1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 
149 static cl::opt<unsigned>
150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
151                         cl::ZeroOrMore,
152                         cl::desc("Maximum number of iterations SCEV will "
153                                  "symbolically execute a constant "
154                                  "derived loop"),
155                         cl::init(100));
156 
157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
158 static cl::opt<bool> VerifySCEV(
159     "verify-scev", cl::Hidden,
160     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
161 static cl::opt<bool> VerifySCEVStrict(
162     "verify-scev-strict", cl::Hidden,
163     cl::desc("Enable stricter verification with -verify-scev is passed"));
164 static cl::opt<bool>
165     VerifySCEVMap("verify-scev-maps", cl::Hidden,
166                   cl::desc("Verify no dangling value in ScalarEvolution's "
167                            "ExprValueMap (slow)"));
168 
169 static cl::opt<bool> VerifyIR(
170     "scev-verify-ir", cl::Hidden,
171     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
172     cl::init(false));
173 
174 static cl::opt<unsigned> MulOpsInlineThreshold(
175     "scev-mulops-inline-threshold", cl::Hidden,
176     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
177     cl::init(32));
178 
179 static cl::opt<unsigned> AddOpsInlineThreshold(
180     "scev-addops-inline-threshold", cl::Hidden,
181     cl::desc("Threshold for inlining addition operands into a SCEV"),
182     cl::init(500));
183 
184 static cl::opt<unsigned> MaxSCEVCompareDepth(
185     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
186     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
187     cl::init(32));
188 
189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
190     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
191     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
192     cl::init(2));
193 
194 static cl::opt<unsigned> MaxValueCompareDepth(
195     "scalar-evolution-max-value-compare-depth", cl::Hidden,
196     cl::desc("Maximum depth of recursive value complexity comparisons"),
197     cl::init(2));
198 
199 static cl::opt<unsigned>
200     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
201                   cl::desc("Maximum depth of recursive arithmetics"),
202                   cl::init(32));
203 
204 static cl::opt<unsigned> MaxConstantEvolvingDepth(
205     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
206     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
207 
208 static cl::opt<unsigned>
209     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
210                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
211                  cl::init(8));
212 
213 static cl::opt<unsigned>
214     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
215                   cl::desc("Max coefficients in AddRec during evolving"),
216                   cl::init(8));
217 
218 static cl::opt<unsigned>
219     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
220                   cl::desc("Size of the expression which is considered huge"),
221                   cl::init(4096));
222 
223 static cl::opt<bool>
224 ClassifyExpressions("scalar-evolution-classify-expressions",
225     cl::Hidden, cl::init(true),
226     cl::desc("When printing analysis, include information on every instruction"));
227 
228 static cl::opt<bool> UseExpensiveRangeSharpening(
229     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
230     cl::init(false),
231     cl::desc("Use more powerful methods of sharpening expression ranges. May "
232              "be costly in terms of compile time"));
233 
234 //===----------------------------------------------------------------------===//
235 //                           SCEV class definitions
236 //===----------------------------------------------------------------------===//
237 
238 //===----------------------------------------------------------------------===//
239 // Implementation of the SCEV class.
240 //
241 
242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
243 LLVM_DUMP_METHOD void SCEV::dump() const {
244   print(dbgs());
245   dbgs() << '\n';
246 }
247 #endif
248 
249 void SCEV::print(raw_ostream &OS) const {
250   switch (getSCEVType()) {
251   case scConstant:
252     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
253     return;
254   case scPtrToInt: {
255     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
256     const SCEV *Op = PtrToInt->getOperand();
257     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
258        << *PtrToInt->getType() << ")";
259     return;
260   }
261   case scTruncate: {
262     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
263     const SCEV *Op = Trunc->getOperand();
264     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
265        << *Trunc->getType() << ")";
266     return;
267   }
268   case scZeroExtend: {
269     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
270     const SCEV *Op = ZExt->getOperand();
271     OS << "(zext " << *Op->getType() << " " << *Op << " to "
272        << *ZExt->getType() << ")";
273     return;
274   }
275   case scSignExtend: {
276     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
277     const SCEV *Op = SExt->getOperand();
278     OS << "(sext " << *Op->getType() << " " << *Op << " to "
279        << *SExt->getType() << ")";
280     return;
281   }
282   case scAddRecExpr: {
283     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
284     OS << "{" << *AR->getOperand(0);
285     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
286       OS << ",+," << *AR->getOperand(i);
287     OS << "}<";
288     if (AR->hasNoUnsignedWrap())
289       OS << "nuw><";
290     if (AR->hasNoSignedWrap())
291       OS << "nsw><";
292     if (AR->hasNoSelfWrap() &&
293         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
294       OS << "nw><";
295     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
296     OS << ">";
297     return;
298   }
299   case scAddExpr:
300   case scMulExpr:
301   case scUMaxExpr:
302   case scSMaxExpr:
303   case scUMinExpr:
304   case scSMinExpr: {
305     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
306     const char *OpStr = nullptr;
307     switch (NAry->getSCEVType()) {
308     case scAddExpr: OpStr = " + "; break;
309     case scMulExpr: OpStr = " * "; break;
310     case scUMaxExpr: OpStr = " umax "; break;
311     case scSMaxExpr: OpStr = " smax "; break;
312     case scUMinExpr:
313       OpStr = " umin ";
314       break;
315     case scSMinExpr:
316       OpStr = " smin ";
317       break;
318     default:
319       llvm_unreachable("There are no other nary expression types.");
320     }
321     OS << "(";
322     ListSeparator LS(OpStr);
323     for (const SCEV *Op : NAry->operands())
324       OS << LS << *Op;
325     OS << ")";
326     switch (NAry->getSCEVType()) {
327     case scAddExpr:
328     case scMulExpr:
329       if (NAry->hasNoUnsignedWrap())
330         OS << "<nuw>";
331       if (NAry->hasNoSignedWrap())
332         OS << "<nsw>";
333       break;
334     default:
335       // Nothing to print for other nary expressions.
336       break;
337     }
338     return;
339   }
340   case scUDivExpr: {
341     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
342     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
343     return;
344   }
345   case scUnknown: {
346     const SCEVUnknown *U = cast<SCEVUnknown>(this);
347     Type *AllocTy;
348     if (U->isSizeOf(AllocTy)) {
349       OS << "sizeof(" << *AllocTy << ")";
350       return;
351     }
352     if (U->isAlignOf(AllocTy)) {
353       OS << "alignof(" << *AllocTy << ")";
354       return;
355     }
356 
357     Type *CTy;
358     Constant *FieldNo;
359     if (U->isOffsetOf(CTy, FieldNo)) {
360       OS << "offsetof(" << *CTy << ", ";
361       FieldNo->printAsOperand(OS, false);
362       OS << ")";
363       return;
364     }
365 
366     // Otherwise just print it normally.
367     U->getValue()->printAsOperand(OS, false);
368     return;
369   }
370   case scCouldNotCompute:
371     OS << "***COULDNOTCOMPUTE***";
372     return;
373   }
374   llvm_unreachable("Unknown SCEV kind!");
375 }
376 
377 Type *SCEV::getType() const {
378   switch (getSCEVType()) {
379   case scConstant:
380     return cast<SCEVConstant>(this)->getType();
381   case scPtrToInt:
382   case scTruncate:
383   case scZeroExtend:
384   case scSignExtend:
385     return cast<SCEVCastExpr>(this)->getType();
386   case scAddRecExpr:
387     return cast<SCEVAddRecExpr>(this)->getType();
388   case scMulExpr:
389     return cast<SCEVMulExpr>(this)->getType();
390   case scUMaxExpr:
391   case scSMaxExpr:
392   case scUMinExpr:
393   case scSMinExpr:
394     return cast<SCEVMinMaxExpr>(this)->getType();
395   case scAddExpr:
396     return cast<SCEVAddExpr>(this)->getType();
397   case scUDivExpr:
398     return cast<SCEVUDivExpr>(this)->getType();
399   case scUnknown:
400     return cast<SCEVUnknown>(this)->getType();
401   case scCouldNotCompute:
402     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
403   }
404   llvm_unreachable("Unknown SCEV kind!");
405 }
406 
407 bool SCEV::isZero() const {
408   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
409     return SC->getValue()->isZero();
410   return false;
411 }
412 
413 bool SCEV::isOne() const {
414   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
415     return SC->getValue()->isOne();
416   return false;
417 }
418 
419 bool SCEV::isAllOnesValue() const {
420   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
421     return SC->getValue()->isMinusOne();
422   return false;
423 }
424 
425 bool SCEV::isNonConstantNegative() const {
426   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
427   if (!Mul) return false;
428 
429   // If there is a constant factor, it will be first.
430   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
431   if (!SC) return false;
432 
433   // Return true if the value is negative, this matches things like (-42 * V).
434   return SC->getAPInt().isNegative();
435 }
436 
437 SCEVCouldNotCompute::SCEVCouldNotCompute() :
438   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
439 
440 bool SCEVCouldNotCompute::classof(const SCEV *S) {
441   return S->getSCEVType() == scCouldNotCompute;
442 }
443 
444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
445   FoldingSetNodeID ID;
446   ID.AddInteger(scConstant);
447   ID.AddPointer(V);
448   void *IP = nullptr;
449   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
450   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
451   UniqueSCEVs.InsertNode(S, IP);
452   return S;
453 }
454 
455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
456   return getConstant(ConstantInt::get(getContext(), Val));
457 }
458 
459 const SCEV *
460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
461   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
462   return getConstant(ConstantInt::get(ITy, V, isSigned));
463 }
464 
465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
466                            const SCEV *op, Type *ty)
467     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
468   Operands[0] = op;
469 }
470 
471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
472                                    Type *ITy)
473     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
474   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
475          "Must be a non-bit-width-changing pointer-to-integer cast!");
476 }
477 
478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
479                                            SCEVTypes SCEVTy, const SCEV *op,
480                                            Type *ty)
481     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
482 
483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
484                                    Type *ty)
485     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
486   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
487          "Cannot truncate non-integer value!");
488 }
489 
490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
491                                        const SCEV *op, Type *ty)
492     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
493   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
494          "Cannot zero extend non-integer value!");
495 }
496 
497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
498                                        const SCEV *op, Type *ty)
499     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot sign extend non-integer value!");
502 }
503 
504 void SCEVUnknown::deleted() {
505   // Clear this SCEVUnknown from various maps.
506   SE->forgetMemoizedResults(this);
507 
508   // Remove this SCEVUnknown from the uniquing map.
509   SE->UniqueSCEVs.RemoveNode(this);
510 
511   // Release the value.
512   setValPtr(nullptr);
513 }
514 
515 void SCEVUnknown::allUsesReplacedWith(Value *New) {
516   // Remove this SCEVUnknown from the uniquing map.
517   SE->UniqueSCEVs.RemoveNode(this);
518 
519   // Update this SCEVUnknown to point to the new value. This is needed
520   // because there may still be outstanding SCEVs which still point to
521   // this SCEVUnknown.
522   setValPtr(New);
523 }
524 
525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
526   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
527     if (VCE->getOpcode() == Instruction::PtrToInt)
528       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
529         if (CE->getOpcode() == Instruction::GetElementPtr &&
530             CE->getOperand(0)->isNullValue() &&
531             CE->getNumOperands() == 2)
532           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
533             if (CI->isOne()) {
534               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
535               return true;
536             }
537 
538   return false;
539 }
540 
541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
542   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
543     if (VCE->getOpcode() == Instruction::PtrToInt)
544       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
545         if (CE->getOpcode() == Instruction::GetElementPtr &&
546             CE->getOperand(0)->isNullValue()) {
547           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
548           if (StructType *STy = dyn_cast<StructType>(Ty))
549             if (!STy->isPacked() &&
550                 CE->getNumOperands() == 3 &&
551                 CE->getOperand(1)->isNullValue()) {
552               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
553                 if (CI->isOne() &&
554                     STy->getNumElements() == 2 &&
555                     STy->getElementType(0)->isIntegerTy(1)) {
556                   AllocTy = STy->getElementType(1);
557                   return true;
558                 }
559             }
560         }
561 
562   return false;
563 }
564 
565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
566   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
567     if (VCE->getOpcode() == Instruction::PtrToInt)
568       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
569         if (CE->getOpcode() == Instruction::GetElementPtr &&
570             CE->getNumOperands() == 3 &&
571             CE->getOperand(0)->isNullValue() &&
572             CE->getOperand(1)->isNullValue()) {
573           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
574           // Ignore vector types here so that ScalarEvolutionExpander doesn't
575           // emit getelementptrs that index into vectors.
576           if (Ty->isStructTy() || Ty->isArrayTy()) {
577             CTy = Ty;
578             FieldNo = CE->getOperand(2);
579             return true;
580           }
581         }
582 
583   return false;
584 }
585 
586 //===----------------------------------------------------------------------===//
587 //                               SCEV Utilities
588 //===----------------------------------------------------------------------===//
589 
590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
592 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
593 /// have been previously deemed to be "equally complex" by this routine.  It is
594 /// intended to avoid exponential time complexity in cases like:
595 ///
596 ///   %a = f(%x, %y)
597 ///   %b = f(%a, %a)
598 ///   %c = f(%b, %b)
599 ///
600 ///   %d = f(%x, %y)
601 ///   %e = f(%d, %d)
602 ///   %f = f(%e, %e)
603 ///
604 ///   CompareValueComplexity(%f, %c)
605 ///
606 /// Since we do not continue running this routine on expression trees once we
607 /// have seen unequal values, there is no need to track them in the cache.
608 static int
609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
610                        const LoopInfo *const LI, Value *LV, Value *RV,
611                        unsigned Depth) {
612   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
613     return 0;
614 
615   // Order pointer values after integer values. This helps SCEVExpander form
616   // GEPs.
617   bool LIsPointer = LV->getType()->isPointerTy(),
618        RIsPointer = RV->getType()->isPointerTy();
619   if (LIsPointer != RIsPointer)
620     return (int)LIsPointer - (int)RIsPointer;
621 
622   // Compare getValueID values.
623   unsigned LID = LV->getValueID(), RID = RV->getValueID();
624   if (LID != RID)
625     return (int)LID - (int)RID;
626 
627   // Sort arguments by their position.
628   if (const auto *LA = dyn_cast<Argument>(LV)) {
629     const auto *RA = cast<Argument>(RV);
630     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
631     return (int)LArgNo - (int)RArgNo;
632   }
633 
634   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
635     const auto *RGV = cast<GlobalValue>(RV);
636 
637     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
638       auto LT = GV->getLinkage();
639       return !(GlobalValue::isPrivateLinkage(LT) ||
640                GlobalValue::isInternalLinkage(LT));
641     };
642 
643     // Use the names to distinguish the two values, but only if the
644     // names are semantically important.
645     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
646       return LGV->getName().compare(RGV->getName());
647   }
648 
649   // For instructions, compare their loop depth, and their operand count.  This
650   // is pretty loose.
651   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
652     const auto *RInst = cast<Instruction>(RV);
653 
654     // Compare loop depths.
655     const BasicBlock *LParent = LInst->getParent(),
656                      *RParent = RInst->getParent();
657     if (LParent != RParent) {
658       unsigned LDepth = LI->getLoopDepth(LParent),
659                RDepth = LI->getLoopDepth(RParent);
660       if (LDepth != RDepth)
661         return (int)LDepth - (int)RDepth;
662     }
663 
664     // Compare the number of operands.
665     unsigned LNumOps = LInst->getNumOperands(),
666              RNumOps = RInst->getNumOperands();
667     if (LNumOps != RNumOps)
668       return (int)LNumOps - (int)RNumOps;
669 
670     for (unsigned Idx : seq(0u, LNumOps)) {
671       int Result =
672           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
673                                  RInst->getOperand(Idx), Depth + 1);
674       if (Result != 0)
675         return Result;
676     }
677   }
678 
679   EqCacheValue.unionSets(LV, RV);
680   return 0;
681 }
682 
683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
684 // than RHS, respectively. A three-way result allows recursive comparisons to be
685 // more efficient.
686 // If the max analysis depth was reached, return None, assuming we do not know
687 // if they are equivalent for sure.
688 static Optional<int>
689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
690                       EquivalenceClasses<const Value *> &EqCacheValue,
691                       const LoopInfo *const LI, const SCEV *LHS,
692                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
693   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
694   if (LHS == RHS)
695     return 0;
696 
697   // Primarily, sort the SCEVs by their getSCEVType().
698   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
699   if (LType != RType)
700     return (int)LType - (int)RType;
701 
702   if (EqCacheSCEV.isEquivalent(LHS, RHS))
703     return 0;
704 
705   if (Depth > MaxSCEVCompareDepth)
706     return None;
707 
708   // Aside from the getSCEVType() ordering, the particular ordering
709   // isn't very important except that it's beneficial to be consistent,
710   // so that (a + b) and (b + a) don't end up as different expressions.
711   switch (LType) {
712   case scUnknown: {
713     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
714     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
715 
716     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
717                                    RU->getValue(), Depth + 1);
718     if (X == 0)
719       EqCacheSCEV.unionSets(LHS, RHS);
720     return X;
721   }
722 
723   case scConstant: {
724     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
725     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
726 
727     // Compare constant values.
728     const APInt &LA = LC->getAPInt();
729     const APInt &RA = RC->getAPInt();
730     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
731     if (LBitWidth != RBitWidth)
732       return (int)LBitWidth - (int)RBitWidth;
733     return LA.ult(RA) ? -1 : 1;
734   }
735 
736   case scAddRecExpr: {
737     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
738     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
739 
740     // There is always a dominance between two recs that are used by one SCEV,
741     // so we can safely sort recs by loop header dominance. We require such
742     // order in getAddExpr.
743     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
744     if (LLoop != RLoop) {
745       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
746       assert(LHead != RHead && "Two loops share the same header?");
747       if (DT.dominates(LHead, RHead))
748         return 1;
749       else
750         assert(DT.dominates(RHead, LHead) &&
751                "No dominance between recurrences used by one SCEV?");
752       return -1;
753     }
754 
755     // Addrec complexity grows with operand count.
756     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
757     if (LNumOps != RNumOps)
758       return (int)LNumOps - (int)RNumOps;
759 
760     // Lexicographically compare.
761     for (unsigned i = 0; i != LNumOps; ++i) {
762       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
763                                      LA->getOperand(i), RA->getOperand(i), DT,
764                                      Depth + 1);
765       if (X != 0)
766         return X;
767     }
768     EqCacheSCEV.unionSets(LHS, RHS);
769     return 0;
770   }
771 
772   case scAddExpr:
773   case scMulExpr:
774   case scSMaxExpr:
775   case scUMaxExpr:
776   case scSMinExpr:
777   case scUMinExpr: {
778     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
779     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
780 
781     // Lexicographically compare n-ary expressions.
782     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
783     if (LNumOps != RNumOps)
784       return (int)LNumOps - (int)RNumOps;
785 
786     for (unsigned i = 0; i != LNumOps; ++i) {
787       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
788                                      LC->getOperand(i), RC->getOperand(i), DT,
789                                      Depth + 1);
790       if (X != 0)
791         return X;
792     }
793     EqCacheSCEV.unionSets(LHS, RHS);
794     return 0;
795   }
796 
797   case scUDivExpr: {
798     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
799     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
800 
801     // Lexicographically compare udiv expressions.
802     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
803                                    RC->getLHS(), DT, Depth + 1);
804     if (X != 0)
805       return X;
806     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
807                               RC->getRHS(), DT, Depth + 1);
808     if (X == 0)
809       EqCacheSCEV.unionSets(LHS, RHS);
810     return X;
811   }
812 
813   case scPtrToInt:
814   case scTruncate:
815   case scZeroExtend:
816   case scSignExtend: {
817     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
818     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
819 
820     // Compare cast expressions by operand.
821     auto X =
822         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
823                               RC->getOperand(), DT, Depth + 1);
824     if (X == 0)
825       EqCacheSCEV.unionSets(LHS, RHS);
826     return X;
827   }
828 
829   case scCouldNotCompute:
830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
831   }
832   llvm_unreachable("Unknown SCEV kind!");
833 }
834 
835 /// Given a list of SCEV objects, order them by their complexity, and group
836 /// objects of the same complexity together by value.  When this routine is
837 /// finished, we know that any duplicates in the vector are consecutive and that
838 /// complexity is monotonically increasing.
839 ///
840 /// Note that we go take special precautions to ensure that we get deterministic
841 /// results from this routine.  In other words, we don't want the results of
842 /// this to depend on where the addresses of various SCEV objects happened to
843 /// land in memory.
844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
845                               LoopInfo *LI, DominatorTree &DT) {
846   if (Ops.size() < 2) return;  // Noop
847 
848   EquivalenceClasses<const SCEV *> EqCacheSCEV;
849   EquivalenceClasses<const Value *> EqCacheValue;
850 
851   // Whether LHS has provably less complexity than RHS.
852   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
853     auto Complexity =
854         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
855     return Complexity && *Complexity < 0;
856   };
857   if (Ops.size() == 2) {
858     // This is the common case, which also happens to be trivially simple.
859     // Special case it.
860     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
861     if (IsLessComplex(RHS, LHS))
862       std::swap(LHS, RHS);
863     return;
864   }
865 
866   // Do the rough sort by complexity.
867   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
868     return IsLessComplex(LHS, RHS);
869   });
870 
871   // Now that we are sorted by complexity, group elements of the same
872   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
873   // be extremely short in practice.  Note that we take this approach because we
874   // do not want to depend on the addresses of the objects we are grouping.
875   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
876     const SCEV *S = Ops[i];
877     unsigned Complexity = S->getSCEVType();
878 
879     // If there are any objects of the same complexity and same value as this
880     // one, group them.
881     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
882       if (Ops[j] == S) { // Found a duplicate.
883         // Move it to immediately after i'th element.
884         std::swap(Ops[i+1], Ops[j]);
885         ++i;   // no need to rescan it.
886         if (i == e-2) return;  // Done!
887       }
888     }
889   }
890 }
891 
892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
893 /// least HugeExprThreshold nodes).
894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
895   return any_of(Ops, [](const SCEV *S) {
896     return S->getExpressionSize() >= HugeExprThreshold;
897   });
898 }
899 
900 //===----------------------------------------------------------------------===//
901 //                      Simple SCEV method implementations
902 //===----------------------------------------------------------------------===//
903 
904 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
906                                        ScalarEvolution &SE,
907                                        Type *ResultTy) {
908   // Handle the simplest case efficiently.
909   if (K == 1)
910     return SE.getTruncateOrZeroExtend(It, ResultTy);
911 
912   // We are using the following formula for BC(It, K):
913   //
914   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
915   //
916   // Suppose, W is the bitwidth of the return value.  We must be prepared for
917   // overflow.  Hence, we must assure that the result of our computation is
918   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
919   // safe in modular arithmetic.
920   //
921   // However, this code doesn't use exactly that formula; the formula it uses
922   // is something like the following, where T is the number of factors of 2 in
923   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
924   // exponentiation:
925   //
926   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
927   //
928   // This formula is trivially equivalent to the previous formula.  However,
929   // this formula can be implemented much more efficiently.  The trick is that
930   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
931   // arithmetic.  To do exact division in modular arithmetic, all we have
932   // to do is multiply by the inverse.  Therefore, this step can be done at
933   // width W.
934   //
935   // The next issue is how to safely do the division by 2^T.  The way this
936   // is done is by doing the multiplication step at a width of at least W + T
937   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
938   // when we perform the division by 2^T (which is equivalent to a right shift
939   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
940   // truncated out after the division by 2^T.
941   //
942   // In comparison to just directly using the first formula, this technique
943   // is much more efficient; using the first formula requires W * K bits,
944   // but this formula less than W + K bits. Also, the first formula requires
945   // a division step, whereas this formula only requires multiplies and shifts.
946   //
947   // It doesn't matter whether the subtraction step is done in the calculation
948   // width or the input iteration count's width; if the subtraction overflows,
949   // the result must be zero anyway.  We prefer here to do it in the width of
950   // the induction variable because it helps a lot for certain cases; CodeGen
951   // isn't smart enough to ignore the overflow, which leads to much less
952   // efficient code if the width of the subtraction is wider than the native
953   // register width.
954   //
955   // (It's possible to not widen at all by pulling out factors of 2 before
956   // the multiplication; for example, K=2 can be calculated as
957   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
958   // extra arithmetic, so it's not an obvious win, and it gets
959   // much more complicated for K > 3.)
960 
961   // Protection from insane SCEVs; this bound is conservative,
962   // but it probably doesn't matter.
963   if (K > 1000)
964     return SE.getCouldNotCompute();
965 
966   unsigned W = SE.getTypeSizeInBits(ResultTy);
967 
968   // Calculate K! / 2^T and T; we divide out the factors of two before
969   // multiplying for calculating K! / 2^T to avoid overflow.
970   // Other overflow doesn't matter because we only care about the bottom
971   // W bits of the result.
972   APInt OddFactorial(W, 1);
973   unsigned T = 1;
974   for (unsigned i = 3; i <= K; ++i) {
975     APInt Mult(W, i);
976     unsigned TwoFactors = Mult.countTrailingZeros();
977     T += TwoFactors;
978     Mult.lshrInPlace(TwoFactors);
979     OddFactorial *= Mult;
980   }
981 
982   // We need at least W + T bits for the multiplication step
983   unsigned CalculationBits = W + T;
984 
985   // Calculate 2^T, at width T+W.
986   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
987 
988   // Calculate the multiplicative inverse of K! / 2^T;
989   // this multiplication factor will perform the exact division by
990   // K! / 2^T.
991   APInt Mod = APInt::getSignedMinValue(W+1);
992   APInt MultiplyFactor = OddFactorial.zext(W+1);
993   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
994   MultiplyFactor = MultiplyFactor.trunc(W);
995 
996   // Calculate the product, at width T+W
997   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
998                                                       CalculationBits);
999   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1000   for (unsigned i = 1; i != K; ++i) {
1001     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1002     Dividend = SE.getMulExpr(Dividend,
1003                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1004   }
1005 
1006   // Divide by 2^T
1007   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1008 
1009   // Truncate the result, and divide by K! / 2^T.
1010 
1011   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1012                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1013 }
1014 
1015 /// Return the value of this chain of recurrences at the specified iteration
1016 /// number.  We can evaluate this recurrence by multiplying each element in the
1017 /// chain by the binomial coefficient corresponding to it.  In other words, we
1018 /// can evaluate {A,+,B,+,C,+,D} as:
1019 ///
1020 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1021 ///
1022 /// where BC(It, k) stands for binomial coefficient.
1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1024                                                 ScalarEvolution &SE) const {
1025   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1026 }
1027 
1028 const SCEV *
1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1030                                     const SCEV *It, ScalarEvolution &SE) {
1031   assert(Operands.size() > 0);
1032   const SCEV *Result = Operands[0];
1033   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1034     // The computation is correct in the face of overflow provided that the
1035     // multiplication is performed _after_ the evaluation of the binomial
1036     // coefficient.
1037     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1038     if (isa<SCEVCouldNotCompute>(Coeff))
1039       return Coeff;
1040 
1041     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1042   }
1043   return Result;
1044 }
1045 
1046 //===----------------------------------------------------------------------===//
1047 //                    SCEV Expression folder implementations
1048 //===----------------------------------------------------------------------===//
1049 
1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1051                                                      unsigned Depth) {
1052   assert(Depth <= 1 &&
1053          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1054 
1055   // We could be called with an integer-typed operands during SCEV rewrites.
1056   // Since the operand is an integer already, just perform zext/trunc/self cast.
1057   if (!Op->getType()->isPointerTy())
1058     return Op;
1059 
1060   // What would be an ID for such a SCEV cast expression?
1061   FoldingSetNodeID ID;
1062   ID.AddInteger(scPtrToInt);
1063   ID.AddPointer(Op);
1064 
1065   void *IP = nullptr;
1066 
1067   // Is there already an expression for such a cast?
1068   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1069     return S;
1070 
1071   // It isn't legal for optimizations to construct new ptrtoint expressions
1072   // for non-integral pointers.
1073   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1074     return getCouldNotCompute();
1075 
1076   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1077 
1078   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1079   // is sufficiently wide to represent all possible pointer values.
1080   // We could theoretically teach SCEV to truncate wider pointers, but
1081   // that isn't implemented for now.
1082   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1083       getDataLayout().getTypeSizeInBits(IntPtrTy))
1084     return getCouldNotCompute();
1085 
1086   // If not, is this expression something we can't reduce any further?
1087   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1088     // Perform some basic constant folding. If the operand of the ptr2int cast
1089     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1090     // left as-is), but produce a zero constant.
1091     // NOTE: We could handle a more general case, but lack motivational cases.
1092     if (isa<ConstantPointerNull>(U->getValue()))
1093       return getZero(IntPtrTy);
1094 
1095     // Create an explicit cast node.
1096     // We can reuse the existing insert position since if we get here,
1097     // we won't have made any changes which would invalidate it.
1098     SCEV *S = new (SCEVAllocator)
1099         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1100     UniqueSCEVs.InsertNode(S, IP);
1101     registerUser(S, Op);
1102     return S;
1103   }
1104 
1105   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1106                        "non-SCEVUnknown's.");
1107 
1108   // Otherwise, we've got some expression that is more complex than just a
1109   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1110   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1111   // only, and the expressions must otherwise be integer-typed.
1112   // So sink the cast down to the SCEVUnknown's.
1113 
1114   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1115   /// which computes a pointer-typed value, and rewrites the whole expression
1116   /// tree so that *all* the computations are done on integers, and the only
1117   /// pointer-typed operands in the expression are SCEVUnknown.
1118   class SCEVPtrToIntSinkingRewriter
1119       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1120     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1121 
1122   public:
1123     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1124 
1125     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1126       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1127       return Rewriter.visit(Scev);
1128     }
1129 
1130     const SCEV *visit(const SCEV *S) {
1131       Type *STy = S->getType();
1132       // If the expression is not pointer-typed, just keep it as-is.
1133       if (!STy->isPointerTy())
1134         return S;
1135       // Else, recursively sink the cast down into it.
1136       return Base::visit(S);
1137     }
1138 
1139     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1140       SmallVector<const SCEV *, 2> Operands;
1141       bool Changed = false;
1142       for (auto *Op : Expr->operands()) {
1143         Operands.push_back(visit(Op));
1144         Changed |= Op != Operands.back();
1145       }
1146       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1147     }
1148 
1149     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1150       SmallVector<const SCEV *, 2> Operands;
1151       bool Changed = false;
1152       for (auto *Op : Expr->operands()) {
1153         Operands.push_back(visit(Op));
1154         Changed |= Op != Operands.back();
1155       }
1156       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1157     }
1158 
1159     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1160       assert(Expr->getType()->isPointerTy() &&
1161              "Should only reach pointer-typed SCEVUnknown's.");
1162       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1163     }
1164   };
1165 
1166   // And actually perform the cast sinking.
1167   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1168   assert(IntOp->getType()->isIntegerTy() &&
1169          "We must have succeeded in sinking the cast, "
1170          "and ending up with an integer-typed expression!");
1171   return IntOp;
1172 }
1173 
1174 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1175   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1176 
1177   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1178   if (isa<SCEVCouldNotCompute>(IntOp))
1179     return IntOp;
1180 
1181   return getTruncateOrZeroExtend(IntOp, Ty);
1182 }
1183 
1184 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1185                                              unsigned Depth) {
1186   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1187          "This is not a truncating conversion!");
1188   assert(isSCEVable(Ty) &&
1189          "This is not a conversion to a SCEVable type!");
1190   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1191   Ty = getEffectiveSCEVType(Ty);
1192 
1193   FoldingSetNodeID ID;
1194   ID.AddInteger(scTruncate);
1195   ID.AddPointer(Op);
1196   ID.AddPointer(Ty);
1197   void *IP = nullptr;
1198   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1199 
1200   // Fold if the operand is constant.
1201   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1202     return getConstant(
1203       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1204 
1205   // trunc(trunc(x)) --> trunc(x)
1206   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1207     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1208 
1209   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1210   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1211     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1212 
1213   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1214   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1215     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1216 
1217   if (Depth > MaxCastDepth) {
1218     SCEV *S =
1219         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1220     UniqueSCEVs.InsertNode(S, IP);
1221     registerUser(S, Op);
1222     return S;
1223   }
1224 
1225   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1226   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1227   // if after transforming we have at most one truncate, not counting truncates
1228   // that replace other casts.
1229   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1230     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1231     SmallVector<const SCEV *, 4> Operands;
1232     unsigned numTruncs = 0;
1233     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1234          ++i) {
1235       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1236       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1237           isa<SCEVTruncateExpr>(S))
1238         numTruncs++;
1239       Operands.push_back(S);
1240     }
1241     if (numTruncs < 2) {
1242       if (isa<SCEVAddExpr>(Op))
1243         return getAddExpr(Operands);
1244       else if (isa<SCEVMulExpr>(Op))
1245         return getMulExpr(Operands);
1246       else
1247         llvm_unreachable("Unexpected SCEV type for Op.");
1248     }
1249     // Although we checked in the beginning that ID is not in the cache, it is
1250     // possible that during recursion and different modification ID was inserted
1251     // into the cache. So if we find it, just return it.
1252     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1253       return S;
1254   }
1255 
1256   // If the input value is a chrec scev, truncate the chrec's operands.
1257   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1258     SmallVector<const SCEV *, 4> Operands;
1259     for (const SCEV *Op : AddRec->operands())
1260       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1261     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1262   }
1263 
1264   // Return zero if truncating to known zeros.
1265   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1266   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1267     return getZero(Ty);
1268 
1269   // The cast wasn't folded; create an explicit cast node. We can reuse
1270   // the existing insert position since if we get here, we won't have
1271   // made any changes which would invalidate it.
1272   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1273                                                  Op, Ty);
1274   UniqueSCEVs.InsertNode(S, IP);
1275   registerUser(S, Op);
1276   return S;
1277 }
1278 
1279 // Get the limit of a recurrence such that incrementing by Step cannot cause
1280 // signed overflow as long as the value of the recurrence within the
1281 // loop does not exceed this limit before incrementing.
1282 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1283                                                  ICmpInst::Predicate *Pred,
1284                                                  ScalarEvolution *SE) {
1285   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1286   if (SE->isKnownPositive(Step)) {
1287     *Pred = ICmpInst::ICMP_SLT;
1288     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1289                            SE->getSignedRangeMax(Step));
1290   }
1291   if (SE->isKnownNegative(Step)) {
1292     *Pred = ICmpInst::ICMP_SGT;
1293     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1294                            SE->getSignedRangeMin(Step));
1295   }
1296   return nullptr;
1297 }
1298 
1299 // Get the limit of a recurrence such that incrementing by Step cannot cause
1300 // unsigned overflow as long as the value of the recurrence within the loop does
1301 // not exceed this limit before incrementing.
1302 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1303                                                    ICmpInst::Predicate *Pred,
1304                                                    ScalarEvolution *SE) {
1305   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1306   *Pred = ICmpInst::ICMP_ULT;
1307 
1308   return SE->getConstant(APInt::getMinValue(BitWidth) -
1309                          SE->getUnsignedRangeMax(Step));
1310 }
1311 
1312 namespace {
1313 
1314 struct ExtendOpTraitsBase {
1315   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1316                                                           unsigned);
1317 };
1318 
1319 // Used to make code generic over signed and unsigned overflow.
1320 template <typename ExtendOp> struct ExtendOpTraits {
1321   // Members present:
1322   //
1323   // static const SCEV::NoWrapFlags WrapType;
1324   //
1325   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1326   //
1327   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1328   //                                           ICmpInst::Predicate *Pred,
1329   //                                           ScalarEvolution *SE);
1330 };
1331 
1332 template <>
1333 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1334   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1335 
1336   static const GetExtendExprTy GetExtendExpr;
1337 
1338   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1339                                              ICmpInst::Predicate *Pred,
1340                                              ScalarEvolution *SE) {
1341     return getSignedOverflowLimitForStep(Step, Pred, SE);
1342   }
1343 };
1344 
1345 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1346     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1347 
1348 template <>
1349 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1350   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1351 
1352   static const GetExtendExprTy GetExtendExpr;
1353 
1354   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1355                                              ICmpInst::Predicate *Pred,
1356                                              ScalarEvolution *SE) {
1357     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1358   }
1359 };
1360 
1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1362     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1363 
1364 } // end anonymous namespace
1365 
1366 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1367 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1368 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1369 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1370 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1371 // expression "Step + sext/zext(PreIncAR)" is congruent with
1372 // "sext/zext(PostIncAR)"
1373 template <typename ExtendOpTy>
1374 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1375                                         ScalarEvolution *SE, unsigned Depth) {
1376   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1377   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1378 
1379   const Loop *L = AR->getLoop();
1380   const SCEV *Start = AR->getStart();
1381   const SCEV *Step = AR->getStepRecurrence(*SE);
1382 
1383   // Check for a simple looking step prior to loop entry.
1384   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1385   if (!SA)
1386     return nullptr;
1387 
1388   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1389   // subtraction is expensive. For this purpose, perform a quick and dirty
1390   // difference, by checking for Step in the operand list.
1391   SmallVector<const SCEV *, 4> DiffOps;
1392   for (const SCEV *Op : SA->operands())
1393     if (Op != Step)
1394       DiffOps.push_back(Op);
1395 
1396   if (DiffOps.size() == SA->getNumOperands())
1397     return nullptr;
1398 
1399   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1400   // `Step`:
1401 
1402   // 1. NSW/NUW flags on the step increment.
1403   auto PreStartFlags =
1404     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1405   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1406   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1407       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1408 
1409   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1410   // "S+X does not sign/unsign-overflow".
1411   //
1412 
1413   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1414   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1415       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1416     return PreStart;
1417 
1418   // 2. Direct overflow check on the step operation's expression.
1419   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1420   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1421   const SCEV *OperandExtendedStart =
1422       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1423                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1424   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1425     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1426       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1427       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1428       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1429       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1430     }
1431     return PreStart;
1432   }
1433 
1434   // 3. Loop precondition.
1435   ICmpInst::Predicate Pred;
1436   const SCEV *OverflowLimit =
1437       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1438 
1439   if (OverflowLimit &&
1440       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1441     return PreStart;
1442 
1443   return nullptr;
1444 }
1445 
1446 // Get the normalized zero or sign extended expression for this AddRec's Start.
1447 template <typename ExtendOpTy>
1448 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1449                                         ScalarEvolution *SE,
1450                                         unsigned Depth) {
1451   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1452 
1453   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1454   if (!PreStart)
1455     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1456 
1457   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1458                                              Depth),
1459                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1460 }
1461 
1462 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1463 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1464 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1465 //
1466 // Formally:
1467 //
1468 //     {S,+,X} == {S-T,+,X} + T
1469 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1470 //
1471 // If ({S-T,+,X} + T) does not overflow  ... (1)
1472 //
1473 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1474 //
1475 // If {S-T,+,X} does not overflow  ... (2)
1476 //
1477 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1478 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1479 //
1480 // If (S-T)+T does not overflow  ... (3)
1481 //
1482 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1483 //      == {Ext(S),+,Ext(X)} == LHS
1484 //
1485 // Thus, if (1), (2) and (3) are true for some T, then
1486 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1487 //
1488 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1489 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1490 // to check for (1) and (2).
1491 //
1492 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1493 // is `Delta` (defined below).
1494 template <typename ExtendOpTy>
1495 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1496                                                 const SCEV *Step,
1497                                                 const Loop *L) {
1498   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1499 
1500   // We restrict `Start` to a constant to prevent SCEV from spending too much
1501   // time here.  It is correct (but more expensive) to continue with a
1502   // non-constant `Start` and do a general SCEV subtraction to compute
1503   // `PreStart` below.
1504   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1505   if (!StartC)
1506     return false;
1507 
1508   APInt StartAI = StartC->getAPInt();
1509 
1510   for (unsigned Delta : {-2, -1, 1, 2}) {
1511     const SCEV *PreStart = getConstant(StartAI - Delta);
1512 
1513     FoldingSetNodeID ID;
1514     ID.AddInteger(scAddRecExpr);
1515     ID.AddPointer(PreStart);
1516     ID.AddPointer(Step);
1517     ID.AddPointer(L);
1518     void *IP = nullptr;
1519     const auto *PreAR =
1520       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1521 
1522     // Give up if we don't already have the add recurrence we need because
1523     // actually constructing an add recurrence is relatively expensive.
1524     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1525       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1526       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1527       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1528           DeltaS, &Pred, this);
1529       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1530         return true;
1531     }
1532   }
1533 
1534   return false;
1535 }
1536 
1537 // Finds an integer D for an expression (C + x + y + ...) such that the top
1538 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1539 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1540 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1541 // the (C + x + y + ...) expression is \p WholeAddExpr.
1542 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1543                                             const SCEVConstant *ConstantTerm,
1544                                             const SCEVAddExpr *WholeAddExpr) {
1545   const APInt &C = ConstantTerm->getAPInt();
1546   const unsigned BitWidth = C.getBitWidth();
1547   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1548   uint32_t TZ = BitWidth;
1549   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1550     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1551   if (TZ) {
1552     // Set D to be as many least significant bits of C as possible while still
1553     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1554     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1555   }
1556   return APInt(BitWidth, 0);
1557 }
1558 
1559 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1560 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1561 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1562 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1563 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1564                                             const APInt &ConstantStart,
1565                                             const SCEV *Step) {
1566   const unsigned BitWidth = ConstantStart.getBitWidth();
1567   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1568   if (TZ)
1569     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1570                          : ConstantStart;
1571   return APInt(BitWidth, 0);
1572 }
1573 
1574 const SCEV *
1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1576   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1577          "This is not an extending conversion!");
1578   assert(isSCEVable(Ty) &&
1579          "This is not a conversion to a SCEVable type!");
1580   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1581   Ty = getEffectiveSCEVType(Ty);
1582 
1583   // Fold if the operand is constant.
1584   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1585     return getConstant(
1586       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1587 
1588   // zext(zext(x)) --> zext(x)
1589   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1590     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1591 
1592   // Before doing any expensive analysis, check to see if we've already
1593   // computed a SCEV for this Op and Ty.
1594   FoldingSetNodeID ID;
1595   ID.AddInteger(scZeroExtend);
1596   ID.AddPointer(Op);
1597   ID.AddPointer(Ty);
1598   void *IP = nullptr;
1599   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1600   if (Depth > MaxCastDepth) {
1601     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1602                                                      Op, Ty);
1603     UniqueSCEVs.InsertNode(S, IP);
1604     registerUser(S, Op);
1605     return S;
1606   }
1607 
1608   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1609   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1610     // It's possible the bits taken off by the truncate were all zero bits. If
1611     // so, we should be able to simplify this further.
1612     const SCEV *X = ST->getOperand();
1613     ConstantRange CR = getUnsignedRange(X);
1614     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1615     unsigned NewBits = getTypeSizeInBits(Ty);
1616     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1617             CR.zextOrTrunc(NewBits)))
1618       return getTruncateOrZeroExtend(X, Ty, Depth);
1619   }
1620 
1621   // If the input value is a chrec scev, and we can prove that the value
1622   // did not overflow the old, smaller, value, we can zero extend all of the
1623   // operands (often constants).  This allows analysis of something like
1624   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1625   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1626     if (AR->isAffine()) {
1627       const SCEV *Start = AR->getStart();
1628       const SCEV *Step = AR->getStepRecurrence(*this);
1629       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1630       const Loop *L = AR->getLoop();
1631 
1632       if (!AR->hasNoUnsignedWrap()) {
1633         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1634         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1635       }
1636 
1637       // If we have special knowledge that this addrec won't overflow,
1638       // we don't need to do any further analysis.
1639       if (AR->hasNoUnsignedWrap())
1640         return getAddRecExpr(
1641             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1642             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1643 
1644       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1645       // Note that this serves two purposes: It filters out loops that are
1646       // simply not analyzable, and it covers the case where this code is
1647       // being called from within backedge-taken count analysis, such that
1648       // attempting to ask for the backedge-taken count would likely result
1649       // in infinite recursion. In the later case, the analysis code will
1650       // cope with a conservative value, and it will take care to purge
1651       // that value once it has finished.
1652       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1653       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1654         // Manually compute the final value for AR, checking for overflow.
1655 
1656         // Check whether the backedge-taken count can be losslessly casted to
1657         // the addrec's type. The count is always unsigned.
1658         const SCEV *CastedMaxBECount =
1659             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1660         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1661             CastedMaxBECount, MaxBECount->getType(), Depth);
1662         if (MaxBECount == RecastedMaxBECount) {
1663           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1664           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1665           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1666                                         SCEV::FlagAnyWrap, Depth + 1);
1667           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1668                                                           SCEV::FlagAnyWrap,
1669                                                           Depth + 1),
1670                                                WideTy, Depth + 1);
1671           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1672           const SCEV *WideMaxBECount =
1673             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1674           const SCEV *OperandExtendedAdd =
1675             getAddExpr(WideStart,
1676                        getMulExpr(WideMaxBECount,
1677                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1678                                   SCEV::FlagAnyWrap, Depth + 1),
1679                        SCEV::FlagAnyWrap, Depth + 1);
1680           if (ZAdd == OperandExtendedAdd) {
1681             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1682             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1683             // Return the expression with the addrec on the outside.
1684             return getAddRecExpr(
1685                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1686                                                          Depth + 1),
1687                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1688                 AR->getNoWrapFlags());
1689           }
1690           // Similar to above, only this time treat the step value as signed.
1691           // This covers loops that count down.
1692           OperandExtendedAdd =
1693             getAddExpr(WideStart,
1694                        getMulExpr(WideMaxBECount,
1695                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1696                                   SCEV::FlagAnyWrap, Depth + 1),
1697                        SCEV::FlagAnyWrap, Depth + 1);
1698           if (ZAdd == OperandExtendedAdd) {
1699             // Cache knowledge of AR NW, which is propagated to this AddRec.
1700             // Negative step causes unsigned wrap, but it still can't self-wrap.
1701             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1702             // Return the expression with the addrec on the outside.
1703             return getAddRecExpr(
1704                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1705                                                          Depth + 1),
1706                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1707                 AR->getNoWrapFlags());
1708           }
1709         }
1710       }
1711 
1712       // Normally, in the cases we can prove no-overflow via a
1713       // backedge guarding condition, we can also compute a backedge
1714       // taken count for the loop.  The exceptions are assumptions and
1715       // guards present in the loop -- SCEV is not great at exploiting
1716       // these to compute max backedge taken counts, but can still use
1717       // these to prove lack of overflow.  Use this fact to avoid
1718       // doing extra work that may not pay off.
1719       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1720           !AC.assumptions().empty()) {
1721 
1722         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1723         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1724         if (AR->hasNoUnsignedWrap()) {
1725           // Same as nuw case above - duplicated here to avoid a compile time
1726           // issue.  It's not clear that the order of checks does matter, but
1727           // it's one of two issue possible causes for a change which was
1728           // reverted.  Be conservative for the moment.
1729           return getAddRecExpr(
1730                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1731                                                          Depth + 1),
1732                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1733                 AR->getNoWrapFlags());
1734         }
1735 
1736         // For a negative step, we can extend the operands iff doing so only
1737         // traverses values in the range zext([0,UINT_MAX]).
1738         if (isKnownNegative(Step)) {
1739           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1740                                       getSignedRangeMin(Step));
1741           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1742               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1743             // Cache knowledge of AR NW, which is propagated to this
1744             // AddRec.  Negative step causes unsigned wrap, but it
1745             // still can't self-wrap.
1746             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1747             // Return the expression with the addrec on the outside.
1748             return getAddRecExpr(
1749                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1750                                                          Depth + 1),
1751                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1752                 AR->getNoWrapFlags());
1753           }
1754         }
1755       }
1756 
1757       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1758       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1759       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1760       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1761         const APInt &C = SC->getAPInt();
1762         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1763         if (D != 0) {
1764           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1765           const SCEV *SResidual =
1766               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1767           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1768           return getAddExpr(SZExtD, SZExtR,
1769                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1770                             Depth + 1);
1771         }
1772       }
1773 
1774       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1775         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1776         return getAddRecExpr(
1777             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1778             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1779       }
1780     }
1781 
1782   // zext(A % B) --> zext(A) % zext(B)
1783   {
1784     const SCEV *LHS;
1785     const SCEV *RHS;
1786     if (matchURem(Op, LHS, RHS))
1787       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1788                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1789   }
1790 
1791   // zext(A / B) --> zext(A) / zext(B).
1792   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1793     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1794                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1795 
1796   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1797     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1798     if (SA->hasNoUnsignedWrap()) {
1799       // If the addition does not unsign overflow then we can, by definition,
1800       // commute the zero extension with the addition operation.
1801       SmallVector<const SCEV *, 4> Ops;
1802       for (const auto *Op : SA->operands())
1803         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1804       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1805     }
1806 
1807     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1808     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1809     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1810     //
1811     // Often address arithmetics contain expressions like
1812     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1813     // This transformation is useful while proving that such expressions are
1814     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1815     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1816       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1817       if (D != 0) {
1818         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1819         const SCEV *SResidual =
1820             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1821         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1822         return getAddExpr(SZExtD, SZExtR,
1823                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1824                           Depth + 1);
1825       }
1826     }
1827   }
1828 
1829   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1830     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1831     if (SM->hasNoUnsignedWrap()) {
1832       // If the multiply does not unsign overflow then we can, by definition,
1833       // commute the zero extension with the multiply operation.
1834       SmallVector<const SCEV *, 4> Ops;
1835       for (const auto *Op : SM->operands())
1836         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1837       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1838     }
1839 
1840     // zext(2^K * (trunc X to iN)) to iM ->
1841     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1842     //
1843     // Proof:
1844     //
1845     //     zext(2^K * (trunc X to iN)) to iM
1846     //   = zext((trunc X to iN) << K) to iM
1847     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1848     //     (because shl removes the top K bits)
1849     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1850     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1851     //
1852     if (SM->getNumOperands() == 2)
1853       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1854         if (MulLHS->getAPInt().isPowerOf2())
1855           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1856             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1857                                MulLHS->getAPInt().logBase2();
1858             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1859             return getMulExpr(
1860                 getZeroExtendExpr(MulLHS, Ty),
1861                 getZeroExtendExpr(
1862                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1863                 SCEV::FlagNUW, Depth + 1);
1864           }
1865   }
1866 
1867   // The cast wasn't folded; create an explicit cast node.
1868   // Recompute the insert position, as it may have been invalidated.
1869   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1870   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1871                                                    Op, Ty);
1872   UniqueSCEVs.InsertNode(S, IP);
1873   registerUser(S, Op);
1874   return S;
1875 }
1876 
1877 const SCEV *
1878 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1879   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1880          "This is not an extending conversion!");
1881   assert(isSCEVable(Ty) &&
1882          "This is not a conversion to a SCEVable type!");
1883   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1884   Ty = getEffectiveSCEVType(Ty);
1885 
1886   // Fold if the operand is constant.
1887   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1888     return getConstant(
1889       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1890 
1891   // sext(sext(x)) --> sext(x)
1892   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1893     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1894 
1895   // sext(zext(x)) --> zext(x)
1896   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1897     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1898 
1899   // Before doing any expensive analysis, check to see if we've already
1900   // computed a SCEV for this Op and Ty.
1901   FoldingSetNodeID ID;
1902   ID.AddInteger(scSignExtend);
1903   ID.AddPointer(Op);
1904   ID.AddPointer(Ty);
1905   void *IP = nullptr;
1906   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1907   // Limit recursion depth.
1908   if (Depth > MaxCastDepth) {
1909     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1910                                                      Op, Ty);
1911     UniqueSCEVs.InsertNode(S, IP);
1912     registerUser(S, Op);
1913     return S;
1914   }
1915 
1916   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1917   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1918     // It's possible the bits taken off by the truncate were all sign bits. If
1919     // so, we should be able to simplify this further.
1920     const SCEV *X = ST->getOperand();
1921     ConstantRange CR = getSignedRange(X);
1922     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1923     unsigned NewBits = getTypeSizeInBits(Ty);
1924     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1925             CR.sextOrTrunc(NewBits)))
1926       return getTruncateOrSignExtend(X, Ty, Depth);
1927   }
1928 
1929   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1930     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1931     if (SA->hasNoSignedWrap()) {
1932       // If the addition does not sign overflow then we can, by definition,
1933       // commute the sign extension with the addition operation.
