actually constructing an add recurrence is relatively expensive.
1570     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1571       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1572       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1573       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1574           DeltaS, &Pred, this);
1575       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1576         return true;
1577     }
1578   }
1579 
1580   return false;
1581 }
1582 
1583 // Finds an integer D for an expression (C + x + y + ...) such that the top
1584 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1585 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1586 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1587 // the (C + x + y + ...) expression is \p WholeAddExpr.
1588 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1589                                             const SCEVConstant *ConstantTerm,
1590                                             const SCEVAddExpr *WholeAddExpr) {
1591   const APInt C = ConstantTerm->getAPInt();
1592   const unsigned BitWidth = C.getBitWidth();
1593   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1594   uint32_t TZ = BitWidth;
1595   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1596     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1597   if (TZ) {
1598     // Set D to be as many least significant bits of C as possible while still
1599     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1600     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1601   }
1602   return APInt(BitWidth, 0);
1603 }
1604 
1605 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1606 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1607 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1608 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1610                                             const APInt &ConstantStart,
1611                                             const SCEV *Step) {
1612   const unsigned BitWidth = ConstantStart.getBitWidth();
1613   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1614   if (TZ)
1615     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1616                          : ConstantStart;
1617   return APInt(BitWidth, 0);
1618 }
1619 
1620 const SCEV *
1621 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1622   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1623          "This is not an extending conversion!");
1624   assert(isSCEVable(Ty) &&
1625          "This is not a conversion to a SCEVable type!");
1626   Ty = getEffectiveSCEVType(Ty);
1627 
1628   // Fold if the operand is constant.
1629   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1630     return getConstant(
1631       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1632 
1633   // zext(zext(x)) --> zext(x)
1634   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1635     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1636 
1637   // Before doing any expensive analysis, check to see if we've already
1638   // computed a SCEV for this Op and Ty.
1639   FoldingSetNodeID ID;
1640   ID.AddInteger(scZeroExtend);
1641   ID.AddPointer(Op);
1642   ID.AddPointer(Ty);
1643   void *IP = nullptr;
1644   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1645   if (Depth > MaxCastDepth) {
1646     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1647                                                      Op, Ty);
1648     UniqueSCEVs.InsertNode(S, IP);
1649     addToLoopUseLists(S);
1650     return S;
1651   }
1652 
1653   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1654   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1655     // It's possible the bits taken off by the truncate were all zero bits. If
1656     // so, we should be able to simplify this further.
1657     const SCEV *X = ST->getOperand();
1658     ConstantRange CR = getUnsignedRange(X);
1659     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1660     unsigned NewBits = getTypeSizeInBits(Ty);
1661     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1662             CR.zextOrTrunc(NewBits)))
1663       return getTruncateOrZeroExtend(X, Ty, Depth);
1664   }
1665 
1666   // If the input value is a chrec scev, and we can prove that the value
1667   // did not overflow the old, smaller, value, we can zero extend all of the
1668   // operands (often constants).  This allows analysis of something like
1669   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1670   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1671     if (AR->isAffine()) {
1672       const SCEV *Start = AR->getStart();
1673       const SCEV *Step = AR->getStepRecurrence(*this);
1674       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1675       const Loop *L = AR->getLoop();
1676 
1677       if (!AR->hasNoUnsignedWrap()) {
1678         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1679         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1680       }
1681 
1682       // If we have special knowledge that this addrec won't overflow,
1683       // we don't need to do any further analysis.
1684       if (AR->hasNoUnsignedWrap())
1685         return getAddRecExpr(
1686             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1687             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1688 
1689       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1690       // Note that this serves two purposes: It filters out loops that are
1691       // simply not analyzable, and it covers the case where this code is
1692       // being called from within backedge-taken count analysis, such that
1693       // attempting to ask for the backedge-taken count would likely result
1694       // in infinite recursion. In the later case, the analysis code will
1695       // cope with a conservative value, and it will take care to purge
1696       // that value once it has finished.
1697       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1698       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1699         // Manually compute the final value for AR, checking for
1700         // overflow.
1701 
1702         // Check whether the backedge-taken count can be losslessly casted to
1703         // the addrec's type. The count is always unsigned.
1704         const SCEV *CastedMaxBECount =
1705             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1706         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1707             CastedMaxBECount, MaxBECount->getType(), Depth);
1708         if (MaxBECount == RecastedMaxBECount) {
1709           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1710           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1711           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1712                                         SCEV::FlagAnyWrap, Depth + 1);
1713           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1714                                                           SCEV::FlagAnyWrap,
1715                                                           Depth + 1),
1716                                                WideTy, Depth + 1);
1717           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1718           const SCEV *WideMaxBECount =
1719             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1720           const SCEV *OperandExtendedAdd =
1721             getAddExpr(WideStart,
1722                        getMulExpr(WideMaxBECount,
1723                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1724                                   SCEV::FlagAnyWrap, Depth + 1),
1725                        SCEV::FlagAnyWrap, Depth + 1);
1726           if (ZAdd == OperandExtendedAdd) {
1727             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1728             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1729             // Return the expression with the addrec on the outside.
1730             return getAddRecExpr(
1731                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1732                                                          Depth + 1),
1733                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1734                 AR->getNoWrapFlags());
1735           }
1736           // Similar to above, only this time treat the step value as signed.
1737           // This covers loops that count down.
1738           OperandExtendedAdd =
1739             getAddExpr(WideStart,
1740                        getMulExpr(WideMaxBECount,
1741                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1742                                   SCEV::FlagAnyWrap, Depth + 1),
1743                        SCEV::FlagAnyWrap, Depth + 1);
1744           if (ZAdd == OperandExtendedAdd) {
1745             // Cache knowledge of AR NW, which is propagated to this AddRec.
1746             // Negative step causes unsigned wrap, but it still can't self-wrap.
1747             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1748             // Return the expression with the addrec on the outside.
1749             return getAddRecExpr(
1750                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1751                                                          Depth + 1),
1752                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1753                 AR->getNoWrapFlags());
1754           }
1755         }
1756       }
1757 
1758       // Normally, in the cases we can prove no-overflow via a
1759       // backedge guarding condition, we can also compute a backedge
1760       // taken count for the loop.  The exceptions are assumptions and
1761       // guards present in the loop -- SCEV is not great at exploiting
1762       // these to compute max backedge taken counts, but can still use
1763       // these to prove lack of overflow.  Use this fact to avoid
1764       // doing extra work that may not pay off.
1765       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1766           !AC.assumptions().empty()) {
1767         // If the backedge is guarded by a comparison with the pre-inc
1768         // value the addrec is safe. Also, if the entry is guarded by
1769         // a comparison with the start value and the backedge is
1770         // guarded by a comparison with the post-inc value, the addrec
1771         // is safe.
1772         if (isKnownPositive(Step)) {
1773           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1774                                       getUnsignedRangeMax(Step));
1775           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1776               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1777             // Cache knowledge of AR NUW, which is propagated to this
1778             // AddRec.
1779             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1780             // Return the expression with the addrec on the outside.
1781             return getAddRecExpr(
1782                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1783                                                          Depth + 1),
1784                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1785                 AR->getNoWrapFlags());
1786           }
1787         } else if (isKnownNegative(Step)) {
1788           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1789                                       getSignedRangeMin(Step));
1790           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1791               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1792             // Cache knowledge of AR NW, which is propagated to this
1793             // AddRec.  Negative step causes unsigned wrap, but it
1794             // still can't self-wrap.
1795             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1796             // Return the expression with the addrec on the outside.
1797             return getAddRecExpr(
1798                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1799                                                          Depth + 1),
1800                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1801                 AR->getNoWrapFlags());
1802           }
1803         }
1804       }
1805 
1806       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1807       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1808       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1809       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1810         const APInt &C = SC->getAPInt();
1811         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1812         if (D != 0) {
1813           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1814           const SCEV *SResidual =
1815               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1816           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1817           return getAddExpr(SZExtD, SZExtR,
1818                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1819                             Depth + 1);
1820         }
1821       }
1822 
1823       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1824         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1825         return getAddRecExpr(
1826             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1827             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1828       }
1829     }
1830 
1831   // zext(A % B) --> zext(A) % zext(B)
1832   {
1833     const SCEV *LHS;
1834     const SCEV *RHS;
1835     if (matchURem(Op, LHS, RHS))
1836       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1837                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1838   }
1839 
1840   // zext(A / B) --> zext(A) / zext(B).
1841   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1842     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1843                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1844 
1845   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1846     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1847     if (SA->hasNoUnsignedWrap()) {
1848       // If the addition does not unsign overflow then we can, by definition,
1849       // commute the zero extension with the addition operation.
1850       SmallVector<const SCEV *, 4> Ops;
1851       for (const auto *Op : SA->operands())
1852         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1853       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1854     }
1855 
1856     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1857     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1858     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1859     //
1860     // Often address arithmetics contain expressions like
1861     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1862     // This transformation is useful while proving that such expressions are
1863     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1864     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1865       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1866       if (D != 0) {
1867         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1868         const SCEV *SResidual =
1869             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1870         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1871         return getAddExpr(SZExtD, SZExtR,
1872                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1873                           Depth + 1);
1874       }
1875     }
1876   }
1877 
1878   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1879     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1880     if (SM->hasNoUnsignedWrap()) {
1881       // If the multiply does not unsign overflow then we can, by definition,
1882       // commute the zero extension with the multiply operation.
1883       SmallVector<const SCEV *, 4> Ops;
1884       for (const auto *Op : SM->operands())
1885         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1886       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1887     }
1888 
1889     // zext(2^K * (trunc X to iN)) to iM ->
1890     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1891     //
1892     // Proof:
1893     //
1894     //     zext(2^K * (trunc X to iN)) to iM
1895     //   = zext((trunc X to iN) << K) to iM
1896     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1897     //     (because shl removes the top K bits)
1898     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1899     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1900     //
1901     if (SM->getNumOperands() == 2)
1902       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1903         if (MulLHS->getAPInt().isPowerOf2())
1904           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1905             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1906                                MulLHS->getAPInt().logBase2();
1907             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1908             return getMulExpr(
1909                 getZeroExtendExpr(MulLHS, Ty),
1910                 getZeroExtendExpr(
1911                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1912                 SCEV::FlagNUW, Depth + 1);
1913           }
1914   }
1915 
1916   // The cast wasn't folded; create an explicit cast node.
1917   // Recompute the insert position, as it may have been invalidated.
1918   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1919   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1920                                                    Op, Ty);
1921   UniqueSCEVs.InsertNode(S, IP);
1922   addToLoopUseLists(S);
1923   return S;
1924 }
1925 
1926 const SCEV *
1927 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1928   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1929          "This is not an extending conversion!");
1930   assert(isSCEVable(Ty) &&
1931          "This is not a conversion to a SCEVable type!");
1932   Ty = getEffectiveSCEVType(Ty);
1933 
1934   // Fold if the operand is constant.
1935   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1936     return getConstant(
1937       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1938 
1939   // sext(sext(x)) --> sext(x)
1940   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1941     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1942 
1943   // sext(zext(x)) --> zext(x)
1944   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1945     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1946 
1947   // Before doing any expensive analysis, check to see if we've already
1948   // computed a SCEV for this Op and Ty.
1949   FoldingSetNodeID ID;
1950   ID.AddInteger(scSignExtend);
1951   ID.AddPointer(Op);
1952   ID.AddPointer(Ty);
1953   void *IP = nullptr;
1954   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1955   // Limit recursion depth.
1956   if (Depth > MaxCastDepth) {
1957     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1958                                                      Op, Ty);
1959     UniqueSCEVs.InsertNode(S, IP);
1960     addToLoopUseLists(S);
1961     return S;
1962   }
1963 
1964   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1965   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1966     // It's possible the bits taken off by the truncate were all sign bits. If
1967     // so, we should be able to simplify this further.
1968     const SCEV *X = ST->getOperand();
1969     ConstantRange CR = getSignedRange(X);
1970     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1971     unsigned NewBits = getTypeSizeInBits(Ty);
1972     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1973             CR.sextOrTrunc(NewBits)))
1974       return getTruncateOrSignExtend(X, Ty, Depth);
1975   }
1976 
1977   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1978     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1979     if (SA->hasNoSignedWrap()) {
1980       // If the addition does not sign overflow then we can, by definition,
1981       // commute the sign extension with the addition operation.
1982       SmallVector<const SCEV *, 4> Ops;
1983       for (const auto *Op : SA->operands())
1984         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1985       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1986     }
1987 
1988     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1989     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1990     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1991     //
1992     // For instance, this will bring two seemingly different expressions:
1993     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1994     //         sext(6 + 20 * %x + 24 * %y)
1995     // to the same form:
1996     //     2 + sext(4 + 20 * %x + 24 * %y)
1997     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1998       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1999       if (D != 0) {
2000         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2001         const SCEV *SResidual =
2002             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2003         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2004         return getAddExpr(SSExtD, SSExtR,
2005                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2006                           Depth + 1);
2007       }
2008     }
2009   }
2010   // If the input value is a chrec scev, and we can prove that the value
2011   // did not overflow the old, smaller, value, we can sign extend all of the
2012   // operands (often constants).  This allows analysis of something like
2013   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2014   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2015     if (AR->isAffine()) {
2016       const SCEV *Start = AR->getStart();
2017       const SCEV *Step = AR->getStepRecurrence(*this);
2018       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2019       const Loop *L = AR->getLoop();
2020 
2021       if (!AR->hasNoSignedWrap()) {
2022         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2023         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2024       }
2025 
2026       // If we have special knowledge that this addrec won't overflow,
2027       // we don't need to do any further analysis.
2028       if (AR->hasNoSignedWrap())
2029         return getAddRecExpr(
2030             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2031             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2032 
2033       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2034       // Note that this serves two purposes: It filters out loops that are
2035       // simply not analyzable, and it covers the case where this code is
2036       // being called from within backedge-taken count analysis, such that
2037       // attempting to ask for the backedge-taken count would likely result
2038       // in infinite recursion. In the later case, the analysis code will
2039       // cope with a conservative value, and it will take care to purge
2040       // that value once it has finished.
2041       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
2042       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2043         // Manually compute the final value for AR, checking for
2044         // overflow.
2045 
2046         // Check whether the backedge-taken count can be losslessly casted to
2047         // the addrec's type. The count is always unsigned.
2048         const SCEV *CastedMaxBECount =
2049             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2050         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2051             CastedMaxBECount, MaxBECount->getType(), Depth);
2052         if (MaxBECount == RecastedMaxBECount) {
2053           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2054           // Check whether Start+Step*MaxBECount has no signed overflow.
2055           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2056                                         SCEV::FlagAnyWrap, Depth + 1);
2057           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2058                                                           SCEV::FlagAnyWrap,
2059                                                           Depth + 1),
2060                                                WideTy, Depth + 1);
2061           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2062           const SCEV *WideMaxBECount =
2063             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2064           const SCEV *OperandExtendedAdd =
2065             getAddExpr(WideStart,
2066                        getMulExpr(WideMaxBECount,
2067                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2068                                   SCEV::FlagAnyWrap, Depth + 1),
2069                        SCEV::FlagAnyWrap, Depth + 1);
2070           if (SAdd == OperandExtendedAdd) {
2071             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2072             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2073             // Return the expression with the addrec on the outside.
2074             return getAddRecExpr(
2075                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2076                                                          Depth + 1),
2077                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2078                 AR->getNoWrapFlags());
2079           }
2080           // Similar to above, only this time treat the step value as unsigned.
2081           // This covers loops that count up with an unsigned step.
2082           OperandExtendedAdd =
2083             getAddExpr(WideStart,
2084                        getMulExpr(WideMaxBECount,
2085                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2086                                   SCEV::FlagAnyWrap, Depth + 1),
2087                        SCEV::FlagAnyWrap, Depth + 1);
2088           if (SAdd == OperandExtendedAdd) {
2089             // If AR wraps around then
2090             //
2091             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2092             // => SAdd != OperandExtendedAdd
2093             //
2094             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2095             // (SAdd == OperandExtendedAdd => AR is NW)
2096 
2097             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2098 
2099             // Return the expression with the addrec on the outside.
2100             return getAddRecExpr(
2101                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2102                                                          Depth + 1),
2103                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2104                 AR->getNoWrapFlags());
2105           }
2106         }
2107       }
2108 
2109       // Normally, in the cases we can prove no-overflow via a
2110       // backedge guarding condition, we can also compute a backedge
2111       // taken count for the loop.  The exceptions are assumptions and
2112       // guards present in the loop -- SCEV is not great at exploiting
2113       // these to compute max backedge taken counts, but can still use
2114       // these to prove lack of overflow.  Use this fact to avoid
2115       // doing extra work that may not pay off.
2116 
2117       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2118           !AC.assumptions().empty()) {
2119         // If the backedge is guarded by a comparison with the pre-inc
2120         // value the addrec is safe. Also, if the entry is guarded by
2121         // a comparison with the start value and the backedge is
2122         // guarded by a comparison with the post-inc value, the addrec
2123         // is safe.
2124         ICmpInst::Predicate Pred;
2125         const SCEV *OverflowLimit =
2126             getSignedOverflowLimitForStep(Step, &Pred, this);
2127         if (OverflowLimit &&
2128             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2129              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2130           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2131           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2132           return getAddRecExpr(
2133               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2134               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2135         }
2136       }
2137 
2138       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2139       // if D + (C - D + Step * n) could be proven to not signed wrap
2140       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2141       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2142         const APInt &C = SC->getAPInt();
2143         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2144         if (D != 0) {
2145           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2146           const SCEV *SResidual =
2147               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2148           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2149           return getAddExpr(SSExtD, SSExtR,
2150                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2151                             Depth + 1);
2152         }
2153       }
2154 
2155       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2156         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2157         return getAddRecExpr(
2158             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2159             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2160       }
2161     }
2162 
2163   // If the input value is provably positive and we could not simplify
2164   // away the sext build a zext instead.
2165   if (isKnownNonNegative(Op))
2166     return getZeroExtendExpr(Op, Ty, Depth + 1);
2167 
2168   // The cast wasn't folded; create an explicit cast node.
2169   // Recompute the insert position, as it may have been invalidated.
2170   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2171   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2172                                                    Op, Ty);
2173   UniqueSCEVs.InsertNode(S, IP);
2174   addToLoopUseLists(S);
2175   return S;
2176 }
2177 
2178 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2179 /// unspecified bits out to the given type.
2180 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2181                                               Type *Ty) {
2182   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2183          "This is not an extending conversion!");
2184   assert(isSCEVable(Ty) &&
2185          "This is not a conversion to a SCEVable type!");
2186   Ty = getEffectiveSCEVType(Ty);
2187 
2188   // Sign-extend negative constants.
2189   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2190     if (SC->getAPInt().isNegative())
2191       return getSignExtendExpr(Op, Ty);
2192 
2193   // Peel off a truncate cast.
2194   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2195     const SCEV *NewOp = T->getOperand();
2196     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2197       return getAnyExtendExpr(NewOp, Ty);
2198     return getTruncateOrNoop(NewOp, Ty);
2199   }
2200 
2201   // Next try a zext cast. If the cast is folded, use it.
2202   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2203   if (!isa<SCEVZeroExtendExpr>(ZExt))
2204     return ZExt;
2205 
2206   // Next try a sext cast. If the cast is folded, use it.
2207   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2208   if (!isa<SCEVSignExtendExpr>(SExt))
2209     return SExt;
2210 
2211   // Force the cast to be folded into the operands of an addrec.
2212   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2213     SmallVector<const SCEV *, 4> Ops;
2214     for (const SCEV *Op : AR->operands())
2215       Ops.push_back(getAnyExtendExpr(Op, Ty));
2216     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2217   }
2218 
2219   // If the expression is obviously signed, use the sext cast value.
2220   if (isa<SCEVSMaxExpr>(Op))
2221     return SExt;
2222 
2223   // Absent any other information, use the zext cast value.
2224   return ZExt;
2225 }
2226 
2227 /// Process the given Ops list, which is a list of operands to be added under
2228 /// the given scale, update the given map. This is a helper function for
2229 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2230 /// that would form an add expression like this:
2231 ///
2232 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2233 ///
2234 /// where A and B are constants, update the map with these values:
2235 ///
2236 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2237 ///
2238 /// and add 13 + A*B*29 to AccumulatedConstant.
2239 /// This will allow getAddRecExpr to produce this:
2240 ///
2241 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2242 ///
2243 /// This form often exposes folding opportunities that are hidden in
2244 /// the original operand list.
2245 ///
2246 /// Return true iff it appears that any interesting folding opportunities
2247 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2248 /// the common case where no interesting opportunities are present, and
2249 /// is also used as a check to avoid infinite recursion.
2250 static bool
2251 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2252                              SmallVectorImpl<const SCEV *> &NewOps,
2253                              APInt &AccumulatedConstant,
2254                              const SCEV *const *Ops, size_t NumOperands,
2255                              const APInt &Scale,
2256                              ScalarEvolution &SE) {
2257   bool Interesting = false;
2258 
2259   // Iterate over the add operands. They are sorted, with constants first.
2260   unsigned i = 0;
2261   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2262     ++i;
2263     // Pull a buried constant out to the outside.
2264     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2265       Interesting = true;
2266     AccumulatedConstant += Scale * C->getAPInt();
2267   }
2268 
2269   // Next comes everything else. We're especially interested in multiplies
2270   // here, but they're in the middle, so just visit the rest with one loop.
2271   for (; i != NumOperands; ++i) {
2272     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2273     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2274       APInt NewScale =
2275           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2276       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2277         // A multiplication of a constant with another add; recurse.
2278         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2279         Interesting |=
2280           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2281                                        Add->op_begin(), Add->getNumOperands(),
2282                                        NewScale, SE);
2283       } else {
2284         // A multiplication of a constant with some other value. Update
2285         // the map.
2286         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2287         const SCEV *Key = SE.getMulExpr(MulOps);
2288         auto Pair = M.insert({Key, NewScale});
2289         if (Pair.second) {
2290           NewOps.push_back(Pair.first->first);
2291         } else {
2292           Pair.first->second += NewScale;
2293           // The map already had an entry for this value, which may indicate
2294           // a folding opportunity.
2295           Interesting = true;
2296         }
2297       }
2298     } else {
2299       // An ordinary operand. Update the map.
2300       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2301           M.insert({Ops[i], Scale});
2302       if (Pair.second) {
2303         NewOps.push_back(Pair.first->first);
2304       } else {
2305         Pair.first->second += Scale;
2306         // The map already had an entry for this value, which may indicate
2307         // a folding opportunity.
2308         Interesting = true;
2309       }
2310     }
2311   }
2312 
2313   return Interesting;
2314 }
2315 
2316 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2317 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2318 // can't-overflow flags for the operation if possible.
2319 static SCEV::NoWrapFlags
2320 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2321                       const ArrayRef<const SCEV *> Ops,
2322                       SCEV::NoWrapFlags Flags) {
2323   using namespace std::placeholders;
2324 
2325   using OBO = OverflowingBinaryOperator;
2326 
2327   bool CanAnalyze =
2328       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2329   (void)CanAnalyze;
2330   assert(CanAnalyze && "don't call from other places!");
2331 
2332   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2333   SCEV::NoWrapFlags SignOrUnsignWrap =
2334       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2335 
2336   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2337   auto IsKnownNonNegative = [&](const SCEV *S) {
2338     return SE->isKnownNonNegative(S);
2339   };
2340 
2341   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2342     Flags =
2343         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2344 
2345   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2346 
2347   if (SignOrUnsignWrap != SignOrUnsignMask &&
2348       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2349       isa<SCEVConstant>(Ops[0])) {
2350 
2351     auto Opcode = [&] {
2352       switch (Type) {
2353       case scAddExpr:
2354         return Instruction::Add;
2355       case scMulExpr:
2356         return Instruction::Mul;
2357       default:
2358         llvm_unreachable("Unexpected SCEV op.");
2359       }
2360     }();
2361 
2362     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2363 
2364     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2365     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2366       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2367           Opcode, C, OBO::NoSignedWrap);
2368       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2369         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2370     }
2371 
2372     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2373     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2374       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2375           Opcode, C, OBO::NoUnsignedWrap);
2376       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2377         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2378     }
2379   }
2380 
2381   return Flags;
2382 }
2383 
2384 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2385   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2386 }
2387 
2388 /// Get a canonical add expression, or something simpler if possible.
2389 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2390                                         SCEV::NoWrapFlags Flags,
2391                                         unsigned Depth) {
2392   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2393          "only nuw or nsw allowed");
2394   assert(!Ops.empty() && "Cannot get empty add!");
2395   if (Ops.size() == 1) return Ops[0];
2396 #ifndef NDEBUG
2397   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2398   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2399     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2400            "SCEVAddExpr operand types don't match!");
2401 #endif
2402 
2403   // Sort by complexity, this groups all similar expression types together.
2404   GroupByComplexity(Ops, &LI, DT);
2405 
2406   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2407 
2408   // If there are any constants, fold them together.
2409   unsigned Idx = 0;
2410   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2411     ++Idx;
2412     assert(Idx < Ops.size());
2413     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2414       // We found two constants, fold them together!
2415       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2416       if (Ops.size() == 2) return Ops[0];
2417       Ops.erase(Ops.begin()+1);  // Erase the folded element
2418       LHSC = cast<SCEVConstant>(Ops[0]);
2419     }
2420 
2421     // If we are left with a constant zero being added, strip it off.
2422     if (LHSC->getValue()->isZero()) {
2423       Ops.erase(Ops.begin());
2424       --Idx;
2425     }
2426 
2427     if (Ops.size() == 1) return Ops[0];
2428   }
2429 
2430   // Limit recursion calls depth.
2431   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2432     return getOrCreateAddExpr(Ops, Flags);
2433 
2434   // Okay, check to see if the same value occurs in the operand list more than
2435   // once.  If so, merge them together into an multiply expression.  Since we
2436   // sorted the list, these values are required to be adjacent.
2437   Type *Ty = Ops[0]->getType();
2438   bool FoundMatch = false;
2439   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2440     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2441       // Scan ahead to count how many equal operands there are.
2442       unsigned Count = 2;
2443       while (i+Count != e && Ops[i+Count] == Ops[i])
2444         ++Count;
2445       // Merge the values into a multiply.
2446       const SCEV *Scale = getConstant(Ty, Count);
2447       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2448       if (Ops.size() == Count)
2449         return Mul;
2450       Ops[i] = Mul;
2451       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2452       --i; e -= Count - 1;
2453       FoundMatch = true;
2454     }
2455   if (FoundMatch)
2456     return getAddExpr(Ops, Flags, Depth + 1);
2457 
2458   // Check for truncates. If all the operands are truncated from the same
2459   // type, see if factoring out the truncate would permit the result to be
2460   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2461   // if the contents of the resulting outer trunc fold to something simple.
2462   auto FindTruncSrcType = [&]() -> Type * {
2463     // We're ultimately looking to fold an addrec of truncs and muls of only
2464     // constants and truncs, so if we find any other types of SCEV
2465     // as operands of the addrec then we bail and return nullptr here.
2466     // Otherwise, we return the type of the operand of a trunc that we find.
2467     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2468       return T->getOperand()->getType();
2469     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2470       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2471       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2472         return T->getOperand()->getType();
2473     }
2474     return nullptr;
2475   };
2476   if (auto *SrcType = FindTruncSrcType()) {
2477     SmallVector<const SCEV *, 8> LargeOps;
2478     bool Ok = true;
2479     // Check all the operands to see if they can be represented in the
2480     // source type of the truncate.
2481     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2482       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2483         if (T->getOperand()->getType() != SrcType) {
2484           Ok = false;
2485           break;
2486         }
2487         LargeOps.push_back(T->getOperand());
2488       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2489         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2490       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2491         SmallVector<const SCEV *, 8> LargeMulOps;
2492         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2493           if (const SCEVTruncateExpr *T =
2494                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2495             if (T->getOperand()->getType() != SrcType) {
2496               Ok = false;
2497               break;
2498             }
2499             LargeMulOps.push_back(T->getOperand());
2500           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2501             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2502           } else {
2503             Ok = false;
2504             break;
2505           }
2506         }
2507         if (Ok)
2508           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2509       } else {
2510         Ok = false;
2511         break;
2512       }
2513     }
2514     if (Ok) {
2515       // Evaluate the expression in the larger type.
2516       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2517       // If it folds to something simple, use it. Otherwise, don't.
2518       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2519         return getTruncateExpr(Fold, Ty);
2520     }
2521   }
2522 
2523   // Skip past any other cast SCEVs.
2524   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2525     ++Idx;
2526 
2527   // If there are add operands they would be next.
2528   if (Idx < Ops.size()) {
2529     bool DeletedAdd = false;
2530     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2531       if (Ops.size() > AddOpsInlineThreshold ||
2532           Add->getNumOperands() > AddOpsInlineThreshold)
2533         break;
2534       // If we have an add, expand the add operands onto the end of the operands
2535       // list.
2536       Ops.erase(Ops.begin()+Idx);
2537       Ops.append(Add->op_begin(), Add->op_end());
2538       DeletedAdd = true;
2539     }
2540 
2541     // If we deleted at least one add, we added operands to the end of the list,
2542     // and they are not necessarily sorted.  Recurse to resort and resimplify
2543     // any operands we just acquired.
2544     if (DeletedAdd)
2545       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2546   }
2547 
2548   // Skip over the add expression until we get to a multiply.
2549   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2550     ++Idx;
2551 
2552   // Check to see if there are any folding opportunities present with
2553   // operands multiplied by constant values.
2554   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2555     uint64_t BitWidth = getTypeSizeInBits(Ty);
2556     DenseMap<const SCEV *, APInt> M;
2557     SmallVector<const SCEV *, 8> NewOps;
2558     APInt AccumulatedConstant(BitWidth, 0);
2559     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2560                                      Ops.data(), Ops.size(),
2561                                      APInt(BitWidth, 1), *this)) {
2562       struct APIntCompare {
2563         bool operator()(const APInt &LHS, const APInt &RHS) const {
2564           return LHS.ult(RHS);
2565         }
2566       };
2567 
2568       // Some interesting folding opportunity is present, so its worthwhile to
2569       // re-generate the operands list. Group the operands by constant scale,
2570       // to avoid multiplying by the same constant scale multiple times.
2571       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2572       for (const SCEV *NewOp : NewOps)
2573         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2574       // Re-generate the operands list.
2575       Ops.clear();
2576       if (AccumulatedConstant != 0)
2577         Ops.push_back(getConstant(AccumulatedConstant));
2578       for (auto &MulOp : MulOpLists)
2579         if (MulOp.first != 0)
2580           Ops.push_back(getMulExpr(
2581               getConstant(MulOp.first),
2582               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2583               SCEV::FlagAnyWrap, Depth + 1));
2584       if (Ops.empty())
2585         return getZero(Ty);
2586       if (Ops.size() == 1)
2587         return Ops[0];
2588       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2589     }
2590   }
2591 
2592   // If we are adding something to a multiply expression, make sure the
2593   // something is not already an operand of the multiply.  If so, merge it into
2594   // the multiply.
2595   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2596     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2597     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2598       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2599       if (isa<SCEVConstant>(MulOpSCEV))
2600         continue;
2601       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2602         if (MulOpSCEV == Ops[AddOp]) {
2603           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2604           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2605           if (Mul->getNumOperands() != 2) {
2606             // If the multiply has more than two operands, we must get the
2607             // Y*Z term.
2608             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2609                                                 Mul->op_begin()+MulOp);
2610             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2611             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2612           }
2613           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2614           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2615           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2616                                             SCEV::FlagAnyWrap, Depth + 1);
2617           if (Ops.size() == 2) return OuterMul;
2618           if (AddOp < Idx) {
2619             Ops.erase(Ops.begin()+AddOp);
2620             Ops.erase(Ops.begin()+Idx-1);
2621           } else {
2622             Ops.erase(Ops.begin()+Idx);
2623             Ops.erase(Ops.begin()+AddOp-1);
2624           }
2625           Ops.push_back(OuterMul);
2626           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2627         }
2628 
2629       // Check this multiply against other multiplies being added together.
2630       for (unsigned OtherMulIdx = Idx+1;
2631            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2632            ++OtherMulIdx) {
2633         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2634         // If MulOp occurs in OtherMul, we can fold the two multiplies
2635         // together.
2636         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2637              OMulOp != e; ++OMulOp)
2638           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2639             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2640             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2641             if (Mul->getNumOperands() != 2) {
2642               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2643                                                   Mul->op_begin()+MulOp);
2644               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2645               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2646             }
2647             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2648             if (OtherMul->getNumOperands() != 2) {
2649               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2650                                                   OtherMul->op_begin()+OMulOp);
2651               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2652               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2653             }
2654             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2655             const SCEV *InnerMulSum =
2656                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2657             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2658                                               SCEV::FlagAnyWrap, Depth + 1);
2659             if (Ops.size() == 2) return OuterMul;
2660             Ops.erase(Ops.begin()+Idx);
2661             Ops.erase(Ops.begin()+OtherMulIdx-1);
2662             Ops.push_back(OuterMul);
2663             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2664           }
2665       }
2666     }
2667   }
2668 
2669   // If there are any add recurrences in the operands list, see if any other
2670   // added values are loop invariant.  If so, we can fold them into the
2671   // recurrence.
2672   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2673     ++Idx;
2674 
2675   // Scan over all recurrences, trying to fold loop invariants into them.
2676   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2677     // Scan all of the other operands to this add and add them to the vector if
2678     // they are loop invariant w.r.t. the recurrence.
2679     SmallVector<const SCEV *, 8> LIOps;
2680     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2681     const Loop *AddRecLoop = AddRec->getLoop();
2682     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2683       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2684         LIOps.push_back(Ops[i]);
2685         Ops.erase(Ops.begin()+i);
2686         --i; --e;
2687       }
2688 
2689     // If we found some loop invariants, fold them into the recurrence.
2690     if (!LIOps.empty()) {
2691       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2692       LIOps.push_back(AddRec->getStart());
2693 
2694       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2695                                              AddRec->op_end());
2696       // This follows from the fact that the no-wrap flags on the outer add
2697       // expression are applicable on the 0th iteration, when the add recurrence
2698       // will be equal to its start value.
2699       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2700 
2701       // Build the new addrec. Propagate the NUW and NSW flags if both the
2702       // outer add and the inner addrec are guaranteed to have no overflow.
2703       // Always propagate NW.
2704       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2705       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2706 
2707       // If all of the other operands were loop invariant, we are done.
2708       if (Ops.size() == 1) return NewRec;
2709 
2710       // Otherwise, add the folded AddRec by the non-invariant parts.
2711       for (unsigned i = 0;; ++i)
2712         if (Ops[i] == AddRec) {
2713           Ops[i] = NewRec;
2714           break;
2715         }
2716       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2717     }
2718 
2719     // Okay, if there weren't any loop invariants to be folded, check to see if
2720     // there are multiple AddRec's with the same loop induction variable being
2721     // added together.  If so, we can fold them.
2722     for (unsigned OtherIdx = Idx+1;
2723          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2724          ++OtherIdx) {
2725       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2726       // so that the 1st found AddRecExpr is dominated by all others.
2727       assert(DT.dominates(
2728            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2729            AddRec->getLoop()->getHeader()) &&
2730         "AddRecExprs are not sorted in reverse dominance order?");
2731       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2732         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2733         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2734                                                AddRec->op_end());
2735         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2736              ++OtherIdx) {
2737           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2738           if (OtherAddRec->getLoop() == AddRecLoop) {
2739             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2740                  i != e; ++i) {
2741               if (i >= AddRecOps.size()) {
2742                 AddRecOps.append(OtherAddRec->op_begin()+i,
2743                                  OtherAddRec->op_end());
2744                 break;
2745               }
2746               SmallVector<const SCEV *, 2> TwoOps = {
2747                   AddRecOps[i], OtherAddRec->getOperand(i)};
2748               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             }
2750             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2751           }
2752         }
2753         // Step size has changed, so we cannot guarantee no self-wraparound.
2754         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2755         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756       }
2757     }
2758 
2759     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2760     // next one.
2761   }
2762 
2763   // Okay, it looks like we really DO need an add expr.  Check to see if we
2764   // already have one, otherwise create a new one.
2765   return getOrCreateAddExpr(Ops, Flags);
2766 }
2767 
2768 const SCEV *
2769 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2770                                     SCEV::NoWrapFlags Flags) {
2771   FoldingSetNodeID ID;
2772   ID.AddInteger(scAddExpr);
2773   for (const SCEV *Op : Ops)
2774     ID.AddPointer(Op);
2775   void *IP = nullptr;
2776   SCEVAddExpr *S =
2777       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2778   if (!S) {
2779     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2780     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2781     S = new (SCEVAllocator)
2782         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2783     UniqueSCEVs.InsertNode(S, IP);
2784     addToLoopUseLists(S);
2785   }
2786   S->setNoWrapFlags(Flags);
2787   return S;
2788 }
2789 
2790 const SCEV *
2791 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2792                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2793   FoldingSetNodeID ID;
2794   ID.AddInteger(scAddRecExpr);
2795   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2796     ID.AddPointer(Ops[i]);
2797   ID.AddPointer(L);
2798   void *IP = nullptr;
2799   SCEVAddRecExpr *S =
2800       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2801   if (!S) {
2802     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2803     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2804     S = new (SCEVAllocator)
2805         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2806     UniqueSCEVs.InsertNode(S, IP);
2807     addToLoopUseLists(S);
2808   }
2809   S->setNoWrapFlags(Flags);
2810   return S;
2811 }
2812 
2813 const SCEV *
2814 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2815                                     SCEV::NoWrapFlags Flags) {
2816   FoldingSetNodeID ID;
2817   ID.AddInteger(scMulExpr);
2818   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2819     ID.AddPointer(Ops[i]);
2820   void *IP = nullptr;
2821   SCEVMulExpr *S =
2822     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2823   if (!S) {
2824     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2825     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2826     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2827                                         O, Ops.size());
2828     UniqueSCEVs.InsertNode(S, IP);
2829     addToLoopUseLists(S);
2830   }
2831   S->setNoWrapFlags(Flags);
2832   return S;
2833 }
2834 
2835 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2836   uint64_t k = i*j;
2837   if (j > 1 && k / j != i) Overflow = true;
2838   return k;
2839 }
2840 
2841 /// Compute the result of "n choose k", the binomial coefficient.  If an
2842 /// intermediate computation overflows, Overflow will be set and the return will
2843 /// be garbage. Overflow is not cleared on absence of overflow.
2844 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2845   // We use the multiplicative formula:
2846   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2847   // At each iteration, we take the n-th term of the numeral and divide by the
2848   // (k-n)th term of the denominator.  This division will always produce an
2849   // integral result, and helps reduce the chance of overflow in the
2850   // intermediate computations. However, we can still overflow even when the
2851   // final result would fit.
2852 
2853   if (n == 0 || n == k) return 1;
2854   if (k > n) return 0;
2855 
2856   if (k > n/2)
2857     k = n-k;
2858 
2859   uint64_t r = 1;
2860   for (uint64_t i = 1; i <= k; ++i) {
2861     r = umul_ov(r, n-(i-1), Overflow);
2862     r /= i;
2863   }
2864   return r;
2865 }
2866 
2867 /// Determine if any of the operands in this SCEV are a constant or if
2868 /// any of the add or multiply expressions in this SCEV contain a constant.
2869 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2870   struct FindConstantInAddMulChain {
2871     bool FoundConstant = false;
2872 
2873     bool follow(const SCEV *S) {
2874       FoundConstant |= isa<SCEVConstant>(S);
2875       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2876     }
2877 
2878     bool isDone() const {
2879       return FoundConstant;
2880     }
2881   };
2882 
2883   FindConstantInAddMulChain F;
2884   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2885   ST.visitAll(StartExpr);
2886   return F.FoundConstant;
2887 }
2888 
2889 /// Get a canonical multiply expression, or something simpler if possible.
2890 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2891                                         SCEV::NoWrapFlags Flags,
2892                                         unsigned Depth) {
2893   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2894          "only nuw or nsw allowed");
2895   assert(!Ops.empty() && "Cannot get empty mul!");
2896   if (Ops.size() == 1) return Ops[0];
2897 #ifndef NDEBUG
2898   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2899   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2900     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2901            "SCEVMulExpr operand types don't match!");
2902 #endif
2903 
2904   // Sort by complexity, this groups all similar expression types together.
2905   GroupByComplexity(Ops, &LI, DT);
2906 
2907   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2908 
2909   // Limit recursion calls depth.
2910   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2911     return getOrCreateMulExpr(Ops, Flags);
2912 
2913   // If there are any constants, fold them together.
2914   unsigned Idx = 0;
2915   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2916 
2917     if (Ops.size() == 2)
2918       // C1*(C2+V) -> C1*C2 + C1*V
2919       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2920         // If any of Add's ops are Adds or Muls with a constant, apply this
2921         // transformation as well.
2922         //
2923         // TODO: There are some cases where this transformation is not
2924         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2925         // this transformation should be narrowed down.
2926         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2927           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2928                                        SCEV::FlagAnyWrap, Depth + 1),
2929                             getMulExpr(LHSC, Add->getOperand(1),
2930                                        SCEV::FlagAnyWrap, Depth + 1),
2931                             SCEV::FlagAnyWrap, Depth + 1);
2932 
2933     ++Idx;
2934     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2935       // We found two constants, fold them together!
2936       ConstantInt *Fold =
2937           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2938       Ops[0] = getConstant(Fold);
2939       Ops.erase(Ops.begin()+1);  // Erase the folded element
2940       if (Ops.size() == 1) return Ops[0];
2941       LHSC = cast<SCEVConstant>(Ops[0]);
2942     }
2943 
2944     // If we are left with a constant one being multiplied, strip it off.
