1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 // <0,+,nonnegative><nw> is also nuw 2394 // TODO: Add corresponding nsw case 2395 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2396 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2397 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 2400 return Flags; 2401 } 2402 2403 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2404 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2405 } 2406 2407 /// Get a canonical add expression, or something simpler if possible. 2408 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2409 SCEV::NoWrapFlags OrigFlags, 2410 unsigned Depth) { 2411 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2412 "only nuw or nsw allowed"); 2413 assert(!Ops.empty() && "Cannot get empty add!"); 2414 if (Ops.size() == 1) return Ops[0]; 2415 #ifndef NDEBUG 2416 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2417 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2418 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2419 "SCEVAddExpr operand types don't match!"); 2420 unsigned NumPtrs = count_if( 2421 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2422 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2423 #endif 2424 2425 // Sort by complexity, this groups all similar expression types together. 2426 GroupByComplexity(Ops, &LI, DT); 2427 2428 // If there are any constants, fold them together. 2429 unsigned Idx = 0; 2430 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2431 ++Idx; 2432 assert(Idx < Ops.size()); 2433 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2434 // We found two constants, fold them together! 2435 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2436 if (Ops.size() == 2) return Ops[0]; 2437 Ops.erase(Ops.begin()+1); // Erase the folded element 2438 LHSC = cast<SCEVConstant>(Ops[0]); 2439 } 2440 2441 // If we are left with a constant zero being added, strip it off. 2442 if (LHSC->getValue()->isZero()) { 2443 Ops.erase(Ops.begin()); 2444 --Idx; 2445 } 2446 2447 if (Ops.size() == 1) return Ops[0]; 2448 } 2449 2450 // Delay expensive flag strengthening until necessary. 2451 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2452 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2453 }; 2454 2455 // Limit recursion calls depth. 2456 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2457 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2458 2459 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2460 // Don't strengthen flags if we have no new information. 2461 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2462 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2463 Add->setNoWrapFlags(ComputeFlags(Ops)); 2464 return S; 2465 } 2466 2467 // Okay, check to see if the same value occurs in the operand list more than 2468 // once. If so, merge them together into an multiply expression. Since we 2469 // sorted the list, these values are required to be adjacent. 2470 Type *Ty = Ops[0]->getType(); 2471 bool FoundMatch = false; 2472 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2473 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2474 // Scan ahead to count how many equal operands there are. 2475 unsigned Count = 2; 2476 while (i+Count != e && Ops[i+Count] == Ops[i]) 2477 ++Count; 2478 // Merge the values into a multiply. 2479 const SCEV *Scale = getConstant(Ty, Count); 2480 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2481 if (Ops.size() == Count) 2482 return Mul; 2483 Ops[i] = Mul; 2484 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2485 --i; e -= Count - 1; 2486 FoundMatch = true; 2487 } 2488 if (FoundMatch) 2489 return getAddExpr(Ops, OrigFlags, Depth + 1); 2490 2491 // Check for truncates. If all the operands are truncated from the same 2492 // type, see if factoring out the truncate would permit the result to be 2493 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2494 // if the contents of the resulting outer trunc fold to something simple. 2495 auto FindTruncSrcType = [&]() -> Type * { 2496 // We're ultimately looking to fold an addrec of truncs and muls of only 2497 // constants and truncs, so if we find any other types of SCEV 2498 // as operands of the addrec then we bail and return nullptr here. 2499 // Otherwise, we return the type of the operand of a trunc that we find. 2500 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2501 return T->getOperand()->getType(); 2502 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2503 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2504 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2505 return T->getOperand()->getType(); 2506 } 2507 return nullptr; 2508 }; 2509 if (auto *SrcType = FindTruncSrcType()) { 2510 SmallVector<const SCEV *, 8> LargeOps; 2511 bool Ok = true; 2512 // Check all the operands to see if they can be represented in the 2513 // source type of the truncate. 2514 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2515 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2516 if (T->getOperand()->getType() != SrcType) { 2517 Ok = false; 2518 break; 2519 } 2520 LargeOps.push_back(T->getOperand()); 2521 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2522 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2523 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2524 SmallVector<const SCEV *, 8> LargeMulOps; 2525 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2526 if (const SCEVTruncateExpr *T = 2527 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2528 if (T->getOperand()->getType() != SrcType) { 2529 Ok = false; 2530 break; 2531 } 2532 LargeMulOps.push_back(T->getOperand()); 2533 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2534 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2535 } else { 2536 Ok = false; 2537 break; 2538 } 2539 } 2540 if (Ok) 2541 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2542 } else { 2543 Ok = false; 2544 break; 2545 } 2546 } 2547 if (Ok) { 2548 // Evaluate the expression in the larger type. 2549 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2550 // If it folds to something simple, use it. Otherwise, don't. 2551 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2552 return getTruncateExpr(Fold, Ty); 2553 } 2554 } 2555 2556 if (Ops.size() == 2) { 2557 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2558 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2559 // C1). 2560 const SCEV *A = Ops[0]; 2561 const SCEV *B = Ops[1]; 2562 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2563 auto *C = dyn_cast<SCEVConstant>(A); 2564 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2565 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2566 auto C2 = C->getAPInt(); 2567 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2568 2569 APInt ConstAdd = C1 + C2; 2570 auto AddFlags = AddExpr->getNoWrapFlags(); 2571 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2572 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2573 ConstAdd.ule(C1)) { 2574 PreservedFlags = 2575 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2576 } 2577 2578 // Adding a constant with the same sign and small magnitude is NSW, if the 2579 // original AddExpr was NSW. 2580 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2581 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2582 ConstAdd.abs().ule(C1.abs())) { 2583 PreservedFlags = 2584 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2585 } 2586 2587 if (PreservedFlags != SCEV::FlagAnyWrap) { 2588 SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(), 2589 AddExpr->op_end()); 2590 NewOps[0] = getConstant(ConstAdd); 2591 return getAddExpr(NewOps, PreservedFlags); 2592 } 2593 } 2594 } 2595 2596 // Skip past any other cast SCEVs. 