1934       SmallVector<const SCEV *, 4> Ops;
1935       for (const auto *Op : SA->operands())
1936         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1937       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1938     }
1939 
1940     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1941     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1942     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1943     //
1944     // For instance, this will bring two seemingly different expressions:
1945     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1946     //         sext(6 + 20 * %x + 24 * %y)
1947     // to the same form:
1948     //     2 + sext(4 + 20 * %x + 24 * %y)
1949     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1950       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1951       if (D != 0) {
1952         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1953         const SCEV *SResidual =
1954             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1955         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1956         return getAddExpr(SSExtD, SSExtR,
1957                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1958                           Depth + 1);
1959       }
1960     }
1961   }
1962   // If the input value is a chrec scev, and we can prove that the value
1963   // did not overflow the old, smaller, value, we can sign extend all of the
1964   // operands (often constants).  This allows analysis of something like
1965   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1966   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1967     if (AR->isAffine()) {
1968       const SCEV *Start = AR->getStart();
1969       const SCEV *Step = AR->getStepRecurrence(*this);
1970       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1971       const Loop *L = AR->getLoop();
1972 
1973       if (!AR->hasNoSignedWrap()) {
1974         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1975         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1976       }
1977 
1978       // If we have special knowledge that this addrec won't overflow,
1979       // we don't need to do any further analysis.
1980       if (AR->hasNoSignedWrap())
1981         return getAddRecExpr(
1982             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1983             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1984 
1985       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1986       // Note that this serves two purposes: It filters out loops that are
1987       // simply not analyzable, and it covers the case where this code is
1988       // being called from within backedge-taken count analysis, such that
1989       // attempting to ask for the backedge-taken count would likely result
1990       // in infinite recursion. In the later case, the analysis code will
1991       // cope with a conservative value, and it will take care to purge
1992       // that value once it has finished.
1993       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1994       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1995         // Manually compute the final value for AR, checking for
1996         // overflow.
1997 
1998         // Check whether the backedge-taken count can be losslessly casted to
1999         // the addrec's type. The count is always unsigned.
2000         const SCEV *CastedMaxBECount =
2001             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2002         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2003             CastedMaxBECount, MaxBECount->getType(), Depth);
2004         if (MaxBECount == RecastedMaxBECount) {
2005           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2006           // Check whether Start+Step*MaxBECount has no signed overflow.
2007           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2008                                         SCEV::FlagAnyWrap, Depth + 1);
2009           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2010                                                           SCEV::FlagAnyWrap,
2011                                                           Depth + 1),
2012                                                WideTy, Depth + 1);
2013           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2014           const SCEV *WideMaxBECount =
2015             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2016           const SCEV *OperandExtendedAdd =
2017             getAddExpr(WideStart,
2018                        getMulExpr(WideMaxBECount,
2019                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2020                                   SCEV::FlagAnyWrap, Depth + 1),
2021                        SCEV::FlagAnyWrap, Depth + 1);
2022           if (SAdd == OperandExtendedAdd) {
2023             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2024             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2025             // Return the expression with the addrec on the outside.
2026             return getAddRecExpr(
2027                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2028                                                          Depth + 1),
2029                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2030                 AR->getNoWrapFlags());
2031           }
2032           // Similar to above, only this time treat the step value as unsigned.
2033           // This covers loops that count up with an unsigned step.
2034           OperandExtendedAdd =
2035             getAddExpr(WideStart,
2036                        getMulExpr(WideMaxBECount,
2037                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2038                                   SCEV::FlagAnyWrap, Depth + 1),
2039                        SCEV::FlagAnyWrap, Depth + 1);
2040           if (SAdd == OperandExtendedAdd) {
2041             // If AR wraps around then
2042             //
2043             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2044             // => SAdd != OperandExtendedAdd
2045             //
2046             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2047             // (SAdd == OperandExtendedAdd => AR is NW)
2048 
2049             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2050 
2051             // Return the expression with the addrec on the outside.
2052             return getAddRecExpr(
2053                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2054                                                          Depth + 1),
2055                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2056                 AR->getNoWrapFlags());
2057           }
2058         }
2059       }
2060 
2061       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2062       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2063       if (AR->hasNoSignedWrap()) {
2064         // Same as nsw case above - duplicated here to avoid a compile time
2065         // issue.  It's not clear that the order of checks does matter, but
2066         // it's one of two issue possible causes for a change which was
2067         // reverted.  Be conservative for the moment.
2068         return getAddRecExpr(
2069             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2070             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2071       }
2072 
2073       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2074       // if D + (C - D + Step * n) could be proven to not signed wrap
2075       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2076       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2077         const APInt &C = SC->getAPInt();
2078         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2079         if (D != 0) {
2080           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2081           const SCEV *SResidual =
2082               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2083           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2084           return getAddExpr(SSExtD, SSExtR,
2085                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2086                             Depth + 1);
2087         }
2088       }
2089 
2090       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2091         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2092         return getAddRecExpr(
2093             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2094             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2095       }
2096     }
2097 
2098   // If the input value is provably positive and we could not simplify
2099   // away the sext build a zext instead.
2100   if (isKnownNonNegative(Op))
2101     return getZeroExtendExpr(Op, Ty, Depth + 1);
2102 
2103   // The cast wasn't folded; create an explicit cast node.
2104   // Recompute the insert position, as it may have been invalidated.
2105   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2106   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2107                                                    Op, Ty);
2108   UniqueSCEVs.InsertNode(S, IP);
2109   registerUser(S, { Op });
2110   return S;
2111 }
2112 
2113 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2114 /// unspecified bits out to the given type.
2115 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2116                                               Type *Ty) {
2117   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2118          "This is not an extending conversion!");
2119   assert(isSCEVable(Ty) &&
2120          "This is not a conversion to a SCEVable type!");
2121   Ty = getEffectiveSCEVType(Ty);
2122 
2123   // Sign-extend negative constants.
2124   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2125     if (SC->getAPInt().isNegative())
2126       return getSignExtendExpr(Op, Ty);
2127 
2128   // Peel off a truncate cast.
2129   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2130     const SCEV *NewOp = T->getOperand();
2131     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2132       return getAnyExtendExpr(NewOp, Ty);
2133     return getTruncateOrNoop(NewOp, Ty);
2134   }
2135 
2136   // Next try a zext cast. If the cast is folded, use it.
2137   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2138   if (!isa<SCEVZeroExtendExpr>(ZExt))
2139     return ZExt;
2140 
2141   // Next try a sext cast. If the cast is folded, use it.
2142   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2143   if (!isa<SCEVSignExtendExpr>(SExt))
2144     return SExt;
2145 
2146   // Force the cast to be folded into the operands of an addrec.
2147   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2148     SmallVector<const SCEV *, 4> Ops;
2149     for (const SCEV *Op : AR->operands())
2150       Ops.push_back(getAnyExtendExpr(Op, Ty));
2151     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2152   }
2153 
2154   // If the expression is obviously signed, use the sext cast value.
2155   if (isa<SCEVSMaxExpr>(Op))
2156     return SExt;
2157 
2158   // Absent any other information, use the zext cast value.
2159   return ZExt;
2160 }
2161 
2162 /// Process the given Ops list, which is a list of operands to be added under
2163 /// the given scale, update the given map. This is a helper function for
2164 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2165 /// that would form an add expression like this:
2166 ///
2167 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2168 ///
2169 /// where A and B are constants, update the map with these values:
2170 ///
2171 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2172 ///
2173 /// and add 13 + A*B*29 to AccumulatedConstant.
2174 /// This will allow getAddRecExpr to produce this:
2175 ///
2176 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2177 ///
2178 /// This form often exposes folding opportunities that are hidden in
2179 /// the original operand list.
2180 ///
2181 /// Return true iff it appears that any interesting folding opportunities
2182 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2183 /// the common case where no interesting opportunities are present, and
2184 /// is also used as a check to avoid infinite recursion.
2185 static bool
2186 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2187                              SmallVectorImpl<const SCEV *> &NewOps,
2188                              APInt &AccumulatedConstant,
2189                              const SCEV *const *Ops, size_t NumOperands,
2190                              const APInt &Scale,
2191                              ScalarEvolution &SE) {
2192   bool Interesting = false;
2193 
2194   // Iterate over the add operands. They are sorted, with constants first.
2195   unsigned i = 0;
2196   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2197     ++i;
2198     // Pull a buried constant out to the outside.
2199     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2200       Interesting = true;
2201     AccumulatedConstant += Scale * C->getAPInt();
2202   }
2203 
2204   // Next comes everything else. We're especially interested in multiplies
2205   // here, but they're in the middle, so just visit the rest with one loop.
2206   for (; i != NumOperands; ++i) {
2207     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2208     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2209       APInt NewScale =
2210           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2211       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2212         // A multiplication of a constant with another add; recurse.
2213         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2214         Interesting |=
2215           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2216                                        Add->op_begin(), Add->getNumOperands(),
2217                                        NewScale, SE);
2218       } else {
2219         // A multiplication of a constant with some other value. Update
2220         // the map.
2221         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2222         const SCEV *Key = SE.getMulExpr(MulOps);
2223         auto Pair = M.insert({Key, NewScale});
2224         if (Pair.second) {
2225           NewOps.push_back(Pair.first->first);
2226         } else {
2227           Pair.first->second += NewScale;
2228           // The map already had an entry for this value, which may indicate
2229           // a folding opportunity.
2230           Interesting = true;
2231         }
2232       }
2233     } else {
2234       // An ordinary operand. Update the map.
2235       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2236           M.insert({Ops[i], Scale});
2237       if (Pair.second) {
2238         NewOps.push_back(Pair.first->first);
2239       } else {
2240         Pair.first->second += Scale;
2241         // The map already had an entry for this value, which may indicate
2242         // a folding opportunity.
2243         Interesting = true;
2244       }
2245     }
2246   }
2247 
2248   return Interesting;
2249 }
2250 
2251 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2252                                       const SCEV *LHS, const SCEV *RHS) {
2253   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2254                                             SCEV::NoWrapFlags, unsigned);
2255   switch (BinOp) {
2256   default:
2257     llvm_unreachable("Unsupported binary op");
2258   case Instruction::Add:
2259     Operation = &ScalarEvolution::getAddExpr;
2260     break;
2261   case Instruction::Sub:
2262     Operation = &ScalarEvolution::getMinusSCEV;
2263     break;
2264   case Instruction::Mul:
2265     Operation = &ScalarEvolution::getMulExpr;
2266     break;
2267   }
2268 
2269   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2270       Signed ? &ScalarEvolution::getSignExtendExpr
2271              : &ScalarEvolution::getZeroExtendExpr;
2272 
2273   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2274   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2275   auto *WideTy =
2276       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2277 
2278   const SCEV *A = (this->*Extension)(
2279       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2280   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2281                                      (this->*Extension)(RHS, WideTy, 0),
2282                                      SCEV::FlagAnyWrap, 0);
2283   return A == B;
2284 }
2285 
2286 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2287 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2288     const OverflowingBinaryOperator *OBO) {
2289   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2290 
2291   if (OBO->hasNoUnsignedWrap())
2292     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2293   if (OBO->hasNoSignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2295 
2296   bool Deduced = false;
2297 
2298   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2299     return {Flags, Deduced};
2300 
2301   if (OBO->getOpcode() != Instruction::Add &&
2302       OBO->getOpcode() != Instruction::Sub &&
2303       OBO->getOpcode() != Instruction::Mul)
2304     return {Flags, Deduced};
2305 
2306   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2307   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2308 
2309   if (!OBO->hasNoUnsignedWrap() &&
2310       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2311                       /* Signed */ false, LHS, RHS)) {
2312     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2313     Deduced = true;
2314   }
2315 
2316   if (!OBO->hasNoSignedWrap() &&
2317       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2318                       /* Signed */ true, LHS, RHS)) {
2319     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2320     Deduced = true;
2321   }
2322 
2323   return {Flags, Deduced};
2324 }
2325 
2326 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2327 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2328 // can't-overflow flags for the operation if possible.
2329 static SCEV::NoWrapFlags
2330 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2331                       const ArrayRef<const SCEV *> Ops,
2332                       SCEV::NoWrapFlags Flags) {
2333   using namespace std::placeholders;
2334 
2335   using OBO = OverflowingBinaryOperator;
2336 
2337   bool CanAnalyze =
2338       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2339   (void)CanAnalyze;
2340   assert(CanAnalyze && "don't call from other places!");
2341 
2342   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2343   SCEV::NoWrapFlags SignOrUnsignWrap =
2344       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2345 
2346   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2347   auto IsKnownNonNegative = [&](const SCEV *S) {
2348     return SE->isKnownNonNegative(S);
2349   };
2350 
2351   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2352     Flags =
2353         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2354 
2355   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2356 
2357   if (SignOrUnsignWrap != SignOrUnsignMask &&
2358       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2359       isa<SCEVConstant>(Ops[0])) {
2360 
2361     auto Opcode = [&] {
2362       switch (Type) {
2363       case scAddExpr:
2364         return Instruction::Add;
2365       case scMulExpr:
2366         return Instruction::Mul;
2367       default:
2368         llvm_unreachable("Unexpected SCEV op.");
2369       }
2370     }();
2371 
2372     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2373 
2374     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2375     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2376       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2377           Opcode, C, OBO::NoSignedWrap);
2378       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2379         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2380     }
2381 
2382     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2383     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2384       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2385           Opcode, C, OBO::NoUnsignedWrap);
2386       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2387         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2388     }
2389   }
2390 
2391   // <0,+,nonnegative><nw> is also nuw
2392   // TODO: Add corresponding nsw case
2393   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2394       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2395       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2396     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2397 
2398   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2399   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2400       Ops.size() == 2) {
2401     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2402       if (UDiv->getOperand(1) == Ops[1])
2403         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2404     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2405       if (UDiv->getOperand(1) == Ops[0])
2406         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2407   }
2408 
2409   return Flags;
2410 }
2411 
2412 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2413   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2414 }
2415 
2416 /// Get a canonical add expression, or something simpler if possible.
2417 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2418                                         SCEV::NoWrapFlags OrigFlags,
2419                                         unsigned Depth) {
2420   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2421          "only nuw or nsw allowed");
2422   assert(!Ops.empty() && "Cannot get empty add!");
2423   if (Ops.size() == 1) return Ops[0];
2424 #ifndef NDEBUG
2425   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2426   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2427     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2428            "SCEVAddExpr operand types don't match!");
2429   unsigned NumPtrs = count_if(
2430       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2431   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2432 #endif
2433 
2434   // Sort by complexity, this groups all similar expression types together.
2435   GroupByComplexity(Ops, &LI, DT);
2436 
2437   // If there are any constants, fold them together.
2438   unsigned Idx = 0;
2439   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2440     ++Idx;
2441     assert(Idx < Ops.size());
2442     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2443       // We found two constants, fold them together!
2444       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2445       if (Ops.size() == 2) return Ops[0];
2446       Ops.erase(Ops.begin()+1);  // Erase the folded element
2447       LHSC = cast<SCEVConstant>(Ops[0]);
2448     }
2449 
2450     // If we are left with a constant zero being added, strip it off.
2451     if (LHSC->getValue()->isZero()) {
2452       Ops.erase(Ops.begin());
2453       --Idx;
2454     }
2455 
2456     if (Ops.size() == 1) return Ops[0];
2457   }
2458 
2459   // Delay expensive flag strengthening until necessary.
2460   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2461     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2462   };
2463 
2464   // Limit recursion calls depth.
2465   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2466     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2467 
2468   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2469     // Don't strengthen flags if we have no new information.
2470     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2471     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2472       Add->setNoWrapFlags(ComputeFlags(Ops));
2473     return S;
2474   }
2475 
2476   // Okay, check to see if the same value occurs in the operand list more than
2477   // once.  If so, merge them together into an multiply expression.  Since we
2478   // sorted the list, these values are required to be adjacent.
2479   Type *Ty = Ops[0]->getType();
2480   bool FoundMatch = false;
2481   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2482     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2483       // Scan ahead to count how many equal operands there are.
2484       unsigned Count = 2;
2485       while (i+Count != e && Ops[i+Count] == Ops[i])
2486         ++Count;
2487       // Merge the values into a multiply.
2488       const SCEV *Scale = getConstant(Ty, Count);
2489       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2490       if (Ops.size() == Count)
2491         return Mul;
2492       Ops[i] = Mul;
2493       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2494       --i; e -= Count - 1;
2495       FoundMatch = true;
2496     }
2497   if (FoundMatch)
2498     return getAddExpr(Ops, OrigFlags, Depth + 1);
2499 
2500   // Check for truncates. If all the operands are truncated from the same
2501   // type, see if factoring out the truncate would permit the result to be
2502   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2503   // if the contents of the resulting outer trunc fold to something simple.
2504   auto FindTruncSrcType = [&]() -> Type * {
2505     // We're ultimately looking to fold an addrec of truncs and muls of only
2506     // constants and truncs, so if we find any other types of SCEV
2507     // as operands of the addrec then we bail and return nullptr here.
2508     // Otherwise, we return the type of the operand of a trunc that we find.
2509     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2510       return T->getOperand()->getType();
2511     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2512       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2513       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2514         return T->getOperand()->getType();
2515     }
2516     return nullptr;
2517   };
2518   if (auto *SrcType = FindTruncSrcType()) {
2519     SmallVector<const SCEV *, 8> LargeOps;
2520     bool Ok = true;
2521     // Check all the operands to see if they can be represented in the
2522     // source type of the truncate.
2523     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2524       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2525         if (T->getOperand()->getType() != SrcType) {
2526           Ok = false;
2527           break;
2528         }
2529         LargeOps.push_back(T->getOperand());
2530       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2531         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2532       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2533         SmallVector<const SCEV *, 8> LargeMulOps;
2534         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2535           if (const SCEVTruncateExpr *T =
2536                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2537             if (T->getOperand()->getType() != SrcType) {
2538               Ok = false;
2539               break;
2540             }
2541             LargeMulOps.push_back(T->getOperand());
2542           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2543             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2544           } else {
2545             Ok = false;
2546             break;
2547           }
2548         }
2549         if (Ok)
2550           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2551       } else {
2552         Ok = false;
2553         break;
2554       }
2555     }
2556     if (Ok) {
2557       // Evaluate the expression in the larger type.
2558       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2559       // If it folds to something simple, use it. Otherwise, don't.
2560       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2561         return getTruncateExpr(Fold, Ty);
2562     }
2563   }
2564 
2565   if (Ops.size() == 2) {
2566     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2567     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2568     // C1).
2569     const SCEV *A = Ops[0];
2570     const SCEV *B = Ops[1];
2571     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2572     auto *C = dyn_cast<SCEVConstant>(A);
2573     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2574       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2575       auto C2 = C->getAPInt();
2576       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2577 
2578       APInt ConstAdd = C1 + C2;
2579       auto AddFlags = AddExpr->getNoWrapFlags();
2580       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2581       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2582           ConstAdd.ule(C1)) {
2583         PreservedFlags =
2584             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2585       }
2586 
2587       // Adding a constant with the same sign and small magnitude is NSW, if the
2588       // original AddExpr was NSW.
2589       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2590           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2591           ConstAdd.abs().ule(C1.abs())) {
2592         PreservedFlags =
2593             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2594       }
2595 
2596       if (PreservedFlags != SCEV::FlagAnyWrap) {
2597         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2598         NewOps[0] = getConstant(ConstAdd);
2599         return getAddExpr(NewOps, PreservedFlags);
2600       }
2601     }
2602   }
2603 
2604   // Skip past any other cast SCEVs.
2605   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2606     ++Idx;
2607 
2608   // If there are add operands they would be next.
2609   if (Idx < Ops.size()) {
2610     bool DeletedAdd = false;
2611     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2612     // common NUW flag for expression after inlining. Other flags cannot be
2613     // preserved, because they may depend on the original order of operations.
2614     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2615     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2616       if (Ops.size() > AddOpsInlineThreshold ||
2617           Add->getNumOperands() > AddOpsInlineThreshold)
2618         break;
2619       // If we have an add, expand the add operands onto the end of the operands
2620       // list.
2621       Ops.erase(Ops.begin()+Idx);
2622       Ops.append(Add->op_begin(), Add->op_end());
2623       DeletedAdd = true;
2624       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2625     }
2626 
2627     // If we deleted at least one add, we added operands to the end of the list,
2628     // and they are not necessarily sorted.  Recurse to resort and resimplify
2629     // any operands we just acquired.
2630     if (DeletedAdd)
2631       return getAddExpr(Ops, CommonFlags, Depth + 1);
2632   }
2633 
2634   // Skip over the add expression until we get to a multiply.
2635   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2636     ++Idx;
2637 
2638   // Check to see if there are any folding opportunities present with
2639   // operands multiplied by constant values.
2640   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2641     uint64_t BitWidth = getTypeSizeInBits(Ty);
2642     DenseMap<const SCEV *, APInt> M;
2643     SmallVector<const SCEV *, 8> NewOps;
2644     APInt AccumulatedConstant(BitWidth, 0);
2645     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2646                                      Ops.data(), Ops.size(),
2647                                      APInt(BitWidth, 1), *this)) {
2648       struct APIntCompare {
2649         bool operator()(const APInt &LHS, const APInt &RHS) const {
2650           return LHS.ult(RHS);
2651         }
2652       };
2653 
2654       // Some interesting folding opportunity is present, so its worthwhile to
2655       // re-generate the operands list. Group the operands by constant scale,
2656       // to avoid multiplying by the same constant scale multiple times.
2657       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2658       for (const SCEV *NewOp : NewOps)
2659         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2660       // Re-generate the operands list.
2661       Ops.clear();
2662       if (AccumulatedConstant != 0)
2663         Ops.push_back(getConstant(AccumulatedConstant));
2664       for (auto &MulOp : MulOpLists) {
2665         if (MulOp.first == 1) {
2666           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2667         } else if (MulOp.first != 0) {
2668           Ops.push_back(getMulExpr(
2669               getConstant(MulOp.first),
2670               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2671               SCEV::FlagAnyWrap, Depth + 1));
2672         }
2673       }
2674       if (Ops.empty())
2675         return getZero(Ty);
2676       if (Ops.size() == 1)
2677         return Ops[0];
2678       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2679     }
2680   }
2681 
2682   // If we are adding something to a multiply expression, make sure the
2683   // something is not already an operand of the multiply.  If so, merge it into
2684   // the multiply.
2685   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2686     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2687     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2688       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2689       if (isa<SCEVConstant>(MulOpSCEV))
2690         continue;
2691       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2692         if (MulOpSCEV == Ops[AddOp]) {
2693           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2694           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2695           if (Mul->getNumOperands() != 2) {
2696             // If the multiply has more than two operands, we must get the
2697             // Y*Z term.
2698             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2699                                                 Mul->op_begin()+MulOp);
2700             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2701             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2702           }
2703           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2704           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2705           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2706                                             SCEV::FlagAnyWrap, Depth + 1);
2707           if (Ops.size() == 2) return OuterMul;
2708           if (AddOp < Idx) {
2709             Ops.erase(Ops.begin()+AddOp);
2710             Ops.erase(Ops.begin()+Idx-1);
2711           } else {
2712             Ops.erase(Ops.begin()+Idx);
2713             Ops.erase(Ops.begin()+AddOp-1);
2714           }
2715           Ops.push_back(OuterMul);
2716           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2717         }
2718 
2719       // Check this multiply against other multiplies being added together.
2720       for (unsigned OtherMulIdx = Idx+1;
2721            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2722            ++OtherMulIdx) {
2723         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2724         // If MulOp occurs in OtherMul, we can fold the two multiplies
2725         // together.
2726         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2727              OMulOp != e; ++OMulOp)
2728           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2729             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2730             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2731             if (Mul->getNumOperands() != 2) {
2732               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2733                                                   Mul->op_begin()+MulOp);
2734               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2735               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2736             }
2737             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2738             if (OtherMul->getNumOperands() != 2) {
2739               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2740                                                   OtherMul->op_begin()+OMulOp);
2741               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2742               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2743             }
2744             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2745             const SCEV *InnerMulSum =
2746                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2747             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2748                                               SCEV::FlagAnyWrap, Depth + 1);
2749             if (Ops.size() == 2) return OuterMul;
2750             Ops.erase(Ops.begin()+Idx);
2751             Ops.erase(Ops.begin()+OtherMulIdx-1);
2752             Ops.push_back(OuterMul);
2753             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2754           }
2755       }
2756     }
2757   }
2758 
2759   // If there are any add recurrences in the operands list, see if any other
2760   // added values are loop invariant.  If so, we can fold them into the
2761   // recurrence.
2762   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2763     ++Idx;
2764 
2765   // Scan over all recurrences, trying to fold loop invariants into them.
2766   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2767     // Scan all of the other operands to this add and add them to the vector if
2768     // they are loop invariant w.r.t. the recurrence.
2769     SmallVector<const SCEV *, 8> LIOps;
2770     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2771     const Loop *AddRecLoop = AddRec->getLoop();
2772     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2773       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2774         LIOps.push_back(Ops[i]);
2775         Ops.erase(Ops.begin()+i);
2776         --i; --e;
2777       }
2778 
2779     // If we found some loop invariants, fold them into the recurrence.
2780     if (!LIOps.empty()) {
2781       // Compute nowrap flags for the addition of the loop-invariant ops and
2782       // the addrec. Temporarily push it as an operand for that purpose. These
2783       // flags are valid in the scope of the addrec only.
2784       LIOps.push_back(AddRec);
2785       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2786       LIOps.pop_back();
2787 
2788       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2789       LIOps.push_back(AddRec->getStart());
2790 
2791       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2792 
2793       // It is not in general safe to propagate flags valid on an add within
2794       // the addrec scope to one outside it.  We must prove that the inner
2795       // scope is guaranteed to execute if the outer one does to be able to
2796       // safely propagate.  We know the program is undefined if poison is
2797       // produced on the inner scoped addrec.  We also know that *for this use*
2798       // the outer scoped add can't overflow (because of the flags we just
2799       // computed for the inner scoped add) without the program being undefined.
2800       // Proving that entry to the outer scope neccesitates entry to the inner
2801       // scope, thus proves the program undefined if the flags would be violated
2802       // in the outer scope.
2803       SCEV::NoWrapFlags AddFlags = Flags;
2804       if (AddFlags != SCEV::FlagAnyWrap) {
2805         auto *DefI = getDefiningScopeBound(LIOps);
2806         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2807         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2808           AddFlags = SCEV::FlagAnyWrap;
2809       }
2810       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2811 
2812       // Build the new addrec. Propagate the NUW and NSW flags if both the
2813       // outer add and the inner addrec are guaranteed to have no overflow.
2814       // Always propagate NW.
2815       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2816       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2817 
2818       // If all of the other operands were loop invariant, we are done.
2819       if (Ops.size() == 1) return NewRec;
2820 
2821       // Otherwise, add the folded AddRec by the non-invariant parts.
2822       for (unsigned i = 0;; ++i)
2823         if (Ops[i] == AddRec) {
2824           Ops[i] = NewRec;
2825           break;
2826         }
2827       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2828     }
2829 
2830     // Okay, if there weren't any loop invariants to be folded, check to see if
2831     // there are multiple AddRec's with the same loop induction variable being
2832     // added together.  If so, we can fold them.
2833     for (unsigned OtherIdx = Idx+1;
2834          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2835          ++OtherIdx) {
2836       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2837       // so that the 1st found AddRecExpr is dominated by all others.
2838       assert(DT.dominates(
2839            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2840            AddRec->getLoop()->getHeader()) &&
2841         "AddRecExprs are not sorted in reverse dominance order?");
2842       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2843         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2844         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2845         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2846              ++OtherIdx) {
2847           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2848           if (OtherAddRec->getLoop() == AddRecLoop) {
2849             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2850                  i != e; ++i) {
2851               if (i >= AddRecOps.size()) {
2852                 AddRecOps.append(OtherAddRec->op_begin()+i,
2853                                  OtherAddRec->op_end());
2854                 break;
2855               }
2856               SmallVector<const SCEV *, 2> TwoOps = {
2857                   AddRecOps[i], OtherAddRec->getOperand(i)};
2858               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2859             }
2860             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2861           }
2862         }
2863         // Step size has changed, so we cannot guarantee no self-wraparound.
2864         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2865         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2866       }
2867     }
2868 
2869     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2870     // next one.
2871   }
2872 
2873   // Okay, it looks like we really DO need an add expr.  Check to see if we
2874   // already have one, otherwise create a new one.
2875   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2876 }
2877 
2878 const SCEV *
2879 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2880                                     SCEV::NoWrapFlags Flags) {
2881   FoldingSetNodeID ID;
2882   ID.AddInteger(scAddExpr);
2883   for (const SCEV *Op : Ops)
2884     ID.AddPointer(Op);
2885   void *IP = nullptr;
2886   SCEVAddExpr *S =
2887       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2888   if (!S) {
2889     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2890     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2891     S = new (SCEVAllocator)
2892         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2893     UniqueSCEVs.InsertNode(S, IP);
2894     registerUser(S, Ops);
2895   }
2896   S->setNoWrapFlags(Flags);
2897   return S;
2898 }
2899 
2900 const SCEV *
2901 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2902                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2903   FoldingSetNodeID ID;
2904   ID.AddInteger(scAddRecExpr);
2905   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2906     ID.AddPointer(Ops[i]);
2907   ID.AddPointer(L);
2908   void *IP = nullptr;
2909   SCEVAddRecExpr *S =
2910       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2911   if (!S) {
2912     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2913     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2914     S = new (SCEVAllocator)
2915         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2916     UniqueSCEVs.InsertNode(S, IP);
2917     LoopUsers[L].push_back(S);
2918     registerUser(S, Ops);
2919   }
2920   setNoWrapFlags(S, Flags);
2921   return S;
2922 }
2923 
2924 const SCEV *
2925 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2926                                     SCEV::NoWrapFlags Flags) {
2927   FoldingSetNodeID ID;
2928   ID.AddInteger(scMulExpr);
2929   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2930     ID.AddPointer(Ops[i]);
2931   void *IP = nullptr;
2932   SCEVMulExpr *S =
2933     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2934   if (!S) {
2935     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2936     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2937     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2938                                         O, Ops.size());
2939     UniqueSCEVs.InsertNode(S, IP);
2940     registerUser(S, Ops);
2941   }
2942   S->setNoWrapFlags(Flags);
2943   return S;
2944 }
2945 
2946 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2947   uint64_t k = i*j;
2948   if (j > 1 && k / j != i) Overflow = true;
2949   return k;
2950 }
2951 
2952 /// Compute the result of "n choose k", the binomial coefficient.  If an
2953 /// intermediate computation overflows, Overflow will be set and the return will
2954 /// be garbage. Overflow is not cleared on absence of overflow.
2955 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2956   // We use the multiplicative formula:
2957   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2958   // At each iteration, we take the n-th term of the numeral and divide by the
2959   // (k-n)th term of the denominator.  This division will always produce an
2960   // integral result, and helps reduce the chance of overflow in the
2961   // intermediate computations. However, we can still overflow even when the
2962   // final result would fit.
2963 
2964   if (n == 0 || n == k) return 1;
2965   if (k > n) return 0;
2966 
2967   if (k > n/2)
2968     k = n-k;
2969 
2970   uint64_t r = 1;
2971   for (uint64_t i = 1; i <= k; ++i) {
2972     r = umul_ov(r, n-(i-1), Overflow);
2973     r /= i;
2974   }
2975   return r;
2976 }
2977 
2978 /// Determine if any of the operands in this SCEV are a constant or if
2979 /// any of the add or multiply expressions in this SCEV contain a constant.
2980 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2981   struct FindConstantInAddMulChain {
2982     bool FoundConstant = false;
2983 
2984     bool follow(const SCEV *S) {
2985       FoundConstant |= isa<SCEVConstant>(S);
2986       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2987     }
2988 
2989     bool isDone() const {
2990       return FoundConstant;
2991     }
2992   };
2993 
2994   FindConstantInAddMulChain F;
2995   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2996   ST.visitAll(StartExpr);
2997   return F.FoundConstant;
2998 }
2999 
3000 /// Get a canonical multiply expression, or something simpler if possible.
3001 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3002                                         SCEV::NoWrapFlags OrigFlags,
3003                                         unsigned Depth) {
3004   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3005          "only nuw or nsw allowed");
3006   assert(!Ops.empty() && "Cannot get empty mul!");
3007   if (Ops.size() == 1) return Ops[0];
3008 #ifndef NDEBUG
3009   Type *ETy = Ops[0]->getType();
3010   assert(!ETy->isPointerTy());
3011   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3012     assert(Ops[i]->getType() == ETy &&
3013            "SCEVMulExpr operand types don't match!");
3014 #endif
3015 
3016   // Sort by complexity, this groups all similar expression types together.
3017   GroupByComplexity(Ops, &LI, DT);
3018 
3019   // If there are any constants, fold them together.
3020   unsigned Idx = 0;
3021   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3022     ++Idx;
3023     assert(Idx < Ops.size());
3024     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3025       // We found two constants, fold them together!
3026       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3027       if (Ops.size() == 2) return Ops[0];
3028       Ops.erase(Ops.begin()+1);  // Erase the folded element
3029       LHSC = cast<SCEVConstant>(Ops[0]);
3030     }
3031 
3032     // If we have a multiply of zero, it will always be zero.
3033     if (LHSC->getValue()->isZero())
3034       return LHSC;
3035 
3036     // If we are left with a constant one being multiplied, strip it off.
3037     if (LHSC->getValue()->isOne()) {
3038       Ops.erase(Ops.begin());
3039       --Idx;
3040     }
3041 
3042     if (Ops.size() == 1)
3043       return Ops[0];
3044   }
3045 
3046   // Delay expensive flag strengthening until necessary.
3047   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3048     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3049   };
3050 
3051   // Limit recursion calls depth.
3052   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3053     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3054 
3055   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3056     // Don't strengthen flags if we have no new information.
3057     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3058     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3059       Mul->setNoWrapFlags(ComputeFlags(Ops));
3060     return S;
3061   }
3062 
3063   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3064     if (Ops.size() == 2) {
3065       // C1*(C2+V) -> C1*C2 + C1*V
3066       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3067         // If any of Add's ops are Adds or Muls with a constant, apply this
3068         // transformation as well.
3069         //
3070         // TODO: There are some cases where this transformation is not
3071         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3072         // this transformation should be narrowed down.
3073         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3074           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3075                                        SCEV::FlagAnyWrap, Depth + 1),
3076                             getMulExpr(LHSC, Add->getOperand(1),
3077                                        SCEV::FlagAnyWrap, Depth + 1),
3078                             SCEV::FlagAnyWrap, Depth + 1);
3079 
3080       if (Ops[0]->isAllOnesValue()) {
3081         // If we have a mul by -1 of an add, try distributing the -1 among the
3082         // add operands.
3083         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3084           SmallVector<const SCEV *, 4> NewOps;
3085           bool AnyFolded = false;
3086           for (const SCEV *AddOp : Add->operands()) {
3087             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3088                                          Depth + 1);
3089             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3090             NewOps.push_back(Mul);
3091           }
3092           if (AnyFolded)
3093             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3094         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3095           // Negation preserves a recurrence's no self-wrap property.
3096           SmallVector<const SCEV *, 4> Operands;
3097           for (const SCEV *AddRecOp : AddRec->operands())
3098             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3099                                           Depth + 1));
3100 
3101           return getAddRecExpr(Operands, AddRec->getLoop(),
3102                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3103         }
3104       }
3105     }
3106   }
3107 
3108   // Skip over the add expression until we get to a multiply.
3109   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3110     ++Idx;
3111 
3112   // If there are mul operands inline them all into this expression.
3113   if (Idx < Ops.size()) {
3114     bool DeletedMul = false;
3115     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3116       if (Ops.size() > MulOpsInlineThreshold)
3117         break;
3118       // If we have an mul, expand the mul operands onto the end of the
3119       // operands list.
3120       Ops.erase(Ops.begin()+Idx);
3121       Ops.append(Mul->op_begin(), Mul->op_end());
3122       DeletedMul = true;
3123     }
3124 
3125     // If we deleted at least one mul, we added operands to the end of the
3126     // list, and they are not necessarily sorted.  Recurse to resort and
3127     // resimplify any operands we just acquired.
3128     if (DeletedMul)
3129       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3130   }
3131 
3132   // If there are any add recurrences in the operands list, see if any other
3133   // added values are loop invariant.  If so, we can fold them into the
3134   // recurrence.
3135   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3136     ++Idx;
3137 
3138   // Scan over all recurrences, trying to fold loop invariants into them.
3139   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3140     // Scan all of the other operands to this mul and add them to the vector
3141     // if they are loop invariant w.r.t. the recurrence.
3142     SmallVector<const SCEV *, 8> LIOps;
3143     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3144     const Loop *AddRecLoop = AddRec->getLoop();
3145     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3146       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3147         LIOps.push_back(Ops[i]);
3148         Ops.erase(Ops.begin()+i);
3149         --i; --e;
3150       }
3151 
3152     // If we found some loop invariants, fold them into the recurrence.
3153     if (!LIOps.empty()) {
3154       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3155       SmallVector<const SCEV *, 4> NewOps;
3156       NewOps.reserve(AddRec->getNumOperands());
3157       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3158       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3159         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3160                                     SCEV::FlagAnyWrap, Depth + 1));
3161 
3162       // Build the new addrec. Propagate the NUW and NSW flags if both the
3163       // outer mul and the inner addrec are guaranteed to have no overflow.
3164       //
3165       // No self-wrap cannot be guaranteed after changing the step size, but
3166       // will be inferred if either NUW or NSW is true.
3167       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3168       const SCEV *NewRec = getAddRecExpr(
3169           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3170 
3171       // If all of the other operands were loop invariant, we are done.
3172       if (Ops.size() == 1) return NewRec;
3173 
3174       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3175       for (unsigned i = 0;; ++i)
3176         if (Ops[i] == AddRec) {
3177           Ops[i] = NewRec;
3178           break;
3179         }
3180       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3181     }
3182 
3183     // Okay, if there weren't any loop invariants to be folded, check to see
3184     // if there are multiple AddRec's with the same loop induction variable
3185     // being multiplied together.  If so, we can fold them.
3186 
3187     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3188     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3189     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3190     //   ]]],+,...up to x=2n}.
3191     // Note that the arguments to choose() are always integers with values
3192     // known at compile time, never SCEV objects.
3193     //
3194     // The implementation avoids pointless extra computations when the two
3195     // addrec's are of different length (mathematically, it's equivalent to
3196     // an infinite stream of zeros on the right).
3197     bool OpsModified = false;
3198     for (unsigned OtherIdx = Idx+1;
3199          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3200          ++OtherIdx) {
3201       const SCEVAddRecExpr *OtherAddRec =
3202         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3203       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3204         continue;
3205 
3206       // Limit max number of arguments to avoid creation of unreasonably big
3207       // SCEVAddRecs with very complex operands.
3208       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3209           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3210         continue;
3211 
3212       bool Overflow = false;
3213       Type *Ty = AddRec->getType();
3214       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3215       SmallVector<const SCEV*, 7> AddRecOps;
3216       for (int x = 0, xe = AddRec->getNumOperands() +
3217              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3218         SmallVector <const SCEV *, 7> SumOps;
3219         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3220           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3221           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3222                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3223                z < ze && !Overflow; ++z) {
3224             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3225             uint64_t Coeff;
3226             if (LargerThan64Bits)
3227               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3228             else
3229               Coeff = Coeff1*Coeff2;
3230             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3231             const SCEV *Term1 = AddRec->getOperand(y-z);
3232             const SCEV *Term2 = OtherAddRec->getOperand(z);
3233             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3234                                         SCEV::FlagAnyWrap, Depth + 1));
3235           }
3236         }
3237         if (SumOps.empty())
3238           SumOps.push_back(getZero(Ty));
3239         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3240       }
3241       if (!Overflow) {
3242         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3243                                               SCEV::FlagAnyWrap);
3244         if (Ops.size() == 2) return NewAddRec;
3245         Ops[Idx] = NewAddRec;
3246         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3247         OpsModified = true;
3248         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3249         if (!AddRec)
3250           break;
3251       }
3252     }
3253     if (OpsModified)
3254       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3255 
3256     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3257     // next one.
3258   }
3259 
3260   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3261   // already have one, otherwise create a new one.
3262   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3263 }
3264 
3265 /// Represents an unsigned remainder expression based on unsigned division.
3266 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3267                                          const SCEV *RHS) {
3268   assert(getEffectiveSCEVType(LHS->getType()) ==
3269          getEffectiveSCEVType(RHS->getType()) &&
3270          "SCEVURemExpr operand types don't match!");
3271 
3272   // Short-circuit easy cases
3273   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3274     // If constant is one, the result is trivial
3275     if (RHSC->getValue()->isOne())
3276       return getZero(LHS->getType()); // X urem 1 --> 0
3277 
3278     // If constant is a power of two, fold into a zext(trunc(LHS)).
3279     if (RHSC->getAPInt().isPowerOf2()) {
3280       Type *FullTy = LHS->getType();
3281       Type *TruncTy =
3282           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3283       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3284     }
3285   }
3286 
3287   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3288   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3289   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3290   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3291 }
3292 
3293 /// Get a canonical unsigned division expression, or something simpler if
3294 /// possible.
3295 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3296                                          const SCEV *RHS) {
3297   assert(!LHS->getType()->isPointerTy() &&
3298          "SCEVUDivExpr operand can't be pointer!");
3299   assert(LHS->getType() == RHS->getType() &&
3300          "SCEVUDivExpr operand types don't match!");
3301 
3302   FoldingSetNodeID ID;
3303   ID.AddInteger(scUDivExpr);
3304   ID.AddPointer(LHS);
3305   ID.AddPointer(RHS);
3306   void *IP = nullptr;
3307   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3308     return S;
3309 
3310   // 0 udiv Y == 0
3311   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3312     if (LHSC->getValue()->isZero())
3313       return LHS;
3314 
3315   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3316     if (RHSC->getValue()->isOne())
3317       return LHS;                               // X udiv 1 --> x
3318     // If the denominator is zero, the result of the udiv is undefined. Don't
3319     // try to analyze it, because the resolution chosen here may differ from
3320     // the resolution chosen in other parts of the compiler.
3321     if (!RHSC->getValue()->isZero()) {
3322       // Determine if the division can be folded into the operands of
3323       // its operands.
3324       // TODO: Generalize this to non-constants by using known-bits information.
3325       Type *Ty = LHS->getType();
3326       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3327       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3328       // For non-power-of-two values, effectively round the value up to the
3329       // nearest power of two.
3330       if (!RHSC->getAPInt().isPowerOf2())
3331         ++MaxShiftAmt;
3332       IntegerType *ExtTy =
3333         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3334       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3335         if (const SCEVConstant *Step =
3336             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3337           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3338           const APInt &StepInt = Step->getAPInt();
3339           const APInt &DivInt = RHSC->getAPInt();
3340           if (!StepInt.urem(DivInt) &&
3341               getZeroExtendExpr(AR, ExtTy) ==
3342               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3343                             getZeroExtendExpr(Step, ExtTy),
3344                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3345             SmallVector<const SCEV *, 4> Operands;
3346             for (const SCEV *Op : AR->operands())
3347               Operands.push_back(getUDivExpr(Op, RHS));
3348             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3349           }
3350           /// Get a canonical UDivExpr for a recurrence.
3351           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3352           // We can currently only fold X%N if X is constant.
3353           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3354           if (StartC && !DivInt.urem(StepInt) &&
3355               getZeroExtendExpr(AR, ExtTy) ==
3356               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3357                             getZeroExtendExpr(Step, ExtTy),
3358                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3359             const APInt &StartInt = StartC->getAPInt();
3360             const APInt &StartRem = StartInt.urem(StepInt);
3361             if (StartRem != 0) {
3362               const SCEV *NewLHS =
3363                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3364                                 AR->getLoop(), SCEV::FlagNW);
3365               if (LHS != NewLHS) {
3366                 LHS = NewLHS;
3367 
3368                 // Reset the ID to include the new LHS, and check if it is
3369                 // already cached.
3370                 ID.clear();
3371                 ID.AddInteger(scUDivExpr);
3372                 ID.AddPointer(LHS);
3373                 ID.AddPointer(RHS);
3374                 IP = nullptr;
3375                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3376                   return S;
3377               }
3378             }
3379           }
3380         }
3381       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3382       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3383         SmallVector<const SCEV *, 4> Operands;
3384         for (const SCEV *Op : M->operands())
3385           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3386         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3387           // Find an operand that's safely divisible.
3388           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3389             const SCEV *Op = M->getOperand(i);
3390             const SCEV *Div = getUDivExpr(Op, RHSC);
3391             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3392               Operands = SmallVector<const SCEV *, 4>(M->operands());
3393               Operands[i] = Div;
3394               return getMulExpr(Operands);
3395             }
3396           }
3397       }
3398 
3399       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3400       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3401         if (auto *DivisorConstant =
3402                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3403           bool Overflow = false;
3404           APInt NewRHS =
3405               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3406           if (Overflow) {
3407             return getConstant(RHSC->getType(), 0, false);
3408           }
3409           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3410         }
3411       }
3412 
3413       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3414       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3415         SmallVector<const SCEV *, 4> Operands;
3416         for (const SCEV *Op : A->operands())
3417           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3418         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3419           Operands.clear();
3420           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3421             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3422             if (isa<SCEVUDivExpr>(Op) ||
3423                 getMulExpr(Op, RHS) != A->getOperand(i))
3424               break;
3425             Operands.push_back(Op);
3426           }
3427           if (Operands.size() == A->getNumOperands())
3428             return getAddExpr(Operands);
3429         }
3430       }
3431 
3432       // Fold if both operands are constant.
3433       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3434         Constant *LHSCV = LHSC->getValue();
3435         Constant *RHSCV = RHSC->getValue();
3436         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3437                                                                    RHSCV)));
3438       }
3439     }
3440   }
3441 
3442   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3443   // changes). Make sure we get a new one.
3444   IP = nullptr;
3445   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3446   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3447                                              LHS, RHS);
3448   UniqueSCEVs.InsertNode(S, IP);
3449   registerUser(S, {LHS, RHS});
3450   return S;
3451 }
3452 
3453 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3454   APInt A = C1->getAPInt().abs();
3455   APInt B = C2->getAPInt().abs();
3456   uint32_t ABW = A.getBitWidth();
3457   uint32_t BBW = B.getBitWidth();
3458 
3459   if (ABW > BBW)
3460     B = B.zext(ABW);
3461   else if (ABW < BBW)
3462     A = A.zext(BBW);
3463 
3464   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3465 }
3466 
3467 /// Get a canonical unsigned division expression, or something simpler if
3468 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3469 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3470 /// it's not exact because the udiv may be clearing bits.
3471 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3472                                               const SCEV *RHS) {
3473   // TODO: we could try to find factors in all sorts of things, but for now we
3474   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3475   // end of this file for inspiration.
3476 
3477   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3478   if (!Mul || !Mul->hasNoUnsignedWrap())
3479     return getUDivExpr(LHS, RHS);
3480 
3481   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3482     // If the mulexpr multiplies by a constant, then that constant must be the
3483     // first element of the mulexpr.
3484     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3485       if (LHSCst == RHSCst) {
3486         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3487         return getMulExpr(Operands);
3488       }
3489 
3490       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3491       // that there's a factor provided by one of the other terms. We need to
3492       // check.
3493       APInt Factor = gcd(LHSCst, RHSCst);
3494       if (!Factor.isIntN(1)) {
3495         LHSCst =
3496             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3497         RHSCst =
3498             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3499         SmallVector<const SCEV *, 2> Operands;
3500         Operands.push_back(LHSCst);
3501         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3502         LHS = getMulExpr(Operands);
3503         RHS = RHSCst;
3504         Mul = dyn_cast<SCEVMulExpr>(LHS);
3505         if (!Mul)
3506           return getUDivExactExpr(LHS, RHS);
3507       }
3508     }
3509   }
3510 
3511   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3512     if (Mul->getOperand(i) == RHS) {
3513       SmallVector<const SCEV *, 2> Operands;
3514       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3515       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3516       return getMulExpr(Operands);
3517     }
3518   }
3519 
3520   return getUDivExpr(LHS, RHS);
3521 }
3522 
3523 /// Get an add recurrence expression for the specified loop.  Simplify the
3524 /// expression as much as possible.
3525 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3526                                            const Loop *L,
3527                                            SCEV::NoWrapFlags Flags) {
3528   SmallVector<const SCEV *, 4> Operands;
3529   Operands.push_back(Start);
3530   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3531     if (StepChrec->getLoop() == L) {
3532       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3533       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3534     }
3535 
3536   Operands.push_back(Step);
3537   return getAddRecExpr(Operands, L, Flags);
3538 }
3539 
3540 /// Get an add recurrence expression for the specified loop.  Simplify the
3541 /// expression as much as possible.
3542 const SCEV *
3543 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3544                                const Loop *L, SCEV::NoWrapFlags Flags) {
3545   if (Operands.size() == 1) return Operands[0];
3546 #ifndef NDEBUG
3547   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3548   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3549     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3550            "SCEVAddRecExpr operand types don't match!");
3551     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3552   }
3553   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3554     assert(isLoopInvariant(Operands[i], L) &&
3555            "SCEVAddRecExpr operand is not loop-invariant!");
3556 #endif
3557 
3558   if (Operands.back()->isZero()) {
3559     Operands.pop_back();
3560     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3561   }
3562 
3563   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3564   // use that information to infer NUW and NSW flags. However, computing a
3565   // BE count requires calling getAddRecExpr, so we may not yet have a
3566   // meaningful BE count at this point (and if we don't, we'd be stuck
3567   // with a SCEVCouldNotCompute as the cached BE count).
3568 
3569   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3570 
3571   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3572   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3573     const Loop *NestedLoop = NestedAR->getLoop();
3574     if (L->contains(NestedLoop)
3575             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3576             : (!NestedLoop->contains(L) &&
3577                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3578       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3579       Operands[0] = NestedAR->getStart();
3580       // AddRecs require their operands be loop-invariant with respect to their
3581       // loops. Don't perform this transformation if it would break this
3582       // requirement.
3583       bool AllInvariant = all_of(
3584           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3585 
3586       if (AllInvariant) {
3587         // Create a recurrence for the outer loop with the same step size.
3588         //
3589         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3590         // inner recurrence has the same property.
3591         SCEV::NoWrapFlags OuterFlags =
3592           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3593 
3594         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3595         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3596           return isLoopInvariant(Op, NestedLoop);
3597         });
3598 
3599         if (AllInvariant) {
3600           // Ok, both add recurrences are valid after the transformation.
3601           //
3602           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3603           // the outer recurrence has the same property.
3604           SCEV::NoWrapFlags InnerFlags =
3605             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3606           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3607         }
3608       }
3609       // Reset Operands to its original state.
3610       Operands[0] = NestedAR;
3611     }
3612   }
3613 
3614   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3615   // already have one, otherwise create a new one.
3616   return getOrCreateAddRecExpr(Operands, L, Flags);
3617 }
3618 
3619 const SCEV *
3620 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3621                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3622   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3623   // getSCEV(Base)->getType() has the same address space as Base->getType()
3624   // because SCEV::getType() preserves the address space.
3625   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3626   const bool AssumeInBoundsFlags = [&]() {
3627     if (!GEP->isInBounds())
3628       return false;
3629 
3630     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3631     // but to do that, we have to ensure that said flag is valid in the entire
3632     // defined scope of the SCEV.
3633     auto *GEPI = dyn_cast<Instruction>(GEP);
3634     // TODO: non-instructions have global scope.  We might be able to prove
3635     // some global scope cases
3636     return GEPI && isSCEVExprNeverPoison(GEPI);
3637   }();
3638 
3639   SCEV::NoWrapFlags OffsetWrap =
3640     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3641 
3642   Type *CurTy = GEP->getType();
3643   bool FirstIter = true;
3644   SmallVector<const SCEV *, 4> Offsets;
3645   for (const SCEV *IndexExpr : IndexExprs) {
3646     // Compute the (potentially symbolic) offset in bytes for this index.
3647     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3648       // For a struct, add the member offset.
3649       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3650       unsigned FieldNo = Index->getZExtValue();
3651       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3652       Offsets.push_back(FieldOffset);
3653 
3654       // Update CurTy to the type of the field at Index.