2945     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2946       Ops.erase(Ops.begin());
2947       --Idx;
2948     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2949       // If we have a multiply of zero, it will always be zero.
2950       return Ops[0];
2951     } else if (Ops[0]->isAllOnesValue()) {
2952       // If we have a mul by -1 of an add, try distributing the -1 among the
2953       // add operands.
2954       if (Ops.size() == 2) {
2955         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2956           SmallVector<const SCEV *, 4> NewOps;
2957           bool AnyFolded = false;
2958           for (const SCEV *AddOp : Add->operands()) {
2959             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2960                                          Depth + 1);
2961             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2962             NewOps.push_back(Mul);
2963           }
2964           if (AnyFolded)
2965             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2966         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2967           // Negation preserves a recurrence's no self-wrap property.
2968           SmallVector<const SCEV *, 4> Operands;
2969           for (const SCEV *AddRecOp : AddRec->operands())
2970             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
2971                                           Depth + 1));
2972 
2973           return getAddRecExpr(Operands, AddRec->getLoop(),
2974                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2975         }
2976       }
2977     }
2978 
2979     if (Ops.size() == 1)
2980       return Ops[0];
2981   }
2982 
2983   // Skip over the add expression until we get to a multiply.
2984   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2985     ++Idx;
2986 
2987   // If there are mul operands inline them all into this expression.
2988   if (Idx < Ops.size()) {
2989     bool DeletedMul = false;
2990     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2991       if (Ops.size() > MulOpsInlineThreshold)
2992         break;
2993       // If we have an mul, expand the mul operands onto the end of the
2994       // operands list.
2995       Ops.erase(Ops.begin()+Idx);
2996       Ops.append(Mul->op_begin(), Mul->op_end());
2997       DeletedMul = true;
2998     }
2999 
3000     // If we deleted at least one mul, we added operands to the end of the
3001     // list, and they are not necessarily sorted.  Recurse to resort and
3002     // resimplify any operands we just acquired.
3003     if (DeletedMul)
3004       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3005   }
3006 
3007   // If there are any add recurrences in the operands list, see if any other
3008   // added values are loop invariant.  If so, we can fold them into the
3009   // recurrence.
3010   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3011     ++Idx;
3012 
3013   // Scan over all recurrences, trying to fold loop invariants into them.
3014   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3015     // Scan all of the other operands to this mul and add them to the vector
3016     // if they are loop invariant w.r.t. the recurrence.
3017     SmallVector<const SCEV *, 8> LIOps;
3018     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3019     const Loop *AddRecLoop = AddRec->getLoop();
3020     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3021       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3022         LIOps.push_back(Ops[i]);
3023         Ops.erase(Ops.begin()+i);
3024         --i; --e;
3025       }
3026 
3027     // If we found some loop invariants, fold them into the recurrence.
3028     if (!LIOps.empty()) {
3029       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3030       SmallVector<const SCEV *, 4> NewOps;
3031       NewOps.reserve(AddRec->getNumOperands());
3032       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3033       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3034         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3035                                     SCEV::FlagAnyWrap, Depth + 1));
3036 
3037       // Build the new addrec. Propagate the NUW and NSW flags if both the
3038       // outer mul and the inner addrec are guaranteed to have no overflow.
3039       //
3040       // No self-wrap cannot be guaranteed after changing the step size, but
3041       // will be inferred if either NUW or NSW is true.
3042       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3043       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3044 
3045       // If all of the other operands were loop invariant, we are done.
3046       if (Ops.size() == 1) return NewRec;
3047 
3048       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3049       for (unsigned i = 0;; ++i)
3050         if (Ops[i] == AddRec) {
3051           Ops[i] = NewRec;
3052           break;
3053         }
3054       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3055     }
3056 
3057     // Okay, if there weren't any loop invariants to be folded, check to see
3058     // if there are multiple AddRec's with the same loop induction variable
3059     // being multiplied together.  If so, we can fold them.
3060 
3061     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3062     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3063     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3064     //   ]]],+,...up to x=2n}.
3065     // Note that the arguments to choose() are always integers with values
3066     // known at compile time, never SCEV objects.
3067     //
3068     // The implementation avoids pointless extra computations when the two
3069     // addrec's are of different length (mathematically, it's equivalent to
3070     // an infinite stream of zeros on the right).
3071     bool OpsModified = false;
3072     for (unsigned OtherIdx = Idx+1;
3073          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3074          ++OtherIdx) {
3075       const SCEVAddRecExpr *OtherAddRec =
3076         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3077       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3078         continue;
3079 
3080       // Limit max number of arguments to avoid creation of unreasonably big
3081       // SCEVAddRecs with very complex operands.
3082       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3083           MaxAddRecSize || isHugeExpression(AddRec) ||
3084           isHugeExpression(OtherAddRec))
3085         continue;
3086 
3087       bool Overflow = false;
3088       Type *Ty = AddRec->getType();
3089       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3090       SmallVector<const SCEV*, 7> AddRecOps;
3091       for (int x = 0, xe = AddRec->getNumOperands() +
3092              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3093         SmallVector <const SCEV *, 7> SumOps;
3094         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3095           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3096           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3097                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3098                z < ze && !Overflow; ++z) {
3099             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3100             uint64_t Coeff;
3101             if (LargerThan64Bits)
3102               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3103             else
3104               Coeff = Coeff1*Coeff2;
3105             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3106             const SCEV *Term1 = AddRec->getOperand(y-z);
3107             const SCEV *Term2 = OtherAddRec->getOperand(z);
3108             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3109                                         SCEV::FlagAnyWrap, Depth + 1));
3110           }
3111         }
3112         if (SumOps.empty())
3113           SumOps.push_back(getZero(Ty));
3114         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3115       }
3116       if (!Overflow) {
3117         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3118                                               SCEV::FlagAnyWrap);
3119         if (Ops.size() == 2) return NewAddRec;
3120         Ops[Idx] = NewAddRec;
3121         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3122         OpsModified = true;
3123         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3124         if (!AddRec)
3125           break;
3126       }
3127     }
3128     if (OpsModified)
3129       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3130 
3131     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3132     // next one.
3133   }
3134 
3135   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3136   // already have one, otherwise create a new one.
3137   return getOrCreateMulExpr(Ops, Flags);
3138 }
3139 
3140 /// Represents an unsigned remainder expression based on unsigned division.
3141 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3142                                          const SCEV *RHS) {
3143   assert(getEffectiveSCEVType(LHS->getType()) ==
3144          getEffectiveSCEVType(RHS->getType()) &&
3145          "SCEVURemExpr operand types don't match!");
3146 
3147   // Short-circuit easy cases
3148   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3149     // If constant is one, the result is trivial
3150     if (RHSC->getValue()->isOne())
3151       return getZero(LHS->getType()); // X urem 1 --> 0
3152 
3153     // If constant is a power of two, fold into a zext(trunc(LHS)).
3154     if (RHSC->getAPInt().isPowerOf2()) {
3155       Type *FullTy = LHS->getType();
3156       Type *TruncTy =
3157           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3158       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3159     }
3160   }
3161 
3162   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3163   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3164   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3165   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3166 }
3167 
3168 /// Get a canonical unsigned division expression, or something simpler if
3169 /// possible.
3170 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3171                                          const SCEV *RHS) {
3172   assert(getEffectiveSCEVType(LHS->getType()) ==
3173          getEffectiveSCEVType(RHS->getType()) &&
3174          "SCEVUDivExpr operand types don't match!");
3175 
3176   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3177     if (RHSC->getValue()->isOne())
3178       return LHS;                               // X udiv 1 --> x
3179     // If the denominator is zero, the result of the udiv is undefined. Don't
3180     // try to analyze it, because the resolution chosen here may differ from
3181     // the resolution chosen in other parts of the compiler.
3182     if (!RHSC->getValue()->isZero()) {
3183       // Determine if the division can be folded into the operands of
3184       // its operands.
3185       // TODO: Generalize this to non-constants by using known-bits information.
3186       Type *Ty = LHS->getType();
3187       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3188       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3189       // For non-power-of-two values, effectively round the value up to the
3190       // nearest power of two.
3191       if (!RHSC->getAPInt().isPowerOf2())
3192         ++MaxShiftAmt;
3193       IntegerType *ExtTy =
3194         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3195       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3196         if (const SCEVConstant *Step =
3197             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3198           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3199           const APInt &StepInt = Step->getAPInt();
3200           const APInt &DivInt = RHSC->getAPInt();
3201           if (!StepInt.urem(DivInt) &&
3202               getZeroExtendExpr(AR, ExtTy) ==
3203               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3204                             getZeroExtendExpr(Step, ExtTy),
3205                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3206             SmallVector<const SCEV *, 4> Operands;
3207             for (const SCEV *Op : AR->operands())
3208               Operands.push_back(getUDivExpr(Op, RHS));
3209             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3210           }
3211           /// Get a canonical UDivExpr for a recurrence.
3212           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3213           // We can currently only fold X%N if X is constant.
3214           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3215           if (StartC && !DivInt.urem(StepInt) &&
3216               getZeroExtendExpr(AR, ExtTy) ==
3217               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3218                             getZeroExtendExpr(Step, ExtTy),
3219                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3220             const APInt &StartInt = StartC->getAPInt();
3221             const APInt &StartRem = StartInt.urem(StepInt);
3222             if (StartRem != 0)
3223               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
3224                                   AR->getLoop(), SCEV::FlagNW);
3225           }
3226         }
3227       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3228       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3229         SmallVector<const SCEV *, 4> Operands;
3230         for (const SCEV *Op : M->operands())
3231           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3232         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3233           // Find an operand that's safely divisible.
3234           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3235             const SCEV *Op = M->getOperand(i);
3236             const SCEV *Div = getUDivExpr(Op, RHSC);
3237             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3238               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3239                                                       M->op_end());
3240               Operands[i] = Div;
3241               return getMulExpr(Operands);
3242             }
3243           }
3244       }
3245 
3246       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3247       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3248         if (auto *DivisorConstant =
3249                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3250           bool Overflow = false;
3251           APInt NewRHS =
3252               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3253           if (Overflow) {
3254             return getConstant(RHSC->getType(), 0, false);
3255           }
3256           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3257         }
3258       }
3259 
3260       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3261       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3262         SmallVector<const SCEV *, 4> Operands;
3263         for (const SCEV *Op : A->operands())
3264           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3265         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3266           Operands.clear();
3267           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3268             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3269             if (isa<SCEVUDivExpr>(Op) ||
3270                 getMulExpr(Op, RHS) != A->getOperand(i))
3271               break;
3272             Operands.push_back(Op);
3273           }
3274           if (Operands.size() == A->getNumOperands())
3275             return getAddExpr(Operands);
3276         }
3277       }
3278 
3279       // Fold if both operands are constant.
3280       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3281         Constant *LHSCV = LHSC->getValue();
3282         Constant *RHSCV = RHSC->getValue();
3283         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3284                                                                    RHSCV)));
3285       }
3286     }
3287   }
3288 
3289   FoldingSetNodeID ID;
3290   ID.AddInteger(scUDivExpr);
3291   ID.AddPointer(LHS);
3292   ID.AddPointer(RHS);
3293   void *IP = nullptr;
3294   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3295   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3296                                              LHS, RHS);
3297   UniqueSCEVs.InsertNode(S, IP);
3298   addToLoopUseLists(S);
3299   return S;
3300 }
3301 
3302 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3303   APInt A = C1->getAPInt().abs();
3304   APInt B = C2->getAPInt().abs();
3305   uint32_t ABW = A.getBitWidth();
3306   uint32_t BBW = B.getBitWidth();
3307 
3308   if (ABW > BBW)
3309     B = B.zext(ABW);
3310   else if (ABW < BBW)
3311     A = A.zext(BBW);
3312 
3313   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3314 }
3315 
3316 /// Get a canonical unsigned division expression, or something simpler if
3317 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3318 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3319 /// it's not exact because the udiv may be clearing bits.
3320 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3321                                               const SCEV *RHS) {
3322   // TODO: we could try to find factors in all sorts of things, but for now we
3323   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3324   // end of this file for inspiration.
3325 
3326   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3327   if (!Mul || !Mul->hasNoUnsignedWrap())
3328     return getUDivExpr(LHS, RHS);
3329 
3330   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3331     // If the mulexpr multiplies by a constant, then that constant must be the
3332     // first element of the mulexpr.
3333     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3334       if (LHSCst == RHSCst) {
3335         SmallVector<const SCEV *, 2> Operands;
3336         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3337         return getMulExpr(Operands);
3338       }
3339 
3340       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3341       // that there's a factor provided by one of the other terms. We need to
3342       // check.
3343       APInt Factor = gcd(LHSCst, RHSCst);
3344       if (!Factor.isIntN(1)) {
3345         LHSCst =
3346             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3347         RHSCst =
3348             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3349         SmallVector<const SCEV *, 2> Operands;
3350         Operands.push_back(LHSCst);
3351         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3352         LHS = getMulExpr(Operands);
3353         RHS = RHSCst;
3354         Mul = dyn_cast<SCEVMulExpr>(LHS);
3355         if (!Mul)
3356           return getUDivExactExpr(LHS, RHS);
3357       }
3358     }
3359   }
3360 
3361   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3362     if (Mul->getOperand(i) == RHS) {
3363       SmallVector<const SCEV *, 2> Operands;
3364       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3365       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3366       return getMulExpr(Operands);
3367     }
3368   }
3369 
3370   return getUDivExpr(LHS, RHS);
3371 }
3372 
3373 /// Get an add recurrence expression for the specified loop.  Simplify the
3374 /// expression as much as possible.
3375 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3376                                            const Loop *L,
3377                                            SCEV::NoWrapFlags Flags) {
3378   SmallVector<const SCEV *, 4> Operands;
3379   Operands.push_back(Start);
3380   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3381     if (StepChrec->getLoop() == L) {
3382       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3383       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3384     }
3385 
3386   Operands.push_back(Step);
3387   return getAddRecExpr(Operands, L, Flags);
3388 }
3389 
3390 /// Get an add recurrence expression for the specified loop.  Simplify the
3391 /// expression as much as possible.
3392 const SCEV *
3393 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3394                                const Loop *L, SCEV::NoWrapFlags Flags) {
3395   if (Operands.size() == 1) return Operands[0];
3396 #ifndef NDEBUG
3397   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3398   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3399     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3400            "SCEVAddRecExpr operand types don't match!");
3401   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3402     assert(isLoopInvariant(Operands[i], L) &&
3403            "SCEVAddRecExpr operand is not loop-invariant!");
3404 #endif
3405 
3406   if (Operands.back()->isZero()) {
3407     Operands.pop_back();
3408     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3409   }
3410 
3411   // It's tempting to want to call getMaxBackedgeTakenCount count here and
3412   // use that information to infer NUW and NSW flags. However, computing a
3413   // BE count requires calling getAddRecExpr, so we may not yet have a
3414   // meaningful BE count at this point (and if we don't, we'd be stuck
3415   // with a SCEVCouldNotCompute as the cached BE count).
3416 
3417   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3418 
3419   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3420   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3421     const Loop *NestedLoop = NestedAR->getLoop();
3422     if (L->contains(NestedLoop)
3423             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3424             : (!NestedLoop->contains(L) &&
3425                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3426       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3427                                                   NestedAR->op_end());
3428       Operands[0] = NestedAR->getStart();
3429       // AddRecs require their operands be loop-invariant with respect to their
3430       // loops. Don't perform this transformation if it would break this
3431       // requirement.
3432       bool AllInvariant = all_of(
3433           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3434 
3435       if (AllInvariant) {
3436         // Create a recurrence for the outer loop with the same step size.
3437         //
3438         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3439         // inner recurrence has the same property.
3440         SCEV::NoWrapFlags OuterFlags =
3441           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3442 
3443         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3444         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3445           return isLoopInvariant(Op, NestedLoop);
3446         });
3447 
3448         if (AllInvariant) {
3449           // Ok, both add recurrences are valid after the transformation.
3450           //
3451           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3452           // the outer recurrence has the same property.
3453           SCEV::NoWrapFlags InnerFlags =
3454             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3455           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3456         }
3457       }
3458       // Reset Operands to its original state.
3459       Operands[0] = NestedAR;
3460     }
3461   }
3462 
3463   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3464   // already have one, otherwise create a new one.
3465   return getOrCreateAddRecExpr(Operands, L, Flags);
3466 }
3467 
3468 const SCEV *
3469 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3470                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3471   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3472   // getSCEV(Base)->getType() has the same address space as Base->getType()
3473   // because SCEV::getType() preserves the address space.
3474   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3475   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3476   // instruction to its SCEV, because the Instruction may be guarded by control
3477   // flow and the no-overflow bits may not be valid for the expression in any
3478   // context. This can be fixed similarly to how these flags are handled for
3479   // adds.
3480   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3481                                              : SCEV::FlagAnyWrap;
3482 
3483   const SCEV *TotalOffset = getZero(IntPtrTy);
3484   // The array size is unimportant. The first thing we do on CurTy is getting
3485   // its element type.
3486   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3487   for (const SCEV *IndexExpr : IndexExprs) {
3488     // Compute the (potentially symbolic) offset in bytes for this index.
3489     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3490       // For a struct, add the member offset.
3491       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3492       unsigned FieldNo = Index->getZExtValue();
3493       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3494 
3495       // Add the field offset to the running total offset.
3496       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3497 
3498       // Update CurTy to the type of the field at Index.
3499       CurTy = STy->getTypeAtIndex(Index);
3500     } else {
3501       // Update CurTy to its element type.
3502       CurTy = cast<SequentialType>(CurTy)->getElementType();
3503       // For an array, add the element offset, explicitly scaled.
3504       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3505       // Getelementptr indices are signed.
3506       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3507 
3508       // Multiply the index by the element size to compute the element offset.
3509       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3510 
3511       // Add the element offset to the running total offset.
3512       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3513     }
3514   }
3515 
3516   // Add the total offset from all the GEP indices to the base.
3517   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3518 }
3519 
3520 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3521                                          const SCEV *RHS) {
3522   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3523   return getSMaxExpr(Ops);
3524 }
3525 
3526 std::tuple<const SCEV *, FoldingSetNodeID, void *>
3527 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3528                                          ArrayRef<const SCEV *> Ops) {
3529   FoldingSetNodeID ID;
3530   void *IP = nullptr;
3531   ID.AddInteger(SCEVType);
3532   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3533     ID.AddPointer(Ops[i]);
3534   return std::tuple<const SCEV *, FoldingSetNodeID, void *>(
3535       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3536 }
3537 
3538 const SCEV *
3539 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3540   assert(!Ops.empty() && "Cannot get empty smax!");
3541   if (Ops.size() == 1) return Ops[0];
3542 #ifndef NDEBUG
3543   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3544   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3545     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3546            "SCEVSMaxExpr operand types don't match!");
3547 #endif
3548 
3549   // Sort by complexity, this groups all similar expression types together.
3550   GroupByComplexity(Ops, &LI, DT);
3551 
3552   // Check if we have created the same SMax expression before.
3553   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(scSMaxExpr, Ops))) {
3554     return S;
3555   }
3556 
3557   // If there are any constants, fold them together.
3558   unsigned Idx = 0;
3559   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3560     ++Idx;
3561     assert(Idx < Ops.size());
3562     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3563       // We found two constants, fold them together!
3564       ConstantInt *Fold = ConstantInt::get(
3565           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3566       Ops[0] = getConstant(Fold);
3567       Ops.erase(Ops.begin()+1);  // Erase the folded element
3568       if (Ops.size() == 1) return Ops[0];
3569       LHSC = cast<SCEVConstant>(Ops[0]);
3570     }
3571 
3572     // If we are left with a constant minimum-int, strip it off.
3573     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3574       Ops.erase(Ops.begin());
3575       --Idx;
3576     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3577       // If we have an smax with a constant maximum-int, it will always be
3578       // maximum-int.
3579       return Ops[0];
3580     }
3581 
3582     if (Ops.size() == 1) return Ops[0];
3583   }
3584 
3585   // Find the first SMax
3586   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3587     ++Idx;
3588 
3589   // Check to see if one of the operands is an SMax. If so, expand its operands
3590   // onto our operand list, and recurse to simplify.
3591   if (Idx < Ops.size()) {
3592     bool DeletedSMax = false;
3593     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3594       Ops.erase(Ops.begin()+Idx);
3595       Ops.append(SMax->op_begin(), SMax->op_end());
3596       DeletedSMax = true;
3597     }
3598 
3599     if (DeletedSMax)
3600       return getSMaxExpr(Ops);
3601   }
3602 
3603   // Okay, check to see if the same value occurs in the operand list twice.  If
3604   // so, delete one.  Since we sorted the list, these values are required to
3605   // be adjacent.
3606   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3607     //  X smax Y smax Y  -->  X smax Y
3608     //  X smax Y         -->  X, if X is always greater than Y
3609     if (Ops[i] == Ops[i+1] ||
3610         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3611       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3612       --i; --e;
3613     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3614       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3615       --i; --e;
3616     }
3617 
3618   if (Ops.size() == 1) return Ops[0];
3619 
3620   assert(!Ops.empty() && "Reduced smax down to nothing!");
3621 
3622   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3623   // already have one, otherwise create a new one.
3624   const SCEV *ExistingSCEV;
3625   FoldingSetNodeID ID;
3626   void *IP;
3627   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(scSMaxExpr, Ops);
3628   if (ExistingSCEV)
3629     return ExistingSCEV;
3630   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3631   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3632   SCEV *S =
3633       new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), O, Ops.size());
3634   UniqueSCEVs.InsertNode(S, IP);
3635   addToLoopUseLists(S);
3636   return S;
3637 }
3638 
3639 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3640                                          const SCEV *RHS) {
3641   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3642   return getUMaxExpr(Ops);
3643 }
3644 
3645 const SCEV *
3646 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3647   assert(!Ops.empty() && "Cannot get empty umax!");
3648   if (Ops.size() == 1) return Ops[0];
3649 #ifndef NDEBUG
3650   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3651   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3652     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3653            "SCEVUMaxExpr operand types don't match!");
3654 #endif
3655 
3656   // Sort by complexity, this groups all similar expression types together.
3657   GroupByComplexity(Ops, &LI, DT);
3658 
3659   // Check if we have created the same UMax expression before.
3660   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(scUMaxExpr, Ops))) {
3661     return S;
3662   }
3663 
3664   // If there are any constants, fold them together.
3665   unsigned Idx = 0;
3666   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3667     ++Idx;
3668     assert(Idx < Ops.size());
3669     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3670       // We found two constants, fold them together!
3671       ConstantInt *Fold = ConstantInt::get(
3672           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3673       Ops[0] = getConstant(Fold);
3674       Ops.erase(Ops.begin()+1);  // Erase the folded element
3675       if (Ops.size() == 1) return Ops[0];
3676       LHSC = cast<SCEVConstant>(Ops[0]);
3677     }
3678 
3679     // If we are left with a constant minimum-int, strip it off.
3680     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3681       Ops.erase(Ops.begin());
3682       --Idx;
3683     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3684       // If we have an umax with a constant maximum-int, it will always be
3685       // maximum-int.
3686       return Ops[0];
3687     }
3688 
3689     if (Ops.size() == 1) return Ops[0];
3690   }
3691 
3692   // Find the first UMax
3693   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3694     ++Idx;
3695 
3696   // Check to see if one of the operands is a UMax. If so, expand its operands
3697   // onto our operand list, and recurse to simplify.
3698   if (Idx < Ops.size()) {
3699     bool DeletedUMax = false;
3700     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3701       Ops.erase(Ops.begin()+Idx);
3702       Ops.append(UMax->op_begin(), UMax->op_end());
3703       DeletedUMax = true;
3704     }
3705 
3706     if (DeletedUMax)
3707       return getUMaxExpr(Ops);
3708   }
3709 
3710   // Okay, check to see if the same value occurs in the operand list twice.  If
3711   // so, delete one.  Since we sorted the list, these values are required to
3712   // be adjacent.
3713   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3714     //  X umax Y umax Y  -->  X umax Y
3715     //  X umax Y         -->  X, if X is always greater than Y
3716     if (Ops[i] == Ops[i + 1] || isKnownViaNonRecursiveReasoning(
3717                                     ICmpInst::ICMP_UGE, Ops[i], Ops[i + 1])) {
3718       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3719       --i; --e;
3720     } else if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, Ops[i],
3721                                                Ops[i + 1])) {
3722       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3723       --i; --e;
3724     }
3725 
3726   if (Ops.size() == 1) return Ops[0];
3727 
3728   assert(!Ops.empty() && "Reduced umax down to nothing!");
3729 
3730   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3731   // already have one, otherwise create a new one.
3732   const SCEV *ExistingSCEV;
3733   FoldingSetNodeID ID;
3734   void *IP;
3735   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(scUMaxExpr, Ops);
3736   if (ExistingSCEV)
3737     return ExistingSCEV;
3738   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3739   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3740   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3741                                              O, Ops.size());
3742   UniqueSCEVs.InsertNode(S, IP);
3743   addToLoopUseLists(S);
3744   return S;
3745 }
3746 
3747 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3748                                          const SCEV *RHS) {
3749   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3750   return getSMinExpr(Ops);
3751 }
3752 
3753 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3754   // ~smax(~x, ~y, ~z) == smin(x, y, z).
3755   SmallVector<const SCEV *, 2> NotOps;
3756   for (auto *S : Ops)
3757     NotOps.push_back(getNotSCEV(S));
3758   return getNotSCEV(getSMaxExpr(NotOps));
3759 }
3760 
3761 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3762                                          const SCEV *RHS) {
3763   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3764   return getUMinExpr(Ops);
3765 }
3766 
3767 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3768   assert(!Ops.empty() && "At least one operand must be!");
3769   // Trivial case.
3770   if (Ops.size() == 1)
3771     return Ops[0];
3772 
3773   // ~umax(~x, ~y, ~z) == umin(x, y, z).
3774   SmallVector<const SCEV *, 2> NotOps;
3775   for (auto *S : Ops)
3776     NotOps.push_back(getNotSCEV(S));
3777   return getNotSCEV(getUMaxExpr(NotOps));
3778 }
3779 
3780 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3781   // We can bypass creating a target-independent
3782   // constant expression and then folding it back into a ConstantInt.
3783   // This is just a compile-time optimization.
3784   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3785 }
3786 
3787 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3788                                              StructType *STy,
3789                                              unsigned FieldNo) {
3790   // We can bypass creating a target-independent
3791   // constant expression and then folding it back into a ConstantInt.
3792   // This is just a compile-time optimization.
3793   return getConstant(
3794       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3795 }
3796 
3797 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3798   // Don't attempt to do anything other than create a SCEVUnknown object
3799   // here.  createSCEV only calls getUnknown after checking for all other
3800   // interesting possibilities, and any other code that calls getUnknown
3801   // is doing so in order to hide a value from SCEV canonicalization.
3802 
3803   FoldingSetNodeID ID;
3804   ID.AddInteger(scUnknown);
3805   ID.AddPointer(V);
3806   void *IP = nullptr;
3807   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3808     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3809            "Stale SCEVUnknown in uniquing map!");
3810     return S;
3811   }
3812   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3813                                             FirstUnknown);
3814   FirstUnknown = cast<SCEVUnknown>(S);
3815   UniqueSCEVs.InsertNode(S, IP);
3816   return S;
3817 }
3818 
3819 //===----------------------------------------------------------------------===//
3820 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3821 //
3822 
3823 /// Test if values of the given type are analyzable within the SCEV
3824 /// framework. This primarily includes integer types, and it can optionally
3825 /// include pointer types if the ScalarEvolution class has access to
3826 /// target-specific information.
3827 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3828   // Integers and pointers are always SCEVable.
3829   return Ty->isIntOrPtrTy();
3830 }
3831 
3832 /// Return the size in bits of the specified type, for which isSCEVable must
3833 /// return true.
3834 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3835   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3836   if (Ty->isPointerTy())
3837     return getDataLayout().getIndexTypeSizeInBits(Ty);
3838   return getDataLayout().getTypeSizeInBits(Ty);
3839 }
3840 
3841 /// Return a type with the same bitwidth as the given type and which represents
3842 /// how SCEV will treat the given type, for which isSCEVable must return
3843 /// true. For pointer types, this is the pointer-sized integer type.
3844 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3845   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3846 
3847   if (Ty->isIntegerTy())
3848     return Ty;
3849 
3850   // The only other support type is pointer.
3851   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3852   return getDataLayout().getIntPtrType(Ty);
3853 }
3854 
3855 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3856   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3857 }
3858 
3859 const SCEV *ScalarEvolution::getCouldNotCompute() {
3860   return CouldNotCompute.get();
3861 }
3862 
3863 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3864   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3865     auto *SU = dyn_cast<SCEVUnknown>(S);
3866     return SU && SU->getValue() == nullptr;
3867   });
3868 
3869   return !ContainsNulls;
3870 }
3871 
3872 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3873   HasRecMapType::iterator I = HasRecMap.find(S);
3874   if (I != HasRecMap.end())
3875     return I->second;
3876 
3877   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3878   HasRecMap.insert({S, FoundAddRec});
3879   return FoundAddRec;
3880 }
3881 
3882 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3883 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3884 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3885 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3886   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3887   if (!Add)
3888     return {S, nullptr};
3889 
3890   if (Add->getNumOperands() != 2)
3891     return {S, nullptr};
3892 
3893   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3894   if (!ConstOp)
3895     return {S, nullptr};
3896 
3897   return {Add->getOperand(1), ConstOp->getValue()};
3898 }
3899 
3900 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3901 /// by the value and offset from any ValueOffsetPair in the set.
3902 SetVector<ScalarEvolution::ValueOffsetPair> *
3903 ScalarEvolution::getSCEVValues(const SCEV *S) {
3904   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3905   if (SI == ExprValueMap.end())
3906     return nullptr;
3907 #ifndef NDEBUG
3908   if (VerifySCEVMap) {
3909     // Check there is no dangling Value in the set returned.
3910     for (const auto &VE : SI->second)
3911       assert(ValueExprMap.count(VE.first));
3912   }
3913 #endif
3914   return &SI->second;
3915 }
3916 
3917 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3918 /// cannot be used separately. eraseValueFromMap should be used to remove
3919 /// V from ValueExprMap and ExprValueMap at the same time.
3920 void ScalarEvolution::eraseValueFromMap(Value *V) {
3921   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3922   if (I != ValueExprMap.end()) {
3923     const SCEV *S = I->second;
3924     // Remove {V, 0} from the set of ExprValueMap[S]
3925     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3926       SV->remove({V, nullptr});
3927 
3928     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3929     const SCEV *Stripped;
3930     ConstantInt *Offset;
3931     std::tie(Stripped, Offset) = splitAddExpr(S);
3932     if (Offset != nullptr) {
3933       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3934         SV->remove({V, Offset});
3935     }
3936     ValueExprMap.erase(V);
3937   }
3938 }
3939 
3940 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3941 /// TODO: In reality it is better to check the poison recursively
3942 /// but this is better than nothing.
3943 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3944   if (auto *I = dyn_cast<Instruction>(V)) {
3945     if (isa<OverflowingBinaryOperator>(I)) {
3946       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3947         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3948           return true;
3949         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3950           return true;
3951       }
3952     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3953       return true;
3954   }
3955   return false;
3956 }
3957 
3958 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3959 /// create a new one.
3960 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3961   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3962 
3963   const SCEV *S = getExistingSCEV(V);
3964   if (S == nullptr) {
3965     S = createSCEV(V);
3966     // During PHI resolution, it is possible to create two SCEVs for the same
3967     // V, so it is needed to double check whether V->S is inserted into
3968     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3969     std::pair<ValueExprMapType::iterator, bool> Pair =
3970         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3971     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3972       ExprValueMap[S].insert({V, nullptr});
3973 
3974       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3975       // ExprValueMap.
3976       const SCEV *Stripped = S;
3977       ConstantInt *Offset = nullptr;
3978       std::tie(Stripped, Offset) = splitAddExpr(S);
3979       // If stripped is SCEVUnknown, don't bother to save
3980       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3981       // increase the complexity of the expansion code.
3982       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3983       // because it may generate add/sub instead of GEP in SCEV expansion.
3984       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3985           !isa<GetElementPtrInst>(V))
3986         ExprValueMap[Stripped].insert({V, Offset});
3987     }
3988   }
3989   return S;
3990 }
3991 
3992 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3993   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3994 
3995   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3996   if (I != ValueExprMap.end()) {
3997     const SCEV *S = I->second;
3998     if (checkValidity(S))
3999       return S;
4000     eraseValueFromMap(V);
4001     forgetMemoizedResults(S);
4002   }
4003   return nullptr;
4004 }
4005 
4006 /// Return a SCEV corresponding to -V = -1*V
4007 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4008                                              SCEV::NoWrapFlags Flags) {
4009   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4010     return getConstant(
4011                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4012 
4013   Type *Ty = V->getType();
4014   Ty = getEffectiveSCEVType(Ty);
4015   return getMulExpr(
4016       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
4017 }
4018 
4019 /// Return a SCEV corresponding to ~V = -1-V
4020 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4021   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4022     return getConstant(
4023                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4024 
4025   Type *Ty = V->getType();
4026   Ty = getEffectiveSCEVType(Ty);
4027   const SCEV *AllOnes =
4028                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4029   return getMinusSCEV(AllOnes, V);
4030 }
4031 
4032 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4033                                           SCEV::NoWrapFlags Flags,
4034                                           unsigned Depth) {
4035   // Fast path: X - X --> 0.
4036   if (LHS == RHS)
4037     return getZero(LHS->getType());
4038 
4039   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4040   // makes it so that we cannot make much use of NUW.
4041   auto AddFlags = SCEV::FlagAnyWrap;
4042   const bool RHSIsNotMinSigned =
4043       !getSignedRangeMin(RHS).isMinSignedValue();
4044   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4045     // Let M be the minimum representable signed value. Then (-1)*RHS
4046     // signed-wraps if and only if RHS is M. That can happen even for
4047     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4048     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4049     // (-1)*RHS, we need to prove that RHS != M.
4050     //
4051     // If LHS is non-negative and we know that LHS - RHS does not
4052     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4053     // either by proving that RHS > M or that LHS >= 0.
4054     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4055       AddFlags = SCEV::FlagNSW;
4056     }
4057   }
4058 
4059   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4060   // RHS is NSW and LHS >= 0.
4061   //
4062   // The difficulty here is that the NSW flag may have been proven
4063   // relative to a loop that is to be found in a recurrence in LHS and
4064   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4065   // larger scope than intended.
4066   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4067 
4068   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4069 }
4070 
4071 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4072                                                      unsigned Depth) {
4073   Type *SrcTy = V->getType();
4074   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4075          "Cannot truncate or zero extend with non-integer arguments!");
4076   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4077     return V;  // No conversion
4078   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4079     return getTruncateExpr(V, Ty, Depth);
4080   return getZeroExtendExpr(V, Ty, Depth);
4081 }
4082 
4083 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4084                                                      unsigned Depth) {
4085   Type *SrcTy = V->getType();
4086   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4087          "Cannot truncate or zero extend with non-integer arguments!");
4088   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4089     return V;  // No conversion
4090   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4091     return getTruncateExpr(V, Ty, Depth);
4092   return getSignExtendExpr(V, Ty, Depth);
4093 }
4094 
4095 const SCEV *
4096 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4097   Type *SrcTy = V->getType();
4098   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4099          "Cannot noop or zero extend with non-integer arguments!");
4100   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4101          "getNoopOrZeroExtend cannot truncate!");
4102   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4103     return V;  // No conversion
4104   return getZeroExtendExpr(V, Ty);
4105 }
4106 
4107 const SCEV *
4108 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4109   Type *SrcTy = V->getType();
4110   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4111          "Cannot noop or sign extend with non-integer arguments!");
4112   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4113          "getNoopOrSignExtend cannot truncate!");
4114   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4115     return V;  // No conversion
4116   return getSignExtendExpr(V, Ty);
4117 }
4118 
4119 const SCEV *
4120 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4121   Type *SrcTy = V->getType();
4122   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4123          "Cannot noop or any extend with non-integer arguments!");
4124   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4125          "getNoopOrAnyExtend cannot truncate!");
4126   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4127     return V;  // No conversion
4128   return getAnyExtendExpr(V, Ty);
4129 }
4130 
4131 const SCEV *
4132 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4133   Type *SrcTy = V->getType();
4134   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4135          "Cannot truncate or noop with non-integer arguments!");
4136   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4137          "getTruncateOrNoop cannot extend!");
4138   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4139     return V;  // No conversion
4140   return getTruncateExpr(V, Ty);
4141 }
4142 
4143 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4144                                                         const SCEV *RHS) {
4145   const SCEV *PromotedLHS = LHS;
4146   const SCEV *PromotedRHS = RHS;
4147 
4148   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4149     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4150   else
4151     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4152 
4153   return getUMaxExpr(PromotedLHS, PromotedRHS);
4154 }
4155 
4156 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4157                                                         const SCEV *RHS) {
4158   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4159   return getUMinFromMismatchedTypes(Ops);
4160 }
4161 
4162 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4163     SmallVectorImpl<const SCEV *> &Ops) {
4164   assert(!Ops.empty() && "At least one operand must be!");
4165   // Trivial case.
4166   if (Ops.size() == 1)
4167     return Ops[0];
4168 
4169   // Find the max type first.
4170   Type *MaxType = nullptr;
4171   for (auto *S : Ops)
4172     if (MaxType)
4173       MaxType = getWiderType(MaxType, S->getType());
4174     else
4175       MaxType = S->getType();
4176 
4177   // Extend all ops to max type.
4178   SmallVector<const SCEV *, 2> PromotedOps;
4179   for (auto *S : Ops)
4180     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4181 
4182   // Generate umin.
4183   return getUMinExpr(PromotedOps);
4184 }
4185 
4186 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4187   // A pointer operand may evaluate to a nonpointer expression, such as null.
4188   if (!V->getType()->isPointerTy())
4189     return V;
4190 
4191   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4192     return getPointerBase(Cast->getOperand());
4193   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4194     const SCEV *PtrOp = nullptr;
4195     for (const SCEV *NAryOp : NAry->operands()) {
4196       if (NAryOp->getType()->isPointerTy()) {
4197         // Cannot find the base of an expression with multiple pointer operands.
4198         if (PtrOp)
4199           return V;
4200         PtrOp = NAryOp;
4201       }
4202     }
4203     if (!PtrOp)
4204       return V;
4205     return getPointerBase(PtrOp);
4206   }
4207   return V;
4208 }
4209 
4210 /// Push users of the given Instruction onto the given Worklist.
4211 static void
4212 PushDefUseChildren(Instruction *I,
4213                    SmallVectorImpl<Instruction *> &Worklist) {
4214   // Push the def-use children onto the Worklist stack.
4215   for (User *U : I->users())
4216     Worklist.push_back(cast<Instruction>(U));
4217 }
4218 
4219 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4220   SmallVector<Instruction *, 16> Worklist;
4221   PushDefUseChildren(PN, Worklist);
4222 
4223   SmallPtrSet<Instruction *, 8> Visited;
4224   Visited.insert(PN);
4225   while (!Worklist.empty()) {
4226     Instruction *I = Worklist.pop_back_val();
4227     if (!Visited.insert(I).second)
4228       continue;
4229 
4230     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4231     if (It != ValueExprMap.end()) {
4232       const SCEV *Old = It->second;
4233 
4234       // Short-circuit the def-use traversal if the symbolic name
4235       // ceases to appear in expressions.
4236       if (Old != SymName && !hasOperand(Old, SymName))
4237         continue;
4238 
4239       // SCEVUnknown for a PHI either means that it has an unrecognized
4240       // structure, it's a PHI that's in the progress of being computed
4241       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4242       // additional loop trip count information isn't going to change anything.
4243       // In the second case, createNodeForPHI will perform the necessary
4244       // updates on its own when it gets to that point. In the third, we do
4245       // want to forget the SCEVUnknown.
4246       if (!isa<PHINode>(I) ||
4247           !isa<SCEVUnknown>(Old) ||
4248           (I != PN && Old == SymName)) {
4249         eraseValueFromMap(It->first);
4250         forgetMemoizedResults(Old);
4251       }
4252     }
4253 
4254     PushDefUseChildren(I, Worklist);
4255   }
4256 }
4257 
4258 namespace {
4259 
4260 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4261 /// expression in case its Loop is L. If it is not L then
4262 /// if IgnoreOtherLoops is true then use AddRec itself
4263 /// otherwise rewrite cannot be done.
4264 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4265 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4266 public:
4267   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4268                              bool IgnoreOtherLoops = true) {
4269     SCEVInitRewriter Rewriter(L, SE);
4270     const SCEV *Result = Rewriter.visit(S);
4271     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4272       return SE.getCouldNotCompute();
4273     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4274                ? SE.getCouldNotCompute()
4275                : Result;
4276   }
4277 
4278   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4279     if (!SE.isLoopInvariant(Expr, L))
4280       SeenLoopVariantSCEVUnknown = true;
4281     return Expr;
4282   }
4283 
4284   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4285     // Only re-write AddRecExprs for this loop.
4286     if (Expr->getLoop() == L)
4287       return Expr->getStart();
4288     SeenOtherLoops = true;
4289     return Expr;
4290   }
4291 
4292   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4293 
4294   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4295 
4296 private:
4297   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4298       : SCEVRewriteVisitor(SE), L(L) {}
4299 
4300   const Loop *L;
4301   bool SeenLoopVariantSCEVUnknown = false;
4302   bool SeenOtherLoops = false;
4303 };
4304 
4305 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4306 /// increment expression in case its Loop is L. If it is not L then
4307 /// use AddRec itself.