2597 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2598 ++Idx; 2599 2600 // If there are add operands they would be next. 2601 if (Idx < Ops.size()) { 2602 bool DeletedAdd = false; 2603 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2604 // common NUW flag for expression after inlining. Other flags cannot be 2605 // preserved, because they may depend on the original order of operations. 2606 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2607 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2608 if (Ops.size() > AddOpsInlineThreshold || 2609 Add->getNumOperands() > AddOpsInlineThreshold) 2610 break; 2611 // If we have an add, expand the add operands onto the end of the operands 2612 // list. 2613 Ops.erase(Ops.begin()+Idx); 2614 Ops.append(Add->op_begin(), Add->op_end()); 2615 DeletedAdd = true; 2616 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2617 } 2618 2619 // If we deleted at least one add, we added operands to the end of the list, 2620 // and they are not necessarily sorted. Recurse to resort and resimplify 2621 // any operands we just acquired. 2622 if (DeletedAdd) 2623 return getAddExpr(Ops, CommonFlags, Depth + 1); 2624 } 2625 2626 // Skip over the add expression until we get to a multiply. 2627 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2628 ++Idx; 2629 2630 // Check to see if there are any folding opportunities present with 2631 // operands multiplied by constant values. 2632 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2633 uint64_t BitWidth = getTypeSizeInBits(Ty); 2634 DenseMap<const SCEV *, APInt> M; 2635 SmallVector<const SCEV *, 8> NewOps; 2636 APInt AccumulatedConstant(BitWidth, 0); 2637 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2638 Ops.data(), Ops.size(), 2639 APInt(BitWidth, 1), *this)) { 2640 struct APIntCompare { 2641 bool operator()(const APInt &LHS, const APInt &RHS) const { 2642 return LHS.ult(RHS); 2643 } 2644 }; 2645 2646 // Some interesting folding opportunity is present, so its worthwhile to 2647 // re-generate the operands list. Group the operands by constant scale, 2648 // to avoid multiplying by the same constant scale multiple times. 2649 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2650 for (const SCEV *NewOp : NewOps) 2651 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2652 // Re-generate the operands list. 2653 Ops.clear(); 2654 if (AccumulatedConstant != 0) 2655 Ops.push_back(getConstant(AccumulatedConstant)); 2656 for (auto &MulOp : MulOpLists) { 2657 if (MulOp.first == 1) { 2658 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2659 } else if (MulOp.first != 0) { 2660 Ops.push_back(getMulExpr( 2661 getConstant(MulOp.first), 2662 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2663 SCEV::FlagAnyWrap, Depth + 1)); 2664 } 2665 } 2666 if (Ops.empty()) 2667 return getZero(Ty); 2668 if (Ops.size() == 1) 2669 return Ops[0]; 2670 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2671 } 2672 } 2673 2674 // If we are adding something to a multiply expression, make sure the 2675 // something is not already an operand of the multiply. If so, merge it into 2676 // the multiply. 2677 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2678 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2679 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2680 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2681 if (isa<SCEVConstant>(MulOpSCEV)) 2682 continue; 2683 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2684 if (MulOpSCEV == Ops[AddOp]) { 2685 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2686 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2687 if (Mul->getNumOperands() != 2) { 2688 // If the multiply has more than two operands, we must get the 2689 // Y*Z term. 2690 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2691 Mul->op_begin()+MulOp); 2692 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2693 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2694 } 2695 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2696 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2697 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2698 SCEV::FlagAnyWrap, Depth + 1); 2699 if (Ops.size() == 2) return OuterMul; 2700 if (AddOp < Idx) { 2701 Ops.erase(Ops.begin()+AddOp); 2702 Ops.erase(Ops.begin()+Idx-1); 2703 } else { 2704 Ops.erase(Ops.begin()+Idx); 2705 Ops.erase(Ops.begin()+AddOp-1); 2706 } 2707 Ops.push_back(OuterMul); 2708 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2709 } 2710 2711 // Check this multiply against other multiplies being added together. 2712 for (unsigned OtherMulIdx = Idx+1; 2713 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2714 ++OtherMulIdx) { 2715 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2716 // If MulOp occurs in OtherMul, we can fold the two multiplies 2717 // together. 2718 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2719 OMulOp != e; ++OMulOp) 2720 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2721 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2722 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2723 if (Mul->getNumOperands() != 2) { 2724 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2725 Mul->op_begin()+MulOp); 2726 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2727 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2730 if (OtherMul->getNumOperands() != 2) { 2731 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2732 OtherMul->op_begin()+OMulOp); 2733 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2734 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2735 } 2736 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2737 const SCEV *InnerMulSum = 2738 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2739 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2740 SCEV::FlagAnyWrap, Depth + 1); 2741 if (Ops.size() == 2) return OuterMul; 2742 Ops.erase(Ops.begin()+Idx); 2743 Ops.erase(Ops.begin()+OtherMulIdx-1); 2744 Ops.push_back(OuterMul); 2745 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2746 } 2747 } 2748 } 2749 } 2750 2751 // If there are any add recurrences in the operands list, see if any other 2752 // added values are loop invariant. If so, we can fold them into the 2753 // recurrence. 2754 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2755 ++Idx; 2756 2757 // Scan over all recurrences, trying to fold loop invariants into them. 2758 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2759 // Scan all of the other operands to this add and add them to the vector if 2760 // they are loop invariant w.r.t. the recurrence. 2761 SmallVector<const SCEV *, 8> LIOps; 2762 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2763 const Loop *AddRecLoop = AddRec->getLoop(); 2764 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2765 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2766 LIOps.push_back(Ops[i]); 2767 Ops.erase(Ops.begin()+i); 2768 --i; --e; 2769 } 2770 2771 // If we found some loop invariants, fold them into the recurrence. 2772 if (!LIOps.empty()) { 2773 // Compute nowrap flags for the addition of the loop-invariant ops and 2774 // the addrec. Temporarily push it as an operand for that purpose. 