3655       CurTy = STy->getTypeAtIndex(Index);
3656     } else {
3657       // Update CurTy to its element type.
3658       if (FirstIter) {
3659         assert(isa<PointerType>(CurTy) &&
3660                "The first index of a GEP indexes a pointer");
3661         CurTy = GEP->getSourceElementType();
3662         FirstIter = false;
3663       } else {
3664         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3665       }
3666       // For an array, add the element offset, explicitly scaled.
3667       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3668       // Getelementptr indices are signed.
3669       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3670 
3671       // Multiply the index by the element size to compute the element offset.
3672       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3673       Offsets.push_back(LocalOffset);
3674     }
3675   }
3676 
3677   // Handle degenerate case of GEP without offsets.
3678   if (Offsets.empty())
3679     return BaseExpr;
3680 
3681   // Add the offsets together, assuming nsw if inbounds.
3682   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3683   // Add the base address and the offset. We cannot use the nsw flag, as the
3684   // base address is unsigned. However, if we know that the offset is
3685   // non-negative, we can use nuw.
3686   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3687                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3688   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3689   assert(BaseExpr->getType() == GEPExpr->getType() &&
3690          "GEP should not change type mid-flight.");
3691   return GEPExpr;
3692 }
3693 
3694 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3695                                                ArrayRef<const SCEV *> Ops) {
3696   FoldingSetNodeID ID;
3697   ID.AddInteger(SCEVType);
3698   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3699     ID.AddPointer(Ops[i]);
3700   void *IP = nullptr;
3701   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3702 }
3703 
3704 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3705   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3706   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3707 }
3708 
3709 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3710                                            SmallVectorImpl<const SCEV *> &Ops) {
3711   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3712   if (Ops.size() == 1) return Ops[0];
3713 #ifndef NDEBUG
3714   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3715   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3716     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3717            "Operand types don't match!");
3718     assert(Ops[0]->getType()->isPointerTy() ==
3719                Ops[i]->getType()->isPointerTy() &&
3720            "min/max should be consistently pointerish");
3721   }
3722 #endif
3723 
3724   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3725   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3726 
3727   // Sort by complexity, this groups all similar expression types together.
3728   GroupByComplexity(Ops, &LI, DT);
3729 
3730   // Check if we have created the same expression before.
3731   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3732     return S;
3733   }
3734 
3735   // If there are any constants, fold them together.
3736   unsigned Idx = 0;
3737   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3738     ++Idx;
3739     assert(Idx < Ops.size());
3740     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3741       if (Kind == scSMaxExpr)
3742         return APIntOps::smax(LHS, RHS);
3743       else if (Kind == scSMinExpr)
3744         return APIntOps::smin(LHS, RHS);
3745       else if (Kind == scUMaxExpr)
3746         return APIntOps::umax(LHS, RHS);
3747       else if (Kind == scUMinExpr)
3748         return APIntOps::umin(LHS, RHS);
3749       llvm_unreachable("Unknown SCEV min/max opcode");
3750     };
3751 
3752     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3753       // We found two constants, fold them together!
3754       ConstantInt *Fold = ConstantInt::get(
3755           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3756       Ops[0] = getConstant(Fold);
3757       Ops.erase(Ops.begin()+1);  // Erase the folded element
3758       if (Ops.size() == 1) return Ops[0];
3759       LHSC = cast<SCEVConstant>(Ops[0]);
3760     }
3761 
3762     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3763     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3764 
3765     if (IsMax ? IsMinV : IsMaxV) {
3766       // If we are left with a constant minimum(/maximum)-int, strip it off.
3767       Ops.erase(Ops.begin());
3768       --Idx;
3769     } else if (IsMax ? IsMaxV : IsMinV) {
3770       // If we have a max(/min) with a constant maximum(/minimum)-int,
3771       // it will always be the extremum.
3772       return LHSC;
3773     }
3774 
3775     if (Ops.size() == 1) return Ops[0];
3776   }
3777 
3778   // Find the first operation of the same kind
3779   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3780     ++Idx;
3781 
3782   // Check to see if one of the operands is of the same kind. If so, expand its
3783   // operands onto our operand list, and recurse to simplify.
3784   if (Idx < Ops.size()) {
3785     bool DeletedAny = false;
3786     while (Ops[Idx]->getSCEVType() == Kind) {
3787       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3788       Ops.erase(Ops.begin()+Idx);
3789       Ops.append(SMME->op_begin(), SMME->op_end());
3790       DeletedAny = true;
3791     }
3792 
3793     if (DeletedAny)
3794       return getMinMaxExpr(Kind, Ops);
3795   }
3796 
3797   // Okay, check to see if the same value occurs in the operand list twice.  If
3798   // so, delete one.  Since we sorted the list, these values are required to
3799   // be adjacent.
3800   llvm::CmpInst::Predicate GEPred =
3801       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3802   llvm::CmpInst::Predicate LEPred =
3803       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3804   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3805   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3806   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3807     if (Ops[i] == Ops[i + 1] ||
3808         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3809       //  X op Y op Y  -->  X op Y
3810       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3811       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3812       --i;
3813       --e;
3814     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3815                                                Ops[i + 1])) {
3816       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3817       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3818       --i;
3819       --e;
3820     }
3821   }
3822 
3823   if (Ops.size() == 1) return Ops[0];
3824 
3825   assert(!Ops.empty() && "Reduced smax down to nothing!");
3826 
3827   // Okay, it looks like we really DO need an expr.  Check to see if we
3828   // already have one, otherwise create a new one.
3829   FoldingSetNodeID ID;
3830   ID.AddInteger(Kind);
3831   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3832     ID.AddPointer(Ops[i]);
3833   void *IP = nullptr;
3834   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3835   if (ExistingSCEV)
3836     return ExistingSCEV;
3837   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3838   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3839   SCEV *S = new (SCEVAllocator)
3840       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3841 
3842   UniqueSCEVs.InsertNode(S, IP);
3843   registerUser(S, Ops);
3844   return S;
3845 }
3846 
3847 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3848   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3849   return getSMaxExpr(Ops);
3850 }
3851 
3852 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3853   return getMinMaxExpr(scSMaxExpr, Ops);
3854 }
3855 
3856 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3857   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3858   return getUMaxExpr(Ops);
3859 }
3860 
3861 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3862   return getMinMaxExpr(scUMaxExpr, Ops);
3863 }
3864 
3865 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3866                                          const SCEV *RHS) {
3867   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3868   return getSMinExpr(Ops);
3869 }
3870 
3871 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3872   return getMinMaxExpr(scSMinExpr, Ops);
3873 }
3874 
3875 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3876                                          const SCEV *RHS) {
3877   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3878   return getUMinExpr(Ops);
3879 }
3880 
3881 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3882   return getMinMaxExpr(scUMinExpr, Ops);
3883 }
3884 
3885 const SCEV *
3886 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3887                                              ScalableVectorType *ScalableTy) {
3888   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3889   Constant *One = ConstantInt::get(IntTy, 1);
3890   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3891   // Note that the expression we created is the final expression, we don't
3892   // want to simplify it any further Also, if we call a normal getSCEV(),
3893   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3894   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3895 }
3896 
3897 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3898   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3899     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3900   // We can bypass creating a target-independent constant expression and then
3901   // folding it back into a ConstantInt. This is just a compile-time
3902   // optimization.
3903   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3904 }
3905 
3906 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3907   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3908     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3909   // We can bypass creating a target-independent constant expression and then
3910   // folding it back into a ConstantInt. This is just a compile-time
3911   // optimization.
3912   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3913 }
3914 
3915 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3916                                              StructType *STy,
3917                                              unsigned FieldNo) {
3918   // We can bypass creating a target-independent constant expression and then
3919   // folding it back into a ConstantInt. This is just a compile-time
3920   // optimization.
3921   return getConstant(
3922       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3923 }
3924 
3925 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3926   // Don't attempt to do anything other than create a SCEVUnknown object
3927   // here.  createSCEV only calls getUnknown after checking for all other
3928   // interesting possibilities, and any other code that calls getUnknown
3929   // is doing so in order to hide a value from SCEV canonicalization.
3930 
3931   FoldingSetNodeID ID;
3932   ID.AddInteger(scUnknown);
3933   ID.AddPointer(V);
3934   void *IP = nullptr;
3935   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3936     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3937            "Stale SCEVUnknown in uniquing map!");
3938     return S;
3939   }
3940   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3941                                             FirstUnknown);
3942   FirstUnknown = cast<SCEVUnknown>(S);
3943   UniqueSCEVs.InsertNode(S, IP);
3944   return S;
3945 }
3946 
3947 //===----------------------------------------------------------------------===//
3948 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3949 //
3950 
3951 /// Test if values of the given type are analyzable within the SCEV
3952 /// framework. This primarily includes integer types, and it can optionally
3953 /// include pointer types if the ScalarEvolution class has access to
3954 /// target-specific information.
3955 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3956   // Integers and pointers are always SCEVable.
3957   return Ty->isIntOrPtrTy();
3958 }
3959 
3960 /// Return the size in bits of the specified type, for which isSCEVable must
3961 /// return true.
3962 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3963   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3964   if (Ty->isPointerTy())
3965     return getDataLayout().getIndexTypeSizeInBits(Ty);
3966   return getDataLayout().getTypeSizeInBits(Ty);
3967 }
3968 
3969 /// Return a type with the same bitwidth as the given type and which represents
3970 /// how SCEV will treat the given type, for which isSCEVable must return
3971 /// true. For pointer types, this is the pointer index sized integer type.
3972 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3973   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3974 
3975   if (Ty->isIntegerTy())
3976     return Ty;
3977 
3978   // The only other support type is pointer.
3979   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3980   return getDataLayout().getIndexType(Ty);
3981 }
3982 
3983 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3984   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3985 }
3986 
3987 const SCEV *ScalarEvolution::getCouldNotCompute() {
3988   return CouldNotCompute.get();
3989 }
3990 
3991 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3992   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3993     auto *SU = dyn_cast<SCEVUnknown>(S);
3994     return SU && SU->getValue() == nullptr;
3995   });
3996 
3997   return !ContainsNulls;
3998 }
3999 
4000 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4001   HasRecMapType::iterator I = HasRecMap.find(S);
4002   if (I != HasRecMap.end())
4003     return I->second;
4004 
4005   bool FoundAddRec =
4006       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4007   HasRecMap.insert({S, FoundAddRec});
4008   return FoundAddRec;
4009 }
4010 
4011 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4012 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4013 /// offset I, then return {S', I}, else return {\p S, nullptr}.
4014 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4015   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4016   if (!Add)
4017     return {S, nullptr};
4018 
4019   if (Add->getNumOperands() != 2)
4020     return {S, nullptr};
4021 
4022   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4023   if (!ConstOp)
4024     return {S, nullptr};
4025 
4026   return {Add->getOperand(1), ConstOp->getValue()};
4027 }
4028 
4029 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4030 /// by the value and offset from any ValueOffsetPair in the set.
4031 ScalarEvolution::ValueOffsetPairSetVector *
4032 ScalarEvolution::getSCEVValues(const SCEV *S) {
4033   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4034   if (SI == ExprValueMap.end())
4035     return nullptr;
4036 #ifndef NDEBUG
4037   if (VerifySCEVMap) {
4038     // Check there is no dangling Value in the set returned.
4039     for (const auto &VE : SI->second)
4040       assert(ValueExprMap.count(VE.first));
4041   }
4042 #endif
4043   return &SI->second;
4044 }
4045 
4046 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4047 /// cannot be used separately. eraseValueFromMap should be used to remove
4048 /// V from ValueExprMap and ExprValueMap at the same time.
4049 void ScalarEvolution::eraseValueFromMap(Value *V) {
4050   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4051   if (I != ValueExprMap.end()) {
4052     const SCEV *S = I->second;
4053     // Remove {V, 0} from the set of ExprValueMap[S]
4054     if (auto *SV = getSCEVValues(S))
4055       SV->remove({V, nullptr});
4056 
4057     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4058     const SCEV *Stripped;
4059     ConstantInt *Offset;
4060     std::tie(Stripped, Offset) = splitAddExpr(S);
4061     if (Offset != nullptr) {
4062       if (auto *SV = getSCEVValues(Stripped))
4063         SV->remove({V, Offset});
4064     }
4065     ValueExprMap.erase(V);
4066   }
4067 }
4068 
4069 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4070 /// create a new one.
4071 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4072   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4073 
4074   const SCEV *S = getExistingSCEV(V);
4075   if (S == nullptr) {
4076     S = createSCEV(V);
4077     // During PHI resolution, it is possible to create two SCEVs for the same
4078     // V, so it is needed to double check whether V->S is inserted into
4079     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4080     std::pair<ValueExprMapType::iterator, bool> Pair =
4081         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4082     if (Pair.second) {
4083       ExprValueMap[S].insert({V, nullptr});
4084 
4085       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4086       // ExprValueMap.
4087       const SCEV *Stripped = S;
4088       ConstantInt *Offset = nullptr;
4089       std::tie(Stripped, Offset) = splitAddExpr(S);
4090       // If stripped is SCEVUnknown, don't bother to save
4091       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4092       // increase the complexity of the expansion code.
4093       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4094       // because it may generate add/sub instead of GEP in SCEV expansion.
4095       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4096           !isa<GetElementPtrInst>(V))
4097         ExprValueMap[Stripped].insert({V, Offset});
4098     }
4099   }
4100   return S;
4101 }
4102 
4103 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4104   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4105 
4106   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4107   if (I != ValueExprMap.end()) {
4108     const SCEV *S = I->second;
4109     if (checkValidity(S))
4110       return S;
4111     eraseValueFromMap(V);
4112     forgetMemoizedResults(S);
4113   }
4114   return nullptr;
4115 }
4116 
4117 /// Return a SCEV corresponding to -V = -1*V
4118 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4119                                              SCEV::NoWrapFlags Flags) {
4120   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4121     return getConstant(
4122                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4123 
4124   Type *Ty = V->getType();
4125   Ty = getEffectiveSCEVType(Ty);
4126   return getMulExpr(V, getMinusOne(Ty), Flags);
4127 }
4128 
4129 /// If Expr computes ~A, return A else return nullptr
4130 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4131   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4132   if (!Add || Add->getNumOperands() != 2 ||
4133       !Add->getOperand(0)->isAllOnesValue())
4134     return nullptr;
4135 
4136   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4137   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4138       !AddRHS->getOperand(0)->isAllOnesValue())
4139     return nullptr;
4140 
4141   return AddRHS->getOperand(1);
4142 }
4143 
4144 /// Return a SCEV corresponding to ~V = -1-V
4145 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4146   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4147 
4148   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4149     return getConstant(
4150                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4151 
4152   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4153   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4154     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4155       SmallVector<const SCEV *, 2> MatchedOperands;
4156       for (const SCEV *Operand : MME->operands()) {
4157         const SCEV *Matched = MatchNotExpr(Operand);
4158         if (!Matched)
4159           return (const SCEV *)nullptr;
4160         MatchedOperands.push_back(Matched);
4161       }
4162       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4163                            MatchedOperands);
4164     };
4165     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4166       return Replaced;
4167   }
4168 
4169   Type *Ty = V->getType();
4170   Ty = getEffectiveSCEVType(Ty);
4171   return getMinusSCEV(getMinusOne(Ty), V);
4172 }
4173 
4174 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4175   assert(P->getType()->isPointerTy());
4176 
4177   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4178     // The base of an AddRec is the first operand.
4179     SmallVector<const SCEV *> Ops{AddRec->operands()};
4180     Ops[0] = removePointerBase(Ops[0]);
4181     // Don't try to transfer nowrap flags for now. We could in some cases
4182     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4183     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4184   }
4185   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4186     // The base of an Add is the pointer operand.
4187     SmallVector<const SCEV *> Ops{Add->operands()};
4188     const SCEV **PtrOp = nullptr;
4189     for (const SCEV *&AddOp : Ops) {
4190       if (AddOp->getType()->isPointerTy()) {
4191         assert(!PtrOp && "Cannot have multiple pointer ops");
4192         PtrOp = &AddOp;
4193       }
4194     }
4195     *PtrOp = removePointerBase(*PtrOp);
4196     // Don't try to transfer nowrap flags for now. We could in some cases
4197     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4198     return getAddExpr(Ops);
4199   }
4200   // Any other expression must be a pointer base.
4201   return getZero(P->getType());
4202 }
4203 
4204 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4205                                           SCEV::NoWrapFlags Flags,
4206                                           unsigned Depth) {
4207   // Fast path: X - X --> 0.
4208   if (LHS == RHS)
4209     return getZero(LHS->getType());
4210 
4211   // If we subtract two pointers with different pointer bases, bail.
4212   // Eventually, we're going to add an assertion to getMulExpr that we
4213   // can't multiply by a pointer.
4214   if (RHS->getType()->isPointerTy()) {
4215     if (!LHS->getType()->isPointerTy() ||
4216         getPointerBase(LHS) != getPointerBase(RHS))
4217       return getCouldNotCompute();
4218     LHS = removePointerBase(LHS);
4219     RHS = removePointerBase(RHS);
4220   }
4221 
4222   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4223   // makes it so that we cannot make much use of NUW.
4224   auto AddFlags = SCEV::FlagAnyWrap;
4225   const bool RHSIsNotMinSigned =
4226       !getSignedRangeMin(RHS).isMinSignedValue();
4227   if (hasFlags(Flags, SCEV::FlagNSW)) {
4228     // Let M be the minimum representable signed value. Then (-1)*RHS
4229     // signed-wraps if and only if RHS is M. That can happen even for
4230     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4231     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4232     // (-1)*RHS, we need to prove that RHS != M.
4233     //
4234     // If LHS is non-negative and we know that LHS - RHS does not
4235     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4236     // either by proving that RHS > M or that LHS >= 0.
4237     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4238       AddFlags = SCEV::FlagNSW;
4239     }
4240   }
4241 
4242   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4243   // RHS is NSW and LHS >= 0.
4244   //
4245   // The difficulty here is that the NSW flag may have been proven
4246   // relative to a loop that is to be found in a recurrence in LHS and
4247   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4248   // larger scope than intended.
4249   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4250 
4251   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4252 }
4253 
4254 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4255                                                      unsigned Depth) {
4256   Type *SrcTy = V->getType();
4257   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4258          "Cannot truncate or zero extend with non-integer arguments!");
4259   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4260     return V;  // No conversion
4261   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4262     return getTruncateExpr(V, Ty, Depth);
4263   return getZeroExtendExpr(V, Ty, Depth);
4264 }
4265 
4266 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4267                                                      unsigned Depth) {
4268   Type *SrcTy = V->getType();
4269   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4270          "Cannot truncate or zero extend with non-integer arguments!");
4271   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4272     return V;  // No conversion
4273   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4274     return getTruncateExpr(V, Ty, Depth);
4275   return getSignExtendExpr(V, Ty, Depth);
4276 }
4277 
4278 const SCEV *
4279 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4280   Type *SrcTy = V->getType();
4281   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4282          "Cannot noop or zero extend with non-integer arguments!");
4283   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4284          "getNoopOrZeroExtend cannot truncate!");
4285   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4286     return V;  // No conversion
4287   return getZeroExtendExpr(V, Ty);
4288 }
4289 
4290 const SCEV *
4291 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4292   Type *SrcTy = V->getType();
4293   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4294          "Cannot noop or sign extend with non-integer arguments!");
4295   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4296          "getNoopOrSignExtend cannot truncate!");
4297   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4298     return V;  // No conversion
4299   return getSignExtendExpr(V, Ty);
4300 }
4301 
4302 const SCEV *
4303 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4304   Type *SrcTy = V->getType();
4305   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4306          "Cannot noop or any extend with non-integer arguments!");
4307   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4308          "getNoopOrAnyExtend cannot truncate!");
4309   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4310     return V;  // No conversion
4311   return getAnyExtendExpr(V, Ty);
4312 }
4313 
4314 const SCEV *
4315 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4316   Type *SrcTy = V->getType();
4317   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4318          "Cannot truncate or noop with non-integer arguments!");
4319   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4320          "getTruncateOrNoop cannot extend!");
4321   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4322     return V;  // No conversion
4323   return getTruncateExpr(V, Ty);
4324 }
4325 
4326 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4327                                                         const SCEV *RHS) {
4328   const SCEV *PromotedLHS = LHS;
4329   const SCEV *PromotedRHS = RHS;
4330 
4331   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4332     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4333   else
4334     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4335 
4336   return getUMaxExpr(PromotedLHS, PromotedRHS);
4337 }
4338 
4339 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4340                                                         const SCEV *RHS) {
4341   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4342   return getUMinFromMismatchedTypes(Ops);
4343 }
4344 
4345 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4346     SmallVectorImpl<const SCEV *> &Ops) {
4347   assert(!Ops.empty() && "At least one operand must be!");
4348   // Trivial case.
4349   if (Ops.size() == 1)
4350     return Ops[0];
4351 
4352   // Find the max type first.
4353   Type *MaxType = nullptr;
4354   for (auto *S : Ops)
4355     if (MaxType)
4356       MaxType = getWiderType(MaxType, S->getType());
4357     else
4358       MaxType = S->getType();
4359   assert(MaxType && "Failed to find maximum type!");
4360 
4361   // Extend all ops to max type.
4362   SmallVector<const SCEV *, 2> PromotedOps;
4363   for (auto *S : Ops)
4364     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4365 
4366   // Generate umin.
4367   return getUMinExpr(PromotedOps);
4368 }
4369 
4370 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4371   // A pointer operand may evaluate to a nonpointer expression, such as null.
4372   if (!V->getType()->isPointerTy())
4373     return V;
4374 
4375   while (true) {
4376     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4377       V = AddRec->getStart();
4378     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4379       const SCEV *PtrOp = nullptr;
4380       for (const SCEV *AddOp : Add->operands()) {
4381         if (AddOp->getType()->isPointerTy()) {
4382           assert(!PtrOp && "Cannot have multiple pointer ops");
4383           PtrOp = AddOp;
4384         }
4385       }
4386       assert(PtrOp && "Must have pointer op");
4387       V = PtrOp;
4388     } else // Not something we can look further into.
4389       return V;
4390   }
4391 }
4392 
4393 /// Push users of the given Instruction onto the given Worklist.
4394 static void PushDefUseChildren(Instruction *I,
4395                                SmallVectorImpl<Instruction *> &Worklist,
4396                                SmallPtrSetImpl<Instruction *> &Visited) {
4397   // Push the def-use children onto the Worklist stack.
4398   for (User *U : I->users()) {
4399     auto *UserInsn = cast<Instruction>(U);
4400     if (Visited.insert(UserInsn).second)
4401       Worklist.push_back(UserInsn);
4402   }
4403 }
4404 
4405 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4406   SmallVector<Instruction *, 16> Worklist;
4407   SmallPtrSet<Instruction *, 8> Visited;
4408   SmallVector<const SCEV *, 8> ToForget;
4409   Visited.insert(PN);
4410   Worklist.push_back(PN);
4411   while (!Worklist.empty()) {
4412     Instruction *I = Worklist.pop_back_val();
4413 
4414     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4415     if (It != ValueExprMap.end()) {
4416       const SCEV *Old = It->second;
4417 
4418       // Short-circuit the def-use traversal if the symbolic name
4419       // ceases to appear in expressions.
4420       if (Old != SymName && !hasOperand(Old, SymName))
4421         continue;
4422 
4423       // SCEVUnknown for a PHI either means that it has an unrecognized
4424       // structure, it's a PHI that's in the progress of being computed
4425       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4426       // additional loop trip count information isn't going to change anything.
4427       // In the second case, createNodeForPHI will perform the necessary
4428       // updates on its own when it gets to that point. In the third, we do
4429       // want to forget the SCEVUnknown.
4430       if (!isa<PHINode>(I) ||
4431           !isa<SCEVUnknown>(Old) ||
4432           (I != PN && Old == SymName)) {
4433         eraseValueFromMap(It->first);
4434         ToForget.push_back(Old);
4435       }
4436     }
4437 
4438     PushDefUseChildren(I, Worklist, Visited);
4439   }
4440   forgetMemoizedResults(ToForget);
4441 }
4442 
4443 namespace {
4444 
4445 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4446 /// expression in case its Loop is L. If it is not L then
4447 /// if IgnoreOtherLoops is true then use AddRec itself
4448 /// otherwise rewrite cannot be done.
4449 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4450 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4451 public:
4452   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4453                              bool IgnoreOtherLoops = true) {
4454     SCEVInitRewriter Rewriter(L, SE);
4455     const SCEV *Result = Rewriter.visit(S);
4456     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4457       return SE.getCouldNotCompute();
4458     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4459                ? SE.getCouldNotCompute()
4460                : Result;
4461   }
4462 
4463   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4464     if (!SE.isLoopInvariant(Expr, L))
4465       SeenLoopVariantSCEVUnknown = true;
4466     return Expr;
4467   }
4468 
4469   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4470     // Only re-write AddRecExprs for this loop.
4471     if (Expr->getLoop() == L)
4472       return Expr->getStart();
4473     SeenOtherLoops = true;
4474     return Expr;
4475   }
4476 
4477   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4478 
4479   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4480 
4481 private:
4482   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4483       : SCEVRewriteVisitor(SE), L(L) {}
4484 
4485   const Loop *L;
4486   bool SeenLoopVariantSCEVUnknown = false;
4487   bool SeenOtherLoops = false;
4488 };
4489 
4490 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4491 /// increment expression in case its Loop is L. If it is not L then
4492 /// use AddRec itself.
4493 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4494 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4495 public:
4496   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4497     SCEVPostIncRewriter Rewriter(L, SE);
4498     const SCEV *Result = Rewriter.visit(S);
4499     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4500         ? SE.getCouldNotCompute()
4501         : Result;
4502   }
4503 
4504   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4505     if (!SE.isLoopInvariant(Expr, L))
4506       SeenLoopVariantSCEVUnknown = true;
4507     return Expr;
4508   }
4509 
4510   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4511     // Only re-write AddRecExprs for this loop.
4512     if (Expr->getLoop() == L)
4513       return Expr->getPostIncExpr(SE);
4514     SeenOtherLoops = true;
4515     return Expr;
4516   }
4517 
4518   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4519 
4520   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4521 
4522 private:
4523   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4524       : SCEVRewriteVisitor(SE), L(L) {}
4525 
4526   const Loop *L;
4527   bool SeenLoopVariantSCEVUnknown = false;
4528   bool SeenOtherLoops = false;
4529 };
4530 
4531 /// This class evaluates the compare condition by matching it against the
4532 /// condition of loop latch. If there is a match we assume a true value
4533 /// for the condition while building SCEV nodes.
4534 class SCEVBackedgeConditionFolder
4535     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4536 public:
4537   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4538                              ScalarEvolution &SE) {
4539     bool IsPosBECond = false;
4540     Value *BECond = nullptr;
4541     if (BasicBlock *Latch = L->getLoopLatch()) {
4542       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4543       if (BI && BI->isConditional()) {
4544         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4545                "Both outgoing branches should not target same header!");
4546         BECond = BI->getCondition();
4547         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4548       } else {
4549         return S;
4550       }
4551     }
4552     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4553     return Rewriter.visit(S);
4554   }
4555 
4556   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4557     const SCEV *Result = Expr;
4558     bool InvariantF = SE.isLoopInvariant(Expr, L);
4559 
4560     if (!InvariantF) {
4561       Instruction *I = cast<Instruction>(Expr->getValue());
4562       switch (I->getOpcode()) {
4563       case Instruction::Select: {
4564         SelectInst *SI = cast<SelectInst>(I);
4565         Optional<const SCEV *> Res =
4566             compareWithBackedgeCondition(SI->getCondition());
4567         if (Res.hasValue()) {
4568           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4569           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4570         }
4571         break;
4572       }
4573       default: {
4574         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4575         if (Res.hasValue())
4576           Result = Res.getValue();
4577         break;
4578       }
4579       }
4580     }
4581     return Result;
4582   }
4583 
4584 private:
4585   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4586                                        bool IsPosBECond, ScalarEvolution &SE)
4587       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4588         IsPositiveBECond(IsPosBECond) {}
4589 
4590   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4591 
4592   const Loop *L;
4593   /// Loop back condition.
4594   Value *BackedgeCond = nullptr;
4595   /// Set to true if loop back is on positive branch condition.
4596   bool IsPositiveBECond;
4597 };
4598 
4599 Optional<const SCEV *>
4600 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4601 
4602   // If value matches the backedge condition for loop latch,
4603   // then return a constant evolution node based on loopback
4604   // branch taken.
4605   if (BackedgeCond == IC)
4606     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4607                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4608   return None;
4609 }
4610 
4611 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4612 public:
4613   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4614                              ScalarEvolution &SE) {
4615     SCEVShiftRewriter Rewriter(L, SE);
4616     const SCEV *Result = Rewriter.visit(S);
4617     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4618   }
4619 
4620   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4621     // Only allow AddRecExprs for this loop.
4622     if (!SE.isLoopInvariant(Expr, L))
4623       Valid = false;
4624     return Expr;
4625   }
4626 
4627   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4628     if (Expr->getLoop() == L && Expr->isAffine())
4629       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4630     Valid = false;
4631     return Expr;
4632   }
4633 
4634   bool isValid() { return Valid; }
4635 
4636 private:
4637   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4638       : SCEVRewriteVisitor(SE), L(L) {}
4639 
4640   const Loop *L;
4641   bool Valid = true;
4642 };
4643 
4644 } // end anonymous namespace
4645 
4646 SCEV::NoWrapFlags
4647 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4648   if (!AR->isAffine())
4649     return SCEV::FlagAnyWrap;
4650 
4651   using OBO = OverflowingBinaryOperator;
4652 
4653   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4654 
4655   if (!AR->hasNoSignedWrap()) {
4656     ConstantRange AddRecRange = getSignedRange(AR);
4657     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4658 
4659     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4660         Instruction::Add, IncRange, OBO::NoSignedWrap);
4661     if (NSWRegion.contains(AddRecRange))
4662       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4663   }
4664 
4665   if (!AR->hasNoUnsignedWrap()) {
4666     ConstantRange AddRecRange = getUnsignedRange(AR);
4667     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4668 
4669     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4670         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4671     if (NUWRegion.contains(AddRecRange))
4672       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4673   }
4674 
4675   return Result;
4676 }
4677 
4678 SCEV::NoWrapFlags
4679 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4680   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4681 
4682   if (AR->hasNoSignedWrap())
4683     return Result;
4684 
4685   if (!AR->isAffine())
4686     return Result;
4687 
4688   const SCEV *Step = AR->getStepRecurrence(*this);
4689   const Loop *L = AR->getLoop();
4690 
4691   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4692   // Note that this serves two purposes: It filters out loops that are
4693   // simply not analyzable, and it covers the case where this code is
4694   // being called from within backedge-taken count analysis, such that
4695   // attempting to ask for the backedge-taken count would likely result
4696   // in infinite recursion. In the later case, the analysis code will
4697   // cope with a conservative value, and it will take care to purge
4698   // that value once it has finished.
4699   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4700 
4701   // Normally, in the cases we can prove no-overflow via a
4702   // backedge guarding condition, we can also compute a backedge
4703   // taken count for the loop.  The exceptions are assumptions and
4704   // guards present in the loop -- SCEV is not great at exploiting
4705   // these to compute max backedge taken counts, but can still use
4706   // these to prove lack of overflow.  Use this fact to avoid
4707   // doing extra work that may not pay off.
4708 
4709   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4710       AC.assumptions().empty())
4711     return Result;
4712 
4713   // If the backedge is guarded by a comparison with the pre-inc  value the
4714   // addrec is safe. Also, if the entry is guarded by a comparison with the
4715   // start value and the backedge is guarded by a comparison with the post-inc
4716   // value, the addrec is safe.
4717   ICmpInst::Predicate Pred;
4718   const SCEV *OverflowLimit =
4719     getSignedOverflowLimitForStep(Step, &Pred, this);
4720   if (OverflowLimit &&
4721       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4722        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4723     Result = setFlags(Result, SCEV::FlagNSW);
4724   }
4725   return Result;
4726 }
4727 SCEV::NoWrapFlags
4728 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4729   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4730 
4731   if (AR->hasNoUnsignedWrap())
4732     return Result;
4733 
4734   if (!AR->isAffine())
4735     return Result;
4736 
4737   const SCEV *Step = AR->getStepRecurrence(*this);
4738   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4739   const Loop *L = AR->getLoop();
4740 
4741   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4742   // Note that this serves two purposes: It filters out loops that are
4743   // simply not analyzable, and it covers the case where this code is
4744   // being called from within backedge-taken count analysis, such that
4745   // attempting to ask for the backedge-taken count would likely result
4746   // in infinite recursion. In the later case, the analysis code will
4747   // cope with a conservative value, and it will take care to purge
4748   // that value once it has finished.
4749   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4750 
4751   // Normally, in the cases we can prove no-overflow via a
4752   // backedge guarding condition, we can also compute a backedge
4753   // taken count for the loop.  The exceptions are assumptions and
4754   // guards present in the loop -- SCEV is not great at exploiting
4755   // these to compute max backedge taken counts, but can still use
4756   // these to prove lack of overflow.  Use this fact to avoid
4757   // doing extra work that may not pay off.
4758 
4759   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4760       AC.assumptions().empty())
4761     return Result;
4762 
4763   // If the backedge is guarded by a comparison with the pre-inc  value the
4764   // addrec is safe. Also, if the entry is guarded by a comparison with the
4765   // start value and the backedge is guarded by a comparison with the post-inc
4766   // value, the addrec is safe.
4767   if (isKnownPositive(Step)) {
4768     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4769                                 getUnsignedRangeMax(Step));
4770     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4771         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4772       Result = setFlags(Result, SCEV::FlagNUW);
4773     }
4774   }
4775 
4776   return Result;
4777 }
4778 
4779 namespace {
4780 
4781 /// Represents an abstract binary operation.  This may exist as a
4782 /// normal instruction or constant expression, or may have been
4783 /// derived from an expression tree.
4784 struct BinaryOp {
4785   unsigned Opcode;
4786   Value *LHS;
4787   Value *RHS;
4788   bool IsNSW = false;
4789   bool IsNUW = false;
4790 
4791   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4792   /// constant expression.
4793   Operator *Op = nullptr;
4794 
4795   explicit BinaryOp(Operator *Op)
4796       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4797         Op(Op) {
4798     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4799       IsNSW = OBO->hasNoSignedWrap();
4800       IsNUW = OBO->hasNoUnsignedWrap();
4801     }
4802   }
4803 
4804   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4805                     bool IsNUW = false)
4806       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4807 };
4808 
4809 } // end anonymous namespace
4810 
4811 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4812 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4813   auto *Op = dyn_cast<Operator>(V);
4814   if (!Op)
4815     return None;
4816 
4817   // Implementation detail: all the cleverness here should happen without
4818   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4819   // SCEV expressions when possible, and we should not break that.
4820 
4821   switch (Op->getOpcode()) {
4822   case Instruction::Add:
4823   case Instruction::Sub:
4824   case Instruction::Mul:
4825   case Instruction::UDiv:
4826   case Instruction::URem:
4827   case Instruction::And:
4828   case Instruction::Or:
4829   case Instruction::AShr:
4830   case Instruction::Shl:
4831     return BinaryOp(Op);
4832 
4833   case Instruction::Xor:
4834     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4835       // If the RHS of the xor is a signmask, then this is just an add.
4836       // Instcombine turns add of signmask into xor as a strength reduction step.
4837       if (RHSC->getValue().isSignMask())
4838         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4839     return BinaryOp(Op);
4840 
4841   case Instruction::LShr:
4842     // Turn logical shift right of a constant into a unsigned divide.
4843     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4844       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4845 
4846       // If the shift count is not less than the bitwidth, the result of
4847       // the shift is undefined. Don't try to analyze it, because the
4848       // resolution chosen here may differ from the resolution chosen in
4849       // other parts of the compiler.
4850       if (SA->getValue().ult(BitWidth)) {
4851         Constant *X =
4852             ConstantInt::get(SA->getContext(),
4853                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4854         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4855       }
4856     }
4857     return BinaryOp(Op);
4858 
4859   case Instruction::ExtractValue: {
4860     auto *EVI = cast<ExtractValueInst>(Op);
4861     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4862       break;
4863 
4864     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4865     if (!WO)
4866       break;
4867 
4868     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4869     bool Signed = WO->isSigned();
4870     // TODO: Should add nuw/nsw flags for mul as well.
4871     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4872       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4873 
4874     // Now that we know that all uses of the arithmetic-result component of
4875     // CI are guarded by the overflow check, we can go ahead and pretend
4876     // that the arithmetic is non-overflowing.
4877     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4878                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4879   }
4880 
4881   default:
4882     break;
4883   }
4884 
4885   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4886   // semantics as a Sub, return a binary sub expression.
4887   if (auto *II = dyn_cast<IntrinsicInst>(V))
4888     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4889       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4890 
4891   return None;
4892 }
4893 
4894 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4895 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4896 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4897 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4898 /// follows one of the following patterns:
4899 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4900 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4901 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4902 /// we return the type of the truncation operation, and indicate whether the
4903 /// truncated type should be treated as signed/unsigned by setting
4904 /// \p Signed to true/false, respectively.
4905 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4906                                bool &Signed, ScalarEvolution &SE) {
4907   // The case where Op == SymbolicPHI (that is, with no type conversions on
4908   // the way) is handled by the regular add recurrence creating logic and
4909   // would have already been triggered in createAddRecForPHI. Reaching it here
4910   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4911   // because one of the other operands of the SCEVAddExpr updating this PHI is
4912   // not invariant).
4913   //
4914   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4915   // this case predicates that allow us to prove that Op == SymbolicPHI will
4916   // be added.
4917   if (Op == SymbolicPHI)
4918     return nullptr;
4919 
4920   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4921   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4922   if (SourceBits != NewBits)
4923     return nullptr;
4924 
4925   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4926   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4927   if (!SExt && !ZExt)
4928     return nullptr;
4929   const SCEVTruncateExpr *Trunc =
4930       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4931            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4932   if (!Trunc)
4933     return nullptr;
4934   const SCEV *X = Trunc->getOperand();
4935   if (X != SymbolicPHI)
4936     return nullptr;
4937   Signed = SExt != nullptr;
4938   return Trunc->getType();
4939 }
4940 
4941 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4942   if (!PN->getType()->isIntegerTy())
4943     return nullptr;
4944   const Loop *L = LI.getLoopFor(PN->getParent());
4945   if (!L || L->getHeader() != PN->getParent())
4946     return nullptr;
4947   return L;
4948 }
4949 
4950 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4951 // computation that updates the phi follows the following pattern:
4952 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4953 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4954 // If so, try to see if it can be rewritten as an AddRecExpr under some
4955 // Predicates. If successful, return them as a pair. Also cache the results
4956 // of the analysis.
4957 //
4958 // Example usage scenario:
4959 //    Say the Rewriter is called for the following SCEV:
4960 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4961 //    where:
4962 //         %X = phi i64 (%Start, %BEValue)
4963 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4964 //    and call this function with %SymbolicPHI = %X.
4965 //
4966 //    The analysis will find that the value coming around the backedge has
4967 //    the following SCEV:
4968 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4969 //    Upon concluding that this matches the desired pattern, the function
4970 //    will return the pair {NewAddRec, SmallPredsVec} where:
4971 //         NewAddRec = {%Start,+,%Step}
4972 //         SmallPredsVec = {P1, P2, P3} as follows:
4973 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4974 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4975 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4976 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4977 //    under the predicates {P1,P2,P3}.
4978 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4979 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4980 //
4981 // TODO's:
4982 //
4983 // 1) Extend the Induction descriptor to also support inductions that involve
4984 //    casts: When needed (namely, when we are called in the context of the
4985 //    vectorizer induction analysis), a Set of cast instructions will be
4986 //    populated by this method, and provided back to isInductionPHI. This is
4987 //    needed to allow the vectorizer to properly record them to be ignored by
4988 //    the cost model and to avoid vectorizing them (otherwise these casts,
4989 //    which are redundant under the runtime overflow checks, will be
4990 //    vectorized, which can be costly).
4991 //
4992 // 2) Support additional induction/PHISCEV patterns: We also want to support
4993 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4994 //    after the induction update operation (the induction increment):
4995 //
4996 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4997 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4998 //
4999 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5000 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5001 //
5002 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5003 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5004 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5005   SmallVector<const SCEVPredicate *, 3> Predicates;
5006 
5007   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5008   // return an AddRec expression under some predicate.
5009 
5010   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5011   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5012   assert(L && "Expecting an integer loop header phi");
5013 
5014   // The loop may have multiple entrances or multiple exits; we can analyze
5015   // this phi as an addrec if it has a unique entry value and a unique
5016   // backedge value.
5017   Value *BEValueV = nullptr, *StartValueV = nullptr;
5018   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5019     Value *V = PN->getIncomingValue(i);
5020     if (L->contains(PN->getIncomingBlock(i))) {
5021       if (!BEValueV) {
5022         BEValueV = V;
5023       } else if (BEValueV != V) {
5024         BEValueV = nullptr;
5025         break;
5026       }
5027     } else if (!StartValueV) {
5028       StartValueV = V;
5029     } else if (StartValueV != V) {
5030       StartValueV = nullptr;
5031       break;
5032     }
5033   }
5034   if (!BEValueV || !StartValueV)
5035     return None;
5036 
5037   const SCEV *BEValue = getSCEV(BEValueV);
5038 
5039   // If the value coming around the backedge is an add with the symbolic
5040   // value we just inserted, possibly with casts that we can ignore under
5041   // an appropriate runtime guard, then we found a simple induction variable!
5042   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5043   if (!Add)
5044     return None;
5045 
5046   // If there is a single occurrence of the symbolic value, possibly
5047   // casted, replace it with a recurrence.
5048   unsigned FoundIndex = Add->getNumOperands();
5049   Type *TruncTy = nullptr;
5050   bool Signed;
5051   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5052     if ((TruncTy =
5053              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5054       if (FoundIndex == e) {
5055         FoundIndex = i;
5056         break;
5057       }
5058 
5059   if (FoundIndex == Add->getNumOperands())
5060     return None;
5061 
5062   // Create an add with everything but the specified operand.
5063   SmallVector<const SCEV *, 8> Ops;
5064   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5065     if (i != FoundIndex)
5066       Ops.push_back(Add->getOperand(i));
5067   const SCEV *Accum = getAddExpr(Ops);
5068 
5069   // The runtime checks will not be valid if the step amount is
5070   // varying inside the loop.
5071   if (!isLoopInvariant(Accum, L))
5072     return None;
5073 
5074   // *** Part2: Create the predicates
5075 
5076   // Analysis was successful: we have a phi-with-cast pattern for which we
5077   // can return an AddRec expression under the following predicates:
5078   //
5079   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5080   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5081   // P2: An Equal predicate that guarantees that
5082   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5083   // P3: An Equal predicate that guarantees that
5084   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5085   //
5086   // As we next prove, the above predicates guarantee that:
5087   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5088   //
5089   //
5090   // More formally, we want to prove that:
5091   //     Expr(i+1) = Start + (i+1) * Accum
5092   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5093   //
5094   // Given that:
5095   // 1) Expr(0) = Start
5096   // 2) Expr(1) = Start + Accum
5097   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5098   // 3) Induction hypothesis (step i):
5099   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5100   //
5101   // Proof:
5102   //  Expr(i+1) =
5103   //   = Start + (i+1)*Accum
5104   //   = (Start + i*Accum) + Accum
5105   //   = Expr(i) + Accum
5106   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5107   //                                                             :: from step i
5108   //
5109   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5110   //
5111   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5112   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5113   //     + Accum                                                     :: from P3
5114   //
5115   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5116   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5117   //
5118   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5119   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5120   //
5121   // By induction, the same applies to all iterations 1<=i<n:
5122   //
5123 
5124   // Create a truncated addrec for which we will add a no overflow check (P1).
5125   const SCEV *StartVal = getSCEV(StartValueV);
5126   const SCEV *PHISCEV =
5127       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5128                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5129 
5130   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5131   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5132   // will be constant.
5133   //
5134   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5135   // add P1.
5136   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5137     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5138         Signed ? SCEVWrapPredicate::IncrementNSSW
5139                : SCEVWrapPredicate::IncrementNUSW;
5140     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5141     Predicates.push_back(AddRecPred);
5142   }
5143 
5144   // Create the Equal Predicates P2,P3:
5145 
5146   // It is possible that the predicates P2 and/or P3 are computable at
5147   // compile time due to StartVal and/or Accum being constants.
5148   // If either one is, then we can check that now and escape if either P2
5149   // or P3 is false.
5150 
5151   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5152   // for each of StartVal and Accum
5153   auto getExtendedExpr = [&](const SCEV *Expr,
5154                              bool CreateSignExtend) -> const SCEV * {
5155     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5156     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5157     const SCEV *ExtendedExpr =
5158         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5159                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5160     return ExtendedExpr;
5161   };
5162 
5163   // Given:
5164   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5165   //               = getExtendedExpr(Expr)
5166   // Determine whether the predicate P: Expr == ExtendedExpr
5167   // is known to be false at compile time
5168   auto PredIsKnownFalse = [&](const SCEV *Expr,
5169                               const SCEV *ExtendedExpr) -> bool {
5170     return Expr != ExtendedExpr &&
5171            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5172   };
5173 
5174   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5175   if (PredIsKnownFalse(StartVal, StartExtended)) {
5176     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5177     return None;
5178   }
5179 
5180   // The Step is always Signed (because the overflow checks are either
5181   // NSSW or NUSW)
5182   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5183   if (PredIsKnownFalse(Accum, AccumExtended)) {
5184     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5185     return None;
5186   }
5187 
5188   auto AppendPredicate = [&](const SCEV *Expr,
5189                              const SCEV *ExtendedExpr) -> void {
5190     if (Expr != ExtendedExpr &&
5191         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5192       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5193       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5194       Predicates.push_back(Pred);
5195     }
5196   };
5197 
5198   AppendPredicate(StartVal, StartExtended);
5199   AppendPredicate(Accum, AccumExtended);
5200 
5201   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5202   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5203   // into NewAR if it will also add the runtime overflow checks specified in
5204   // Predicates.
5205   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5206 
5207   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5208       std::make_pair(NewAR, Predicates);
5209   // Remember the result of the analysis for this SCEV at this locayyytion.
5210   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5211   return PredRewrite;
5212 }
5213 
5214 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5215 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5216   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5217   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5218   if (!L)
5219     return None;
5220 
5221   // Check to see if we already analyzed this PHI.
5222   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5223   if (I != PredicatedSCEVRewrites.end()) {
5224     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5225         I->second;
5226     // Analysis was done before and failed to create an AddRec:
5227     if (Rewrite.first == SymbolicPHI)
5228       return None;
5229     // Analysis was done before and succeeded to create an AddRec under
5230     // a predicate:
5231     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5232     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5233     return Rewrite;
5234   }
5235 
5236   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5237     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5238 
5239   // Record in the cache that the analysis failed
5240   if (!Rewrite) {
5241     SmallVector<const SCEVPredicate *, 3> Predicates;
5242     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5243     return None;
5244   }
5245 
5246   return Rewrite;
5247 }
5248 
5249 // FIXME: This utility is currently required because the Rewriter currently
5250 // does not rewrite this expression:
5251 // {0, +, (sext ix (trunc iy to ix) to iy)}
5252 // into {0, +, %step},
5253 // even when the following Equal predicate exists:
5254 // "%step == (sext ix (trunc iy to ix) to iy)".
5255 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5256     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5257   if (AR1 == AR2)
5258     return true;
5259 
5260   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5261     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5262         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5263       return false;
5264     return true;
5265   };
5266 
5267   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5268       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5269     return false;
5270   return true;
5271 }
5272 
5273 /// A helper function for createAddRecFromPHI to handle simple cases.
5274 ///
5275 /// This function tries to find an AddRec expression for the simplest (yet most
5276 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5277 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5278 /// technique for finding the AddRec expression.
5279 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5280                                                       Value *BEValueV,
5281                                                       Value *StartValueV) {
5282   const Loop *L = LI.getLoopFor(PN->getParent());
5283   assert(L && L->getHeader() == PN->getParent());
5284   assert(BEValueV && StartValueV);
5285 
5286   auto BO = MatchBinaryOp(BEValueV, DT);
5287   if (!BO)
5288     return nullptr;
5289 
5290   if (BO->Opcode != Instruction::Add)
5291     return nullptr;
5292 
5293   const SCEV *Accum = nullptr;
5294   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5295     Accum = getSCEV(BO->RHS);
5296   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5297     Accum = getSCEV(BO->LHS);
5298 
5299   if (!Accum)
5300     return nullptr;
5301 
5302   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5303   if (BO->IsNUW)
5304     Flags = setFlags(Flags, SCEV::FlagNUW);
5305   if (BO->IsNSW)
5306     Flags = setFlags(Flags, SCEV::FlagNSW);
5307 
5308   const SCEV *StartVal = getSCEV(StartValueV);
5309   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5310 
5311   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5312 
5313   // We can add Flags to the post-inc expression only if we
5314   // know that it is *undefined behavior* for BEValueV to
5315   // overflow.
5316   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5317     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5318       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5319 
5320   return PHISCEV;
5321 }
5322 
5323 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5324   const Loop *L = LI.getLoopFor(PN->getParent());
5325   if (!L || L->getHeader() != PN->getParent())
5326     return nullptr;
5327 
5328   // The loop may have multiple entrances or multiple exits; we can analyze
5329   // this phi as an addrec if it has a unique entry value and a unique
5330   // backedge value.
5331   Value *BEValueV = nullptr, *StartValueV = nullptr;
5332   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5333     Value *V = PN->getIncomingValue(i);
5334     if (L->contains(PN->getIncomingBlock(i))) {
5335       if (!BEValueV) {
5336         BEValueV = V;
5337       } else if (BEValueV != V) {
5338         BEValueV = nullptr;
5339         break;
5340       }
5341     } else if (!StartValueV) {
5342       StartValueV = V;
5343     } else if (StartValueV != V) {
5344       StartValueV = nullptr;
5345       break;
5346     }
5347   }
5348   if (!BEValueV || !StartValueV)
5349     return nullptr;
5350 
5351   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5352          "PHI node already processed?");
5353 
5354   // First, try to find AddRec expression without creating a fictituos symbolic
5355   // value for PN.
5356   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5357     return S;
5358 
5359   // Handle PHI node value symbolically.
5360   const SCEV *SymbolicName = getUnknown(PN);
5361   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5362 
5363   // Using this symbolic name for the PHI, analyze the value coming around
5364   // the back-edge.
5365   const SCEV *BEValue = getSCEV(BEValueV);
5366 
5367   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5368   // has a special value for the first iteration of the loop.
5369 
5370   // If the value coming around the backedge is an add with the symbolic
5371   // value we just inserted, then we found a simple induction variable!
5372   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5373     // If there is a single occurrence of the symbolic value, replace it
5374     // with a recurrence.
5375     unsigned FoundIndex = Add->getNumOperands();
5376     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5377       if (Add->getOperand(i) == SymbolicName)
5378         if (FoundIndex == e) {
5379           FoundIndex = i;
5380           break;
5381         }
5382 
5383     if (FoundIndex != Add->getNumOperands()) {
5384       // Create an add with everything but the specified operand.
5385       SmallVector<const SCEV *, 8> Ops;
5386       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5387         if (i != FoundIndex)
5388           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5389                                                              L, *this));
5390       const SCEV *Accum = getAddExpr(Ops);
5391 
5392       // This is not a valid addrec if the step amount is varying each
5393       // loop iteration, but is not itself an addrec in this loop.
5394       if (isLoopInvariant(Accum, L) ||
5395           (isa<SCEVAddRecExpr>(Accum) &&
5396            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5397         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5398 
5399         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5400           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5401             if (BO->IsNUW)
5402               Flags = setFlags(Flags, SCEV::FlagNUW);
5403             if (BO->IsNSW)
5404               Flags = setFlags(Flags, SCEV::FlagNSW);
5405           }
5406         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5407           // If the increment is an inbounds GEP, then we know the address
5408           // space cannot be wrapped around. We cannot make any guarantee
5409           // about signed or unsigned overflow because pointers are
5410           // unsigned but we may have a negative index from the base
5411           // pointer. We can guarantee that no unsigned wrap occurs if the
5412           // indices form a positive value.