4308 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4309 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4310 public:
4311   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4312     SCEVPostIncRewriter Rewriter(L, SE);
4313     const SCEV *Result = Rewriter.visit(S);
4314     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4315         ? SE.getCouldNotCompute()
4316         : Result;
4317   }
4318 
4319   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4320     if (!SE.isLoopInvariant(Expr, L))
4321       SeenLoopVariantSCEVUnknown = true;
4322     return Expr;
4323   }
4324 
4325   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4326     // Only re-write AddRecExprs for this loop.
4327     if (Expr->getLoop() == L)
4328       return Expr->getPostIncExpr(SE);
4329     SeenOtherLoops = true;
4330     return Expr;
4331   }
4332 
4333   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4334 
4335   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4336 
4337 private:
4338   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4339       : SCEVRewriteVisitor(SE), L(L) {}
4340 
4341   const Loop *L;
4342   bool SeenLoopVariantSCEVUnknown = false;
4343   bool SeenOtherLoops = false;
4344 };
4345 
4346 /// This class evaluates the compare condition by matching it against the
4347 /// condition of loop latch. If there is a match we assume a true value
4348 /// for the condition while building SCEV nodes.
4349 class SCEVBackedgeConditionFolder
4350     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4351 public:
4352   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4353                              ScalarEvolution &SE) {
4354     bool IsPosBECond = false;
4355     Value *BECond = nullptr;
4356     if (BasicBlock *Latch = L->getLoopLatch()) {
4357       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4358       if (BI && BI->isConditional()) {
4359         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4360                "Both outgoing branches should not target same header!");
4361         BECond = BI->getCondition();
4362         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4363       } else {
4364         return S;
4365       }
4366     }
4367     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4368     return Rewriter.visit(S);
4369   }
4370 
4371   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4372     const SCEV *Result = Expr;
4373     bool InvariantF = SE.isLoopInvariant(Expr, L);
4374 
4375     if (!InvariantF) {
4376       Instruction *I = cast<Instruction>(Expr->getValue());
4377       switch (I->getOpcode()) {
4378       case Instruction::Select: {
4379         SelectInst *SI = cast<SelectInst>(I);
4380         Optional<const SCEV *> Res =
4381             compareWithBackedgeCondition(SI->getCondition());
4382         if (Res.hasValue()) {
4383           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4384           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4385         }
4386         break;
4387       }
4388       default: {
4389         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4390         if (Res.hasValue())
4391           Result = Res.getValue();
4392         break;
4393       }
4394       }
4395     }
4396     return Result;
4397   }
4398 
4399 private:
4400   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4401                                        bool IsPosBECond, ScalarEvolution &SE)
4402       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4403         IsPositiveBECond(IsPosBECond) {}
4404 
4405   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4406 
4407   const Loop *L;
4408   /// Loop back condition.
4409   Value *BackedgeCond = nullptr;
4410   /// Set to true if loop back is on positive branch condition.
4411   bool IsPositiveBECond;
4412 };
4413 
4414 Optional<const SCEV *>
4415 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4416 
4417   // If value matches the backedge condition for loop latch,
4418   // then return a constant evolution node based on loopback
4419   // branch taken.
4420   if (BackedgeCond == IC)
4421     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4422                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4423   return None;
4424 }
4425 
4426 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4427 public:
4428   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4429                              ScalarEvolution &SE) {
4430     SCEVShiftRewriter Rewriter(L, SE);
4431     const SCEV *Result = Rewriter.visit(S);
4432     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4433   }
4434 
4435   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4436     // Only allow AddRecExprs for this loop.
4437     if (!SE.isLoopInvariant(Expr, L))
4438       Valid = false;
4439     return Expr;
4440   }
4441 
4442   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4443     if (Expr->getLoop() == L && Expr->isAffine())
4444       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4445     Valid = false;
4446     return Expr;
4447   }
4448 
4449   bool isValid() { return Valid; }
4450 
4451 private:
4452   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4453       : SCEVRewriteVisitor(SE), L(L) {}
4454 
4455   const Loop *L;
4456   bool Valid = true;
4457 };
4458 
4459 } // end anonymous namespace
4460 
4461 SCEV::NoWrapFlags
4462 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4463   if (!AR->isAffine())
4464     return SCEV::FlagAnyWrap;
4465 
4466   using OBO = OverflowingBinaryOperator;
4467 
4468   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4469 
4470   if (!AR->hasNoSignedWrap()) {
4471     ConstantRange AddRecRange = getSignedRange(AR);
4472     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4473 
4474     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4475         Instruction::Add, IncRange, OBO::NoSignedWrap);
4476     if (NSWRegion.contains(AddRecRange))
4477       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4478   }
4479 
4480   if (!AR->hasNoUnsignedWrap()) {
4481     ConstantRange AddRecRange = getUnsignedRange(AR);
4482     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4483 
4484     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4485         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4486     if (NUWRegion.contains(AddRecRange))
4487       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4488   }
4489 
4490   return Result;
4491 }
4492 
4493 namespace {
4494 
4495 /// Represents an abstract binary operation.  This may exist as a
4496 /// normal instruction or constant expression, or may have been
4497 /// derived from an expression tree.
4498 struct BinaryOp {
4499   unsigned Opcode;
4500   Value *LHS;
4501   Value *RHS;
4502   bool IsNSW = false;
4503   bool IsNUW = false;
4504 
4505   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4506   /// constant expression.
4507   Operator *Op = nullptr;
4508 
4509   explicit BinaryOp(Operator *Op)
4510       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4511         Op(Op) {
4512     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4513       IsNSW = OBO->hasNoSignedWrap();
4514       IsNUW = OBO->hasNoUnsignedWrap();
4515     }
4516   }
4517 
4518   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4519                     bool IsNUW = false)
4520       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4521 };
4522 
4523 } // end anonymous namespace
4524 
4525 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4526 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4527   auto *Op = dyn_cast<Operator>(V);
4528   if (!Op)
4529     return None;
4530 
4531   // Implementation detail: all the cleverness here should happen without
4532   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4533   // SCEV expressions when possible, and we should not break that.
4534 
4535   switch (Op->getOpcode()) {
4536   case Instruction::Add:
4537   case Instruction::Sub:
4538   case Instruction::Mul:
4539   case Instruction::UDiv:
4540   case Instruction::URem:
4541   case Instruction::And:
4542   case Instruction::Or:
4543   case Instruction::AShr:
4544   case Instruction::Shl:
4545     return BinaryOp(Op);
4546 
4547   case Instruction::Xor:
4548     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4549       // If the RHS of the xor is a signmask, then this is just an add.
4550       // Instcombine turns add of signmask into xor as a strength reduction step.
4551       if (RHSC->getValue().isSignMask())
4552         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4553     return BinaryOp(Op);
4554 
4555   case Instruction::LShr:
4556     // Turn logical shift right of a constant into a unsigned divide.
4557     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4558       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4559 
4560       // If the shift count is not less than the bitwidth, the result of
4561       // the shift is undefined. Don't try to analyze it, because the
4562       // resolution chosen here may differ from the resolution chosen in
4563       // other parts of the compiler.
4564       if (SA->getValue().ult(BitWidth)) {
4565         Constant *X =
4566             ConstantInt::get(SA->getContext(),
4567                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4568         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4569       }
4570     }
4571     return BinaryOp(Op);
4572 
4573   case Instruction::ExtractValue: {
4574     auto *EVI = cast<ExtractValueInst>(Op);
4575     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4576       break;
4577 
4578     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4579     if (!WO)
4580       break;
4581 
4582     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4583     bool Signed = WO->isSigned();
4584     // TODO: Should add nuw/nsw flags for mul as well.
4585     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4586       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4587 
4588     // Now that we know that all uses of the arithmetic-result component of
4589     // CI are guarded by the overflow check, we can go ahead and pretend
4590     // that the arithmetic is non-overflowing.
4591     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4592                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4593   }
4594 
4595   default:
4596     break;
4597   }
4598 
4599   return None;
4600 }
4601 
4602 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4603 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4604 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4605 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4606 /// follows one of the following patterns:
4607 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4608 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4609 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4610 /// we return the type of the truncation operation, and indicate whether the
4611 /// truncated type should be treated as signed/unsigned by setting
4612 /// \p Signed to true/false, respectively.
4613 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4614                                bool &Signed, ScalarEvolution &SE) {
4615   // The case where Op == SymbolicPHI (that is, with no type conversions on
4616   // the way) is handled by the regular add recurrence creating logic and
4617   // would have already been triggered in createAddRecForPHI. Reaching it here
4618   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4619   // because one of the other operands of the SCEVAddExpr updating this PHI is
4620   // not invariant).
4621   //
4622   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4623   // this case predicates that allow us to prove that Op == SymbolicPHI will
4624   // be added.
4625   if (Op == SymbolicPHI)
4626     return nullptr;
4627 
4628   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4629   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4630   if (SourceBits != NewBits)
4631     return nullptr;
4632 
4633   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4634   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4635   if (!SExt && !ZExt)
4636     return nullptr;
4637   const SCEVTruncateExpr *Trunc =
4638       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4639            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4640   if (!Trunc)
4641     return nullptr;
4642   const SCEV *X = Trunc->getOperand();
4643   if (X != SymbolicPHI)
4644     return nullptr;
4645   Signed = SExt != nullptr;
4646   return Trunc->getType();
4647 }
4648 
4649 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4650   if (!PN->getType()->isIntegerTy())
4651     return nullptr;
4652   const Loop *L = LI.getLoopFor(PN->getParent());
4653   if (!L || L->getHeader() != PN->getParent())
4654     return nullptr;
4655   return L;
4656 }
4657 
4658 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4659 // computation that updates the phi follows the following pattern:
4660 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4661 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4662 // If so, try to see if it can be rewritten as an AddRecExpr under some
4663 // Predicates. If successful, return them as a pair. Also cache the results
4664 // of the analysis.
4665 //
4666 // Example usage scenario:
4667 //    Say the Rewriter is called for the following SCEV:
4668 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4669 //    where:
4670 //         %X = phi i64 (%Start, %BEValue)
4671 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4672 //    and call this function with %SymbolicPHI = %X.
4673 //
4674 //    The analysis will find that the value coming around the backedge has
4675 //    the following SCEV:
4676 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4677 //    Upon concluding that this matches the desired pattern, the function
4678 //    will return the pair {NewAddRec, SmallPredsVec} where:
4679 //         NewAddRec = {%Start,+,%Step}
4680 //         SmallPredsVec = {P1, P2, P3} as follows:
4681 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4682 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4683 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4684 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4685 //    under the predicates {P1,P2,P3}.
4686 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4687 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4688 //
4689 // TODO's:
4690 //
4691 // 1) Extend the Induction descriptor to also support inductions that involve
4692 //    casts: When needed (namely, when we are called in the context of the
4693 //    vectorizer induction analysis), a Set of cast instructions will be
4694 //    populated by this method, and provided back to isInductionPHI. This is
4695 //    needed to allow the vectorizer to properly record them to be ignored by
4696 //    the cost model and to avoid vectorizing them (otherwise these casts,
4697 //    which are redundant under the runtime overflow checks, will be
4698 //    vectorized, which can be costly).
4699 //
4700 // 2) Support additional induction/PHISCEV patterns: We also want to support
4701 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4702 //    after the induction update operation (the induction increment):
4703 //
4704 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4705 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4706 //
4707 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4708 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4709 //
4710 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4711 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4712 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4713   SmallVector<const SCEVPredicate *, 3> Predicates;
4714 
4715   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4716   // return an AddRec expression under some predicate.
4717 
4718   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4719   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4720   assert(L && "Expecting an integer loop header phi");
4721 
4722   // The loop may have multiple entrances or multiple exits; we can analyze
4723   // this phi as an addrec if it has a unique entry value and a unique
4724   // backedge value.
4725   Value *BEValueV = nullptr, *StartValueV = nullptr;
4726   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4727     Value *V = PN->getIncomingValue(i);
4728     if (L->contains(PN->getIncomingBlock(i))) {
4729       if (!BEValueV) {
4730         BEValueV = V;
4731       } else if (BEValueV != V) {
4732         BEValueV = nullptr;
4733         break;
4734       }
4735     } else if (!StartValueV) {
4736       StartValueV = V;
4737     } else if (StartValueV != V) {
4738       StartValueV = nullptr;
4739       break;
4740     }
4741   }
4742   if (!BEValueV || !StartValueV)
4743     return None;
4744 
4745   const SCEV *BEValue = getSCEV(BEValueV);
4746 
4747   // If the value coming around the backedge is an add with the symbolic
4748   // value we just inserted, possibly with casts that we can ignore under
4749   // an appropriate runtime guard, then we found a simple induction variable!
4750   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4751   if (!Add)
4752     return None;
4753 
4754   // If there is a single occurrence of the symbolic value, possibly
4755   // casted, replace it with a recurrence.
4756   unsigned FoundIndex = Add->getNumOperands();
4757   Type *TruncTy = nullptr;
4758   bool Signed;
4759   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4760     if ((TruncTy =
4761              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4762       if (FoundIndex == e) {
4763         FoundIndex = i;
4764         break;
4765       }
4766 
4767   if (FoundIndex == Add->getNumOperands())
4768     return None;
4769 
4770   // Create an add with everything but the specified operand.
4771   SmallVector<const SCEV *, 8> Ops;
4772   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4773     if (i != FoundIndex)
4774       Ops.push_back(Add->getOperand(i));
4775   const SCEV *Accum = getAddExpr(Ops);
4776 
4777   // The runtime checks will not be valid if the step amount is
4778   // varying inside the loop.
4779   if (!isLoopInvariant(Accum, L))
4780     return None;
4781 
4782   // *** Part2: Create the predicates
4783 
4784   // Analysis was successful: we have a phi-with-cast pattern for which we
4785   // can return an AddRec expression under the following predicates:
4786   //
4787   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4788   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4789   // P2: An Equal predicate that guarantees that
4790   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4791   // P3: An Equal predicate that guarantees that
4792   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4793   //
4794   // As we next prove, the above predicates guarantee that:
4795   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4796   //
4797   //
4798   // More formally, we want to prove that:
4799   //     Expr(i+1) = Start + (i+1) * Accum
4800   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4801   //
4802   // Given that:
4803   // 1) Expr(0) = Start
4804   // 2) Expr(1) = Start + Accum
4805   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4806   // 3) Induction hypothesis (step i):
4807   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4808   //
4809   // Proof:
4810   //  Expr(i+1) =
4811   //   = Start + (i+1)*Accum
4812   //   = (Start + i*Accum) + Accum
4813   //   = Expr(i) + Accum
4814   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4815   //                                                             :: from step i
4816   //
4817   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4818   //
4819   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4820   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4821   //     + Accum                                                     :: from P3
4822   //
4823   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4824   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4825   //
4826   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4827   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4828   //
4829   // By induction, the same applies to all iterations 1<=i<n:
4830   //
4831 
4832   // Create a truncated addrec for which we will add a no overflow check (P1).
4833   const SCEV *StartVal = getSCEV(StartValueV);
4834   const SCEV *PHISCEV =
4835       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4836                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4837 
4838   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4839   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4840   // will be constant.
4841   //
4842   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4843   // add P1.
4844   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4845     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4846         Signed ? SCEVWrapPredicate::IncrementNSSW
4847                : SCEVWrapPredicate::IncrementNUSW;
4848     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4849     Predicates.push_back(AddRecPred);
4850   }
4851 
4852   // Create the Equal Predicates P2,P3:
4853 
4854   // It is possible that the predicates P2 and/or P3 are computable at
4855   // compile time due to StartVal and/or Accum being constants.
4856   // If either one is, then we can check that now and escape if either P2
4857   // or P3 is false.
4858 
4859   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4860   // for each of StartVal and Accum
4861   auto getExtendedExpr = [&](const SCEV *Expr,
4862                              bool CreateSignExtend) -> const SCEV * {
4863     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4864     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4865     const SCEV *ExtendedExpr =
4866         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4867                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4868     return ExtendedExpr;
4869   };
4870 
4871   // Given:
4872   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4873   //               = getExtendedExpr(Expr)
4874   // Determine whether the predicate P: Expr == ExtendedExpr
4875   // is known to be false at compile time
4876   auto PredIsKnownFalse = [&](const SCEV *Expr,
4877                               const SCEV *ExtendedExpr) -> bool {
4878     return Expr != ExtendedExpr &&
4879            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4880   };
4881 
4882   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4883   if (PredIsKnownFalse(StartVal, StartExtended)) {
4884     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4885     return None;
4886   }
4887 
4888   // The Step is always Signed (because the overflow checks are either
4889   // NSSW or NUSW)
4890   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4891   if (PredIsKnownFalse(Accum, AccumExtended)) {
4892     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4893     return None;
4894   }
4895 
4896   auto AppendPredicate = [&](const SCEV *Expr,
4897                              const SCEV *ExtendedExpr) -> void {
4898     if (Expr != ExtendedExpr &&
4899         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4900       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4901       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4902       Predicates.push_back(Pred);
4903     }
4904   };
4905 
4906   AppendPredicate(StartVal, StartExtended);
4907   AppendPredicate(Accum, AccumExtended);
4908 
4909   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4910   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4911   // into NewAR if it will also add the runtime overflow checks specified in
4912   // Predicates.
4913   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4914 
4915   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4916       std::make_pair(NewAR, Predicates);
4917   // Remember the result of the analysis for this SCEV at this locayyytion.
4918   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4919   return PredRewrite;
4920 }
4921 
4922 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4923 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4924   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4925   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4926   if (!L)
4927     return None;
4928 
4929   // Check to see if we already analyzed this PHI.
4930   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4931   if (I != PredicatedSCEVRewrites.end()) {
4932     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4933         I->second;
4934     // Analysis was done before and failed to create an AddRec:
4935     if (Rewrite.first == SymbolicPHI)
4936       return None;
4937     // Analysis was done before and succeeded to create an AddRec under
4938     // a predicate:
4939     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4940     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4941     return Rewrite;
4942   }
4943 
4944   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4945     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4946 
4947   // Record in the cache that the analysis failed
4948   if (!Rewrite) {
4949     SmallVector<const SCEVPredicate *, 3> Predicates;
4950     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4951     return None;
4952   }
4953 
4954   return Rewrite;
4955 }
4956 
4957 // FIXME: This utility is currently required because the Rewriter currently
4958 // does not rewrite this expression:
4959 // {0, +, (sext ix (trunc iy to ix) to iy)}
4960 // into {0, +, %step},
4961 // even when the following Equal predicate exists:
4962 // "%step == (sext ix (trunc iy to ix) to iy)".
4963 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4964     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4965   if (AR1 == AR2)
4966     return true;
4967 
4968   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4969     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4970         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4971       return false;
4972     return true;
4973   };
4974 
4975   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
4976       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
4977     return false;
4978   return true;
4979 }
4980 
4981 /// A helper function for createAddRecFromPHI to handle simple cases.
4982 ///
4983 /// This function tries to find an AddRec expression for the simplest (yet most
4984 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
4985 /// If it fails, createAddRecFromPHI will use a more general, but slow,
4986 /// technique for finding the AddRec expression.
4987 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
4988                                                       Value *BEValueV,
4989                                                       Value *StartValueV) {
4990   const Loop *L = LI.getLoopFor(PN->getParent());
4991   assert(L && L->getHeader() == PN->getParent());
4992   assert(BEValueV && StartValueV);
4993 
4994   auto BO = MatchBinaryOp(BEValueV, DT);
4995   if (!BO)
4996     return nullptr;
4997 
4998   if (BO->Opcode != Instruction::Add)
4999     return nullptr;
5000 
5001   const SCEV *Accum = nullptr;
5002   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5003     Accum = getSCEV(BO->RHS);
5004   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5005     Accum = getSCEV(BO->LHS);
5006 
5007   if (!Accum)
5008     return nullptr;
5009 
5010   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5011   if (BO->IsNUW)
5012     Flags = setFlags(Flags, SCEV::FlagNUW);
5013   if (BO->IsNSW)
5014     Flags = setFlags(Flags, SCEV::FlagNSW);
5015 
5016   const SCEV *StartVal = getSCEV(StartValueV);
5017   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5018 
5019   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5020 
5021   // We can add Flags to the post-inc expression only if we
5022   // know that it is *undefined behavior* for BEValueV to
5023   // overflow.
5024   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5025     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5026       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5027 
5028   return PHISCEV;
5029 }
5030 
5031 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5032   const Loop *L = LI.getLoopFor(PN->getParent());
5033   if (!L || L->getHeader() != PN->getParent())
5034     return nullptr;
5035 
5036   // The loop may have multiple entrances or multiple exits; we can analyze
5037   // this phi as an addrec if it has a unique entry value and a unique
5038   // backedge value.
5039   Value *BEValueV = nullptr, *StartValueV = nullptr;
5040   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5041     Value *V = PN->getIncomingValue(i);
5042     if (L->contains(PN->getIncomingBlock(i))) {
5043       if (!BEValueV) {
5044         BEValueV = V;
5045       } else if (BEValueV != V) {
5046         BEValueV = nullptr;
5047         break;
5048       }
5049     } else if (!StartValueV) {
5050       StartValueV = V;
5051     } else if (StartValueV != V) {
5052       StartValueV = nullptr;
5053       break;
5054     }
5055   }
5056   if (!BEValueV || !StartValueV)
5057     return nullptr;
5058 
5059   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5060          "PHI node already processed?");
5061 
5062   // First, try to find AddRec expression without creating a fictituos symbolic
5063   // value for PN.
5064   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5065     return S;
5066 
5067   // Handle PHI node value symbolically.
5068   const SCEV *SymbolicName = getUnknown(PN);
5069   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5070 
5071   // Using this symbolic name for the PHI, analyze the value coming around
5072   // the back-edge.
5073   const SCEV *BEValue = getSCEV(BEValueV);
5074 
5075   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5076   // has a special value for the first iteration of the loop.
5077 
5078   // If the value coming around the backedge is an add with the symbolic
5079   // value we just inserted, then we found a simple induction variable!
5080   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5081     // If there is a single occurrence of the symbolic value, replace it
5082     // with a recurrence.
5083     unsigned FoundIndex = Add->getNumOperands();
5084     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5085       if (Add->getOperand(i) == SymbolicName)
5086         if (FoundIndex == e) {
5087           FoundIndex = i;
5088           break;
5089         }
5090 
5091     if (FoundIndex != Add->getNumOperands()) {
5092       // Create an add with everything but the specified operand.
5093       SmallVector<const SCEV *, 8> Ops;
5094       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5095         if (i != FoundIndex)
5096           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5097                                                              L, *this));
5098       const SCEV *Accum = getAddExpr(Ops);
5099 
5100       // This is not a valid addrec if the step amount is varying each
5101       // loop iteration, but is not itself an addrec in this loop.
5102       if (isLoopInvariant(Accum, L) ||
5103           (isa<SCEVAddRecExpr>(Accum) &&
5104            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5105         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5106 
5107         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5108           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5109             if (BO->IsNUW)
5110               Flags = setFlags(Flags, SCEV::FlagNUW);
5111             if (BO->IsNSW)
5112               Flags = setFlags(Flags, SCEV::FlagNSW);
5113           }
5114         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5115           // If the increment is an inbounds GEP, then we know the address
5116           // space cannot be wrapped around. We cannot make any guarantee
5117           // about signed or unsigned overflow because pointers are
5118           // unsigned but we may have a negative index from the base
5119           // pointer. We can guarantee that no unsigned wrap occurs if the
5120           // indices form a positive value.
5121           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5122             Flags = setFlags(Flags, SCEV::FlagNW);
5123 
5124             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5125             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5126               Flags = setFlags(Flags, SCEV::FlagNUW);
5127           }
5128 
5129           // We cannot transfer nuw and nsw flags from subtraction
5130           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5131           // for instance.
5132         }
5133 
5134         const SCEV *StartVal = getSCEV(StartValueV);
5135         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5136 
5137         // Okay, for the entire analysis of this edge we assumed the PHI
5138         // to be symbolic.  We now need to go back and purge all of the
5139         // entries for the scalars that use the symbolic expression.
5140         forgetSymbolicName(PN, SymbolicName);
5141         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5142 
5143         // We can add Flags to the post-inc expression only if we
5144         // know that it is *undefined behavior* for BEValueV to
5145         // overflow.
5146         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5147           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5148             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5149 
5150         return PHISCEV;
5151       }
5152     }
5153   } else {
5154     // Otherwise, this could be a loop like this:
5155     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5156     // In this case, j = {1,+,1}  and BEValue is j.
5157     // Because the other in-value of i (0) fits the evolution of BEValue
5158     // i really is an addrec evolution.
5159     //
5160     // We can generalize this saying that i is the shifted value of BEValue
5161     // by one iteration:
5162     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5163     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5164     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5165     if (Shifted != getCouldNotCompute() &&
5166         Start != getCouldNotCompute()) {
5167       const SCEV *StartVal = getSCEV(StartValueV);
5168       if (Start == StartVal) {
5169         // Okay, for the entire analysis of this edge we assumed the PHI
5170         // to be symbolic.  We now need to go back and purge all of the
5171         // entries for the scalars that use the symbolic expression.
5172         forgetSymbolicName(PN, SymbolicName);
5173         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5174         return Shifted;
5175       }
5176     }
5177   }
5178 
5179   // Remove the temporary PHI node SCEV that has been inserted while intending
5180   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5181   // as it will prevent later (possibly simpler) SCEV expressions to be added
5182   // to the ValueExprMap.
5183   eraseValueFromMap(PN);
5184 
5185   return nullptr;
5186 }
5187 
5188 // Checks if the SCEV S is available at BB.  S is considered available at BB
5189 // if S can be materialized at BB without introducing a fault.
5190 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5191                                BasicBlock *BB) {
5192   struct CheckAvailable {
5193     bool TraversalDone = false;
5194     bool Available = true;
5195 
5196     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5197     BasicBlock *BB = nullptr;
5198     DominatorTree &DT;
5199 
5200     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5201       : L(L), BB(BB), DT(DT) {}
5202 
5203     bool setUnavailable() {
5204       TraversalDone = true;
5205       Available = false;
5206       return false;
5207     }
5208 
5209     bool follow(const SCEV *S) {
5210       switch (S->getSCEVType()) {
5211       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5212       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5213         // These expressions are available if their operand(s) is/are.
5214         return true;
5215 
5216       case scAddRecExpr: {
5217         // We allow add recurrences that are on the loop BB is in, or some
5218         // outer loop.  This guarantees availability because the value of the
5219         // add recurrence at BB is simply the "current" value of the induction
5220         // variable.  We can relax this in the future; for instance an add
5221         // recurrence on a sibling dominating loop is also available at BB.
5222         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5223         if (L && (ARLoop == L || ARLoop->contains(L)))
5224           return true;
5225 
5226         return setUnavailable();
5227       }
5228 
5229       case scUnknown: {
5230         // For SCEVUnknown, we check for simple dominance.
5231         const auto *SU = cast<SCEVUnknown>(S);
5232         Value *V = SU->getValue();
5233 
5234         if (isa<Argument>(V))
5235           return false;
5236 
5237         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5238           return false;
5239 
5240         return setUnavailable();
5241       }
5242 
5243       case scUDivExpr:
5244       case scCouldNotCompute:
5245         // We do not try to smart about these at all.
5246         return setUnavailable();
5247       }
5248       llvm_unreachable("switch should be fully covered!");
5249     }
5250 
5251     bool isDone() { return TraversalDone; }
5252   };
5253 
5254   CheckAvailable CA(L, BB, DT);
5255   SCEVTraversal<CheckAvailable> ST(CA);
5256 
5257   ST.visitAll(S);
5258   return CA.Available;
5259 }
5260 
5261 // Try to match a control flow sequence that branches out at BI and merges back
5262 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5263 // match.
5264 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5265                           Value *&C, Value *&LHS, Value *&RHS) {
5266   C = BI->getCondition();
5267 
5268   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5269   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5270 
5271   if (!LeftEdge.isSingleEdge())
5272     return false;
5273 
5274   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5275 
5276   Use &LeftUse = Merge->getOperandUse(0);
5277   Use &RightUse = Merge->getOperandUse(1);
5278 
5279   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5280     LHS = LeftUse;
5281     RHS = RightUse;
5282     return true;
5283   }
5284 
5285   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5286     LHS = RightUse;
5287     RHS = LeftUse;
5288     return true;
5289   }
5290 
5291   return false;
5292 }
5293 
5294 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5295   auto IsReachable =
5296       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5297   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5298     const Loop *L = LI.getLoopFor(PN->getParent());
5299 
5300     // We don't want to break LCSSA, even in a SCEV expression tree.
5301     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5302       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5303         return nullptr;
5304 
5305     // Try to match
5306     //
5307     //  br %cond, label %left, label %right
5308     // left:
5309     //  br label %merge
5310     // right:
5311     //  br label %merge
5312     // merge:
5313     //  V = phi [ %x, %left ], [ %y, %right ]
5314     //
5315     // as "select %cond, %x, %y"
5316 
5317     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5318     assert(IDom && "At least the entry block should dominate PN");
5319 
5320     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5321     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5322 
5323     if (BI && BI->isConditional() &&
5324         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5325         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5326         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5327       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5328   }
5329 
5330   return nullptr;
5331 }
5332 
5333 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5334   if (const SCEV *S = createAddRecFromPHI(PN))
5335     return S;
5336 
5337   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5338     return S;
5339 
5340   // If the PHI has a single incoming value, follow that value, unless the
5341   // PHI's incoming blocks are in a different loop, in which case doing so
5342   // risks breaking LCSSA form. Instcombine would normally zap these, but
5343   // it doesn't have DominatorTree information, so it may miss cases.
5344   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5345     if (LI.replacementPreservesLCSSAForm(PN, V))
5346       return getSCEV(V);
5347 
5348   // If it's not a loop phi, we can't handle it yet.
5349   return getUnknown(PN);
5350 }
5351 
5352 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5353                                                       Value *Cond,
5354                                                       Value *TrueVal,
5355                                                       Value *FalseVal) {
5356   // Handle "constant" branch or select. This can occur for instance when a
5357   // loop pass transforms an inner loop and moves on to process the outer loop.
5358   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5359     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5360 
5361   // Try to match some simple smax or umax patterns.
5362   auto *ICI = dyn_cast<ICmpInst>(Cond);
5363   if (!ICI)
5364     return getUnknown(I);
5365 
5366   Value *LHS = ICI->getOperand(0);
5367   Value *RHS = ICI->getOperand(1);
5368 
5369   switch (ICI->getPredicate()) {
5370   case ICmpInst::ICMP_SLT:
5371   case ICmpInst::ICMP_SLE:
5372     std::swap(LHS, RHS);
5373     LLVM_FALLTHROUGH;
5374   case ICmpInst::ICMP_SGT:
5375   case ICmpInst::ICMP_SGE:
5376     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5377     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5378     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5379       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5380       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5381       const SCEV *LA = getSCEV(TrueVal);
5382       const SCEV *RA = getSCEV(FalseVal);
5383       const SCEV *LDiff = getMinusSCEV(LA, LS);
5384       const SCEV *RDiff = getMinusSCEV(RA, RS);
5385       if (LDiff == RDiff)
5386         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5387       LDiff = getMinusSCEV(LA, RS);
5388       RDiff = getMinusSCEV(RA, LS);
5389       if (LDiff == RDiff)
5390         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5391     }
5392     break;
5393   case ICmpInst::ICMP_ULT:
5394   case ICmpInst::ICMP_ULE:
5395     std::swap(LHS, RHS);
5396     LLVM_FALLTHROUGH;
5397   case ICmpInst::ICMP_UGT:
5398   case ICmpInst::ICMP_UGE:
5399     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5400     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5401     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5402       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5403       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5404       const SCEV *LA = getSCEV(TrueVal);
5405       const SCEV *RA = getSCEV(FalseVal);
5406       const SCEV *LDiff = getMinusSCEV(LA, LS);
5407       const SCEV *RDiff = getMinusSCEV(RA, RS);
5408       if (LDiff == RDiff)
5409         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5410       LDiff = getMinusSCEV(LA, RS);
5411       RDiff = getMinusSCEV(RA, LS);
5412       if (LDiff == RDiff)
5413         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5414     }
5415     break;
5416   case ICmpInst::ICMP_NE:
5417     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5418     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5419         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5420       const SCEV *One = getOne(I->getType());
5421       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5422       const SCEV *LA = getSCEV(TrueVal);
5423       const SCEV *RA = getSCEV(FalseVal);
5424       const SCEV *LDiff = getMinusSCEV(LA, LS);
5425       const SCEV *RDiff = getMinusSCEV(RA, One);
5426       if (LDiff == RDiff)
5427         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5428     }
5429     break;
5430   case ICmpInst::ICMP_EQ:
5431     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5432     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5433         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5434       const SCEV *One = getOne(I->getType());
5435       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5436       const SCEV *LA = getSCEV(TrueVal);
5437       const SCEV *RA = getSCEV(FalseVal);
5438       const SCEV *LDiff = getMinusSCEV(LA, One);
5439       const SCEV *RDiff = getMinusSCEV(RA, LS);
5440       if (LDiff == RDiff)
5441         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5442     }
5443     break;
5444   default:
5445     break;
5446   }
5447 
5448   return getUnknown(I);
5449 }
5450 
5451 /// Expand GEP instructions into add and multiply operations. This allows them
5452 /// to be analyzed by regular SCEV code.
5453 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5454   // Don't attempt to analyze GEPs over unsized objects.
5455   if (!GEP->getSourceElementType()->isSized())
5456     return getUnknown(GEP);
5457 
5458   SmallVector<const SCEV *, 4> IndexExprs;
5459   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5460     IndexExprs.push_back(getSCEV(*Index));
5461   return getGEPExpr(GEP, IndexExprs);
5462 }
5463 
5464 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5465   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5466     return C->getAPInt().countTrailingZeros();
5467 
5468   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5469     return std::min(GetMinTrailingZeros(T->getOperand()),
5470                     (uint32_t)getTypeSizeInBits(T->getType()));
5471 
5472   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5473     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5474     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5475                ? getTypeSizeInBits(E->getType())
5476                : OpRes;
5477   }
5478 
5479   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5480     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5481     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5482                ? getTypeSizeInBits(E->getType())
5483                : OpRes;
5484   }
5485 
5486   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5487     // The result is the min of all operands results.
5488     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5489     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5490       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5491     return MinOpRes;
5492   }
5493 
5494   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5495     // The result is the sum of all operands results.
5496     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5497     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5498     for (unsigned i = 1, e = M->getNumOperands();
5499          SumOpRes != BitWidth && i != e; ++i)
5500       SumOpRes =
5501           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5502     return SumOpRes;
5503   }
5504 
5505   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5506     // The result is the min of all operands results.
5507     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5508     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5509       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5510     return MinOpRes;
5511   }
5512 
5513   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5514     // The result is the min of all operands results.
5515     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5516     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5517       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5518     return MinOpRes;
5519   }
5520 
5521   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5522     // The result is the min of all operands results.
5523     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5524     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5525       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5526     return MinOpRes;
5527   }
5528 
5529   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5530     // For a SCEVUnknown, ask ValueTracking.
5531     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5532     return Known.countMinTrailingZeros();
5533   }
5534 
5535   // SCEVUDivExpr
5536   return 0;
5537 }
5538 
5539 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5540   auto I = MinTrailingZerosCache.find(S);
5541   if (I != MinTrailingZerosCache.end())
5542     return I->second;
5543 
5544   uint32_t Result = GetMinTrailingZerosImpl(S);
5545   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5546   assert(InsertPair.second && "Should insert a new key");
5547   return InsertPair.first->second;
5548 }
5549 
5550 /// Helper method to assign a range to V from metadata present in the IR.
5551 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5552   if (Instruction *I = dyn_cast<Instruction>(V))
5553     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5554       return getConstantRangeFromMetadata(*MD);
5555 
5556   return None;
5557 }
5558 
5559 /// Determine the range for a particular SCEV.  If SignHint is
5560 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5561 /// with a "cleaner" unsigned (resp. signed) representation.
5562 const ConstantRange &
5563 ScalarEvolution::getRangeRef(const SCEV *S,
5564                              ScalarEvolution::RangeSignHint SignHint) {
5565   DenseMap<const SCEV *, ConstantRange> &Cache =
5566       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5567                                                        : SignedRanges;
5568 
5569   // See if we've computed this range already.
5570   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5571   if (I != Cache.end())
5572     return I->second;
5573 
5574   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5575     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5576 
5577   unsigned BitWidth = getTypeSizeInBits(S->getType());
5578   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5579 
5580   // If the value has known zeros, the maximum value will have those known zeros
5581   // as well.
5582   uint32_t TZ = GetMinTrailingZeros(S);
5583   if (TZ != 0) {
5584     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5585       ConservativeResult =
5586           ConstantRange(APInt::getMinValue(BitWidth),
5587                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5588     else
5589       ConservativeResult = ConstantRange(
5590           APInt::getSignedMinValue(BitWidth),
5591           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5592   }
5593 
5594   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5595     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5596     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5597       X = X.add(getRangeRef(Add->getOperand(i), SignHint));
5598     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
5599   }
5600 
5601   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5602     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5603     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5604       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5605     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
5606   }
5607 
5608   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5609     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5610     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5611       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5612     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
5613   }
5614 
5615   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5616     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5617     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5618       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5619     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
5620   }
5621 
5622   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5623     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5624     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5625     return setRange(UDiv, SignHint,
5626                     ConservativeResult.intersectWith(X.udiv(Y)));
5627   }
5628 
5629   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5630     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5631     return setRange(ZExt, SignHint,
5632                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
5633   }
5634 
5635   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5636     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5637     return setRange(SExt, SignHint,
5638                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
5639   }
5640 
5641   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5642     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5643     return setRange(Trunc, SignHint,
5644                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
5645   }
5646 
5647   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5648     // If there's no unsigned wrap, the value will never be less than its
5649     // initial value.
5650     if (AddRec->hasNoUnsignedWrap())
5651       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
5652         if (!C->getValue()->isZero())
5653           ConservativeResult = ConservativeResult.intersectWith(
5654               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
5655 
5656     // If there's no signed wrap, and all the operands have the same sign or
5657     // zero, the value won't ever change sign.
5658     if (AddRec->hasNoSignedWrap()) {
5659       bool AllNonNeg = true;
5660       bool AllNonPos = true;
5661       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
5662         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
5663         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
5664       }
5665       if (AllNonNeg)
5666         ConservativeResult = ConservativeResult.intersectWith(
5667           ConstantRange(APInt(BitWidth, 0),
5668                         APInt::getSignedMinValue(BitWidth)));
5669       else if (AllNonPos)
5670         ConservativeResult = ConservativeResult.intersectWith(
5671           ConstantRange(APInt::getSignedMinValue(BitWidth),
5672                         APInt(BitWidth, 1)));
5673     }
5674 
5675     // TODO: non-affine addrec
5676     if (AddRec->isAffine()) {
5677       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
5678       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5679           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5680         auto RangeFromAffine = getRangeForAffineAR(
5681             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5682             BitWidth);
5683         if (!RangeFromAffine.isFullSet())
5684           ConservativeResult =
5685               ConservativeResult.intersectWith(RangeFromAffine);
5686 
5687         auto RangeFromFactoring = getRangeViaFactoring(
5688             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5689             BitWidth);
5690         if (!RangeFromFactoring.isFullSet())
5691           ConservativeResult =
5692               ConservativeResult.intersectWith(RangeFromFactoring);
5693       }
5694     }
5695 
5696     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5697   }
5698 
5699   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5700     // Check if the IR explicitly contains !range metadata.
5701     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5702     if (MDRange.hasValue())
5703       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
5704 
5705     // Split here to avoid paying the compile-time cost of calling both
5706     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5707     // if needed.
5708     const DataLayout &DL = getDataLayout();
5709     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5710       // For a SCEVUnknown, ask ValueTracking.
5711       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5712       if (Known.One != ~Known.Zero + 1)
5713         ConservativeResult =
5714             ConservativeResult.intersectWith(ConstantRange(Known.One,
5715                                                            ~Known.Zero + 1));
5716     } else {
5717       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5718              "generalize as needed!");
5719       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5720       if (NS > 1)
5721         ConservativeResult = ConservativeResult.intersectWith(
5722             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5723                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
5724     }
5725 
5726     // A range of Phi is a subset of union of all ranges of its input.
5727     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5728       // Make sure that we do not run over cycled Phis.
5729       if (PendingPhiRanges.insert(Phi).second) {
5730         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5731         for (auto &Op : Phi->operands()) {
5732           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5733           RangeFromOps = RangeFromOps.unionWith(OpRange);
5734           // No point to continue if we already have a full set.
5735           if (RangeFromOps.isFullSet())
5736             break;
5737         }
5738         ConservativeResult = ConservativeResult.intersectWith(RangeFromOps);
5739         bool Erased = PendingPhiRanges.erase(Phi);
5740         assert(Erased && "Failed to erase Phi properly?");
5741         (void) Erased;
5742       }
5743     }
5744 
5745     return setRange(U, SignHint, std::move(ConservativeResult));
5746   }
5747 
5748   return setRange(S, SignHint, std::move(ConservativeResult));
5749 }
5750 
5751 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5752 // values that the expression can take. Initially, the expression has a value
5753 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5754 // argument defines if we treat Step as signed or unsigned.
5755 static ConstantRange getRangeForAffineARHelper(APInt Step,
5756                                                const ConstantRange &StartRange,
5757                                                const APInt &MaxBECount,
5758                                                unsigned BitWidth, bool Signed) {
5759   // If either Step or MaxBECount is 0, then the expression won't change, and we
5760   // just need to return the initial range.