2775 LIOps.push_back(AddRec); 2776 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2777 LIOps.pop_back(); 2778 2779 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2780 LIOps.push_back(AddRec->getStart()); 2781 2782 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2783 // This follows from the fact that the no-wrap flags on the outer add 2784 // expression are applicable on the 0th iteration, when the add recurrence 2785 // will be equal to its start value. 2786 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2787 2788 // Build the new addrec. Propagate the NUW and NSW flags if both the 2789 // outer add and the inner addrec are guaranteed to have no overflow. 2790 // Always propagate NW. 2791 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2792 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2793 2794 // If all of the other operands were loop invariant, we are done. 2795 if (Ops.size() == 1) return NewRec; 2796 2797 // Otherwise, add the folded AddRec by the non-invariant parts. 2798 for (unsigned i = 0;; ++i) 2799 if (Ops[i] == AddRec) { 2800 Ops[i] = NewRec; 2801 break; 2802 } 2803 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2804 } 2805 2806 // Okay, if there weren't any loop invariants to be folded, check to see if 2807 // there are multiple AddRec's with the same loop induction variable being 2808 // added together. If so, we can fold them. 2809 for (unsigned OtherIdx = Idx+1; 2810 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2811 ++OtherIdx) { 2812 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2813 // so that the 1st found AddRecExpr is dominated by all others. 2814 assert(DT.dominates( 2815 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2816 AddRec->getLoop()->getHeader()) && 2817 "AddRecExprs are not sorted in reverse dominance order?"); 2818 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2819 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2820 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2821 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2822 ++OtherIdx) { 2823 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2824 if (OtherAddRec->getLoop() == AddRecLoop) { 2825 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2826 i != e; ++i) { 2827 if (i >= AddRecOps.size()) { 2828 AddRecOps.append(OtherAddRec->op_begin()+i, 2829 OtherAddRec->op_end()); 2830 break; 2831 } 2832 SmallVector<const SCEV *, 2> TwoOps = { 2833 AddRecOps[i], OtherAddRec->getOperand(i)}; 2834 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2835 } 2836 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2837 } 2838 } 2839 // Step size has changed, so we cannot guarantee no self-wraparound. 2840 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2841 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2842 } 2843 } 2844 2845 // Otherwise couldn't fold anything into this recurrence. Move onto the 2846 // next one. 2847 } 2848 2849 // Okay, it looks like we really DO need an add expr. Check to see if we 2850 // already have one, otherwise create a new one. 2851 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2852 } 2853 2854 const SCEV * 2855 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2856 SCEV::NoWrapFlags Flags) { 2857 FoldingSetNodeID ID; 2858 ID.AddInteger(scAddExpr); 2859 for (const SCEV *Op : Ops) 2860 ID.AddPointer(Op); 2861 void *IP = nullptr; 2862 SCEVAddExpr *S = 2863 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2864 if (!S) { 2865 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2866 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2867 S = new (SCEVAllocator) 2868 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2869 UniqueSCEVs.InsertNode(S, IP); 2870 addToLoopUseLists(S); 2871 } 2872 S->setNoWrapFlags(Flags); 2873 return S; 2874 } 2875 2876 const SCEV * 2877 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2878 const Loop *L, SCEV::NoWrapFlags Flags) { 2879 FoldingSetNodeID ID; 2880 ID.AddInteger(scAddRecExpr); 2881 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2882 ID.AddPointer(Ops[i]); 2883 ID.AddPointer(L); 2884 void *IP = nullptr; 2885 SCEVAddRecExpr *S = 2886 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2887 if (!S) { 2888 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2889 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2890 S = new (SCEVAllocator) 2891 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2892 UniqueSCEVs.InsertNode(S, IP); 2893 addToLoopUseLists(S); 2894 } 2895 setNoWrapFlags(S, Flags); 2896 return S; 2897 } 2898 2899 const SCEV * 2900 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2901 SCEV::NoWrapFlags Flags) { 2902 FoldingSetNodeID ID; 2903 ID.AddInteger(scMulExpr); 2904 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2905 ID.AddPointer(Ops[i]); 2906 void *IP = nullptr; 2907 SCEVMulExpr *S = 2908 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2909 if (!S) { 2910 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2911 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2912 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2913 O, Ops.size()); 2914 UniqueSCEVs.InsertNode(S, IP); 2915 addToLoopUseLists(S); 2916 } 2917 S->setNoWrapFlags(Flags); 2918 return S; 2919 } 2920 2921 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2922 uint64_t k = i*j; 2923 if (j > 1 && k / j != i) Overflow = true; 2924 return k; 2925 } 2926 2927 /// Compute the result of "n choose k", the binomial coefficient. If an 2928 /// intermediate computation overflows, Overflow will be set and the return will 2929 /// be garbage. Overflow is not cleared on absence of overflow. 2930 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2931 // We use the multiplicative formula: 2932 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2933 // At each iteration, we take the n-th term of the numeral and divide by the 2934 // (k-n)th term of the denominator. This division will always produce an 2935 // integral result, and helps reduce the chance of overflow in the 2936 // intermediate computations. However, we can still overflow even when the 2937 // final result would fit. 2938 2939 if (n == 0 || n == k) return 1; 2940 if (k > n) return 0; 2941 2942 if (k > n/2) 2943 k = n-k; 2944 2945 uint64_t r = 1; 2946 for (uint64_t i = 1; i <= k; ++i) { 2947 r = umul_ov(r, n-(i-1), Overflow); 2948 r /= i; 2949 } 2950 return r; 2951 } 2952 2953 /// Determine if any of the operands in this SCEV are a constant or if 2954 /// any of the add or multiply expressions in this SCEV contain a constant. 2955 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2956 struct FindConstantInAddMulChain { 2957 bool FoundConstant = false; 2958 2959 bool follow(const SCEV *S) { 2960 FoundConstant |= isa<SCEVConstant>(S); 2961 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2962 } 2963 2964 bool isDone() const { 2965 return FoundConstant; 2966 } 2967 }; 2968 2969 FindConstantInAddMulChain F; 2970 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2971 ST.visitAll(StartExpr); 2972 return F.FoundConstant; 2973 } 2974 2975 /// Get a canonical multiply expression, or something simpler if possible. 2976 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2977 SCEV::NoWrapFlags OrigFlags, 2978 unsigned Depth) { 2979 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2980 "only nuw or nsw allowed"); 2981 assert(!Ops.empty() && "Cannot get empty mul!"); 2982 if (Ops.size() == 1) return Ops[0]; 2983 #ifndef NDEBUG 2984 Type *ETy = Ops[0]->getType(); 2985 assert(!ETy->isPointerTy()); 2986 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2987 assert(Ops[i]->getType() == ETy && 2988 "SCEVMulExpr operand types don't match!"); 2989 #endif 2990 2991 // Sort by complexity, this groups all similar expression types together. 