5413           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5414             Flags = setFlags(Flags, SCEV::FlagNW);
5415 
5416             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5417             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5418               Flags = setFlags(Flags, SCEV::FlagNUW);
5419           }
5420 
5421           // We cannot transfer nuw and nsw flags from subtraction
5422           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5423           // for instance.
5424         }
5425 
5426         const SCEV *StartVal = getSCEV(StartValueV);
5427         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5428 
5429         // Okay, for the entire analysis of this edge we assumed the PHI
5430         // to be symbolic.  We now need to go back and purge all of the
5431         // entries for the scalars that use the symbolic expression.
5432         forgetSymbolicName(PN, SymbolicName);
5433         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5434 
5435         // We can add Flags to the post-inc expression only if we
5436         // know that it is *undefined behavior* for BEValueV to
5437         // overflow.
5438         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5439           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5440             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5441 
5442         return PHISCEV;
5443       }
5444     }
5445   } else {
5446     // Otherwise, this could be a loop like this:
5447     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5448     // In this case, j = {1,+,1}  and BEValue is j.
5449     // Because the other in-value of i (0) fits the evolution of BEValue
5450     // i really is an addrec evolution.
5451     //
5452     // We can generalize this saying that i is the shifted value of BEValue
5453     // by one iteration:
5454     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5455     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5456     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5457     if (Shifted != getCouldNotCompute() &&
5458         Start != getCouldNotCompute()) {
5459       const SCEV *StartVal = getSCEV(StartValueV);
5460       if (Start == StartVal) {
5461         // Okay, for the entire analysis of this edge we assumed the PHI
5462         // to be symbolic.  We now need to go back and purge all of the
5463         // entries for the scalars that use the symbolic expression.
5464         forgetSymbolicName(PN, SymbolicName);
5465         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5466         return Shifted;
5467       }
5468     }
5469   }
5470 
5471   // Remove the temporary PHI node SCEV that has been inserted while intending
5472   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5473   // as it will prevent later (possibly simpler) SCEV expressions to be added
5474   // to the ValueExprMap.
5475   eraseValueFromMap(PN);
5476 
5477   return nullptr;
5478 }
5479 
5480 // Checks if the SCEV S is available at BB.  S is considered available at BB
5481 // if S can be materialized at BB without introducing a fault.
5482 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5483                                BasicBlock *BB) {
5484   struct CheckAvailable {
5485     bool TraversalDone = false;
5486     bool Available = true;
5487 
5488     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5489     BasicBlock *BB = nullptr;
5490     DominatorTree &DT;
5491 
5492     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5493       : L(L), BB(BB), DT(DT) {}
5494 
5495     bool setUnavailable() {
5496       TraversalDone = true;
5497       Available = false;
5498       return false;
5499     }
5500 
5501     bool follow(const SCEV *S) {
5502       switch (S->getSCEVType()) {
5503       case scConstant:
5504       case scPtrToInt:
5505       case scTruncate:
5506       case scZeroExtend:
5507       case scSignExtend:
5508       case scAddExpr:
5509       case scMulExpr:
5510       case scUMaxExpr:
5511       case scSMaxExpr:
5512       case scUMinExpr:
5513       case scSMinExpr:
5514         // These expressions are available if their operand(s) is/are.
5515         return true;
5516 
5517       case scAddRecExpr: {
5518         // We allow add recurrences that are on the loop BB is in, or some
5519         // outer loop.  This guarantees availability because the value of the
5520         // add recurrence at BB is simply the "current" value of the induction
5521         // variable.  We can relax this in the future; for instance an add
5522         // recurrence on a sibling dominating loop is also available at BB.
5523         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5524         if (L && (ARLoop == L || ARLoop->contains(L)))
5525           return true;
5526 
5527         return setUnavailable();
5528       }
5529 
5530       case scUnknown: {
5531         // For SCEVUnknown, we check for simple dominance.
5532         const auto *SU = cast<SCEVUnknown>(S);
5533         Value *V = SU->getValue();
5534 
5535         if (isa<Argument>(V))
5536           return false;
5537 
5538         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5539           return false;
5540 
5541         return setUnavailable();
5542       }
5543 
5544       case scUDivExpr:
5545       case scCouldNotCompute:
5546         // We do not try to smart about these at all.
5547         return setUnavailable();
5548       }
5549       llvm_unreachable("Unknown SCEV kind!");
5550     }
5551 
5552     bool isDone() { return TraversalDone; }
5553   };
5554 
5555   CheckAvailable CA(L, BB, DT);
5556   SCEVTraversal<CheckAvailable> ST(CA);
5557 
5558   ST.visitAll(S);
5559   return CA.Available;
5560 }
5561 
5562 // Try to match a control flow sequence that branches out at BI and merges back
5563 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5564 // match.
5565 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5566                           Value *&C, Value *&LHS, Value *&RHS) {
5567   C = BI->getCondition();
5568 
5569   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5570   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5571 
5572   if (!LeftEdge.isSingleEdge())
5573     return false;
5574 
5575   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5576 
5577   Use &LeftUse = Merge->getOperandUse(0);
5578   Use &RightUse = Merge->getOperandUse(1);
5579 
5580   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5581     LHS = LeftUse;
5582     RHS = RightUse;
5583     return true;
5584   }
5585 
5586   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5587     LHS = RightUse;
5588     RHS = LeftUse;
5589     return true;
5590   }
5591 
5592   return false;
5593 }
5594 
5595 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5596   auto IsReachable =
5597       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5598   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5599     const Loop *L = LI.getLoopFor(PN->getParent());
5600 
5601     // We don't want to break LCSSA, even in a SCEV expression tree.
5602     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5603       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5604         return nullptr;
5605 
5606     // Try to match
5607     //
5608     //  br %cond, label %left, label %right
5609     // left:
5610     //  br label %merge
5611     // right:
5612     //  br label %merge
5613     // merge:
5614     //  V = phi [ %x, %left ], [ %y, %right ]
5615     //
5616     // as "select %cond, %x, %y"
5617 
5618     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5619     assert(IDom && "At least the entry block should dominate PN");
5620 
5621     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5622     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5623 
5624     if (BI && BI->isConditional() &&
5625         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5626         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5627         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5628       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5629   }
5630 
5631   return nullptr;
5632 }
5633 
5634 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5635   if (const SCEV *S = createAddRecFromPHI(PN))
5636     return S;
5637 
5638   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5639     return S;
5640 
5641   // If the PHI has a single incoming value, follow that value, unless the
5642   // PHI's incoming blocks are in a different loop, in which case doing so
5643   // risks breaking LCSSA form. Instcombine would normally zap these, but
5644   // it doesn't have DominatorTree information, so it may miss cases.
5645   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5646     if (LI.replacementPreservesLCSSAForm(PN, V))
5647       return getSCEV(V);
5648 
5649   // If it's not a loop phi, we can't handle it yet.
5650   return getUnknown(PN);
5651 }
5652 
5653 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5654                                                       Value *Cond,
5655                                                       Value *TrueVal,
5656                                                       Value *FalseVal) {
5657   // Handle "constant" branch or select. This can occur for instance when a
5658   // loop pass transforms an inner loop and moves on to process the outer loop.
5659   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5660     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5661 
5662   // Try to match some simple smax or umax patterns.
5663   auto *ICI = dyn_cast<ICmpInst>(Cond);
5664   if (!ICI)
5665     return getUnknown(I);
5666 
5667   Value *LHS = ICI->getOperand(0);
5668   Value *RHS = ICI->getOperand(1);
5669 
5670   switch (ICI->getPredicate()) {
5671   case ICmpInst::ICMP_SLT:
5672   case ICmpInst::ICMP_SLE:
5673   case ICmpInst::ICMP_ULT:
5674   case ICmpInst::ICMP_ULE:
5675     std::swap(LHS, RHS);
5676     LLVM_FALLTHROUGH;
5677   case ICmpInst::ICMP_SGT:
5678   case ICmpInst::ICMP_SGE:
5679   case ICmpInst::ICMP_UGT:
5680   case ICmpInst::ICMP_UGE:
5681     // a > b ? a+x : b+x  ->  max(a, b)+x
5682     // a > b ? b+x : a+x  ->  min(a, b)+x
5683     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5684       bool Signed = ICI->isSigned();
5685       const SCEV *LA = getSCEV(TrueVal);
5686       const SCEV *RA = getSCEV(FalseVal);
5687       const SCEV *LS = getSCEV(LHS);
5688       const SCEV *RS = getSCEV(RHS);
5689       if (LA->getType()->isPointerTy()) {
5690         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5691         // Need to make sure we can't produce weird expressions involving
5692         // negated pointers.
5693         if (LA == LS && RA == RS)
5694           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5695         if (LA == RS && RA == LS)
5696           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5697       }
5698       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5699         if (Op->getType()->isPointerTy()) {
5700           Op = getLosslessPtrToIntExpr(Op);
5701           if (isa<SCEVCouldNotCompute>(Op))
5702             return Op;
5703         }
5704         if (Signed)
5705           Op = getNoopOrSignExtend(Op, I->getType());
5706         else
5707           Op = getNoopOrZeroExtend(Op, I->getType());
5708         return Op;
5709       };
5710       LS = CoerceOperand(LS);
5711       RS = CoerceOperand(RS);
5712       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5713         break;
5714       const SCEV *LDiff = getMinusSCEV(LA, LS);
5715       const SCEV *RDiff = getMinusSCEV(RA, RS);
5716       if (LDiff == RDiff)
5717         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5718                           LDiff);
5719       LDiff = getMinusSCEV(LA, RS);
5720       RDiff = getMinusSCEV(RA, LS);
5721       if (LDiff == RDiff)
5722         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5723                           LDiff);
5724     }
5725     break;
5726   case ICmpInst::ICMP_NE:
5727     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5728     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5729         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5730       const SCEV *One = getOne(I->getType());
5731       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5732       const SCEV *LA = getSCEV(TrueVal);
5733       const SCEV *RA = getSCEV(FalseVal);
5734       const SCEV *LDiff = getMinusSCEV(LA, LS);
5735       const SCEV *RDiff = getMinusSCEV(RA, One);
5736       if (LDiff == RDiff)
5737         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5738     }
5739     break;
5740   case ICmpInst::ICMP_EQ:
5741     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5742     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5743         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5744       const SCEV *One = getOne(I->getType());
5745       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5746       const SCEV *LA = getSCEV(TrueVal);
5747       const SCEV *RA = getSCEV(FalseVal);
5748       const SCEV *LDiff = getMinusSCEV(LA, One);
5749       const SCEV *RDiff = getMinusSCEV(RA, LS);
5750       if (LDiff == RDiff)
5751         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5752     }
5753     break;
5754   default:
5755     break;
5756   }
5757 
5758   return getUnknown(I);
5759 }
5760 
5761 /// Expand GEP instructions into add and multiply operations. This allows them
5762 /// to be analyzed by regular SCEV code.
5763 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5764   // Don't attempt to analyze GEPs over unsized objects.
5765   if (!GEP->getSourceElementType()->isSized())
5766     return getUnknown(GEP);
5767 
5768   SmallVector<const SCEV *, 4> IndexExprs;
5769   for (Value *Index : GEP->indices())
5770     IndexExprs.push_back(getSCEV(Index));
5771   return getGEPExpr(GEP, IndexExprs);
5772 }
5773 
5774 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5775   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5776     return C->getAPInt().countTrailingZeros();
5777 
5778   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5779     return GetMinTrailingZeros(I->getOperand());
5780 
5781   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5782     return std::min(GetMinTrailingZeros(T->getOperand()),
5783                     (uint32_t)getTypeSizeInBits(T->getType()));
5784 
5785   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5786     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5787     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5788                ? getTypeSizeInBits(E->getType())
5789                : OpRes;
5790   }
5791 
5792   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5793     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5794     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5795                ? getTypeSizeInBits(E->getType())
5796                : OpRes;
5797   }
5798 
5799   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5800     // The result is the min of all operands results.
5801     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5802     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5803       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5804     return MinOpRes;
5805   }
5806 
5807   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5808     // The result is the sum of all operands results.
5809     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5810     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5811     for (unsigned i = 1, e = M->getNumOperands();
5812          SumOpRes != BitWidth && i != e; ++i)
5813       SumOpRes =
5814           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5815     return SumOpRes;
5816   }
5817 
5818   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5819     // The result is the min of all operands results.
5820     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5821     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5822       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5823     return MinOpRes;
5824   }
5825 
5826   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5827     // The result is the min of all operands results.
5828     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5829     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5830       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5831     return MinOpRes;
5832   }
5833 
5834   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5835     // The result is the min of all operands results.
5836     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5837     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5838       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5839     return MinOpRes;
5840   }
5841 
5842   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5843     // For a SCEVUnknown, ask ValueTracking.
5844     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5845     return Known.countMinTrailingZeros();
5846   }
5847 
5848   // SCEVUDivExpr
5849   return 0;
5850 }
5851 
5852 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5853   auto I = MinTrailingZerosCache.find(S);
5854   if (I != MinTrailingZerosCache.end())
5855     return I->second;
5856 
5857   uint32_t Result = GetMinTrailingZerosImpl(S);
5858   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5859   assert(InsertPair.second && "Should insert a new key");
5860   return InsertPair.first->second;
5861 }
5862 
5863 /// Helper method to assign a range to V from metadata present in the IR.
5864 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5865   if (Instruction *I = dyn_cast<Instruction>(V))
5866     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5867       return getConstantRangeFromMetadata(*MD);
5868 
5869   return None;
5870 }
5871 
5872 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5873                                      SCEV::NoWrapFlags Flags) {
5874   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5875     AddRec->setNoWrapFlags(Flags);
5876     UnsignedRanges.erase(AddRec);
5877     SignedRanges.erase(AddRec);
5878   }
5879 }
5880 
5881 ConstantRange ScalarEvolution::
5882 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5883   const DataLayout &DL = getDataLayout();
5884 
5885   unsigned BitWidth = getTypeSizeInBits(U->getType());
5886   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5887 
5888   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5889   // use information about the trip count to improve our available range.  Note
5890   // that the trip count independent cases are already handled by known bits.
5891   // WARNING: The definition of recurrence used here is subtly different than
5892   // the one used by AddRec (and thus most of this file).  Step is allowed to
5893   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5894   // and other addrecs in the same loop (for non-affine addrecs).  The code
5895   // below intentionally handles the case where step is not loop invariant.
5896   auto *P = dyn_cast<PHINode>(U->getValue());
5897   if (!P)
5898     return FullSet;
5899 
5900   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5901   // even the values that are not available in these blocks may come from them,
5902   // and this leads to false-positive recurrence test.
5903   for (auto *Pred : predecessors(P->getParent()))
5904     if (!DT.isReachableFromEntry(Pred))
5905       return FullSet;
5906 
5907   BinaryOperator *BO;
5908   Value *Start, *Step;
5909   if (!matchSimpleRecurrence(P, BO, Start, Step))
5910     return FullSet;
5911 
5912   // If we found a recurrence in reachable code, we must be in a loop. Note
5913   // that BO might be in some subloop of L, and that's completely okay.
5914   auto *L = LI.getLoopFor(P->getParent());
5915   assert(L && L->getHeader() == P->getParent());
5916   if (!L->contains(BO->getParent()))
5917     // NOTE: This bailout should be an assert instead.  However, asserting
5918     // the condition here exposes a case where LoopFusion is querying SCEV
5919     // with malformed loop information during the midst of the transform.
5920     // There doesn't appear to be an obvious fix, so for the moment bailout
5921     // until the caller issue can be fixed.  PR49566 tracks the bug.
5922     return FullSet;
5923 
5924   // TODO: Extend to other opcodes such as mul, and div
5925   switch (BO->getOpcode()) {
5926   default:
5927     return FullSet;
5928   case Instruction::AShr:
5929   case Instruction::LShr:
5930   case Instruction::Shl:
5931     break;
5932   };
5933 
5934   if (BO->getOperand(0) != P)
5935     // TODO: Handle the power function forms some day.
5936     return FullSet;
5937 
5938   unsigned TC = getSmallConstantMaxTripCount(L);
5939   if (!TC || TC >= BitWidth)
5940     return FullSet;
5941 
5942   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5943   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5944   assert(KnownStart.getBitWidth() == BitWidth &&
5945          KnownStep.getBitWidth() == BitWidth);
5946 
5947   // Compute total shift amount, being careful of overflow and bitwidths.
5948   auto MaxShiftAmt = KnownStep.getMaxValue();
5949   APInt TCAP(BitWidth, TC-1);
5950   bool Overflow = false;
5951   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5952   if (Overflow)
5953     return FullSet;
5954 
5955   switch (BO->getOpcode()) {
5956   default:
5957     llvm_unreachable("filtered out above");
5958   case Instruction::AShr: {
5959     // For each ashr, three cases:
5960     //   shift = 0 => unchanged value
5961     //   saturation => 0 or -1
5962     //   other => a value closer to zero (of the same sign)
5963     // Thus, the end value is closer to zero than the start.
5964     auto KnownEnd = KnownBits::ashr(KnownStart,
5965                                     KnownBits::makeConstant(TotalShift));
5966     if (KnownStart.isNonNegative())
5967       // Analogous to lshr (simply not yet canonicalized)
5968       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5969                                         KnownStart.getMaxValue() + 1);
5970     if (KnownStart.isNegative())
5971       // End >=u Start && End <=s Start
5972       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5973                                         KnownEnd.getMaxValue() + 1);
5974     break;
5975   }
5976   case Instruction::LShr: {
5977     // For each lshr, three cases:
5978     //   shift = 0 => unchanged value
5979     //   saturation => 0
5980     //   other => a smaller positive number
5981     // Thus, the low end of the unsigned range is the last value produced.
5982     auto KnownEnd = KnownBits::lshr(KnownStart,
5983                                     KnownBits::makeConstant(TotalShift));
5984     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5985                                       KnownStart.getMaxValue() + 1);
5986   }
5987   case Instruction::Shl: {
5988     // Iff no bits are shifted out, value increases on every shift.
5989     auto KnownEnd = KnownBits::shl(KnownStart,
5990                                    KnownBits::makeConstant(TotalShift));
5991     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5992       return ConstantRange(KnownStart.getMinValue(),
5993                            KnownEnd.getMaxValue() + 1);
5994     break;
5995   }
5996   };
5997   return FullSet;
5998 }
5999 
6000 /// Determine the range for a particular SCEV.  If SignHint is
6001 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6002 /// with a "cleaner" unsigned (resp. signed) representation.
6003 const ConstantRange &
6004 ScalarEvolution::getRangeRef(const SCEV *S,
6005                              ScalarEvolution::RangeSignHint SignHint) {
6006   DenseMap<const SCEV *, ConstantRange> &Cache =
6007       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6008                                                        : SignedRanges;
6009   ConstantRange::PreferredRangeType RangeType =
6010       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6011           ? ConstantRange::Unsigned : ConstantRange::Signed;
6012 
6013   // See if we've computed this range already.
6014   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6015   if (I != Cache.end())
6016     return I->second;
6017 
6018   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6019     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6020 
6021   unsigned BitWidth = getTypeSizeInBits(S->getType());
6022   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6023   using OBO = OverflowingBinaryOperator;
6024 
6025   // If the value has known zeros, the maximum value will have those known zeros
6026   // as well.
6027   uint32_t TZ = GetMinTrailingZeros(S);
6028   if (TZ != 0) {
6029     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6030       ConservativeResult =
6031           ConstantRange(APInt::getMinValue(BitWidth),
6032                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6033     else
6034       ConservativeResult = ConstantRange(
6035           APInt::getSignedMinValue(BitWidth),
6036           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6037   }
6038 
6039   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6040     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6041     unsigned WrapType = OBO::AnyWrap;
6042     if (Add->hasNoSignedWrap())
6043       WrapType |= OBO::NoSignedWrap;
6044     if (Add->hasNoUnsignedWrap())
6045       WrapType |= OBO::NoUnsignedWrap;
6046     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6047       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6048                           WrapType, RangeType);
6049     return setRange(Add, SignHint,
6050                     ConservativeResult.intersectWith(X, RangeType));
6051   }
6052 
6053   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6054     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6055     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6056       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6057     return setRange(Mul, SignHint,
6058                     ConservativeResult.intersectWith(X, RangeType));
6059   }
6060 
6061   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6062     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6063     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6064       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6065     return setRange(SMax, SignHint,
6066                     ConservativeResult.intersectWith(X, RangeType));
6067   }
6068 
6069   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6070     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6071     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6072       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6073     return setRange(UMax, SignHint,
6074                     ConservativeResult.intersectWith(X, RangeType));
6075   }
6076 
6077   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6078     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6079     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6080       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6081     return setRange(SMin, SignHint,
6082                     ConservativeResult.intersectWith(X, RangeType));
6083   }
6084 
6085   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6086     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6087     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6088       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6089     return setRange(UMin, SignHint,
6090                     ConservativeResult.intersectWith(X, RangeType));
6091   }
6092 
6093   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6094     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6095     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6096     return setRange(UDiv, SignHint,
6097                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6098   }
6099 
6100   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6101     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6102     return setRange(ZExt, SignHint,
6103                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6104                                                      RangeType));
6105   }
6106 
6107   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6108     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6109     return setRange(SExt, SignHint,
6110                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6111                                                      RangeType));
6112   }
6113 
6114   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6115     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6116     return setRange(PtrToInt, SignHint, X);
6117   }
6118 
6119   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6120     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6121     return setRange(Trunc, SignHint,
6122                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6123                                                      RangeType));
6124   }
6125 
6126   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6127     // If there's no unsigned wrap, the value will never be less than its
6128     // initial value.
6129     if (AddRec->hasNoUnsignedWrap()) {
6130       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6131       if (!UnsignedMinValue.isZero())
6132         ConservativeResult = ConservativeResult.intersectWith(
6133             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6134     }
6135 
6136     // If there's no signed wrap, and all the operands except initial value have
6137     // the same sign or zero, the value won't ever be:
6138     // 1: smaller than initial value if operands are non negative,
6139     // 2: bigger than initial value if operands are non positive.
6140     // For both cases, value can not cross signed min/max boundary.
6141     if (AddRec->hasNoSignedWrap()) {
6142       bool AllNonNeg = true;
6143       bool AllNonPos = true;
6144       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6145         if (!isKnownNonNegative(AddRec->getOperand(i)))
6146           AllNonNeg = false;
6147         if (!isKnownNonPositive(AddRec->getOperand(i)))
6148           AllNonPos = false;
6149       }
6150       if (AllNonNeg)
6151         ConservativeResult = ConservativeResult.intersectWith(
6152             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6153                                        APInt::getSignedMinValue(BitWidth)),
6154             RangeType);
6155       else if (AllNonPos)
6156         ConservativeResult = ConservativeResult.intersectWith(
6157             ConstantRange::getNonEmpty(
6158                 APInt::getSignedMinValue(BitWidth),
6159                 getSignedRangeMax(AddRec->getStart()) + 1),
6160             RangeType);
6161     }
6162 
6163     // TODO: non-affine addrec
6164     if (AddRec->isAffine()) {
6165       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6166       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6167           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6168         auto RangeFromAffine = getRangeForAffineAR(
6169             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6170             BitWidth);
6171         ConservativeResult =
6172             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6173 
6174         auto RangeFromFactoring = getRangeViaFactoring(
6175             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6176             BitWidth);
6177         ConservativeResult =
6178             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6179       }
6180 
6181       // Now try symbolic BE count and more powerful methods.
6182       if (UseExpensiveRangeSharpening) {
6183         const SCEV *SymbolicMaxBECount =
6184             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6185         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6186             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6187             AddRec->hasNoSelfWrap()) {
6188           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6189               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6190           ConservativeResult =
6191               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6192         }
6193       }
6194     }
6195 
6196     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6197   }
6198 
6199   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6200 
6201     // Check if the IR explicitly contains !range metadata.
6202     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6203     if (MDRange.hasValue())
6204       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6205                                                             RangeType);
6206 
6207     // Use facts about recurrences in the underlying IR.  Note that add
6208     // recurrences are AddRecExprs and thus don't hit this path.  This
6209     // primarily handles shift recurrences.
6210     auto CR = getRangeForUnknownRecurrence(U);
6211     ConservativeResult = ConservativeResult.intersectWith(CR);
6212 
6213     // See if ValueTracking can give us a useful range.
6214     const DataLayout &DL = getDataLayout();
6215     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6216     if (Known.getBitWidth() != BitWidth)
6217       Known = Known.zextOrTrunc(BitWidth);
6218 
6219     // ValueTracking may be able to compute a tighter result for the number of
6220     // sign bits than for the value of those sign bits.
6221     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6222     if (U->getType()->isPointerTy()) {
6223       // If the pointer size is larger than the index size type, this can cause
6224       // NS to be larger than BitWidth. So compensate for this.
6225       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6226       int ptrIdxDiff = ptrSize - BitWidth;
6227       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6228         NS -= ptrIdxDiff;
6229     }
6230 
6231     if (NS > 1) {
6232       // If we know any of the sign bits, we know all of the sign bits.
6233       if (!Known.Zero.getHiBits(NS).isZero())
6234         Known.Zero.setHighBits(NS);
6235       if (!Known.One.getHiBits(NS).isZero())
6236         Known.One.setHighBits(NS);
6237     }
6238 
6239     if (Known.getMinValue() != Known.getMaxValue() + 1)
6240       ConservativeResult = ConservativeResult.intersectWith(
6241           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6242           RangeType);
6243     if (NS > 1)
6244       ConservativeResult = ConservativeResult.intersectWith(
6245           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6246                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6247           RangeType);
6248 
6249     // A range of Phi is a subset of union of all ranges of its input.
6250     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6251       // Make sure that we do not run over cycled Phis.
6252       if (PendingPhiRanges.insert(Phi).second) {
6253         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6254         for (auto &Op : Phi->operands()) {
6255           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6256           RangeFromOps = RangeFromOps.unionWith(OpRange);
6257           // No point to continue if we already have a full set.
6258           if (RangeFromOps.isFullSet())
6259             break;
6260         }
6261         ConservativeResult =
6262             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6263         bool Erased = PendingPhiRanges.erase(Phi);
6264         assert(Erased && "Failed to erase Phi properly?");
6265         (void) Erased;
6266       }
6267     }
6268 
6269     return setRange(U, SignHint, std::move(ConservativeResult));
6270   }
6271 
6272   return setRange(S, SignHint, std::move(ConservativeResult));
6273 }
6274 
6275 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6276 // values that the expression can take. Initially, the expression has a value
6277 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6278 // argument defines if we treat Step as signed or unsigned.
6279 static ConstantRange getRangeForAffineARHelper(APInt Step,
6280                                                const ConstantRange &StartRange,
6281                                                const APInt &MaxBECount,
6282                                                unsigned BitWidth, bool Signed) {
6283   // If either Step or MaxBECount is 0, then the expression won't change, and we
6284   // just need to return the initial range.
6285   if (Step == 0 || MaxBECount == 0)
6286     return StartRange;
6287 
6288   // If we don't know anything about the initial value (i.e. StartRange is
6289   // FullRange), then we don't know anything about the final range either.
6290   // Return FullRange.
6291   if (StartRange.isFullSet())
6292     return ConstantRange::getFull(BitWidth);
6293 
6294   // If Step is signed and negative, then we use its absolute value, but we also
6295   // note that we're moving in the opposite direction.
6296   bool Descending = Signed && Step.isNegative();
6297 
6298   if (Signed)
6299     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6300     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6301     // This equations hold true due to the well-defined wrap-around behavior of
6302     // APInt.
6303     Step = Step.abs();
6304 
6305   // Check if Offset is more than full span of BitWidth. If it is, the
6306   // expression is guaranteed to overflow.
6307   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6308     return ConstantRange::getFull(BitWidth);
6309 
6310   // Offset is by how much the expression can change. Checks above guarantee no
6311   // overflow here.
6312   APInt Offset = Step * MaxBECount;
6313 
6314   // Minimum value of the final range will match the minimal value of StartRange
6315   // if the expression is increasing and will be decreased by Offset otherwise.
6316   // Maximum value of the final range will match the maximal value of StartRange
6317   // if the expression is decreasing and will be increased by Offset otherwise.
6318   APInt StartLower = StartRange.getLower();
6319   APInt StartUpper = StartRange.getUpper() - 1;
6320   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6321                                    : (StartUpper + std::move(Offset));
6322 
6323   // It's possible that the new minimum/maximum value will fall into the initial
6324   // range (due to wrap around). This means that the expression can take any
6325   // value in this bitwidth, and we have to return full range.
6326   if (StartRange.contains(MovedBoundary))
6327     return ConstantRange::getFull(BitWidth);
6328 
6329   APInt NewLower =
6330       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6331   APInt NewUpper =
6332       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6333   NewUpper += 1;
6334 
6335   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6336   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6337 }
6338 
6339 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6340                                                    const SCEV *Step,
6341                                                    const SCEV *MaxBECount,
6342                                                    unsigned BitWidth) {
6343   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6344          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6345          "Precondition!");
6346 
6347   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6348   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6349 
6350   // First, consider step signed.
6351   ConstantRange StartSRange = getSignedRange(Start);
6352   ConstantRange StepSRange = getSignedRange(Step);
6353 
6354   // If Step can be both positive and negative, we need to find ranges for the
6355   // maximum absolute step values in both directions and union them.
6356   ConstantRange SR =
6357       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6358                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6359   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6360                                               StartSRange, MaxBECountValue,
6361                                               BitWidth, /* Signed = */ true));
6362 
6363   // Next, consider step unsigned.
6364   ConstantRange UR = getRangeForAffineARHelper(
6365       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6366       MaxBECountValue, BitWidth, /* Signed = */ false);
6367 
6368   // Finally, intersect signed and unsigned ranges.
6369   return SR.intersectWith(UR, ConstantRange::Smallest);
6370 }
6371 
6372 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6373     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6374     ScalarEvolution::RangeSignHint SignHint) {
6375   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6376   assert(AddRec->hasNoSelfWrap() &&
6377          "This only works for non-self-wrapping AddRecs!");
6378   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6379   const SCEV *Step = AddRec->getStepRecurrence(*this);
6380   // Only deal with constant step to save compile time.
6381   if (!isa<SCEVConstant>(Step))
6382     return ConstantRange::getFull(BitWidth);
6383   // Let's make sure that we can prove that we do not self-wrap during
6384   // MaxBECount iterations. We need this because MaxBECount is a maximum
6385   // iteration count estimate, and we might infer nw from some exit for which we
6386   // do not know max exit count (or any other side reasoning).
6387   // TODO: Turn into assert at some point.
6388   if (getTypeSizeInBits(MaxBECount->getType()) >
6389       getTypeSizeInBits(AddRec->getType()))
6390     return ConstantRange::getFull(BitWidth);
6391   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6392   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6393   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6394   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6395   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6396                                          MaxItersWithoutWrap))
6397     return ConstantRange::getFull(BitWidth);
6398 
6399   ICmpInst::Predicate LEPred =
6400       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6401   ICmpInst::Predicate GEPred =
6402       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6403   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6404 
6405   // We know that there is no self-wrap. Let's take Start and End values and
6406   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6407   // the iteration. They either lie inside the range [Min(Start, End),
6408   // Max(Start, End)] or outside it:
6409   //
6410   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6411   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6412   //
6413   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6414   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6415   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6416   // Start <= End and step is positive, or Start >= End and step is negative.
6417   const SCEV *Start = AddRec->getStart();
6418   ConstantRange StartRange = getRangeRef(Start, SignHint);
6419   ConstantRange EndRange = getRangeRef(End, SignHint);
6420   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6421   // If they already cover full iteration space, we will know nothing useful
6422   // even if we prove what we want to prove.
6423   if (RangeBetween.isFullSet())
6424     return RangeBetween;
6425   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6426   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6427                                : RangeBetween.isWrappedSet();
6428   if (IsWrappedSet)
6429     return ConstantRange::getFull(BitWidth);
6430 
6431   if (isKnownPositive(Step) &&
6432       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6433     return RangeBetween;
6434   else if (isKnownNegative(Step) &&
6435            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6436     return RangeBetween;
6437   return ConstantRange::getFull(BitWidth);
6438 }
6439 
6440 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6441                                                     const SCEV *Step,
6442                                                     const SCEV *MaxBECount,
6443                                                     unsigned BitWidth) {
6444   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6445   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6446 
6447   struct SelectPattern {
6448     Value *Condition = nullptr;
6449     APInt TrueValue;
6450     APInt FalseValue;
6451 
6452     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6453                            const SCEV *S) {
6454       Optional<unsigned> CastOp;
6455       APInt Offset(BitWidth, 0);
6456 
6457       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6458              "Should be!");
6459 
6460       // Peel off a constant offset:
6461       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6462         // In the future we could consider being smarter here and handle
6463         // {Start+Step,+,Step} too.
6464         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6465           return;
6466 
6467         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6468         S = SA->getOperand(1);
6469       }
6470 
6471       // Peel off a cast operation
6472       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6473         CastOp = SCast->getSCEVType();
6474         S = SCast->getOperand();
6475       }
6476 
6477       using namespace llvm::PatternMatch;
6478 
6479       auto *SU = dyn_cast<SCEVUnknown>(S);
6480       const APInt *TrueVal, *FalseVal;
6481       if (!SU ||
6482           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6483                                           m_APInt(FalseVal)))) {
6484         Condition = nullptr;
6485         return;
6486       }
6487 
6488       TrueValue = *TrueVal;
6489       FalseValue = *FalseVal;
6490 
6491       // Re-apply the cast we peeled off earlier
6492       if (CastOp.hasValue())
6493         switch (*CastOp) {
6494         default:
6495           llvm_unreachable("Unknown SCEV cast type!");
6496 
6497         case scTruncate:
6498           TrueValue = TrueValue.trunc(BitWidth);
6499           FalseValue = FalseValue.trunc(BitWidth);
6500           break;
6501         case scZeroExtend:
6502           TrueValue = TrueValue.zext(BitWidth);
6503           FalseValue = FalseValue.zext(BitWidth);
6504           break;
6505         case scSignExtend:
6506           TrueValue = TrueValue.sext(BitWidth);
6507           FalseValue = FalseValue.sext(BitWidth);
6508           break;
6509         }
6510 
6511       // Re-apply the constant offset we peeled off earlier
6512       TrueValue += Offset;
6513       FalseValue += Offset;
6514     }
6515 
6516     bool isRecognized() { return Condition != nullptr; }
6517   };
6518 
6519   SelectPattern StartPattern(*this, BitWidth, Start);
6520   if (!StartPattern.isRecognized())
6521     return ConstantRange::getFull(BitWidth);
6522 
6523   SelectPattern StepPattern(*this, BitWidth, Step);
6524   if (!StepPattern.isRecognized())
6525     return ConstantRange::getFull(BitWidth);
6526 
6527   if (StartPattern.Condition != StepPattern.Condition) {
6528     // We don't handle this case today; but we could, by considering four
6529     // possibilities below instead of two. I'm not sure if there are cases where
6530     // that will help over what getRange already does, though.
6531     return ConstantRange::getFull(BitWidth);
6532   }
6533 
6534   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6535   // construct arbitrary general SCEV expressions here.  This function is called
6536   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6537   // say) can end up caching a suboptimal value.
6538 
6539   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6540   // C2352 and C2512 (otherwise it isn't needed).
6541 
6542   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6543   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6544   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6545   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6546 
6547   ConstantRange TrueRange =
6548       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6549   ConstantRange FalseRange =
6550       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6551 
6552   return TrueRange.unionWith(FalseRange);
6553 }
6554 
6555 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6556   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6557   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6558 
6559   // Return early if there are no flags to propagate to the SCEV.
6560   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6561   if (BinOp->hasNoUnsignedWrap())
6562     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6563   if (BinOp->hasNoSignedWrap())
6564     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6565   if (Flags == SCEV::FlagAnyWrap)
6566     return SCEV::FlagAnyWrap;
6567 
6568   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6569 }
6570 
6571 const Instruction *
6572 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
6573   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
6574     return &*AddRec->getLoop()->getHeader()->begin();
6575   if (auto *U = dyn_cast<SCEVUnknown>(S))
6576     if (auto *I = dyn_cast<Instruction>(U->getValue()))
6577       return I;
6578   return nullptr;
6579 }
6580 
6581 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
6582 /// \p Ops remains unmodified.
6583 static void collectUniqueOps(const SCEV *S,
6584                              SmallVectorImpl<const SCEV *> &Ops) {
6585   SmallPtrSet<const SCEV *, 4> Unique;
6586   auto InsertUnique = [&](const SCEV *S) {
6587     if (Unique.insert(S).second)
6588       Ops.push_back(S);
6589   };
6590   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
6591     for (auto *Op : S2->operands())
6592       InsertUnique(Op);
6593   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
6594     for (auto *Op : S2->operands())
6595       InsertUnique(Op);
6596   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
6597     for (auto *Op : S2->operands())
6598       InsertUnique(Op);
6599 }
6600 
6601 const Instruction *
6602 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
6603   // Do a bounded search of the def relation of the requested SCEVs.
6604   SmallSet<const SCEV *, 16> Visited;
6605   SmallVector<const SCEV *> Worklist;
6606   auto pushOp = [&](const SCEV *S) {
6607     if (!Visited.insert(S).second)
6608       return;
6609     // Threshold of 30 here is arbitrary.
6610     if (Visited.size() > 30)
6611       return;
6612     Worklist.push_back(S);
6613   };
6614 
6615   for (auto *S : Ops)
6616     pushOp(S);
6617 
6618   const Instruction *Bound = nullptr;
6619   while (!Worklist.empty()) {
6620     auto *S = Worklist.pop_back_val();
6621     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
6622       if (!Bound || DT.dominates(Bound, DefI))
6623         Bound = DefI;
6624     } else {
6625       SmallVector<const SCEV *, 4> Ops;
6626       collectUniqueOps(S, Ops);
6627       for (auto *Op : Ops)
6628         pushOp(Op);
6629     }
6630   }
6631   return Bound ? Bound : &*F.getEntryBlock().begin();
6632 }
6633 
6634 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
6635                                                         const Instruction *B) {
6636   if (A->getParent() == B->getParent() &&
6637       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6638                                                  B->getIterator()))
6639     return true;
6640 
6641   auto *BLoop = LI.getLoopFor(B->getParent());
6642   if (BLoop && BLoop->getHeader() == B->getParent() &&
6643       BLoop->getLoopPreheader() == A->getParent() &&
6644       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
6645                                                  A->getParent()->end()) &&
6646       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
6647                                                  B->getIterator()))
6648     return true;
6649   return false;
6650 }
6651 
6652 
6653 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6654   // Only proceed if we can prove that I does not yield poison.
6655   if (!programUndefinedIfPoison(I))
6656     return false;
6657 
6658   // At this point we know that if I is executed, then it does not wrap
6659   // according to at least one of NSW or NUW. If I is not executed, then we do
6660   // not know if the calculation that I represents would wrap. Multiple
6661   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6662   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6663   // derived from other instructions that map to the same SCEV. We cannot make
6664   // that guarantee for cases where I is not executed. So we need to find a
6665   // upper bound on the defining scope for the SCEV, and prove that I is
6666   // executed every time we enter that scope.  When the bounding scope is a
6667   // loop (the common case), this is equivalent to proving I executes on every
6668   // iteration of that loop.
6669   SmallVector<const SCEV *> SCEVOps;
6670   for (const Use &Op : I->operands()) {
6671     // I could be an extractvalue from a call to an overflow intrinsic.
6672     // TODO: We can do better here in some cases.
6673     if (isSCEVable(Op->getType()))
6674       SCEVOps.push_back(getSCEV(Op));
6675   }
6676   auto *DefI = getDefiningScopeBound(SCEVOps);
6677   return isGuaranteedToTransferExecutionTo(DefI, I);
6678 }
6679 
6680 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6681   // If we know that \c I can never be poison period, then that's enough.
6682   if (isSCEVExprNeverPoison(I))
6683     return true;
6684 
6685   // For an add recurrence specifically, we assume that infinite loops without
6686   // side effects are undefined behavior, and then reason as follows:
6687   //
6688   // If the add recurrence is poison in any iteration, it is poison on all
6689   // future iterations (since incrementing poison yields poison). If the result
6690   // of the add recurrence is fed into the loop latch condition and the loop
6691   // does not contain any throws or exiting blocks other than the latch, we now
6692   // have the ability to "choose" whether the backedge is taken or not (by
6693   // choosing a sufficiently evil value for the poison feeding into the branch)
6694   // for every iteration including and after the one in which \p I first became
6695   // poison.  There are two possibilities (let's call the iteration in which \p
6696   // I first became poison as K):
6697   //
6698   //  1. In the set of iterations including and after K, the loop body executes
6699   //     no side effects.  In this case executing the backege an infinte number
6700   //     of times will yield undefined behavior.
6701   //
6702   //  2. In the set of iterations including and after K, the loop body executes
6703   //     at least one side effect.  In this case, that specific instance of side
6704   //     effect is control dependent on poison, which also yields undefined
6705   //     behavior.
6706 
6707   auto *ExitingBB = L->getExitingBlock();
6708   auto *LatchBB = L->getLoopLatch();
6709   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6710     return false;
6711 
6712   SmallPtrSet<const Instruction *, 16> Pushed;
6713   SmallVector<const Instruction *, 8> PoisonStack;
6714 
6715   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6716   // things that are known to be poison under that assumption go on the
6717   // PoisonStack.
6718   Pushed.insert(I);
6719   PoisonStack.push_back(I);
6720 
6721   bool LatchControlDependentOnPoison = false;
6722   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6723     const Instruction *Poison = PoisonStack.pop_back_val();
6724 
6725     for (auto *PoisonUser : Poison->users()) {
6726       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6727         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6728           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6729       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6730         assert(BI->isConditional() && "Only possibility!");
6731         if (BI->getParent() == LatchBB) {
6732           LatchControlDependentOnPoison = true;
6733           break;
6734         }
6735       }
6736     }
6737   }
6738 
6739   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6740 }
6741 
6742 ScalarEvolution::LoopProperties
6743 ScalarEvolution::getLoopProperties(const Loop *L) {
6744   using LoopProperties = ScalarEvolution::LoopProperties;
6745 
6746   auto Itr = LoopPropertiesCache.find(L);
6747   if (Itr == LoopPropertiesCache.end()) {
6748     auto HasSideEffects = [](Instruction *I) {
6749       if (auto *SI = dyn_cast<StoreInst>(I))
6750         return !SI->isSimple();
6751 
6752       return I->mayThrow() || I->mayWriteToMemory();
6753     };
6754 
6755     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6756                          /*HasNoSideEffects*/ true};
6757 
6758     for (auto *BB : L->getBlocks())
6759       for (auto &I : *BB) {
6760         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6761           LP.HasNoAbnormalExits = false;
6762         if (HasSideEffects(&I))
6763           LP.HasNoSideEffects = false;
6764         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6765           break; // We're already as pessimistic as we can get.
6766       }
6767 
6768     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6769     assert(InsertPair.second && "We just checked!");
6770     Itr = InsertPair.first;
6771   }
6772 
6773   return Itr->second;
6774 }
6775 
6776 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6777   // A mustprogress loop without side effects must be finite.
6778   // TODO: The check used here is very conservative.  It's only *specific*
6779   // side effects which are well defined in infinite loops.
6780   return isMustProgress(L) && loopHasNoSideEffects(L);
6781 }
6782 
6783 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6784   if (!isSCEVable(V->getType()))
6785     return getUnknown(V);
6786 
6787   if (Instruction *I = dyn_cast<Instruction>(V)) {
6788     // Don't attempt to analyze instructions in blocks that aren't
6789     // reachable. Such instructions don't matter, and they aren't required
6790     // to obey basic rules for definitions dominating uses which this
6791     // analysis depends on.
6792     if (!DT.isReachableFromEntry(I->getParent()))
6793       return getUnknown(UndefValue::get(V->getType()));
6794   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6795     return getConstant(CI);
6796   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6797     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6798   else if (!isa<ConstantExpr>(V))
6799     return getUnknown(V);
6800 
6801   Operator *U = cast<Operator>(V);
6802   if (auto BO = MatchBinaryOp(U, DT)) {
6803     switch (BO->Opcode) {
6804     case Instruction::Add: {
6805       // The simple thing to do would be to just call getSCEV on both operands
6806       // and call getAddExpr with the result. However if we're looking at a
6807       // bunch of things all added together, this can be quite inefficient,
6808       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6809       // Instead, gather up all the operands and make a single getAddExpr call.
6810       // LLVM IR canonical form means we need only traverse the left operands.
6811       SmallVector<const SCEV *, 4> AddOps;
6812       do {
6813         if (BO->Op) {
6814           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6815             AddOps.push_back(OpSCEV);
6816             break;
6817           }
6818 
6819           // If a NUW or NSW flag can be applied to the SCEV for this
6820           // addition, then compute the SCEV for this addition by itself
6821           // with a separate call to getAddExpr. We need to do that
6822           // instead of pushing the operands of the addition onto AddOps,
6823           // since the flags are only known to apply to this particular
6824           // addition - they may not apply to other additions that can be
6825           // formed with operands from AddOps.
6826           const SCEV *RHS = getSCEV(BO->RHS);
6827           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6828           if (Flags != SCEV::FlagAnyWrap) {
6829             const SCEV *LHS = getSCEV(BO->LHS);
6830             if (BO->Opcode == Instruction::Sub)
6831               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6832             else
6833               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6834             break;
6835           }
6836         }
6837 
6838         if (BO->Opcode == Instruction::Sub)
6839           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6840         else
6841           AddOps.push_back(getSCEV(BO->RHS));
6842 
6843         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6844         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6845                        NewBO->Opcode != Instruction::Sub)) {
6846           AddOps.push_back(getSCEV(BO->LHS));
6847           break;
6848         }
6849         BO = NewBO;
6850       } while (true);
6851 
6852       return getAddExpr(AddOps);
6853     }
6854 
6855     case Instruction::Mul: {
6856       SmallVector<const SCEV *, 4> MulOps;
6857       do {
6858         if (BO->Op) {
6859           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6860             MulOps.push_back(OpSCEV);
6861             break;
6862           }
6863 
6864           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6865           if (Flags != SCEV::FlagAnyWrap) {
6866             MulOps.push_back(
6867                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6868             break;
6869           }
6870         }
6871 
6872         MulOps.push_back(getSCEV(BO->RHS));
6873         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6874         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6875           MulOps.push_back(getSCEV(BO->LHS));
6876           break;
6877         }
6878         BO = NewBO;
6879       } while (true);
6880 
6881       return getMulExpr(MulOps);
6882     }
6883     case Instruction::UDiv:
6884       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6885     case Instruction::URem:
6886       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6887     case Instruction::Sub: {
6888       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6889       if (BO->Op)
6890         Flags = getNoWrapFlagsFromUB(BO->Op);
6891       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6892     }
6893     case Instruction::And:
6894       // For an expression like x&255 that merely masks off the high bits,
6895       // use zext(trunc(x)) as the SCEV expression.
6896       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6897         if (CI->isZero())
6898           return getSCEV(BO->RHS);
6899         if (CI->isMinusOne())
6900           return getSCEV(BO->LHS);
6901         const APInt &A = CI->getValue();
6902 
6903         // Instcombine's ShrinkDemandedConstant may strip bits out of
6904         // constants, obscuring what would otherwise be a low-bits mask.
6905         // Use computeKnownBits to compute what ShrinkDemandedConstant
6906         // knew about to reconstruct a low-bits mask value.
6907         unsigned LZ = A.countLeadingZeros();
6908         unsigned TZ = A.countTrailingZeros();
6909         unsigned BitWidth = A.getBitWidth();
6910         KnownBits Known(BitWidth);
6911         computeKnownBits(BO->LHS, Known, getDataLayout(),
6912                          0, &AC, nullptr, &DT);
6913 
6914         APInt EffectiveMask =
6915             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6916         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6917           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6918           const SCEV *LHS = getSCEV(BO->LHS);
6919           const SCEV *ShiftedLHS = nullptr;
6920           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6921             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6922               // For an expression like (x * 8) & 8, simplify the multiply.
6923               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6924               unsigned GCD = std::min(MulZeros, TZ);
6925               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6926               SmallVector<const SCEV*, 4> MulOps;
6927               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6928               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6929               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6930               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6931             }
6932           }
6933           if (!ShiftedLHS)
6934             ShiftedLHS = getUDivExpr(LHS, MulCount);
6935           return getMulExpr(
6936               getZeroExtendExpr(
6937                   getTruncateExpr(ShiftedLHS,
6938                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6939                   BO->LHS->getType()),
6940               MulCount);
6941         }
6942       }
6943       break;
6944 
6945     case Instruction::Or:
6946       // If the RHS of the Or is a constant, we may have something like:
6947       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6948       // optimizations will transparently handle this case.
6949       //
6950       // In order for this transformation to be safe, the LHS must be of the
6951       // form X*(2^n) and the Or constant must be less than 2^n.
6952       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6953         const SCEV *LHS = getSCEV(BO->LHS);
6954         const APInt &CIVal = CI->getValue();
6955         if (GetMinTrailingZeros(LHS) >=
6956             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6957           // Build a plain add SCEV.
6958           return getAddExpr(LHS, getSCEV(CI),
6959                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6960         }
6961       }
6962       break;
6963 
6964     case Instruction::Xor:
6965       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6966         // If the RHS of xor is -1, then this is a not operation.
6967         if (CI->isMinusOne())
6968           return getNotSCEV(getSCEV(BO->LHS));
6969 
6970         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6971         // This is a variant of the check for xor with -1, and it handles
6972         // the case where instcombine has trimmed non-demanded bits out
6973         // of an xor with -1.
6974         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6975           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6976             if (LBO->getOpcode() == Instruction::And &&
6977                 LCI->getValue() == CI->getValue())
6978               if (const SCEVZeroExtendExpr *Z =
6979                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6980                 Type *UTy = BO->LHS->getType();
6981                 const SCEV *Z0 = Z->getOperand();
6982                 Type *Z0Ty = Z0->getType();
6983                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6984 
6985                 // If C is a low-bits mask, the zero extend is serving to
6986                 // mask off the high bits. Complement the operand and
6987                 // re-apply the zext.
6988                 if (CI->getValue().isMask(Z0TySize))
6989                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6990 
6991                 // If C is a single bit, it may be in the sign-bit position
6992                 // before the zero-extend. In this case, represent the xor
6993                 // using an add, which is equivalent, and re-apply the zext.
6994                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6995                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6996                     Trunc.isSignMask())
6997                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6998                                            UTy);
6999               }
7000       }
7001       break;
7002 
7003     case Instruction::Shl:
7004       // Turn shift left of a constant amount into a multiply.
7005       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7006         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7007 
7008         // If the shift count is not less than the bitwidth, the result of
7009         // the shift is undefined. Don't try to analyze it, because the
7010         // resolution chosen here may differ from the resolution chosen in
7011         // other parts of the compiler.
7012         if (SA->getValue().uge(BitWidth))
7013           break;
7014 
7015         // We can safely preserve the nuw flag in all cases. It's also safe to
7016         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7017         // requires special handling. It can be preserved as long as we're not
7018         // left shifting by bitwidth - 1.
7019         auto Flags = SCEV::FlagAnyWrap;
7020         if (BO->Op) {
7021           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7022           if ((MulFlags & SCEV::FlagNSW) &&
7023               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7024             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7025           if (MulFlags & SCEV::FlagNUW)
7026             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7027         }
7028 
7029         Constant *X = ConstantInt::get(
7030             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7031         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7032       }
7033       break;
7034 
7035     case Instruction::AShr: {
7036       // AShr X, C, where C is a constant.
7037       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7038       if (!CI)
7039         break;
7040 
7041       Type *OuterTy = BO->LHS->getType();
7042       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7043       // If the shift count is not less than the bitwidth, the result of
7044       // the shift is undefined. Don't try to analyze it, because the
7045       // resolution chosen here may differ from the resolution chosen in
7046       // other parts of the compiler.
7047       if (CI->getValue().uge(BitWidth))
7048         break;
7049 
7050       if (CI->isZero())
7051         return getSCEV(BO->LHS); // shift by zero --> noop
7052 
7053       uint64_t AShrAmt = CI->getZExtValue();
7054       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7055 
7056       Operator *L = dyn_cast<Operator>(BO->LHS);
7057       if (L && L->getOpcode() == Instruction::Shl) {
7058         // X = Shl A, n
7059         // Y = AShr X, m
7060         // Both n and m are constant.