5761   if (Step == 0 || MaxBECount == 0)
5762     return StartRange;
5763 
5764   // If we don't know anything about the initial value (i.e. StartRange is
5765   // FullRange), then we don't know anything about the final range either.
5766   // Return FullRange.
5767   if (StartRange.isFullSet())
5768     return ConstantRange::getFull(BitWidth);
5769 
5770   // If Step is signed and negative, then we use its absolute value, but we also
5771   // note that we're moving in the opposite direction.
5772   bool Descending = Signed && Step.isNegative();
5773 
5774   if (Signed)
5775     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5776     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5777     // This equations hold true due to the well-defined wrap-around behavior of
5778     // APInt.
5779     Step = Step.abs();
5780 
5781   // Check if Offset is more than full span of BitWidth. If it is, the
5782   // expression is guaranteed to overflow.
5783   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5784     return ConstantRange::getFull(BitWidth);
5785 
5786   // Offset is by how much the expression can change. Checks above guarantee no
5787   // overflow here.
5788   APInt Offset = Step * MaxBECount;
5789 
5790   // Minimum value of the final range will match the minimal value of StartRange
5791   // if the expression is increasing and will be decreased by Offset otherwise.
5792   // Maximum value of the final range will match the maximal value of StartRange
5793   // if the expression is decreasing and will be increased by Offset otherwise.
5794   APInt StartLower = StartRange.getLower();
5795   APInt StartUpper = StartRange.getUpper() - 1;
5796   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5797                                    : (StartUpper + std::move(Offset));
5798 
5799   // It's possible that the new minimum/maximum value will fall into the initial
5800   // range (due to wrap around). This means that the expression can take any
5801   // value in this bitwidth, and we have to return full range.
5802   if (StartRange.contains(MovedBoundary))
5803     return ConstantRange::getFull(BitWidth);
5804 
5805   APInt NewLower =
5806       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5807   APInt NewUpper =
5808       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5809   NewUpper += 1;
5810 
5811   // If we end up with full range, return a proper full range.
5812   if (NewLower == NewUpper)
5813     return ConstantRange::getFull(BitWidth);
5814 
5815   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5816   return ConstantRange(std::move(NewLower), std::move(NewUpper));
5817 }
5818 
5819 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5820                                                    const SCEV *Step,
5821                                                    const SCEV *MaxBECount,
5822                                                    unsigned BitWidth) {
5823   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5824          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5825          "Precondition!");
5826 
5827   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5828   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5829 
5830   // First, consider step signed.
5831   ConstantRange StartSRange = getSignedRange(Start);
5832   ConstantRange StepSRange = getSignedRange(Step);
5833 
5834   // If Step can be both positive and negative, we need to find ranges for the
5835   // maximum absolute step values in both directions and union them.
5836   ConstantRange SR =
5837       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5838                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5839   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5840                                               StartSRange, MaxBECountValue,
5841                                               BitWidth, /* Signed = */ true));
5842 
5843   // Next, consider step unsigned.
5844   ConstantRange UR = getRangeForAffineARHelper(
5845       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5846       MaxBECountValue, BitWidth, /* Signed = */ false);
5847 
5848   // Finally, intersect signed and unsigned ranges.
5849   return SR.intersectWith(UR);
5850 }
5851 
5852 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5853                                                     const SCEV *Step,
5854                                                     const SCEV *MaxBECount,
5855                                                     unsigned BitWidth) {
5856   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5857   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5858 
5859   struct SelectPattern {
5860     Value *Condition = nullptr;
5861     APInt TrueValue;
5862     APInt FalseValue;
5863 
5864     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5865                            const SCEV *S) {
5866       Optional<unsigned> CastOp;
5867       APInt Offset(BitWidth, 0);
5868 
5869       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5870              "Should be!");
5871 
5872       // Peel off a constant offset:
5873       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5874         // In the future we could consider being smarter here and handle
5875         // {Start+Step,+,Step} too.
5876         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5877           return;
5878 
5879         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5880         S = SA->getOperand(1);
5881       }
5882 
5883       // Peel off a cast operation
5884       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5885         CastOp = SCast->getSCEVType();
5886         S = SCast->getOperand();
5887       }
5888 
5889       using namespace llvm::PatternMatch;
5890 
5891       auto *SU = dyn_cast<SCEVUnknown>(S);
5892       const APInt *TrueVal, *FalseVal;
5893       if (!SU ||
5894           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5895                                           m_APInt(FalseVal)))) {
5896         Condition = nullptr;
5897         return;
5898       }
5899 
5900       TrueValue = *TrueVal;
5901       FalseValue = *FalseVal;
5902 
5903       // Re-apply the cast we peeled off earlier
5904       if (CastOp.hasValue())
5905         switch (*CastOp) {
5906         default:
5907           llvm_unreachable("Unknown SCEV cast type!");
5908 
5909         case scTruncate:
5910           TrueValue = TrueValue.trunc(BitWidth);
5911           FalseValue = FalseValue.trunc(BitWidth);
5912           break;
5913         case scZeroExtend:
5914           TrueValue = TrueValue.zext(BitWidth);
5915           FalseValue = FalseValue.zext(BitWidth);
5916           break;
5917         case scSignExtend:
5918           TrueValue = TrueValue.sext(BitWidth);
5919           FalseValue = FalseValue.sext(BitWidth);
5920           break;
5921         }
5922 
5923       // Re-apply the constant offset we peeled off earlier
5924       TrueValue += Offset;
5925       FalseValue += Offset;
5926     }
5927 
5928     bool isRecognized() { return Condition != nullptr; }
5929   };
5930 
5931   SelectPattern StartPattern(*this, BitWidth, Start);
5932   if (!StartPattern.isRecognized())
5933     return ConstantRange::getFull(BitWidth);
5934 
5935   SelectPattern StepPattern(*this, BitWidth, Step);
5936   if (!StepPattern.isRecognized())
5937     return ConstantRange::getFull(BitWidth);
5938 
5939   if (StartPattern.Condition != StepPattern.Condition) {
5940     // We don't handle this case today; but we could, by considering four
5941     // possibilities below instead of two. I'm not sure if there are cases where
5942     // that will help over what getRange already does, though.
5943     return ConstantRange::getFull(BitWidth);
5944   }
5945 
5946   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
5947   // construct arbitrary general SCEV expressions here.  This function is called
5948   // from deep in the call stack, and calling getSCEV (on a sext instruction,
5949   // say) can end up caching a suboptimal value.
5950 
5951   // FIXME: without the explicit `this` receiver below, MSVC errors out with
5952   // C2352 and C2512 (otherwise it isn't needed).
5953 
5954   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
5955   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
5956   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
5957   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
5958 
5959   ConstantRange TrueRange =
5960       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
5961   ConstantRange FalseRange =
5962       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
5963 
5964   return TrueRange.unionWith(FalseRange);
5965 }
5966 
5967 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
5968   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
5969   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
5970 
5971   // Return early if there are no flags to propagate to the SCEV.
5972   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5973   if (BinOp->hasNoUnsignedWrap())
5974     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
5975   if (BinOp->hasNoSignedWrap())
5976     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
5977   if (Flags == SCEV::FlagAnyWrap)
5978     return SCEV::FlagAnyWrap;
5979 
5980   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
5981 }
5982 
5983 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
5984   // Here we check that I is in the header of the innermost loop containing I,
5985   // since we only deal with instructions in the loop header. The actual loop we
5986   // need to check later will come from an add recurrence, but getting that
5987   // requires computing the SCEV of the operands, which can be expensive. This
5988   // check we can do cheaply to rule out some cases early.
5989   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
5990   if (InnermostContainingLoop == nullptr ||
5991       InnermostContainingLoop->getHeader() != I->getParent())
5992     return false;
5993 
5994   // Only proceed if we can prove that I does not yield poison.
5995   if (!programUndefinedIfFullPoison(I))
5996     return false;
5997 
5998   // At this point we know that if I is executed, then it does not wrap
5999   // according to at least one of NSW or NUW. If I is not executed, then we do
6000   // not know if the calculation that I represents would wrap. Multiple
6001   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6002   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6003   // derived from other instructions that map to the same SCEV. We cannot make
6004   // that guarantee for cases where I is not executed. So we need to find the
6005   // loop that I is considered in relation to and prove that I is executed for
6006   // every iteration of that loop. That implies that the value that I
6007   // calculates does not wrap anywhere in the loop, so then we can apply the
6008   // flags to the SCEV.
6009   //
6010   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6011   // from different loops, so that we know which loop to prove that I is
6012   // executed in.
6013   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6014     // I could be an extractvalue from a call to an overflow intrinsic.
6015     // TODO: We can do better here in some cases.
6016     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6017       return false;
6018     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6019     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6020       bool AllOtherOpsLoopInvariant = true;
6021       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6022            ++OtherOpIndex) {
6023         if (OtherOpIndex != OpIndex) {
6024           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6025           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6026             AllOtherOpsLoopInvariant = false;
6027             break;
6028           }
6029         }
6030       }
6031       if (AllOtherOpsLoopInvariant &&
6032           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6033         return true;
6034     }
6035   }
6036   return false;
6037 }
6038 
6039 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6040   // If we know that \c I can never be poison period, then that's enough.
6041   if (isSCEVExprNeverPoison(I))
6042     return true;
6043 
6044   // For an add recurrence specifically, we assume that infinite loops without
6045   // side effects are undefined behavior, and then reason as follows:
6046   //
6047   // If the add recurrence is poison in any iteration, it is poison on all
6048   // future iterations (since incrementing poison yields poison). If the result
6049   // of the add recurrence is fed into the loop latch condition and the loop
6050   // does not contain any throws or exiting blocks other than the latch, we now
6051   // have the ability to "choose" whether the backedge is taken or not (by
6052   // choosing a sufficiently evil value for the poison feeding into the branch)
6053   // for every iteration including and after the one in which \p I first became
6054   // poison.  There are two possibilities (let's call the iteration in which \p
6055   // I first became poison as K):
6056   //
6057   //  1. In the set of iterations including and after K, the loop body executes
6058   //     no side effects.  In this case executing the backege an infinte number
6059   //     of times will yield undefined behavior.
6060   //
6061   //  2. In the set of iterations including and after K, the loop body executes
6062   //     at least one side effect.  In this case, that specific instance of side
6063   //     effect is control dependent on poison, which also yields undefined
6064   //     behavior.
6065 
6066   auto *ExitingBB = L->getExitingBlock();
6067   auto *LatchBB = L->getLoopLatch();
6068   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6069     return false;
6070 
6071   SmallPtrSet<const Instruction *, 16> Pushed;
6072   SmallVector<const Instruction *, 8> PoisonStack;
6073 
6074   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6075   // things that are known to be fully poison under that assumption go on the
6076   // PoisonStack.
6077   Pushed.insert(I);
6078   PoisonStack.push_back(I);
6079 
6080   bool LatchControlDependentOnPoison = false;
6081   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6082     const Instruction *Poison = PoisonStack.pop_back_val();
6083 
6084     for (auto *PoisonUser : Poison->users()) {
6085       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6086         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6087           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6088       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6089         assert(BI->isConditional() && "Only possibility!");
6090         if (BI->getParent() == LatchBB) {
6091           LatchControlDependentOnPoison = true;
6092           break;
6093         }
6094       }
6095     }
6096   }
6097 
6098   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6099 }
6100 
6101 ScalarEvolution::LoopProperties
6102 ScalarEvolution::getLoopProperties(const Loop *L) {
6103   using LoopProperties = ScalarEvolution::LoopProperties;
6104 
6105   auto Itr = LoopPropertiesCache.find(L);
6106   if (Itr == LoopPropertiesCache.end()) {
6107     auto HasSideEffects = [](Instruction *I) {
6108       if (auto *SI = dyn_cast<StoreInst>(I))
6109         return !SI->isSimple();
6110 
6111       return I->mayHaveSideEffects();
6112     };
6113 
6114     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6115                          /*HasNoSideEffects*/ true};
6116 
6117     for (auto *BB : L->getBlocks())
6118       for (auto &I : *BB) {
6119         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6120           LP.HasNoAbnormalExits = false;
6121         if (HasSideEffects(&I))
6122           LP.HasNoSideEffects = false;
6123         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6124           break; // We're already as pessimistic as we can get.
6125       }
6126 
6127     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6128     assert(InsertPair.second && "We just checked!");
6129     Itr = InsertPair.first;
6130   }
6131 
6132   return Itr->second;
6133 }
6134 
6135 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6136   if (!isSCEVable(V->getType()))
6137     return getUnknown(V);
6138 
6139   if (Instruction *I = dyn_cast<Instruction>(V)) {
6140     // Don't attempt to analyze instructions in blocks that aren't
6141     // reachable. Such instructions don't matter, and they aren't required
6142     // to obey basic rules for definitions dominating uses which this
6143     // analysis depends on.
6144     if (!DT.isReachableFromEntry(I->getParent()))
6145       return getUnknown(UndefValue::get(V->getType()));
6146   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6147     return getConstant(CI);
6148   else if (isa<ConstantPointerNull>(V))
6149     return getZero(V->getType());
6150   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6151     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6152   else if (!isa<ConstantExpr>(V))
6153     return getUnknown(V);
6154 
6155   Operator *U = cast<Operator>(V);
6156   if (auto BO = MatchBinaryOp(U, DT)) {
6157     switch (BO->Opcode) {
6158     case Instruction::Add: {
6159       // The simple thing to do would be to just call getSCEV on both operands
6160       // and call getAddExpr with the result. However if we're looking at a
6161       // bunch of things all added together, this can be quite inefficient,
6162       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6163       // Instead, gather up all the operands and make a single getAddExpr call.
6164       // LLVM IR canonical form means we need only traverse the left operands.
6165       SmallVector<const SCEV *, 4> AddOps;
6166       do {
6167         if (BO->Op) {
6168           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6169             AddOps.push_back(OpSCEV);
6170             break;
6171           }
6172 
6173           // If a NUW or NSW flag can be applied to the SCEV for this
6174           // addition, then compute the SCEV for this addition by itself
6175           // with a separate call to getAddExpr. We need to do that
6176           // instead of pushing the operands of the addition onto AddOps,
6177           // since the flags are only known to apply to this particular
6178           // addition - they may not apply to other additions that can be
6179           // formed with operands from AddOps.
6180           const SCEV *RHS = getSCEV(BO->RHS);
6181           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6182           if (Flags != SCEV::FlagAnyWrap) {
6183             const SCEV *LHS = getSCEV(BO->LHS);
6184             if (BO->Opcode == Instruction::Sub)
6185               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6186             else
6187               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6188             break;
6189           }
6190         }
6191 
6192         if (BO->Opcode == Instruction::Sub)
6193           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6194         else
6195           AddOps.push_back(getSCEV(BO->RHS));
6196 
6197         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6198         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6199                        NewBO->Opcode != Instruction::Sub)) {
6200           AddOps.push_back(getSCEV(BO->LHS));
6201           break;
6202         }
6203         BO = NewBO;
6204       } while (true);
6205 
6206       return getAddExpr(AddOps);
6207     }
6208 
6209     case Instruction::Mul: {
6210       SmallVector<const SCEV *, 4> MulOps;
6211       do {
6212         if (BO->Op) {
6213           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6214             MulOps.push_back(OpSCEV);
6215             break;
6216           }
6217 
6218           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6219           if (Flags != SCEV::FlagAnyWrap) {
6220             MulOps.push_back(
6221                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6222             break;
6223           }
6224         }
6225 
6226         MulOps.push_back(getSCEV(BO->RHS));
6227         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6228         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6229           MulOps.push_back(getSCEV(BO->LHS));
6230           break;
6231         }
6232         BO = NewBO;
6233       } while (true);
6234 
6235       return getMulExpr(MulOps);
6236     }
6237     case Instruction::UDiv:
6238       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6239     case Instruction::URem:
6240       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6241     case Instruction::Sub: {
6242       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6243       if (BO->Op)
6244         Flags = getNoWrapFlagsFromUB(BO->Op);
6245       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6246     }
6247     case Instruction::And:
6248       // For an expression like x&255 that merely masks off the high bits,
6249       // use zext(trunc(x)) as the SCEV expression.
6250       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6251         if (CI->isZero())
6252           return getSCEV(BO->RHS);
6253         if (CI->isMinusOne())
6254           return getSCEV(BO->LHS);
6255         const APInt &A = CI->getValue();
6256 
6257         // Instcombine's ShrinkDemandedConstant may strip bits out of
6258         // constants, obscuring what would otherwise be a low-bits mask.
6259         // Use computeKnownBits to compute what ShrinkDemandedConstant
6260         // knew about to reconstruct a low-bits mask value.
6261         unsigned LZ = A.countLeadingZeros();
6262         unsigned TZ = A.countTrailingZeros();
6263         unsigned BitWidth = A.getBitWidth();
6264         KnownBits Known(BitWidth);
6265         computeKnownBits(BO->LHS, Known, getDataLayout(),
6266                          0, &AC, nullptr, &DT);
6267 
6268         APInt EffectiveMask =
6269             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6270         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6271           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6272           const SCEV *LHS = getSCEV(BO->LHS);
6273           const SCEV *ShiftedLHS = nullptr;
6274           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6275             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6276               // For an expression like (x * 8) & 8, simplify the multiply.
6277               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6278               unsigned GCD = std::min(MulZeros, TZ);
6279               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6280               SmallVector<const SCEV*, 4> MulOps;
6281               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6282               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6283               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6284               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6285             }
6286           }
6287           if (!ShiftedLHS)
6288             ShiftedLHS = getUDivExpr(LHS, MulCount);
6289           return getMulExpr(
6290               getZeroExtendExpr(
6291                   getTruncateExpr(ShiftedLHS,
6292                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6293                   BO->LHS->getType()),
6294               MulCount);
6295         }
6296       }
6297       break;
6298 
6299     case Instruction::Or:
6300       // If the RHS of the Or is a constant, we may have something like:
6301       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6302       // optimizations will transparently handle this case.
6303       //
6304       // In order for this transformation to be safe, the LHS must be of the
6305       // form X*(2^n) and the Or constant must be less than 2^n.
6306       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6307         const SCEV *LHS = getSCEV(BO->LHS);
6308         const APInt &CIVal = CI->getValue();
6309         if (GetMinTrailingZeros(LHS) >=
6310             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6311           // Build a plain add SCEV.
6312           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6313           // If the LHS of the add was an addrec and it has no-wrap flags,
6314           // transfer the no-wrap flags, since an or won't introduce a wrap.
6315           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6316             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6317             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6318                 OldAR->getNoWrapFlags());
6319           }
6320           return S;
6321         }
6322       }
6323       break;
6324 
6325     case Instruction::Xor:
6326       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6327         // If the RHS of xor is -1, then this is a not operation.
6328         if (CI->isMinusOne())
6329           return getNotSCEV(getSCEV(BO->LHS));
6330 
6331         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6332         // This is a variant of the check for xor with -1, and it handles
6333         // the case where instcombine has trimmed non-demanded bits out
6334         // of an xor with -1.
6335         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6336           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6337             if (LBO->getOpcode() == Instruction::And &&
6338                 LCI->getValue() == CI->getValue())
6339               if (const SCEVZeroExtendExpr *Z =
6340                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6341                 Type *UTy = BO->LHS->getType();
6342                 const SCEV *Z0 = Z->getOperand();
6343                 Type *Z0Ty = Z0->getType();
6344                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6345 
6346                 // If C is a low-bits mask, the zero extend is serving to
6347                 // mask off the high bits. Complement the operand and
6348                 // re-apply the zext.
6349                 if (CI->getValue().isMask(Z0TySize))
6350                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6351 
6352                 // If C is a single bit, it may be in the sign-bit position
6353                 // before the zero-extend. In this case, represent the xor
6354                 // using an add, which is equivalent, and re-apply the zext.
6355                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6356                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6357                     Trunc.isSignMask())
6358                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6359                                            UTy);
6360               }
6361       }
6362       break;
6363 
6364     case Instruction::Shl:
6365       // Turn shift left of a constant amount into a multiply.
6366       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6367         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6368 
6369         // If the shift count is not less than the bitwidth, the result of
6370         // the shift is undefined. Don't try to analyze it, because the
6371         // resolution chosen here may differ from the resolution chosen in
6372         // other parts of the compiler.
6373         if (SA->getValue().uge(BitWidth))
6374           break;
6375 
6376         // It is currently not resolved how to interpret NSW for left
6377         // shift by BitWidth - 1, so we avoid applying flags in that
6378         // case. Remove this check (or this comment) once the situation
6379         // is resolved. See
6380         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6381         // and http://reviews.llvm.org/D8890 .
6382         auto Flags = SCEV::FlagAnyWrap;
6383         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6384           Flags = getNoWrapFlagsFromUB(BO->Op);
6385 
6386         Constant *X = ConstantInt::get(
6387             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6388         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6389       }
6390       break;
6391 
6392     case Instruction::AShr: {
6393       // AShr X, C, where C is a constant.
6394       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6395       if (!CI)
6396         break;
6397 
6398       Type *OuterTy = BO->LHS->getType();
6399       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6400       // If the shift count is not less than the bitwidth, the result of
6401       // the shift is undefined. Don't try to analyze it, because the
6402       // resolution chosen here may differ from the resolution chosen in
6403       // other parts of the compiler.
6404       if (CI->getValue().uge(BitWidth))
6405         break;
6406 
6407       if (CI->isZero())
6408         return getSCEV(BO->LHS); // shift by zero --> noop
6409 
6410       uint64_t AShrAmt = CI->getZExtValue();
6411       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6412 
6413       Operator *L = dyn_cast<Operator>(BO->LHS);
6414       if (L && L->getOpcode() == Instruction::Shl) {
6415         // X = Shl A, n
6416         // Y = AShr X, m
6417         // Both n and m are constant.
6418 
6419         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6420         if (L->getOperand(1) == BO->RHS)
6421           // For a two-shift sext-inreg, i.e. n = m,
6422           // use sext(trunc(x)) as the SCEV expression.
6423           return getSignExtendExpr(
6424               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6425 
6426         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6427         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6428           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6429           if (ShlAmt > AShrAmt) {
6430             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6431             // expression. We already checked that ShlAmt < BitWidth, so
6432             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6433             // ShlAmt - AShrAmt < Amt.
6434             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6435                                             ShlAmt - AShrAmt);
6436             return getSignExtendExpr(
6437                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6438                 getConstant(Mul)), OuterTy);
6439           }
6440         }
6441       }
6442       break;
6443     }
6444     }
6445   }
6446 
6447   switch (U->getOpcode()) {
6448   case Instruction::Trunc:
6449     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6450 
6451   case Instruction::ZExt:
6452     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6453 
6454   case Instruction::SExt:
6455     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6456       // The NSW flag of a subtract does not always survive the conversion to
6457       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6458       // more likely to preserve NSW and allow later AddRec optimisations.
6459       //
6460       // NOTE: This is effectively duplicating this logic from getSignExtend:
6461       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6462       // but by that point the NSW information has potentially been lost.
6463       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6464         Type *Ty = U->getType();
6465         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6466         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6467         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6468       }
6469     }
6470     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6471 
6472   case Instruction::BitCast:
6473     // BitCasts are no-op casts so we just eliminate the cast.
6474     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6475       return getSCEV(U->getOperand(0));
6476     break;
6477 
6478   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6479   // lead to pointer expressions which cannot safely be expanded to GEPs,
6480   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6481   // simplifying integer expressions.
6482 
6483   case Instruction::GetElementPtr:
6484     return createNodeForGEP(cast<GEPOperator>(U));
6485 
6486   case Instruction::PHI:
6487     return createNodeForPHI(cast<PHINode>(U));
6488 
6489   case Instruction::Select:
6490     // U can also be a select constant expr, which let fall through.  Since
6491     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6492     // constant expressions cannot have instructions as operands, we'd have
6493     // returned getUnknown for a select constant expressions anyway.
6494     if (isa<Instruction>(U))
6495       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6496                                       U->getOperand(1), U->getOperand(2));
6497     break;
6498 
6499   case Instruction::Call:
6500   case Instruction::Invoke:
6501     if (Value *RV = CallSite(U).getReturnedArgOperand())
6502       return getSCEV(RV);
6503     break;
6504   }
6505 
6506   return getUnknown(V);
6507 }
6508 
6509 //===----------------------------------------------------------------------===//
6510 //                   Iteration Count Computation Code
6511 //
6512 
6513 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6514   if (!ExitCount)
6515     return 0;
6516 
6517   ConstantInt *ExitConst = ExitCount->getValue();
6518 
6519   // Guard against huge trip counts.
6520   if (ExitConst->getValue().getActiveBits() > 32)
6521     return 0;
6522 
6523   // In case of integer overflow, this returns 0, which is correct.
6524   return ((unsigned)ExitConst->getZExtValue()) + 1;
6525 }
6526 
6527 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6528   if (BasicBlock *ExitingBB = L->getExitingBlock())
6529     return getSmallConstantTripCount(L, ExitingBB);
6530 
6531   // No trip count information for multiple exits.
6532   return 0;
6533 }
6534 
6535 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6536                                                     BasicBlock *ExitingBlock) {
6537   assert(ExitingBlock && "Must pass a non-null exiting block!");
6538   assert(L->isLoopExiting(ExitingBlock) &&
6539          "Exiting block must actually branch out of the loop!");
6540   const SCEVConstant *ExitCount =
6541       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6542   return getConstantTripCount(ExitCount);
6543 }
6544 
6545 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6546   const auto *MaxExitCount =
6547       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
6548   return getConstantTripCount(MaxExitCount);
6549 }
6550 
6551 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6552   if (BasicBlock *ExitingBB = L->getExitingBlock())
6553     return getSmallConstantTripMultiple(L, ExitingBB);
6554 
6555   // No trip multiple information for multiple exits.
6556   return 0;
6557 }
6558 
6559 /// Returns the largest constant divisor of the trip count of this loop as a
6560 /// normal unsigned value, if possible. This means that the actual trip count is
6561 /// always a multiple of the returned value (don't forget the trip count could
6562 /// very well be zero as well!).
6563 ///
6564 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6565 /// multiple of a constant (which is also the case if the trip count is simply
6566 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6567 /// if the trip count is very large (>= 2^32).
6568 ///
6569 /// As explained in the comments for getSmallConstantTripCount, this assumes
6570 /// that control exits the loop via ExitingBlock.
6571 unsigned
6572 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6573                                               BasicBlock *ExitingBlock) {
6574   assert(ExitingBlock && "Must pass a non-null exiting block!");
6575   assert(L->isLoopExiting(ExitingBlock) &&
6576          "Exiting block must actually branch out of the loop!");
6577   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6578   if (ExitCount == getCouldNotCompute())
6579     return 1;
6580 
6581   // Get the trip count from the BE count by adding 1.
6582   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6583 
6584   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6585   if (!TC)
6586     // Attempt to factor more general cases. Returns the greatest power of
6587     // two divisor. If overflow happens, the trip count expression is still
6588     // divisible by the greatest power of 2 divisor returned.
6589     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6590 
6591   ConstantInt *Result = TC->getValue();
6592 
6593   // Guard against huge trip counts (this requires checking
6594   // for zero to handle the case where the trip count == -1 and the
6595   // addition wraps).
6596   if (!Result || Result->getValue().getActiveBits() > 32 ||
6597       Result->getValue().getActiveBits() == 0)
6598     return 1;
6599 
6600   return (unsigned)Result->getZExtValue();
6601 }
6602 
6603 /// Get the expression for the number of loop iterations for which this loop is
6604 /// guaranteed not to exit via ExitingBlock. Otherwise return
6605 /// SCEVCouldNotCompute.
6606 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6607                                           BasicBlock *ExitingBlock) {
6608   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6609 }
6610 
6611 const SCEV *
6612 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6613                                                  SCEVUnionPredicate &Preds) {
6614   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6615 }
6616 
6617 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
6618   return getBackedgeTakenInfo(L).getExact(L, this);
6619 }
6620 
6621 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
6622 /// known never to be less than the actual backedge taken count.
6623 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
6624   return getBackedgeTakenInfo(L).getMax(this);
6625 }
6626 
6627 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6628   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6629 }
6630 
6631 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6632 static void
6633 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6634   BasicBlock *Header = L->getHeader();
6635 
6636   // Push all Loop-header PHIs onto the Worklist stack.
6637   for (PHINode &PN : Header->phis())
6638     Worklist.push_back(&PN);
6639 }
6640 
6641 const ScalarEvolution::BackedgeTakenInfo &
6642 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6643   auto &BTI = getBackedgeTakenInfo(L);
6644   if (BTI.hasFullInfo())
6645     return BTI;
6646 
6647   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6648 
6649   if (!Pair.second)
6650     return Pair.first->second;
6651 
6652   BackedgeTakenInfo Result =
6653       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6654 
6655   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6656 }
6657 
6658 const ScalarEvolution::BackedgeTakenInfo &
6659 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6660   // Initially insert an invalid entry for this loop. If the insertion
6661   // succeeds, proceed to actually compute a backedge-taken count and
6662   // update the value. The temporary CouldNotCompute value tells SCEV
6663   // code elsewhere that it shouldn't attempt to request a new
6664   // backedge-taken count, which could result in infinite recursion.
6665   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6666       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6667   if (!Pair.second)
6668     return Pair.first->second;
6669 
6670   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6671   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6672   // must be cleared in this scope.
6673   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6674 
6675   // In product build, there are no usage of statistic.
6676   (void)NumTripCountsComputed;
6677   (void)NumTripCountsNotComputed;
6678 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6679   const SCEV *BEExact = Result.getExact(L, this);
6680   if (BEExact != getCouldNotCompute()) {
6681     assert(isLoopInvariant(BEExact, L) &&
6682            isLoopInvariant(Result.getMax(this), L) &&
6683            "Computed backedge-taken count isn't loop invariant for loop!");
6684     ++NumTripCountsComputed;
6685   }
6686   else if (Result.getMax(this) == getCouldNotCompute() &&
6687            isa<PHINode>(L->getHeader()->begin())) {
6688     // Only count loops that have phi nodes as not being computable.
6689     ++NumTripCountsNotComputed;
6690   }
6691 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6692 
6693   // Now that we know more about the trip count for this loop, forget any
6694   // existing SCEV values for PHI nodes in this loop since they are only
6695   // conservative estimates made without the benefit of trip count
6696   // information. This is similar to the code in forgetLoop, except that
6697   // it handles SCEVUnknown PHI nodes specially.
6698   if (Result.hasAnyInfo()) {
6699     SmallVector<Instruction *, 16> Worklist;
6700     PushLoopPHIs(L, Worklist);
6701 
6702     SmallPtrSet<Instruction *, 8> Discovered;
6703     while (!Worklist.empty()) {
6704       Instruction *I = Worklist.pop_back_val();
6705 
6706       ValueExprMapType::iterator It =
6707         ValueExprMap.find_as(static_cast<Value *>(I));
6708       if (It != ValueExprMap.end()) {
6709         const SCEV *Old = It->second;
6710 
6711         // SCEVUnknown for a PHI either means that it has an unrecognized
6712         // structure, or it's a PHI that's in the progress of being computed
6713         // by createNodeForPHI.  In the former case, additional loop trip
6714         // count information isn't going to change anything. In the later
6715         // case, createNodeForPHI will perform the necessary updates on its
6716         // own when it gets to that point.
6717         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6718           eraseValueFromMap(It->first);
6719           forgetMemoizedResults(Old);
6720         }
6721         if (PHINode *PN = dyn_cast<PHINode>(I))
6722           ConstantEvolutionLoopExitValue.erase(PN);
6723       }
6724 
6725       // Since we don't need to invalidate anything for correctness and we're
6726       // only invalidating to make SCEV's results more precise, we get to stop
6727       // early to avoid invalidating too much.  This is especially important in
6728       // cases like:
6729       //
6730       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6731       // loop0:
6732       //   %pn0 = phi
6733       //   ...
6734       // loop1:
6735       //   %pn1 = phi
6736       //   ...
6737       //
6738       // where both loop0 and loop1's backedge taken count uses the SCEV
6739       // expression for %v.  If we don't have the early stop below then in cases
6740       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6741       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6742       // count for loop1, effectively nullifying SCEV's trip count cache.
6743       for (auto *U : I->users())
6744         if (auto *I = dyn_cast<Instruction>(U)) {
6745           auto *LoopForUser = LI.getLoopFor(I->getParent());
6746           if (LoopForUser && L->contains(LoopForUser) &&
6747               Discovered.insert(I).second)
6748             Worklist.push_back(I);
6749         }
6750     }
6751   }
6752 
6753   // Re-lookup the insert position, since the call to
6754   // computeBackedgeTakenCount above could result in a
6755   // recusive call to getBackedgeTakenInfo (on a different
6756   // loop), which would invalidate the iterator computed
6757   // earlier.
6758   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6759 }
6760 
6761 void ScalarEvolution::forgetAllLoops() {
6762   // This method is intended to forget all info about loops. It should
6763   // invalidate caches as if the following happened:
6764   // - The trip counts of all loops have changed arbitrarily
6765   // - Every llvm::Value has been updated in place to produce a different
6766   // result.
6767   BackedgeTakenCounts.clear();
6768   PredicatedBackedgeTakenCounts.clear();
6769   LoopPropertiesCache.clear();
6770   ConstantEvolutionLoopExitValue.clear();
6771   ValueExprMap.clear();
6772   ValuesAtScopes.clear();
6773   LoopDispositions.clear();
6774   BlockDispositions.clear();
6775   UnsignedRanges.clear();
6776   SignedRanges.clear();
6777   ExprValueMap.clear();
6778   HasRecMap.clear();
6779   MinTrailingZerosCache.clear();
6780   PredicatedSCEVRewrites.clear();
6781 }
6782 
6783 void ScalarEvolution::forgetLoop(const Loop *L) {
6784   // Drop any stored trip count value.
6785   auto RemoveLoopFromBackedgeMap =
6786       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6787         auto BTCPos = Map.find(L);
6788         if (BTCPos != Map.end()) {
6789           BTCPos->second.clear();
6790           Map.erase(BTCPos);
6791         }
6792       };
6793 
6794   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6795   SmallVector<Instruction *, 32> Worklist;
6796   SmallPtrSet<Instruction *, 16> Visited;
6797 
6798   // Iterate over all the loops and sub-loops to drop SCEV information.
6799   while (!LoopWorklist.empty()) {
6800     auto *CurrL = LoopWorklist.pop_back_val();
6801 
6802     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6803     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6804 
6805     // Drop information about predicated SCEV rewrites for this loop.
6806     for (auto I = PredicatedSCEVRewrites.begin();
6807          I != PredicatedSCEVRewrites.end();) {
6808       std::pair<const SCEV *, const Loop *> Entry = I->first;
6809       if (Entry.second == CurrL)
6810         PredicatedSCEVRewrites.erase(I++);
6811       else
6812         ++I;
6813     }
6814 
6815     auto LoopUsersItr = LoopUsers.find(CurrL);
6816     if (LoopUsersItr != LoopUsers.end()) {
6817       for (auto *S : LoopUsersItr->second)
6818         forgetMemoizedResults(S);
6819       LoopUsers.erase(LoopUsersItr);
6820     }
6821 
6822     // Drop information about expressions based on loop-header PHIs.
6823     PushLoopPHIs(CurrL, Worklist);
6824 
6825     while (!Worklist.empty()) {
6826       Instruction *I = Worklist.pop_back_val();
6827       if (!Visited.insert(I).second)
6828         continue;
6829 
6830       ValueExprMapType::iterator It =
6831           ValueExprMap.find_as(static_cast<Value *>(I));
6832       if (It != ValueExprMap.end()) {
6833         eraseValueFromMap(It->first);
6834         forgetMemoizedResults(It->second);
6835         if (PHINode *PN = dyn_cast<PHINode>(I))
6836           ConstantEvolutionLoopExitValue.erase(PN);
6837       }
6838 
6839       PushDefUseChildren(I, Worklist);
6840     }
6841 
6842     LoopPropertiesCache.erase(CurrL);
6843     // Forget all contained loops too, to avoid dangling entries in the
6844     // ValuesAtScopes map.
6845     LoopWorklist.append(CurrL->begin(), CurrL->end());
6846   }
6847 }
6848 
6849 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6850   while (Loop *Parent = L->getParentLoop())
6851     L = Parent;
6852   forgetLoop(L);
6853 }
6854 
6855 void ScalarEvolution::forgetValue(Value *V) {
6856   Instruction *I = dyn_cast<Instruction>(V);
6857   if (!I) return;
6858 
6859   // Drop information about expressions based on loop-header PHIs.
6860   SmallVector<Instruction *, 16> Worklist;
6861   Worklist.push_back(I);
6862 
6863   SmallPtrSet<Instruction *, 8> Visited;
6864   while (!Worklist.empty()) {
6865     I = Worklist.pop_back_val();
6866     if (!Visited.insert(I).second)
6867       continue;
6868 
6869     ValueExprMapType::iterator It =
6870       ValueExprMap.find_as(static_cast<Value *>(I));
6871     if (It != ValueExprMap.end()) {
6872       eraseValueFromMap(It->first);
6873       forgetMemoizedResults(It->second);
6874       if (PHINode *PN = dyn_cast<PHINode>(I))
6875         ConstantEvolutionLoopExitValue.erase(PN);
6876     }
6877 
6878     PushDefUseChildren(I, Worklist);
6879   }
6880 }
6881 
6882 /// Get the exact loop backedge taken count considering all loop exits. A
6883 /// computable result can only be returned for loops with all exiting blocks
6884 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6885 /// is never skipped. This is a valid assumption as long as the loop exits via
6886 /// that test. For precise results, it is the caller's responsibility to specify
6887 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6888 const SCEV *
6889 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6890                                              SCEVUnionPredicate *Preds) const {
6891   // If any exits were not computable, the loop is not computable.
6892   if (!isComplete() || ExitNotTaken.empty())
6893     return SE->getCouldNotCompute();
6894 
6895   const BasicBlock *Latch = L->getLoopLatch();
6896   // All exiting blocks we have collected must dominate the only backedge.
6897   if (!Latch)
6898     return SE->getCouldNotCompute();
6899 
6900   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6901   // count is simply a minimum out of all these calculated exit counts.
6902   SmallVector<const SCEV *, 2> Ops;
6903   for (auto &ENT : ExitNotTaken) {
6904     const SCEV *BECount = ENT.ExactNotTaken;
6905     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6906     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6907            "We should only have known counts for exiting blocks that dominate "
6908            "latch!");
6909 
6910     Ops.push_back(BECount);
6911 
6912     if (Preds && !ENT.hasAlwaysTruePredicate())
6913       Preds->add(ENT.Predicate.get());
6914 
6915     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
6916            "Predicate should be always true!");
6917   }
6918 
6919   return SE->getUMinFromMismatchedTypes(Ops);
6920 }
6921 
6922 /// Get the exact not taken count for this loop exit.
6923 const SCEV *
6924 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
6925                                              ScalarEvolution *SE) const {
6926   for (auto &ENT : ExitNotTaken)
6927     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
6928       return ENT.ExactNotTaken;
6929 
6930   return SE->getCouldNotCompute();
6931 }
6932 
6933 /// getMax - Get the max backedge taken count for the loop.
6934 const SCEV *
6935 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
6936   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6937     return !ENT.hasAlwaysTruePredicate();
6938   };
6939 
6940   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
6941     return SE->getCouldNotCompute();
6942 
6943   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
6944          "No point in having a non-constant max backedge taken count!");
6945   return getMax();
6946 }
6947 
6948 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
6949   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
6950     return !ENT.hasAlwaysTruePredicate();
6951   };
6952   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
6953 }
6954 
6955 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
6956                                                     ScalarEvolution *SE) const {
6957   if (getMax() && getMax() != SE->getCouldNotCompute() &&
6958       SE->hasOperand(getMax(), S))
6959     return true;
6960 
6961   for (auto &ENT : ExitNotTaken)
6962     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
6963         SE->hasOperand(ENT.ExactNotTaken, S))
6964       return true;
6965 
6966   return false;
6967 }
6968 
6969 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
6970     : ExactNotTaken(E), MaxNotTaken(E) {
6971   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6972           isa<SCEVConstant>(MaxNotTaken)) &&
6973          "No point in having a non-constant max backedge taken count!");
6974 }
6975 
6976 ScalarEvolution::ExitLimit::ExitLimit(
6977     const SCEV *E, const SCEV *M, bool MaxOrZero,
6978     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
6979     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
6980   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
6981           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
6982          "Exact is not allowed to be less precise than Max");
6983   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6984           isa<SCEVConstant>(MaxNotTaken)) &&
6985          "No point in having a non-constant max backedge taken count!");
6986   for (auto *PredSet : PredSetList)
6987     for (auto *P : *PredSet)
6988       addPredicate(P);
6989 }
6990 
6991 ScalarEvolution::ExitLimit::ExitLimit(
6992     const SCEV *E, const SCEV *M, bool MaxOrZero,
6993     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
6994     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
6995   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
6996           isa<SCEVConstant>(MaxNotTaken)) &&
6997          "No point in having a non-constant max backedge taken count!");
6998 }
6999 
7000 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7001                                       bool MaxOrZero)
7002     : ExitLimit(E, M, MaxOrZero, None) {
7003   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7004           isa<SCEVConstant>(MaxNotTaken)) &&
7005          "No point in having a non-constant max backedge taken count!");
7006 }
7007 
7008 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7009 /// computable exit into a persistent ExitNotTakenInfo array.