2992 GroupByComplexity(Ops, &LI, DT); 2993 2994 // If there are any constants, fold them together. 2995 unsigned Idx = 0; 2996 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2997 ++Idx; 2998 assert(Idx < Ops.size()); 2999 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3000 // We found two constants, fold them together! 3001 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3002 if (Ops.size() == 2) return Ops[0]; 3003 Ops.erase(Ops.begin()+1); // Erase the folded element 3004 LHSC = cast<SCEVConstant>(Ops[0]); 3005 } 3006 3007 // If we have a multiply of zero, it will always be zero. 3008 if (LHSC->getValue()->isZero()) 3009 return LHSC; 3010 3011 // If we are left with a constant one being multiplied, strip it off. 3012 if (LHSC->getValue()->isOne()) { 3013 Ops.erase(Ops.begin()); 3014 --Idx; 3015 } 3016 3017 if (Ops.size() == 1) 3018 return Ops[0]; 3019 } 3020 3021 // Delay expensive flag strengthening until necessary. 3022 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3023 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3024 }; 3025 3026 // Limit recursion calls depth. 3027 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3028 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3029 3030 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 3031 // Don't strengthen flags if we have no new information. 3032 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3033 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3034 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3035 return S; 3036 } 3037 3038 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3039 if (Ops.size() == 2) { 3040 // C1*(C2+V) -> C1*C2 + C1*V 3041 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3042 // If any of Add's ops are Adds or Muls with a constant, apply this 3043 // transformation as well. 3044 // 3045 // TODO: There are some cases where this transformation is not 3046 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3047 // this transformation should be narrowed down. 3048 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3049 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3050 SCEV::FlagAnyWrap, Depth + 1), 3051 getMulExpr(LHSC, Add->getOperand(1), 3052 SCEV::FlagAnyWrap, Depth + 1), 3053 SCEV::FlagAnyWrap, Depth + 1); 3054 3055 if (Ops[0]->isAllOnesValue()) { 3056 // If we have a mul by -1 of an add, try distributing the -1 among the 3057 // add operands. 3058 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3059 SmallVector<const SCEV *, 4> NewOps; 3060 bool AnyFolded = false; 3061 for (const SCEV *AddOp : Add->operands()) { 3062 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3063 Depth + 1); 3064 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3065 NewOps.push_back(Mul); 3066 } 3067 if (AnyFolded) 3068 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3069 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3070 // Negation preserves a recurrence's no self-wrap property. 3071 SmallVector<const SCEV *, 4> Operands; 3072 for (const SCEV *AddRecOp : AddRec->operands()) 3073 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3074 Depth + 1)); 3075 3076 return getAddRecExpr(Operands, AddRec->getLoop(), 3077 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3078 } 3079 } 3080 } 3081 } 3082 3083 // Skip over the add expression until we get to a multiply. 3084 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3085 ++Idx; 3086 3087 // If there are mul operands inline them all into this expression. 3088 if (Idx < Ops.size()) { 3089 bool DeletedMul = false; 3090 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3091 if (Ops.size() > MulOpsInlineThreshold) 3092 break; 3093 // If we have an mul, expand the mul operands onto the end of the 3094 // operands list. 3095 Ops.erase(Ops.begin()+Idx); 3096 Ops.append(Mul->op_begin(), Mul->op_end()); 3097 DeletedMul = true; 3098 } 3099 3100 // If we deleted at least one mul, we added operands to the end of the 3101 // list, and they are not necessarily sorted. Recurse to resort and 3102 // resimplify any operands we just acquired. 3103 if (DeletedMul) 3104 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3105 } 3106 3107 // If there are any add recurrences in the operands list, see if any other 3108 // added values are loop invariant. If so, we can fold them into the 3109 // recurrence. 3110 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3111 ++Idx; 3112 3113 // Scan over all recurrences, trying to fold loop invariants into them. 3114 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3115 // Scan all of the other operands to this mul and add them to the vector 3116 // if they are loop invariant w.r.t. the recurrence. 3117 SmallVector<const SCEV *, 8> LIOps; 3118 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3119 const Loop *AddRecLoop = AddRec->getLoop(); 3120 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3121 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3122 LIOps.push_back(Ops[i]); 3123 Ops.erase(Ops.begin()+i); 3124 --i; --e; 3125 } 3126 3127 // If we found some loop invariants, fold them into the recurrence. 3128 if (!LIOps.empty()) { 3129 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3130 SmallVector<const SCEV *, 4> NewOps; 3131 NewOps.reserve(AddRec->getNumOperands()); 3132 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3133 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3134 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3135 SCEV::FlagAnyWrap, Depth + 1)); 3136 3137 // Build the new addrec. Propagate the NUW and NSW flags if both the 3138 // outer mul and the inner addrec are guaranteed to have no overflow. 3139 // 3140 // No self-wrap cannot be guaranteed after changing the step size, but 3141 // will be inferred if either NUW or NSW is true. 3142 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3143 const SCEV *NewRec = getAddRecExpr( 3144 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3145 3146 // If all of the other operands were loop invariant, we are done. 3147 if (Ops.size() == 1) return NewRec; 3148 3149 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3150 for (unsigned i = 0;; ++i) 3151 if (Ops[i] == AddRec) { 3152 Ops[i] = NewRec; 3153 break; 3154 } 3155 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3156 } 3157 3158 // Okay, if there weren't any loop invariants to be folded, check to see 3159 // if there are multiple AddRec's with the same loop induction variable 3160 // being multiplied together. If so, we can fold them. 3161 3162 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3163 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3164 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3165 // ]]],+,...up to x=2n}. 3166 // Note that the arguments to choose() are always integers with values 3167 // known at compile time, never SCEV objects. 3168 // 3169 // The implementation avoids pointless extra computations when the two 3170 // addrec's are of different length (mathematically, it's equivalent to 3171 // an infinite stream of zeros on the right). 