7061 
7062         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7063         if (L->getOperand(1) == BO->RHS)
7064           // For a two-shift sext-inreg, i.e. n = m,
7065           // use sext(trunc(x)) as the SCEV expression.
7066           return getSignExtendExpr(
7067               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7068 
7069         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7070         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7071           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7072           if (ShlAmt > AShrAmt) {
7073             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7074             // expression. We already checked that ShlAmt < BitWidth, so
7075             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7076             // ShlAmt - AShrAmt < Amt.
7077             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7078                                             ShlAmt - AShrAmt);
7079             return getSignExtendExpr(
7080                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7081                 getConstant(Mul)), OuterTy);
7082           }
7083         }
7084       }
7085       break;
7086     }
7087     }
7088   }
7089 
7090   switch (U->getOpcode()) {
7091   case Instruction::Trunc:
7092     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7093 
7094   case Instruction::ZExt:
7095     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7096 
7097   case Instruction::SExt:
7098     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7099       // The NSW flag of a subtract does not always survive the conversion to
7100       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7101       // more likely to preserve NSW and allow later AddRec optimisations.
7102       //
7103       // NOTE: This is effectively duplicating this logic from getSignExtend:
7104       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7105       // but by that point the NSW information has potentially been lost.
7106       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7107         Type *Ty = U->getType();
7108         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7109         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7110         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7111       }
7112     }
7113     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7114 
7115   case Instruction::BitCast:
7116     // BitCasts are no-op casts so we just eliminate the cast.
7117     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7118       return getSCEV(U->getOperand(0));
7119     break;
7120 
7121   case Instruction::PtrToInt: {
7122     // Pointer to integer cast is straight-forward, so do model it.
7123     const SCEV *Op = getSCEV(U->getOperand(0));
7124     Type *DstIntTy = U->getType();
7125     // But only if effective SCEV (integer) type is wide enough to represent
7126     // all possible pointer values.
7127     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7128     if (isa<SCEVCouldNotCompute>(IntOp))
7129       return getUnknown(V);
7130     return IntOp;
7131   }
7132   case Instruction::IntToPtr:
7133     // Just don't deal with inttoptr casts.
7134     return getUnknown(V);
7135 
7136   case Instruction::SDiv:
7137     // If both operands are non-negative, this is just an udiv.
7138     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7139         isKnownNonNegative(getSCEV(U->getOperand(1))))
7140       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7141     break;
7142 
7143   case Instruction::SRem:
7144     // If both operands are non-negative, this is just an urem.
7145     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7146         isKnownNonNegative(getSCEV(U->getOperand(1))))
7147       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7148     break;
7149 
7150   case Instruction::GetElementPtr:
7151     return createNodeForGEP(cast<GEPOperator>(U));
7152 
7153   case Instruction::PHI:
7154     return createNodeForPHI(cast<PHINode>(U));
7155 
7156   case Instruction::Select:
7157     // U can also be a select constant expr, which let fall through.  Since
7158     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7159     // constant expressions cannot have instructions as operands, we'd have
7160     // returned getUnknown for a select constant expressions anyway.
7161     if (isa<Instruction>(U))
7162       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7163                                       U->getOperand(1), U->getOperand(2));
7164     break;
7165 
7166   case Instruction::Call:
7167   case Instruction::Invoke:
7168     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7169       return getSCEV(RV);
7170 
7171     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7172       switch (II->getIntrinsicID()) {
7173       case Intrinsic::abs:
7174         return getAbsExpr(
7175             getSCEV(II->getArgOperand(0)),
7176             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7177       case Intrinsic::umax:
7178         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7179                            getSCEV(II->getArgOperand(1)));
7180       case Intrinsic::umin:
7181         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7182                            getSCEV(II->getArgOperand(1)));
7183       case Intrinsic::smax:
7184         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7185                            getSCEV(II->getArgOperand(1)));
7186       case Intrinsic::smin:
7187         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7188                            getSCEV(II->getArgOperand(1)));
7189       case Intrinsic::usub_sat: {
7190         const SCEV *X = getSCEV(II->getArgOperand(0));
7191         const SCEV *Y = getSCEV(II->getArgOperand(1));
7192         const SCEV *ClampedY = getUMinExpr(X, Y);
7193         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7194       }
7195       case Intrinsic::uadd_sat: {
7196         const SCEV *X = getSCEV(II->getArgOperand(0));
7197         const SCEV *Y = getSCEV(II->getArgOperand(1));
7198         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7199         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7200       }
7201       case Intrinsic::start_loop_iterations:
7202         // A start_loop_iterations is just equivalent to the first operand for
7203         // SCEV purposes.
7204         return getSCEV(II->getArgOperand(0));
7205       default:
7206         break;
7207       }
7208     }
7209     break;
7210   }
7211 
7212   return getUnknown(V);
7213 }
7214 
7215 //===----------------------------------------------------------------------===//
7216 //                   Iteration Count Computation Code
7217 //
7218 
7219 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7220                                                        bool Extend) {
7221   if (isa<SCEVCouldNotCompute>(ExitCount))
7222     return getCouldNotCompute();
7223 
7224   auto *ExitCountType = ExitCount->getType();
7225   assert(ExitCountType->isIntegerTy());
7226 
7227   if (!Extend)
7228     return getAddExpr(ExitCount, getOne(ExitCountType));
7229 
7230   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7231                                     1 + ExitCountType->getScalarSizeInBits());
7232   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7233                     getOne(WiderType));
7234 }
7235 
7236 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7237   if (!ExitCount)
7238     return 0;
7239 
7240   ConstantInt *ExitConst = ExitCount->getValue();
7241 
7242   // Guard against huge trip counts.
7243   if (ExitConst->getValue().getActiveBits() > 32)
7244     return 0;
7245 
7246   // In case of integer overflow, this returns 0, which is correct.
7247   return ((unsigned)ExitConst->getZExtValue()) + 1;
7248 }
7249 
7250 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7251   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7252   return getConstantTripCount(ExitCount);
7253 }
7254 
7255 unsigned
7256 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7257                                            const BasicBlock *ExitingBlock) {
7258   assert(ExitingBlock && "Must pass a non-null exiting block!");
7259   assert(L->isLoopExiting(ExitingBlock) &&
7260          "Exiting block must actually branch out of the loop!");
7261   const SCEVConstant *ExitCount =
7262       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7263   return getConstantTripCount(ExitCount);
7264 }
7265 
7266 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7267   const auto *MaxExitCount =
7268       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7269   return getConstantTripCount(MaxExitCount);
7270 }
7271 
7272 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7273   // We can't infer from Array in Irregular Loop.
7274   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7275   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7276     return getCouldNotCompute();
7277 
7278   // FIXME: To make the scene more typical, we only analysis loops that have
7279   // one exiting block and that block must be the latch. To make it easier to
7280   // capture loops that have memory access and memory access will be executed
7281   // in each iteration.
7282   const BasicBlock *LoopLatch = L->getLoopLatch();
7283   assert(LoopLatch && "See defination of simplify form loop.");
7284   if (L->getExitingBlock() != LoopLatch)
7285     return getCouldNotCompute();
7286 
7287   const DataLayout &DL = getDataLayout();
7288   SmallVector<const SCEV *> InferCountColl;
7289   for (auto *BB : L->getBlocks()) {
7290     // Go here, we can know that Loop is a single exiting and simplified form
7291     // loop. Make sure that infer from Memory Operation in those BBs must be
7292     // executed in loop. First step, we can make sure that max execution time
7293     // of MemAccessBB in loop represents latch max excution time.
7294     // If MemAccessBB does not dom Latch, skip.
7295     //            Entry
7296     //              │
7297     //        ┌─────▼─────┐
7298     //        │Loop Header◄─────┐
7299     //        └──┬──────┬─┘     │
7300     //           │      │       │
7301     //  ┌────────▼──┐ ┌─▼─────┐ │
7302     //  │MemAccessBB│ │OtherBB│ │
7303     //  └────────┬──┘ └─┬─────┘ │
7304     //           │      │       │
7305     //         ┌─▼──────▼─┐     │
7306     //         │Loop Latch├─────┘
7307     //         └────┬─────┘
7308     //              ▼
7309     //             Exit
7310     if (!DT.dominates(BB, LoopLatch))
7311       continue;
7312 
7313     for (Instruction &Inst : *BB) {
7314       // Find Memory Operation Instruction.
7315       auto *GEP = getLoadStorePointerOperand(&Inst);
7316       if (!GEP)
7317         continue;
7318 
7319       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7320       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7321       if (!ElemSize)
7322         continue;
7323 
7324       // Use a existing polynomial recurrence on the trip count.
7325       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7326       if (!AddRec)
7327         continue;
7328       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7329       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7330       if (!ArrBase || !Step)
7331         continue;
7332       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7333 
7334       // Only handle { %array + step },
7335       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7336       if (AddRec->getStart() != ArrBase)
7337         continue;
7338 
7339       // Memory operation pattern which have gaps.
7340       // Or repeat memory opreation.
7341       // And index of GEP wraps arround.
7342       if (Step->getAPInt().getActiveBits() > 32 ||
7343           Step->getAPInt().getZExtValue() !=
7344               ElemSize->getAPInt().getZExtValue() ||
7345           Step->isZero() || Step->getAPInt().isNegative())
7346         continue;
7347 
7348       // Only infer from stack array which has certain size.
7349       // Make sure alloca instruction is not excuted in loop.
7350       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7351       if (!AllocateInst || L->contains(AllocateInst->getParent()))
7352         continue;
7353 
7354       // Make sure only handle normal array.
7355       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7356       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7357       if (!Ty || !ArrSize || !ArrSize->isOne())
7358         continue;
7359       // Also make sure step was increased the same with sizeof allocated
7360       // element type.
7361       const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType());
7362       if (Ty->getElementType() != GEPT->getElementType())
7363         continue;
7364 
7365       // FIXME: Since gep indices are silently zext to the indexing type,
7366       // we will have a narrow gep index which wraps around rather than
7367       // increasing strictly, we shoule ensure that step is increasing
7368       // strictly by the loop iteration.
7369       // Now we can infer a max execution time by MemLength/StepLength.
7370       const SCEV *MemSize =
7371           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7372       auto *MaxExeCount =
7373           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7374       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7375         continue;
7376 
7377       // If the loop reaches the maximum number of executions, we can not
7378       // access bytes starting outside the statically allocated size without
7379       // being immediate UB. But it is allowed to enter loop header one more
7380       // time.
7381       auto *InferCount = dyn_cast<SCEVConstant>(
7382           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7383       // Discard the maximum number of execution times under 32bits.
7384       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7385         continue;
7386 
7387       InferCountColl.push_back(InferCount);
7388     }
7389   }
7390 
7391   if (InferCountColl.size() == 0)
7392     return getCouldNotCompute();
7393 
7394   return getUMinFromMismatchedTypes(InferCountColl);
7395 }
7396 
7397 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7398   SmallVector<BasicBlock *, 8> ExitingBlocks;
7399   L->getExitingBlocks(ExitingBlocks);
7400 
7401   Optional<unsigned> Res = None;
7402   for (auto *ExitingBB : ExitingBlocks) {
7403     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7404     if (!Res)
7405       Res = Multiple;
7406     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7407   }
7408   return Res.getValueOr(1);
7409 }
7410 
7411 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7412                                                        const SCEV *ExitCount) {
7413   if (ExitCount == getCouldNotCompute())
7414     return 1;
7415 
7416   // Get the trip count
7417   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7418 
7419   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7420   if (!TC)
7421     // Attempt to factor more general cases. Returns the greatest power of
7422     // two divisor. If overflow happens, the trip count expression is still
7423     // divisible by the greatest power of 2 divisor returned.
7424     return 1U << std::min((uint32_t)31,
7425                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7426 
7427   ConstantInt *Result = TC->getValue();
7428 
7429   // Guard against huge trip counts (this requires checking
7430   // for zero to handle the case where the trip count == -1 and the
7431   // addition wraps).
7432   if (!Result || Result->getValue().getActiveBits() > 32 ||
7433       Result->getValue().getActiveBits() == 0)
7434     return 1;
7435 
7436   return (unsigned)Result->getZExtValue();
7437 }
7438 
7439 /// Returns the largest constant divisor of the trip count of this loop as a
7440 /// normal unsigned value, if possible. This means that the actual trip count is
7441 /// always a multiple of the returned value (don't forget the trip count could
7442 /// very well be zero as well!).
7443 ///
7444 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7445 /// multiple of a constant (which is also the case if the trip count is simply
7446 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7447 /// if the trip count is very large (>= 2^32).
7448 ///
7449 /// As explained in the comments for getSmallConstantTripCount, this assumes
7450 /// that control exits the loop via ExitingBlock.
7451 unsigned
7452 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7453                                               const BasicBlock *ExitingBlock) {
7454   assert(ExitingBlock && "Must pass a non-null exiting block!");
7455   assert(L->isLoopExiting(ExitingBlock) &&
7456          "Exiting block must actually branch out of the loop!");
7457   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7458   return getSmallConstantTripMultiple(L, ExitCount);
7459 }
7460 
7461 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7462                                           const BasicBlock *ExitingBlock,
7463                                           ExitCountKind Kind) {
7464   switch (Kind) {
7465   case Exact:
7466   case SymbolicMaximum:
7467     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7468   case ConstantMaximum:
7469     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7470   };
7471   llvm_unreachable("Invalid ExitCountKind!");
7472 }
7473 
7474 const SCEV *
7475 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7476                                                  SCEVUnionPredicate &Preds) {
7477   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7478 }
7479 
7480 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7481                                                    ExitCountKind Kind) {
7482   switch (Kind) {
7483   case Exact:
7484     return getBackedgeTakenInfo(L).getExact(L, this);
7485   case ConstantMaximum:
7486     return getBackedgeTakenInfo(L).getConstantMax(this);
7487   case SymbolicMaximum:
7488     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7489   };
7490   llvm_unreachable("Invalid ExitCountKind!");
7491 }
7492 
7493 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7494   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7495 }
7496 
7497 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7498 static void PushLoopPHIs(const Loop *L,
7499                          SmallVectorImpl<Instruction *> &Worklist,
7500                          SmallPtrSetImpl<Instruction *> &Visited) {
7501   BasicBlock *Header = L->getHeader();
7502 
7503   // Push all Loop-header PHIs onto the Worklist stack.
7504   for (PHINode &PN : Header->phis())
7505     if (Visited.insert(&PN).second)
7506       Worklist.push_back(&PN);
7507 }
7508 
7509 const ScalarEvolution::BackedgeTakenInfo &
7510 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7511   auto &BTI = getBackedgeTakenInfo(L);
7512   if (BTI.hasFullInfo())
7513     return BTI;
7514 
7515   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7516 
7517   if (!Pair.second)
7518     return Pair.first->second;
7519 
7520   BackedgeTakenInfo Result =
7521       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7522 
7523   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7524 }
7525 
7526 ScalarEvolution::BackedgeTakenInfo &
7527 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7528   // Initially insert an invalid entry for this loop. If the insertion
7529   // succeeds, proceed to actually compute a backedge-taken count and
7530   // update the value. The temporary CouldNotCompute value tells SCEV
7531   // code elsewhere that it shouldn't attempt to request a new
7532   // backedge-taken count, which could result in infinite recursion.
7533   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7534       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7535   if (!Pair.second)
7536     return Pair.first->second;
7537 
7538   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7539   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7540   // must be cleared in this scope.
7541   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7542 
7543   // In product build, there are no usage of statistic.
7544   (void)NumTripCountsComputed;
7545   (void)NumTripCountsNotComputed;
7546 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7547   const SCEV *BEExact = Result.getExact(L, this);
7548   if (BEExact != getCouldNotCompute()) {
7549     assert(isLoopInvariant(BEExact, L) &&
7550            isLoopInvariant(Result.getConstantMax(this), L) &&
7551            "Computed backedge-taken count isn't loop invariant for loop!");
7552     ++NumTripCountsComputed;
7553   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7554              isa<PHINode>(L->getHeader()->begin())) {
7555     // Only count loops that have phi nodes as not being computable.
7556     ++NumTripCountsNotComputed;
7557   }
7558 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7559 
7560   // Now that we know more about the trip count for this loop, forget any
7561   // existing SCEV values for PHI nodes in this loop since they are only
7562   // conservative estimates made without the benefit of trip count
7563   // information. This is similar to the code in forgetLoop, except that
7564   // it handles SCEVUnknown PHI nodes specially.
7565   if (Result.hasAnyInfo()) {
7566     SmallVector<Instruction *, 16> Worklist;
7567     SmallPtrSet<Instruction *, 8> Discovered;
7568     SmallVector<const SCEV *, 8> ToForget;
7569     PushLoopPHIs(L, Worklist, Discovered);
7570     while (!Worklist.empty()) {
7571       Instruction *I = Worklist.pop_back_val();
7572 
7573       ValueExprMapType::iterator It =
7574         ValueExprMap.find_as(static_cast<Value *>(I));
7575       if (It != ValueExprMap.end()) {
7576         const SCEV *Old = It->second;
7577 
7578         // SCEVUnknown for a PHI either means that it has an unrecognized
7579         // structure, or it's a PHI that's in the progress of being computed
7580         // by createNodeForPHI.  In the former case, additional loop trip
7581         // count information isn't going to change anything. In the later
7582         // case, createNodeForPHI will perform the necessary updates on its
7583         // own when it gets to that point.
7584         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7585           eraseValueFromMap(It->first);
7586           ToForget.push_back(Old);
7587         }
7588         if (PHINode *PN = dyn_cast<PHINode>(I))
7589           ConstantEvolutionLoopExitValue.erase(PN);
7590       }
7591 
7592       // Since we don't need to invalidate anything for correctness and we're
7593       // only invalidating to make SCEV's results more precise, we get to stop
7594       // early to avoid invalidating too much.  This is especially important in
7595       // cases like:
7596       //
7597       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7598       // loop0:
7599       //   %pn0 = phi
7600       //   ...
7601       // loop1:
7602       //   %pn1 = phi
7603       //   ...
7604       //
7605       // where both loop0 and loop1's backedge taken count uses the SCEV
7606       // expression for %v.  If we don't have the early stop below then in cases
7607       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7608       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7609       // count for loop1, effectively nullifying SCEV's trip count cache.
7610       for (auto *U : I->users())
7611         if (auto *I = dyn_cast<Instruction>(U)) {
7612           auto *LoopForUser = LI.getLoopFor(I->getParent());
7613           if (LoopForUser && L->contains(LoopForUser) &&
7614               Discovered.insert(I).second)
7615             Worklist.push_back(I);
7616         }
7617     }
7618     forgetMemoizedResults(ToForget);
7619   }
7620 
7621   // Re-lookup the insert position, since the call to
7622   // computeBackedgeTakenCount above could result in a
7623   // recusive call to getBackedgeTakenInfo (on a different
7624   // loop), which would invalidate the iterator computed
7625   // earlier.
7626   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7627 }
7628 
7629 void ScalarEvolution::forgetAllLoops() {
7630   // This method is intended to forget all info about loops. It should
7631   // invalidate caches as if the following happened:
7632   // - The trip counts of all loops have changed arbitrarily
7633   // - Every llvm::Value has been updated in place to produce a different
7634   // result.
7635   BackedgeTakenCounts.clear();
7636   PredicatedBackedgeTakenCounts.clear();
7637   LoopPropertiesCache.clear();
7638   ConstantEvolutionLoopExitValue.clear();
7639   ValueExprMap.clear();
7640   ValuesAtScopes.clear();
7641   LoopDispositions.clear();
7642   BlockDispositions.clear();
7643   UnsignedRanges.clear();
7644   SignedRanges.clear();
7645   ExprValueMap.clear();
7646   HasRecMap.clear();
7647   MinTrailingZerosCache.clear();
7648   PredicatedSCEVRewrites.clear();
7649 }
7650 
7651 void ScalarEvolution::forgetLoop(const Loop *L) {
7652   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7653   SmallVector<Instruction *, 32> Worklist;
7654   SmallPtrSet<Instruction *, 16> Visited;
7655   SmallVector<const SCEV *, 16> ToForget;
7656 
7657   // Iterate over all the loops and sub-loops to drop SCEV information.
7658   while (!LoopWorklist.empty()) {
7659     auto *CurrL = LoopWorklist.pop_back_val();
7660 
7661     // Drop any stored trip count value.
7662     BackedgeTakenCounts.erase(CurrL);
7663     PredicatedBackedgeTakenCounts.erase(CurrL);
7664 
7665     // Drop information about predicated SCEV rewrites for this loop.
7666     for (auto I = PredicatedSCEVRewrites.begin();
7667          I != PredicatedSCEVRewrites.end();) {
7668       std::pair<const SCEV *, const Loop *> Entry = I->first;
7669       if (Entry.second == CurrL)
7670         PredicatedSCEVRewrites.erase(I++);
7671       else
7672         ++I;
7673     }
7674 
7675     auto LoopUsersItr = LoopUsers.find(CurrL);
7676     if (LoopUsersItr != LoopUsers.end()) {
7677       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
7678                 LoopUsersItr->second.end());
7679       LoopUsers.erase(LoopUsersItr);
7680     }
7681 
7682     // Drop information about expressions based on loop-header PHIs.
7683     PushLoopPHIs(CurrL, Worklist, Visited);
7684 
7685     while (!Worklist.empty()) {
7686       Instruction *I = Worklist.pop_back_val();
7687 
7688       ValueExprMapType::iterator It =
7689           ValueExprMap.find_as(static_cast<Value *>(I));
7690       if (It != ValueExprMap.end()) {
7691         eraseValueFromMap(It->first);
7692         ToForget.push_back(It->second);
7693         if (PHINode *PN = dyn_cast<PHINode>(I))
7694           ConstantEvolutionLoopExitValue.erase(PN);
7695       }
7696 
7697       PushDefUseChildren(I, Worklist, Visited);
7698     }
7699 
7700     LoopPropertiesCache.erase(CurrL);
7701     // Forget all contained loops too, to avoid dangling entries in the
7702     // ValuesAtScopes map.
7703     LoopWorklist.append(CurrL->begin(), CurrL->end());
7704   }
7705   forgetMemoizedResults(ToForget);
7706 }
7707 
7708 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7709   while (Loop *Parent = L->getParentLoop())
7710     L = Parent;
7711   forgetLoop(L);
7712 }
7713 
7714 void ScalarEvolution::forgetValue(Value *V) {
7715   Instruction *I = dyn_cast<Instruction>(V);
7716   if (!I) return;
7717 
7718   // Drop information about expressions based on loop-header PHIs.
7719   SmallVector<Instruction *, 16> Worklist;
7720   SmallPtrSet<Instruction *, 8> Visited;
7721   SmallVector<const SCEV *, 8> ToForget;
7722   Worklist.push_back(I);
7723   Visited.insert(I);
7724 
7725   while (!Worklist.empty()) {
7726     I = Worklist.pop_back_val();
7727     ValueExprMapType::iterator It =
7728       ValueExprMap.find_as(static_cast<Value *>(I));
7729     if (It != ValueExprMap.end()) {
7730       eraseValueFromMap(It->first);
7731       ToForget.push_back(It->second);
7732       if (PHINode *PN = dyn_cast<PHINode>(I))
7733         ConstantEvolutionLoopExitValue.erase(PN);
7734     }
7735 
7736     PushDefUseChildren(I, Worklist, Visited);
7737   }
7738   forgetMemoizedResults(ToForget);
7739 }
7740 
7741 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7742   LoopDispositions.clear();
7743 }
7744 
7745 /// Get the exact loop backedge taken count considering all loop exits. A
7746 /// computable result can only be returned for loops with all exiting blocks
7747 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7748 /// is never skipped. This is a valid assumption as long as the loop exits via
7749 /// that test. For precise results, it is the caller's responsibility to specify
7750 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7751 const SCEV *
7752 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7753                                              SCEVUnionPredicate *Preds) const {
7754   // If any exits were not computable, the loop is not computable.
7755   if (!isComplete() || ExitNotTaken.empty())
7756     return SE->getCouldNotCompute();
7757 
7758   const BasicBlock *Latch = L->getLoopLatch();
7759   // All exiting blocks we have collected must dominate the only backedge.
7760   if (!Latch)
7761     return SE->getCouldNotCompute();
7762 
7763   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7764   // count is simply a minimum out of all these calculated exit counts.
7765   SmallVector<const SCEV *, 2> Ops;
7766   for (auto &ENT : ExitNotTaken) {
7767     const SCEV *BECount = ENT.ExactNotTaken;
7768     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7769     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7770            "We should only have known counts for exiting blocks that dominate "
7771            "latch!");
7772 
7773     Ops.push_back(BECount);
7774 
7775     if (Preds && !ENT.hasAlwaysTruePredicate())
7776       Preds->add(ENT.Predicate.get());
7777 
7778     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7779            "Predicate should be always true!");
7780   }
7781 
7782   return SE->getUMinFromMismatchedTypes(Ops);
7783 }
7784 
7785 /// Get the exact not taken count for this loop exit.
7786 const SCEV *
7787 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7788                                              ScalarEvolution *SE) const {
7789   for (auto &ENT : ExitNotTaken)
7790     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7791       return ENT.ExactNotTaken;
7792 
7793   return SE->getCouldNotCompute();
7794 }
7795 
7796 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7797     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7798   for (auto &ENT : ExitNotTaken)
7799     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7800       return ENT.MaxNotTaken;
7801 
7802   return SE->getCouldNotCompute();
7803 }
7804 
7805 /// getConstantMax - Get the constant max backedge taken count for the loop.
7806 const SCEV *
7807 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7808   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7809     return !ENT.hasAlwaysTruePredicate();
7810   };
7811 
7812   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
7813     return SE->getCouldNotCompute();
7814 
7815   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7816           isa<SCEVConstant>(getConstantMax())) &&
7817          "No point in having a non-constant max backedge taken count!");
7818   return getConstantMax();
7819 }
7820 
7821 const SCEV *
7822 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7823                                                    ScalarEvolution *SE) {
7824   if (!SymbolicMax)
7825     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7826   return SymbolicMax;
7827 }
7828 
7829 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7830     ScalarEvolution *SE) const {
7831   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7832     return !ENT.hasAlwaysTruePredicate();
7833   };
7834   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7835 }
7836 
7837 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7838   return Operands.contains(S);
7839 }
7840 
7841 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7842     : ExitLimit(E, E, false, None) {
7843 }
7844 
7845 ScalarEvolution::ExitLimit::ExitLimit(
7846     const SCEV *E, const SCEV *M, bool MaxOrZero,
7847     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7848     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7849   // If we prove the max count is zero, so is the symbolic bound.  This happens
7850   // in practice due to differences in a) how context sensitive we've chosen
7851   // to be and b) how we reason about bounds impied by UB.
7852   if (MaxNotTaken->isZero())
7853     ExactNotTaken = MaxNotTaken;
7854 
7855   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7856           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7857          "Exact is not allowed to be less precise than Max");
7858   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7859           isa<SCEVConstant>(MaxNotTaken)) &&
7860          "No point in having a non-constant max backedge taken count!");
7861   for (auto *PredSet : PredSetList)
7862     for (auto *P : *PredSet)
7863       addPredicate(P);
7864   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7865          "Backedge count should be int");
7866   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7867          "Max backedge count should be int");
7868 }
7869 
7870 ScalarEvolution::ExitLimit::ExitLimit(
7871     const SCEV *E, const SCEV *M, bool MaxOrZero,
7872     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7873     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7874 }
7875 
7876 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7877                                       bool MaxOrZero)
7878     : ExitLimit(E, M, MaxOrZero, None) {
7879 }
7880 
7881 class SCEVRecordOperands {
7882   SmallPtrSetImpl<const SCEV *> &Operands;
7883 
7884 public:
7885   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7886     : Operands(Operands) {}
7887   bool follow(const SCEV *S) {
7888     Operands.insert(S);
7889     return true;
7890   }
7891   bool isDone() { return false; }
7892 };
7893 
7894 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7895 /// computable exit into a persistent ExitNotTakenInfo array.
7896 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7897     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7898     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7899     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7900   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7901 
7902   ExitNotTaken.reserve(ExitCounts.size());
7903   std::transform(
7904       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7905       [&](const EdgeExitInfo &EEI) {
7906         BasicBlock *ExitBB = EEI.first;
7907         const ExitLimit &EL = EEI.second;
7908         if (EL.Predicates.empty())
7909           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7910                                   nullptr);
7911 
7912         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7913         for (auto *Pred : EL.Predicates)
7914           Predicate->add(Pred);
7915 
7916         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7917                                 std::move(Predicate));
7918       });
7919   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7920           isa<SCEVConstant>(ConstantMax)) &&
7921          "No point in having a non-constant max backedge taken count!");
7922 
7923   SCEVRecordOperands RecordOperands(Operands);
7924   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7925   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7926     ST.visitAll(ConstantMax);
7927   for (auto &ENT : ExitNotTaken)
7928     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7929       ST.visitAll(ENT.ExactNotTaken);
7930 }
7931 
7932 /// Compute the number of times the backedge of the specified loop will execute.
7933 ScalarEvolution::BackedgeTakenInfo
7934 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7935                                            bool AllowPredicates) {
7936   SmallVector<BasicBlock *, 8> ExitingBlocks;
7937   L->getExitingBlocks(ExitingBlocks);
7938 
7939   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7940 
7941   SmallVector<EdgeExitInfo, 4> ExitCounts;
7942   bool CouldComputeBECount = true;
7943   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7944   const SCEV *MustExitMaxBECount = nullptr;
7945   const SCEV *MayExitMaxBECount = nullptr;
7946   bool MustExitMaxOrZero = false;
7947 
7948   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7949   // and compute maxBECount.
7950   // Do a union of all the predicates here.
7951   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7952     BasicBlock *ExitBB = ExitingBlocks[i];
7953 
7954     // We canonicalize untaken exits to br (constant), ignore them so that
7955     // proving an exit untaken doesn't negatively impact our ability to reason
7956     // about the loop as whole.
7957     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7958       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7959         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7960         if (ExitIfTrue == CI->isZero())
7961           continue;
7962       }
7963 
7964     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7965 
7966     assert((AllowPredicates || EL.Predicates.empty()) &&
7967            "Predicated exit limit when predicates are not allowed!");
7968 
7969     // 1. For each exit that can be computed, add an entry to ExitCounts.
7970     // CouldComputeBECount is true only if all exits can be computed.
7971     if (EL.ExactNotTaken == getCouldNotCompute())
7972       // We couldn't compute an exact value for this exit, so
7973       // we won't be able to compute an exact value for the loop.
7974       CouldComputeBECount = false;
7975     else
7976       ExitCounts.emplace_back(ExitBB, EL);
7977 
7978     // 2. Derive the loop's MaxBECount from each exit's max number of
7979     // non-exiting iterations. Partition the loop exits into two kinds:
7980     // LoopMustExits and LoopMayExits.
7981     //
7982     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7983     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7984     // MaxBECount is the minimum EL.MaxNotTaken of computable
7985     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7986     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7987     // computable EL.MaxNotTaken.
7988     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7989         DT.dominates(ExitBB, Latch)) {
7990       if (!MustExitMaxBECount) {
7991         MustExitMaxBECount = EL.MaxNotTaken;
7992         MustExitMaxOrZero = EL.MaxOrZero;
7993       } else {
7994         MustExitMaxBECount =
7995             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7996       }
7997     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7998       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7999         MayExitMaxBECount = EL.MaxNotTaken;
8000       else {
8001         MayExitMaxBECount =
8002             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8003       }
8004     }
8005   }
8006   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8007     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8008   // The loop backedge will be taken the maximum or zero times if there's
8009   // a single exit that must be taken the maximum or zero times.
8010   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8011   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8012                            MaxBECount, MaxOrZero);
8013 }
8014 
8015 ScalarEvolution::ExitLimit
8016 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8017                                       bool AllowPredicates) {
8018   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8019   // If our exiting block does not dominate the latch, then its connection with
8020   // loop's exit limit may be far from trivial.
8021   const BasicBlock *Latch = L->getLoopLatch();
8022   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8023     return getCouldNotCompute();
8024 
8025   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8026   Instruction *Term = ExitingBlock->getTerminator();
8027   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8028     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8029     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8030     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8031            "It should have one successor in loop and one exit block!");
8032     // Proceed to the next level to examine the exit condition expression.
8033     return computeExitLimitFromCond(
8034         L, BI->getCondition(), ExitIfTrue,
8035         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8036   }
8037 
8038   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8039     // For switch, make sure that there is a single exit from the loop.
8040     BasicBlock *Exit = nullptr;
8041     for (auto *SBB : successors(ExitingBlock))
8042       if (!L->contains(SBB)) {
8043         if (Exit) // Multiple exit successors.
8044           return getCouldNotCompute();
8045         Exit = SBB;
8046       }
8047     assert(Exit && "Exiting block must have at least one exit");
8048     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8049                                                 /*ControlsExit=*/IsOnlyExit);
8050   }
8051 
8052   return getCouldNotCompute();
8053 }
8054 
8055 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8056     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8057     bool ControlsExit, bool AllowPredicates) {
8058   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8059   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8060                                         ControlsExit, AllowPredicates);
8061 }
8062 
8063 Optional<ScalarEvolution::ExitLimit>
8064 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8065                                       bool ExitIfTrue, bool ControlsExit,
8066                                       bool AllowPredicates) {
8067   (void)this->L;
8068   (void)this->ExitIfTrue;
8069   (void)this->AllowPredicates;
8070 
8071   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8072          this->AllowPredicates == AllowPredicates &&
8073          "Variance in assumed invariant key components!");
8074   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8075   if (Itr == TripCountMap.end())
8076     return None;
8077   return Itr->second;
8078 }
8079 
8080 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8081                                              bool ExitIfTrue,
8082                                              bool ControlsExit,
8083                                              bool AllowPredicates,
8084                                              const ExitLimit &EL) {
8085   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8086          this->AllowPredicates == AllowPredicates &&
8087          "Variance in assumed invariant key components!");
8088 
8089   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8090   assert(InsertResult.second && "Expected successful insertion!");
8091   (void)InsertResult;
8092   (void)ExitIfTrue;
8093 }
8094 
8095 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8096     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8097     bool ControlsExit, bool AllowPredicates) {
8098 
8099   if (auto MaybeEL =
8100           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8101     return *MaybeEL;
8102 
8103   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8104                                               ControlsExit, AllowPredicates);
8105   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8106   return EL;
8107 }
8108 
8109 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8110     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8111     bool ControlsExit, bool AllowPredicates) {
8112   // Handle BinOp conditions (And, Or).
8113   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8114           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8115     return *LimitFromBinOp;
8116 
8117   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8118   // Proceed to the next level to examine the icmp.
8119   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8120     ExitLimit EL =
8121         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8122     if (EL.hasFullInfo() || !AllowPredicates)
8123       return EL;
8124 
8125     // Try again, but use SCEV predicates this time.
8126     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8127                                     /*AllowPredicates=*/true);
8128   }
8129 
8130   // Check for a constant condition. These are normally stripped out by
8131   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8132   // preserve the CFG and is temporarily leaving constant conditions
8133   // in place.
8134   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8135     if (ExitIfTrue == !CI->getZExtValue())
8136       // The backedge is always taken.
8137       return getCouldNotCompute();
8138     else
8139       // The backedge is never taken.
8140       return getZero(CI->getType());
8141   }
8142 
8143   // If it's not an integer or pointer comparison then compute it the hard way.
8144   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8145 }
8146 
8147 Optional<ScalarEvolution::ExitLimit>
8148 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8149     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8150     bool ControlsExit, bool AllowPredicates) {
8151   // Check if the controlling expression for this loop is an And or Or.
8152   Value *Op0, *Op1;
8153   bool IsAnd = false;
8154   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8155     IsAnd = true;
8156   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8157     IsAnd = false;
8158   else
8159     return None;
8160 
8161   // EitherMayExit is true in these two cases:
8162   //   br (and Op0 Op1), loop, exit
8163   //   br (or  Op0 Op1), exit, loop
8164   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8165   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8166                                                  ControlsExit && !EitherMayExit,
8167                                                  AllowPredicates);
8168   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8169                                                  ControlsExit && !EitherMayExit,
8170                                                  AllowPredicates);
8171 
8172   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8173   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8174   if (isa<ConstantInt>(Op1))
8175     return Op1 == NeutralElement ? EL0 : EL1;
8176   if (isa<ConstantInt>(Op0))
8177     return Op0 == NeutralElement ? EL1 : EL0;
8178 
8179   const SCEV *BECount = getCouldNotCompute();
8180   const SCEV *MaxBECount = getCouldNotCompute();
8181   if (EitherMayExit) {
8182     // Both conditions must be same for the loop to continue executing.
8183     // Choose the less conservative count.
8184     // If ExitCond is a short-circuit form (select), using
8185     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
8186     // To see the detailed examples, please see
8187     // test/Analysis/ScalarEvolution/exit-count-select.ll
8188     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
8189     if (!PoisonSafe)
8190       // Even if ExitCond is select, we can safely derive BECount using both
8191       // EL0 and EL1 in these cases:
8192       // (1) EL0.ExactNotTaken is non-zero
8193       // (2) EL1.ExactNotTaken is non-poison
8194       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
8195       //     it cannot be umin(0, ..))
8196       // The PoisonSafe assignment below is simplified and the assertion after
8197       // BECount calculation fully guarantees the condition (3).
8198       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8199                    isa<SCEVConstant>(EL1.ExactNotTaken);
8200     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8201         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8202       BECount =
8203           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8204 
8205       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8206       // it should have been simplified to zero (see the condition (3) above)
8207       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8208              BECount->isZero());
8209     }
8210     if (EL0.MaxNotTaken == getCouldNotCompute())
8211       MaxBECount = EL1.MaxNotTaken;
8212     else if (EL1.MaxNotTaken == getCouldNotCompute())
8213       MaxBECount = EL0.MaxNotTaken;
8214     else
8215       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8216   } else {
8217     // Both conditions must be same at the same time for the loop to exit.
8218     // For now, be conservative.
8219     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8220       BECount = EL0.ExactNotTaken;
8221   }
8222 
8223   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8224   // to be more aggressive when computing BECount than when computing
8225   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8226   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8227   // to not.
8228   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8229       !isa<SCEVCouldNotCompute>(BECount))
8230     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8231 
8232   return ExitLimit(BECount, MaxBECount, false,
8233                    { &EL0.Predicates, &EL1.Predicates });
8234 }
8235 
8236 ScalarEvolution::ExitLimit
8237 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8238                                           ICmpInst *ExitCond,
8239                                           bool ExitIfTrue,
8240                                           bool ControlsExit,
8241                                           bool AllowPredicates) {
8242   // If the condition was exit on true, convert the condition to exit on false
8243   ICmpInst::Predicate Pred;
8244   if (!ExitIfTrue)
8245     Pred = ExitCond->getPredicate();
8246   else
8247     Pred = ExitCond->getInversePredicate();
8248   const ICmpInst::Predicate OriginalPred = Pred;
8249 
8250   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8251   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8252 
8253   // Try to evaluate any dependencies out of the loop.
8254   LHS = getSCEVAtScope(LHS, L);
8255   RHS = getSCEVAtScope(RHS, L);
8256 
8257   // At this point, we would like to compute how many iterations of the
8258   // loop the predicate will return true for these inputs.
8259   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8260     // If there is a loop-invariant, force it into the RHS.
8261     std::swap(LHS, RHS);
8262     Pred = ICmpInst::getSwappedPredicate(Pred);
8263   }
8264 
8265   // Simplify the operands before analyzing them.
8266   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8267 
8268   // If we have a comparison of a chrec against a constant, try to use value
8269   // ranges to answer this query.
8270   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8271     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8272       if (AddRec->getLoop() == L) {
8273         // Form the constant range.
8274         ConstantRange CompRange =
8275             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8276 
8277         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8278         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8279       }
8280 
8281   switch (Pred) {
8282   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8283     // Convert to: while (X-Y != 0)
8284     if (LHS->getType()->isPointerTy()) {
8285       LHS = getLosslessPtrToIntExpr(LHS);
8286       if (isa<SCEVCouldNotCompute>(LHS))
8287         return LHS;
8288     }
8289     if (RHS->getType()->isPointerTy()) {
8290       RHS = getLosslessPtrToIntExpr(RHS);
8291       if (isa<SCEVCouldNotCompute>(RHS))
8292         return RHS;
8293     }
8294     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8295                                 AllowPredicates);
8296     if (EL.hasAnyInfo()) return EL;
8297     break;
8298   }
8299   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8300     // Convert to: while (X-Y == 0)
8301     if (LHS->getType()->isPointerTy()) {
8302       LHS = getLosslessPtrToIntExpr(LHS);
8303       if (isa<SCEVCouldNotCompute>(LHS))
8304         return LHS;
8305     }
8306     if (RHS->getType()->isPointerTy()) {
8307       RHS = getLosslessPtrToIntExpr(RHS);
8308       if (isa<SCEVCouldNotCompute>(RHS))
8309         return RHS;
8310     }
8311     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8312     if (EL.hasAnyInfo()) return EL;
8313     break;
8314   }
8315   case ICmpInst::ICMP_SLT:
8316   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8317     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8318     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8319                                     AllowPredicates);
8320     if (EL.hasAnyInfo()) return EL;
8321     break;
8322   }
8323   case ICmpInst::ICMP_SGT:
8324   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8325     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8326     ExitLimit EL =
8327         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8328                             AllowPredicates);
8329     if (EL.hasAnyInfo()) return EL;
8330     break;
8331   }
8332   default:
8333     break;
8334   }
8335 
8336   auto *ExhaustiveCount =
8337       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8338 
8339   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8340     return ExhaustiveCount;
8341 
8342   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8343                                       ExitCond->getOperand(1), L, OriginalPred);
8344 }
8345 
8346 ScalarEvolution::ExitLimit
8347 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8348                                                       SwitchInst *Switch,
8349                                                       BasicBlock *ExitingBlock,
8350                                                       bool ControlsExit) {
8351   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8352 
8353   // Give up if the exit is the default dest of a switch.
8354   if (Switch->getDefaultDest() == ExitingBlock)
8355     return getCouldNotCompute();
8356 
8357   assert(L->contains(Switch->getDefaultDest()) &&
8358          "Default case must not exit the loop!");
8359   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8360   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8361 
8362   // while (X != Y) --> while (X-Y != 0)
8363   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8364   if (EL.hasAnyInfo())
8365     return EL;
8366 
8367   return getCouldNotCompute();
8368 }
8369 
8370 static ConstantInt *
8371 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8372                                 ScalarEvolution &SE) {
8373   const SCEV *InVal = SE.getConstant(C);
8374   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8375   assert(isa<SCEVConstant>(Val) &&
8376          "Evaluation of SCEV at constant didn't fold correctly?");
8377   return cast<SCEVConstant>(Val)->getValue();
8378 }
8379 
8380 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8381     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8382   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8383   if (!RHS)
8384     return getCouldNotCompute();
8385 
8386   const BasicBlock *Latch = L->getLoopLatch();
8387   if (!Latch)
8388     return getCouldNotCompute();
8389 
8390   const BasicBlock *Predecessor = L->getLoopPredecessor();
8391   if (!Predecessor)
8392     return getCouldNotCompute();
8393 
8394   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8395   // Return LHS in OutLHS and shift_opt in OutOpCode.
8396   auto MatchPositiveShift =
8397       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8398 
8399     using namespace PatternMatch;
8400 
8401     ConstantInt *ShiftAmt;
8402     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8403       OutOpCode = Instruction::LShr;
8404     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8405       OutOpCode = Instruction::AShr;
8406     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8407       OutOpCode = Instruction::Shl;
8408     else
8409       return false;
8410 
8411     return ShiftAmt->getValue().isStrictlyPositive();
8412   };
8413 
8414   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8415   //
8416   // loop:
8417   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8418   //   %iv.shifted = lshr i32 %iv, <positive constant>
8419   //
8420   // Return true on a successful match.  Return the corresponding PHI node (%iv
8421   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8422   auto MatchShiftRecurrence =
8423       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8424     Optional<Instruction::BinaryOps> PostShiftOpCode;
8425 
8426     {
8427       Instruction::BinaryOps OpC;
8428       Value *V;
8429 
8430       // If we encounter a shift instruction, "peel off" the shift operation,
8431       // and remember that we did so.  Later when we inspect %iv's backedge
8432       // value, we will make sure that the backedge value uses the same
8433       // operation.
8434       //
8435       // Note: the peeled shift operation does not have to be the same
8436       // instruction as the one feeding into the PHI's backedge value.  We only
8437       // really care about it being the same *kind* of shift instruction --
8438       // that's all that is required for our later inferences to hold.
8439       if (MatchPositiveShift(LHS, V, OpC)) {
8440         PostShiftOpCode = OpC;
8441         LHS = V;
8442       }
8443     }
8444 
8445     PNOut = dyn_cast<PHINode>(LHS);
8446     if (!PNOut || PNOut->getParent() != L->getHeader())
8447       return false;
8448 
8449     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8450     Value *OpLHS;
8451 
8452     return
8453         // The backedge value for the PHI node must be a shift by a positive
8454         // amount
8455         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8456 
8457         // of the PHI node itself
8458         OpLHS == PNOut &&
8459 
8460         // and the kind of shift should be match the kind of shift we peeled
8461         // off, if any.
8462         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8463   };
8464 
8465   PHINode *PN;
8466   Instruction::BinaryOps OpCode;
8467   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8468     return getCouldNotCompute();
8469 
8470   const DataLayout &DL = getDataLayout();
8471 
8472   // The key rationale for this optimization is that for some kinds of shift
8473   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8474   // within a finite number of iterations.  If the condition guarding the
8475   // backedge (in the sense that the backedge is taken if the condition is true)
8476   // is false for the value the shift recurrence stabilizes to, then we know
8477   // that the backedge is taken only a finite number of times.
8478 
8479   ConstantInt *StableValue = nullptr;
8480   switch (OpCode) {
8481   default:
8482     llvm_unreachable("Impossible case!");
8483 
8484   case Instruction::AShr: {
8485     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8486     // bitwidth(K) iterations.
8487     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8488     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8489                                        Predecessor->getTerminator(), &DT);
8490     auto *Ty = cast<IntegerType>(RHS->getType());
8491     if (Known.isNonNegative())
8492       StableValue = ConstantInt::get(Ty, 0);
8493     else if (Known.isNegative())
8494       StableValue = ConstantInt::get(Ty, -1, true);
8495     else
8496       return getCouldNotCompute();
8497 
8498     break;
8499   }
8500   case Instruction::LShr:
8501   case Instruction::Shl:
8502     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8503     // stabilize to 0 in at most bitwidth(K) iterations.
8504     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8505     break;
8506   }
8507 
8508   auto *Result =
8509       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8510   assert(Result->getType()->isIntegerTy(1) &&
8511          "Otherwise cannot be an operand to a branch instruction");
8512 
8513   if (Result->isZeroValue()) {
8514     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8515     const SCEV *UpperBound =
8516         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8517     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8518   }
8519 
8520   return getCouldNotCompute();
8521 }
8522 
8523 /// Return true if we can constant fold an instruction of the specified type,
8524 /// assuming that all operands were constants.
8525 static bool CanConstantFold(const Instruction *I) {
8526   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8527       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8528       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8529     return true;
8530 
8531   if (const CallInst *CI = dyn_cast<CallInst>(I))
8532     if (const Function *F = CI->getCalledFunction())
8533       return canConstantFoldCallTo(CI, F);
8534   return false;
8535 }
8536 
8537 /// Determine whether this instruction can constant evolve within this loop
8538 /// assuming its operands can all constant evolve.
8539 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8540   // An instruction outside of the loop can't be derived from a loop PHI.
8541   if (!L->contains(I)) return false;
8542 
8543   if (isa<PHINode>(I)) {
8544     // We don't currently keep track of the control flow needed to evaluate
8545     // PHIs, so we cannot handle PHIs inside of loops.
8546     return L->getHeader() == I->getParent();
8547   }
8548 
8549   // If we won't be able to constant fold this expression even if the operands
8550   // are constants, bail early.
8551   return CanConstantFold(I);
8552 }
8553 
8554 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8555 /// recursing through each instruction operand until reaching a loop header phi.
8556 static PHINode *
8557 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8558                                DenseMap<Instruction *, PHINode *> &PHIMap,
8559                                unsigned Depth) {
8560   if (Depth > MaxConstantEvolvingDepth)
8561     return nullptr;
8562 
8563   // Otherwise, we can evaluate this instruction if all of its operands are
8564   // constant or derived from a PHI node themselves.
8565   PHINode *PHI = nullptr;
8566   for (Value *Op : UseInst->operands()) {
8567     if (isa<Constant>(Op)) continue;
8568 
8569     Instruction *OpInst = dyn_cast<Instruction>(Op);
8570     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8571 
8572     PHINode *P = dyn_cast<PHINode>(OpInst);
8573     if (!P)
8574       // If this operand is already visited, reuse the prior result.
8575       // We may have P != PHI if this is the deepest point at which the
8576       // inconsistent paths meet.
8577       P = PHIMap.lookup(OpInst);
8578     if (!P) {
8579       // Recurse and memoize the results, whether a phi is found or not.
8580       // This recursive call invalidates pointers into PHIMap.
8581       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8582       PHIMap[OpInst] = P;
8583     }
8584     if (!P)
8585       return nullptr;  // Not evolving from PHI
8586     if (PHI && PHI != P)
8587       return nullptr;  // Evolving from multiple different PHIs.
8588     PHI = P;
8589   }
8590   // This is a expression evolving from a constant PHI!
8591   return PHI;
8592 }
8593 
8594 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8595 /// in the loop that V is derived from.  We allow arbitrary operations along the
8596 /// way, but the operands of an operation must either be constants or a value
8597 /// derived from a constant PHI.  If this expression does not fit with these
8598 /// constraints, return null.
8599 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8600   Instruction *I = dyn_cast<Instruction>(V);
8601   if (!I || !canConstantEvolve(I, L)) return nullptr;
8602 
8603   if (PHINode *PN = dyn_cast<PHINode>(I))
8604     return PN;
8605 
8606   // Record non-constant instructions contained by the loop.
8607   DenseMap<Instruction *, PHINode *> PHIMap;
8608   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8609 }
8610 
8611 /// EvaluateExpression - Given an expression that passes the
8612 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8613 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8614 /// reason, return null.
8615 static Constant *EvaluateExpression(Value *V, const Loop *L,
8616                                     DenseMap<Instruction *, Constant *> &Vals,
8617                                     const DataLayout &DL,
8618                                     const TargetLibraryInfo *TLI) {
8619   // Convenient constant check, but redundant for recursive calls.
8620   if (Constant *C = dyn_cast<Constant>(V)) return C;
8621   Instruction *I = dyn_cast<Instruction>(V);
8622   if (!I) return nullptr;
8623 
8624   if (Constant *C = Vals.lookup(I)) return C;
8625 
8626   // An instruction inside the loop depends on a value outside the loop that we
8627   // weren't given a mapping for, or a value such as a call inside the loop.
8628   if (!canConstantEvolve(I, L)) return nullptr;
8629 
8630   // An unmapped PHI can be due to a branch or another loop inside this loop,
8631   // or due to this not being the initial iteration through a loop where we
8632   // couldn't compute the evolution of this particular PHI last time.
8633   if (isa<PHINode>(I)) return nullptr;
8634 
8635   std::vector<Constant*> Operands(I->getNumOperands());
8636 
8637   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8638     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8639     if (!Operand) {
8640       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8641       if (!Operands[i]) return nullptr;
8642       continue;
8643     }
8644     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8645     Vals[Operand] = C;
8646     if (!C) return nullptr;
8647     Operands[i] = C;
8648   }
8649 
8650   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8651     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8652                                            Operands[1], DL, TLI);
8653   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8654     if (!LI->isVolatile())
8655       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8656   }
8657   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8658 }
8659 
8660 
8661 // If every incoming value to PN except the one for BB is a specific Constant,
8662 // return that, else return nullptr.