7010 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7011     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7012         ExitCounts,
7013     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7014     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7015   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7016 
7017   ExitNotTaken.reserve(ExitCounts.size());
7018   std::transform(
7019       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7020       [&](const EdgeExitInfo &EEI) {
7021         BasicBlock *ExitBB = EEI.first;
7022         const ExitLimit &EL = EEI.second;
7023         if (EL.Predicates.empty())
7024           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
7025 
7026         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7027         for (auto *Pred : EL.Predicates)
7028           Predicate->add(Pred);
7029 
7030         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
7031       });
7032   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7033          "No point in having a non-constant max backedge taken count!");
7034 }
7035 
7036 /// Invalidate this result and free the ExitNotTakenInfo array.
7037 void ScalarEvolution::BackedgeTakenInfo::clear() {
7038   ExitNotTaken.clear();
7039 }
7040 
7041 /// Compute the number of times the backedge of the specified loop will execute.
7042 ScalarEvolution::BackedgeTakenInfo
7043 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7044                                            bool AllowPredicates) {
7045   SmallVector<BasicBlock *, 8> ExitingBlocks;
7046   L->getExitingBlocks(ExitingBlocks);
7047 
7048   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7049 
7050   SmallVector<EdgeExitInfo, 4> ExitCounts;
7051   bool CouldComputeBECount = true;
7052   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7053   const SCEV *MustExitMaxBECount = nullptr;
7054   const SCEV *MayExitMaxBECount = nullptr;
7055   bool MustExitMaxOrZero = false;
7056 
7057   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7058   // and compute maxBECount.
7059   // Do a union of all the predicates here.
7060   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7061     BasicBlock *ExitBB = ExitingBlocks[i];
7062     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7063 
7064     assert((AllowPredicates || EL.Predicates.empty()) &&
7065            "Predicated exit limit when predicates are not allowed!");
7066 
7067     // 1. For each exit that can be computed, add an entry to ExitCounts.
7068     // CouldComputeBECount is true only if all exits can be computed.
7069     if (EL.ExactNotTaken == getCouldNotCompute())
7070       // We couldn't compute an exact value for this exit, so
7071       // we won't be able to compute an exact value for the loop.
7072       CouldComputeBECount = false;
7073     else
7074       ExitCounts.emplace_back(ExitBB, EL);
7075 
7076     // 2. Derive the loop's MaxBECount from each exit's max number of
7077     // non-exiting iterations. Partition the loop exits into two kinds:
7078     // LoopMustExits and LoopMayExits.
7079     //
7080     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7081     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7082     // MaxBECount is the minimum EL.MaxNotTaken of computable
7083     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7084     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7085     // computable EL.MaxNotTaken.
7086     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7087         DT.dominates(ExitBB, Latch)) {
7088       if (!MustExitMaxBECount) {
7089         MustExitMaxBECount = EL.MaxNotTaken;
7090         MustExitMaxOrZero = EL.MaxOrZero;
7091       } else {
7092         MustExitMaxBECount =
7093             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7094       }
7095     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7096       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7097         MayExitMaxBECount = EL.MaxNotTaken;
7098       else {
7099         MayExitMaxBECount =
7100             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7101       }
7102     }
7103   }
7104   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7105     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7106   // The loop backedge will be taken the maximum or zero times if there's
7107   // a single exit that must be taken the maximum or zero times.
7108   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7109   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7110                            MaxBECount, MaxOrZero);
7111 }
7112 
7113 ScalarEvolution::ExitLimit
7114 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7115                                       bool AllowPredicates) {
7116   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7117   // If our exiting block does not dominate the latch, then its connection with
7118   // loop's exit limit may be far from trivial.
7119   const BasicBlock *Latch = L->getLoopLatch();
7120   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7121     return getCouldNotCompute();
7122 
7123   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7124   Instruction *Term = ExitingBlock->getTerminator();
7125   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7126     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7127     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7128     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7129            "It should have one successor in loop and one exit block!");
7130     // Proceed to the next level to examine the exit condition expression.
7131     return computeExitLimitFromCond(
7132         L, BI->getCondition(), ExitIfTrue,
7133         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7134   }
7135 
7136   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7137     // For switch, make sure that there is a single exit from the loop.
7138     BasicBlock *Exit = nullptr;
7139     for (auto *SBB : successors(ExitingBlock))
7140       if (!L->contains(SBB)) {
7141         if (Exit) // Multiple exit successors.
7142           return getCouldNotCompute();
7143         Exit = SBB;
7144       }
7145     assert(Exit && "Exiting block must have at least one exit");
7146     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7147                                                 /*ControlsExit=*/IsOnlyExit);
7148   }
7149 
7150   return getCouldNotCompute();
7151 }
7152 
7153 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7154     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7155     bool ControlsExit, bool AllowPredicates) {
7156   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7157   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7158                                         ControlsExit, AllowPredicates);
7159 }
7160 
7161 Optional<ScalarEvolution::ExitLimit>
7162 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7163                                       bool ExitIfTrue, bool ControlsExit,
7164                                       bool AllowPredicates) {
7165   (void)this->L;
7166   (void)this->ExitIfTrue;
7167   (void)this->AllowPredicates;
7168 
7169   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7170          this->AllowPredicates == AllowPredicates &&
7171          "Variance in assumed invariant key components!");
7172   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7173   if (Itr == TripCountMap.end())
7174     return None;
7175   return Itr->second;
7176 }
7177 
7178 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7179                                              bool ExitIfTrue,
7180                                              bool ControlsExit,
7181                                              bool AllowPredicates,
7182                                              const ExitLimit &EL) {
7183   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7184          this->AllowPredicates == AllowPredicates &&
7185          "Variance in assumed invariant key components!");
7186 
7187   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7188   assert(InsertResult.second && "Expected successful insertion!");
7189   (void)InsertResult;
7190   (void)ExitIfTrue;
7191 }
7192 
7193 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7194     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7195     bool ControlsExit, bool AllowPredicates) {
7196 
7197   if (auto MaybeEL =
7198           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7199     return *MaybeEL;
7200 
7201   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7202                                               ControlsExit, AllowPredicates);
7203   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7204   return EL;
7205 }
7206 
7207 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7208     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7209     bool ControlsExit, bool AllowPredicates) {
7210   // Check if the controlling expression for this loop is an And or Or.
7211   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7212     if (BO->getOpcode() == Instruction::And) {
7213       // Recurse on the operands of the and.
7214       bool EitherMayExit = !ExitIfTrue;
7215       ExitLimit EL0 = computeExitLimitFromCondCached(
7216           Cache, L, BO->getOperand(0), ExitIfTrue,
7217           ControlsExit && !EitherMayExit, AllowPredicates);
7218       ExitLimit EL1 = computeExitLimitFromCondCached(
7219           Cache, L, BO->getOperand(1), ExitIfTrue,
7220           ControlsExit && !EitherMayExit, AllowPredicates);
7221       const SCEV *BECount = getCouldNotCompute();
7222       const SCEV *MaxBECount = getCouldNotCompute();
7223       if (EitherMayExit) {
7224         // Both conditions must be true for the loop to continue executing.
7225         // Choose the less conservative count.
7226         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7227             EL1.ExactNotTaken == getCouldNotCompute())
7228           BECount = getCouldNotCompute();
7229         else
7230           BECount =
7231               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7232         if (EL0.MaxNotTaken == getCouldNotCompute())
7233           MaxBECount = EL1.MaxNotTaken;
7234         else if (EL1.MaxNotTaken == getCouldNotCompute())
7235           MaxBECount = EL0.MaxNotTaken;
7236         else
7237           MaxBECount =
7238               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7239       } else {
7240         // Both conditions must be true at the same time for the loop to exit.
7241         // For now, be conservative.
7242         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7243           MaxBECount = EL0.MaxNotTaken;
7244         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7245           BECount = EL0.ExactNotTaken;
7246       }
7247 
7248       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7249       // to be more aggressive when computing BECount than when computing
7250       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7251       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7252       // to not.
7253       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7254           !isa<SCEVCouldNotCompute>(BECount))
7255         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7256 
7257       return ExitLimit(BECount, MaxBECount, false,
7258                        {&EL0.Predicates, &EL1.Predicates});
7259     }
7260     if (BO->getOpcode() == Instruction::Or) {
7261       // Recurse on the operands of the or.
7262       bool EitherMayExit = ExitIfTrue;
7263       ExitLimit EL0 = computeExitLimitFromCondCached(
7264           Cache, L, BO->getOperand(0), ExitIfTrue,
7265           ControlsExit && !EitherMayExit, AllowPredicates);
7266       ExitLimit EL1 = computeExitLimitFromCondCached(
7267           Cache, L, BO->getOperand(1), ExitIfTrue,
7268           ControlsExit && !EitherMayExit, AllowPredicates);
7269       const SCEV *BECount = getCouldNotCompute();
7270       const SCEV *MaxBECount = getCouldNotCompute();
7271       if (EitherMayExit) {
7272         // Both conditions must be false for the loop to continue executing.
7273         // Choose the less conservative count.
7274         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7275             EL1.ExactNotTaken == getCouldNotCompute())
7276           BECount = getCouldNotCompute();
7277         else
7278           BECount =
7279               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7280         if (EL0.MaxNotTaken == getCouldNotCompute())
7281           MaxBECount = EL1.MaxNotTaken;
7282         else if (EL1.MaxNotTaken == getCouldNotCompute())
7283           MaxBECount = EL0.MaxNotTaken;
7284         else
7285           MaxBECount =
7286               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7287       } else {
7288         // Both conditions must be false at the same time for the loop to exit.
7289         // For now, be conservative.
7290         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7291           MaxBECount = EL0.MaxNotTaken;
7292         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7293           BECount = EL0.ExactNotTaken;
7294       }
7295       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7296       // to be more aggressive when computing BECount than when computing
7297       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7298       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7299       // to not.
7300       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7301           !isa<SCEVCouldNotCompute>(BECount))
7302         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7303 
7304       return ExitLimit(BECount, MaxBECount, false,
7305                        {&EL0.Predicates, &EL1.Predicates});
7306     }
7307   }
7308 
7309   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7310   // Proceed to the next level to examine the icmp.
7311   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7312     ExitLimit EL =
7313         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7314     if (EL.hasFullInfo() || !AllowPredicates)
7315       return EL;
7316 
7317     // Try again, but use SCEV predicates this time.
7318     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7319                                     /*AllowPredicates=*/true);
7320   }
7321 
7322   // Check for a constant condition. These are normally stripped out by
7323   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7324   // preserve the CFG and is temporarily leaving constant conditions
7325   // in place.
7326   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7327     if (ExitIfTrue == !CI->getZExtValue())
7328       // The backedge is always taken.
7329       return getCouldNotCompute();
7330     else
7331       // The backedge is never taken.
7332       return getZero(CI->getType());
7333   }
7334 
7335   // If it's not an integer or pointer comparison then compute it the hard way.
7336   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7337 }
7338 
7339 ScalarEvolution::ExitLimit
7340 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7341                                           ICmpInst *ExitCond,
7342                                           bool ExitIfTrue,
7343                                           bool ControlsExit,
7344                                           bool AllowPredicates) {
7345   // If the condition was exit on true, convert the condition to exit on false
7346   ICmpInst::Predicate Pred;
7347   if (!ExitIfTrue)
7348     Pred = ExitCond->getPredicate();
7349   else
7350     Pred = ExitCond->getInversePredicate();
7351   const ICmpInst::Predicate OriginalPred = Pred;
7352 
7353   // Handle common loops like: for (X = "string"; *X; ++X)
7354   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7355     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7356       ExitLimit ItCnt =
7357         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7358       if (ItCnt.hasAnyInfo())
7359         return ItCnt;
7360     }
7361 
7362   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7363   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7364 
7365   // Try to evaluate any dependencies out of the loop.
7366   LHS = getSCEVAtScope(LHS, L);
7367   RHS = getSCEVAtScope(RHS, L);
7368 
7369   // At this point, we would like to compute how many iterations of the
7370   // loop the predicate will return true for these inputs.
7371   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7372     // If there is a loop-invariant, force it into the RHS.
7373     std::swap(LHS, RHS);
7374     Pred = ICmpInst::getSwappedPredicate(Pred);
7375   }
7376 
7377   // Simplify the operands before analyzing them.
7378   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7379 
7380   // If we have a comparison of a chrec against a constant, try to use value
7381   // ranges to answer this query.
7382   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7383     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7384       if (AddRec->getLoop() == L) {
7385         // Form the constant range.
7386         ConstantRange CompRange =
7387             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7388 
7389         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7390         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7391       }
7392 
7393   switch (Pred) {
7394   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7395     // Convert to: while (X-Y != 0)
7396     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7397                                 AllowPredicates);
7398     if (EL.hasAnyInfo()) return EL;
7399     break;
7400   }
7401   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7402     // Convert to: while (X-Y == 0)
7403     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7404     if (EL.hasAnyInfo()) return EL;
7405     break;
7406   }
7407   case ICmpInst::ICMP_SLT:
7408   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7409     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7410     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7411                                     AllowPredicates);
7412     if (EL.hasAnyInfo()) return EL;
7413     break;
7414   }
7415   case ICmpInst::ICMP_SGT:
7416   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7417     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7418     ExitLimit EL =
7419         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7420                             AllowPredicates);
7421     if (EL.hasAnyInfo()) return EL;
7422     break;
7423   }
7424   default:
7425     break;
7426   }
7427 
7428   auto *ExhaustiveCount =
7429       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7430 
7431   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7432     return ExhaustiveCount;
7433 
7434   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7435                                       ExitCond->getOperand(1), L, OriginalPred);
7436 }
7437 
7438 ScalarEvolution::ExitLimit
7439 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7440                                                       SwitchInst *Switch,
7441                                                       BasicBlock *ExitingBlock,
7442                                                       bool ControlsExit) {
7443   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7444 
7445   // Give up if the exit is the default dest of a switch.
7446   if (Switch->getDefaultDest() == ExitingBlock)
7447     return getCouldNotCompute();
7448 
7449   assert(L->contains(Switch->getDefaultDest()) &&
7450          "Default case must not exit the loop!");
7451   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7452   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7453 
7454   // while (X != Y) --> while (X-Y != 0)
7455   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7456   if (EL.hasAnyInfo())
7457     return EL;
7458 
7459   return getCouldNotCompute();
7460 }
7461 
7462 static ConstantInt *
7463 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7464                                 ScalarEvolution &SE) {
7465   const SCEV *InVal = SE.getConstant(C);
7466   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7467   assert(isa<SCEVConstant>(Val) &&
7468          "Evaluation of SCEV at constant didn't fold correctly?");
7469   return cast<SCEVConstant>(Val)->getValue();
7470 }
7471 
7472 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7473 /// compute the backedge execution count.
7474 ScalarEvolution::ExitLimit
7475 ScalarEvolution::computeLoadConstantCompareExitLimit(
7476   LoadInst *LI,
7477   Constant *RHS,
7478   const Loop *L,
7479   ICmpInst::Predicate predicate) {
7480   if (LI->isVolatile()) return getCouldNotCompute();
7481 
7482   // Check to see if the loaded pointer is a getelementptr of a global.
7483   // TODO: Use SCEV instead of manually grubbing with GEPs.
7484   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7485   if (!GEP) return getCouldNotCompute();
7486 
7487   // Make sure that it is really a constant global we are gepping, with an
7488   // initializer, and make sure the first IDX is really 0.
7489   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7490   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7491       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7492       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7493     return getCouldNotCompute();
7494 
7495   // Okay, we allow one non-constant index into the GEP instruction.
7496   Value *VarIdx = nullptr;
7497   std::vector<Constant*> Indexes;
7498   unsigned VarIdxNum = 0;
7499   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7500     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7501       Indexes.push_back(CI);
7502     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7503       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7504       VarIdx = GEP->getOperand(i);
7505       VarIdxNum = i-2;
7506       Indexes.push_back(nullptr);
7507     }
7508 
7509   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7510   if (!VarIdx)
7511     return getCouldNotCompute();
7512 
7513   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7514   // Check to see if X is a loop variant variable value now.
7515   const SCEV *Idx = getSCEV(VarIdx);
7516   Idx = getSCEVAtScope(Idx, L);
7517 
7518   // We can only recognize very limited forms of loop index expressions, in
7519   // particular, only affine AddRec's like {C1,+,C2}.
7520   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7521   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7522       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7523       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7524     return getCouldNotCompute();
7525 
7526   unsigned MaxSteps = MaxBruteForceIterations;
7527   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7528     ConstantInt *ItCst = ConstantInt::get(
7529                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7530     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7531 
7532     // Form the GEP offset.
7533     Indexes[VarIdxNum] = Val;
7534 
7535     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7536                                                          Indexes);
7537     if (!Result) break;  // Cannot compute!
7538 
7539     // Evaluate the condition for this iteration.
7540     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7541     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7542     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7543       ++NumArrayLenItCounts;
7544       return getConstant(ItCst);   // Found terminating iteration!
7545     }
7546   }
7547   return getCouldNotCompute();
7548 }
7549 
7550 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7551     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7552   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7553   if (!RHS)
7554     return getCouldNotCompute();
7555 
7556   const BasicBlock *Latch = L->getLoopLatch();
7557   if (!Latch)
7558     return getCouldNotCompute();
7559 
7560   const BasicBlock *Predecessor = L->getLoopPredecessor();
7561   if (!Predecessor)
7562     return getCouldNotCompute();
7563 
7564   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7565   // Return LHS in OutLHS and shift_opt in OutOpCode.
7566   auto MatchPositiveShift =
7567       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7568 
7569     using namespace PatternMatch;
7570 
7571     ConstantInt *ShiftAmt;
7572     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7573       OutOpCode = Instruction::LShr;
7574     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7575       OutOpCode = Instruction::AShr;
7576     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7577       OutOpCode = Instruction::Shl;
7578     else
7579       return false;
7580 
7581     return ShiftAmt->getValue().isStrictlyPositive();
7582   };
7583 
7584   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7585   //
7586   // loop:
7587   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7588   //   %iv.shifted = lshr i32 %iv, <positive constant>
7589   //
7590   // Return true on a successful match.  Return the corresponding PHI node (%iv
7591   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7592   auto MatchShiftRecurrence =
7593       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7594     Optional<Instruction::BinaryOps> PostShiftOpCode;
7595 
7596     {
7597       Instruction::BinaryOps OpC;
7598       Value *V;
7599 
7600       // If we encounter a shift instruction, "peel off" the shift operation,
7601       // and remember that we did so.  Later when we inspect %iv's backedge
7602       // value, we will make sure that the backedge value uses the same
7603       // operation.
7604       //
7605       // Note: the peeled shift operation does not have to be the same
7606       // instruction as the one feeding into the PHI's backedge value.  We only
7607       // really care about it being the same *kind* of shift instruction --
7608       // that's all that is required for our later inferences to hold.
7609       if (MatchPositiveShift(LHS, V, OpC)) {
7610         PostShiftOpCode = OpC;
7611         LHS = V;
7612       }
7613     }
7614 
7615     PNOut = dyn_cast<PHINode>(LHS);
7616     if (!PNOut || PNOut->getParent() != L->getHeader())
7617       return false;
7618 
7619     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7620     Value *OpLHS;
7621 
7622     return
7623         // The backedge value for the PHI node must be a shift by a positive
7624         // amount
7625         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7626 
7627         // of the PHI node itself
7628         OpLHS == PNOut &&
7629 
7630         // and the kind of shift should be match the kind of shift we peeled
7631         // off, if any.
7632         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7633   };
7634 
7635   PHINode *PN;
7636   Instruction::BinaryOps OpCode;
7637   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7638     return getCouldNotCompute();
7639 
7640   const DataLayout &DL = getDataLayout();
7641 
7642   // The key rationale for this optimization is that for some kinds of shift
7643   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7644   // within a finite number of iterations.  If the condition guarding the
7645   // backedge (in the sense that the backedge is taken if the condition is true)
7646   // is false for the value the shift recurrence stabilizes to, then we know
7647   // that the backedge is taken only a finite number of times.
7648 
7649   ConstantInt *StableValue = nullptr;
7650   switch (OpCode) {
7651   default:
7652     llvm_unreachable("Impossible case!");
7653 
7654   case Instruction::AShr: {
7655     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7656     // bitwidth(K) iterations.
7657     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7658     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7659                                        Predecessor->getTerminator(), &DT);
7660     auto *Ty = cast<IntegerType>(RHS->getType());
7661     if (Known.isNonNegative())
7662       StableValue = ConstantInt::get(Ty, 0);
7663     else if (Known.isNegative())
7664       StableValue = ConstantInt::get(Ty, -1, true);
7665     else
7666       return getCouldNotCompute();
7667 
7668     break;
7669   }
7670   case Instruction::LShr:
7671   case Instruction::Shl:
7672     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7673     // stabilize to 0 in at most bitwidth(K) iterations.
7674     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7675     break;
7676   }
7677 
7678   auto *Result =
7679       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7680   assert(Result->getType()->isIntegerTy(1) &&
7681          "Otherwise cannot be an operand to a branch instruction");
7682 
7683   if (Result->isZeroValue()) {
7684     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7685     const SCEV *UpperBound =
7686         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7687     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7688   }
7689 
7690   return getCouldNotCompute();
7691 }
7692 
7693 /// Return true if we can constant fold an instruction of the specified type,
7694 /// assuming that all operands were constants.
7695 static bool CanConstantFold(const Instruction *I) {
7696   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7697       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7698       isa<LoadInst>(I))
7699     return true;
7700 
7701   if (const CallInst *CI = dyn_cast<CallInst>(I))
7702     if (const Function *F = CI->getCalledFunction())
7703       return canConstantFoldCallTo(CI, F);
7704   return false;
7705 }
7706 
7707 /// Determine whether this instruction can constant evolve within this loop
7708 /// assuming its operands can all constant evolve.
7709 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7710   // An instruction outside of the loop can't be derived from a loop PHI.
7711   if (!L->contains(I)) return false;
7712 
7713   if (isa<PHINode>(I)) {
7714     // We don't currently keep track of the control flow needed to evaluate
7715     // PHIs, so we cannot handle PHIs inside of loops.
7716     return L->getHeader() == I->getParent();
7717   }
7718 
7719   // If we won't be able to constant fold this expression even if the operands
7720   // are constants, bail early.
7721   return CanConstantFold(I);
7722 }
7723 
7724 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7725 /// recursing through each instruction operand until reaching a loop header phi.
7726 static PHINode *
7727 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7728                                DenseMap<Instruction *, PHINode *> &PHIMap,
7729                                unsigned Depth) {
7730   if (Depth > MaxConstantEvolvingDepth)
7731     return nullptr;
7732 
7733   // Otherwise, we can evaluate this instruction if all of its operands are
7734   // constant or derived from a PHI node themselves.
7735   PHINode *PHI = nullptr;
7736   for (Value *Op : UseInst->operands()) {
7737     if (isa<Constant>(Op)) continue;
7738 
7739     Instruction *OpInst = dyn_cast<Instruction>(Op);
7740     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7741 
7742     PHINode *P = dyn_cast<PHINode>(OpInst);
7743     if (!P)
7744       // If this operand is already visited, reuse the prior result.
7745       // We may have P != PHI if this is the deepest point at which the
7746       // inconsistent paths meet.
7747       P = PHIMap.lookup(OpInst);
7748     if (!P) {
7749       // Recurse and memoize the results, whether a phi is found or not.
7750       // This recursive call invalidates pointers into PHIMap.
7751       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7752       PHIMap[OpInst] = P;
7753     }
7754     if (!P)
7755       return nullptr;  // Not evolving from PHI
7756     if (PHI && PHI != P)
7757       return nullptr;  // Evolving from multiple different PHIs.
7758     PHI = P;
7759   }
7760   // This is a expression evolving from a constant PHI!
7761   return PHI;
7762 }
7763 
7764 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7765 /// in the loop that V is derived from.  We allow arbitrary operations along the
7766 /// way, but the operands of an operation must either be constants or a value
7767 /// derived from a constant PHI.  If this expression does not fit with these
7768 /// constraints, return null.
7769 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7770   Instruction *I = dyn_cast<Instruction>(V);
7771   if (!I || !canConstantEvolve(I, L)) return nullptr;
7772 
7773   if (PHINode *PN = dyn_cast<PHINode>(I))
7774     return PN;
7775 
7776   // Record non-constant instructions contained by the loop.
7777   DenseMap<Instruction *, PHINode *> PHIMap;
7778   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7779 }
7780 
7781 /// EvaluateExpression - Given an expression that passes the
7782 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7783 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7784 /// reason, return null.
7785 static Constant *EvaluateExpression(Value *V, const Loop *L,
7786                                     DenseMap<Instruction *, Constant *> &Vals,
7787                                     const DataLayout &DL,
7788                                     const TargetLibraryInfo *TLI) {
7789   // Convenient constant check, but redundant for recursive calls.
7790   if (Constant *C = dyn_cast<Constant>(V)) return C;
7791   Instruction *I = dyn_cast<Instruction>(V);
7792   if (!I) return nullptr;
7793 
7794   if (Constant *C = Vals.lookup(I)) return C;
7795 
7796   // An instruction inside the loop depends on a value outside the loop that we
7797   // weren't given a mapping for, or a value such as a call inside the loop.
7798   if (!canConstantEvolve(I, L)) return nullptr;
7799 
7800   // An unmapped PHI can be due to a branch or another loop inside this loop,
7801   // or due to this not being the initial iteration through a loop where we
7802   // couldn't compute the evolution of this particular PHI last time.
7803   if (isa<PHINode>(I)) return nullptr;
7804 
7805   std::vector<Constant*> Operands(I->getNumOperands());
7806 
7807   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7808     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7809     if (!Operand) {
7810       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7811       if (!Operands[i]) return nullptr;
7812       continue;
7813     }
7814     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7815     Vals[Operand] = C;
7816     if (!C) return nullptr;
7817     Operands[i] = C;
7818   }
7819 
7820   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7821     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7822                                            Operands[1], DL, TLI);
7823   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7824     if (!LI->isVolatile())
7825       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7826   }
7827   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7828 }
7829 
7830 
7831 // If every incoming value to PN except the one for BB is a specific Constant,
7832 // return that, else return nullptr.
7833 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7834   Constant *IncomingVal = nullptr;
7835 
7836   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7837     if (PN->getIncomingBlock(i) == BB)
7838       continue;
7839 
7840     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7841     if (!CurrentVal)
7842       return nullptr;
7843 
7844     if (IncomingVal != CurrentVal) {
7845       if (IncomingVal)
7846         return nullptr;
7847       IncomingVal = CurrentVal;
7848     }
7849   }
7850 
7851   return IncomingVal;
7852 }
7853 
7854 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7855 /// in the header of its containing loop, we know the loop executes a
7856 /// constant number of times, and the PHI node is just a recurrence
7857 /// involving constants, fold it.
7858 Constant *
7859 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7860                                                    const APInt &BEs,
7861                                                    const Loop *L) {
7862   auto I = ConstantEvolutionLoopExitValue.find(PN);
7863   if (I != ConstantEvolutionLoopExitValue.end())
7864     return I->second;
7865 
7866   if (BEs.ugt(MaxBruteForceIterations))
7867     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7868 
7869   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7870 
7871   DenseMap<Instruction *, Constant *> CurrentIterVals;
7872   BasicBlock *Header = L->getHeader();
7873   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7874 
7875   BasicBlock *Latch = L->getLoopLatch();
7876   if (!Latch)
7877     return nullptr;
7878 
7879   for (PHINode &PHI : Header->phis()) {
7880     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7881       CurrentIterVals[&PHI] = StartCST;
7882   }
7883   if (!CurrentIterVals.count(PN))
7884     return RetVal = nullptr;
7885 
7886   Value *BEValue = PN->getIncomingValueForBlock(Latch);
7887 
7888   // Execute the loop symbolically to determine the exit value.
7889   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
7890          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
7891 
7892   unsigned NumIterations = BEs.getZExtValue(); // must be in range
7893   unsigned IterationNum = 0;
7894   const DataLayout &DL = getDataLayout();
7895   for (; ; ++IterationNum) {
7896     if (IterationNum == NumIterations)
7897       return RetVal = CurrentIterVals[PN];  // Got exit value!
7898 
7899     // Compute the value of the PHIs for the next iteration.
7900     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
7901     DenseMap<Instruction *, Constant *> NextIterVals;
7902     Constant *NextPHI =
7903         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7904     if (!NextPHI)
7905       return nullptr;        // Couldn't evaluate!
7906     NextIterVals[PN] = NextPHI;
7907 
7908     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
7909 
7910     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
7911     // cease to be able to evaluate one of them or if they stop evolving,
7912     // because that doesn't necessarily prevent us from computing PN.
7913     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
7914     for (const auto &I : CurrentIterVals) {
7915       PHINode *PHI = dyn_cast<PHINode>(I.first);
7916       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
7917       PHIsToCompute.emplace_back(PHI, I.second);
7918     }
7919     // We use two distinct loops because EvaluateExpression may invalidate any
7920     // iterators into CurrentIterVals.
7921     for (const auto &I : PHIsToCompute) {
7922       PHINode *PHI = I.first;
7923       Constant *&NextPHI = NextIterVals[PHI];
7924       if (!NextPHI) {   // Not already computed.
7925         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7926         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
7927       }
7928       if (NextPHI != I.second)
7929         StoppedEvolving = false;
7930     }
7931 
7932     // If all entries in CurrentIterVals == NextIterVals then we can stop
7933     // iterating, the loop can't continue to change.
7934     if (StoppedEvolving)
7935       return RetVal = CurrentIterVals[PN];
7936 
7937     CurrentIterVals.swap(NextIterVals);
7938   }
7939 }
7940 
7941 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
7942                                                           Value *Cond,
7943                                                           bool ExitWhen) {
7944   PHINode *PN = getConstantEvolvingPHI(Cond, L);
7945   if (!PN) return getCouldNotCompute();
7946 
7947   // If the loop is canonicalized, the PHI will have exactly two entries.
7948   // That's the only form we support here.
7949   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
7950 
7951   DenseMap<Instruction *, Constant *> CurrentIterVals;
7952   BasicBlock *Header = L->getHeader();
7953   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7954 
7955   BasicBlock *Latch = L->getLoopLatch();
7956   assert(Latch && "Should follow from NumIncomingValues == 2!");
7957 
7958   for (PHINode &PHI : Header->phis()) {
7959     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
7960       CurrentIterVals[&PHI] = StartCST;
7961   }
7962   if (!CurrentIterVals.count(PN))
7963     return getCouldNotCompute();
7964 
7965   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
7966   // the loop symbolically to determine when the condition gets a value of
7967   // "ExitWhen".
7968   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
7969   const DataLayout &DL = getDataLayout();
7970   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
7971     auto *CondVal = dyn_cast_or_null<ConstantInt>(
7972         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
7973 
7974     // Couldn't symbolically evaluate.
7975     if (!CondVal) return getCouldNotCompute();
7976 
7977     if (CondVal->getValue() == uint64_t(ExitWhen)) {
7978       ++NumBruteForceTripCountsComputed;
7979       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
7980     }
7981 
7982     // Update all the PHI nodes for the next iteration.
7983     DenseMap<Instruction *, Constant *> NextIterVals;
7984 
7985     // Create a list of which PHIs we need to compute. We want to do this before
7986     // calling EvaluateExpression on them because that may invalidate iterators
7987     // into CurrentIterVals.
7988     SmallVector<PHINode *, 8> PHIsToCompute;
7989     for (const auto &I : CurrentIterVals) {
7990       PHINode *PHI = dyn_cast<PHINode>(I.first);
7991       if (!PHI || PHI->getParent() != Header) continue;
7992       PHIsToCompute.push_back(PHI);
7993     }
7994     for (PHINode *PHI : PHIsToCompute) {
7995       Constant *&NextPHI = NextIterVals[PHI];
7996       if (NextPHI) continue;    // Already computed!
7997 
7998       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
7999       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8000     }
8001     CurrentIterVals.swap(NextIterVals);
8002   }
8003 
8004   // Too many iterations were needed to evaluate.
8005   return getCouldNotCompute();
8006 }
8007 
8008 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8009   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8010       ValuesAtScopes[V];
8011   // Check to see if we've folded this expression at this loop before.
8012   for (auto &LS : Values)
8013     if (LS.first == L)
8014       return LS.second ? LS.second : V;
8015 
8016   Values.emplace_back(L, nullptr);
8017 
8018   // Otherwise compute it.
8019   const SCEV *C = computeSCEVAtScope(V, L);
8020   for (auto &LS : reverse(ValuesAtScopes[V]))
8021     if (LS.first == L) {
8022       LS.second = C;
8023       break;
8024     }
8025   return C;
8026 }
8027 
8028 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8029 /// will return Constants for objects which aren't represented by a
8030 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8031 /// Returns NULL if the SCEV isn't representable as a Constant.
8032 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8033   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8034     case scCouldNotCompute:
8035     case scAddRecExpr:
8036       break;
8037     case scConstant:
8038       return cast<SCEVConstant>(V)->getValue();
8039     case scUnknown:
8040       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8041     case scSignExtend: {
8042       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8043       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8044         return ConstantExpr::getSExt(CastOp, SS->getType());
8045       break;
8046     }
8047     case scZeroExtend: {
8048       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8049       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8050         return ConstantExpr::getZExt(CastOp, SZ->getType());
8051       break;
8052     }
8053     case scTruncate: {
8054       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8055       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8056         return ConstantExpr::getTrunc(CastOp, ST->getType());
8057       break;
8058     }
8059     case scAddExpr: {
8060       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8061       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8062         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8063           unsigned AS = PTy->getAddressSpace();
8064           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8065           C = ConstantExpr::getBitCast(C, DestPtrTy);
8066         }
8067         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8068           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8069           if (!C2) return nullptr;
8070 
8071           // First pointer!
8072           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8073             unsigned AS = C2->getType()->getPointerAddressSpace();
8074             std::swap(C, C2);
8075             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8076             // The offsets have been converted to bytes.  We can add bytes to an
8077             // i8* by GEP with the byte count in the first index.
8078             C = ConstantExpr::getBitCast(C, DestPtrTy);
8079           }
8080 
8081           // Don't bother trying to sum two pointers. We probably can't
8082           // statically compute a load that results from it anyway.
8083           if (C2->getType()->isPointerTy())
8084             return nullptr;
8085 
8086           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8087             if (PTy->getElementType()->isStructTy())
8088               C2 = ConstantExpr::getIntegerCast(
8089                   C2, Type::getInt32Ty(C->getContext()), true);
8090             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8091           } else
8092             C = ConstantExpr::getAdd(C, C2);
8093         }
8094         return C;
8095       }
8096       break;
8097     }
8098     case scMulExpr: {
8099       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8100       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8101         // Don't bother with pointers at all.
8102         if (C->getType()->isPointerTy()) return nullptr;
8103         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8104           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8105           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8106           C = ConstantExpr::getMul(C, C2);
8107         }
8108         return C;
8109       }
8110       break;
8111     }
8112     case scUDivExpr: {
8113       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8114       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8115         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8116           if (LHS->getType() == RHS->getType())
8117             return ConstantExpr::getUDiv(LHS, RHS);
8118       break;
8119     }
8120     case scSMaxExpr:
8121     case scUMaxExpr:
8122       break; // TODO: smax, umax.
8123   }
8124   return nullptr;
8125 }
8126 
8127 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8128   if (isa<SCEVConstant>(V)) return V;
8129 
8130   // If this instruction is evolved from a constant-evolving PHI, compute the
8131   // exit value from the loop without using SCEVs.
8132   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8133     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8134       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8135         const Loop *LI = this->LI[I->getParent()];
8136         // Looking for loop exit value.
8137         if (LI && LI->getParentLoop() == L &&
8138             PN->getParent() == LI->getHeader()) {
8139           // Okay, there is no closed form solution for the PHI node.  Check
8140           // to see if the loop that contains it has a known backedge-taken
8141           // count.  If so, we may be able to force computation of the exit
8142           // value.
8143           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8144           if (const SCEVConstant *BTCC =
8145                 dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8146 
8147             // This trivial case can show up in some degenerate cases where
8148             // the incoming IR has not yet been fully simplified.
8149             if (BTCC->getValue()->isZero()) {
8150               Value *InitValue = nullptr;
8151               bool MultipleInitValues = false;
8152               for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8153                 if (!LI->contains(PN->getIncomingBlock(i))) {
8154                   if (!InitValue)
8155                     InitValue = PN->getIncomingValue(i);
8156                   else if (InitValue != PN->getIncomingValue(i)) {
8157                     MultipleInitValues = true;
8158                     break;
8159                   }
8160                 }
8161                 if (!MultipleInitValues && InitValue)
8162                   return getSCEV(InitValue);
8163               }
8164             }
8165             // Okay, we know how many times the containing loop executes.  If
8166             // this is a constant evolving PHI node, get the final value at
8167             // the specified iteration number.
8168             Constant *RV =
8169                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8170             if (RV) return getSCEV(RV);
8171           }
8172         }
8173       }
8174 
8175       // Okay, this is an expression that we cannot symbolically evaluate
8176       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8177       // the arguments into constants, and if so, try to constant propagate the
8178       // result.  This is particularly useful for computing loop exit values.
8179       if (CanConstantFold(I)) {
8180         SmallVector<Constant *, 4> Operands;
8181         bool MadeImprovement = false;
8182         for (Value *Op : I->operands()) {
8183           if (Constant *C = dyn_cast<Constant>(Op)) {
8184             Operands.push_back(C);
8185             continue;
8186           }
8187 
8188           // If any of the operands is non-constant and if they are
8189           // non-integer and non-pointer, don't even try to analyze them
8190           // with scev techniques.
8191           if (!isSCEVable(Op->getType()))
8192             return V;
8193 
8194           const SCEV *OrigV = getSCEV(Op);
8195           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8196           MadeImprovement |= OrigV != OpV;
8197 
8198           Constant *C = BuildConstantFromSCEV(OpV);
8199           if (!C) return V;
8200           if (C->getType() != Op->getType())
8201             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8202                                                               Op->getType(),
8203                                                               false),
8204                                       C, Op->getType());
8205           Operands.push_back(C);
8206         }
8207 
8208         // Check to see if getSCEVAtScope actually made an improvement.
8209         if (MadeImprovement) {
8210           Constant *C = nullptr;
8211           const DataLayout &DL = getDataLayout();
8212           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8213             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8214                                                 Operands[1], DL, &TLI);
8215           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8216             if (!LI->isVolatile())
8217               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8218           } else
8219             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8220           if (!C) return V;
8221           return getSCEV(C);
8222         }
8223       }
8224     }
8225 
8226     // This is some other type of SCEVUnknown, just return it.
8227     return V;
8228   }
8229 
8230   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8231     // Avoid performing the look-up in the common case where the specified
8232     // expression has no loop-variant portions.
8233     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8234       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8235       if (OpAtScope != Comm->getOperand(i)) {
8236         // Okay, at least one of these operands is loop variant but might be
8237         // foldable.  Build a new instance of the folded commutative expression.
8238         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8239                                             Comm->op_begin()+i);
8240         NewOps.push_back(OpAtScope);
8241 
8242         for (++i; i != e; ++i) {
8243           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8244           NewOps.push_back(OpAtScope);
8245         }
8246         if (isa<SCEVAddExpr>(Comm))
8247           return getAddExpr(NewOps);
8248         if (isa<SCEVMulExpr>(Comm))
8249           return getMulExpr(NewOps);
8250         if (isa<SCEVSMaxExpr>(Comm))
8251           return getSMaxExpr(NewOps);
8252         if (isa<SCEVUMaxExpr>(Comm))
8253           return getUMaxExpr(NewOps);
8254         llvm_unreachable("Unknown commutative SCEV type!");
8255       }
8256     }
8257     // If we got here, all operands are loop invariant.
8258     return Comm;
8259   }
8260 
8261   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8262     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8263     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8264     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8265       return Div;   // must be loop invariant
8266     return getUDivExpr(LHS, RHS);
8267   }
8268 
8269   // If this is a loop recurrence for a loop that does not contain L, then we
8270   // are dealing with the final value computed by the loop.
8271   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8272     // First, attempt to evaluate each operand.
8273     // Avoid performing the look-up in the common case where the specified
8274     // expression has no loop-variant portions.
8275     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8276       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8277       if (OpAtScope == AddRec->getOperand(i))
8278         continue;
8279 
8280       // Okay, at least one of these operands is loop variant but might be
8281       // foldable.  Build a new instance of the folded commutative expression.
8282       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8283                                           AddRec->op_begin()+i);
8284       NewOps.push_back(OpAtScope);
8285       for (++i; i != e; ++i)
8286         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8287 
8288       const SCEV *FoldedRec =
8289         getAddRecExpr(NewOps, AddRec->getLoop(),
8290                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8291       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8292       // The addrec may be folded to a nonrecurrence, for example, if the
8293       // induction variable is multiplied by zero after constant folding. Go
8294       // ahead and return the folded value.
8295       if (!AddRec)
8296         return FoldedRec;
8297       break;
8298     }
8299 
8300     // If the scope is outside the addrec's loop, evaluate it by using the
8301     // loop exit value of the addrec.
8302     if (!AddRec->getLoop()->contains(L)) {
8303       // To evaluate this recurrence, we need to know how many times the AddRec
8304       // loop iterates.  Compute this now.
8305       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8306       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8307 
8308       // Then, evaluate the AddRec.