3172 bool OpsModified = false; 3173 for (unsigned OtherIdx = Idx+1; 3174 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3175 ++OtherIdx) { 3176 const SCEVAddRecExpr *OtherAddRec = 3177 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3178 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3179 continue; 3180 3181 // Limit max number of arguments to avoid creation of unreasonably big 3182 // SCEVAddRecs with very complex operands. 3183 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3184 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3185 continue; 3186 3187 bool Overflow = false; 3188 Type *Ty = AddRec->getType(); 3189 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3190 SmallVector<const SCEV*, 7> AddRecOps; 3191 for (int x = 0, xe = AddRec->getNumOperands() + 3192 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3193 SmallVector <const SCEV *, 7> SumOps; 3194 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3195 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3196 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3197 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3198 z < ze && !Overflow; ++z) { 3199 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3200 uint64_t Coeff; 3201 if (LargerThan64Bits) 3202 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3203 else 3204 Coeff = Coeff1*Coeff2; 3205 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3206 const SCEV *Term1 = AddRec->getOperand(y-z); 3207 const SCEV *Term2 = OtherAddRec->getOperand(z); 3208 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3209 SCEV::FlagAnyWrap, Depth + 1)); 3210 } 3211 } 3212 if (SumOps.empty()) 3213 SumOps.push_back(getZero(Ty)); 3214 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3215 } 3216 if (!Overflow) { 3217 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3218 SCEV::FlagAnyWrap); 3219 if (Ops.size() == 2) return NewAddRec; 3220 Ops[Idx] = NewAddRec; 3221 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3222 OpsModified = true; 3223 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3224 if (!AddRec) 3225 break; 3226 } 3227 } 3228 if (OpsModified) 3229 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3230 3231 // Otherwise couldn't fold anything into this recurrence. Move onto the 3232 // next one. 3233 } 3234 3235 // Okay, it looks like we really DO need an mul expr. Check to see if we 3236 // already have one, otherwise create a new one. 3237 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3238 } 3239 3240 /// Represents an unsigned remainder expression based on unsigned division. 3241 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3242 const SCEV *RHS) { 3243 assert(getEffectiveSCEVType(LHS->getType()) == 3244 getEffectiveSCEVType(RHS->getType()) && 3245 "SCEVURemExpr operand types don't match!"); 3246 3247 // Short-circuit easy cases 3248 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3249 // If constant is one, the result is trivial 3250 if (RHSC->getValue()->isOne()) 3251 return getZero(LHS->getType()); // X urem 1 --> 0 3252 3253 // If constant is a power of two, fold into a zext(trunc(LHS)). 3254 if (RHSC->getAPInt().isPowerOf2()) { 3255 Type *FullTy = LHS->getType(); 3256 Type *TruncTy = 3257 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3258 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3259 } 3260 } 3261 3262 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3263 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3264 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3265 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3266 } 3267 3268 /// Get a canonical unsigned division expression, or something simpler if 3269 /// possible. 3270 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3271 const SCEV *RHS) { 3272 assert(!LHS->getType()->isPointerTy() && 3273 "SCEVUDivExpr operand can't be pointer!"); 3274 assert(LHS->getType() == RHS->getType() && 3275 "SCEVUDivExpr operand types don't match!"); 3276 3277 FoldingSetNodeID ID; 3278 ID.AddInteger(scUDivExpr); 3279 ID.AddPointer(LHS); 3280 ID.AddPointer(RHS); 3281 void *IP = nullptr; 3282 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3283 return S; 3284 3285 // 0 udiv Y == 0 3286 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3287 if (LHSC->getValue()->isZero()) 3288 return LHS; 3289 3290 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3291 if (RHSC->getValue()->isOne()) 3292 return LHS; // X udiv 1 --> x 3293 // If the denominator is zero, the result of the udiv is undefined. Don't 3294 // try to analyze it, because the resolution chosen here may differ from 3295 // the resolution chosen in other parts of the compiler. 3296 if (!RHSC->getValue()->isZero()) { 3297 // Determine if the division can be folded into the operands of 3298 // its operands. 3299 // TODO: Generalize this to non-constants by using known-bits information. 3300 Type *Ty = LHS->getType(); 3301 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3302 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3303 // For non-power-of-two values, effectively round the value up to the 3304 // nearest power of two. 3305 if (!RHSC->getAPInt().isPowerOf2()) 3306 ++MaxShiftAmt; 3307 IntegerType *ExtTy = 3308 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3309 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3310 if (const SCEVConstant *Step = 3311 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3312 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3313 const APInt &StepInt = Step->getAPInt(); 3314 const APInt &DivInt = RHSC->getAPInt(); 3315 if (!StepInt.urem(DivInt) && 3316 getZeroExtendExpr(AR, ExtTy) == 3317 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3318 getZeroExtendExpr(Step, ExtTy), 3319 AR->getLoop(), SCEV::FlagAnyWrap)) { 3320 SmallVector<const SCEV *, 4> Operands; 3321 for (const SCEV *Op : AR->operands()) 3322 Operands.push_back(getUDivExpr(Op, RHS)); 3323 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3324 } 3325 /// Get a canonical UDivExpr for a recurrence. 3326 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3327 // We can currently only fold X%N if X is constant. 3328 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3329 if (StartC && !DivInt.urem(StepInt) && 3330 getZeroExtendExpr(AR, ExtTy) == 3331 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3332 getZeroExtendExpr(Step, ExtTy), 3333 AR->getLoop(), SCEV::FlagAnyWrap)) { 3334 const APInt &StartInt = StartC->getAPInt(); 3335 const APInt &StartRem = StartInt.urem(StepInt); 3336 if (StartRem != 0) { 3337 const SCEV *NewLHS = 3338 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3339 AR->getLoop(), SCEV::FlagNW); 3340 if (LHS != NewLHS) { 3341 LHS = NewLHS; 3342 3343 // Reset the ID to include the new LHS, and check if it is 3344 // already cached. 3345 ID.clear(); 3346 ID.AddInteger(scUDivExpr); 3347 ID.AddPointer(LHS); 3348 ID.AddPointer(RHS); 3349 IP = nullptr; 3350 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3351 return S; 3352 } 3353 } 3354 } 3355 } 3356 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3357 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3358 SmallVector<const SCEV *, 4> Operands; 3359 for (const SCEV *Op : M->operands()) 3360 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3361 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3362 // Find an operand that's safely divisible. 