8663 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8664   Constant *IncomingVal = nullptr;
8665 
8666   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8667     if (PN->getIncomingBlock(i) == BB)
8668       continue;
8669 
8670     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8671     if (!CurrentVal)
8672       return nullptr;
8673 
8674     if (IncomingVal != CurrentVal) {
8675       if (IncomingVal)
8676         return nullptr;
8677       IncomingVal = CurrentVal;
8678     }
8679   }
8680 
8681   return IncomingVal;
8682 }
8683 
8684 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8685 /// in the header of its containing loop, we know the loop executes a
8686 /// constant number of times, and the PHI node is just a recurrence
8687 /// involving constants, fold it.
8688 Constant *
8689 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8690                                                    const APInt &BEs,
8691                                                    const Loop *L) {
8692   auto I = ConstantEvolutionLoopExitValue.find(PN);
8693   if (I != ConstantEvolutionLoopExitValue.end())
8694     return I->second;
8695 
8696   if (BEs.ugt(MaxBruteForceIterations))
8697     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8698 
8699   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8700 
8701   DenseMap<Instruction *, Constant *> CurrentIterVals;
8702   BasicBlock *Header = L->getHeader();
8703   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8704 
8705   BasicBlock *Latch = L->getLoopLatch();
8706   if (!Latch)
8707     return nullptr;
8708 
8709   for (PHINode &PHI : Header->phis()) {
8710     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8711       CurrentIterVals[&PHI] = StartCST;
8712   }
8713   if (!CurrentIterVals.count(PN))
8714     return RetVal = nullptr;
8715 
8716   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8717 
8718   // Execute the loop symbolically to determine the exit value.
8719   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8720          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8721 
8722   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8723   unsigned IterationNum = 0;
8724   const DataLayout &DL = getDataLayout();
8725   for (; ; ++IterationNum) {
8726     if (IterationNum == NumIterations)
8727       return RetVal = CurrentIterVals[PN];  // Got exit value!
8728 
8729     // Compute the value of the PHIs for the next iteration.
8730     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8731     DenseMap<Instruction *, Constant *> NextIterVals;
8732     Constant *NextPHI =
8733         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8734     if (!NextPHI)
8735       return nullptr;        // Couldn't evaluate!
8736     NextIterVals[PN] = NextPHI;
8737 
8738     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8739 
8740     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8741     // cease to be able to evaluate one of them or if they stop evolving,
8742     // because that doesn't necessarily prevent us from computing PN.
8743     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8744     for (const auto &I : CurrentIterVals) {
8745       PHINode *PHI = dyn_cast<PHINode>(I.first);
8746       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8747       PHIsToCompute.emplace_back(PHI, I.second);
8748     }
8749     // We use two distinct loops because EvaluateExpression may invalidate any
8750     // iterators into CurrentIterVals.
8751     for (const auto &I : PHIsToCompute) {
8752       PHINode *PHI = I.first;
8753       Constant *&NextPHI = NextIterVals[PHI];
8754       if (!NextPHI) {   // Not already computed.
8755         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8756         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8757       }
8758       if (NextPHI != I.second)
8759         StoppedEvolving = false;
8760     }
8761 
8762     // If all entries in CurrentIterVals == NextIterVals then we can stop
8763     // iterating, the loop can't continue to change.
8764     if (StoppedEvolving)
8765       return RetVal = CurrentIterVals[PN];
8766 
8767     CurrentIterVals.swap(NextIterVals);
8768   }
8769 }
8770 
8771 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8772                                                           Value *Cond,
8773                                                           bool ExitWhen) {
8774   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8775   if (!PN) return getCouldNotCompute();
8776 
8777   // If the loop is canonicalized, the PHI will have exactly two entries.
8778   // That's the only form we support here.
8779   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8780 
8781   DenseMap<Instruction *, Constant *> CurrentIterVals;
8782   BasicBlock *Header = L->getHeader();
8783   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8784 
8785   BasicBlock *Latch = L->getLoopLatch();
8786   assert(Latch && "Should follow from NumIncomingValues == 2!");
8787 
8788   for (PHINode &PHI : Header->phis()) {
8789     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8790       CurrentIterVals[&PHI] = StartCST;
8791   }
8792   if (!CurrentIterVals.count(PN))
8793     return getCouldNotCompute();
8794 
8795   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8796   // the loop symbolically to determine when the condition gets a value of
8797   // "ExitWhen".
8798   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8799   const DataLayout &DL = getDataLayout();
8800   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8801     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8802         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8803 
8804     // Couldn't symbolically evaluate.
8805     if (!CondVal) return getCouldNotCompute();
8806 
8807     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8808       ++NumBruteForceTripCountsComputed;
8809       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8810     }
8811 
8812     // Update all the PHI nodes for the next iteration.
8813     DenseMap<Instruction *, Constant *> NextIterVals;
8814 
8815     // Create a list of which PHIs we need to compute. We want to do this before
8816     // calling EvaluateExpression on them because that may invalidate iterators
8817     // into CurrentIterVals.
8818     SmallVector<PHINode *, 8> PHIsToCompute;
8819     for (const auto &I : CurrentIterVals) {
8820       PHINode *PHI = dyn_cast<PHINode>(I.first);
8821       if (!PHI || PHI->getParent() != Header) continue;
8822       PHIsToCompute.push_back(PHI);
8823     }
8824     for (PHINode *PHI : PHIsToCompute) {
8825       Constant *&NextPHI = NextIterVals[PHI];
8826       if (NextPHI) continue;    // Already computed!
8827 
8828       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8829       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8830     }
8831     CurrentIterVals.swap(NextIterVals);
8832   }
8833 
8834   // Too many iterations were needed to evaluate.
8835   return getCouldNotCompute();
8836 }
8837 
8838 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8839   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8840       ValuesAtScopes[V];
8841   // Check to see if we've folded this expression at this loop before.
8842   for (auto &LS : Values)
8843     if (LS.first == L)
8844       return LS.second ? LS.second : V;
8845 
8846   Values.emplace_back(L, nullptr);
8847 
8848   // Otherwise compute it.
8849   const SCEV *C = computeSCEVAtScope(V, L);
8850   for (auto &LS : reverse(ValuesAtScopes[V]))
8851     if (LS.first == L) {
8852       LS.second = C;
8853       break;
8854     }
8855   return C;
8856 }
8857 
8858 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8859 /// will return Constants for objects which aren't represented by a
8860 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8861 /// Returns NULL if the SCEV isn't representable as a Constant.
8862 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8863   switch (V->getSCEVType()) {
8864   case scCouldNotCompute:
8865   case scAddRecExpr:
8866     return nullptr;
8867   case scConstant:
8868     return cast<SCEVConstant>(V)->getValue();
8869   case scUnknown:
8870     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8871   case scSignExtend: {
8872     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8873     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8874       return ConstantExpr::getSExt(CastOp, SS->getType());
8875     return nullptr;
8876   }
8877   case scZeroExtend: {
8878     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8879     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8880       return ConstantExpr::getZExt(CastOp, SZ->getType());
8881     return nullptr;
8882   }
8883   case scPtrToInt: {
8884     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8885     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8886       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8887 
8888     return nullptr;
8889   }
8890   case scTruncate: {
8891     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8892     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8893       return ConstantExpr::getTrunc(CastOp, ST->getType());
8894     return nullptr;
8895   }
8896   case scAddExpr: {
8897     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8898     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8899       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8900         unsigned AS = PTy->getAddressSpace();
8901         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8902         C = ConstantExpr::getBitCast(C, DestPtrTy);
8903       }
8904       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8905         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8906         if (!C2)
8907           return nullptr;
8908 
8909         // First pointer!
8910         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8911           unsigned AS = C2->getType()->getPointerAddressSpace();
8912           std::swap(C, C2);
8913           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8914           // The offsets have been converted to bytes.  We can add bytes to an
8915           // i8* by GEP with the byte count in the first index.
8916           C = ConstantExpr::getBitCast(C, DestPtrTy);
8917         }
8918 
8919         // Don't bother trying to sum two pointers. We probably can't
8920         // statically compute a load that results from it anyway.
8921         if (C2->getType()->isPointerTy())
8922           return nullptr;
8923 
8924         if (C->getType()->isPointerTy()) {
8925           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8926                                              C, C2);
8927         } else {
8928           C = ConstantExpr::getAdd(C, C2);
8929         }
8930       }
8931       return C;
8932     }
8933     return nullptr;
8934   }
8935   case scMulExpr: {
8936     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8937     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8938       // Don't bother with pointers at all.
8939       if (C->getType()->isPointerTy())
8940         return nullptr;
8941       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8942         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8943         if (!C2 || C2->getType()->isPointerTy())
8944           return nullptr;
8945         C = ConstantExpr::getMul(C, C2);
8946       }
8947       return C;
8948     }
8949     return nullptr;
8950   }
8951   case scUDivExpr: {
8952     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8953     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8954       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8955         if (LHS->getType() == RHS->getType())
8956           return ConstantExpr::getUDiv(LHS, RHS);
8957     return nullptr;
8958   }
8959   case scSMaxExpr:
8960   case scUMaxExpr:
8961   case scSMinExpr:
8962   case scUMinExpr:
8963     return nullptr; // TODO: smax, umax, smin, umax.
8964   }
8965   llvm_unreachable("Unknown SCEV kind!");
8966 }
8967 
8968 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8969   if (isa<SCEVConstant>(V)) return V;
8970 
8971   // If this instruction is evolved from a constant-evolving PHI, compute the
8972   // exit value from the loop without using SCEVs.
8973   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8974     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8975       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8976         const Loop *CurrLoop = this->LI[I->getParent()];
8977         // Looking for loop exit value.
8978         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8979             PN->getParent() == CurrLoop->getHeader()) {
8980           // Okay, there is no closed form solution for the PHI node.  Check
8981           // to see if the loop that contains it has a known backedge-taken
8982           // count.  If so, we may be able to force computation of the exit
8983           // value.
8984           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8985           // This trivial case can show up in some degenerate cases where
8986           // the incoming IR has not yet been fully simplified.
8987           if (BackedgeTakenCount->isZero()) {
8988             Value *InitValue = nullptr;
8989             bool MultipleInitValues = false;
8990             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8991               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8992                 if (!InitValue)
8993                   InitValue = PN->getIncomingValue(i);
8994                 else if (InitValue != PN->getIncomingValue(i)) {
8995                   MultipleInitValues = true;
8996                   break;
8997                 }
8998               }
8999             }
9000             if (!MultipleInitValues && InitValue)
9001               return getSCEV(InitValue);
9002           }
9003           // Do we have a loop invariant value flowing around the backedge
9004           // for a loop which must execute the backedge?
9005           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9006               isKnownPositive(BackedgeTakenCount) &&
9007               PN->getNumIncomingValues() == 2) {
9008 
9009             unsigned InLoopPred =
9010                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9011             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9012             if (CurrLoop->isLoopInvariant(BackedgeVal))
9013               return getSCEV(BackedgeVal);
9014           }
9015           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9016             // Okay, we know how many times the containing loop executes.  If
9017             // this is a constant evolving PHI node, get the final value at
9018             // the specified iteration number.
9019             Constant *RV = getConstantEvolutionLoopExitValue(
9020                 PN, BTCC->getAPInt(), CurrLoop);
9021             if (RV) return getSCEV(RV);
9022           }
9023         }
9024 
9025         // If there is a single-input Phi, evaluate it at our scope. If we can
9026         // prove that this replacement does not break LCSSA form, use new value.
9027         if (PN->getNumOperands() == 1) {
9028           const SCEV *Input = getSCEV(PN->getOperand(0));
9029           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9030           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9031           // for the simplest case just support constants.
9032           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9033         }
9034       }
9035 
9036       // Okay, this is an expression that we cannot symbolically evaluate
9037       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9038       // the arguments into constants, and if so, try to constant propagate the
9039       // result.  This is particularly useful for computing loop exit values.
9040       if (CanConstantFold(I)) {
9041         SmallVector<Constant *, 4> Operands;
9042         bool MadeImprovement = false;
9043         for (Value *Op : I->operands()) {
9044           if (Constant *C = dyn_cast<Constant>(Op)) {
9045             Operands.push_back(C);
9046             continue;
9047           }
9048 
9049           // If any of the operands is non-constant and if they are
9050           // non-integer and non-pointer, don't even try to analyze them
9051           // with scev techniques.
9052           if (!isSCEVable(Op->getType()))
9053             return V;
9054 
9055           const SCEV *OrigV = getSCEV(Op);
9056           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9057           MadeImprovement |= OrigV != OpV;
9058 
9059           Constant *C = BuildConstantFromSCEV(OpV);
9060           if (!C) return V;
9061           if (C->getType() != Op->getType())
9062             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9063                                                               Op->getType(),
9064                                                               false),
9065                                       C, Op->getType());
9066           Operands.push_back(C);
9067         }
9068 
9069         // Check to see if getSCEVAtScope actually made an improvement.
9070         if (MadeImprovement) {
9071           Constant *C = nullptr;
9072           const DataLayout &DL = getDataLayout();
9073           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9074             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9075                                                 Operands[1], DL, &TLI);
9076           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9077             if (!Load->isVolatile())
9078               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9079                                                DL);
9080           } else
9081             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9082           if (!C) return V;
9083           return getSCEV(C);
9084         }
9085       }
9086     }
9087 
9088     // This is some other type of SCEVUnknown, just return it.
9089     return V;
9090   }
9091 
9092   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
9093     // Avoid performing the look-up in the common case where the specified
9094     // expression has no loop-variant portions.
9095     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9096       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9097       if (OpAtScope != Comm->getOperand(i)) {
9098         // Okay, at least one of these operands is loop variant but might be
9099         // foldable.  Build a new instance of the folded commutative expression.
9100         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9101                                             Comm->op_begin()+i);
9102         NewOps.push_back(OpAtScope);
9103 
9104         for (++i; i != e; ++i) {
9105           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9106           NewOps.push_back(OpAtScope);
9107         }
9108         if (isa<SCEVAddExpr>(Comm))
9109           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9110         if (isa<SCEVMulExpr>(Comm))
9111           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9112         if (isa<SCEVMinMaxExpr>(Comm))
9113           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9114         llvm_unreachable("Unknown commutative SCEV type!");
9115       }
9116     }
9117     // If we got here, all operands are loop invariant.
9118     return Comm;
9119   }
9120 
9121   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9122     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9123     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9124     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9125       return Div;   // must be loop invariant
9126     return getUDivExpr(LHS, RHS);
9127   }
9128 
9129   // If this is a loop recurrence for a loop that does not contain L, then we
9130   // are dealing with the final value computed by the loop.
9131   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9132     // First, attempt to evaluate each operand.
9133     // Avoid performing the look-up in the common case where the specified
9134     // expression has no loop-variant portions.
9135     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9136       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9137       if (OpAtScope == AddRec->getOperand(i))
9138         continue;
9139 
9140       // Okay, at least one of these operands is loop variant but might be
9141       // foldable.  Build a new instance of the folded commutative expression.
9142       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9143                                           AddRec->op_begin()+i);
9144       NewOps.push_back(OpAtScope);
9145       for (++i; i != e; ++i)
9146         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9147 
9148       const SCEV *FoldedRec =
9149         getAddRecExpr(NewOps, AddRec->getLoop(),
9150                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9151       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9152       // The addrec may be folded to a nonrecurrence, for example, if the
9153       // induction variable is multiplied by zero after constant folding. Go
9154       // ahead and return the folded value.
9155       if (!AddRec)
9156         return FoldedRec;
9157       break;
9158     }
9159 
9160     // If the scope is outside the addrec's loop, evaluate it by using the
9161     // loop exit value of the addrec.
9162     if (!AddRec->getLoop()->contains(L)) {
9163       // To evaluate this recurrence, we need to know how many times the AddRec
9164       // loop iterates.  Compute this now.
9165       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9166       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9167 
9168       // Then, evaluate the AddRec.
9169       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9170     }
9171 
9172     return AddRec;
9173   }
9174 
9175   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9176     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9177     if (Op == Cast->getOperand())
9178       return Cast;  // must be loop invariant
9179     return getZeroExtendExpr(Op, Cast->getType());
9180   }
9181 
9182   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9183     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9184     if (Op == Cast->getOperand())
9185       return Cast;  // must be loop invariant
9186     return getSignExtendExpr(Op, Cast->getType());
9187   }
9188 
9189   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9190     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9191     if (Op == Cast->getOperand())
9192       return Cast;  // must be loop invariant
9193     return getTruncateExpr(Op, Cast->getType());
9194   }
9195 
9196   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9197     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9198     if (Op == Cast->getOperand())
9199       return Cast; // must be loop invariant
9200     return getPtrToIntExpr(Op, Cast->getType());
9201   }
9202 
9203   llvm_unreachable("Unknown SCEV type!");
9204 }
9205 
9206 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9207   return getSCEVAtScope(getSCEV(V), L);
9208 }
9209 
9210 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9211   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9212     return stripInjectiveFunctions(ZExt->getOperand());
9213   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9214     return stripInjectiveFunctions(SExt->getOperand());
9215   return S;
9216 }
9217 
9218 /// Finds the minimum unsigned root of the following equation:
9219 ///
9220 ///     A * X = B (mod N)
9221 ///
9222 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9223 /// A and B isn't important.
9224 ///
9225 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9226 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9227                                                ScalarEvolution &SE) {
9228   uint32_t BW = A.getBitWidth();
9229   assert(BW == SE.getTypeSizeInBits(B->getType()));
9230   assert(A != 0 && "A must be non-zero.");
9231 
9232   // 1. D = gcd(A, N)
9233   //
9234   // The gcd of A and N may have only one prime factor: 2. The number of
9235   // trailing zeros in A is its multiplicity
9236   uint32_t Mult2 = A.countTrailingZeros();
9237   // D = 2^Mult2
9238 
9239   // 2. Check if B is divisible by D.
9240   //
9241   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9242   // is not less than multiplicity of this prime factor for D.
9243   if (SE.GetMinTrailingZeros(B) < Mult2)
9244     return SE.getCouldNotCompute();
9245 
9246   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9247   // modulo (N / D).
9248   //
9249   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9250   // (N / D) in general. The inverse itself always fits into BW bits, though,
9251   // so we immediately truncate it.
9252   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9253   APInt Mod(BW + 1, 0);
9254   Mod.setBit(BW - Mult2);  // Mod = N / D
9255   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9256 
9257   // 4. Compute the minimum unsigned root of the equation:
9258   // I * (B / D) mod (N / D)
9259   // To simplify the computation, we factor out the divide by D:
9260   // (I * B mod N) / D
9261   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9262   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9263 }
9264 
9265 /// For a given quadratic addrec, generate coefficients of the corresponding
9266 /// quadratic equation, multiplied by a common value to ensure that they are
9267 /// integers.
9268 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9269 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9270 /// were multiplied by, and BitWidth is the bit width of the original addrec
9271 /// coefficients.
9272 /// This function returns None if the addrec coefficients are not compile-
9273 /// time constants.
9274 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9275 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9276   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9277   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9278   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9279   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9280   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9281                     << *AddRec << '\n');
9282 
9283   // We currently can only solve this if the coefficients are constants.
9284   if (!LC || !MC || !NC) {
9285     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9286     return None;
9287   }
9288 
9289   APInt L = LC->getAPInt();
9290   APInt M = MC->getAPInt();
9291   APInt N = NC->getAPInt();
9292   assert(!N.isZero() && "This is not a quadratic addrec");
9293 
9294   unsigned BitWidth = LC->getAPInt().getBitWidth();
9295   unsigned NewWidth = BitWidth + 1;
9296   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9297                     << BitWidth << '\n');
9298   // The sign-extension (as opposed to a zero-extension) here matches the
9299   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9300   N = N.sext(NewWidth);
9301   M = M.sext(NewWidth);
9302   L = L.sext(NewWidth);
9303 
9304   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9305   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9306   //   L+M, L+2M+N, L+3M+3N, ...
9307   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9308   //
9309   // The equation Acc = 0 is then
9310   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9311   // In a quadratic form it becomes:
9312   //   N n^2 + (2M-N) n + 2L = 0.
9313 
9314   APInt A = N;
9315   APInt B = 2 * M - A;
9316   APInt C = 2 * L;
9317   APInt T = APInt(NewWidth, 2);
9318   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9319                     << "x + " << C << ", coeff bw: " << NewWidth
9320                     << ", multiplied by " << T << '\n');
9321   return std::make_tuple(A, B, C, T, BitWidth);
9322 }
9323 
9324 /// Helper function to compare optional APInts:
9325 /// (a) if X and Y both exist, return min(X, Y),
9326 /// (b) if neither X nor Y exist, return None,
9327 /// (c) if exactly one of X and Y exists, return that value.
9328 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9329   if (X.hasValue() && Y.hasValue()) {
9330     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9331     APInt XW = X->sextOrSelf(W);
9332     APInt YW = Y->sextOrSelf(W);
9333     return XW.slt(YW) ? *X : *Y;
9334   }
9335   if (!X.hasValue() && !Y.hasValue())
9336     return None;
9337   return X.hasValue() ? *X : *Y;
9338 }
9339 
9340 /// Helper function to truncate an optional APInt to a given BitWidth.
9341 /// When solving addrec-related equations, it is preferable to return a value
9342 /// that has the same bit width as the original addrec's coefficients. If the
9343 /// solution fits in the original bit width, truncate it (except for i1).
9344 /// Returning a value of a different bit width may inhibit some optimizations.
9345 ///
9346 /// In general, a solution to a quadratic equation generated from an addrec
9347 /// may require BW+1 bits, where BW is the bit width of the addrec's
9348 /// coefficients. The reason is that the coefficients of the quadratic
9349 /// equation are BW+1 bits wide (to avoid truncation when converting from
9350 /// the addrec to the equation).
9351 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9352   if (!X.hasValue())
9353     return None;
9354   unsigned W = X->getBitWidth();
9355   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9356     return X->trunc(BitWidth);
9357   return X;
9358 }
9359 
9360 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9361 /// iterations. The values L, M, N are assumed to be signed, and they
9362 /// should all have the same bit widths.
9363 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9364 /// where BW is the bit width of the addrec's coefficients.
9365 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9366 /// returned as such, otherwise the bit width of the returned value may
9367 /// be greater than BW.
9368 ///
9369 /// This function returns None if
9370 /// (a) the addrec coefficients are not constant, or
9371 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9372 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9373 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9374 static Optional<APInt>
9375 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9376   APInt A, B, C, M;
9377   unsigned BitWidth;
9378   auto T = GetQuadraticEquation(AddRec);
9379   if (!T.hasValue())
9380     return None;
9381 
9382   std::tie(A, B, C, M, BitWidth) = *T;
9383   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9384   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9385   if (!X.hasValue())
9386     return None;
9387 
9388   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9389   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9390   if (!V->isZero())
9391     return None;
9392 
9393   return TruncIfPossible(X, BitWidth);
9394 }
9395 
9396 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9397 /// iterations. The values M, N are assumed to be signed, and they
9398 /// should all have the same bit widths.
9399 /// Find the least n such that c(n) does not belong to the given range,
9400 /// while c(n-1) does.
9401 ///
9402 /// This function returns None if
9403 /// (a) the addrec coefficients are not constant, or
9404 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9405 ///     bounds of the range.
9406 static Optional<APInt>
9407 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9408                           const ConstantRange &Range, ScalarEvolution &SE) {
9409   assert(AddRec->getOperand(0)->isZero() &&
9410          "Starting value of addrec should be 0");
9411   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9412                     << Range << ", addrec " << *AddRec << '\n');
9413   // This case is handled in getNumIterationsInRange. Here we can assume that
9414   // we start in the range.
9415   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9416          "Addrec's initial value should be in range");
9417 
9418   APInt A, B, C, M;
9419   unsigned BitWidth;
9420   auto T = GetQuadraticEquation(AddRec);
9421   if (!T.hasValue())
9422     return None;
9423 
9424   // Be careful about the return value: there can be two reasons for not
9425   // returning an actual number. First, if no solutions to the equations
9426   // were found, and second, if the solutions don't leave the given range.
9427   // The first case means that the actual solution is "unknown", the second
9428   // means that it's known, but not valid. If the solution is unknown, we
9429   // cannot make any conclusions.
9430   // Return a pair: the optional solution and a flag indicating if the
9431   // solution was found.
9432   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9433     // Solve for signed overflow and unsigned overflow, pick the lower
9434     // solution.
9435     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9436                       << Bound << " (before multiplying by " << M << ")\n");
9437     Bound *= M; // The quadratic equation multiplier.
9438 
9439     Optional<APInt> SO = None;
9440     if (BitWidth > 1) {
9441       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9442                            "signed overflow\n");
9443       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9444     }
9445     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9446                          "unsigned overflow\n");
9447     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9448                                                               BitWidth+1);
9449 
9450     auto LeavesRange = [&] (const APInt &X) {
9451       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9452       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9453       if (Range.contains(V0->getValue()))
9454         return false;
9455       // X should be at least 1, so X-1 is non-negative.
9456       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9457       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9458       if (Range.contains(V1->getValue()))
9459         return true;
9460       return false;
9461     };
9462 
9463     // If SolveQuadraticEquationWrap returns None, it means that there can
9464     // be a solution, but the function failed to find it. We cannot treat it
9465     // as "no solution".
9466     if (!SO.hasValue() || !UO.hasValue())
9467       return { None, false };
9468 
9469     // Check the smaller value first to see if it leaves the range.
9470     // At this point, both SO and UO must have values.
9471     Optional<APInt> Min = MinOptional(SO, UO);
9472     if (LeavesRange(*Min))
9473       return { Min, true };
9474     Optional<APInt> Max = Min == SO ? UO : SO;
9475     if (LeavesRange(*Max))
9476       return { Max, true };
9477 
9478     // Solutions were found, but were eliminated, hence the "true".
9479     return { None, true };
9480   };
9481 
9482   std::tie(A, B, C, M, BitWidth) = *T;
9483   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9484   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9485   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9486   auto SL = SolveForBoundary(Lower);
9487   auto SU = SolveForBoundary(Upper);
9488   // If any of the solutions was unknown, no meaninigful conclusions can
9489   // be made.
9490   if (!SL.second || !SU.second)
9491     return None;
9492 
9493   // Claim: The correct solution is not some value between Min and Max.
9494   //
9495   // Justification: Assuming that Min and Max are different values, one of
9496   // them is when the first signed overflow happens, the other is when the
9497   // first unsigned overflow happens. Crossing the range boundary is only
9498   // possible via an overflow (treating 0 as a special case of it, modeling
9499   // an overflow as crossing k*2^W for some k).
9500   //
9501   // The interesting case here is when Min was eliminated as an invalid
9502   // solution, but Max was not. The argument is that if there was another
9503   // overflow between Min and Max, it would also have been eliminated if
9504   // it was considered.
9505   //
9506   // For a given boundary, it is possible to have two overflows of the same
9507   // type (signed/unsigned) without having the other type in between: this
9508   // can happen when the vertex of the parabola is between the iterations
9509   // corresponding to the overflows. This is only possible when the two
9510   // overflows cross k*2^W for the same k. In such case, if the second one
9511   // left the range (and was the first one to do so), the first overflow
9512   // would have to enter the range, which would mean that either we had left
9513   // the range before or that we started outside of it. Both of these cases
9514   // are contradictions.
9515   //
9516   // Claim: In the case where SolveForBoundary returns None, the correct
9517   // solution is not some value between the Max for this boundary and the
9518   // Min of the other boundary.
9519   //
9520   // Justification: Assume that we had such Max_A and Min_B corresponding
9521   // to range boundaries A and B and such that Max_A < Min_B. If there was
9522   // a solution between Max_A and Min_B, it would have to be caused by an
9523   // overflow corresponding to either A or B. It cannot correspond to B,
9524   // since Min_B is the first occurrence of such an overflow. If it
9525   // corresponded to A, it would have to be either a signed or an unsigned
9526   // overflow that is larger than both eliminated overflows for A. But
9527   // between the eliminated overflows and this overflow, the values would
9528   // cover the entire value space, thus crossing the other boundary, which
9529   // is a contradiction.
9530 
9531   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9532 }
9533 
9534 ScalarEvolution::ExitLimit
9535 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9536                               bool AllowPredicates) {
9537 
9538   // This is only used for loops with a "x != y" exit test. The exit condition
9539   // is now expressed as a single expression, V = x-y. So the exit test is
9540   // effectively V != 0.  We know and take advantage of the fact that this
9541   // expression only being used in a comparison by zero context.
9542 
9543   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9544   // If the value is a constant
9545   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9546     // If the value is already zero, the branch will execute zero times.
9547     if (C->getValue()->isZero()) return C;
9548     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9549   }
9550 
9551   const SCEVAddRecExpr *AddRec =
9552       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9553 
9554   if (!AddRec && AllowPredicates)
9555     // Try to make this an AddRec using runtime tests, in the first X
9556     // iterations of this loop, where X is the SCEV expression found by the
9557     // algorithm below.
9558     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9559 
9560   if (!AddRec || AddRec->getLoop() != L)
9561     return getCouldNotCompute();
9562 
9563   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9564   // the quadratic equation to solve it.
9565   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9566     // We can only use this value if the chrec ends up with an exact zero
9567     // value at this index.  When solving for "X*X != 5", for example, we
9568     // should not accept a root of 2.
9569     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9570       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9571       return ExitLimit(R, R, false, Predicates);
9572     }
9573     return getCouldNotCompute();
9574   }
9575 
9576   // Otherwise we can only handle this if it is affine.
9577   if (!AddRec->isAffine())
9578     return getCouldNotCompute();
9579 
9580   // If this is an affine expression, the execution count of this branch is
9581   // the minimum unsigned root of the following equation:
9582   //
9583   //     Start + Step*N = 0 (mod 2^BW)
9584   //
9585   // equivalent to:
9586   //
9587   //             Step*N = -Start (mod 2^BW)
9588   //
9589   // where BW is the common bit width of Start and Step.
9590 
9591   // Get the initial value for the loop.
9592   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9593   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9594 
9595   // For now we handle only constant steps.
9596   //
9597   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9598   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9599   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9600   // We have not yet seen any such cases.
9601   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9602   if (!StepC || StepC->getValue()->isZero())
9603     return getCouldNotCompute();
9604 
9605   // For positive steps (counting up until unsigned overflow):
9606   //   N = -Start/Step (as unsigned)
9607   // For negative steps (counting down to zero):
9608   //   N = Start/-Step
9609   // First compute the unsigned distance from zero in the direction of Step.
9610   bool CountDown = StepC->getAPInt().isNegative();
9611   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9612 
9613   // Handle unitary steps, which cannot wraparound.
9614   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9615   //   N = Distance (as unsigned)
9616   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9617     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9618     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9619     if (MaxBECountBase.ult(MaxBECount))
9620       MaxBECount = MaxBECountBase;
9621 
9622     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9623     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9624     // case, and see if we can improve the bound.
9625     //
9626     // Explicitly handling this here is necessary because getUnsignedRange
9627     // isn't context-sensitive; it doesn't know that we only care about the
9628     // range inside the loop.
9629     const SCEV *Zero = getZero(Distance->getType());
9630     const SCEV *One = getOne(Distance->getType());
9631     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9632     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9633       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9634       // as "unsigned_max(Distance + 1) - 1".
9635       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9636       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9637     }
9638     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9639   }
9640 
9641   // If the condition controls loop exit (the loop exits only if the expression
9642   // is true) and the addition is no-wrap we can use unsigned divide to
9643   // compute the backedge count.  In this case, the step may not divide the
9644   // distance, but we don't care because if the condition is "missed" the loop
9645   // will have undefined behavior due to wrapping.
9646   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9647       loopHasNoAbnormalExits(AddRec->getLoop())) {
9648     const SCEV *Exact =
9649         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9650     const SCEV *Max = getCouldNotCompute();
9651     if (Exact != getCouldNotCompute()) {
9652       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9653       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9654       if (BaseMaxInt.ult(MaxInt))
9655         Max = getConstant(BaseMaxInt);
9656       else
9657         Max = getConstant(MaxInt);
9658     }
9659     return ExitLimit(Exact, Max, false, Predicates);
9660   }
9661 
9662   // Solve the general equation.
9663   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9664                                                getNegativeSCEV(Start), *this);
9665   const SCEV *M = E == getCouldNotCompute()
9666                       ? E
9667                       : getConstant(getUnsignedRangeMax(E));
9668   return ExitLimit(E, M, false, Predicates);
9669 }
9670 
9671 ScalarEvolution::ExitLimit
9672 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9673   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9674   // handle them yet except for the trivial case.  This could be expanded in the
9675   // future as needed.
9676 
9677   // If the value is a constant, check to see if it is known to be non-zero
9678   // already.  If so, the backedge will execute zero times.
9679   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9680     if (!C->getValue()->isZero())
9681       return getZero(C->getType());
9682     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9683   }
9684 
9685   // We could implement others, but I really doubt anyone writes loops like
9686   // this, and if they did, they would already be constant folded.
9687   return getCouldNotCompute();
9688 }
9689 
9690 std::pair<const BasicBlock *, const BasicBlock *>
9691 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9692     const {
9693   // If the block has a unique predecessor, then there is no path from the
9694   // predecessor to the block that does not go through the direct edge
9695   // from the predecessor to the block.
9696   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9697     return {Pred, BB};
9698 
9699   // A loop's header is defined to be a block that dominates the loop.
9700   // If the header has a unique predecessor outside the loop, it must be
9701   // a block that has exactly one successor that can reach the loop.
9702   if (const Loop *L = LI.getLoopFor(BB))
9703     return {L->getLoopPredecessor(), L->getHeader()};
9704 
9705   return {nullptr, nullptr};
9706 }
9707 
9708 /// SCEV structural equivalence is usually sufficient for testing whether two
9709 /// expressions are equal, however for the purposes of looking for a condition
9710 /// guarding a loop, it can be useful to be a little more general, since a
9711 /// front-end may have replicated the controlling expression.
9712 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9713   // Quick check to see if they are the same SCEV.
9714   if (A == B) return true;
9715 
9716   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9717     // Not all instructions that are "identical" compute the same value.  For
9718     // instance, two distinct alloca instructions allocating the same type are
9719     // identical and do not read memory; but compute distinct values.
9720     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9721   };
9722 
9723   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9724   // two different instructions with the same value. Check for this case.
9725   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9726     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9727       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9728         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9729           if (ComputesEqualValues(AI, BI))
9730             return true;
9731 
9732   // Otherwise assume they may have a different value.
9733   return false;
9734 }
9735 
9736 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9737                                            const SCEV *&LHS, const SCEV *&RHS,
9738                                            unsigned Depth) {
9739   bool Changed = false;
9740   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9741   // '0 != 0'.
9742   auto TrivialCase = [&](bool TriviallyTrue) {
9743     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9744     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9745     return true;
9746   };
9747   // If we hit the max recursion limit bail out.
9748   if (Depth >= 3)
9749     return false;
9750 
9751   // Canonicalize a constant to the right side.
9752   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9753     // Check for both operands constant.
9754     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9755       if (ConstantExpr::getICmp(Pred,
9756                                 LHSC->getValue(),
9757                                 RHSC->getValue())->isNullValue())
9758         return TrivialCase(false);
9759       else
9760         return TrivialCase(true);
9761     }
9762     // Otherwise swap the operands to put the constant on the right.
9763     std::swap(LHS, RHS);
9764     Pred = ICmpInst::getSwappedPredicate(Pred);
9765     Changed = true;
9766   }
9767 
9768   // If we're comparing an addrec with a value which is loop-invariant in the
9769   // addrec's loop, put the addrec on the left. Also make a dominance check,
9770   // as both operands could be addrecs loop-invariant in each other's loop.
9771   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9772     const Loop *L = AR->getLoop();
9773     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9774       std::swap(LHS, RHS);
9775       Pred = ICmpInst::getSwappedPredicate(Pred);
9776       Changed = true;
9777     }
9778   }
9779 
9780   // If there's a constant operand, canonicalize comparisons with boundary
9781   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9782   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9783     const APInt &RA = RC->getAPInt();
9784 
9785     bool SimplifiedByConstantRange = false;
9786 
9787     if (!ICmpInst::isEquality(Pred)) {
9788       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9789       if (ExactCR.isFullSet())
9790         return TrivialCase(true);
9791       else if (ExactCR.isEmptySet())
9792         return TrivialCase(false);
9793 
9794       APInt NewRHS;
9795       CmpInst::Predicate NewPred;
9796       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9797           ICmpInst::isEquality(NewPred)) {
9798         // We were able to convert an inequality to an equality.
9799         Pred = NewPred;
9800         RHS = getConstant(NewRHS);
9801         Changed = SimplifiedByConstantRange = true;
9802       }
9803     }
9804 
9805     if (!SimplifiedByConstantRange) {
9806       switch (Pred) {
9807       default:
9808         break;
9809       case ICmpInst::ICMP_EQ:
9810       case ICmpInst::ICMP_NE:
9811         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9812         if (!RA)
9813           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9814             if (const SCEVMulExpr *ME =
9815                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9816               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9817                   ME->getOperand(0)->isAllOnesValue()) {
9818                 RHS = AE->getOperand(1);
9819                 LHS = ME->getOperand(1);
9820                 Changed = true;
9821               }
9822         break;
9823 
9824 
9825         // The "Should have been caught earlier!" messages refer to the fact
9826         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9827         // should have fired on the corresponding cases, and canonicalized the
9828         // check to trivial case.
9829 
9830       case ICmpInst::ICMP_UGE:
9831         assert(!RA.isMinValue() && "Should have been caught earlier!");
9832         Pred = ICmpInst::ICMP_UGT;
9833         RHS = getConstant(RA - 1);
9834         Changed = true;
9835         break;
9836       case ICmpInst::ICMP_ULE:
9837         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9838         Pred = ICmpInst::ICMP_ULT;
9839         RHS = getConstant(RA + 1);
9840         Changed = true;
9841         break;
9842       case ICmpInst::ICMP_SGE:
9843         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9844         Pred = ICmpInst::ICMP_SGT;
9845         RHS = getConstant(RA - 1);
9846         Changed = true;
9847         break;
9848       case ICmpInst::ICMP_SLE:
9849         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9850         Pred = ICmpInst::ICMP_SLT;
9851         RHS = getConstant(RA + 1);
9852         Changed = true;
9853         break;
9854       }
9855     }
9856   }
9857 
9858   // Check for obvious equality.
9859   if (HasSameValue(LHS, RHS)) {
9860     if (ICmpInst::isTrueWhenEqual(Pred))
9861       return TrivialCase(true);
9862     if (ICmpInst::isFalseWhenEqual(Pred))
9863       return TrivialCase(false);
9864   }
9865 
9866   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9867   // adding or subtracting 1 from one of the operands.
9868   switch (Pred) {
9869   case ICmpInst::ICMP_SLE:
9870     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9871       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9872                        SCEV::FlagNSW);
9873       Pred = ICmpInst::ICMP_SLT;
9874       Changed = true;
9875     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9876       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9877                        SCEV::FlagNSW);
9878       Pred = ICmpInst::ICMP_SLT;
9879       Changed = true;
9880     }
9881     break;
9882   case ICmpInst::ICMP_SGE:
9883     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9884       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9885                        SCEV::FlagNSW);
9886       Pred = ICmpInst::ICMP_SGT;
9887       Changed = true;
9888     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9889       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9890                        SCEV::FlagNSW);
9891       Pred = ICmpInst::ICMP_SGT;
9892       Changed = true;
9893     }
9894     break;
9895   case ICmpInst::ICMP_ULE:
9896     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9897       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9898                        SCEV::FlagNUW);
9899       Pred = ICmpInst::ICMP_ULT;
9900       Changed = true;
9901     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9902       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9903       Pred = ICmpInst::ICMP_ULT;
9904       Changed = true;
9905     }
9906     break;
9907   case ICmpInst::ICMP_UGE:
9908     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9909       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9910       Pred = ICmpInst::ICMP_UGT;
9911       Changed = true;
9912     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9913       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9914                        SCEV::FlagNUW);
9915       Pred = ICmpInst::ICMP_UGT;
9916       Changed = true;
9917     }
9918     break;
9919   default:
9920     break;
9921   }
9922 
9923   // TODO: More simplifications are possible here.
9924 
9925   // Recursively simplify until we either hit a recursion limit or nothing
9926   // changes.
9927   if (Changed)
9928     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9929 
9930   return Changed;
9931 }
9932 
9933 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9934   return getSignedRangeMax(S).isNegative();
9935 }
9936 
9937 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9938   return getSignedRangeMin(S).isStrictlyPositive();
9939 }
9940 
9941 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9942   return !getSignedRangeMin(S).isNegative();
9943 }
9944 
9945 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9946   return !getSignedRangeMax(S).isStrictlyPositive();
9947 }
9948 
9949 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9950   return getUnsignedRangeMin(S) != 0;
9951 }
9952 
9953 std::pair<const SCEV *, const SCEV *>
9954 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9955   // Compute SCEV on entry of loop L.
9956   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9957   if (Start == getCouldNotCompute())
9958     return { Start, Start };
9959   // Compute post increment SCEV for loop L.
9960   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9961   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9962   return { Start, PostInc };
9963 }
9964 
9965 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9966                                           const SCEV *LHS, const SCEV *RHS) {
9967   // First collect all loops.
9968   SmallPtrSet<const Loop *, 8> LoopsUsed;
9969   getUsedLoops(LHS, LoopsUsed);
9970   getUsedLoops(RHS, LoopsUsed);
9971 
9972   if (LoopsUsed.empty())
9973     return false;
9974 
9975   // Domination relationship must be a linear order on collected loops.
9976 #ifndef NDEBUG
9977   for (auto *L1 : LoopsUsed)
9978     for (auto *L2 : LoopsUsed)
9979       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9980               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9981              "Domination relationship is not a linear order");
9982 #endif
9983 
9984   const Loop *MDL =
9985       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9986                         [&](const Loop *L1, const Loop *L2) {
9987          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9988        });
9989 
9990   // Get init and post increment value for LHS.
9991   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9992   // if LHS contains unknown non-invariant SCEV then bail out.
9993   if (SplitLHS.first == getCouldNotCompute())
9994     return false;
9995   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9996   // Get init and post increment value for RHS.
9997   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9998   // if RHS contains unknown non-invariant SCEV then bail out.
9999   if (SplitRHS.first == getCouldNotCompute())
10000     return false;
10001   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10002   // It is possible that init SCEV contains an invariant load but it does
10003   // not dominate MDL and is not available at MDL loop entry, so we should
10004   // check it here.
10005   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10006       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10007     return false;
10008 
10009   // It seems backedge guard check is faster than entry one so in some cases
10010   // it can speed up whole estimation by short circuit
10011   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10012                                      SplitRHS.second) &&
10013          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10014 }
10015 
10016 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10017                                        const SCEV *LHS, const SCEV *RHS) {
10018   // Canonicalize the inputs first.
10019   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10020 
10021   if (isKnownViaInduction(Pred, LHS, RHS))
10022     return true;
10023 
10024   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10025     return true;
10026 
10027   // Otherwise see what can be done with some simple reasoning.
10028   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10029 }
10030 
10031 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10032                                                   const SCEV *LHS,
10033                                                   const SCEV *RHS) {
10034   if (isKnownPredicate(Pred, LHS, RHS))
10035     return true;
10036   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10037     return false;
10038   return None;
10039 }
10040 
10041 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10042                                          const SCEV *LHS, const SCEV *RHS,
10043                                          const Instruction *CtxI) {
10044   // TODO: Analyze guards and assumes from Context's block.
10045   return isKnownPredicate(Pred, LHS, RHS) ||
10046          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10047 }
10048 
10049 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10050                                                     const SCEV *LHS,
10051                                                     const SCEV *RHS,
10052                                                     const Instruction *CtxI) {
10053   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10054   if (KnownWithoutContext)
10055     return KnownWithoutContext;
10056 
10057   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10058     return true;
10059   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10060                                           ICmpInst::getInversePredicate(Pred),
10061                                           LHS, RHS))
10062     return false;
10063   return None;
10064 }
10065 
10066 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10067                                               const SCEVAddRecExpr *LHS,
10068                                               const SCEV *RHS) {
10069   const Loop *L = LHS->getLoop();
10070   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10071          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10072 }
10073 
10074 Optional<ScalarEvolution::MonotonicPredicateType>
10075 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10076                                            ICmpInst::Predicate Pred) {
10077   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10078 
10079 #ifndef NDEBUG
10080   // Verify an invariant: inverting the predicate should turn a monotonically
10081   // increasing change to a monotonically decreasing one, and vice versa.
10082   if (Result) {
10083     auto ResultSwapped =
10084         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10085 
10086     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10087     assert(ResultSwapped.getValue() != Result.getValue() &&
10088            "monotonicity should flip as we flip the predicate");
10089   }
10090 #endif
10091 
10092   return Result;
10093 }
10094 
10095 Optional<ScalarEvolution::MonotonicPredicateType>
10096 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10097                                                ICmpInst::Predicate Pred) {
10098   // A zero step value for LHS means the induction variable is essentially a
10099   // loop invariant value. We don't really depend on the predicate actually
10100   // flipping from false to true (for increasing predicates, and the other way
10101   // around for decreasing predicates), all we care about is that *if* the
10102   // predicate changes then it only changes from false to true.
10103   //
10104   // A zero step value in itself is not very useful, but there may be places
10105   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10106   // as general as possible.
10107 
10108   // Only handle LE/LT/GE/GT predicates.
10109   if (!ICmpInst::isRelational(Pred))
10110     return None;
10111 
10112   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10113   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10114          "Should be greater or less!");
10115 
10116   // Check that AR does not wrap.
10117   if (ICmpInst::isUnsigned(Pred)) {
10118     if (!LHS->hasNoUnsignedWrap())
10119       return None;
10120     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10121   } else {
10122     assert(ICmpInst::isSigned(Pred) &&
10123            "Relational predicate is either signed or unsigned!");
10124     if (!LHS->hasNoSignedWrap())
10125       return None;
10126 
10127     const SCEV *Step = LHS->getStepRecurrence(*this);
10128 
10129     if (isKnownNonNegative(Step))
10130       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10131 
10132     if (isKnownNonPositive(Step))
10133       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10134 
10135     return None;
10136   }
10137 }
10138 
10139 Optional<ScalarEvolution::LoopInvariantPredicate>
10140 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10141                                            const SCEV *LHS, const SCEV *RHS,
10142                                            const Loop *L) {
10143 
10144   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10145   if (!isLoopInvariant(RHS, L)) {
10146     if (!isLoopInvariant(LHS, L))
10147       return None;
10148 
10149     std::swap(LHS, RHS);
10150     Pred = ICmpInst::getSwappedPredicate(Pred);
10151   }
10152 
10153   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10154   if (!ArLHS || ArLHS->getLoop() != L)
10155     return None;
10156 
10157   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10158   if (!MonotonicType)
10159     return None;
10160   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10161   // true as the loop iterates, and the backedge is control dependent on
10162   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10163   //
10164   //   * if the predicate was false in the first iteration then the predicate
10165   //     is never evaluated again, since the loop exits without taking the
10166   //     backedge.
10167   //   * if the predicate was true in the first iteration then it will
10168   //     continue to be true for all future iterations since it is
10169   //     monotonically increasing.
10170   //
10171   // For both the above possibilities, we can replace the loop varying
10172   // predicate with its value on the first iteration of the loop (which is
10173   // loop invariant).
10174   //
10175   // A similar reasoning applies for a monotonically decreasing predicate, by
10176   // replacing true with false and false with true in the above two bullets.
10177   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10178   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10179 
10180   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10181     return None;
10182 
10183   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10184 }
10185 
10186 Optional<ScalarEvolution::LoopInvariantPredicate>
10187 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10188     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10189     const Instruction *CtxI, const SCEV *MaxIter) {
10190   // Try to prove the following set of facts:
10191   // - The predicate is monotonic in the iteration space.
10192   // - If the check does not fail on the 1st iteration:
10193   //   - No overflow will happen during first MaxIter iterations;
10194   //   - It will not fail on the MaxIter'th iteration.
10195   // If the check does fail on the 1st iteration, we leave the loop and no
10196   // other checks matter.
10197 
10198   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10199   if (!isLoopInvariant(RHS, L)) {
10200     if (!isLoopInvariant(LHS, L))
10201       return None;
10202 
10203     std::swap(LHS, RHS);
10204     Pred = ICmpInst::getSwappedPredicate(Pred);
10205   }
10206 
10207   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10208   if (!AR || AR->getLoop() != L)
10209     return None;
10210 
10211   // The predicate must be relational (i.e. <, <=, >=, >).
10212   if (!ICmpInst::isRelational(Pred))
10213     return None;
10214 
10215   // TODO: Support steps other than +/- 1.
10216   const SCEV *Step = AR->getStepRecurrence(*this);
10217   auto *One = getOne(Step->getType());
10218   auto *MinusOne = getNegativeSCEV(One);
10219   if (Step != One && Step != MinusOne)
10220     return None;
10221 
10222   // Type mismatch here means that MaxIter is potentially larger than max
10223   // unsigned value in start type, which mean we cannot prove no wrap for the
10224   // indvar.
10225   if (AR->getType() != MaxIter->getType())
10226     return None;
10227 
10228   // Value of IV on suggested last iteration.
10229   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10230   // Does it still meet the requirement?
10231   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10232     return None;
10233   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10234   // not exceed max unsigned value of this type), this effectively proves
10235   // that there is no wrap during the iteration. To prove that there is no
10236   // signed/unsigned wrap, we need to check that
10237   // Start <= Last for step = 1 or Start >= Last for step = -1.
10238   ICmpInst::Predicate NoOverflowPred =
10239       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10240   if (Step == MinusOne)
10241     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10242   const SCEV *Start = AR->getStart();
10243   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10244     return None;
10245 
10246   // Everything is fine.
10247   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10248 }
10249 
10250 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10251     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10252   if (HasSameValue(LHS, RHS))
10253     return ICmpInst::isTrueWhenEqual(Pred);
10254 
10255   // This code is split out from isKnownPredicate because it is called from
10256   // within isLoopEntryGuardedByCond.
10257 
10258   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10259                          const ConstantRange &RangeRHS) {
10260     return RangeLHS.icmp(Pred, RangeRHS);
10261   };
10262 
10263   // The check at the top of the function catches the case where the values are
10264   // known to be equal.
10265   if (Pred == CmpInst::ICMP_EQ)
10266     return false;
10267 
10268   if (Pred == CmpInst::ICMP_NE) {
10269     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10270         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10271       return true;
10272     auto *Diff = getMinusSCEV(LHS, RHS);
10273     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10274   }
10275 
10276   if (CmpInst::isSigned(Pred))
10277     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10278 
10279   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10280 }
10281 
10282 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10283                                                     const SCEV *LHS,
10284                                                     const SCEV *RHS) {
10285   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10286   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10287   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10288   // OutC1 and OutC2.
10289   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10290                                       APInt &OutC1, APInt &OutC2,
10291                                       SCEV::NoWrapFlags ExpectedFlags) {
10292     const SCEV *XNonConstOp, *XConstOp;
10293     const SCEV *YNonConstOp, *YConstOp;
10294     SCEV::NoWrapFlags XFlagsPresent;
10295     SCEV::NoWrapFlags YFlagsPresent;
10296 
10297     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10298       XConstOp = getZero(X->getType());
10299       XNonConstOp = X;
10300       XFlagsPresent = ExpectedFlags;
10301     }
10302     if (!isa<SCEVConstant>(XConstOp) ||
10303         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10304       return false;
10305 
10306     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10307       YConstOp = getZero(Y->getType());
10308       YNonConstOp = Y;
10309       YFlagsPresent = ExpectedFlags;
10310     }
10311 
10312     if (!isa<SCEVConstant>(YConstOp) ||
10313         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10314       return false;
10315 
10316     if (YNonConstOp != XNonConstOp)
10317       return false;
10318 
10319     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10320     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10321 
10322     return true;
10323   };
10324 
10325   APInt C1;
10326   APInt C2;
10327 
10328   switch (Pred) {
10329   default:
10330     break;
10331 
10332   case ICmpInst::ICMP_SGE:
10333     std::swap(LHS, RHS);
10334     LLVM_FALLTHROUGH;
10335   case ICmpInst::ICMP_SLE:
10336     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10337     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10338       return true;
10339 
10340     break;
10341 
10342   case ICmpInst::ICMP_SGT:
10343     std::swap(LHS, RHS);
10344     LLVM_FALLTHROUGH;
10345   case ICmpInst::ICMP_SLT:
10346     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10347     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10348       return true;
10349 
10350     break;
10351 
10352   case ICmpInst::ICMP_UGE:
10353     std::swap(LHS, RHS);
10354     LLVM_FALLTHROUGH;
10355   case ICmpInst::ICMP_ULE:
10356     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10357     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10358       return true;
10359 
10360     break;
10361 
10362   case ICmpInst::ICMP_UGT:
10363     std::swap(LHS, RHS);
10364     LLVM_FALLTHROUGH;
10365   case ICmpInst::ICMP_ULT:
10366     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10367     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10368       return true;
10369     break;
10370   }
10371 
10372   return false;
10373 }
10374 
10375 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10376                                                    const SCEV *LHS,
10377                                                    const SCEV *RHS) {
10378   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10379     return false;
10380 
10381   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10382   // the stack can result in exponential time complexity.