8309       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8310     }
8311 
8312     return AddRec;
8313   }
8314 
8315   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8316     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8317     if (Op == Cast->getOperand())
8318       return Cast;  // must be loop invariant
8319     return getZeroExtendExpr(Op, Cast->getType());
8320   }
8321 
8322   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8323     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8324     if (Op == Cast->getOperand())
8325       return Cast;  // must be loop invariant
8326     return getSignExtendExpr(Op, Cast->getType());
8327   }
8328 
8329   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8330     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8331     if (Op == Cast->getOperand())
8332       return Cast;  // must be loop invariant
8333     return getTruncateExpr(Op, Cast->getType());
8334   }
8335 
8336   llvm_unreachable("Unknown SCEV type!");
8337 }
8338 
8339 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8340   return getSCEVAtScope(getSCEV(V), L);
8341 }
8342 
8343 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8344   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8345     return stripInjectiveFunctions(ZExt->getOperand());
8346   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8347     return stripInjectiveFunctions(SExt->getOperand());
8348   return S;
8349 }
8350 
8351 /// Finds the minimum unsigned root of the following equation:
8352 ///
8353 ///     A * X = B (mod N)
8354 ///
8355 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8356 /// A and B isn't important.
8357 ///
8358 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8359 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8360                                                ScalarEvolution &SE) {
8361   uint32_t BW = A.getBitWidth();
8362   assert(BW == SE.getTypeSizeInBits(B->getType()));
8363   assert(A != 0 && "A must be non-zero.");
8364 
8365   // 1. D = gcd(A, N)
8366   //
8367   // The gcd of A and N may have only one prime factor: 2. The number of
8368   // trailing zeros in A is its multiplicity
8369   uint32_t Mult2 = A.countTrailingZeros();
8370   // D = 2^Mult2
8371 
8372   // 2. Check if B is divisible by D.
8373   //
8374   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8375   // is not less than multiplicity of this prime factor for D.
8376   if (SE.GetMinTrailingZeros(B) < Mult2)
8377     return SE.getCouldNotCompute();
8378 
8379   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8380   // modulo (N / D).
8381   //
8382   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8383   // (N / D) in general. The inverse itself always fits into BW bits, though,
8384   // so we immediately truncate it.
8385   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8386   APInt Mod(BW + 1, 0);
8387   Mod.setBit(BW - Mult2);  // Mod = N / D
8388   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8389 
8390   // 4. Compute the minimum unsigned root of the equation:
8391   // I * (B / D) mod (N / D)
8392   // To simplify the computation, we factor out the divide by D:
8393   // (I * B mod N) / D
8394   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8395   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8396 }
8397 
8398 /// For a given quadratic addrec, generate coefficients of the corresponding
8399 /// quadratic equation, multiplied by a common value to ensure that they are
8400 /// integers.
8401 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8402 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8403 /// were multiplied by, and BitWidth is the bit width of the original addrec
8404 /// coefficients.
8405 /// This function returns None if the addrec coefficients are not compile-
8406 /// time constants.
8407 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8408 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8409   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8410   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8411   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8412   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8413   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8414                     << *AddRec << '\n');
8415 
8416   // We currently can only solve this if the coefficients are constants.
8417   if (!LC || !MC || !NC) {
8418     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8419     return None;
8420   }
8421 
8422   APInt L = LC->getAPInt();
8423   APInt M = MC->getAPInt();
8424   APInt N = NC->getAPInt();
8425   assert(!N.isNullValue() && "This is not a quadratic addrec");
8426 
8427   unsigned BitWidth = LC->getAPInt().getBitWidth();
8428   unsigned NewWidth = BitWidth + 1;
8429   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8430                     << BitWidth << '\n');
8431   // The sign-extension (as opposed to a zero-extension) here matches the
8432   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8433   N = N.sext(NewWidth);
8434   M = M.sext(NewWidth);
8435   L = L.sext(NewWidth);
8436 
8437   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8438   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8439   //   L+M, L+2M+N, L+3M+3N, ...
8440   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8441   //
8442   // The equation Acc = 0 is then
8443   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8444   // In a quadratic form it becomes:
8445   //   N n^2 + (2M-N) n + 2L = 0.
8446 
8447   APInt A = N;
8448   APInt B = 2 * M - A;
8449   APInt C = 2 * L;
8450   APInt T = APInt(NewWidth, 2);
8451   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8452                     << "x + " << C << ", coeff bw: " << NewWidth
8453                     << ", multiplied by " << T << '\n');
8454   return std::make_tuple(A, B, C, T, BitWidth);
8455 }
8456 
8457 /// Helper function to compare optional APInts:
8458 /// (a) if X and Y both exist, return min(X, Y),
8459 /// (b) if neither X nor Y exist, return None,
8460 /// (c) if exactly one of X and Y exists, return that value.
8461 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8462   if (X.hasValue() && Y.hasValue()) {
8463     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8464     APInt XW = X->sextOrSelf(W);
8465     APInt YW = Y->sextOrSelf(W);
8466     return XW.slt(YW) ? *X : *Y;
8467   }
8468   if (!X.hasValue() && !Y.hasValue())
8469     return None;
8470   return X.hasValue() ? *X : *Y;
8471 }
8472 
8473 /// Helper function to truncate an optional APInt to a given BitWidth.
8474 /// When solving addrec-related equations, it is preferable to return a value
8475 /// that has the same bit width as the original addrec's coefficients. If the
8476 /// solution fits in the original bit width, truncate it (except for i1).
8477 /// Returning a value of a different bit width may inhibit some optimizations.
8478 ///
8479 /// In general, a solution to a quadratic equation generated from an addrec
8480 /// may require BW+1 bits, where BW is the bit width of the addrec's
8481 /// coefficients. The reason is that the coefficients of the quadratic
8482 /// equation are BW+1 bits wide (to avoid truncation when converting from
8483 /// the addrec to the equation).
8484 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8485   if (!X.hasValue())
8486     return None;
8487   unsigned W = X->getBitWidth();
8488   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8489     return X->trunc(BitWidth);
8490   return X;
8491 }
8492 
8493 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8494 /// iterations. The values L, M, N are assumed to be signed, and they
8495 /// should all have the same bit widths.
8496 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8497 /// where BW is the bit width of the addrec's coefficients.
8498 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8499 /// returned as such, otherwise the bit width of the returned value may
8500 /// be greater than BW.
8501 ///
8502 /// This function returns None if
8503 /// (a) the addrec coefficients are not constant, or
8504 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8505 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8506 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8507 static Optional<APInt>
8508 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8509   APInt A, B, C, M;
8510   unsigned BitWidth;
8511   auto T = GetQuadraticEquation(AddRec);
8512   if (!T.hasValue())
8513     return None;
8514 
8515   std::tie(A, B, C, M, BitWidth) = *T;
8516   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8517   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8518   if (!X.hasValue())
8519     return None;
8520 
8521   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8522   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8523   if (!V->isZero())
8524     return None;
8525 
8526   return TruncIfPossible(X, BitWidth);
8527 }
8528 
8529 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8530 /// iterations. The values M, N are assumed to be signed, and they
8531 /// should all have the same bit widths.
8532 /// Find the least n such that c(n) does not belong to the given range,
8533 /// while c(n-1) does.
8534 ///
8535 /// This function returns None if
8536 /// (a) the addrec coefficients are not constant, or
8537 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8538 ///     bounds of the range.
8539 static Optional<APInt>
8540 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8541                           const ConstantRange &Range, ScalarEvolution &SE) {
8542   assert(AddRec->getOperand(0)->isZero() &&
8543          "Starting value of addrec should be 0");
8544   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8545                     << Range << ", addrec " << *AddRec << '\n');
8546   // This case is handled in getNumIterationsInRange. Here we can assume that
8547   // we start in the range.
8548   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8549          "Addrec's initial value should be in range");
8550 
8551   APInt A, B, C, M;
8552   unsigned BitWidth;
8553   auto T = GetQuadraticEquation(AddRec);
8554   if (!T.hasValue())
8555     return None;
8556 
8557   // Be careful about the return value: there can be two reasons for not
8558   // returning an actual number. First, if no solutions to the equations
8559   // were found, and second, if the solutions don't leave the given range.
8560   // The first case means that the actual solution is "unknown", the second
8561   // means that it's known, but not valid. If the solution is unknown, we
8562   // cannot make any conclusions.
8563   // Return a pair: the optional solution and a flag indicating if the
8564   // solution was found.
8565   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8566     // Solve for signed overflow and unsigned overflow, pick the lower
8567     // solution.
8568     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8569                       << Bound << " (before multiplying by " << M << ")\n");
8570     Bound *= M; // The quadratic equation multiplier.
8571 
8572     Optional<APInt> SO = None;
8573     if (BitWidth > 1) {
8574       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8575                            "signed overflow\n");
8576       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8577     }
8578     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8579                          "unsigned overflow\n");
8580     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8581                                                               BitWidth+1);
8582 
8583     auto LeavesRange = [&] (const APInt &X) {
8584       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8585       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8586       if (Range.contains(V0->getValue()))
8587         return false;
8588       // X should be at least 1, so X-1 is non-negative.
8589       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8590       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8591       if (Range.contains(V1->getValue()))
8592         return true;
8593       return false;
8594     };
8595 
8596     // If SolveQuadraticEquationWrap returns None, it means that there can
8597     // be a solution, but the function failed to find it. We cannot treat it
8598     // as "no solution".
8599     if (!SO.hasValue() || !UO.hasValue())
8600       return { None, false };
8601 
8602     // Check the smaller value first to see if it leaves the range.
8603     // At this point, both SO and UO must have values.
8604     Optional<APInt> Min = MinOptional(SO, UO);
8605     if (LeavesRange(*Min))
8606       return { Min, true };
8607     Optional<APInt> Max = Min == SO ? UO : SO;
8608     if (LeavesRange(*Max))
8609       return { Max, true };
8610 
8611     // Solutions were found, but were eliminated, hence the "true".
8612     return { None, true };
8613   };
8614 
8615   std::tie(A, B, C, M, BitWidth) = *T;
8616   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8617   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8618   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8619   auto SL = SolveForBoundary(Lower);
8620   auto SU = SolveForBoundary(Upper);
8621   // If any of the solutions was unknown, no meaninigful conclusions can
8622   // be made.
8623   if (!SL.second || !SU.second)
8624     return None;
8625 
8626   // Claim: The correct solution is not some value between Min and Max.
8627   //
8628   // Justification: Assuming that Min and Max are different values, one of
8629   // them is when the first signed overflow happens, the other is when the
8630   // first unsigned overflow happens. Crossing the range boundary is only
8631   // possible via an overflow (treating 0 as a special case of it, modeling
8632   // an overflow as crossing k*2^W for some k).
8633   //
8634   // The interesting case here is when Min was eliminated as an invalid
8635   // solution, but Max was not. The argument is that if there was another
8636   // overflow between Min and Max, it would also have been eliminated if
8637   // it was considered.
8638   //
8639   // For a given boundary, it is possible to have two overflows of the same
8640   // type (signed/unsigned) without having the other type in between: this
8641   // can happen when the vertex of the parabola is between the iterations
8642   // corresponding to the overflows. This is only possible when the two
8643   // overflows cross k*2^W for the same k. In such case, if the second one
8644   // left the range (and was the first one to do so), the first overflow
8645   // would have to enter the range, which would mean that either we had left
8646   // the range before or that we started outside of it. Both of these cases
8647   // are contradictions.
8648   //
8649   // Claim: In the case where SolveForBoundary returns None, the correct
8650   // solution is not some value between the Max for this boundary and the
8651   // Min of the other boundary.
8652   //
8653   // Justification: Assume that we had such Max_A and Min_B corresponding
8654   // to range boundaries A and B and such that Max_A < Min_B. If there was
8655   // a solution between Max_A and Min_B, it would have to be caused by an
8656   // overflow corresponding to either A or B. It cannot correspond to B,
8657   // since Min_B is the first occurrence of such an overflow. If it
8658   // corresponded to A, it would have to be either a signed or an unsigned
8659   // overflow that is larger than both eliminated overflows for A. But
8660   // between the eliminated overflows and this overflow, the values would
8661   // cover the entire value space, thus crossing the other boundary, which
8662   // is a contradiction.
8663 
8664   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8665 }
8666 
8667 ScalarEvolution::ExitLimit
8668 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8669                               bool AllowPredicates) {
8670 
8671   // This is only used for loops with a "x != y" exit test. The exit condition
8672   // is now expressed as a single expression, V = x-y. So the exit test is
8673   // effectively V != 0.  We know and take advantage of the fact that this
8674   // expression only being used in a comparison by zero context.
8675 
8676   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8677   // If the value is a constant
8678   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8679     // If the value is already zero, the branch will execute zero times.
8680     if (C->getValue()->isZero()) return C;
8681     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8682   }
8683 
8684   const SCEVAddRecExpr *AddRec =
8685       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8686 
8687   if (!AddRec && AllowPredicates)
8688     // Try to make this an AddRec using runtime tests, in the first X
8689     // iterations of this loop, where X is the SCEV expression found by the
8690     // algorithm below.
8691     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8692 
8693   if (!AddRec || AddRec->getLoop() != L)
8694     return getCouldNotCompute();
8695 
8696   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8697   // the quadratic equation to solve it.
8698   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8699     // We can only use this value if the chrec ends up with an exact zero
8700     // value at this index.  When solving for "X*X != 5", for example, we
8701     // should not accept a root of 2.
8702     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8703       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8704       return ExitLimit(R, R, false, Predicates);
8705     }
8706     return getCouldNotCompute();
8707   }
8708 
8709   // Otherwise we can only handle this if it is affine.
8710   if (!AddRec->isAffine())
8711     return getCouldNotCompute();
8712 
8713   // If this is an affine expression, the execution count of this branch is
8714   // the minimum unsigned root of the following equation:
8715   //
8716   //     Start + Step*N = 0 (mod 2^BW)
8717   //
8718   // equivalent to:
8719   //
8720   //             Step*N = -Start (mod 2^BW)
8721   //
8722   // where BW is the common bit width of Start and Step.
8723 
8724   // Get the initial value for the loop.
8725   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8726   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8727 
8728   // For now we handle only constant steps.
8729   //
8730   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8731   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8732   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8733   // We have not yet seen any such cases.
8734   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8735   if (!StepC || StepC->getValue()->isZero())
8736     return getCouldNotCompute();
8737 
8738   // For positive steps (counting up until unsigned overflow):
8739   //   N = -Start/Step (as unsigned)
8740   // For negative steps (counting down to zero):
8741   //   N = Start/-Step
8742   // First compute the unsigned distance from zero in the direction of Step.
8743   bool CountDown = StepC->getAPInt().isNegative();
8744   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8745 
8746   // Handle unitary steps, which cannot wraparound.
8747   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8748   //   N = Distance (as unsigned)
8749   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8750     APInt MaxBECount = getUnsignedRangeMax(Distance);
8751 
8752     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8753     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8754     // case, and see if we can improve the bound.
8755     //
8756     // Explicitly handling this here is necessary because getUnsignedRange
8757     // isn't context-sensitive; it doesn't know that we only care about the
8758     // range inside the loop.
8759     const SCEV *Zero = getZero(Distance->getType());
8760     const SCEV *One = getOne(Distance->getType());
8761     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8762     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8763       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8764       // as "unsigned_max(Distance + 1) - 1".
8765       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8766       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8767     }
8768     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8769   }
8770 
8771   // If the condition controls loop exit (the loop exits only if the expression
8772   // is true) and the addition is no-wrap we can use unsigned divide to
8773   // compute the backedge count.  In this case, the step may not divide the
8774   // distance, but we don't care because if the condition is "missed" the loop
8775   // will have undefined behavior due to wrapping.
8776   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8777       loopHasNoAbnormalExits(AddRec->getLoop())) {
8778     const SCEV *Exact =
8779         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8780     const SCEV *Max =
8781         Exact == getCouldNotCompute()
8782             ? Exact
8783             : getConstant(getUnsignedRangeMax(Exact));
8784     return ExitLimit(Exact, Max, false, Predicates);
8785   }
8786 
8787   // Solve the general equation.
8788   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8789                                                getNegativeSCEV(Start), *this);
8790   const SCEV *M = E == getCouldNotCompute()
8791                       ? E
8792                       : getConstant(getUnsignedRangeMax(E));
8793   return ExitLimit(E, M, false, Predicates);
8794 }
8795 
8796 ScalarEvolution::ExitLimit
8797 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8798   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8799   // handle them yet except for the trivial case.  This could be expanded in the
8800   // future as needed.
8801 
8802   // If the value is a constant, check to see if it is known to be non-zero
8803   // already.  If so, the backedge will execute zero times.
8804   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8805     if (!C->getValue()->isZero())
8806       return getZero(C->getType());
8807     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8808   }
8809 
8810   // We could implement others, but I really doubt anyone writes loops like
8811   // this, and if they did, they would already be constant folded.
8812   return getCouldNotCompute();
8813 }
8814 
8815 std::pair<BasicBlock *, BasicBlock *>
8816 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8817   // If the block has a unique predecessor, then there is no path from the
8818   // predecessor to the block that does not go through the direct edge
8819   // from the predecessor to the block.
8820   if (BasicBlock *Pred = BB->getSinglePredecessor())
8821     return {Pred, BB};
8822 
8823   // A loop's header is defined to be a block that dominates the loop.
8824   // If the header has a unique predecessor outside the loop, it must be
8825   // a block that has exactly one successor that can reach the loop.
8826   if (Loop *L = LI.getLoopFor(BB))
8827     return {L->getLoopPredecessor(), L->getHeader()};
8828 
8829   return {nullptr, nullptr};
8830 }
8831 
8832 /// SCEV structural equivalence is usually sufficient for testing whether two
8833 /// expressions are equal, however for the purposes of looking for a condition
8834 /// guarding a loop, it can be useful to be a little more general, since a
8835 /// front-end may have replicated the controlling expression.
8836 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8837   // Quick check to see if they are the same SCEV.
8838   if (A == B) return true;
8839 
8840   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8841     // Not all instructions that are "identical" compute the same value.  For
8842     // instance, two distinct alloca instructions allocating the same type are
8843     // identical and do not read memory; but compute distinct values.
8844     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8845   };
8846 
8847   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8848   // two different instructions with the same value. Check for this case.
8849   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8850     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8851       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8852         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8853           if (ComputesEqualValues(AI, BI))
8854             return true;
8855 
8856   // Otherwise assume they may have a different value.
8857   return false;
8858 }
8859 
8860 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8861                                            const SCEV *&LHS, const SCEV *&RHS,
8862                                            unsigned Depth) {
8863   bool Changed = false;
8864   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
8865   // '0 != 0'.
8866   auto TrivialCase = [&](bool TriviallyTrue) {
8867     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
8868     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
8869     return true;
8870   };
8871   // If we hit the max recursion limit bail out.
8872   if (Depth >= 3)
8873     return false;
8874 
8875   // Canonicalize a constant to the right side.
8876   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
8877     // Check for both operands constant.
8878     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
8879       if (ConstantExpr::getICmp(Pred,
8880                                 LHSC->getValue(),
8881                                 RHSC->getValue())->isNullValue())
8882         return TrivialCase(false);
8883       else
8884         return TrivialCase(true);
8885     }
8886     // Otherwise swap the operands to put the constant on the right.
8887     std::swap(LHS, RHS);
8888     Pred = ICmpInst::getSwappedPredicate(Pred);
8889     Changed = true;
8890   }
8891 
8892   // If we're comparing an addrec with a value which is loop-invariant in the
8893   // addrec's loop, put the addrec on the left. Also make a dominance check,
8894   // as both operands could be addrecs loop-invariant in each other's loop.
8895   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
8896     const Loop *L = AR->getLoop();
8897     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
8898       std::swap(LHS, RHS);
8899       Pred = ICmpInst::getSwappedPredicate(Pred);
8900       Changed = true;
8901     }
8902   }
8903 
8904   // If there's a constant operand, canonicalize comparisons with boundary
8905   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
8906   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
8907     const APInt &RA = RC->getAPInt();
8908 
8909     bool SimplifiedByConstantRange = false;
8910 
8911     if (!ICmpInst::isEquality(Pred)) {
8912       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
8913       if (ExactCR.isFullSet())
8914         return TrivialCase(true);
8915       else if (ExactCR.isEmptySet())
8916         return TrivialCase(false);
8917 
8918       APInt NewRHS;
8919       CmpInst::Predicate NewPred;
8920       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
8921           ICmpInst::isEquality(NewPred)) {
8922         // We were able to convert an inequality to an equality.
8923         Pred = NewPred;
8924         RHS = getConstant(NewRHS);
8925         Changed = SimplifiedByConstantRange = true;
8926       }
8927     }
8928 
8929     if (!SimplifiedByConstantRange) {
8930       switch (Pred) {
8931       default:
8932         break;
8933       case ICmpInst::ICMP_EQ:
8934       case ICmpInst::ICMP_NE:
8935         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
8936         if (!RA)
8937           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
8938             if (const SCEVMulExpr *ME =
8939                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
8940               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
8941                   ME->getOperand(0)->isAllOnesValue()) {
8942                 RHS = AE->getOperand(1);
8943                 LHS = ME->getOperand(1);
8944                 Changed = true;
8945               }
8946         break;
8947 
8948 
8949         // The "Should have been caught earlier!" messages refer to the fact
8950         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
8951         // should have fired on the corresponding cases, and canonicalized the
8952         // check to trivial case.
8953 
8954       case ICmpInst::ICMP_UGE:
8955         assert(!RA.isMinValue() && "Should have been caught earlier!");
8956         Pred = ICmpInst::ICMP_UGT;
8957         RHS = getConstant(RA - 1);
8958         Changed = true;
8959         break;
8960       case ICmpInst::ICMP_ULE:
8961         assert(!RA.isMaxValue() && "Should have been caught earlier!");
8962         Pred = ICmpInst::ICMP_ULT;
8963         RHS = getConstant(RA + 1);
8964         Changed = true;
8965         break;
8966       case ICmpInst::ICMP_SGE:
8967         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
8968         Pred = ICmpInst::ICMP_SGT;
8969         RHS = getConstant(RA - 1);
8970         Changed = true;
8971         break;
8972       case ICmpInst::ICMP_SLE:
8973         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
8974         Pred = ICmpInst::ICMP_SLT;
8975         RHS = getConstant(RA + 1);
8976         Changed = true;
8977         break;
8978       }
8979     }
8980   }
8981 
8982   // Check for obvious equality.
8983   if (HasSameValue(LHS, RHS)) {
8984     if (ICmpInst::isTrueWhenEqual(Pred))
8985       return TrivialCase(true);
8986     if (ICmpInst::isFalseWhenEqual(Pred))
8987       return TrivialCase(false);
8988   }
8989 
8990   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
8991   // adding or subtracting 1 from one of the operands.
8992   switch (Pred) {
8993   case ICmpInst::ICMP_SLE:
8994     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
8995       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
8996                        SCEV::FlagNSW);
8997       Pred = ICmpInst::ICMP_SLT;
8998       Changed = true;
8999     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9000       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9001                        SCEV::FlagNSW);
9002       Pred = ICmpInst::ICMP_SLT;
9003       Changed = true;
9004     }
9005     break;
9006   case ICmpInst::ICMP_SGE:
9007     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9008       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9009                        SCEV::FlagNSW);
9010       Pred = ICmpInst::ICMP_SGT;
9011       Changed = true;
9012     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9013       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9014                        SCEV::FlagNSW);
9015       Pred = ICmpInst::ICMP_SGT;
9016       Changed = true;
9017     }
9018     break;
9019   case ICmpInst::ICMP_ULE:
9020     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9021       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9022                        SCEV::FlagNUW);
9023       Pred = ICmpInst::ICMP_ULT;
9024       Changed = true;
9025     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9026       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9027       Pred = ICmpInst::ICMP_ULT;
9028       Changed = true;
9029     }
9030     break;
9031   case ICmpInst::ICMP_UGE:
9032     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9033       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9034       Pred = ICmpInst::ICMP_UGT;
9035       Changed = true;
9036     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9037       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9038                        SCEV::FlagNUW);
9039       Pred = ICmpInst::ICMP_UGT;
9040       Changed = true;
9041     }
9042     break;
9043   default:
9044     break;
9045   }
9046 
9047   // TODO: More simplifications are possible here.
9048 
9049   // Recursively simplify until we either hit a recursion limit or nothing
9050   // changes.
9051   if (Changed)
9052     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9053 
9054   return Changed;
9055 }
9056 
9057 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9058   return getSignedRangeMax(S).isNegative();
9059 }
9060 
9061 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9062   return getSignedRangeMin(S).isStrictlyPositive();
9063 }
9064 
9065 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9066   return !getSignedRangeMin(S).isNegative();
9067 }
9068 
9069 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9070   return !getSignedRangeMax(S).isStrictlyPositive();
9071 }
9072 
9073 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9074   return isKnownNegative(S) || isKnownPositive(S);
9075 }
9076 
9077 std::pair<const SCEV *, const SCEV *>
9078 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9079   // Compute SCEV on entry of loop L.
9080   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9081   if (Start == getCouldNotCompute())
9082     return { Start, Start };
9083   // Compute post increment SCEV for loop L.
9084   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9085   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9086   return { Start, PostInc };
9087 }
9088 
9089 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9090                                           const SCEV *LHS, const SCEV *RHS) {
9091   // First collect all loops.
9092   SmallPtrSet<const Loop *, 8> LoopsUsed;
9093   getUsedLoops(LHS, LoopsUsed);
9094   getUsedLoops(RHS, LoopsUsed);
9095 
9096   if (LoopsUsed.empty())
9097     return false;
9098 
9099   // Domination relationship must be a linear order on collected loops.
9100 #ifndef NDEBUG
9101   for (auto *L1 : LoopsUsed)
9102     for (auto *L2 : LoopsUsed)
9103       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9104               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9105              "Domination relationship is not a linear order");
9106 #endif
9107 
9108   const Loop *MDL =
9109       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9110                         [&](const Loop *L1, const Loop *L2) {
9111          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9112        });
9113 
9114   // Get init and post increment value for LHS.
9115   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9116   // if LHS contains unknown non-invariant SCEV then bail out.
9117   if (SplitLHS.first == getCouldNotCompute())
9118     return false;
9119   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9120   // Get init and post increment value for RHS.
9121   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9122   // if RHS contains unknown non-invariant SCEV then bail out.
9123   if (SplitRHS.first == getCouldNotCompute())
9124     return false;
9125   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9126   // It is possible that init SCEV contains an invariant load but it does
9127   // not dominate MDL and is not available at MDL loop entry, so we should
9128   // check it here.
9129   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9130       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9131     return false;
9132 
9133   return isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first) &&
9134          isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9135                                      SplitRHS.second);
9136 }
9137 
9138 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9139                                        const SCEV *LHS, const SCEV *RHS) {
9140   // Canonicalize the inputs first.
9141   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9142 
9143   if (isKnownViaInduction(Pred, LHS, RHS))
9144     return true;
9145 
9146   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9147     return true;
9148 
9149   // Otherwise see what can be done with some simple reasoning.
9150   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9151 }
9152 
9153 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9154                                               const SCEVAddRecExpr *LHS,
9155                                               const SCEV *RHS) {
9156   const Loop *L = LHS->getLoop();
9157   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9158          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9159 }
9160 
9161 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9162                                            ICmpInst::Predicate Pred,
9163                                            bool &Increasing) {
9164   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9165 
9166 #ifndef NDEBUG
9167   // Verify an invariant: inverting the predicate should turn a monotonically
9168   // increasing change to a monotonically decreasing one, and vice versa.
9169   bool IncreasingSwapped;
9170   bool ResultSwapped = isMonotonicPredicateImpl(
9171       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9172 
9173   assert(Result == ResultSwapped && "should be able to analyze both!");
9174   if (ResultSwapped)
9175     assert(Increasing == !IncreasingSwapped &&
9176            "monotonicity should flip as we flip the predicate");
9177 #endif
9178 
9179   return Result;
9180 }
9181 
9182 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9183                                                ICmpInst::Predicate Pred,
9184                                                bool &Increasing) {
9185 
9186   // A zero step value for LHS means the induction variable is essentially a
9187   // loop invariant value. We don't really depend on the predicate actually
9188   // flipping from false to true (for increasing predicates, and the other way
9189   // around for decreasing predicates), all we care about is that *if* the
9190   // predicate changes then it only changes from false to true.
9191   //
9192   // A zero step value in itself is not very useful, but there may be places
9193   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9194   // as general as possible.
9195 
9196   switch (Pred) {
9197   default:
9198     return false; // Conservative answer
9199 
9200   case ICmpInst::ICMP_UGT:
9201   case ICmpInst::ICMP_UGE:
9202   case ICmpInst::ICMP_ULT:
9203   case ICmpInst::ICMP_ULE:
9204     if (!LHS->hasNoUnsignedWrap())
9205       return false;
9206 
9207     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9208     return true;
9209 
9210   case ICmpInst::ICMP_SGT:
9211   case ICmpInst::ICMP_SGE:
9212   case ICmpInst::ICMP_SLT:
9213   case ICmpInst::ICMP_SLE: {
9214     if (!LHS->hasNoSignedWrap())
9215       return false;
9216 
9217     const SCEV *Step = LHS->getStepRecurrence(*this);
9218 
9219     if (isKnownNonNegative(Step)) {
9220       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9221       return true;
9222     }
9223 
9224     if (isKnownNonPositive(Step)) {
9225       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9226       return true;
9227     }
9228 
9229     return false;
9230   }
9231 
9232   }
9233 
9234   llvm_unreachable("switch has default clause!");
9235 }
9236 
9237 bool ScalarEvolution::isLoopInvariantPredicate(
9238     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9239     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9240     const SCEV *&InvariantRHS) {
9241 
9242   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9243   if (!isLoopInvariant(RHS, L)) {
9244     if (!isLoopInvariant(LHS, L))
9245       return false;
9246 
9247     std::swap(LHS, RHS);
9248     Pred = ICmpInst::getSwappedPredicate(Pred);
9249   }
9250 
9251   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9252   if (!ArLHS || ArLHS->getLoop() != L)
9253     return false;
9254 
9255   bool Increasing;
9256   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9257     return false;
9258 
9259   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9260   // true as the loop iterates, and the backedge is control dependent on
9261   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9262   //
9263   //   * if the predicate was false in the first iteration then the predicate
9264   //     is never evaluated again, since the loop exits without taking the
9265   //     backedge.
9266   //   * if the predicate was true in the first iteration then it will
9267   //     continue to be true for all future iterations since it is
9268   //     monotonically increasing.
9269   //
9270   // For both the above possibilities, we can replace the loop varying
9271   // predicate with its value on the first iteration of the loop (which is
9272   // loop invariant).
9273   //
9274   // A similar reasoning applies for a monotonically decreasing predicate, by
9275   // replacing true with false and false with true in the above two bullets.
9276 
9277   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9278 
9279   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9280     return false;
9281 
9282   InvariantPred = Pred;
9283   InvariantLHS = ArLHS->getStart();
9284   InvariantRHS = RHS;
9285   return true;
9286 }
9287 
9288 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9289     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9290   if (HasSameValue(LHS, RHS))
9291     return ICmpInst::isTrueWhenEqual(Pred);
9292 
9293   // This code is split out from isKnownPredicate because it is called from
9294   // within isLoopEntryGuardedByCond.
9295 
9296   auto CheckRanges =
9297       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9298     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9299         .contains(RangeLHS);
9300   };
9301 
9302   // The check at the top of the function catches the case where the values are
9303   // known to be equal.
9304   if (Pred == CmpInst::ICMP_EQ)
9305     return false;
9306 
9307   if (Pred == CmpInst::ICMP_NE)
9308     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9309            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9310            isKnownNonZero(getMinusSCEV(LHS, RHS));
9311 
9312   if (CmpInst::isSigned(Pred))
9313     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9314 
9315   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9316 }
9317 
9318 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9319                                                     const SCEV *LHS,
9320                                                     const SCEV *RHS) {
9321   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9322   // Return Y via OutY.
9323   auto MatchBinaryAddToConst =
9324       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9325              SCEV::NoWrapFlags ExpectedFlags) {
9326     const SCEV *NonConstOp, *ConstOp;
9327     SCEV::NoWrapFlags FlagsPresent;
9328 
9329     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9330         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9331       return false;
9332 
9333     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9334     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9335   };
9336 
9337   APInt C;
9338 
9339   switch (Pred) {
9340   default:
9341     break;
9342 
9343   case ICmpInst::ICMP_SGE:
9344     std::swap(LHS, RHS);
9345     LLVM_FALLTHROUGH;
9346   case ICmpInst::ICMP_SLE:
9347     // X s<= (X + C)<nsw> if C >= 0
9348     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9349       return true;
9350 
9351     // (X + C)<nsw> s<= X if C <= 0
9352     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9353         !C.isStrictlyPositive())
9354       return true;
9355     break;
9356 
9357   case ICmpInst::ICMP_SGT:
9358     std::swap(LHS, RHS);
9359     LLVM_FALLTHROUGH;
9360   case ICmpInst::ICMP_SLT:
9361     // X s< (X + C)<nsw> if C > 0
9362     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9363         C.isStrictlyPositive())
9364       return true;
9365 
9366     // (X + C)<nsw> s< X if C < 0
9367     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9368       return true;
9369     break;
9370   }
9371 
9372   return false;
9373 }
9374 
9375 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9376                                                    const SCEV *LHS,
9377                                                    const SCEV *RHS) {
9378   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9379     return false;
9380 
9381   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9382   // the stack can result in exponential time complexity.
9383   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9384 
9385   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9386   //
9387   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9388   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9389   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9390   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9391   // use isKnownPredicate later if needed.
9392   return isKnownNonNegative(RHS) &&
9393          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9394          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9395 }
9396 
9397 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9398                                         ICmpInst::Predicate Pred,
9399                                         const SCEV *LHS, const SCEV *RHS) {
9400   // No need to even try if we know the module has no guards.
9401   if (!HasGuards)
9402     return false;
9403 
9404   return any_of(*BB, [&](Instruction &I) {
9405     using namespace llvm::PatternMatch;
9406 
9407     Value *Condition;
9408     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9409                          m_Value(Condition))) &&
9410            isImpliedCond(Pred, LHS, RHS, Condition, false);
9411   });
9412 }
9413 
9414 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9415 /// protected by a conditional between LHS and RHS.  This is used to
9416 /// to eliminate casts.
9417 bool
9418 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9419                                              ICmpInst::Predicate Pred,
9420                                              const SCEV *LHS, const SCEV *RHS) {
9421   // Interpret a null as meaning no loop, where there is obviously no guard
9422   // (interprocedural conditions notwithstanding).
9423   if (!L) return true;
9424 
9425   if (VerifyIR)
9426     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9427            "This cannot be done on broken IR!");
9428 
9429 
9430   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9431     return true;
9432 
9433   BasicBlock *Latch = L->getLoopLatch();
9434   if (!Latch)
9435     return false;
9436 
9437   BranchInst *LoopContinuePredicate =
9438     dyn_cast<BranchInst>(Latch->getTerminator());
9439   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9440       isImpliedCond(Pred, LHS, RHS,
9441                     LoopContinuePredicate->getCondition(),
9442                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9443     return true;
9444 
9445   // We don't want more than one activation of the following loops on the stack
9446   // -- that can lead to O(n!) time complexity.
9447   if (WalkingBEDominatingConds)
9448     return false;
9449 
9450   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9451 
9452   // See if we can exploit a trip count to prove the predicate.
9453   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9454   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9455   if (LatchBECount != getCouldNotCompute()) {
9456     // We know that Latch branches back to the loop header exactly
9457     // LatchBECount times.  This means the backdege condition at Latch is
9458     // equivalent to  "{0,+,1} u< LatchBECount".
9459     Type *Ty = LatchBECount->getType();
9460     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9461     const SCEV *LoopCounter =
9462       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9463     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9464                       LatchBECount))
9465       return true;
9466   }
9467 
9468   // Check conditions due to any @llvm.assume intrinsics.
9469   for (auto &AssumeVH : AC.assumptions()) {
9470     if (!AssumeVH)
9471       continue;
9472     auto *CI = cast<CallInst>(AssumeVH);
9473     if (!DT.dominates(CI, Latch->getTerminator()))
9474       continue;
9475 
9476     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9477       return true;
9478   }
9479 
9480   // If the loop is not reachable from the entry block, we risk running into an
9481   // infinite loop as we walk up into the dom tree.  These loops do not matter
9482   // anyway, so we just return a conservative answer when we see them.
9483   if (!DT.isReachableFromEntry(L->getHeader()))
9484     return false;
9485 
9486   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9487     return true;
9488 
9489   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9490        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9491     assert(DTN && "should reach the loop header before reaching the root!");
9492 
9493     BasicBlock *BB = DTN->getBlock();
9494     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9495       return true;
9496 
9497     BasicBlock *PBB = BB->getSinglePredecessor();
9498     if (!PBB)
9499       continue;
9500 
9501     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9502     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9503       continue;
9504 
9505     Value *Condition = ContinuePredicate->getCondition();
9506 
9507     // If we have an edge `E` within the loop body that dominates the only
9508     // latch, the condition guarding `E` also guards the backedge.  This
9509     // reasoning works only for loops with a single latch.
9510 
9511     BasicBlockEdge DominatingEdge(PBB, BB);
9512     if (DominatingEdge.isSingleEdge()) {
9513       // We're constructively (and conservatively) enumerating edges within the
9514       // loop body that dominate the latch.  The dominator tree better agree
9515       // with us on this:
9516       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9517 
9518       if (isImpliedCond(Pred, LHS, RHS, Condition,
9519                         BB != ContinuePredicate->getSuccessor(0)))
9520         return true;
9521     }
9522   }
9523 
9524   return false;
9525 }
9526 
9527 bool
9528 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9529                                           ICmpInst::Predicate Pred,
9530                                           const SCEV *LHS, const SCEV *RHS) {
9531   // Interpret a null as meaning no loop, where there is obviously no guard
9532   // (interprocedural conditions notwithstanding).
9533   if (!L) return false;
9534 
9535   if (VerifyIR)
9536     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9537            "This cannot be done on broken IR!");
9538 
9539   // Both LHS and RHS must be available at loop entry.
9540   assert(isAvailableAtLoopEntry(LHS, L) &&
9541          "LHS is not available at Loop Entry");
9542   assert(isAvailableAtLoopEntry(RHS, L) &&
9543          "RHS is not available at Loop Entry");
9544 
9545   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9546     return true;
9547 
9548   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9549   // the facts (a >= b && a != b) separately. A typical situation is when the
9550   // non-strict comparison is known from ranges and non-equality is known from
9551   // dominating predicates. If we are proving strict comparison, we always try
9552   // to prove non-equality and non-strict comparison separately.
9553   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9554   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9555   bool ProvedNonStrictComparison = false;
9556   bool ProvedNonEquality = false;
9557 
9558   if (ProvingStrictComparison) {
9559     ProvedNonStrictComparison =
9560         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9561     ProvedNonEquality =
9562         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9563     if (ProvedNonStrictComparison && ProvedNonEquality)
9564       return true;
9565   }
9566 
9567   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9568   auto ProveViaGuard = [&](BasicBlock *Block) {
9569     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9570       return true;
9571     if (ProvingStrictComparison) {
9572       if (!ProvedNonStrictComparison)
9573         ProvedNonStrictComparison =
9574             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9575       if (!ProvedNonEquality)
9576         ProvedNonEquality =
9577             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9578       if (ProvedNonStrictComparison && ProvedNonEquality)
9579         return true;
9580     }
9581     return false;
9582   };
9583 
9584   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9585   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9586     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9587       return true;
9588     if (ProvingStrictComparison) {
9589       if (!ProvedNonStrictComparison)
9590         ProvedNonStrictComparison =
9591             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9592       if (!ProvedNonEquality)
9593         ProvedNonEquality =
9594             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9595       if (ProvedNonStrictComparison && ProvedNonEquality)
9596         return true;
9597     }
9598     return false;
9599   };
9600 
9601   // Starting at the loop predecessor, climb up the predecessor chain, as long
9602   // as there are predecessors that can be found that have unique successors
9603   // leading to the original header.
9604   for (std::pair<BasicBlock *, BasicBlock *>
9605          Pair(L->getLoopPredecessor(), L->getHeader());
9606        Pair.first;
9607        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9608 
9609     if (ProveViaGuard(Pair.first))
9610       return true;
9611 
9612     BranchInst *LoopEntryPredicate =
9613       dyn_cast<BranchInst>(Pair.first->getTerminator());
9614     if (!LoopEntryPredicate ||
9615         LoopEntryPredicate->isUnconditional())
9616       continue;
9617 
9618     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9619                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9620       return true;
9621   }
9622 
9623   // Check conditions due to any @llvm.assume intrinsics.
9624   for (auto &AssumeVH : AC.assumptions()) {
9625     if (!AssumeVH)
9626       continue;
9627     auto *CI = cast<CallInst>(AssumeVH);
9628     if (!DT.dominates(CI, L->getHeader()))
9629       continue;
9630 
9631     if (ProveViaCond(CI->getArgOperand(0), false))
9632       return true;
9633   }
9634 
9635   return false;
9636 }
9637 
9638 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9639                                     const SCEV *LHS, const SCEV *RHS,
9640                                     Value *FoundCondValue,
9641                                     bool Inverse) {
9642   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9643     return false;
9644 
9645   auto ClearOnExit =
9646       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9647 
9648   // Recursively handle And and Or conditions.
9649   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9650     if (BO->getOpcode() == Instruction::And) {
9651       if (!Inverse)
9652         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9653                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9654     } else if (BO->getOpcode() == Instruction::Or) {
9655       if (Inverse)
9656         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9657                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9658     }
9659   }
9660 
9661   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9662   if (!ICI) return false;
9663 
9664   // Now that we found a conditional branch that dominates the loop or controls
9665   // the loop latch. Check to see if it is the comparison we are looking for.