3363 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3364 const SCEV *Op = M->getOperand(i); 3365 const SCEV *Div = getUDivExpr(Op, RHSC); 3366 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3367 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3368 Operands[i] = Div; 3369 return getMulExpr(Operands); 3370 } 3371 } 3372 } 3373 3374 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3375 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3376 if (auto *DivisorConstant = 3377 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3378 bool Overflow = false; 3379 APInt NewRHS = 3380 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3381 if (Overflow) { 3382 return getConstant(RHSC->getType(), 0, false); 3383 } 3384 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3385 } 3386 } 3387 3388 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3389 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3390 SmallVector<const SCEV *, 4> Operands; 3391 for (const SCEV *Op : A->operands()) 3392 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3393 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3394 Operands.clear(); 3395 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3396 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3397 if (isa<SCEVUDivExpr>(Op) || 3398 getMulExpr(Op, RHS) != A->getOperand(i)) 3399 break; 3400 Operands.push_back(Op); 3401 } 3402 if (Operands.size() == A->getNumOperands()) 3403 return getAddExpr(Operands); 3404 } 3405 } 3406 3407 // Fold if both operands are constant. 3408 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3409 Constant *LHSCV = LHSC->getValue(); 3410 Constant *RHSCV = RHSC->getValue(); 3411 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3412 RHSCV))); 3413 } 3414 } 3415 } 3416 3417 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3418 // changes). Make sure we get a new one. 3419 IP = nullptr; 3420 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3421 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3422 LHS, RHS); 3423 UniqueSCEVs.InsertNode(S, IP); 3424 addToLoopUseLists(S); 3425 return S; 3426 } 3427 3428 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3429 APInt A = C1->getAPInt().abs(); 3430 APInt B = C2->getAPInt().abs(); 3431 uint32_t ABW = A.getBitWidth(); 3432 uint32_t BBW = B.getBitWidth(); 3433 3434 if (ABW > BBW) 3435 B = B.zext(ABW); 3436 else if (ABW < BBW) 3437 A = A.zext(BBW); 3438 3439 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3440 } 3441 3442 /// Get a canonical unsigned division expression, or something simpler if 3443 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3444 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3445 /// it's not exact because the udiv may be clearing bits. 3446 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3447 const SCEV *RHS) { 3448 // TODO: we could try to find factors in all sorts of things, but for now we 3449 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3450 // end of this file for inspiration. 3451 3452 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3453 if (!Mul || !Mul->hasNoUnsignedWrap()) 3454 return getUDivExpr(LHS, RHS); 3455 3456 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3457 // If the mulexpr multiplies by a constant, then that constant must be the 3458 // first element of the mulexpr. 3459 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3460 if (LHSCst == RHSCst) { 3461 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3462 return getMulExpr(Operands); 3463 } 3464 3465 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3466 // that there's a factor provided by one of the other terms. We need to 3467 // check. 3468 APInt Factor = gcd(LHSCst, RHSCst); 3469 if (!Factor.isIntN(1)) { 3470 LHSCst = 3471 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3472 RHSCst = 3473 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3474 SmallVector<const SCEV *, 2> Operands; 3475 Operands.push_back(LHSCst); 3476 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3477 LHS = getMulExpr(Operands); 3478 RHS = RHSCst; 3479 Mul = dyn_cast<SCEVMulExpr>(LHS); 3480 if (!Mul) 3481 return getUDivExactExpr(LHS, RHS); 3482 } 3483 } 3484 } 3485 3486 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3487 if (Mul->getOperand(i) == RHS) { 3488 SmallVector<const SCEV *, 2> Operands; 3489 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3490 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3491 return getMulExpr(Operands); 3492 } 3493 } 3494 3495 return getUDivExpr(LHS, RHS); 3496 } 3497 3498 /// Get an add recurrence expression for the specified loop. Simplify the 3499 /// expression as much as possible. 3500 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3501 const Loop *L, 3502 SCEV::NoWrapFlags Flags) { 3503 SmallVector<const SCEV *, 4> Operands; 3504 Operands.push_back(Start); 3505 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3506 if (StepChrec->getLoop() == L) { 3507 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3508 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3509 } 3510 3511 Operands.push_back(Step); 3512 return getAddRecExpr(Operands, L, Flags); 3513 } 3514 3515 /// Get an add recurrence expression for the specified loop. Simplify the 3516 /// expression as much as possible. 3517 const SCEV * 3518 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3519 const Loop *L, SCEV::NoWrapFlags Flags) { 3520 if (Operands.size() == 1) return Operands[0]; 3521 #ifndef NDEBUG 3522 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3523 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3524 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3525 "SCEVAddRecExpr operand types don't match!"); 3526 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3527 } 3528 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3529 assert(isLoopInvariant(Operands[i], L) && 3530 "SCEVAddRecExpr operand is not loop-invariant!"); 3531 #endif 3532 3533 if (Operands.back()->isZero()) { 3534 Operands.pop_back(); 3535 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3536 } 3537 3538 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3539 // use that information to infer NUW and NSW flags. However, computing a 3540 // BE count requires calling getAddRecExpr, so we may not yet have a 3541 // meaningful BE count at this point (and if we don't, we'd be stuck 3542 // with a SCEVCouldNotCompute as the cached BE count). 3543 3544 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3545 3546 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3547 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3548 const Loop *NestedLoop = NestedAR->getLoop(); 3549 if (L->contains(NestedLoop) 3550 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3551 : (!NestedLoop->contains(L) && 3552 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3553 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3554 Operands[0] = NestedAR->getStart(); 3555 // AddRecs require their operands be loop-invariant with respect to their 3556 // loops. Don't perform this transformation if it would break this 3557 // requirement. 3558 bool AllInvariant = all_of( 3559 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3560 3561 if (AllInvariant) { 3562 // Create a recurrence for the outer loop with the same step size. 3563 // 3564 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3565 // inner recurrence has the same property. 3566 SCEV::NoWrapFlags OuterFlags = 3567 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3568 3569 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3570 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3571 return isLoopInvariant(Op, NestedLoop); 3572 }); 3573 3574 if (AllInvariant) { 3575 // Ok, both add recurrences are valid after the transformation. 