10383   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10384 
10385   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10386   //
10387   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10388   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10389   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10390   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10391   // use isKnownPredicate later if needed.
10392   return isKnownNonNegative(RHS) &&
10393          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10394          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10395 }
10396 
10397 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10398                                         ICmpInst::Predicate Pred,
10399                                         const SCEV *LHS, const SCEV *RHS) {
10400   // No need to even try if we know the module has no guards.
10401   if (!HasGuards)
10402     return false;
10403 
10404   return any_of(*BB, [&](const Instruction &I) {
10405     using namespace llvm::PatternMatch;
10406 
10407     Value *Condition;
10408     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10409                          m_Value(Condition))) &&
10410            isImpliedCond(Pred, LHS, RHS, Condition, false);
10411   });
10412 }
10413 
10414 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10415 /// protected by a conditional between LHS and RHS.  This is used to
10416 /// to eliminate casts.
10417 bool
10418 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10419                                              ICmpInst::Predicate Pred,
10420                                              const SCEV *LHS, const SCEV *RHS) {
10421   // Interpret a null as meaning no loop, where there is obviously no guard
10422   // (interprocedural conditions notwithstanding).
10423   if (!L) return true;
10424 
10425   if (VerifyIR)
10426     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10427            "This cannot be done on broken IR!");
10428 
10429 
10430   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10431     return true;
10432 
10433   BasicBlock *Latch = L->getLoopLatch();
10434   if (!Latch)
10435     return false;
10436 
10437   BranchInst *LoopContinuePredicate =
10438     dyn_cast<BranchInst>(Latch->getTerminator());
10439   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10440       isImpliedCond(Pred, LHS, RHS,
10441                     LoopContinuePredicate->getCondition(),
10442                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10443     return true;
10444 
10445   // We don't want more than one activation of the following loops on the stack
10446   // -- that can lead to O(n!) time complexity.
10447   if (WalkingBEDominatingConds)
10448     return false;
10449 
10450   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10451 
10452   // See if we can exploit a trip count to prove the predicate.
10453   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10454   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10455   if (LatchBECount != getCouldNotCompute()) {
10456     // We know that Latch branches back to the loop header exactly
10457     // LatchBECount times.  This means the backdege condition at Latch is
10458     // equivalent to  "{0,+,1} u< LatchBECount".
10459     Type *Ty = LatchBECount->getType();
10460     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10461     const SCEV *LoopCounter =
10462       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10463     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10464                       LatchBECount))
10465       return true;
10466   }
10467 
10468   // Check conditions due to any @llvm.assume intrinsics.
10469   for (auto &AssumeVH : AC.assumptions()) {
10470     if (!AssumeVH)
10471       continue;
10472     auto *CI = cast<CallInst>(AssumeVH);
10473     if (!DT.dominates(CI, Latch->getTerminator()))
10474       continue;
10475 
10476     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10477       return true;
10478   }
10479 
10480   // If the loop is not reachable from the entry block, we risk running into an
10481   // infinite loop as we walk up into the dom tree.  These loops do not matter
10482   // anyway, so we just return a conservative answer when we see them.
10483   if (!DT.isReachableFromEntry(L->getHeader()))
10484     return false;
10485 
10486   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10487     return true;
10488 
10489   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10490        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10491     assert(DTN && "should reach the loop header before reaching the root!");
10492 
10493     BasicBlock *BB = DTN->getBlock();
10494     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10495       return true;
10496 
10497     BasicBlock *PBB = BB->getSinglePredecessor();
10498     if (!PBB)
10499       continue;
10500 
10501     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10502     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10503       continue;
10504 
10505     Value *Condition = ContinuePredicate->getCondition();
10506 
10507     // If we have an edge `E` within the loop body that dominates the only
10508     // latch, the condition guarding `E` also guards the backedge.  This
10509     // reasoning works only for loops with a single latch.
10510 
10511     BasicBlockEdge DominatingEdge(PBB, BB);
10512     if (DominatingEdge.isSingleEdge()) {
10513       // We're constructively (and conservatively) enumerating edges within the
10514       // loop body that dominate the latch.  The dominator tree better agree
10515       // with us on this:
10516       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10517 
10518       if (isImpliedCond(Pred, LHS, RHS, Condition,
10519                         BB != ContinuePredicate->getSuccessor(0)))
10520         return true;
10521     }
10522   }
10523 
10524   return false;
10525 }
10526 
10527 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10528                                                      ICmpInst::Predicate Pred,
10529                                                      const SCEV *LHS,
10530                                                      const SCEV *RHS) {
10531   if (VerifyIR)
10532     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10533            "This cannot be done on broken IR!");
10534 
10535   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10536   // the facts (a >= b && a != b) separately. A typical situation is when the
10537   // non-strict comparison is known from ranges and non-equality is known from
10538   // dominating predicates. If we are proving strict comparison, we always try
10539   // to prove non-equality and non-strict comparison separately.
10540   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10541   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10542   bool ProvedNonStrictComparison = false;
10543   bool ProvedNonEquality = false;
10544 
10545   auto SplitAndProve =
10546     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10547     if (!ProvedNonStrictComparison)
10548       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10549     if (!ProvedNonEquality)
10550       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10551     if (ProvedNonStrictComparison && ProvedNonEquality)
10552       return true;
10553     return false;
10554   };
10555 
10556   if (ProvingStrictComparison) {
10557     auto ProofFn = [&](ICmpInst::Predicate P) {
10558       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10559     };
10560     if (SplitAndProve(ProofFn))
10561       return true;
10562   }
10563 
10564   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10565   auto ProveViaGuard = [&](const BasicBlock *Block) {
10566     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10567       return true;
10568     if (ProvingStrictComparison) {
10569       auto ProofFn = [&](ICmpInst::Predicate P) {
10570         return isImpliedViaGuard(Block, P, LHS, RHS);
10571       };
10572       if (SplitAndProve(ProofFn))
10573         return true;
10574     }
10575     return false;
10576   };
10577 
10578   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10579   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10580     const Instruction *CtxI = &BB->front();
10581     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10582       return true;
10583     if (ProvingStrictComparison) {
10584       auto ProofFn = [&](ICmpInst::Predicate P) {
10585         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10586       };
10587       if (SplitAndProve(ProofFn))
10588         return true;
10589     }
10590     return false;
10591   };
10592 
10593   // Starting at the block's predecessor, climb up the predecessor chain, as long
10594   // as there are predecessors that can be found that have unique successors
10595   // leading to the original block.
10596   const Loop *ContainingLoop = LI.getLoopFor(BB);
10597   const BasicBlock *PredBB;
10598   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10599     PredBB = ContainingLoop->getLoopPredecessor();
10600   else
10601     PredBB = BB->getSinglePredecessor();
10602   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10603        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10604     if (ProveViaGuard(Pair.first))
10605       return true;
10606 
10607     const BranchInst *LoopEntryPredicate =
10608         dyn_cast<BranchInst>(Pair.first->getTerminator());
10609     if (!LoopEntryPredicate ||
10610         LoopEntryPredicate->isUnconditional())
10611       continue;
10612 
10613     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10614                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10615       return true;
10616   }
10617 
10618   // Check conditions due to any @llvm.assume intrinsics.
10619   for (auto &AssumeVH : AC.assumptions()) {
10620     if (!AssumeVH)
10621       continue;
10622     auto *CI = cast<CallInst>(AssumeVH);
10623     if (!DT.dominates(CI, BB))
10624       continue;
10625 
10626     if (ProveViaCond(CI->getArgOperand(0), false))
10627       return true;
10628   }
10629 
10630   return false;
10631 }
10632 
10633 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10634                                                ICmpInst::Predicate Pred,
10635                                                const SCEV *LHS,
10636                                                const SCEV *RHS) {
10637   // Interpret a null as meaning no loop, where there is obviously no guard
10638   // (interprocedural conditions notwithstanding).
10639   if (!L)
10640     return false;
10641 
10642   // Both LHS and RHS must be available at loop entry.
10643   assert(isAvailableAtLoopEntry(LHS, L) &&
10644          "LHS is not available at Loop Entry");
10645   assert(isAvailableAtLoopEntry(RHS, L) &&
10646          "RHS is not available at Loop Entry");
10647 
10648   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10649     return true;
10650 
10651   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10652 }
10653 
10654 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10655                                     const SCEV *RHS,
10656                                     const Value *FoundCondValue, bool Inverse,
10657                                     const Instruction *CtxI) {
10658   // False conditions implies anything. Do not bother analyzing it further.
10659   if (FoundCondValue ==
10660       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10661     return true;
10662 
10663   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10664     return false;
10665 
10666   auto ClearOnExit =
10667       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10668 
10669   // Recursively handle And and Or conditions.
10670   const Value *Op0, *Op1;
10671   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10672     if (!Inverse)
10673       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10674              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10675   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10676     if (Inverse)
10677       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10678              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10679   }
10680 
10681   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10682   if (!ICI) return false;
10683 
10684   // Now that we found a conditional branch that dominates the loop or controls
10685   // the loop latch. Check to see if it is the comparison we are looking for.
10686   ICmpInst::Predicate FoundPred;
10687   if (Inverse)
10688     FoundPred = ICI->getInversePredicate();
10689   else
10690     FoundPred = ICI->getPredicate();
10691 
10692   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10693   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10694 
10695   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10696 }
10697 
10698 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10699                                     const SCEV *RHS,
10700                                     ICmpInst::Predicate FoundPred,
10701                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10702                                     const Instruction *CtxI) {
10703   // Balance the types.
10704   if (getTypeSizeInBits(LHS->getType()) <
10705       getTypeSizeInBits(FoundLHS->getType())) {
10706     // For unsigned and equality predicates, try to prove that both found
10707     // operands fit into narrow unsigned range. If so, try to prove facts in
10708     // narrow types.
10709     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10710       auto *NarrowType = LHS->getType();
10711       auto *WideType = FoundLHS->getType();
10712       auto BitWidth = getTypeSizeInBits(NarrowType);
10713       const SCEV *MaxValue = getZeroExtendExpr(
10714           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10715       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
10716                                           MaxValue) &&
10717           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
10718                                           MaxValue)) {
10719         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10720         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10721         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10722                                        TruncFoundRHS, CtxI))
10723           return true;
10724       }
10725     }
10726 
10727     if (LHS->getType()->isPointerTy())
10728       return false;
10729     if (CmpInst::isSigned(Pred)) {
10730       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10731       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10732     } else {
10733       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10734       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10735     }
10736   } else if (getTypeSizeInBits(LHS->getType()) >
10737       getTypeSizeInBits(FoundLHS->getType())) {
10738     if (FoundLHS->getType()->isPointerTy())
10739       return false;
10740     if (CmpInst::isSigned(FoundPred)) {
10741       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10742       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10743     } else {
10744       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10745       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10746     }
10747   }
10748   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10749                                     FoundRHS, CtxI);
10750 }
10751 
10752 bool ScalarEvolution::isImpliedCondBalancedTypes(
10753     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10754     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10755     const Instruction *CtxI) {
10756   assert(getTypeSizeInBits(LHS->getType()) ==
10757              getTypeSizeInBits(FoundLHS->getType()) &&
10758          "Types should be balanced!");
10759   // Canonicalize the query to match the way instcombine will have
10760   // canonicalized the comparison.
10761   if (SimplifyICmpOperands(Pred, LHS, RHS))
10762     if (LHS == RHS)
10763       return CmpInst::isTrueWhenEqual(Pred);
10764   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10765     if (FoundLHS == FoundRHS)
10766       return CmpInst::isFalseWhenEqual(FoundPred);
10767 
10768   // Check to see if we can make the LHS or RHS match.
10769   if (LHS == FoundRHS || RHS == FoundLHS) {
10770     if (isa<SCEVConstant>(RHS)) {
10771       std::swap(FoundLHS, FoundRHS);
10772       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10773     } else {
10774       std::swap(LHS, RHS);
10775       Pred = ICmpInst::getSwappedPredicate(Pred);
10776     }
10777   }
10778 
10779   // Check whether the found predicate is the same as the desired predicate.
10780   if (FoundPred == Pred)
10781     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10782 
10783   // Check whether swapping the found predicate makes it the same as the
10784   // desired predicate.
10785   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10786     // We can write the implication
10787     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10788     // using one of the following ways:
10789     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10790     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10791     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10792     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10793     // Forms 1. and 2. require swapping the operands of one condition. Don't
10794     // do this if it would break canonical constant/addrec ordering.
10795     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10796       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10797                                    CtxI);
10798     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10799       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10800 
10801     // There's no clear preference between forms 3. and 4., try both.  Avoid
10802     // forming getNotSCEV of pointer values as the resulting subtract is
10803     // not legal.
10804     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10805         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10806                               FoundLHS, FoundRHS, CtxI))
10807       return true;
10808 
10809     if (!FoundLHS->getType()->isPointerTy() &&
10810         !FoundRHS->getType()->isPointerTy() &&
10811         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10812                               getNotSCEV(FoundRHS), CtxI))
10813       return true;
10814 
10815     return false;
10816   }
10817 
10818   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10819                                    CmpInst::Predicate P2) {
10820     assert(P1 != P2 && "Handled earlier!");
10821     return CmpInst::isRelational(P2) &&
10822            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10823   };
10824   if (IsSignFlippedPredicate(Pred, FoundPred)) {
10825     // Unsigned comparison is the same as signed comparison when both the
10826     // operands are non-negative or negative.
10827     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10828         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
10829       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10830     // Create local copies that we can freely swap and canonicalize our
10831     // conditions to "le/lt".
10832     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
10833     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
10834                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
10835     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
10836       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
10837       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
10838       std::swap(CanonicalLHS, CanonicalRHS);
10839       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
10840     }
10841     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
10842            "Must be!");
10843     assert((ICmpInst::isLT(CanonicalFoundPred) ||
10844             ICmpInst::isLE(CanonicalFoundPred)) &&
10845            "Must be!");
10846     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
10847       // Use implication:
10848       // x <u y && y >=s 0 --> x <s y.
10849       // If we can prove the left part, the right part is also proven.
10850       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10851                                    CanonicalRHS, CanonicalFoundLHS,
10852                                    CanonicalFoundRHS);
10853     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
10854       // Use implication:
10855       // x <s y && y <s 0 --> x <u y.
10856       // If we can prove the left part, the right part is also proven.
10857       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
10858                                    CanonicalRHS, CanonicalFoundLHS,
10859                                    CanonicalFoundRHS);
10860   }
10861 
10862   // Check if we can make progress by sharpening ranges.
10863   if (FoundPred == ICmpInst::ICMP_NE &&
10864       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10865 
10866     const SCEVConstant *C = nullptr;
10867     const SCEV *V = nullptr;
10868 
10869     if (isa<SCEVConstant>(FoundLHS)) {
10870       C = cast<SCEVConstant>(FoundLHS);
10871       V = FoundRHS;
10872     } else {
10873       C = cast<SCEVConstant>(FoundRHS);
10874       V = FoundLHS;
10875     }
10876 
10877     // The guarding predicate tells us that C != V. If the known range
10878     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10879     // range we consider has to correspond to same signedness as the
10880     // predicate we're interested in folding.
10881 
10882     APInt Min = ICmpInst::isSigned(Pred) ?
10883         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10884 
10885     if (Min == C->getAPInt()) {
10886       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10887       // This is true even if (Min + 1) wraps around -- in case of
10888       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10889 
10890       APInt SharperMin = Min + 1;
10891 
10892       switch (Pred) {
10893         case ICmpInst::ICMP_SGE:
10894         case ICmpInst::ICMP_UGE:
10895           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10896           // RHS, we're done.
10897           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10898                                     CtxI))
10899             return true;
10900           LLVM_FALLTHROUGH;
10901 
10902         case ICmpInst::ICMP_SGT:
10903         case ICmpInst::ICMP_UGT:
10904           // We know from the range information that (V `Pred` Min ||
10905           // V == Min).  We know from the guarding condition that !(V
10906           // == Min).  This gives us
10907           //
10908           //       V `Pred` Min || V == Min && !(V == Min)
10909           //   =>  V `Pred` Min
10910           //
10911           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10912 
10913           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10914             return true;
10915           break;
10916 
10917         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10918         case ICmpInst::ICMP_SLE:
10919         case ICmpInst::ICMP_ULE:
10920           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10921                                     LHS, V, getConstant(SharperMin), CtxI))
10922             return true;
10923           LLVM_FALLTHROUGH;
10924 
10925         case ICmpInst::ICMP_SLT:
10926         case ICmpInst::ICMP_ULT:
10927           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10928                                     LHS, V, getConstant(Min), CtxI))
10929             return true;
10930           break;
10931 
10932         default:
10933           // No change
10934           break;
10935       }
10936     }
10937   }
10938 
10939   // Check whether the actual condition is beyond sufficient.
10940   if (FoundPred == ICmpInst::ICMP_EQ)
10941     if (ICmpInst::isTrueWhenEqual(Pred))
10942       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10943         return true;
10944   if (Pred == ICmpInst::ICMP_NE)
10945     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10946       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10947         return true;
10948 
10949   // Otherwise assume the worst.
10950   return false;
10951 }
10952 
10953 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10954                                      const SCEV *&L, const SCEV *&R,
10955                                      SCEV::NoWrapFlags &Flags) {
10956   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10957   if (!AE || AE->getNumOperands() != 2)
10958     return false;
10959 
10960   L = AE->getOperand(0);
10961   R = AE->getOperand(1);
10962   Flags = AE->getNoWrapFlags();
10963   return true;
10964 }
10965 
10966 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10967                                                            const SCEV *Less) {
10968   // We avoid subtracting expressions here because this function is usually
10969   // fairly deep in the call stack (i.e. is called many times).
10970 
10971   // X - X = 0.
10972   if (More == Less)
10973     return APInt(getTypeSizeInBits(More->getType()), 0);
10974 
10975   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10976     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10977     const auto *MAR = cast<SCEVAddRecExpr>(More);
10978 
10979     if (LAR->getLoop() != MAR->getLoop())
10980       return None;
10981 
10982     // We look at affine expressions only; not for correctness but to keep
10983     // getStepRecurrence cheap.
10984     if (!LAR->isAffine() || !MAR->isAffine())
10985       return None;
10986 
10987     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10988       return None;
10989 
10990     Less = LAR->getStart();
10991     More = MAR->getStart();
10992 
10993     // fall through
10994   }
10995 
10996   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10997     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10998     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10999     return M - L;
11000   }
11001 
11002   SCEV::NoWrapFlags Flags;
11003   const SCEV *LLess = nullptr, *RLess = nullptr;
11004   const SCEV *LMore = nullptr, *RMore = nullptr;
11005   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11006   // Compare (X + C1) vs X.
11007   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11008     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11009       if (RLess == More)
11010         return -(C1->getAPInt());
11011 
11012   // Compare X vs (X + C2).
11013   if (splitBinaryAdd(More, LMore, RMore, Flags))
11014     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11015       if (RMore == Less)
11016         return C2->getAPInt();
11017 
11018   // Compare (X + C1) vs (X + C2).
11019   if (C1 && C2 && RLess == RMore)
11020     return C2->getAPInt() - C1->getAPInt();
11021 
11022   return None;
11023 }
11024 
11025 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11026     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11027     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11028   // Try to recognize the following pattern:
11029   //
11030   //   FoundRHS = ...
11031   // ...
11032   // loop:
11033   //   FoundLHS = {Start,+,W}
11034   // context_bb: // Basic block from the same loop
11035   //   known(Pred, FoundLHS, FoundRHS)
11036   //
11037   // If some predicate is known in the context of a loop, it is also known on
11038   // each iteration of this loop, including the first iteration. Therefore, in
11039   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11040   // prove the original pred using this fact.
11041   if (!CtxI)
11042     return false;
11043   const BasicBlock *ContextBB = CtxI->getParent();
11044   // Make sure AR varies in the context block.
11045   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11046     const Loop *L = AR->getLoop();
11047     // Make sure that context belongs to the loop and executes on 1st iteration
11048     // (if it ever executes at all).
11049     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11050       return false;
11051     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11052       return false;
11053     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11054   }
11055 
11056   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11057     const Loop *L = AR->getLoop();
11058     // Make sure that context belongs to the loop and executes on 1st iteration
11059     // (if it ever executes at all).
11060     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11061       return false;
11062     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11063       return false;
11064     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11065   }
11066 
11067   return false;
11068 }
11069 
11070 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11071     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11072     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11073   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11074     return false;
11075 
11076   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11077   if (!AddRecLHS)
11078     return false;
11079 
11080   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11081   if (!AddRecFoundLHS)
11082     return false;
11083 
11084   // We'd like to let SCEV reason about control dependencies, so we constrain
11085   // both the inequalities to be about add recurrences on the same loop.  This
11086   // way we can use isLoopEntryGuardedByCond later.
11087 
11088   const Loop *L = AddRecFoundLHS->getLoop();
11089   if (L != AddRecLHS->getLoop())
11090     return false;
11091 
11092   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11093   //
11094   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11095   //                                                                  ... (2)
11096   //
11097   // Informal proof for (2), assuming (1) [*]:
11098   //
11099   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11100   //
11101   // Then
11102   //
11103   //       FoundLHS s< FoundRHS s< INT_MIN - C
11104   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11105   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11106   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11107   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11108   // <=>  FoundLHS + C s< FoundRHS + C
11109   //
11110   // [*]: (1) can be proved by ruling out overflow.
11111   //
11112   // [**]: This can be proved by analyzing all the four possibilities:
11113   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11114   //    (A s>= 0, B s>= 0).
11115   //
11116   // Note:
11117   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11118   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11119   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11120   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11121   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11122   // C)".
11123 
11124   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11125   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11126   if (!LDiff || !RDiff || *LDiff != *RDiff)
11127     return false;
11128 
11129   if (LDiff->isMinValue())
11130     return true;
11131 
11132   APInt FoundRHSLimit;
11133 
11134   if (Pred == CmpInst::ICMP_ULT) {
11135     FoundRHSLimit = -(*RDiff);
11136   } else {
11137     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11138     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11139   }
11140 
11141   // Try to prove (1) or (2), as needed.
11142   return isAvailableAtLoopEntry(FoundRHS, L) &&
11143          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11144                                   getConstant(FoundRHSLimit));
11145 }
11146 
11147 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11148                                         const SCEV *LHS, const SCEV *RHS,
11149                                         const SCEV *FoundLHS,
11150                                         const SCEV *FoundRHS, unsigned Depth) {
11151   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11152 
11153   auto ClearOnExit = make_scope_exit([&]() {
11154     if (LPhi) {
11155       bool Erased = PendingMerges.erase(LPhi);
11156       assert(Erased && "Failed to erase LPhi!");
11157       (void)Erased;
11158     }
11159     if (RPhi) {
11160       bool Erased = PendingMerges.erase(RPhi);
11161       assert(Erased && "Failed to erase RPhi!");
11162       (void)Erased;
11163     }
11164   });
11165 
11166   // Find respective Phis and check that they are not being pending.
11167   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11168     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11169       if (!PendingMerges.insert(Phi).second)
11170         return false;
11171       LPhi = Phi;
11172     }
11173   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11174     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11175       // If we detect a loop of Phi nodes being processed by this method, for
11176       // example:
11177       //
11178       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11179       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11180       //
11181       // we don't want to deal with a case that complex, so return conservative
11182       // answer false.
11183       if (!PendingMerges.insert(Phi).second)
11184         return false;
11185       RPhi = Phi;
11186     }
11187 
11188   // If none of LHS, RHS is a Phi, nothing to do here.
11189   if (!LPhi && !RPhi)
11190     return false;
11191 
11192   // If there is a SCEVUnknown Phi we are interested in, make it left.
11193   if (!LPhi) {
11194     std::swap(LHS, RHS);
11195     std::swap(FoundLHS, FoundRHS);
11196     std::swap(LPhi, RPhi);
11197     Pred = ICmpInst::getSwappedPredicate(Pred);
11198   }
11199 
11200   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11201   const BasicBlock *LBB = LPhi->getParent();
11202   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11203 
11204   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11205     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11206            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11207            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11208   };
11209 
11210   if (RPhi && RPhi->getParent() == LBB) {
11211     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11212     // If we compare two Phis from the same block, and for each entry block
11213     // the predicate is true for incoming values from this block, then the
11214     // predicate is also true for the Phis.
11215     for (const BasicBlock *IncBB : predecessors(LBB)) {
11216       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11217       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11218       if (!ProvedEasily(L, R))
11219         return false;
11220     }
11221   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11222     // Case two: RHS is also a Phi from the same basic block, and it is an
11223     // AddRec. It means that there is a loop which has both AddRec and Unknown
11224     // PHIs, for it we can compare incoming values of AddRec from above the loop
11225     // and latch with their respective incoming values of LPhi.
11226     // TODO: Generalize to handle loops with many inputs in a header.
11227     if (LPhi->getNumIncomingValues() != 2) return false;
11228 
11229     auto *RLoop = RAR->getLoop();
11230     auto *Predecessor = RLoop->getLoopPredecessor();
11231     assert(Predecessor && "Loop with AddRec with no predecessor?");
11232     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11233     if (!ProvedEasily(L1, RAR->getStart()))
11234       return false;
11235     auto *Latch = RLoop->getLoopLatch();
11236     assert(Latch && "Loop with AddRec with no latch?");
11237     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11238     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11239       return false;
11240   } else {
11241     // In all other cases go over inputs of LHS and compare each of them to RHS,
11242     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11243     // At this point RHS is either a non-Phi, or it is a Phi from some block
11244     // different from LBB.
11245     for (const BasicBlock *IncBB : predecessors(LBB)) {
11246       // Check that RHS is available in this block.
11247       if (!dominates(RHS, IncBB))
11248         return false;
11249       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11250       // Make sure L does not refer to a value from a potentially previous
11251       // iteration of a loop.
11252       if (!properlyDominates(L, IncBB))
11253         return false;
11254       if (!ProvedEasily(L, RHS))
11255         return false;
11256     }
11257   }
11258   return true;
11259 }
11260 
11261 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11262                                             const SCEV *LHS, const SCEV *RHS,
11263                                             const SCEV *FoundLHS,
11264                                             const SCEV *FoundRHS,
11265                                             const Instruction *CtxI) {
11266   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11267     return true;
11268 
11269   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11270     return true;
11271 
11272   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11273                                           CtxI))
11274     return true;
11275 
11276   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11277                                      FoundLHS, FoundRHS);
11278 }
11279 
11280 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11281 template <typename MinMaxExprType>
11282 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11283                                  const SCEV *Candidate) {
11284   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11285   if (!MinMaxExpr)
11286     return false;
11287 
11288   return is_contained(MinMaxExpr->operands(), Candidate);
11289 }
11290 
11291 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11292                                            ICmpInst::Predicate Pred,
11293                                            const SCEV *LHS, const SCEV *RHS) {
11294   // If both sides are affine addrecs for the same loop, with equal
11295   // steps, and we know the recurrences don't wrap, then we only
11296   // need to check the predicate on the starting values.
11297 
11298   if (!ICmpInst::isRelational(Pred))
11299     return false;
11300 
11301   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11302   if (!LAR)
11303     return false;
11304   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11305   if (!RAR)
11306     return false;
11307   if (LAR->getLoop() != RAR->getLoop())
11308     return false;
11309   if (!LAR->isAffine() || !RAR->isAffine())
11310     return false;
11311 
11312   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11313     return false;
11314 
11315   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11316                          SCEV::FlagNSW : SCEV::FlagNUW;
11317   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11318     return false;
11319 
11320   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11321 }
11322 
11323 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11324 /// expression?
11325 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11326                                         ICmpInst::Predicate Pred,
11327                                         const SCEV *LHS, const SCEV *RHS) {
11328   switch (Pred) {
11329   default:
11330     return false;
11331 
11332   case ICmpInst::ICMP_SGE:
11333     std::swap(LHS, RHS);
11334     LLVM_FALLTHROUGH;
11335   case ICmpInst::ICMP_SLE:
11336     return
11337         // min(A, ...) <= A
11338         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11339         // A <= max(A, ...)
11340         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11341 
11342   case ICmpInst::ICMP_UGE:
11343     std::swap(LHS, RHS);
11344     LLVM_FALLTHROUGH;
11345   case ICmpInst::ICMP_ULE:
11346     return
11347         // min(A, ...) <= A
11348         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11349         // A <= max(A, ...)
11350         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11351   }
11352 
11353   llvm_unreachable("covered switch fell through?!");
11354 }
11355 
11356 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11357                                              const SCEV *LHS, const SCEV *RHS,
11358                                              const SCEV *FoundLHS,
11359                                              const SCEV *FoundRHS,
11360                                              unsigned Depth) {
11361   assert(getTypeSizeInBits(LHS->getType()) ==
11362              getTypeSizeInBits(RHS->getType()) &&
11363          "LHS and RHS have different sizes?");
11364   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11365              getTypeSizeInBits(FoundRHS->getType()) &&
11366          "FoundLHS and FoundRHS have different sizes?");
11367   // We want to avoid hurting the compile time with analysis of too big trees.
11368   if (Depth > MaxSCEVOperationsImplicationDepth)
11369     return false;
11370 
11371   // We only want to work with GT comparison so far.
11372   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11373     Pred = CmpInst::getSwappedPredicate(Pred);
11374     std::swap(LHS, RHS);
11375     std::swap(FoundLHS, FoundRHS);
11376   }
11377 
11378   // For unsigned, try to reduce it to corresponding signed comparison.
11379   if (Pred == ICmpInst::ICMP_UGT)
11380     // We can replace unsigned predicate with its signed counterpart if all
11381     // involved values are non-negative.
11382     // TODO: We could have better support for unsigned.
11383     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11384       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11385       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11386       // use this fact to prove that LHS and RHS are non-negative.
11387       const SCEV *MinusOne = getMinusOne(LHS->getType());
11388       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11389                                 FoundRHS) &&
11390           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11391                                 FoundRHS))
11392         Pred = ICmpInst::ICMP_SGT;
11393     }
11394 
11395   if (Pred != ICmpInst::ICMP_SGT)
11396     return false;
11397 
11398   auto GetOpFromSExt = [&](const SCEV *S) {
11399     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11400       return Ext->getOperand();
11401     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11402     // the constant in some cases.
11403     return S;
11404   };
11405 
11406   // Acquire values from extensions.
11407   auto *OrigLHS = LHS;
11408   auto *OrigFoundLHS = FoundLHS;
11409   LHS = GetOpFromSExt(LHS);
11410   FoundLHS = GetOpFromSExt(FoundLHS);
11411 
11412   // Is the SGT predicate can be proved trivially or using the found context.
11413   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11414     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11415            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11416                                   FoundRHS, Depth + 1);
11417   };
11418 
11419   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11420     // We want to avoid creation of any new non-constant SCEV. Since we are
11421     // going to compare the operands to RHS, we should be certain that we don't
11422     // need any size extensions for this. So let's decline all cases when the
11423     // sizes of types of LHS and RHS do not match.
11424     // TODO: Maybe try to get RHS from sext to catch more cases?
11425     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11426       return false;
11427 
11428     // Should not overflow.
11429     if (!LHSAddExpr->hasNoSignedWrap())
11430       return false;
11431 
11432     auto *LL = LHSAddExpr->getOperand(0);
11433     auto *LR = LHSAddExpr->getOperand(1);
11434     auto *MinusOne = getMinusOne(RHS->getType());
11435 
11436     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11437     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11438       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11439     };
11440     // Try to prove the following rule:
11441     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11442     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11443     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11444       return true;
11445   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11446     Value *LL, *LR;
11447     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11448 
11449     using namespace llvm::PatternMatch;
11450 
11451     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11452       // Rules for division.
11453       // We are going to perform some comparisons with Denominator and its
11454       // derivative expressions. In general case, creating a SCEV for it may
11455       // lead to a complex analysis of the entire graph, and in particular it
11456       // can request trip count recalculation for the same loop. This would
11457       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11458       // this, we only want to create SCEVs that are constants in this section.
11459       // So we bail if Denominator is not a constant.
11460       if (!isa<ConstantInt>(LR))
11461         return false;
11462 
11463       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11464 
11465       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11466       // then a SCEV for the numerator already exists and matches with FoundLHS.
11467       auto *Numerator = getExistingSCEV(LL);
11468       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11469         return false;
11470 
11471       // Make sure that the numerator matches with FoundLHS and the denominator
11472       // is positive.
11473       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11474         return false;
11475 
11476       auto *DTy = Denominator->getType();
11477       auto *FRHSTy = FoundRHS->getType();
11478       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11479         // One of types is a pointer and another one is not. We cannot extend
11480         // them properly to a wider type, so let us just reject this case.
11481         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11482         // to avoid this check.
11483         return false;
11484 
11485       // Given that:
11486       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11487       auto *WTy = getWiderType(DTy, FRHSTy);
11488       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11489       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11490 
11491       // Try to prove the following rule:
11492       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11493       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11494       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11495       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11496       if (isKnownNonPositive(RHS) &&
11497           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11498         return true;
11499 
11500       // Try to prove the following rule:
11501       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11502       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11503       // If we divide it by Denominator > 2, then:
11504       // 1. If FoundLHS is negative, then the result is 0.
11505       // 2. If FoundLHS is non-negative, then the result is non-negative.
11506       // Anyways, the result is non-negative.
11507       auto *MinusOne = getMinusOne(WTy);
11508       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11509       if (isKnownNegative(RHS) &&
11510           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11511         return true;
11512     }
11513   }
11514 
11515   // If our expression contained SCEVUnknown Phis, and we split it down and now
11516   // need to prove something for them, try to prove the predicate for every
11517   // possible incoming values of those Phis.
11518   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11519     return true;
11520 
11521   return false;
11522 }
11523 
11524 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11525                                         const SCEV *LHS, const SCEV *RHS) {
11526   // zext x u<= sext x, sext x s<= zext x
11527   switch (Pred) {
11528   case ICmpInst::ICMP_SGE:
11529     std::swap(LHS, RHS);
11530     LLVM_FALLTHROUGH;
11531   case ICmpInst::ICMP_SLE: {
11532     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11533     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11534     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11535     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11536       return true;
11537     break;
11538   }
11539   case ICmpInst::ICMP_UGE:
11540     std::swap(LHS, RHS);
11541     LLVM_FALLTHROUGH;
11542   case ICmpInst::ICMP_ULE: {
11543     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11544     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11545     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11546     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11547       return true;
11548     break;
11549   }
11550   default:
11551     break;
11552   };
11553   return false;
11554 }
11555 
11556 bool
11557 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11558                                            const SCEV *LHS, const SCEV *RHS) {
11559   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11560          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11561          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11562          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11563          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11564 }
11565 
11566 bool
11567 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11568                                              const SCEV *LHS, const SCEV *RHS,
11569                                              const SCEV *FoundLHS,
11570                                              const SCEV *FoundRHS) {
11571   switch (Pred) {
11572   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11573   case ICmpInst::ICMP_EQ:
11574   case ICmpInst::ICMP_NE:
11575     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11576       return true;
11577     break;
11578   case ICmpInst::ICMP_SLT:
11579   case ICmpInst::ICMP_SLE:
11580     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11581         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11582       return true;
11583     break;
11584   case ICmpInst::ICMP_SGT:
11585   case ICmpInst::ICMP_SGE:
11586     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11587         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11588       return true;
11589     break;
11590   case ICmpInst::ICMP_ULT:
11591   case ICmpInst::ICMP_ULE:
11592     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11593         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11594       return true;
11595     break;
11596   case ICmpInst::ICMP_UGT:
11597   case ICmpInst::ICMP_UGE:
11598     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11599         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11600       return true;
11601     break;
11602   }
11603 
11604   // Maybe it can be proved via operations?
11605   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11606     return true;
11607 
11608   return false;
11609 }
11610 
11611 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11612                                                      const SCEV *LHS,
11613                                                      const SCEV *RHS,
11614                                                      const SCEV *FoundLHS,
11615                                                      const SCEV *FoundRHS) {
11616   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11617     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11618     // reduce the compile time impact of this optimization.
11619     return false;
11620 
11621   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11622   if (!Addend)
11623     return false;
11624 
11625   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11626 
11627   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11628   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11629   ConstantRange FoundLHSRange =
11630       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11631 
11632   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11633   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11634 
11635   // We can also compute the range of values for `LHS` that satisfy the
11636   // consequent, "`LHS` `Pred` `RHS`":
11637   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11638   // The antecedent implies the consequent if every value of `LHS` that
11639   // satisfies the antecedent also satisfies the consequent.
11640   return LHSRange.icmp(Pred, ConstRHS);
11641 }
11642 
11643 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11644                                         bool IsSigned) {
11645   assert(isKnownPositive(Stride) && "Positive stride expected!");
11646 
11647   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11648   const SCEV *One = getOne(Stride->getType());
11649 
11650   if (IsSigned) {
11651     APInt MaxRHS = getSignedRangeMax(RHS);
11652     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11653     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11654 
11655     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11656     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11657   }
11658 
11659   APInt MaxRHS = getUnsignedRangeMax(RHS);
11660   APInt MaxValue = APInt::getMaxValue(BitWidth);
11661   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11662 
11663   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11664   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11665 }
11666 
11667 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11668                                         bool IsSigned) {
11669 
11670   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11671   const SCEV *One = getOne(Stride->getType());
11672 
11673   if (IsSigned) {
11674     APInt MinRHS = getSignedRangeMin(RHS);
11675     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11676     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11677 
11678     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11679     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11680   }
11681 
11682   APInt MinRHS = getUnsignedRangeMin(RHS);
11683   APInt MinValue = APInt::getMinValue(BitWidth);
11684   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11685 
11686   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11687   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11688 }
11689 
11690 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11691   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11692   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11693   // expression fixes the case of N=0.
11694   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11695   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11696   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11697 }
11698 
11699 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11700                                                     const SCEV *Stride,
11701                                                     const SCEV *End,
11702                                                     unsigned BitWidth,
11703                                                     bool IsSigned) {
11704   // The logic in this function assumes we can represent a positive stride.
11705   // If we can't, the backedge-taken count must be zero.
11706   if (IsSigned && BitWidth == 1)
11707     return getZero(Stride->getType());
11708 
11709   // This code has only been closely audited for negative strides in the
11710   // unsigned comparison case, it may be correct for signed comparison, but
11711   // that needs to be established.
11712   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11713          "Stride is expected strictly positive for signed case!");
11714 
11715   // Calculate the maximum backedge count based on the range of values
11716   // permitted by Start, End, and Stride.
11717   APInt MinStart =
11718       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11719 
11720   APInt MinStride =
11721       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11722 
11723   // We assume either the stride is positive, or the backedge-taken count
11724   // is zero. So force StrideForMaxBECount to be at least one.
11725   APInt One(BitWidth, 1);
11726   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11727                                        : APIntOps::umax(One, MinStride);
11728 
11729   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11730                             : APInt::getMaxValue(BitWidth);
11731   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11732 
11733   // Although End can be a MAX expression we estimate MaxEnd considering only
11734   // the case End = RHS of the loop termination condition. This is safe because
11735   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11736   // taken count.
11737   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11738                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11739 
11740   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11741   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11742                     : APIntOps::umax(MaxEnd, MinStart);
11743 
11744   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11745                          getConstant(StrideForMaxBECount) /* Step */);
11746 }
11747 
11748 ScalarEvolution::ExitLimit
11749 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11750                                   const Loop *L, bool IsSigned,
11751                                   bool ControlsExit, bool AllowPredicates) {
11752   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11753 
11754   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11755   bool PredicatedIV = false;
11756 
11757   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11758     // Can we prove this loop *must* be UB if overflow of IV occurs?
11759     // Reasoning goes as follows:
11760     // * Suppose the IV did self wrap.
11761     // * If Stride evenly divides the iteration space, then once wrap
11762     //   occurs, the loop must revisit the same values.
11763     // * We know that RHS is invariant, and that none of those values
11764     //   caused this exit to be taken previously.  Thus, this exit is
11765     //   dynamically dead.
11766     // * If this is the sole exit, then a dead exit implies the loop
11767     //   must be infinite if there are no abnormal exits.
11768     // * If the loop were infinite, then it must either not be mustprogress
11769     //   or have side effects. Otherwise, it must be UB.
11770     // * It can't (by assumption), be UB so we have contradicted our
11771     //   premise and can conclude the IV did not in fact self-wrap.
11772     if (!isLoopInvariant(RHS, L))
11773       return false;
11774 
11775     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11776     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11777       return false;
11778 
11779     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11780       return false;
11781 
11782     return loopIsFiniteByAssumption(L);
11783   };
11784 
11785   if (!IV) {
11786     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11787       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11788       if (AR && AR->getLoop() == L && AR->isAffine()) {
11789         auto Flags = AR->getNoWrapFlags();
11790         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11791           Flags = setFlags(Flags, SCEV::FlagNW);
11792 
11793           SmallVector<const SCEV*> Operands{AR->operands()};
11794           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11795         }
11796 
11797         auto canProveNUW = [&]() {
11798           if (!isLoopInvariant(RHS, L))
11799             return false;
11800 
11801           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
11802             // We need the sequence defined by AR to strictly increase in the
11803             // unsigned integer domain for the logic below to hold.
11804             return false;
11805 
11806           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
11807           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
11808           // If RHS <=u Limit, then there must exist a value V in the sequence
11809           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
11810           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
11811           // overflow occurs.  This limit also implies that a signed comparison
11812           // (in the wide bitwidth) is equivalent to an unsigned comparison as
11813           // the high bits on both sides must be zero.
11814           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
11815           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
11816           Limit = Limit.zext(OuterBitWidth);
11817           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
11818         };
11819         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
11820           Flags = setFlags(Flags, SCEV::FlagNUW);
11821 
11822         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11823         if (AR->hasNoUnsignedWrap()) {
11824           // Emulate what getZeroExtendExpr would have done during construction
11825           // if we'd been able to infer the fact just above at that time.
11826           const SCEV *Step = AR->getStepRecurrence(*this);
11827           Type *Ty = ZExt->getType();
11828           auto *S = getAddRecExpr(
11829             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11830             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11831           IV = dyn_cast<SCEVAddRecExpr>(S);
11832         }
11833       }
11834     }
11835   }
11836 
11837 
11838   if (!IV && AllowPredicates) {
11839     // Try to make this an AddRec using runtime tests, in the first X
11840     // iterations of this loop, where X is the SCEV expression found by the
11841     // algorithm below.
11842     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11843     PredicatedIV = true;
11844   }
11845 
11846   // Avoid weird loops
11847   if (!IV || IV->getLoop() != L || !IV->isAffine())
11848     return getCouldNotCompute();
11849 
11850   // A precondition of this method is that the condition being analyzed
11851   // reaches an exiting branch which dominates the latch.  Given that, we can
11852   // assume that an increment which violates the nowrap specification and
11853   // produces poison must cause undefined behavior when the resulting poison
11854   // value is branched upon and thus we can conclude that the backedge is
11855   // taken no more often than would be required to produce that poison value.
11856   // Note that a well defined loop can exit on the iteration which violates
11857   // the nowrap specification if there is another exit (either explicit or
11858   // implicit/exceptional) which causes the loop to execute before the
11859   // exiting instruction we're analyzing would trigger UB.
11860   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11861   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11862   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11863 
11864   const SCEV *Stride = IV->getStepRecurrence(*this);
11865 
11866   bool PositiveStride = isKnownPositive(Stride);
11867 
11868   // Avoid negative or zero stride values.
11869   if (!PositiveStride) {
11870     // We can compute the correct backedge taken count for loops with unknown
11871     // strides if we can prove that the loop is not an infinite loop with side
11872     // effects. Here's the loop structure we are trying to handle -
11873     //
11874     // i = start
11875     // do {
11876     //   A[i] = i;
11877     //   i += s;
11878     // } while (i < end);
11879     //
11880     // The backedge taken count for such loops is evaluated as -
11881     // (max(end, start + stride) - start - 1) /u stride
11882     //
11883     // The additional preconditions that we need to check to prove correctness
11884     // of the above formula is as follows -
11885     //
11886     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11887     //    NoWrap flag).
11888     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11889     //    no side effects within the loop)
11890     // c) loop has a single static exit (with no abnormal exits)
11891     //
11892     // Precondition a) implies that if the stride is negative, this is a single
11893     // trip loop. The backedge taken count formula reduces to zero in this case.
11894     //
11895     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11896     // then a zero stride means the backedge can't be taken without executing
11897     // undefined behavior.
11898     //
11899     // The positive stride case is the same as isKnownPositive(Stride) returning
11900     // true (original behavior of the function).
11901     //
11902     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11903         !loopHasNoAbnormalExits(L))
11904       return getCouldNotCompute();
11905 
11906     // This bailout is protecting the logic in computeMaxBECountForLT which
11907     // has not yet been sufficiently auditted or tested with negative strides.
11908     // We used to filter out all known-non-positive cases here, we're in the
11909     // process of being less restrictive bit by bit.
11910     if (IsSigned && isKnownNonPositive(Stride))
11911       return getCouldNotCompute();
11912 
11913     if (!isKnownNonZero(Stride)) {
11914       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11915       // if it might eventually be greater than start and if so, on which
11916       // iteration.  We can't even produce a useful upper bound.
11917       if (!isLoopInvariant(RHS, L))
11918         return getCouldNotCompute();
11919 
11920       // We allow a potentially zero stride, but we need to divide by stride
11921       // below.  Since the loop can't be infinite and this check must control
11922       // the sole exit, we can infer the exit must be taken on the first
11923       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11924       // we know the numerator in the divides below must be zero, so we can
11925       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11926       // and produce the right result.
11927       // FIXME: Handle the case where Stride is poison?
11928       auto wouldZeroStrideBeUB = [&]() {
11929         // Proof by contradiction.  Suppose the stride were zero.  If we can
11930         // prove that the backedge *is* taken on the first iteration, then since
11931         // we know this condition controls the sole exit, we must have an
11932         // infinite loop.  We can't have a (well defined) infinite loop per
11933         // check just above.
11934         // Note: The (Start - Stride) term is used to get the start' term from
11935         // (start' + stride,+,stride). Remember that we only care about the
11936         // result of this expression when stride == 0 at runtime.
11937         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11938         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11939       };
11940       if (!wouldZeroStrideBeUB()) {
11941         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11942       }
11943     }
11944   } else if (!Stride->isOne() && !NoWrap) {
11945     auto isUBOnWrap = [&]() {
11946       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11947       // follows trivially from the fact that every (un)signed-wrapped, but
11948       // not self-wrapped value must be LT than the last value before
11949       // (un)signed wrap.  Since we know that last value didn't exit, nor
11950       // will any smaller one.
11951       return canAssumeNoSelfWrap(IV);
11952     };
11953 
11954     // Avoid proven overflow cases: this will ensure that the backedge taken
11955     // count will not generate any unsigned overflow. Relaxed no-overflow
11956     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11957     // undefined behaviors like the case of C language.
11958     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11959       return getCouldNotCompute();
11960   }
11961 
11962   // On all paths just preceeding, we established the following invariant:
11963   //   IV can be assumed not to overflow up to and including the exiting
11964   //   iteration.  We proved this in one of two ways:
11965   //   1) We can show overflow doesn't occur before the exiting iteration
11966   //      1a) canIVOverflowOnLT, and b) step of one
11967   //   2) We can show that if overflow occurs, the loop must execute UB
11968   //      before any possible exit.
11969   // Note that we have not yet proved RHS invariant (in general).
11970 
11971   const SCEV *Start = IV->getStart();
11972 
11973   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11974   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11975   // Use integer-typed versions for actual computation; we can't subtract
11976   // pointers in general.
11977   const SCEV *OrigStart = Start;
11978   const SCEV *OrigRHS = RHS;
11979   if (Start->getType()->isPointerTy()) {
11980     Start = getLosslessPtrToIntExpr(Start);
11981     if (isa<SCEVCouldNotCompute>(Start))
11982       return Start;
11983   }
11984   if (RHS->getType()->isPointerTy()) {
11985     RHS = getLosslessPtrToIntExpr(RHS);
11986     if (isa<SCEVCouldNotCompute>(RHS))
11987       return RHS;
11988   }
11989 
11990   // When the RHS is not invariant, we do not know the end bound of the loop and
11991   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11992   // calculate the MaxBECount, given the start, stride and max value for the end
11993   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11994   // checked above).
11995   if (!isLoopInvariant(RHS, L)) {
11996     const SCEV *MaxBECount = computeMaxBECountForLT(
11997         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11998     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11999                      false /*MaxOrZero*/, Predicates);
12000   }
12001 
12002   // We use the expression (max(End,Start)-Start)/Stride to describe the
12003   // backedge count, as if the backedge is taken at least once max(End,Start)
12004   // is End and so the result is as above, and if not max(End,Start) is Start
12005   // so we get a backedge count of zero.
12006   const SCEV *BECount = nullptr;
12007   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12008   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12009   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12010   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12011   // Can we prove (max(RHS,Start) > Start - Stride?
12012   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12013       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12014     // In this case, we can use a refined formula for computing backedge taken
12015     // count.  The general formula remains:
12016     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12017     // We want to use the alternate formula:
12018     //   "((End - 1) - (Start - Stride)) /u Stride"
12019     // Let's do a quick case analysis to show these are equivalent under
12020     // our precondition that max(RHS,Start) > Start - Stride.
12021     // * For RHS <= Start, the backedge-taken count must be zero.
12022     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12023     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12024     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12025     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12026     //     this to the stride of 1 case.
12027     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12028     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12029     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12030     //   "((RHS - (Start - Stride) - 1) /u Stride".
12031     //   Our preconditions trivially imply no overflow in that form.
12032     const SCEV *MinusOne = getMinusOne(Stride->getType());
12033     const SCEV *Numerator =
12034         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12035     BECount = getUDivExpr(Numerator, Stride);
12036   }
12037 
12038   const SCEV *BECountIfBackedgeTaken = nullptr;
12039   if (!BECount) {
12040     auto canProveRHSGreaterThanEqualStart = [&]() {
12041       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12042       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12043         return true;
12044 
12045       // (RHS > Start - 1) implies RHS >= Start.
12046       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12047       //   "Start - 1" doesn't overflow.
12048       // * For signed comparison, if Start - 1 does overflow, it's equal
12049       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12050       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12051       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12052       //
12053       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12054       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12055       auto *StartMinusOne = getAddExpr(OrigStart,
12056                                        getMinusOne(OrigStart->getType()));
12057       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12058     };
12059 
12060     // If we know that RHS >= Start in the context of loop, then we know that
12061     // max(RHS, Start) = RHS at this point.
12062     const SCEV *End;
12063     if (canProveRHSGreaterThanEqualStart()) {
12064       End = RHS;
12065     } else {
12066       // If RHS < Start, the backedge will be taken zero times.  So in
12067       // general, we can write the backedge-taken count as:
12068       //
12069       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12070       //
12071       // We convert it to the following to make it more convenient for SCEV:
12072       //
12073       //     ceil(max(RHS, Start) - Start) / Stride
12074       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12075 
12076       // See what would happen if we assume the backedge is taken. This is
12077       // used to compute MaxBECount.
12078       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12079     }
12080 
12081     // At this point, we know:
12082     //
12083     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12084     // 2. The index variable doesn't overflow.
12085     //
12086     // Therefore, we know N exists such that
12087     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12088     // doesn't overflow.
12089     //
12090     // Using this information, try to prove whether the addition in
12091     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12092     const SCEV *One = getOne(Stride->getType());
12093     bool MayAddOverflow = [&] {
12094       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12095         if (StrideC->getAPInt().isPowerOf2()) {
12096           // Suppose Stride is a power of two, and Start/End are unsigned
12097           // integers.  Let UMAX be the largest representable unsigned
12098           // integer.