9666   ICmpInst::Predicate FoundPred;
9667   if (Inverse)
9668     FoundPred = ICI->getInversePredicate();
9669   else
9670     FoundPred = ICI->getPredicate();
9671 
9672   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9673   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9674 
9675   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9676 }
9677 
9678 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9679                                     const SCEV *RHS,
9680                                     ICmpInst::Predicate FoundPred,
9681                                     const SCEV *FoundLHS,
9682                                     const SCEV *FoundRHS) {
9683   // Balance the types.
9684   if (getTypeSizeInBits(LHS->getType()) <
9685       getTypeSizeInBits(FoundLHS->getType())) {
9686     if (CmpInst::isSigned(Pred)) {
9687       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9688       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9689     } else {
9690       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9691       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9692     }
9693   } else if (getTypeSizeInBits(LHS->getType()) >
9694       getTypeSizeInBits(FoundLHS->getType())) {
9695     if (CmpInst::isSigned(FoundPred)) {
9696       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9697       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9698     } else {
9699       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9700       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9701     }
9702   }
9703 
9704   // Canonicalize the query to match the way instcombine will have
9705   // canonicalized the comparison.
9706   if (SimplifyICmpOperands(Pred, LHS, RHS))
9707     if (LHS == RHS)
9708       return CmpInst::isTrueWhenEqual(Pred);
9709   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9710     if (FoundLHS == FoundRHS)
9711       return CmpInst::isFalseWhenEqual(FoundPred);
9712 
9713   // Check to see if we can make the LHS or RHS match.
9714   if (LHS == FoundRHS || RHS == FoundLHS) {
9715     if (isa<SCEVConstant>(RHS)) {
9716       std::swap(FoundLHS, FoundRHS);
9717       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9718     } else {
9719       std::swap(LHS, RHS);
9720       Pred = ICmpInst::getSwappedPredicate(Pred);
9721     }
9722   }
9723 
9724   // Check whether the found predicate is the same as the desired predicate.
9725   if (FoundPred == Pred)
9726     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9727 
9728   // Check whether swapping the found predicate makes it the same as the
9729   // desired predicate.
9730   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9731     if (isa<SCEVConstant>(RHS))
9732       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9733     else
9734       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9735                                    RHS, LHS, FoundLHS, FoundRHS);
9736   }
9737 
9738   // Unsigned comparison is the same as signed comparison when both the operands
9739   // are non-negative.
9740   if (CmpInst::isUnsigned(FoundPred) &&
9741       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9742       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9743     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9744 
9745   // Check if we can make progress by sharpening ranges.
9746   if (FoundPred == ICmpInst::ICMP_NE &&
9747       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9748 
9749     const SCEVConstant *C = nullptr;
9750     const SCEV *V = nullptr;
9751 
9752     if (isa<SCEVConstant>(FoundLHS)) {
9753       C = cast<SCEVConstant>(FoundLHS);
9754       V = FoundRHS;
9755     } else {
9756       C = cast<SCEVConstant>(FoundRHS);
9757       V = FoundLHS;
9758     }
9759 
9760     // The guarding predicate tells us that C != V. If the known range
9761     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9762     // range we consider has to correspond to same signedness as the
9763     // predicate we're interested in folding.
9764 
9765     APInt Min = ICmpInst::isSigned(Pred) ?
9766         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9767 
9768     if (Min == C->getAPInt()) {
9769       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9770       // This is true even if (Min + 1) wraps around -- in case of
9771       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9772 
9773       APInt SharperMin = Min + 1;
9774 
9775       switch (Pred) {
9776         case ICmpInst::ICMP_SGE:
9777         case ICmpInst::ICMP_UGE:
9778           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9779           // RHS, we're done.
9780           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9781                                     getConstant(SharperMin)))
9782             return true;
9783           LLVM_FALLTHROUGH;
9784 
9785         case ICmpInst::ICMP_SGT:
9786         case ICmpInst::ICMP_UGT:
9787           // We know from the range information that (V `Pred` Min ||
9788           // V == Min).  We know from the guarding condition that !(V
9789           // == Min).  This gives us
9790           //
9791           //       V `Pred` Min || V == Min && !(V == Min)
9792           //   =>  V `Pred` Min
9793           //
9794           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9795 
9796           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9797             return true;
9798           LLVM_FALLTHROUGH;
9799 
9800         default:
9801           // No change
9802           break;
9803       }
9804     }
9805   }
9806 
9807   // Check whether the actual condition is beyond sufficient.
9808   if (FoundPred == ICmpInst::ICMP_EQ)
9809     if (ICmpInst::isTrueWhenEqual(Pred))
9810       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9811         return true;
9812   if (Pred == ICmpInst::ICMP_NE)
9813     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9814       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9815         return true;
9816 
9817   // Otherwise assume the worst.
9818   return false;
9819 }
9820 
9821 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9822                                      const SCEV *&L, const SCEV *&R,
9823                                      SCEV::NoWrapFlags &Flags) {
9824   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9825   if (!AE || AE->getNumOperands() != 2)
9826     return false;
9827 
9828   L = AE->getOperand(0);
9829   R = AE->getOperand(1);
9830   Flags = AE->getNoWrapFlags();
9831   return true;
9832 }
9833 
9834 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9835                                                            const SCEV *Less) {
9836   // We avoid subtracting expressions here because this function is usually
9837   // fairly deep in the call stack (i.e. is called many times).
9838 
9839   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9840     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9841     const auto *MAR = cast<SCEVAddRecExpr>(More);
9842 
9843     if (LAR->getLoop() != MAR->getLoop())
9844       return None;
9845 
9846     // We look at affine expressions only; not for correctness but to keep
9847     // getStepRecurrence cheap.
9848     if (!LAR->isAffine() || !MAR->isAffine())
9849       return None;
9850 
9851     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9852       return None;
9853 
9854     Less = LAR->getStart();
9855     More = MAR->getStart();
9856 
9857     // fall through
9858   }
9859 
9860   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
9861     const auto &M = cast<SCEVConstant>(More)->getAPInt();
9862     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
9863     return M - L;
9864   }
9865 
9866   SCEV::NoWrapFlags Flags;
9867   const SCEV *LLess = nullptr, *RLess = nullptr;
9868   const SCEV *LMore = nullptr, *RMore = nullptr;
9869   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
9870   // Compare (X + C1) vs X.
9871   if (splitBinaryAdd(Less, LLess, RLess, Flags))
9872     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
9873       if (RLess == More)
9874         return -(C1->getAPInt());
9875 
9876   // Compare X vs (X + C2).
9877   if (splitBinaryAdd(More, LMore, RMore, Flags))
9878     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
9879       if (RMore == Less)
9880         return C2->getAPInt();
9881 
9882   // Compare (X + C1) vs (X + C2).
9883   if (C1 && C2 && RLess == RMore)
9884     return C2->getAPInt() - C1->getAPInt();
9885 
9886   return None;
9887 }
9888 
9889 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
9890     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
9891     const SCEV *FoundLHS, const SCEV *FoundRHS) {
9892   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
9893     return false;
9894 
9895   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9896   if (!AddRecLHS)
9897     return false;
9898 
9899   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
9900   if (!AddRecFoundLHS)
9901     return false;
9902 
9903   // We'd like to let SCEV reason about control dependencies, so we constrain
9904   // both the inequalities to be about add recurrences on the same loop.  This
9905   // way we can use isLoopEntryGuardedByCond later.
9906 
9907   const Loop *L = AddRecFoundLHS->getLoop();
9908   if (L != AddRecLHS->getLoop())
9909     return false;
9910 
9911   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
9912   //
9913   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
9914   //                                                                  ... (2)
9915   //
9916   // Informal proof for (2), assuming (1) [*]:
9917   //
9918   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
9919   //
9920   // Then
9921   //
9922   //       FoundLHS s< FoundRHS s< INT_MIN - C
9923   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
9924   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
9925   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
9926   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
9927   // <=>  FoundLHS + C s< FoundRHS + C
9928   //
9929   // [*]: (1) can be proved by ruling out overflow.
9930   //
9931   // [**]: This can be proved by analyzing all the four possibilities:
9932   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
9933   //    (A s>= 0, B s>= 0).
9934   //
9935   // Note:
9936   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
9937   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
9938   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
9939   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
9940   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
9941   // C)".
9942 
9943   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
9944   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
9945   if (!LDiff || !RDiff || *LDiff != *RDiff)
9946     return false;
9947 
9948   if (LDiff->isMinValue())
9949     return true;
9950 
9951   APInt FoundRHSLimit;
9952 
9953   if (Pred == CmpInst::ICMP_ULT) {
9954     FoundRHSLimit = -(*RDiff);
9955   } else {
9956     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
9957     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
9958   }
9959 
9960   // Try to prove (1) or (2), as needed.
9961   return isAvailableAtLoopEntry(FoundRHS, L) &&
9962          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
9963                                   getConstant(FoundRHSLimit));
9964 }
9965 
9966 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
9967                                         const SCEV *LHS, const SCEV *RHS,
9968                                         const SCEV *FoundLHS,
9969                                         const SCEV *FoundRHS, unsigned Depth) {
9970   const PHINode *LPhi = nullptr, *RPhi = nullptr;
9971 
9972   auto ClearOnExit = make_scope_exit([&]() {
9973     if (LPhi) {
9974       bool Erased = PendingMerges.erase(LPhi);
9975       assert(Erased && "Failed to erase LPhi!");
9976       (void)Erased;
9977     }
9978     if (RPhi) {
9979       bool Erased = PendingMerges.erase(RPhi);
9980       assert(Erased && "Failed to erase RPhi!");
9981       (void)Erased;
9982     }
9983   });
9984 
9985   // Find respective Phis and check that they are not being pending.
9986   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
9987     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
9988       if (!PendingMerges.insert(Phi).second)
9989         return false;
9990       LPhi = Phi;
9991     }
9992   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
9993     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
9994       // If we detect a loop of Phi nodes being processed by this method, for
9995       // example:
9996       //
9997       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
9998       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
9999       //
10000       // we don't want to deal with a case that complex, so return conservative
10001       // answer false.
10002       if (!PendingMerges.insert(Phi).second)
10003         return false;
10004       RPhi = Phi;
10005     }
10006 
10007   // If none of LHS, RHS is a Phi, nothing to do here.
10008   if (!LPhi && !RPhi)
10009     return false;
10010 
10011   // If there is a SCEVUnknown Phi we are interested in, make it left.
10012   if (!LPhi) {
10013     std::swap(LHS, RHS);
10014     std::swap(FoundLHS, FoundRHS);
10015     std::swap(LPhi, RPhi);
10016     Pred = ICmpInst::getSwappedPredicate(Pred);
10017   }
10018 
10019   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10020   const BasicBlock *LBB = LPhi->getParent();
10021   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10022 
10023   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10024     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10025            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10026            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10027   };
10028 
10029   if (RPhi && RPhi->getParent() == LBB) {
10030     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10031     // If we compare two Phis from the same block, and for each entry block
10032     // the predicate is true for incoming values from this block, then the
10033     // predicate is also true for the Phis.
10034     for (const BasicBlock *IncBB : predecessors(LBB)) {
10035       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10036       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10037       if (!ProvedEasily(L, R))
10038         return false;
10039     }
10040   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10041     // Case two: RHS is also a Phi from the same basic block, and it is an
10042     // AddRec. It means that there is a loop which has both AddRec and Unknown
10043     // PHIs, for it we can compare incoming values of AddRec from above the loop
10044     // and latch with their respective incoming values of LPhi.
10045     // TODO: Generalize to handle loops with many inputs in a header.
10046     if (LPhi->getNumIncomingValues() != 2) return false;
10047 
10048     auto *RLoop = RAR->getLoop();
10049     auto *Predecessor = RLoop->getLoopPredecessor();
10050     assert(Predecessor && "Loop with AddRec with no predecessor?");
10051     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10052     if (!ProvedEasily(L1, RAR->getStart()))
10053       return false;
10054     auto *Latch = RLoop->getLoopLatch();
10055     assert(Latch && "Loop with AddRec with no latch?");
10056     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10057     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10058       return false;
10059   } else {
10060     // In all other cases go over inputs of LHS and compare each of them to RHS,
10061     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10062     // At this point RHS is either a non-Phi, or it is a Phi from some block
10063     // different from LBB.
10064     for (const BasicBlock *IncBB : predecessors(LBB)) {
10065       // Check that RHS is available in this block.
10066       if (!dominates(RHS, IncBB))
10067         return false;
10068       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10069       if (!ProvedEasily(L, RHS))
10070         return false;
10071     }
10072   }
10073   return true;
10074 }
10075 
10076 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10077                                             const SCEV *LHS, const SCEV *RHS,
10078                                             const SCEV *FoundLHS,
10079                                             const SCEV *FoundRHS) {
10080   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10081     return true;
10082 
10083   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10084     return true;
10085 
10086   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10087                                      FoundLHS, FoundRHS) ||
10088          // ~x < ~y --> x > y
10089          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10090                                      getNotSCEV(FoundRHS),
10091                                      getNotSCEV(FoundLHS));
10092 }
10093 
10094 /// If Expr computes ~A, return A else return nullptr
10095 static const SCEV *MatchNotExpr(const SCEV *Expr) {
10096   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
10097   if (!Add || Add->getNumOperands() != 2 ||
10098       !Add->getOperand(0)->isAllOnesValue())
10099     return nullptr;
10100 
10101   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
10102   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
10103       !AddRHS->getOperand(0)->isAllOnesValue())
10104     return nullptr;
10105 
10106   return AddRHS->getOperand(1);
10107 }
10108 
10109 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
10110 template<typename MaxExprType>
10111 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
10112                               const SCEV *Candidate) {
10113   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
10114   if (!MaxExpr) return false;
10115 
10116   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
10117 }
10118 
10119 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
10120 template<typename MaxExprType>
10121 static bool IsMinConsistingOf(ScalarEvolution &SE,
10122                               const SCEV *MaybeMinExpr,
10123                               const SCEV *Candidate) {
10124   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
10125   if (!MaybeMaxExpr)
10126     return false;
10127 
10128   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
10129 }
10130 
10131 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10132                                            ICmpInst::Predicate Pred,
10133                                            const SCEV *LHS, const SCEV *RHS) {
10134   // If both sides are affine addrecs for the same loop, with equal
10135   // steps, and we know the recurrences don't wrap, then we only
10136   // need to check the predicate on the starting values.
10137 
10138   if (!ICmpInst::isRelational(Pred))
10139     return false;
10140 
10141   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10142   if (!LAR)
10143     return false;
10144   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10145   if (!RAR)
10146     return false;
10147   if (LAR->getLoop() != RAR->getLoop())
10148     return false;
10149   if (!LAR->isAffine() || !RAR->isAffine())
10150     return false;
10151 
10152   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10153     return false;
10154 
10155   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10156                          SCEV::FlagNSW : SCEV::FlagNUW;
10157   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10158     return false;
10159 
10160   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10161 }
10162 
10163 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10164 /// expression?
10165 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10166                                         ICmpInst::Predicate Pred,
10167                                         const SCEV *LHS, const SCEV *RHS) {
10168   switch (Pred) {
10169   default:
10170     return false;
10171 
10172   case ICmpInst::ICMP_SGE:
10173     std::swap(LHS, RHS);
10174     LLVM_FALLTHROUGH;
10175   case ICmpInst::ICMP_SLE:
10176     return
10177       // min(A, ...) <= A
10178       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
10179       // A <= max(A, ...)
10180       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10181 
10182   case ICmpInst::ICMP_UGE:
10183     std::swap(LHS, RHS);
10184     LLVM_FALLTHROUGH;
10185   case ICmpInst::ICMP_ULE:
10186     return
10187       // min(A, ...) <= A
10188       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
10189       // A <= max(A, ...)
10190       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10191   }
10192 
10193   llvm_unreachable("covered switch fell through?!");
10194 }
10195 
10196 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10197                                              const SCEV *LHS, const SCEV *RHS,
10198                                              const SCEV *FoundLHS,
10199                                              const SCEV *FoundRHS,
10200                                              unsigned Depth) {
10201   assert(getTypeSizeInBits(LHS->getType()) ==
10202              getTypeSizeInBits(RHS->getType()) &&
10203          "LHS and RHS have different sizes?");
10204   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10205              getTypeSizeInBits(FoundRHS->getType()) &&
10206          "FoundLHS and FoundRHS have different sizes?");
10207   // We want to avoid hurting the compile time with analysis of too big trees.
10208   if (Depth > MaxSCEVOperationsImplicationDepth)
10209     return false;
10210   // We only want to work with ICMP_SGT comparison so far.
10211   // TODO: Extend to ICMP_UGT?
10212   if (Pred == ICmpInst::ICMP_SLT) {
10213     Pred = ICmpInst::ICMP_SGT;
10214     std::swap(LHS, RHS);
10215     std::swap(FoundLHS, FoundRHS);
10216   }
10217   if (Pred != ICmpInst::ICMP_SGT)
10218     return false;
10219 
10220   auto GetOpFromSExt = [&](const SCEV *S) {
10221     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10222       return Ext->getOperand();
10223     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10224     // the constant in some cases.
10225     return S;
10226   };
10227 
10228   // Acquire values from extensions.
10229   auto *OrigLHS = LHS;
10230   auto *OrigFoundLHS = FoundLHS;
10231   LHS = GetOpFromSExt(LHS);
10232   FoundLHS = GetOpFromSExt(FoundLHS);
10233 
10234   // Is the SGT predicate can be proved trivially or using the found context.
10235   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10236     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10237            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10238                                   FoundRHS, Depth + 1);
10239   };
10240 
10241   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10242     // We want to avoid creation of any new non-constant SCEV. Since we are
10243     // going to compare the operands to RHS, we should be certain that we don't
10244     // need any size extensions for this. So let's decline all cases when the
10245     // sizes of types of LHS and RHS do not match.
10246     // TODO: Maybe try to get RHS from sext to catch more cases?
10247     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10248       return false;
10249 
10250     // Should not overflow.
10251     if (!LHSAddExpr->hasNoSignedWrap())
10252       return false;
10253 
10254     auto *LL = LHSAddExpr->getOperand(0);
10255     auto *LR = LHSAddExpr->getOperand(1);
10256     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10257 
10258     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10259     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10260       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10261     };
10262     // Try to prove the following rule:
10263     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10264     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10265     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10266       return true;
10267   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10268     Value *LL, *LR;
10269     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10270 
10271     using namespace llvm::PatternMatch;
10272 
10273     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10274       // Rules for division.
10275       // We are going to perform some comparisons with Denominator and its
10276       // derivative expressions. In general case, creating a SCEV for it may
10277       // lead to a complex analysis of the entire graph, and in particular it
10278       // can request trip count recalculation for the same loop. This would
10279       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10280       // this, we only want to create SCEVs that are constants in this section.
10281       // So we bail if Denominator is not a constant.
10282       if (!isa<ConstantInt>(LR))
10283         return false;
10284 
10285       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10286 
10287       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10288       // then a SCEV for the numerator already exists and matches with FoundLHS.
10289       auto *Numerator = getExistingSCEV(LL);
10290       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10291         return false;
10292 
10293       // Make sure that the numerator matches with FoundLHS and the denominator
10294       // is positive.
10295       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10296         return false;
10297 
10298       auto *DTy = Denominator->getType();
10299       auto *FRHSTy = FoundRHS->getType();
10300       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10301         // One of types is a pointer and another one is not. We cannot extend
10302         // them properly to a wider type, so let us just reject this case.
10303         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10304         // to avoid this check.
10305         return false;
10306 
10307       // Given that:
10308       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10309       auto *WTy = getWiderType(DTy, FRHSTy);
10310       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10311       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10312 
10313       // Try to prove the following rule:
10314       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10315       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10316       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10317       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10318       if (isKnownNonPositive(RHS) &&
10319           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10320         return true;
10321 
10322       // Try to prove the following rule:
10323       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10324       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10325       // If we divide it by Denominator > 2, then:
10326       // 1. If FoundLHS is negative, then the result is 0.
10327       // 2. If FoundLHS is non-negative, then the result is non-negative.
10328       // Anyways, the result is non-negative.
10329       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10330       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10331       if (isKnownNegative(RHS) &&
10332           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10333         return true;
10334     }
10335   }
10336 
10337   // If our expression contained SCEVUnknown Phis, and we split it down and now
10338   // need to prove something for them, try to prove the predicate for every
10339   // possible incoming values of those Phis.
10340   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10341     return true;
10342 
10343   return false;
10344 }
10345 
10346 bool
10347 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10348                                            const SCEV *LHS, const SCEV *RHS) {
10349   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10350          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10351          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10352          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10353 }
10354 
10355 bool
10356 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10357                                              const SCEV *LHS, const SCEV *RHS,
10358                                              const SCEV *FoundLHS,
10359                                              const SCEV *FoundRHS) {
10360   switch (Pred) {
10361   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10362   case ICmpInst::ICMP_EQ:
10363   case ICmpInst::ICMP_NE:
10364     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10365       return true;
10366     break;
10367   case ICmpInst::ICMP_SLT:
10368   case ICmpInst::ICMP_SLE:
10369     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10370         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10371       return true;
10372     break;
10373   case ICmpInst::ICMP_SGT:
10374   case ICmpInst::ICMP_SGE:
10375     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10376         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10377       return true;
10378     break;
10379   case ICmpInst::ICMP_ULT:
10380   case ICmpInst::ICMP_ULE:
10381     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10382         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10383       return true;
10384     break;
10385   case ICmpInst::ICMP_UGT:
10386   case ICmpInst::ICMP_UGE:
10387     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10388         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10389       return true;
10390     break;
10391   }
10392 
10393   // Maybe it can be proved via operations?
10394   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10395     return true;
10396 
10397   return false;
10398 }
10399 
10400 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10401                                                      const SCEV *LHS,
10402                                                      const SCEV *RHS,
10403                                                      const SCEV *FoundLHS,
10404                                                      const SCEV *FoundRHS) {
10405   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10406     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10407     // reduce the compile time impact of this optimization.
10408     return false;
10409 
10410   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10411   if (!Addend)
10412     return false;
10413 
10414   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10415 
10416   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10417   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10418   ConstantRange FoundLHSRange =
10419       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10420 
10421   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10422   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10423 
10424   // We can also compute the range of values for `LHS` that satisfy the
10425   // consequent, "`LHS` `Pred` `RHS`":
10426   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10427   ConstantRange SatisfyingLHSRange =
10428       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10429 
10430   // The antecedent implies the consequent if every value of `LHS` that
10431   // satisfies the antecedent also satisfies the consequent.
10432   return SatisfyingLHSRange.contains(LHSRange);
10433 }
10434 
10435 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10436                                          bool IsSigned, bool NoWrap) {
10437   assert(isKnownPositive(Stride) && "Positive stride expected!");
10438 
10439   if (NoWrap) return false;
10440 
10441   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10442   const SCEV *One = getOne(Stride->getType());
10443 
10444   if (IsSigned) {
10445     APInt MaxRHS = getSignedRangeMax(RHS);
10446     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10447     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10448 
10449     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10450     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10451   }
10452 
10453   APInt MaxRHS = getUnsignedRangeMax(RHS);
10454   APInt MaxValue = APInt::getMaxValue(BitWidth);
10455   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10456 
10457   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10458   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10459 }
10460 
10461 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10462                                          bool IsSigned, bool NoWrap) {
10463   if (NoWrap) return false;
10464 
10465   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10466   const SCEV *One = getOne(Stride->getType());
10467 
10468   if (IsSigned) {
10469     APInt MinRHS = getSignedRangeMin(RHS);
10470     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10471     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10472 
10473     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10474     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10475   }
10476 
10477   APInt MinRHS = getUnsignedRangeMin(RHS);
10478   APInt MinValue = APInt::getMinValue(BitWidth);
10479   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10480 
10481   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10482   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10483 }
10484 
10485 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10486                                             bool Equality) {
10487   const SCEV *One = getOne(Step->getType());
10488   Delta = Equality ? getAddExpr(Delta, Step)
10489                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10490   return getUDivExpr(Delta, Step);
10491 }
10492 
10493 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10494                                                     const SCEV *Stride,
10495                                                     const SCEV *End,
10496                                                     unsigned BitWidth,
10497                                                     bool IsSigned) {
10498 
10499   assert(!isKnownNonPositive(Stride) &&
10500          "Stride is expected strictly positive!");
10501   // Calculate the maximum backedge count based on the range of values
10502   // permitted by Start, End, and Stride.
10503   const SCEV *MaxBECount;
10504   APInt MinStart =
10505       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10506 
10507   APInt StrideForMaxBECount =
10508       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10509 
10510   // We already know that the stride is positive, so we paper over conservatism
10511   // in our range computation by forcing StrideForMaxBECount to be at least one.
10512   // In theory this is unnecessary, but we expect MaxBECount to be a
10513   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10514   // is nothing to constant fold it to).
10515   APInt One(BitWidth, 1, IsSigned);
10516   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10517 
10518   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10519                             : APInt::getMaxValue(BitWidth);
10520   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10521 
10522   // Although End can be a MAX expression we estimate MaxEnd considering only
10523   // the case End = RHS of the loop termination condition. This is safe because
10524   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10525   // taken count.
10526   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10527                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10528 
10529   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10530                               getConstant(StrideForMaxBECount) /* Step */,
10531                               false /* Equality */);
10532 
10533   return MaxBECount;
10534 }
10535 
10536 ScalarEvolution::ExitLimit
10537 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10538                                   const Loop *L, bool IsSigned,
10539                                   bool ControlsExit, bool AllowPredicates) {
10540   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10541 
10542   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10543   bool PredicatedIV = false;
10544 
10545   if (!IV && AllowPredicates) {
10546     // Try to make this an AddRec using runtime tests, in the first X
10547     // iterations of this loop, where X is the SCEV expression found by the
10548     // algorithm below.
10549     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10550     PredicatedIV = true;
10551   }
10552 
10553   // Avoid weird loops
10554   if (!IV || IV->getLoop() != L || !IV->isAffine())
10555     return getCouldNotCompute();
10556 
10557   bool NoWrap = ControlsExit &&
10558                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10559 
10560   const SCEV *Stride = IV->getStepRecurrence(*this);
10561 
10562   bool PositiveStride = isKnownPositive(Stride);
10563 
10564   // Avoid negative or zero stride values.
10565   if (!PositiveStride) {
10566     // We can compute the correct backedge taken count for loops with unknown
10567     // strides if we can prove that the loop is not an infinite loop with side
10568     // effects. Here's the loop structure we are trying to handle -
10569     //
10570     // i = start
10571     // do {
10572     //   A[i] = i;
10573     //   i += s;
10574     // } while (i < end);
10575     //
10576     // The backedge taken count for such loops is evaluated as -
10577     // (max(end, start + stride) - start - 1) /u stride
10578     //
10579     // The additional preconditions that we need to check to prove correctness
10580     // of the above formula is as follows -
10581     //
10582     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10583     //    NoWrap flag).
10584     // b) loop is single exit with no side effects.
10585     //
10586     //
10587     // Precondition a) implies that if the stride is negative, this is a single
10588     // trip loop. The backedge taken count formula reduces to zero in this case.
10589     //
10590     // Precondition b) implies that the unknown stride cannot be zero otherwise
10591     // we have UB.
10592     //
10593     // The positive stride case is the same as isKnownPositive(Stride) returning
10594     // true (original behavior of the function).
10595     //
10596     // We want to make sure that the stride is truly unknown as there are edge
10597     // cases where ScalarEvolution propagates no wrap flags to the
10598     // post-increment/decrement IV even though the increment/decrement operation
10599     // itself is wrapping. The computed backedge taken count may be wrong in
10600     // such cases. This is prevented by checking that the stride is not known to
10601     // be either positive or non-positive. For example, no wrap flags are
10602     // propagated to the post-increment IV of this loop with a trip count of 2 -
10603     //
10604     // unsigned char i;
10605     // for(i=127; i<128; i+=129)
10606     //   A[i] = i;
10607     //
10608     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10609         !loopHasNoSideEffects(L))
10610       return getCouldNotCompute();
10611   } else if (!Stride->isOne() &&
10612              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10613     // Avoid proven overflow cases: this will ensure that the backedge taken
10614     // count will not generate any unsigned overflow. Relaxed no-overflow
10615     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10616     // undefined behaviors like the case of C language.
10617     return getCouldNotCompute();
10618 
10619   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10620                                       : ICmpInst::ICMP_ULT;
10621   const SCEV *Start = IV->getStart();
10622   const SCEV *End = RHS;
10623   // When the RHS is not invariant, we do not know the end bound of the loop and
10624   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10625   // calculate the MaxBECount, given the start, stride and max value for the end
10626   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10627   // checked above).
10628   if (!isLoopInvariant(RHS, L)) {
10629     const SCEV *MaxBECount = computeMaxBECountForLT(
10630         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10631     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10632                      false /*MaxOrZero*/, Predicates);
10633   }
10634   // If the backedge is taken at least once, then it will be taken
10635   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10636   // is the LHS value of the less-than comparison the first time it is evaluated
10637   // and End is the RHS.
10638   const SCEV *BECountIfBackedgeTaken =
10639     computeBECount(getMinusSCEV(End, Start), Stride, false);
10640   // If the loop entry is guarded by the result of the backedge test of the
10641   // first loop iteration, then we know the backedge will be taken at least
10642   // once and so the backedge taken count is as above. If not then we use the
10643   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10644   // as if the backedge is taken at least once max(End,Start) is End and so the
10645   // result is as above, and if not max(End,Start) is Start so we get a backedge
10646   // count of zero.
10647   const SCEV *BECount;
10648   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10649     BECount = BECountIfBackedgeTaken;
10650   else {
10651     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10652     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10653   }
10654 
10655   const SCEV *MaxBECount;
10656   bool MaxOrZero = false;
10657   if (isa<SCEVConstant>(BECount))
10658     MaxBECount = BECount;
10659   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10660     // If we know exactly how many times the backedge will be taken if it's
10661     // taken at least once, then the backedge count will either be that or
10662     // zero.
10663     MaxBECount = BECountIfBackedgeTaken;
10664     MaxOrZero = true;
10665   } else {
10666     MaxBECount = computeMaxBECountForLT(
10667         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10668   }
10669 
10670   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10671       !isa<SCEVCouldNotCompute>(BECount))
10672     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10673 
10674   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10675 }
10676 
10677 ScalarEvolution::ExitLimit
10678 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10679                                      const Loop *L, bool IsSigned,
10680                                      bool ControlsExit, bool AllowPredicates) {
10681   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10682   // We handle only IV > Invariant
10683   if (!isLoopInvariant(RHS, L))
10684     return getCouldNotCompute();
10685 
10686   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10687   if (!IV && AllowPredicates)
10688     // Try to make this an AddRec using runtime tests, in the first X
10689     // iterations of this loop, where X is the SCEV expression found by the
10690     // algorithm below.
10691     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10692 
10693   // Avoid weird loops
10694   if (!IV || IV->getLoop() != L || !IV->isAffine())
10695     return getCouldNotCompute();
10696 
10697   bool NoWrap = ControlsExit &&
10698                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10699 
10700   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10701 
10702   // Avoid negative or zero stride values
10703   if (!isKnownPositive(Stride))
10704     return getCouldNotCompute();
10705 
10706   // Avoid proven overflow cases: this will ensure that the backedge taken count
10707   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10708   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10709   // behaviors like the case of C language.
10710   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10711     return getCouldNotCompute();
10712 
10713   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10714                                       : ICmpInst::ICMP_UGT;
10715 
10716   const SCEV *Start = IV->getStart();
10717   const SCEV *End = RHS;
10718   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10719     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10720 
10721   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10722 
10723   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10724                             : getUnsignedRangeMax(Start);
10725 
10726   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10727                              : getUnsignedRangeMin(Stride);
10728 
10729   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10730   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10731                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10732 
10733   // Although End can be a MIN expression we estimate MinEnd considering only
10734   // the case End = RHS. This is safe because in the other case (Start - End)
10735   // is zero, leading to a zero maximum backedge taken count.
10736   APInt MinEnd =
10737     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10738              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10739 
10740 
10741   const SCEV *MaxBECount = getCouldNotCompute();
10742   if (isa<SCEVConstant>(BECount))
10743     MaxBECount = BECount;
10744   else
10745     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
10746                                 getConstant(MinStride), false);
10747 
10748   if (isa<SCEVCouldNotCompute>(MaxBECount))
10749     MaxBECount = BECount;
10750 
10751   return ExitLimit(BECount, MaxBECount, false, Predicates);
10752 }
10753 
10754 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10755                                                     ScalarEvolution &SE) const {
10756   if (Range.isFullSet())  // Infinite loop.
10757     return SE.getCouldNotCompute();
10758 
10759   // If the start is a non-zero constant, shift the range to simplify things.
10760   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10761     if (!SC->getValue()->isZero()) {
10762       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10763       Operands[0] = SE.getZero(SC->getType());
10764       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10765                                              getNoWrapFlags(FlagNW));
10766       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10767         return ShiftedAddRec->getNumIterationsInRange(
10768             Range.subtract(SC->getAPInt()), SE);
10769       // This is strange and shouldn't happen.
10770       return SE.getCouldNotCompute();
10771     }
10772 
10773   // The only time we can solve this is when we have all constant indices.
10774   // Otherwise, we cannot determine the overflow conditions.
10775   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10776     return SE.getCouldNotCompute();
10777 
10778   // Okay at this point we know that all elements of the chrec are constants and
10779   // that the start element is zero.
10780 
10781   // First check to see if the range contains zero.  If not, the first
10782   // iteration exits.
10783   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10784   if (!Range.contains(APInt(BitWidth, 0)))
10785     return SE.getZero(getType());
10786 
10787   if (isAffine()) {
10788     // If this is an affine expression then we have this situation:
10789     //   Solve {0,+,A} in Range  ===  Ax in Range
10790 
10791     // We know that zero is in the range.  If A is positive then we know that
10792     // the upper value of the range must be the first possible exit value.
10793     // If A is negative then the lower of the range is the last possible loop
10794     // value.  Also note that we already checked for a full range.
10795     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10796     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10797 
10798     // The exit value should be (End+A)/A.
10799     APInt ExitVal = (End + A).udiv(A);
10800     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10801 
10802     // Evaluate at the exit value.  If we really did fall out of the valid
10803     // range, then we computed our trip count, otherwise wrap around or other
10804     // things must have happened.
10805     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10806     if (Range.contains(Val->getValue()))
10807       return SE.getCouldNotCompute();  // Something strange happened
10808 
10809     // Ensure that the previous value is in the range.  This is a sanity check.
10810     assert(Range.contains(
10811            EvaluateConstantChrecAtConstant(this,
10812            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10813            "Linear scev computation is off in a bad way!");
10814     return SE.getConstant(ExitValue);
10815   }
10816 
10817   if (isQuadratic()) {
10818     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10819       return SE.getConstant(S.getValue());
10820   }
10821 
10822   return SE.getCouldNotCompute();
10823 }
10824 
10825 const SCEVAddRecExpr *
10826 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10827   assert(getNumOperands() > 1 && "AddRec with zero step?");
10828   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10829   // but in this case we cannot guarantee that the value returned will be an
10830   // AddRec because SCEV does not have a fixed point where it stops
10831   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10832   // may happen if we reach arithmetic depth limit while simplifying. So we
10833   // construct the returned value explicitly.
10834   SmallVector<const SCEV *, 3> Ops;
10835   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10836   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10837   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10838     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10839   // We know that the last operand is not a constant zero (otherwise it would
10840   // have been popped out earlier). This guarantees us that if the result has
10841   // the same last operand, then it will also not be popped out, meaning that
10842   // the returned value will be an AddRec.
10843   const SCEV *Last = getOperand(getNumOperands() - 1);
10844   assert(!Last->isZero() && "Recurrency with zero step?");
10845   Ops.push_back(Last);
10846   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10847                                                SCEV::FlagAnyWrap));
10848 }
10849 
10850 // Return true when S contains at least an undef value.
10851 static inline bool containsUndefs(const SCEV *S) {
10852   return SCEVExprContains(S, [](const SCEV *S) {
10853     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
10854       return isa<UndefValue>(SU->getValue());
10855     return false;
10856   });
10857 }
10858 
10859 namespace {
10860 
10861 // Collect all steps of SCEV expressions.
10862 struct SCEVCollectStrides {
10863   ScalarEvolution &SE;
10864   SmallVectorImpl<const SCEV *> &Strides;
10865 
10866   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
10867       : SE(SE), Strides(S) {}
10868 
10869   bool follow(const SCEV *S) {
10870     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
10871       Strides.push_back(AR->getStepRecurrence(SE));
10872     return true;
10873   }
10874 
10875   bool isDone() const { return false; }
10876 };
10877 
10878 // Collect all SCEVUnknown and SCEVMulExpr expressions.
10879 struct SCEVCollectTerms {
10880   SmallVectorImpl<const SCEV *> &Terms;
10881 
10882   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
10883 
10884   bool follow(const SCEV *S) {
10885     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
10886         isa<SCEVSignExtendExpr>(S)) {
10887       if (!containsUndefs(S))
10888         Terms.push_back(S);
10889 
10890       // Stop recursion: once we collected a term, do not walk its operands.
10891       return false;
10892     }
10893 
10894     // Keep looking.
10895     return true;
10896   }
10897 
10898   bool isDone() const { return false; }
10899 };
10900 
10901 // Check if a SCEV contains an AddRecExpr.
10902 struct SCEVHasAddRec {
10903   bool &ContainsAddRec;
10904 
10905   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
10906     ContainsAddRec = false;
10907   }
10908 
10909   bool follow(const SCEV *S) {
10910     if (isa<SCEVAddRecExpr>(S)) {
10911       ContainsAddRec = true;
10912 
10913       // Stop recursion: once we collected a term, do not walk its operands.
10914       return false;
10915     }
10916 
10917     // Keep looking.
10918     return true;
10919   }
10920 
10921   bool isDone() const { return false; }
10922 };
10923 
10924 // Find factors that are multiplied with an expression that (possibly as a
10925 // subexpression) contains an AddRecExpr. In the expression:
10926 //
10927 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
10928 //
10929 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
10930 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
10931 // parameters as they form a product with an induction variable.
10932 //
10933 // This collector expects all array size parameters to be in the same MulExpr.
10934 // It might be necessary to later add support for collecting parameters that are
10935 // spread over different nested MulExpr.
10936 struct SCEVCollectAddRecMultiplies {
10937   SmallVectorImpl<const SCEV *> &Terms;
10938   ScalarEvolution &SE;
10939 
10940   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
10941       : Terms(T), SE(SE) {}
10942 
10943   bool follow(const SCEV *S) {
10944     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
10945       bool HasAddRec = false;
10946       SmallVector<const SCEV *, 0> Operands;
10947       for (auto Op : Mul->operands()) {
10948         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
10949         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
10950           Operands.push_back(Op);
10951         } else if (Unknown) {
10952           HasAddRec = true;
10953         } else {
10954           bool ContainsAddRec;
10955           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
10956           visitAll(Op, ContiansAddRec);
10957           HasAddRec |= ContainsAddRec;
10958         }
10959       }
10960       if (Operands.size() == 0)
10961         return true;
10962 
10963       if (!HasAddRec)
10964         return false;
10965 
10966       Terms.push_back(SE.getMulExpr(Operands));
10967       // Stop recursion: once we collected a term, do not walk its operands.
10968       return false;
10969     }
10970 
10971     // Keep looking.
10972     return true;
10973   }
10974 
10975   bool isDone() const { return false; }
10976 };
10977 
10978 } // end anonymous namespace
10979 
10980 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
10981 /// two places:
10982 ///   1) The strides of AddRec expressions.
10983 ///   2) Unknowns that are multiplied with AddRec expressions.
10984 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
10985     SmallVectorImpl<const SCEV *> &Terms) {
10986   SmallVector<const SCEV *, 4> Strides;
10987   SCEVCollectStrides StrideCollector(*this, Strides);
10988   visitAll(Expr, StrideCollector);
10989 
10990   LLVM_DEBUG({
10991     dbgs() << "Strides:\n";
10992     for (const SCEV *S : Strides)
10993       dbgs() << *S << "\n";
10994   });
10995 
10996   for (const SCEV *S : Strides) {
10997     SCEVCollectTerms TermCollector(Terms);
10998     visitAll(S, TermCollector);
10999   }
11000 
11001   LLVM_DEBUG({
11002     dbgs() << "Terms:\n";
11003     for (const SCEV *T : Terms)
11004       dbgs() << *T << "\n";
11005   });
11006 
11007   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11008   visitAll(Expr, MulCollector);
11009 }
11010 
11011 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11012                                    SmallVectorImpl<const SCEV *> &Terms,
11013                                    SmallVectorImpl<const SCEV *> &Sizes) {
11014   int Last = Terms.size() - 1;
11015   const SCEV *Step = Terms[Last];
11016 
11017   // End of recursion.
11018   if (Last == 0) {
11019     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11020       SmallVector<const SCEV *, 2> Qs;
11021       for (const SCEV *Op : M->operands())
11022         if (!isa<SCEVConstant>(Op))
11023           Qs.push_back(Op);
11024 
11025       Step = SE.getMulExpr(Qs);
11026     }
11027 
11028     Sizes.push_back(Step);
11029     return true;
11030   }
11031 
11032   for (const SCEV *&Term : Terms) {
11033     // Normalize the terms before the next call to findArrayDimensionsRec.
11034     const SCEV *Q, *R;
11035     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11036 
11037     // Bail out when GCD does not evenly divide one of the terms.
11038     if (!R->isZero())
11039       return false;
11040 
11041     Term = Q;
11042   }
11043 
11044   // Remove all SCEVConstants.