3576 // 3577 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3578 // the outer recurrence has the same property. 3579 SCEV::NoWrapFlags InnerFlags = 3580 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3581 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3582 } 3583 } 3584 // Reset Operands to its original state. 3585 Operands[0] = NestedAR; 3586 } 3587 } 3588 3589 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3590 // already have one, otherwise create a new one. 3591 return getOrCreateAddRecExpr(Operands, L, Flags); 3592 } 3593 3594 const SCEV * 3595 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3596 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3597 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3598 // getSCEV(Base)->getType() has the same address space as Base->getType() 3599 // because SCEV::getType() preserves the address space. 3600 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3601 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3602 // instruction to its SCEV, because the Instruction may be guarded by control 3603 // flow and the no-overflow bits may not be valid for the expression in any 3604 // context. This can be fixed similarly to how these flags are handled for 3605 // adds. 3606 SCEV::NoWrapFlags OffsetWrap = 3607 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3608 3609 Type *CurTy = GEP->getType(); 3610 bool FirstIter = true; 3611 SmallVector<const SCEV *, 4> Offsets; 3612 for (const SCEV *IndexExpr : IndexExprs) { 3613 // Compute the (potentially symbolic) offset in bytes for this index. 3614 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3615 // For a struct, add the member offset. 3616 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3617 unsigned FieldNo = Index->getZExtValue(); 3618 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3619 Offsets.push_back(FieldOffset); 3620 3621 // Update CurTy to the type of the field at Index. 3622 CurTy = STy->getTypeAtIndex(Index); 3623 } else { 3624 // Update CurTy to its element type. 3625 if (FirstIter) { 3626 assert(isa<PointerType>(CurTy) && 3627 "The first index of a GEP indexes a pointer"); 3628 CurTy = GEP->getSourceElementType(); 3629 FirstIter = false; 3630 } else { 3631 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3632 } 3633 // For an array, add the element offset, explicitly scaled. 3634 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3635 // Getelementptr indices are signed. 3636 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3637 3638 // Multiply the index by the element size to compute the element offset. 3639 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3640 Offsets.push_back(LocalOffset); 3641 } 3642 } 3643 3644 // Handle degenerate case of GEP without offsets. 3645 if (Offsets.empty()) 3646 return BaseExpr; 3647 3648 // Add the offsets together, assuming nsw if inbounds. 3649 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3650 // Add the base address and the offset. We cannot use the nsw flag, as the 3651 // base address is unsigned. However, if we know that the offset is 3652 // non-negative, we can use nuw. 3653 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3654 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3655 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3656 assert(BaseExpr->getType() == GEPExpr->getType() && 3657 "GEP should not change type mid-flight."); 3658 return GEPExpr; 3659 } 3660 3661 std::tuple<SCEV *, FoldingSetNodeID, void *> 3662 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3663 ArrayRef<const SCEV *> Ops) { 3664 FoldingSetNodeID ID; 3665 void *IP = nullptr; 3666 ID.AddInteger(SCEVType); 3667 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3668 ID.AddPointer(Ops[i]); 3669 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3670 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3671 } 3672 3673 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3674 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3675 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3676 } 3677 3678 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3679 SmallVectorImpl<const SCEV *> &Ops) { 3680 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3681 if (Ops.size() == 1) return Ops[0]; 3682 #ifndef NDEBUG 3683 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3684 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3685 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3686 "Operand types don't match!"); 3687 assert(Ops[0]->getType()->isPointerTy() == 3688 Ops[i]->getType()->isPointerTy() && 3689 "min/max should be consistently pointerish"); 3690 } 3691 #endif 3692 3693 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3694 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3695 3696 // Sort by complexity, this groups all similar expression types together. 3697 GroupByComplexity(Ops, &LI, DT); 3698 3699 // Check if we have created the same expression before. 3700 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3701 return S; 3702 } 3703 3704 // If there are any constants, fold them together. 3705 unsigned Idx = 0; 3706 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3707 ++Idx; 3708 assert(Idx < Ops.size()); 3709 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3710 if (Kind == scSMaxExpr) 3711 return APIntOps::smax(LHS, RHS); 3712 else if (Kind == scSMinExpr) 3713 return APIntOps::smin(LHS, RHS); 3714 else if (Kind == scUMaxExpr) 3715 return APIntOps::umax(LHS, RHS); 3716 else if (Kind == scUMinExpr) 3717 return APIntOps::umin(LHS, RHS); 3718 llvm_unreachable("Unknown SCEV min/max opcode"); 3719 }; 3720 3721 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3722 // We found two constants, fold them together! 3723 ConstantInt *Fold = ConstantInt::get( 3724 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3725 Ops[0] = getConstant(Fold); 3726 Ops.erase(Ops.begin()+1); // Erase the folded element 3727 if (Ops.size() == 1) return Ops[0]; 3728 LHSC = cast<SCEVConstant>(Ops[0]); 3729 } 3730 3731 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3732 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3733 3734 if (IsMax ? IsMinV : IsMaxV) { 3735 // If we are left with a constant minimum(/maximum)-int, strip it off. 3736 Ops.erase(Ops.begin()); 3737 --Idx; 3738 } else if (IsMax ? IsMaxV : IsMinV) { 3739 // If we have a max(/min) with a constant maximum(/minimum)-int, 3740 // it will always be the extremum. 3741 return LHSC; 3742 } 3743 3744 if (Ops.size() == 1) return Ops[0]; 3745 } 3746 3747 // Find the first operation of the same kind 3748 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3749 ++Idx; 3750 3751 // Check to see if one of the operands is of the same kind. If so, expand its 3752 // operands onto our operand list, and recurse to simplify. 3753 if (Idx < Ops.size()) { 3754 bool DeletedAny = false; 3755 while (Ops[Idx]->getSCEVType() == Kind) { 3756 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3757 Ops.erase(Ops.begin()+Idx); 3758 Ops.append(SMME->op_begin(), SMME->op_end()); 3759 DeletedAny = true; 3760 } 3761 3762 if (DeletedAny) 3763 return getMinMaxExpr(Kind, Ops); 3764 } 3765 3766 // Okay, check to see if the same value occurs in the operand list twice. If 3767 // so, delete one. Since we sorted the list, these values are required to 3768 // be adjacent. 