12099           //
12100           // By the preconditions of this function, we know
12101           // "(Start + Stride * N) >= End", and this doesn't overflow.
12102           // As a formula:
12103           //
12104           //   End <= (Start + Stride * N) <= UMAX
12105           //
12106           // Subtracting Start from all the terms:
12107           //
12108           //   End - Start <= Stride * N <= UMAX - Start
12109           //
12110           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12111           //
12112           //   End - Start <= Stride * N <= UMAX
12113           //
12114           // Stride * N is a multiple of Stride. Therefore,
12115           //
12116           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12117           //
12118           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12119           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12120           //
12121           //   End - Start <= Stride * N <= UMAX - Stride - 1
12122           //
12123           // Dropping the middle term:
12124           //
12125           //   End - Start <= UMAX - Stride - 1
12126           //
12127           // Adding Stride - 1 to both sides:
12128           //
12129           //   (End - Start) + (Stride - 1) <= UMAX
12130           //
12131           // In other words, the addition doesn't have unsigned overflow.
12132           //
12133           // A similar proof works if we treat Start/End as signed values.
12134           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12135           // use signed max instead of unsigned max. Note that we're trying
12136           // to prove a lack of unsigned overflow in either case.
12137           return false;
12138         }
12139       }
12140       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12141         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12142         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12143         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12144         //
12145         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12146         return false;
12147       }
12148       return true;
12149     }();
12150 
12151     const SCEV *Delta = getMinusSCEV(End, Start);
12152     if (!MayAddOverflow) {
12153       // floor((D + (S - 1)) / S)
12154       // We prefer this formulation if it's legal because it's fewer operations.
12155       BECount =
12156           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12157     } else {
12158       BECount = getUDivCeilSCEV(Delta, Stride);
12159     }
12160   }
12161 
12162   const SCEV *MaxBECount;
12163   bool MaxOrZero = false;
12164   if (isa<SCEVConstant>(BECount)) {
12165     MaxBECount = BECount;
12166   } else if (BECountIfBackedgeTaken &&
12167              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12168     // If we know exactly how many times the backedge will be taken if it's
12169     // taken at least once, then the backedge count will either be that or
12170     // zero.
12171     MaxBECount = BECountIfBackedgeTaken;
12172     MaxOrZero = true;
12173   } else {
12174     MaxBECount = computeMaxBECountForLT(
12175         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12176   }
12177 
12178   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12179       !isa<SCEVCouldNotCompute>(BECount))
12180     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12181 
12182   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12183 }
12184 
12185 ScalarEvolution::ExitLimit
12186 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12187                                      const Loop *L, bool IsSigned,
12188                                      bool ControlsExit, bool AllowPredicates) {
12189   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12190   // We handle only IV > Invariant
12191   if (!isLoopInvariant(RHS, L))
12192     return getCouldNotCompute();
12193 
12194   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12195   if (!IV && AllowPredicates)
12196     // Try to make this an AddRec using runtime tests, in the first X
12197     // iterations of this loop, where X is the SCEV expression found by the
12198     // algorithm below.
12199     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12200 
12201   // Avoid weird loops
12202   if (!IV || IV->getLoop() != L || !IV->isAffine())
12203     return getCouldNotCompute();
12204 
12205   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12206   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12207   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12208 
12209   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12210 
12211   // Avoid negative or zero stride values
12212   if (!isKnownPositive(Stride))
12213     return getCouldNotCompute();
12214 
12215   // Avoid proven overflow cases: this will ensure that the backedge taken count
12216   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12217   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12218   // behaviors like the case of C language.
12219   if (!Stride->isOne() && !NoWrap)
12220     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12221       return getCouldNotCompute();
12222 
12223   const SCEV *Start = IV->getStart();
12224   const SCEV *End = RHS;
12225   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12226     // If we know that Start >= RHS in the context of loop, then we know that
12227     // min(RHS, Start) = RHS at this point.
12228     if (isLoopEntryGuardedByCond(
12229             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12230       End = RHS;
12231     else
12232       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12233   }
12234 
12235   if (Start->getType()->isPointerTy()) {
12236     Start = getLosslessPtrToIntExpr(Start);
12237     if (isa<SCEVCouldNotCompute>(Start))
12238       return Start;
12239   }
12240   if (End->getType()->isPointerTy()) {
12241     End = getLosslessPtrToIntExpr(End);
12242     if (isa<SCEVCouldNotCompute>(End))
12243       return End;
12244   }
12245 
12246   // Compute ((Start - End) + (Stride - 1)) / Stride.
12247   // FIXME: This can overflow. Holding off on fixing this for now;
12248   // howManyGreaterThans will hopefully be gone soon.
12249   const SCEV *One = getOne(Stride->getType());
12250   const SCEV *BECount = getUDivExpr(
12251       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12252 
12253   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12254                             : getUnsignedRangeMax(Start);
12255 
12256   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12257                              : getUnsignedRangeMin(Stride);
12258 
12259   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12260   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12261                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12262 
12263   // Although End can be a MIN expression we estimate MinEnd considering only
12264   // the case End = RHS. This is safe because in the other case (Start - End)
12265   // is zero, leading to a zero maximum backedge taken count.
12266   APInt MinEnd =
12267     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12268              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12269 
12270   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12271                                ? BECount
12272                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12273                                                  getConstant(MinStride));
12274 
12275   if (isa<SCEVCouldNotCompute>(MaxBECount))
12276     MaxBECount = BECount;
12277 
12278   return ExitLimit(BECount, MaxBECount, false, Predicates);
12279 }
12280 
12281 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12282                                                     ScalarEvolution &SE) const {
12283   if (Range.isFullSet())  // Infinite loop.
12284     return SE.getCouldNotCompute();
12285 
12286   // If the start is a non-zero constant, shift the range to simplify things.
12287   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12288     if (!SC->getValue()->isZero()) {
12289       SmallVector<const SCEV *, 4> Operands(operands());
12290       Operands[0] = SE.getZero(SC->getType());
12291       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12292                                              getNoWrapFlags(FlagNW));
12293       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12294         return ShiftedAddRec->getNumIterationsInRange(
12295             Range.subtract(SC->getAPInt()), SE);
12296       // This is strange and shouldn't happen.
12297       return SE.getCouldNotCompute();
12298     }
12299 
12300   // The only time we can solve this is when we have all constant indices.
12301   // Otherwise, we cannot determine the overflow conditions.
12302   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12303     return SE.getCouldNotCompute();
12304 
12305   // Okay at this point we know that all elements of the chrec are constants and
12306   // that the start element is zero.
12307 
12308   // First check to see if the range contains zero.  If not, the first
12309   // iteration exits.
12310   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12311   if (!Range.contains(APInt(BitWidth, 0)))
12312     return SE.getZero(getType());
12313 
12314   if (isAffine()) {
12315     // If this is an affine expression then we have this situation:
12316     //   Solve {0,+,A} in Range  ===  Ax in Range
12317 
12318     // We know that zero is in the range.  If A is positive then we know that
12319     // the upper value of the range must be the first possible exit value.
12320     // If A is negative then the lower of the range is the last possible loop
12321     // value.  Also note that we already checked for a full range.
12322     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12323     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12324 
12325     // The exit value should be (End+A)/A.
12326     APInt ExitVal = (End + A).udiv(A);
12327     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12328 
12329     // Evaluate at the exit value.  If we really did fall out of the valid
12330     // range, then we computed our trip count, otherwise wrap around or other
12331     // things must have happened.
12332     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12333     if (Range.contains(Val->getValue()))
12334       return SE.getCouldNotCompute();  // Something strange happened
12335 
12336     // Ensure that the previous value is in the range.  This is a sanity check.
12337     assert(Range.contains(
12338            EvaluateConstantChrecAtConstant(this,
12339            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12340            "Linear scev computation is off in a bad way!");
12341     return SE.getConstant(ExitValue);
12342   }
12343 
12344   if (isQuadratic()) {
12345     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12346       return SE.getConstant(S.getValue());
12347   }
12348 
12349   return SE.getCouldNotCompute();
12350 }
12351 
12352 const SCEVAddRecExpr *
12353 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12354   assert(getNumOperands() > 1 && "AddRec with zero step?");
12355   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12356   // but in this case we cannot guarantee that the value returned will be an
12357   // AddRec because SCEV does not have a fixed point where it stops
12358   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12359   // may happen if we reach arithmetic depth limit while simplifying. So we
12360   // construct the returned value explicitly.
12361   SmallVector<const SCEV *, 3> Ops;
12362   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12363   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12364   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12365     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12366   // We know that the last operand is not a constant zero (otherwise it would
12367   // have been popped out earlier). This guarantees us that if the result has
12368   // the same last operand, then it will also not be popped out, meaning that
12369   // the returned value will be an AddRec.
12370   const SCEV *Last = getOperand(getNumOperands() - 1);
12371   assert(!Last->isZero() && "Recurrency with zero step?");
12372   Ops.push_back(Last);
12373   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12374                                                SCEV::FlagAnyWrap));
12375 }
12376 
12377 // Return true when S contains at least an undef value.
12378 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12379   return SCEVExprContains(S, [](const SCEV *S) {
12380     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12381       return isa<UndefValue>(SU->getValue());
12382     return false;
12383   });
12384 }
12385 
12386 /// Return the size of an element read or written by Inst.
12387 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12388   Type *Ty;
12389   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12390     Ty = Store->getValueOperand()->getType();
12391   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12392     Ty = Load->getType();
12393   else
12394     return nullptr;
12395 
12396   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12397   return getSizeOfExpr(ETy, Ty);
12398 }
12399 
12400 //===----------------------------------------------------------------------===//
12401 //                   SCEVCallbackVH Class Implementation
12402 //===----------------------------------------------------------------------===//
12403 
12404 void ScalarEvolution::SCEVCallbackVH::deleted() {
12405   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12406   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12407     SE->ConstantEvolutionLoopExitValue.erase(PN);
12408   SE->eraseValueFromMap(getValPtr());
12409   // this now dangles!
12410 }
12411 
12412 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12413   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12414 
12415   // Forget all the expressions associated with users of the old value,
12416   // so that future queries will recompute the expressions using the new
12417   // value.
12418   Value *Old = getValPtr();
12419   SmallVector<User *, 16> Worklist(Old->users());
12420   SmallPtrSet<User *, 8> Visited;
12421   while (!Worklist.empty()) {
12422     User *U = Worklist.pop_back_val();
12423     // Deleting the Old value will cause this to dangle. Postpone
12424     // that until everything else is done.
12425     if (U == Old)
12426       continue;
12427     if (!Visited.insert(U).second)
12428       continue;
12429     if (PHINode *PN = dyn_cast<PHINode>(U))
12430       SE->ConstantEvolutionLoopExitValue.erase(PN);
12431     SE->eraseValueFromMap(U);
12432     llvm::append_range(Worklist, U->users());
12433   }
12434   // Delete the Old value.
12435   if (PHINode *PN = dyn_cast<PHINode>(Old))
12436     SE->ConstantEvolutionLoopExitValue.erase(PN);
12437   SE->eraseValueFromMap(Old);
12438   // this now dangles!
12439 }
12440 
12441 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12442   : CallbackVH(V), SE(se) {}
12443 
12444 //===----------------------------------------------------------------------===//
12445 //                   ScalarEvolution Class Implementation
12446 //===----------------------------------------------------------------------===//
12447 
12448 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12449                                  AssumptionCache &AC, DominatorTree &DT,
12450                                  LoopInfo &LI)
12451     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12452       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12453       LoopDispositions(64), BlockDispositions(64) {
12454   // To use guards for proving predicates, we need to scan every instruction in
12455   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12456   // time if the IR does not actually contain any calls to
12457   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12458   //
12459   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12460   // to _add_ guards to the module when there weren't any before, and wants
12461   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12462   // efficient in lieu of being smart in that rather obscure case.
12463 
12464   auto *GuardDecl = F.getParent()->getFunction(
12465       Intrinsic::getName(Intrinsic::experimental_guard));
12466   HasGuards = GuardDecl && !GuardDecl->use_empty();
12467 }
12468 
12469 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12470     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12471       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12472       ValueExprMap(std::move(Arg.ValueExprMap)),
12473       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12474       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12475       PendingMerges(std::move(Arg.PendingMerges)),
12476       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12477       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12478       PredicatedBackedgeTakenCounts(
12479           std::move(Arg.PredicatedBackedgeTakenCounts)),
12480       ConstantEvolutionLoopExitValue(
12481           std::move(Arg.ConstantEvolutionLoopExitValue)),
12482       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12483       LoopDispositions(std::move(Arg.LoopDispositions)),
12484       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12485       BlockDispositions(std::move(Arg.BlockDispositions)),
12486       SCEVUsers(std::move(Arg.SCEVUsers)),
12487       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12488       SignedRanges(std::move(Arg.SignedRanges)),
12489       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12490       UniquePreds(std::move(Arg.UniquePreds)),
12491       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12492       LoopUsers(std::move(Arg.LoopUsers)),
12493       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12494       FirstUnknown(Arg.FirstUnknown) {
12495   Arg.FirstUnknown = nullptr;
12496 }
12497 
12498 ScalarEvolution::~ScalarEvolution() {
12499   // Iterate through all the SCEVUnknown instances and call their
12500   // destructors, so that they release their references to their values.
12501   for (SCEVUnknown *U = FirstUnknown; U;) {
12502     SCEVUnknown *Tmp = U;
12503     U = U->Next;
12504     Tmp->~SCEVUnknown();
12505   }
12506   FirstUnknown = nullptr;
12507 
12508   ExprValueMap.clear();
12509   ValueExprMap.clear();
12510   HasRecMap.clear();
12511   BackedgeTakenCounts.clear();
12512   PredicatedBackedgeTakenCounts.clear();
12513 
12514   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12515   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12516   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12517   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12518   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12519 }
12520 
12521 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12522   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12523 }
12524 
12525 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12526                           const Loop *L) {
12527   // Print all inner loops first
12528   for (Loop *I : *L)
12529     PrintLoopInfo(OS, SE, I);
12530 
12531   OS << "Loop ";
12532   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12533   OS << ": ";
12534 
12535   SmallVector<BasicBlock *, 8> ExitingBlocks;
12536   L->getExitingBlocks(ExitingBlocks);
12537   if (ExitingBlocks.size() != 1)
12538     OS << "<multiple exits> ";
12539 
12540   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12541     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12542   else
12543     OS << "Unpredictable backedge-taken count.\n";
12544 
12545   if (ExitingBlocks.size() > 1)
12546     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12547       OS << "  exit count for " << ExitingBlock->getName() << ": "
12548          << *SE->getExitCount(L, ExitingBlock) << "\n";
12549     }
12550 
12551   OS << "Loop ";
12552   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12553   OS << ": ";
12554 
12555   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12556     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12557     if (SE->isBackedgeTakenCountMaxOrZero(L))
12558       OS << ", actual taken count either this or zero.";
12559   } else {
12560     OS << "Unpredictable max backedge-taken count. ";
12561   }
12562 
12563   OS << "\n"
12564         "Loop ";
12565   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12566   OS << ": ";
12567 
12568   SCEVUnionPredicate Pred;
12569   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12570   if (!isa<SCEVCouldNotCompute>(PBT)) {
12571     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12572     OS << " Predicates:\n";
12573     Pred.print(OS, 4);
12574   } else {
12575     OS << "Unpredictable predicated backedge-taken count. ";
12576   }
12577   OS << "\n";
12578 
12579   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12580     OS << "Loop ";
12581     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12582     OS << ": ";
12583     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12584   }
12585 }
12586 
12587 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12588   switch (LD) {
12589   case ScalarEvolution::LoopVariant:
12590     return "Variant";
12591   case ScalarEvolution::LoopInvariant:
12592     return "Invariant";
12593   case ScalarEvolution::LoopComputable:
12594     return "Computable";
12595   }
12596   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12597 }
12598 
12599 void ScalarEvolution::print(raw_ostream &OS) const {
12600   // ScalarEvolution's implementation of the print method is to print
12601   // out SCEV values of all instructions that are interesting. Doing
12602   // this potentially causes it to create new SCEV objects though,
12603   // which technically conflicts with the const qualifier. This isn't
12604   // observable from outside the class though, so casting away the
12605   // const isn't dangerous.
12606   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12607 
12608   if (ClassifyExpressions) {
12609     OS << "Classifying expressions for: ";
12610     F.printAsOperand(OS, /*PrintType=*/false);
12611     OS << "\n";
12612     for (Instruction &I : instructions(F))
12613       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12614         OS << I << '\n';
12615         OS << "  -->  ";
12616         const SCEV *SV = SE.getSCEV(&I);
12617         SV->print(OS);
12618         if (!isa<SCEVCouldNotCompute>(SV)) {
12619           OS << " U: ";
12620           SE.getUnsignedRange(SV).print(OS);
12621           OS << " S: ";
12622           SE.getSignedRange(SV).print(OS);
12623         }
12624 
12625         const Loop *L = LI.getLoopFor(I.getParent());
12626 
12627         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12628         if (AtUse != SV) {
12629           OS << "  -->  ";
12630           AtUse->print(OS);
12631           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12632             OS << " U: ";
12633             SE.getUnsignedRange(AtUse).print(OS);
12634             OS << " S: ";
12635             SE.getSignedRange(AtUse).print(OS);
12636           }
12637         }
12638 
12639         if (L) {
12640           OS << "\t\t" "Exits: ";
12641           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12642           if (!SE.isLoopInvariant(ExitValue, L)) {
12643             OS << "<<Unknown>>";
12644           } else {
12645             OS << *ExitValue;
12646           }
12647 
12648           bool First = true;
12649           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12650             if (First) {
12651               OS << "\t\t" "LoopDispositions: { ";
12652               First = false;
12653             } else {
12654               OS << ", ";
12655             }
12656 
12657             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12658             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12659           }
12660 
12661           for (auto *InnerL : depth_first(L)) {
12662             if (InnerL == L)
12663               continue;
12664             if (First) {
12665               OS << "\t\t" "LoopDispositions: { ";
12666               First = false;
12667             } else {
12668               OS << ", ";
12669             }
12670 
12671             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12672             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12673           }
12674 
12675           OS << " }";
12676         }
12677 
12678         OS << "\n";
12679       }
12680   }
12681 
12682   OS << "Determining loop execution counts for: ";
12683   F.printAsOperand(OS, /*PrintType=*/false);
12684   OS << "\n";
12685   for (Loop *I : LI)
12686     PrintLoopInfo(OS, &SE, I);
12687 }
12688 
12689 ScalarEvolution::LoopDisposition
12690 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12691   auto &Values = LoopDispositions[S];
12692   for (auto &V : Values) {
12693     if (V.getPointer() == L)
12694       return V.getInt();
12695   }
12696   Values.emplace_back(L, LoopVariant);
12697   LoopDisposition D = computeLoopDisposition(S, L);
12698   auto &Values2 = LoopDispositions[S];
12699   for (auto &V : llvm::reverse(Values2)) {
12700     if (V.getPointer() == L) {
12701       V.setInt(D);
12702       break;
12703     }
12704   }
12705   return D;
12706 }
12707 
12708 ScalarEvolution::LoopDisposition
12709 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12710   switch (S->getSCEVType()) {
12711   case scConstant:
12712     return LoopInvariant;
12713   case scPtrToInt:
12714   case scTruncate:
12715   case scZeroExtend:
12716   case scSignExtend:
12717     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12718   case scAddRecExpr: {
12719     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12720 
12721     // If L is the addrec's loop, it's computable.
12722     if (AR->getLoop() == L)
12723       return LoopComputable;
12724 
12725     // Add recurrences are never invariant in the function-body (null loop).
12726     if (!L)
12727       return LoopVariant;
12728 
12729     // Everything that is not defined at loop entry is variant.
12730     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12731       return LoopVariant;
12732     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12733            " dominate the contained loop's header?");
12734 
12735     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12736     if (AR->getLoop()->contains(L))
12737       return LoopInvariant;
12738 
12739     // This recurrence is variant w.r.t. L if any of its operands
12740     // are variant.
12741     for (auto *Op : AR->operands())
12742       if (!isLoopInvariant(Op, L))
12743         return LoopVariant;
12744 
12745     // Otherwise it's loop-invariant.
12746     return LoopInvariant;
12747   }
12748   case scAddExpr:
12749   case scMulExpr:
12750   case scUMaxExpr:
12751   case scSMaxExpr:
12752   case scUMinExpr:
12753   case scSMinExpr: {
12754     bool HasVarying = false;
12755     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12756       LoopDisposition D = getLoopDisposition(Op, L);
12757       if (D == LoopVariant)
12758         return LoopVariant;
12759       if (D == LoopComputable)
12760         HasVarying = true;
12761     }
12762     return HasVarying ? LoopComputable : LoopInvariant;
12763   }
12764   case scUDivExpr: {
12765     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12766     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12767     if (LD == LoopVariant)
12768       return LoopVariant;
12769     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12770     if (RD == LoopVariant)
12771       return LoopVariant;
12772     return (LD == LoopInvariant && RD == LoopInvariant) ?
12773            LoopInvariant : LoopComputable;
12774   }
12775   case scUnknown:
12776     // All non-instruction values are loop invariant.  All instructions are loop
12777     // invariant if they are not contained in the specified loop.
12778     // Instructions are never considered invariant in the function body
12779     // (null loop) because they are defined within the "loop".
12780     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12781       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12782     return LoopInvariant;
12783   case scCouldNotCompute:
12784     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12785   }
12786   llvm_unreachable("Unknown SCEV kind!");
12787 }
12788 
12789 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12790   return getLoopDisposition(S, L) == LoopInvariant;
12791 }
12792 
12793 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12794   return getLoopDisposition(S, L) == LoopComputable;
12795 }
12796 
12797 ScalarEvolution::BlockDisposition
12798 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12799   auto &Values = BlockDispositions[S];
12800   for (auto &V : Values) {
12801     if (V.getPointer() == BB)
12802       return V.getInt();
12803   }
12804   Values.emplace_back(BB, DoesNotDominateBlock);
12805   BlockDisposition D = computeBlockDisposition(S, BB);
12806   auto &Values2 = BlockDispositions[S];
12807   for (auto &V : llvm::reverse(Values2)) {
12808     if (V.getPointer() == BB) {
12809       V.setInt(D);
12810       break;
12811     }
12812   }
12813   return D;
12814 }
12815 
12816 ScalarEvolution::BlockDisposition
12817 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12818   switch (S->getSCEVType()) {
12819   case scConstant:
12820     return ProperlyDominatesBlock;
12821   case scPtrToInt:
12822   case scTruncate:
12823   case scZeroExtend:
12824   case scSignExtend:
12825     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12826   case scAddRecExpr: {
12827     // This uses a "dominates" query instead of "properly dominates" query
12828     // to test for proper dominance too, because the instruction which
12829     // produces the addrec's value is a PHI, and a PHI effectively properly
12830     // dominates its entire containing block.
12831     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12832     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12833       return DoesNotDominateBlock;
12834 
12835     // Fall through into SCEVNAryExpr handling.
12836     LLVM_FALLTHROUGH;
12837   }
12838   case scAddExpr:
12839   case scMulExpr:
12840   case scUMaxExpr:
12841   case scSMaxExpr:
12842   case scUMinExpr:
12843   case scSMinExpr: {
12844     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12845     bool Proper = true;
12846     for (const SCEV *NAryOp : NAry->operands()) {
12847       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12848       if (D == DoesNotDominateBlock)
12849         return DoesNotDominateBlock;
12850       if (D == DominatesBlock)
12851         Proper = false;
12852     }
12853     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12854   }
12855   case scUDivExpr: {
12856     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12857     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12858     BlockDisposition LD = getBlockDisposition(LHS, BB);
12859     if (LD == DoesNotDominateBlock)
12860       return DoesNotDominateBlock;
12861     BlockDisposition RD = getBlockDisposition(RHS, BB);
12862     if (RD == DoesNotDominateBlock)
12863       return DoesNotDominateBlock;
12864     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12865       ProperlyDominatesBlock : DominatesBlock;
12866   }
12867   case scUnknown:
12868     if (Instruction *I =
12869           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12870       if (I->getParent() == BB)
12871         return DominatesBlock;
12872       if (DT.properlyDominates(I->getParent(), BB))
12873         return ProperlyDominatesBlock;
12874       return DoesNotDominateBlock;
12875     }
12876     return ProperlyDominatesBlock;
12877   case scCouldNotCompute:
12878     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12879   }
12880   llvm_unreachable("Unknown SCEV kind!");
12881 }
12882 
12883 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12884   return getBlockDisposition(S, BB) >= DominatesBlock;
12885 }
12886 
12887 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12888   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12889 }
12890 
12891 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12892   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12893 }
12894 
12895 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
12896   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
12897   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
12898 
12899   while (!Worklist.empty()) {
12900     const SCEV *Curr = Worklist.pop_back_val();
12901     auto Users = SCEVUsers.find(Curr);
12902     if (Users != SCEVUsers.end())
12903       for (auto *User : Users->second)
12904         if (ToForget.insert(User).second)
12905           Worklist.push_back(User);
12906   }
12907 
12908   for (auto *S : ToForget)
12909     forgetMemoizedResultsImpl(S);
12910 
12911   for (auto I = PredicatedSCEVRewrites.begin();
12912        I != PredicatedSCEVRewrites.end();) {
12913     std::pair<const SCEV *, const Loop *> Entry = I->first;
12914     if (ToForget.count(Entry.first))
12915       PredicatedSCEVRewrites.erase(I++);
12916     else
12917       ++I;
12918   }
12919 
12920   auto RemoveSCEVFromBackedgeMap = [&ToForget](
12921       DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12922         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12923           BackedgeTakenInfo &BEInfo = I->second;
12924           if (any_of(ToForget,
12925                      [&BEInfo](const SCEV *S) { return BEInfo.hasOperand(S); }))
12926             Map.erase(I++);
12927           else
12928             ++I;
12929         }
12930   };
12931 
12932   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12933   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12934 }
12935 
12936 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
12937   ValuesAtScopes.erase(S);
12938   LoopDispositions.erase(S);
12939   BlockDispositions.erase(S);
12940   UnsignedRanges.erase(S);
12941   SignedRanges.erase(S);
12942   ExprValueMap.erase(S);
12943   HasRecMap.erase(S);
12944   MinTrailingZerosCache.erase(S);
12945 }
12946 
12947 void
12948 ScalarEvolution::getUsedLoops(const SCEV *S,
12949                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12950   struct FindUsedLoops {
12951     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12952         : LoopsUsed(LoopsUsed) {}
12953     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12954     bool follow(const SCEV *S) {
12955       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12956         LoopsUsed.insert(AR->getLoop());
12957       return true;
12958     }
12959 
12960     bool isDone() const { return false; }
12961   };
12962 
12963   FindUsedLoops F(LoopsUsed);
12964   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12965 }
12966 
12967 void ScalarEvolution::verify() const {
12968   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12969   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12970 
12971   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12972 
12973   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12974   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12975     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12976 
12977     const SCEV *visitConstant(const SCEVConstant *Constant) {
12978       return SE.getConstant(Constant->getAPInt());
12979     }
12980 
12981     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12982       return SE.getUnknown(Expr->getValue());
12983     }
12984 
12985     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12986       return SE.getCouldNotCompute();
12987     }
12988   };
12989 
12990   SCEVMapper SCM(SE2);
12991 
12992   while (!LoopStack.empty()) {
12993     auto *L = LoopStack.pop_back_val();
12994     llvm::append_range(LoopStack, *L);
12995 
12996     auto *CurBECount = SCM.visit(
12997         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12998     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12999 
13000     if (CurBECount == SE2.getCouldNotCompute() ||
13001         NewBECount == SE2.getCouldNotCompute()) {
13002       // NB! This situation is legal, but is very suspicious -- whatever pass
13003       // change the loop to make a trip count go from could not compute to
13004       // computable or vice-versa *should have* invalidated SCEV.  However, we
13005       // choose not to assert here (for now) since we don't want false
13006       // positives.
13007       continue;
13008     }
13009 
13010     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13011       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13012       // not propagate undef aggressively).  This means we can (and do) fail
13013       // verification in cases where a transform makes the trip count of a loop
13014       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13015       // both cases the loop iterates "undef" times, but SCEV thinks we
13016       // increased the trip count of the loop by 1 incorrectly.
13017       continue;
13018     }
13019 
13020     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13021         SE.getTypeSizeInBits(NewBECount->getType()))
13022       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13023     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13024              SE.getTypeSizeInBits(NewBECount->getType()))
13025       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13026 
13027     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13028 
13029     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13030     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13031       dbgs() << "Trip Count for " << *L << " Changed!\n";
13032       dbgs() << "Old: " << *CurBECount << "\n";
13033       dbgs() << "New: " << *NewBECount << "\n";
13034       dbgs() << "Delta: " << *Delta << "\n";
13035       std::abort();
13036     }
13037   }
13038 
13039   // Collect all valid loops currently in LoopInfo.
13040   SmallPtrSet<Loop *, 32> ValidLoops;
13041   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13042   while (!Worklist.empty()) {
13043     Loop *L = Worklist.pop_back_val();
13044     if (ValidLoops.contains(L))
13045       continue;
13046     ValidLoops.insert(L);
13047     Worklist.append(L->begin(), L->end());
13048   }
13049   // Check for SCEV expressions referencing invalid/deleted loops.
13050   for (auto &KV : ValueExprMap) {
13051     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
13052     if (!AR)
13053       continue;
13054     assert(ValidLoops.contains(AR->getLoop()) &&
13055            "AddRec references invalid loop");
13056   }
13057 
13058   // Verify intergity of SCEV users.
13059   for (const auto &S : UniqueSCEVs) {
13060     SmallVector<const SCEV *, 4> Ops;
13061     collectUniqueOps(&S, Ops);
13062     for (const auto *Op : Ops) {
13063       // We do not store dependencies of constants.
13064       if (isa<SCEVConstant>(Op))
13065         continue;
13066       auto It = SCEVUsers.find(Op);
13067       if (It != SCEVUsers.end() && It->second.count(&S))
13068         continue;
13069       dbgs() << "Use of operand  " << *Op << " by user " << S
13070              << " is not being tracked!\n";
13071       std::abort();
13072     }
13073   }
13074 }
13075 
13076 bool ScalarEvolution::invalidate(
13077     Function &F, const PreservedAnalyses &PA,
13078     FunctionAnalysisManager::Invalidator &Inv) {
13079   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13080   // of its dependencies is invalidated.
13081   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13082   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13083          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13084          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13085          Inv.invalidate<LoopAnalysis>(F, PA);
13086 }
13087 
13088 AnalysisKey ScalarEvolutionAnalysis::Key;
13089 
13090 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13091                                              FunctionAnalysisManager &AM) {
13092   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13093                          AM.getResult<AssumptionAnalysis>(F),
13094                          AM.getResult<DominatorTreeAnalysis>(F),
13095                          AM.getResult<LoopAnalysis>(F));
13096 }
13097 
13098 PreservedAnalyses
13099 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13100   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13101   return PreservedAnalyses::all();
13102 }
13103 
13104 PreservedAnalyses
13105 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13106   // For compatibility with opt's -analyze feature under legacy pass manager
13107   // which was not ported to NPM. This keeps tests using
13108   // update_analyze_test_checks.py working.
13109   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13110      << F.getName() << "':\n";
13111   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13112   return PreservedAnalyses::all();
13113 }
13114 
13115 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13116                       "Scalar Evolution Analysis", false, true)
13117 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13118 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13119 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13120 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13121 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13122                     "Scalar Evolution Analysis", false, true)
13123 
13124 char ScalarEvolutionWrapperPass::ID = 0;
13125 
13126 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13127   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13128 }
13129 
13130 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13131   SE.reset(new ScalarEvolution(
13132       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13133       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13134       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13135       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13136   return false;
13137 }
13138 
13139 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13140 
13141 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13142   SE->print(OS);
13143 }
13144 
13145 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13146   if (!VerifySCEV)
13147     return;
13148 
13149   SE->verify();
13150 }
13151 
13152 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13153   AU.setPreservesAll();
13154   AU.addRequiredTransitive<AssumptionCacheTracker>();
13155   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13156   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13157   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13158 }
13159 
13160 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13161                                                         const SCEV *RHS) {
13162   FoldingSetNodeID ID;
13163   assert(LHS->getType() == RHS->getType() &&
13164          "Type mismatch between LHS and RHS");
13165   // Unique this node based on the arguments
13166   ID.AddInteger(SCEVPredicate::P_Equal);
13167   ID.AddPointer(LHS);
13168   ID.AddPointer(RHS);
13169   void *IP = nullptr;
13170   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13171     return S;
13172   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13173       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13174   UniquePreds.InsertNode(Eq, IP);
13175   return Eq;
13176 }
13177 
13178 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13179     const SCEVAddRecExpr *AR,
13180     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13181   FoldingSetNodeID ID;
13182   // Unique this node based on the arguments
13183   ID.AddInteger(SCEVPredicate::P_Wrap);
13184   ID.AddPointer(AR);
13185   ID.AddInteger(AddedFlags);
13186   void *IP = nullptr;
13187   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13188     return S;
13189   auto *OF = new (SCEVAllocator)
13190       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13191   UniquePreds.InsertNode(OF, IP);
13192   return OF;
13193 }
13194 
13195 namespace {
13196 
13197 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13198 public:
13199 
13200   /// Rewrites \p S in the context of a loop L and the SCEV predication
13201   /// infrastructure.
13202   ///
13203   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13204   /// equivalences present in \p Pred.
13205   ///
13206   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13207   /// \p NewPreds such that the result will be an AddRecExpr.
13208   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13209                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13210                              SCEVUnionPredicate *Pred) {
13211     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13212     return Rewriter.visit(S);
13213   }
13214 
13215   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13216     if (Pred) {
13217       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13218       for (auto *Pred : ExprPreds)
13219         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13220           if (IPred->getLHS() == Expr)
13221             return IPred->getRHS();
13222     }
13223     return convertToAddRecWithPreds(Expr);
13224   }
13225 
13226   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13227     const SCEV *Operand = visit(Expr->getOperand());
13228     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13229     if (AR && AR->getLoop() == L && AR->isAffine()) {
13230       // This couldn't be folded because the operand didn't have the nuw
13231       // flag. Add the nusw flag as an assumption that we could make.
13232       const SCEV *Step = AR->getStepRecurrence(SE);
13233       Type *Ty = Expr->getType();
13234       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13235         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13236                                 SE.getSignExtendExpr(Step, Ty), L,
13237                                 AR->getNoWrapFlags());
13238     }
13239     return SE.getZeroExtendExpr(Operand, Expr->getType());
13240   }
13241 
13242   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13243     const SCEV *Operand = visit(Expr->getOperand());
13244     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13245     if (AR && AR->getLoop() == L && AR->isAffine()) {
13246       // This couldn't be folded because the operand didn't have the nsw
13247       // flag. Add the nssw flag as an assumption that we could make.
13248       const SCEV *Step = AR->getStepRecurrence(SE);
13249       Type *Ty = Expr->getType();
13250       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13251         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13252                                 SE.getSignExtendExpr(Step, Ty), L,
13253                                 AR->getNoWrapFlags());
13254     }
13255     return SE.getSignExtendExpr(Operand, Expr->getType());
13256   }
13257 
13258 private:
13259   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13260                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13261                         SCEVUnionPredicate *Pred)
13262       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13263 
13264   bool addOverflowAssumption(const SCEVPredicate *P) {
13265     if (!NewPreds) {
13266       // Check if we've already made this assumption.
13267       return Pred && Pred->implies(P);
13268     }
13269     NewPreds->insert(P);
13270     return true;
13271   }
13272 
13273   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13274                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13275     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13276     return addOverflowAssumption(A);
13277   }
13278 
13279   // If \p Expr represents a PHINode, we try to see if it can be represented
13280   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13281   // to add this predicate as a runtime overflow check, we return the AddRec.
13282   // If \p Expr does not meet these conditions (is not a PHI node, or we
13283   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13284   // return \p Expr.
13285   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13286     if (!isa<PHINode>(Expr->getValue()))
13287       return Expr;
13288     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13289     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13290     if (!PredicatedRewrite)
13291       return Expr;
13292     for (auto *P : PredicatedRewrite->second){
13293       // Wrap predicates from outer loops are not supported.
13294       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13295         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13296         if (L != AR->getLoop())
13297           return Expr;
13298       }
13299       if (!addOverflowAssumption(P))
13300         return Expr;
13301     }
13302     return PredicatedRewrite->first;
13303   }
13304 
13305   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13306   SCEVUnionPredicate *Pred;
13307   const Loop *L;
13308 };
13309 
13310 } // end anonymous namespace
13311 
13312 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13313                                                    SCEVUnionPredicate &Preds) {
13314   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13315 }
13316 
13317 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13318     const SCEV *S, const Loop *L,
13319     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13320   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13321   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13322   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13323 
13324   if (!AddRec)
13325     return nullptr;
13326 
13327   // Since the transformation was successful, we can now transfer the SCEV
13328   // predicates.
13329   for (auto *P : TransformPreds)
13330     Preds.insert(P);
13331 
13332   return AddRec;
13333 }
13334 
13335 /// SCEV predicates
13336 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13337                              SCEVPredicateKind Kind)
13338     : FastID(ID), Kind(Kind) {}
13339 
13340 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13341                                        const SCEV *LHS, const SCEV *RHS)
13342     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13343   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13344   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13345 }
13346 
13347 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13348   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13349 
13350   if (!Op)
13351     return false;
13352 
13353   return Op->LHS == LHS && Op->RHS == RHS;
13354 }
13355 
13356 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13357 
13358 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13359 
13360 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13361   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13362 }
13363 
13364 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13365                                      const SCEVAddRecExpr *AR,
13366                                      IncrementWrapFlags Flags)
13367     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13368 
13369 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13370 
13371 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13372   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13373 
13374   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13375 }
13376 
13377 bool SCEVWrapPredicate::isAlwaysTrue() const {
13378   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13379   IncrementWrapFlags IFlags = Flags;
13380 
13381   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13382     IFlags = clearFlags(IFlags, IncrementNSSW);
13383 
13384   return IFlags == IncrementAnyWrap;
13385 }
13386 
13387 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13388   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13389   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13390     OS << "<nusw>";
13391   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13392     OS << "<nssw>";
13393   OS << "\n";
13394 }
13395 
13396 SCEVWrapPredicate::IncrementWrapFlags
13397 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13398                                    ScalarEvolution &SE) {
13399   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13400   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13401 
13402   // We can safely transfer the NSW flag as NSSW.
13403   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13404     ImpliedFlags = IncrementNSSW;
13405 
13406   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13407     // If the increment is positive, the SCEV NUW flag will also imply the
13408     // WrapPredicate NUSW flag.
13409     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13410       if (Step->getValue()->getValue().isNonNegative())
13411         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13412   }
13413 
13414   return ImpliedFlags;
13415 }
13416 
13417 /// Union predicates don't get cached so create a dummy set ID for it.
13418 SCEVUnionPredicate::SCEVUnionPredicate()
13419     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13420 
13421 bool SCEVUnionPredicate::isAlwaysTrue() const {
13422   return all_of(Preds,
13423                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13424 }
13425 
13426 ArrayRef<const SCEVPredicate *>
13427 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13428   auto I = SCEVToPreds.find(Expr);
13429   if (I == SCEVToPreds.end())
13430     return ArrayRef<const SCEVPredicate *>();
13431   return I->second;
13432 }
13433 
13434 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13435   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13436     return all_of(Set->Preds,
13437                   [this](const SCEVPredicate *I) { return this->implies(I); });
13438 
13439   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13440   if (ScevPredsIt == SCEVToPreds.end())
13441     return false;
13442   auto &SCEVPreds = ScevPredsIt->second;
13443 
13444   return any_of(SCEVPreds,
13445                 [N](const SCEVPredicate *I) { return I->implies(N); });
13446 }
13447 
13448 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13449 
13450 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13451   for (auto Pred : Preds)
13452     Pred->print(OS, Depth);
13453 }
13454 
13455 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13456   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13457     for (auto Pred : Set->Preds)
13458       add(Pred);
13459     return;
13460   }
13461 
13462   if (implies(N))
13463     return;
13464 
13465   const SCEV *Key = N->getExpr();
13466   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13467                 " associated expression!");
13468 
13469   SCEVToPreds[Key].push_back(N);
13470   Preds.push_back(N);
13471 }
13472 
13473 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13474                                                      Loop &L)
13475     : SE(SE), L(L) {}
13476 
13477 void ScalarEvolution::registerUser(const SCEV *User,
13478                                    ArrayRef<const SCEV *> Ops) {
13479   for (auto *Op : Ops)
13480     // We do not expect that forgetting cached data for SCEVConstants will ever
13481     // open any prospects for sharpening or introduce any correctness issues,
13482     // so we don't bother storing their dependencies.
13483     if (!isa<SCEVConstant>(Op))
13484       SCEVUsers[Op].insert(User);
13485 }
13486 
13487 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13488   const SCEV *Expr = SE.getSCEV(V);
13489   RewriteEntry &Entry = RewriteMap[Expr];
13490 
13491   // If we already have an entry and the version matches, return it.
13492   if (Entry.second && Generation == Entry.first)
13493     return Entry.second;
13494 
13495   // We found an entry but it's stale. Rewrite the stale entry
13496   // according to the current predicate.
13497   if (Entry.second)
13498     Expr = Entry.second;
13499 
13500   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13501   Entry = {Generation, NewSCEV};
13502 
13503   return NewSCEV;
13504 }
13505 
13506 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13507   if (!BackedgeCount) {
13508     SCEVUnionPredicate BackedgePred;
13509     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13510     addPredicate(BackedgePred);
13511   }
13512   return BackedgeCount;
13513 }
13514 
13515 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13516   if (Preds.implies(&Pred))
13517     return;
13518   Preds.add(&Pred);
13519   updateGeneration();
13520 }
13521 
13522 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13523   return Preds;
13524 }
13525 
13526 void PredicatedScalarEvolution::updateGeneration() {
13527   // If the generation number wrapped recompute everything.
13528   if (++Generation == 0) {
13529     for (auto &II : RewriteMap) {
13530       const SCEV *Rewritten = II.second.second;
13531       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13532     }
13533   }
13534 }
13535 
13536 void PredicatedScalarEvolution::setNoOverflow(
13537     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13538   const SCEV *Expr = getSCEV(V);
13539   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13540 
13541   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13542 
13543   // Clear the statically implied flags.
13544   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13545   addPredicate(*SE.getWrapPredicate(AR, Flags));
13546 
13547   auto II = FlagsMap.insert({V, Flags});
13548   if (!II.second)
13549     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13550 }
13551 
13552 bool PredicatedScalarEvolution::hasNoOverflow(
13553     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13554   const SCEV *Expr = getSCEV(V);
13555   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13556 
13557   Flags = SCEVWrapPredicate::clearFlags(
13558       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13559 
13560   auto II = FlagsMap.find(V);
13561 
13562   if (II != FlagsMap.end())
13563     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13564 
13565   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13566 }
13567 
13568 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13569   const SCEV *Expr = this->getSCEV(V);
13570   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13571   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13572 
13573   if (!New)
13574     return nullptr;
13575 
13576   for (auto *P : NewPreds)
13577     Preds.add(P);
13578 
13579   updateGeneration();
13580   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13581   return New;
13582 }
13583 
13584 PredicatedScalarEvolution::PredicatedScalarEvolution(
13585     const PredicatedScalarEvolution &Init)
13586     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13587       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13588   for (auto I : Init.FlagsMap)
13589     FlagsMap.insert(I);
13590 }
13591 
13592 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13593   // For each block.
13594   for (auto *BB : L.getBlocks())
13595     for (auto &I : *BB) {
13596       if (!SE.isSCEVable(I.getType()))
13597         continue;
13598 
13599       auto *Expr = SE.getSCEV(&I);
13600       auto II = RewriteMap.find(Expr);
13601 
13602       if (II == RewriteMap.end())
13603         continue;
13604 
13605       // Don't print things that are not interesting.
13606       if (II->second.second == Expr)
13607         continue;
13608 
13609       OS.indent(Depth) << "[PSE]" << I << ":\n";
13610       OS.indent(Depth + 2) << *Expr << "\n";
13611       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13612     }
13613 }
13614 
13615 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13616 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13617 // for URem with constant power-of-2 second operands.
13618 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13619 // 4, A / B becomes X / 8).
13620 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13621                                 const SCEV *&RHS) {
13622   // Try to match 'zext (trunc A to iB) to iY', which is used
13623   // for URem with constant power-of-2 second operands. Make sure the size of
13624   // the operand A matches the size of the whole expressions.
13625   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13626     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13627       LHS = Trunc->getOperand();
13628       // Bail out if the type of the LHS is larger than the type of the
13629       // expression for now.
13630       if (getTypeSizeInBits(LHS->getType()) >
13631           getTypeSizeInBits(Expr->getType()))
13632         return false;
13633       if (LHS->getType() != Expr->getType())
13634         LHS = getZeroExtendExpr(LHS, Expr->getType());
13635       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13636                         << getTypeSizeInBits(Trunc->getType()));
13637       return true;
13638     }
13639   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13640   if (Add == nullptr || Add->getNumOperands() != 2)
13641     return false;
13642 
13643   const SCEV *A = Add->getOperand(1);
13644   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13645 
13646   if (Mul == nullptr)
13647     return false;
13648 
13649   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13650     // (SomeExpr + (-(SomeExpr / B) * B)).
13651     if (Expr == getURemExpr(A, B)) {
13652       LHS = A;
13653       RHS = B;
13654       return true;
13655     }
13656     return false;
13657   };
13658 
13659   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13660   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13661     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13662            MatchURemWithDivisor(Mul->getOperand(2));
13663 
13664   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13665   if (Mul->getNumOperands() == 2)
13666     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13667            MatchURemWithDivisor(Mul->getOperand(0)) ||
13668            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13669            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13670   return false;
13671 }
13672 
13673 const SCEV *
13674 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13675   SmallVector<BasicBlock*, 16> ExitingBlocks;
13676   L->getExitingBlocks(ExitingBlocks);
13677 
13678   // Form an expression for the maximum exit count possible for this loop. We
13679   // merge the max and exact information to approximate a version of
13680   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13681   SmallVector<const SCEV*, 4> ExitCounts;
13682   for (BasicBlock *ExitingBB : ExitingBlocks) {
13683     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13684     if (isa<SCEVCouldNotCompute>(ExitCount))
13685       ExitCount = getExitCount(L, ExitingBB,
13686                                   ScalarEvolution::ConstantMaximum);
13687     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13688       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13689              "We should only have known counts for exiting blocks that "
13690              "dominate latch!");
13691       ExitCounts.push_back(ExitCount);
13692     }
13693   }
13694   if (ExitCounts.empty())
13695     return getCouldNotCompute();
13696   return getUMinFromMismatchedTypes(ExitCounts);
13697 }
13698 
13699 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13700 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13701 /// we cannot guarantee that the replacement is loop invariant in the loop of
13702 /// the AddRec.
13703 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13704   ValueToSCEVMapTy &Map;
13705 
13706 public:
13707   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13708       : SCEVRewriteVisitor(SE), Map(M) {}
13709 
13710   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13711 
13712   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13713     auto I = Map.find(Expr->getValue());
13714     if (I == Map.end())
13715       return Expr;
13716     return I->second;
13717   }
13718 };
13719 
13720 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13721   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13722                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13723     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13724     // replacement SCEV which isn't directly implied by the structure of that
13725     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13726     // legal.  See the scoping rules for flags in the header to understand why.
13727 
13728     // If we have LHS == 0, check if LHS is computing a property of some unknown
13729     // SCEV %v which we can rewrite %v to express explicitly.
13730     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13731     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13732         RHSC->getValue()->isNullValue()) {
13733       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13734       // explicitly express that.
13735       const SCEV *URemLHS = nullptr;
13736       const SCEV *URemRHS = nullptr;
13737       if (matchURem(LHS, URemLHS, URemRHS)) {
13738         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13739           Value *V = LHSUnknown->getValue();
13740           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13741           return;
13742         }
13743       }
13744     }
13745 
13746     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13747       std::swap(LHS, RHS);
13748       Predicate = CmpInst::getSwappedPredicate(Predicate);
13749     }
13750 
13751     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13752     // create this form when combining two checks of the form (X u< C2 + C1) and
13753     // (X >=u C1).
13754     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13755       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13756       if (!AddExpr || AddExpr->getNumOperands() != 2)
13757         return false;
13758 
13759       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13760       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13761       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13762       if (!C1 || !C2 || !LHSUnknown)
13763         return false;
13764 
13765       auto ExactRegion =
13766           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13767               .sub(C1->getAPInt());
13768 
13769       // Bail out, unless we have a non-wrapping, monotonic range.
13770       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13771         return false;
13772       auto I = RewriteMap.find(LHSUnknown->getValue());
13773       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13774       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13775           getConstant(ExactRegion.getUnsignedMin()),
13776           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13777       return true;
13778     };
13779     if (MatchRangeCheckIdiom())
13780       return;
13781 
13782     // For now, limit to conditions that provide information about unknown
13783     // expressions. RHS also cannot contain add recurrences.
13784     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13785     if (!LHSUnknown || containsAddRecurrence(RHS))
13786       return;
13787 
13788     // Check whether LHS has already been rewritten. In that case we want to
13789     // chain further rewrites onto the already rewritten value.
13790     auto I = RewriteMap.find(LHSUnknown->getValue());
13791     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13792     const SCEV *RewrittenRHS = nullptr;
13793     switch (Predicate) {
13794     case CmpInst::ICMP_ULT:
13795       RewrittenRHS =
13796           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13797       break;
13798     case CmpInst::ICMP_SLT:
13799       RewrittenRHS =
13800           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13801       break;
13802     case CmpInst::ICMP_ULE:
13803       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13804       break;
13805     case CmpInst::ICMP_SLE:
13806       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13807       break;
13808     case CmpInst::ICMP_UGT:
13809       RewrittenRHS =
13810           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13811       break;
13812     case CmpInst::ICMP_SGT:
13813       RewrittenRHS =
13814           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13815       break;
13816     case CmpInst::ICMP_UGE:
13817       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13818       break;
13819     case CmpInst::ICMP_SGE:
13820       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13821       break;
13822     case CmpInst::ICMP_EQ:
13823       if (isa<SCEVConstant>(RHS))
13824         RewrittenRHS = RHS;
13825       break;
13826     case CmpInst::ICMP_NE:
13827       if (isa<SCEVConstant>(RHS) &&
13828           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13829         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13830       break;
13831     default:
13832       break;
13833     }
13834 
13835     if (RewrittenRHS)
13836       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13837   };
13838   // Starting at the loop predecessor, climb up the predecessor chain, as long
13839   // as there are predecessors that can be found that have unique successors
13840   // leading to the original header.
13841   // TODO: share this logic with isLoopEntryGuardedByCond.
13842   ValueToSCEVMapTy RewriteMap;
13843   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13844            L->getLoopPredecessor(), L->getHeader());
13845        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13846 
13847     const BranchInst *LoopEntryPredicate =
13848         dyn_cast<BranchInst>(Pair.first->getTerminator());
13849     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13850       continue;
13851 
13852     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13853     SmallVector<Value *, 8> Worklist;
13854     SmallPtrSet<Value *, 8> Visited;
13855     Worklist.push_back(LoopEntryPredicate->getCondition());
13856     while (!Worklist.empty()) {
13857       Value *Cond = Worklist.pop_back_val();
13858       if (!Visited.insert(Cond).second)
13859         continue;
13860 
13861       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13862         auto Predicate =
13863             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13864         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13865                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13866         continue;
13867       }
13868 
13869       Value *L, *R;
13870       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13871                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13872         Worklist.push_back(L);
13873         Worklist.push_back(R);
13874       }
13875     }
13876   }
13877 
13878   // Also collect information from assumptions dominating the loop.
13879   for (auto &AssumeVH : AC.assumptions()) {
13880     if (!AssumeVH)
13881       continue;
13882     auto *AssumeI = cast<CallInst>(AssumeVH);
13883     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13884     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13885       continue;
13886     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13887                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13888   }
13889 
13890   if (RewriteMap.empty())
13891     return Expr;
13892   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13893   return Rewriter.visit(Expr);
13894 }
13895