11045   Terms.erase(
11046       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11047       Terms.end());
11048 
11049   if (Terms.size() > 0)
11050     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11051       return false;
11052 
11053   Sizes.push_back(Step);
11054   return true;
11055 }
11056 
11057 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11058 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11059   for (const SCEV *T : Terms)
11060     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11061       return true;
11062   return false;
11063 }
11064 
11065 // Return the number of product terms in S.
11066 static inline int numberOfTerms(const SCEV *S) {
11067   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11068     return Expr->getNumOperands();
11069   return 1;
11070 }
11071 
11072 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11073   if (isa<SCEVConstant>(T))
11074     return nullptr;
11075 
11076   if (isa<SCEVUnknown>(T))
11077     return T;
11078 
11079   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11080     SmallVector<const SCEV *, 2> Factors;
11081     for (const SCEV *Op : M->operands())
11082       if (!isa<SCEVConstant>(Op))
11083         Factors.push_back(Op);
11084 
11085     return SE.getMulExpr(Factors);
11086   }
11087 
11088   return T;
11089 }
11090 
11091 /// Return the size of an element read or written by Inst.
11092 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11093   Type *Ty;
11094   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11095     Ty = Store->getValueOperand()->getType();
11096   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11097     Ty = Load->getType();
11098   else
11099     return nullptr;
11100 
11101   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11102   return getSizeOfExpr(ETy, Ty);
11103 }
11104 
11105 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11106                                           SmallVectorImpl<const SCEV *> &Sizes,
11107                                           const SCEV *ElementSize) {
11108   if (Terms.size() < 1 || !ElementSize)
11109     return;
11110 
11111   // Early return when Terms do not contain parameters: we do not delinearize
11112   // non parametric SCEVs.
11113   if (!containsParameters(Terms))
11114     return;
11115 
11116   LLVM_DEBUG({
11117     dbgs() << "Terms:\n";
11118     for (const SCEV *T : Terms)
11119       dbgs() << *T << "\n";
11120   });
11121 
11122   // Remove duplicates.
11123   array_pod_sort(Terms.begin(), Terms.end());
11124   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11125 
11126   // Put larger terms first.
11127   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11128     return numberOfTerms(LHS) > numberOfTerms(RHS);
11129   });
11130 
11131   // Try to divide all terms by the element size. If term is not divisible by
11132   // element size, proceed with the original term.
11133   for (const SCEV *&Term : Terms) {
11134     const SCEV *Q, *R;
11135     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11136     if (!Q->isZero())
11137       Term = Q;
11138   }
11139 
11140   SmallVector<const SCEV *, 4> NewTerms;
11141 
11142   // Remove constant factors.
11143   for (const SCEV *T : Terms)
11144     if (const SCEV *NewT = removeConstantFactors(*this, T))
11145       NewTerms.push_back(NewT);
11146 
11147   LLVM_DEBUG({
11148     dbgs() << "Terms after sorting:\n";
11149     for (const SCEV *T : NewTerms)
11150       dbgs() << *T << "\n";
11151   });
11152 
11153   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11154     Sizes.clear();
11155     return;
11156   }
11157 
11158   // The last element to be pushed into Sizes is the size of an element.
11159   Sizes.push_back(ElementSize);
11160 
11161   LLVM_DEBUG({
11162     dbgs() << "Sizes:\n";
11163     for (const SCEV *S : Sizes)
11164       dbgs() << *S << "\n";
11165   });
11166 }
11167 
11168 void ScalarEvolution::computeAccessFunctions(
11169     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11170     SmallVectorImpl<const SCEV *> &Sizes) {
11171   // Early exit in case this SCEV is not an affine multivariate function.
11172   if (Sizes.empty())
11173     return;
11174 
11175   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11176     if (!AR->isAffine())
11177       return;
11178 
11179   const SCEV *Res = Expr;
11180   int Last = Sizes.size() - 1;
11181   for (int i = Last; i >= 0; i--) {
11182     const SCEV *Q, *R;
11183     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11184 
11185     LLVM_DEBUG({
11186       dbgs() << "Res: " << *Res << "\n";
11187       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11188       dbgs() << "Res divided by Sizes[i]:\n";
11189       dbgs() << "Quotient: " << *Q << "\n";
11190       dbgs() << "Remainder: " << *R << "\n";
11191     });
11192 
11193     Res = Q;
11194 
11195     // Do not record the last subscript corresponding to the size of elements in
11196     // the array.
11197     if (i == Last) {
11198 
11199       // Bail out if the remainder is too complex.
11200       if (isa<SCEVAddRecExpr>(R)) {
11201         Subscripts.clear();
11202         Sizes.clear();
11203         return;
11204       }
11205 
11206       continue;
11207     }
11208 
11209     // Record the access function for the current subscript.
11210     Subscripts.push_back(R);
11211   }
11212 
11213   // Also push in last position the remainder of the last division: it will be
11214   // the access function of the innermost dimension.
11215   Subscripts.push_back(Res);
11216 
11217   std::reverse(Subscripts.begin(), Subscripts.end());
11218 
11219   LLVM_DEBUG({
11220     dbgs() << "Subscripts:\n";
11221     for (const SCEV *S : Subscripts)
11222       dbgs() << *S << "\n";
11223   });
11224 }
11225 
11226 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11227 /// sizes of an array access. Returns the remainder of the delinearization that
11228 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11229 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11230 /// expressions in the stride and base of a SCEV corresponding to the
11231 /// computation of a GCD (greatest common divisor) of base and stride.  When
11232 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11233 ///
11234 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11235 ///
11236 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11237 ///
11238 ///    for (long i = 0; i < n; i++)
11239 ///      for (long j = 0; j < m; j++)
11240 ///        for (long k = 0; k < o; k++)
11241 ///          A[i][j][k] = 1.0;
11242 ///  }
11243 ///
11244 /// the delinearization input is the following AddRec SCEV:
11245 ///
11246 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11247 ///
11248 /// From this SCEV, we are able to say that the base offset of the access is %A
11249 /// because it appears as an offset that does not divide any of the strides in
11250 /// the loops:
11251 ///
11252 ///  CHECK: Base offset: %A
11253 ///
11254 /// and then SCEV->delinearize determines the size of some of the dimensions of
11255 /// the array as these are the multiples by which the strides are happening:
11256 ///
11257 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11258 ///
11259 /// Note that the outermost dimension remains of UnknownSize because there are
11260 /// no strides that would help identifying the size of the last dimension: when
11261 /// the array has been statically allocated, one could compute the size of that
11262 /// dimension by dividing the overall size of the array by the size of the known
11263 /// dimensions: %m * %o * 8.
11264 ///
11265 /// Finally delinearize provides the access functions for the array reference
11266 /// that does correspond to A[i][j][k] of the above C testcase:
11267 ///
11268 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11269 ///
11270 /// The testcases are checking the output of a function pass:
11271 /// DelinearizationPass that walks through all loads and stores of a function
11272 /// asking for the SCEV of the memory access with respect to all enclosing
11273 /// loops, calling SCEV->delinearize on that and printing the results.
11274 void ScalarEvolution::delinearize(const SCEV *Expr,
11275                                  SmallVectorImpl<const SCEV *> &Subscripts,
11276                                  SmallVectorImpl<const SCEV *> &Sizes,
11277                                  const SCEV *ElementSize) {
11278   // First step: collect parametric terms.
11279   SmallVector<const SCEV *, 4> Terms;
11280   collectParametricTerms(Expr, Terms);
11281 
11282   if (Terms.empty())
11283     return;
11284 
11285   // Second step: find subscript sizes.
11286   findArrayDimensions(Terms, Sizes, ElementSize);
11287 
11288   if (Sizes.empty())
11289     return;
11290 
11291   // Third step: compute the access functions for each subscript.
11292   computeAccessFunctions(Expr, Subscripts, Sizes);
11293 
11294   if (Subscripts.empty())
11295     return;
11296 
11297   LLVM_DEBUG({
11298     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11299     dbgs() << "ArrayDecl[UnknownSize]";
11300     for (const SCEV *S : Sizes)
11301       dbgs() << "[" << *S << "]";
11302 
11303     dbgs() << "\nArrayRef";
11304     for (const SCEV *S : Subscripts)
11305       dbgs() << "[" << *S << "]";
11306     dbgs() << "\n";
11307   });
11308 }
11309 
11310 //===----------------------------------------------------------------------===//
11311 //                   SCEVCallbackVH Class Implementation
11312 //===----------------------------------------------------------------------===//
11313 
11314 void ScalarEvolution::SCEVCallbackVH::deleted() {
11315   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11316   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11317     SE->ConstantEvolutionLoopExitValue.erase(PN);
11318   SE->eraseValueFromMap(getValPtr());
11319   // this now dangles!
11320 }
11321 
11322 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11323   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11324 
11325   // Forget all the expressions associated with users of the old value,
11326   // so that future queries will recompute the expressions using the new
11327   // value.
11328   Value *Old = getValPtr();
11329   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11330   SmallPtrSet<User *, 8> Visited;
11331   while (!Worklist.empty()) {
11332     User *U = Worklist.pop_back_val();
11333     // Deleting the Old value will cause this to dangle. Postpone
11334     // that until everything else is done.
11335     if (U == Old)
11336       continue;
11337     if (!Visited.insert(U).second)
11338       continue;
11339     if (PHINode *PN = dyn_cast<PHINode>(U))
11340       SE->ConstantEvolutionLoopExitValue.erase(PN);
11341     SE->eraseValueFromMap(U);
11342     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11343   }
11344   // Delete the Old value.
11345   if (PHINode *PN = dyn_cast<PHINode>(Old))
11346     SE->ConstantEvolutionLoopExitValue.erase(PN);
11347   SE->eraseValueFromMap(Old);
11348   // this now dangles!
11349 }
11350 
11351 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11352   : CallbackVH(V), SE(se) {}
11353 
11354 //===----------------------------------------------------------------------===//
11355 //                   ScalarEvolution Class Implementation
11356 //===----------------------------------------------------------------------===//
11357 
11358 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11359                                  AssumptionCache &AC, DominatorTree &DT,
11360                                  LoopInfo &LI)
11361     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11362       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11363       LoopDispositions(64), BlockDispositions(64) {
11364   // To use guards for proving predicates, we need to scan every instruction in
11365   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11366   // time if the IR does not actually contain any calls to
11367   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11368   //
11369   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11370   // to _add_ guards to the module when there weren't any before, and wants
11371   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11372   // efficient in lieu of being smart in that rather obscure case.
11373 
11374   auto *GuardDecl = F.getParent()->getFunction(
11375       Intrinsic::getName(Intrinsic::experimental_guard));
11376   HasGuards = GuardDecl && !GuardDecl->use_empty();
11377 }
11378 
11379 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11380     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11381       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11382       ValueExprMap(std::move(Arg.ValueExprMap)),
11383       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11384       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11385       PendingMerges(std::move(Arg.PendingMerges)),
11386       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11387       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11388       PredicatedBackedgeTakenCounts(
11389           std::move(Arg.PredicatedBackedgeTakenCounts)),
11390       ConstantEvolutionLoopExitValue(
11391           std::move(Arg.ConstantEvolutionLoopExitValue)),
11392       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11393       LoopDispositions(std::move(Arg.LoopDispositions)),
11394       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11395       BlockDispositions(std::move(Arg.BlockDispositions)),
11396       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11397       SignedRanges(std::move(Arg.SignedRanges)),
11398       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11399       UniquePreds(std::move(Arg.UniquePreds)),
11400       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11401       LoopUsers(std::move(Arg.LoopUsers)),
11402       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11403       FirstUnknown(Arg.FirstUnknown) {
11404   Arg.FirstUnknown = nullptr;
11405 }
11406 
11407 ScalarEvolution::~ScalarEvolution() {
11408   // Iterate through all the SCEVUnknown instances and call their
11409   // destructors, so that they release their references to their values.
11410   for (SCEVUnknown *U = FirstUnknown; U;) {
11411     SCEVUnknown *Tmp = U;
11412     U = U->Next;
11413     Tmp->~SCEVUnknown();
11414   }
11415   FirstUnknown = nullptr;
11416 
11417   ExprValueMap.clear();
11418   ValueExprMap.clear();
11419   HasRecMap.clear();
11420 
11421   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11422   // that a loop had multiple computable exits.
11423   for (auto &BTCI : BackedgeTakenCounts)
11424     BTCI.second.clear();
11425   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11426     BTCI.second.clear();
11427 
11428   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11429   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11430   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11431   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11432   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11433 }
11434 
11435 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11436   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11437 }
11438 
11439 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11440                           const Loop *L) {
11441   // Print all inner loops first
11442   for (Loop *I : *L)
11443     PrintLoopInfo(OS, SE, I);
11444 
11445   OS << "Loop ";
11446   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11447   OS << ": ";
11448 
11449   SmallVector<BasicBlock *, 8> ExitBlocks;
11450   L->getExitBlocks(ExitBlocks);
11451   if (ExitBlocks.size() != 1)
11452     OS << "<multiple exits> ";
11453 
11454   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11455     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
11456   } else {
11457     OS << "Unpredictable backedge-taken count. ";
11458   }
11459 
11460   OS << "\n"
11461         "Loop ";
11462   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11463   OS << ": ";
11464 
11465   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
11466     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
11467     if (SE->isBackedgeTakenCountMaxOrZero(L))
11468       OS << ", actual taken count either this or zero.";
11469   } else {
11470     OS << "Unpredictable max backedge-taken count. ";
11471   }
11472 
11473   OS << "\n"
11474         "Loop ";
11475   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11476   OS << ": ";
11477 
11478   SCEVUnionPredicate Pred;
11479   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11480   if (!isa<SCEVCouldNotCompute>(PBT)) {
11481     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11482     OS << " Predicates:\n";
11483     Pred.print(OS, 4);
11484   } else {
11485     OS << "Unpredictable predicated backedge-taken count. ";
11486   }
11487   OS << "\n";
11488 
11489   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11490     OS << "Loop ";
11491     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11492     OS << ": ";
11493     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11494   }
11495 }
11496 
11497 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11498   switch (LD) {
11499   case ScalarEvolution::LoopVariant:
11500     return "Variant";
11501   case ScalarEvolution::LoopInvariant:
11502     return "Invariant";
11503   case ScalarEvolution::LoopComputable:
11504     return "Computable";
11505   }
11506   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11507 }
11508 
11509 void ScalarEvolution::print(raw_ostream &OS) const {
11510   // ScalarEvolution's implementation of the print method is to print
11511   // out SCEV values of all instructions that are interesting. Doing
11512   // this potentially causes it to create new SCEV objects though,
11513   // which technically conflicts with the const qualifier. This isn't
11514   // observable from outside the class though, so casting away the
11515   // const isn't dangerous.
11516   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11517 
11518   OS << "Classifying expressions for: ";
11519   F.printAsOperand(OS, /*PrintType=*/false);
11520   OS << "\n";
11521   for (Instruction &I : instructions(F))
11522     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11523       OS << I << '\n';
11524       OS << "  -->  ";
11525       const SCEV *SV = SE.getSCEV(&I);
11526       SV->print(OS);
11527       if (!isa<SCEVCouldNotCompute>(SV)) {
11528         OS << " U: ";
11529         SE.getUnsignedRange(SV).print(OS);
11530         OS << " S: ";
11531         SE.getSignedRange(SV).print(OS);
11532       }
11533 
11534       const Loop *L = LI.getLoopFor(I.getParent());
11535 
11536       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11537       if (AtUse != SV) {
11538         OS << "  -->  ";
11539         AtUse->print(OS);
11540         if (!isa<SCEVCouldNotCompute>(AtUse)) {
11541           OS << " U: ";
11542           SE.getUnsignedRange(AtUse).print(OS);
11543           OS << " S: ";
11544           SE.getSignedRange(AtUse).print(OS);
11545         }
11546       }
11547 
11548       if (L) {
11549         OS << "\t\t" "Exits: ";
11550         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11551         if (!SE.isLoopInvariant(ExitValue, L)) {
11552           OS << "<<Unknown>>";
11553         } else {
11554           OS << *ExitValue;
11555         }
11556 
11557         bool First = true;
11558         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11559           if (First) {
11560             OS << "\t\t" "LoopDispositions: { ";
11561             First = false;
11562           } else {
11563             OS << ", ";
11564           }
11565 
11566           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11567           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11568         }
11569 
11570         for (auto *InnerL : depth_first(L)) {
11571           if (InnerL == L)
11572             continue;
11573           if (First) {
11574             OS << "\t\t" "LoopDispositions: { ";
11575             First = false;
11576           } else {
11577             OS << ", ";
11578           }
11579 
11580           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11581           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11582         }
11583 
11584         OS << " }";
11585       }
11586 
11587       OS << "\n";
11588     }
11589 
11590   OS << "Determining loop execution counts for: ";
11591   F.printAsOperand(OS, /*PrintType=*/false);
11592   OS << "\n";
11593   for (Loop *I : LI)
11594     PrintLoopInfo(OS, &SE, I);
11595 }
11596 
11597 ScalarEvolution::LoopDisposition
11598 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11599   auto &Values = LoopDispositions[S];
11600   for (auto &V : Values) {
11601     if (V.getPointer() == L)
11602       return V.getInt();
11603   }
11604   Values.emplace_back(L, LoopVariant);
11605   LoopDisposition D = computeLoopDisposition(S, L);
11606   auto &Values2 = LoopDispositions[S];
11607   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11608     if (V.getPointer() == L) {
11609       V.setInt(D);
11610       break;
11611     }
11612   }
11613   return D;
11614 }
11615 
11616 ScalarEvolution::LoopDisposition
11617 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11618   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11619   case scConstant:
11620     return LoopInvariant;
11621   case scTruncate:
11622   case scZeroExtend:
11623   case scSignExtend:
11624     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11625   case scAddRecExpr: {
11626     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11627 
11628     // If L is the addrec's loop, it's computable.
11629     if (AR->getLoop() == L)
11630       return LoopComputable;
11631 
11632     // Add recurrences are never invariant in the function-body (null loop).
11633     if (!L)
11634       return LoopVariant;
11635 
11636     // Everything that is not defined at loop entry is variant.
11637     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11638       return LoopVariant;
11639     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11640            " dominate the contained loop's header?");
11641 
11642     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11643     if (AR->getLoop()->contains(L))
11644       return LoopInvariant;
11645 
11646     // This recurrence is variant w.r.t. L if any of its operands
11647     // are variant.
11648     for (auto *Op : AR->operands())
11649       if (!isLoopInvariant(Op, L))
11650         return LoopVariant;
11651 
11652     // Otherwise it's loop-invariant.
11653     return LoopInvariant;
11654   }
11655   case scAddExpr:
11656   case scMulExpr:
11657   case scUMaxExpr:
11658   case scSMaxExpr: {
11659     bool HasVarying = false;
11660     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11661       LoopDisposition D = getLoopDisposition(Op, L);
11662       if (D == LoopVariant)
11663         return LoopVariant;
11664       if (D == LoopComputable)
11665         HasVarying = true;
11666     }
11667     return HasVarying ? LoopComputable : LoopInvariant;
11668   }
11669   case scUDivExpr: {
11670     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11671     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11672     if (LD == LoopVariant)
11673       return LoopVariant;
11674     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11675     if (RD == LoopVariant)
11676       return LoopVariant;
11677     return (LD == LoopInvariant && RD == LoopInvariant) ?
11678            LoopInvariant : LoopComputable;
11679   }
11680   case scUnknown:
11681     // All non-instruction values are loop invariant.  All instructions are loop
11682     // invariant if they are not contained in the specified loop.
11683     // Instructions are never considered invariant in the function body
11684     // (null loop) because they are defined within the "loop".
11685     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11686       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11687     return LoopInvariant;
11688   case scCouldNotCompute:
11689     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11690   }
11691   llvm_unreachable("Unknown SCEV kind!");
11692 }
11693 
11694 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11695   return getLoopDisposition(S, L) == LoopInvariant;
11696 }
11697 
11698 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11699   return getLoopDisposition(S, L) == LoopComputable;
11700 }
11701 
11702 ScalarEvolution::BlockDisposition
11703 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11704   auto &Values = BlockDispositions[S];
11705   for (auto &V : Values) {
11706     if (V.getPointer() == BB)
11707       return V.getInt();
11708   }
11709   Values.emplace_back(BB, DoesNotDominateBlock);
11710   BlockDisposition D = computeBlockDisposition(S, BB);
11711   auto &Values2 = BlockDispositions[S];
11712   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11713     if (V.getPointer() == BB) {
11714       V.setInt(D);
11715       break;
11716     }
11717   }
11718   return D;
11719 }
11720 
11721 ScalarEvolution::BlockDisposition
11722 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11723   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11724   case scConstant:
11725     return ProperlyDominatesBlock;
11726   case scTruncate:
11727   case scZeroExtend:
11728   case scSignExtend:
11729     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11730   case scAddRecExpr: {
11731     // This uses a "dominates" query instead of "properly dominates" query
11732     // to test for proper dominance too, because the instruction which
11733     // produces the addrec's value is a PHI, and a PHI effectively properly
11734     // dominates its entire containing block.
11735     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11736     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11737       return DoesNotDominateBlock;
11738 
11739     // Fall through into SCEVNAryExpr handling.
11740     LLVM_FALLTHROUGH;
11741   }
11742   case scAddExpr:
11743   case scMulExpr:
11744   case scUMaxExpr:
11745   case scSMaxExpr: {
11746     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11747     bool Proper = true;
11748     for (const SCEV *NAryOp : NAry->operands()) {
11749       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11750       if (D == DoesNotDominateBlock)
11751         return DoesNotDominateBlock;
11752       if (D == DominatesBlock)
11753         Proper = false;
11754     }
11755     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11756   }
11757   case scUDivExpr: {
11758     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11759     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11760     BlockDisposition LD = getBlockDisposition(LHS, BB);
11761     if (LD == DoesNotDominateBlock)
11762       return DoesNotDominateBlock;
11763     BlockDisposition RD = getBlockDisposition(RHS, BB);
11764     if (RD == DoesNotDominateBlock)
11765       return DoesNotDominateBlock;
11766     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11767       ProperlyDominatesBlock : DominatesBlock;
11768   }
11769   case scUnknown:
11770     if (Instruction *I =
11771           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11772       if (I->getParent() == BB)
11773         return DominatesBlock;
11774       if (DT.properlyDominates(I->getParent(), BB))
11775         return ProperlyDominatesBlock;
11776       return DoesNotDominateBlock;
11777     }
11778     return ProperlyDominatesBlock;
11779   case scCouldNotCompute:
11780     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11781   }
11782   llvm_unreachable("Unknown SCEV kind!");
11783 }
11784 
11785 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11786   return getBlockDisposition(S, BB) >= DominatesBlock;
11787 }
11788 
11789 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11790   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11791 }
11792 
11793 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11794   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11795 }
11796 
11797 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
11798   auto IsS = [&](const SCEV *X) { return S == X; };
11799   auto ContainsS = [&](const SCEV *X) {
11800     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
11801   };
11802   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
11803 }
11804 
11805 void
11806 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
11807   ValuesAtScopes.erase(S);
11808   LoopDispositions.erase(S);
11809   BlockDispositions.erase(S);
11810   UnsignedRanges.erase(S);
11811   SignedRanges.erase(S);
11812   ExprValueMap.erase(S);
11813   HasRecMap.erase(S);
11814   MinTrailingZerosCache.erase(S);
11815 
11816   for (auto I = PredicatedSCEVRewrites.begin();
11817        I != PredicatedSCEVRewrites.end();) {
11818     std::pair<const SCEV *, const Loop *> Entry = I->first;
11819     if (Entry.first == S)
11820       PredicatedSCEVRewrites.erase(I++);
11821     else
11822       ++I;
11823   }
11824 
11825   auto RemoveSCEVFromBackedgeMap =
11826       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
11827         for (auto I = Map.begin(), E = Map.end(); I != E;) {
11828           BackedgeTakenInfo &BEInfo = I->second;
11829           if (BEInfo.hasOperand(S, this)) {
11830             BEInfo.clear();
11831             Map.erase(I++);
11832           } else
11833             ++I;
11834         }
11835       };
11836 
11837   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
11838   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
11839 }
11840 
11841 void
11842 ScalarEvolution::getUsedLoops(const SCEV *S,
11843                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
11844   struct FindUsedLoops {
11845     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
11846         : LoopsUsed(LoopsUsed) {}
11847     SmallPtrSetImpl<const Loop *> &LoopsUsed;
11848     bool follow(const SCEV *S) {
11849       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
11850         LoopsUsed.insert(AR->getLoop());
11851       return true;
11852     }
11853 
11854     bool isDone() const { return false; }
11855   };
11856 
11857   FindUsedLoops F(LoopsUsed);
11858   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
11859 }
11860 
11861 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
11862   SmallPtrSet<const Loop *, 8> LoopsUsed;
11863   getUsedLoops(S, LoopsUsed);
11864   for (auto *L : LoopsUsed)
11865     LoopUsers[L].push_back(S);
11866 }
11867 
11868 void ScalarEvolution::verify() const {
11869   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11870   ScalarEvolution SE2(F, TLI, AC, DT, LI);
11871 
11872   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
11873 
11874   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
11875   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
11876     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
11877 
11878     const SCEV *visitConstant(const SCEVConstant *Constant) {
11879       return SE.getConstant(Constant->getAPInt());
11880     }
11881 
11882     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
11883       return SE.getUnknown(Expr->getValue());
11884     }
11885 
11886     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
11887       return SE.getCouldNotCompute();
11888     }
11889   };
11890 
11891   SCEVMapper SCM(SE2);
11892 
11893   while (!LoopStack.empty()) {
11894     auto *L = LoopStack.pop_back_val();
11895     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
11896 
11897     auto *CurBECount = SCM.visit(
11898         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
11899     auto *NewBECount = SE2.getBackedgeTakenCount(L);
11900 
11901     if (CurBECount == SE2.getCouldNotCompute() ||
11902         NewBECount == SE2.getCouldNotCompute()) {
11903       // NB! This situation is legal, but is very suspicious -- whatever pass
11904       // change the loop to make a trip count go from could not compute to
11905       // computable or vice-versa *should have* invalidated SCEV.  However, we
11906       // choose not to assert here (for now) since we don't want false
11907       // positives.
11908       continue;
11909     }
11910 
11911     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
11912       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
11913       // not propagate undef aggressively).  This means we can (and do) fail
11914       // verification in cases where a transform makes the trip count of a loop
11915       // go from "undef" to "undef+1" (say).  The transform is fine, since in
11916       // both cases the loop iterates "undef" times, but SCEV thinks we
11917       // increased the trip count of the loop by 1 incorrectly.
11918       continue;
11919     }
11920 
11921     if (SE.getTypeSizeInBits(CurBECount->getType()) >
11922         SE.getTypeSizeInBits(NewBECount->getType()))
11923       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
11924     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
11925              SE.getTypeSizeInBits(NewBECount->getType()))
11926       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
11927 
11928     auto *ConstantDelta =
11929         dyn_cast<SCEVConstant>(SE2.getMinusSCEV(CurBECount, NewBECount));
11930 
11931     if (ConstantDelta && ConstantDelta->getAPInt() != 0) {
11932       dbgs() << "Trip Count Changed!\n";
11933       dbgs() << "Old: " << *CurBECount << "\n";
11934       dbgs() << "New: " << *NewBECount << "\n";
11935       dbgs() << "Delta: " << *ConstantDelta << "\n";
11936       std::abort();
11937     }
11938   }
11939 }
11940 
11941 bool ScalarEvolution::invalidate(
11942     Function &F, const PreservedAnalyses &PA,
11943     FunctionAnalysisManager::Invalidator &Inv) {
11944   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
11945   // of its dependencies is invalidated.
11946   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
11947   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
11948          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
11949          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
11950          Inv.invalidate<LoopAnalysis>(F, PA);
11951 }
11952 
11953 AnalysisKey ScalarEvolutionAnalysis::Key;
11954 
11955 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
11956                                              FunctionAnalysisManager &AM) {
11957   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
11958                          AM.getResult<AssumptionAnalysis>(F),
11959                          AM.getResult<DominatorTreeAnalysis>(F),
11960                          AM.getResult<LoopAnalysis>(F));
11961 }
11962 
11963 PreservedAnalyses
11964 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
11965   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
11966   return PreservedAnalyses::all();
11967 }
11968 
11969 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
11970                       "Scalar Evolution Analysis", false, true)
11971 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
11972 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
11973 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
11974 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
11975 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
11976                     "Scalar Evolution Analysis", false, true)
11977 
11978 char ScalarEvolutionWrapperPass::ID = 0;
11979 
11980 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
11981   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
11982 }
11983 
11984 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
11985   SE.reset(new ScalarEvolution(
11986       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
11987       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
11988       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
11989       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
11990   return false;
11991 }
11992 
11993 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
11994 
11995 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
11996   SE->print(OS);
11997 }
11998 
11999 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12000   if (!VerifySCEV)
12001     return;
12002 
12003   SE->verify();
12004 }
12005 
12006 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12007   AU.setPreservesAll();
12008   AU.addRequiredTransitive<AssumptionCacheTracker>();
12009   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12010   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12011   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12012 }
12013 
12014 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12015                                                         const SCEV *RHS) {
12016   FoldingSetNodeID ID;
12017   assert(LHS->getType() == RHS->getType() &&
12018          "Type mismatch between LHS and RHS");
12019   // Unique this node based on the arguments
12020   ID.AddInteger(SCEVPredicate::P_Equal);
12021   ID.AddPointer(LHS);
12022   ID.AddPointer(RHS);
12023   void *IP = nullptr;
12024   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12025     return S;
12026   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12027       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12028   UniquePreds.InsertNode(Eq, IP);
12029   return Eq;
12030 }
12031 
12032 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12033     const SCEVAddRecExpr *AR,
12034     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12035   FoldingSetNodeID ID;
12036   // Unique this node based on the arguments
12037   ID.AddInteger(SCEVPredicate::P_Wrap);
12038   ID.AddPointer(AR);
12039   ID.AddInteger(AddedFlags);
12040   void *IP = nullptr;
12041   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12042     return S;
12043   auto *OF = new (SCEVAllocator)
12044       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12045   UniquePreds.InsertNode(OF, IP);
12046   return OF;
12047 }
12048 
12049 namespace {
12050 
12051 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12052 public:
12053 
12054   /// Rewrites \p S in the context of a loop L and the SCEV predication
12055   /// infrastructure.
12056   ///
12057   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12058   /// equivalences present in \p Pred.
12059   ///
12060   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12061   /// \p NewPreds such that the result will be an AddRecExpr.
12062   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12063                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12064                              SCEVUnionPredicate *Pred) {
12065     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12066     return Rewriter.visit(S);
12067   }
12068 
12069   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12070     if (Pred) {
12071       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12072       for (auto *Pred : ExprPreds)
12073         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12074           if (IPred->getLHS() == Expr)
12075             return IPred->getRHS();
12076     }
12077     return convertToAddRecWithPreds(Expr);
12078   }
12079 
12080   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12081     const SCEV *Operand = visit(Expr->getOperand());
12082     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12083     if (AR && AR->getLoop() == L && AR->isAffine()) {
12084       // This couldn't be folded because the operand didn't have the nuw
12085       // flag. Add the nusw flag as an assumption that we could make.
12086       const SCEV *Step = AR->getStepRecurrence(SE);
12087       Type *Ty = Expr->getType();
12088       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12089         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12090                                 SE.getSignExtendExpr(Step, Ty), L,
12091                                 AR->getNoWrapFlags());
12092     }
12093     return SE.getZeroExtendExpr(Operand, Expr->getType());
12094   }
12095 
12096   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12097     const SCEV *Operand = visit(Expr->getOperand());
12098     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12099     if (AR && AR->getLoop() == L && AR->isAffine()) {
12100       // This couldn't be folded because the operand didn't have the nsw
12101       // flag. Add the nssw flag as an assumption that we could make.
12102       const SCEV *Step = AR->getStepRecurrence(SE);
12103       Type *Ty = Expr->getType();
12104       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12105         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12106                                 SE.getSignExtendExpr(Step, Ty), L,
12107                                 AR->getNoWrapFlags());
12108     }
12109     return SE.getSignExtendExpr(Operand, Expr->getType());
12110   }
12111 
12112 private:
12113   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12114                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12115                         SCEVUnionPredicate *Pred)
12116       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12117 
12118   bool addOverflowAssumption(const SCEVPredicate *P) {
12119     if (!NewPreds) {
12120       // Check if we've already made this assumption.
12121       return Pred && Pred->implies(P);
12122     }
12123     NewPreds->insert(P);
12124     return true;
12125   }
12126 
12127   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12128                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12129     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12130     return addOverflowAssumption(A);
12131   }
12132 
12133   // If \p Expr represents a PHINode, we try to see if it can be represented
12134   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12135   // to add this predicate as a runtime overflow check, we return the AddRec.
12136   // If \p Expr does not meet these conditions (is not a PHI node, or we
12137   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12138   // return \p Expr.
12139   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12140     if (!isa<PHINode>(Expr->getValue()))
12141       return Expr;
12142     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12143     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12144     if (!PredicatedRewrite)
12145       return Expr;
12146     for (auto *P : PredicatedRewrite->second){
12147       // Wrap predicates from outer loops are not supported.
12148       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12149         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12150         if (L != AR->getLoop())
12151           return Expr;
12152       }
12153       if (!addOverflowAssumption(P))
12154         return Expr;
12155     }
12156     return PredicatedRewrite->first;
12157   }
12158 
12159   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12160   SCEVUnionPredicate *Pred;
12161   const Loop *L;
12162 };
12163 
12164 } // end anonymous namespace
12165 
12166 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12167                                                    SCEVUnionPredicate &Preds) {
12168   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12169 }
12170 
12171 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12172     const SCEV *S, const Loop *L,
12173     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12174   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12175   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12176   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12177 
12178   if (!AddRec)
12179     return nullptr;
12180 
12181   // Since the transformation was successful, we can now transfer the SCEV
12182   // predicates.
12183   for (auto *P : TransformPreds)
12184     Preds.insert(P);
12185 
12186   return AddRec;
12187 }
12188 
12189 /// SCEV predicates
12190 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12191                              SCEVPredicateKind Kind)
12192     : FastID(ID), Kind(Kind) {}
12193 
12194 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12195                                        const SCEV *LHS, const SCEV *RHS)
12196     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12197   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12198   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12199 }
12200 
12201 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12202   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12203 
12204   if (!Op)
12205     return false;
12206 
12207   return Op->LHS == LHS && Op->RHS == RHS;
12208 }
12209 
12210 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12211 
12212 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12213 
12214 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12215   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12216 }
12217 
12218 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12219                                      const SCEVAddRecExpr *AR,
12220                                      IncrementWrapFlags Flags)
12221     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12222 
12223 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12224 
12225 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12226   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12227 
12228   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12229 }
12230 
12231 bool SCEVWrapPredicate::isAlwaysTrue() const {
12232   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12233   IncrementWrapFlags IFlags = Flags;
12234 
12235   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12236     IFlags = clearFlags(IFlags, IncrementNSSW);
12237 
12238   return IFlags == IncrementAnyWrap;
12239 }
12240 
12241 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12242   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12243   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12244     OS << "<nusw>";
12245   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12246     OS << "<nssw>";
12247   OS << "\n";
12248 }
12249 
12250 SCEVWrapPredicate::IncrementWrapFlags
12251 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12252                                    ScalarEvolution &SE) {
12253   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12254   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12255 
12256   // We can safely transfer the NSW flag as NSSW.
12257   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12258     ImpliedFlags = IncrementNSSW;
12259 
12260   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12261     // If the increment is positive, the SCEV NUW flag will also imply the
12262     // WrapPredicate NUSW flag.
12263     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12264       if (Step->getValue()->getValue().isNonNegative())
12265         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12266   }
12267 
12268   return ImpliedFlags;
12269 }
12270 
12271 /// Union predicates don't get cached so create a dummy set ID for it.
12272 SCEVUnionPredicate::SCEVUnionPredicate()
12273     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12274 
12275 bool SCEVUnionPredicate::isAlwaysTrue() const {
12276   return all_of(Preds,
12277                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12278 }
12279 
12280 ArrayRef<const SCEVPredicate *>
12281 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12282   auto I = SCEVToPreds.find(Expr);
12283   if (I == SCEVToPreds.end())
12284     return ArrayRef<const SCEVPredicate *>();
12285   return I->second;
12286 }
12287 
12288 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12289   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12290     return all_of(Set->Preds,
12291                   [this](const SCEVPredicate *I) { return this->implies(I); });
12292 
12293   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12294   if (ScevPredsIt == SCEVToPreds.end())
12295     return false;
12296   auto &SCEVPreds = ScevPredsIt->second;
12297 
12298   return any_of(SCEVPreds,
12299                 [N](const SCEVPredicate *I) { return I->implies(N); });
12300 }
12301 
12302 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12303 
12304 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12305   for (auto Pred : Preds)
12306     Pred->print(OS, Depth);
12307 }
12308 
12309 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12310   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12311     for (auto Pred : Set->Preds)
12312       add(Pred);
12313     return;
12314   }
12315 
12316   if (implies(N))
12317     return;
12318 
12319   const SCEV *Key = N->getExpr();
12320   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12321                 " associated expression!");
12322 
12323   SCEVToPreds[Key].push_back(N);
12324   Preds.push_back(N);
12325 }
12326 
12327 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12328                                                      Loop &L)
12329     : SE(SE), L(L) {}
12330 
12331 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12332   const SCEV *Expr = SE.getSCEV(V);
12333   RewriteEntry &Entry = RewriteMap[Expr];
12334 
12335   // If we already have an entry and the version matches, return it.
12336   if (Entry.second && Generation == Entry.first)
12337     return Entry.second;
12338 
12339   // We found an entry but it's stale. Rewrite the stale entry
12340   // according to the current predicate.
12341   if (Entry.second)
12342     Expr = Entry.second;
12343 
12344   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12345   Entry = {Generation, NewSCEV};
12346 
12347   return NewSCEV;
12348 }
12349 
12350 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12351   if (!BackedgeCount) {
12352     SCEVUnionPredicate BackedgePred;
12353     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12354     addPredicate(BackedgePred);
12355   }
12356   return BackedgeCount;
12357 }
12358 
12359 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12360   if (Preds.implies(&Pred))
12361     return;
12362   Preds.add(&Pred);
12363   updateGeneration();
12364 }
12365 
12366 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12367   return Preds;
12368 }
12369 
12370 void PredicatedScalarEvolution::updateGeneration() {
12371   // If the generation number wrapped recompute everything.
12372   if (++Generation == 0) {
12373     for (auto &II : RewriteMap) {
12374       const SCEV *Rewritten = II.second.second;
12375       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12376     }
12377   }
12378 }
12379 
12380 void PredicatedScalarEvolution::setNoOverflow(
12381     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12382   const SCEV *Expr = getSCEV(V);
12383   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12384 
12385   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12386 
12387   // Clear the statically implied flags.
12388   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12389   addPredicate(*SE.getWrapPredicate(AR, Flags));
12390 
12391   auto II = FlagsMap.insert({V, Flags});
12392   if (!II.second)
12393     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12394 }
12395 
12396 bool PredicatedScalarEvolution::hasNoOverflow(
12397     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12398   const SCEV *Expr = getSCEV(V);
12399   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12400 
12401   Flags = SCEVWrapPredicate::clearFlags(
12402       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12403 
12404   auto II = FlagsMap.find(V);
12405 
12406   if (II != FlagsMap.end())
12407     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12408 
12409   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12410 }
12411 
12412 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12413   const SCEV *Expr = this->getSCEV(V);
12414   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12415   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12416 
12417   if (!New)
12418     return nullptr;
12419 
12420   for (auto *P : NewPreds)
12421     Preds.add(P);
12422 
12423   updateGeneration();
12424   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12425   return New;
12426 }
12427 
12428 PredicatedScalarEvolution::PredicatedScalarEvolution(
12429     const PredicatedScalarEvolution &Init)
12430     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12431       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12432   for (const auto &I : Init.FlagsMap)
12433     FlagsMap.insert(I);
12434 }
12435 
12436 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12437   // For each block.
12438   for (auto *BB : L.getBlocks())
12439     for (auto &I : *BB) {
12440       if (!SE.isSCEVable(I.getType()))
12441         continue;
12442 
12443       auto *Expr = SE.getSCEV(&I);
12444       auto II = RewriteMap.find(Expr);
12445 
12446       if (II == RewriteMap.end())
12447         continue;
12448 
12449       // Don't print things that are not interesting.
12450       if (II->second.second == Expr)
12451         continue;
12452 
12453       OS.indent(Depth) << "[PSE]" << I << ":\n";
12454       OS.indent(Depth + 2) << *Expr << "\n";
12455       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12456     }
12457 }
12458 
12459 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12460 // arbitrary expressions.
12461 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12462 // 4, A / B becomes X / 8).
12463 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12464                                 const SCEV *&RHS) {
12465   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12466   if (Add == nullptr || Add->getNumOperands() != 2)
12467     return false;
12468 
12469   const SCEV *A = Add->getOperand(1);
12470   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12471 
12472   if (Mul == nullptr)
12473     return false;
12474 
12475   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12476     // (SomeExpr + (-(SomeExpr / B) * B)).
12477     if (Expr == getURemExpr(A, B)) {
12478       LHS = A;
12479       RHS = B;
12480       return true;
12481     }
12482     return false;
12483   };
12484 
12485   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12486   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12487     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12488            MatchURemWithDivisor(Mul->getOperand(2));
12489 
12490   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12491   if (Mul->getNumOperands() == 2)
12492     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12493            MatchURemWithDivisor(Mul->getOperand(0)) ||
12494            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12495            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12496   return false;
12497 }
12498