3769 llvm::CmpInst::Predicate GEPred = 3770 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3771 llvm::CmpInst::Predicate LEPred = 3772 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3773 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3774 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3775 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3776 if (Ops[i] == Ops[i + 1] || 3777 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3778 // X op Y op Y --> X op Y 3779 // X op Y --> X, if we know X, Y are ordered appropriately 3780 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3781 --i; 3782 --e; 3783 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3784 Ops[i + 1])) { 3785 // X op Y --> Y, if we know X, Y are ordered appropriately 3786 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3787 --i; 3788 --e; 3789 } 3790 } 3791 3792 if (Ops.size() == 1) return Ops[0]; 3793 3794 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3795 3796 // Okay, it looks like we really DO need an expr. Check to see if we 3797 // already have one, otherwise create a new one. 3798 const SCEV *ExistingSCEV; 3799 FoldingSetNodeID ID; 3800 void *IP; 3801 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3802 if (ExistingSCEV) 3803 return ExistingSCEV; 3804 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3805 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3806 SCEV *S = new (SCEVAllocator) 3807 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3808 3809 UniqueSCEVs.InsertNode(S, IP); 3810 addToLoopUseLists(S); 3811 return S; 3812 } 3813 3814 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3815 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3816 return getSMaxExpr(Ops); 3817 } 3818 3819 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3820 return getMinMaxExpr(scSMaxExpr, Ops); 3821 } 3822 3823 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3824 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3825 return getUMaxExpr(Ops); 3826 } 3827 3828 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3829 return getMinMaxExpr(scUMaxExpr, Ops); 3830 } 3831 3832 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3833 const SCEV *RHS) { 3834 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3835 return getSMinExpr(Ops); 3836 } 3837 3838 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3839 return getMinMaxExpr(scSMinExpr, Ops); 3840 } 3841 3842 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3843 const SCEV *RHS) { 3844 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3845 return getUMinExpr(Ops); 3846 } 3847 3848 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3849 return getMinMaxExpr(scUMinExpr, Ops); 3850 } 3851 3852 const SCEV * 3853 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3854 ScalableVectorType *ScalableTy) { 3855 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3856 Constant *One = ConstantInt::get(IntTy, 1); 3857 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3858 // Note that the expression we created is the final expression, we don't 3859 // want to simplify it any further Also, if we call a normal getSCEV(), 3860 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3861 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3862 } 3863 3864 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3865 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3866 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3867 // We can bypass creating a target-independent constant expression and then 3868 // folding it back into a ConstantInt. This is just a compile-time 3869 // optimization. 3870 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3871 } 3872 3873 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3874 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3875 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3876 // We can bypass creating a target-independent constant expression and then 3877 // folding it back into a ConstantInt. This is just a compile-time 3878 // optimization. 3879 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3880 } 3881 3882 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3883 StructType *STy, 3884 unsigned FieldNo) { 3885 // We can bypass creating a target-independent constant expression and then 3886 // folding it back into a ConstantInt. This is just a compile-time 3887 // optimization. 3888 return getConstant( 3889 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3890 } 3891 3892 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3893 // Don't attempt to do anything other than create a SCEVUnknown object 3894 // here. createSCEV only calls getUnknown after checking for all other 3895 // interesting possibilities, and any other code that calls getUnknown 3896 // is doing so in order to hide a value from SCEV canonicalization. 3897 3898 FoldingSetNodeID ID; 3899 ID.AddInteger(scUnknown); 3900 ID.AddPointer(V); 3901 void *IP = nullptr; 3902 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3903 assert(cast<SCEVUnknown>(S)->getValue() == V && 3904 "Stale SCEVUnknown in uniquing map!"); 3905 return S; 3906 } 3907 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3908 FirstUnknown); 3909 FirstUnknown = cast<SCEVUnknown>(S); 3910 UniqueSCEVs.InsertNode(S, IP); 3911 return S; 3912 } 3913 3914 //===----------------------------------------------------------------------===// 3915 // Basic SCEV Analysis and PHI Idiom Recognition Code 3916 // 3917 3918 /// Test if values of the given type are analyzable within the SCEV 3919 /// framework. This primarily includes integer types, and it can optionally 3920 /// include pointer types if the ScalarEvolution class has access to 3921 /// target-specific information. 3922 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3923 // Integers and pointers are always SCEVable. 3924 return Ty->isIntOrPtrTy(); 3925 } 3926 3927 /// Return the size in bits of the specified type, for which isSCEVable must 3928 /// return true. 3929 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3930 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3931 if (Ty->isPointerTy()) 3932 return getDataLayout().getIndexTypeSizeInBits(Ty); 3933 return getDataLayout().getTypeSizeInBits(Ty); 3934 } 3935 3936 /// Return a type with the same bitwidth as the given type and which represents 3937 /// how SCEV will treat the given type, for which isSCEVable must return 3938 /// true. For pointer types, this is the pointer index sized integer type. 3939 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3940 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3941 3942 if (Ty->isIntegerTy()) 3943 return Ty; 3944 3945 // The only other support type is pointer. 3946 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3947 return getDataLayout().getIndexType(Ty); 3948 } 3949 3950 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3951 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3952 } 3953 3954 const SCEV *ScalarEvolution::getCouldNotCompute() { 3955 return CouldNotCompute.get(); 3956 } 3957 3958 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3959 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3960 auto *SU = dyn_cast<SCEVUnknown>(S); 3961 return SU && SU->getValue() == nullptr; 3962 }); 3963 3964 return !ContainsNulls; 3965 } 3966 3967 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3968 HasRecMapType::iterator I = HasRecMap.find(S); 3969 if (I != HasRecMap.end()) 3970 return I->second; 3971 3972 bool FoundAddRec = 3973 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3974 HasRecMap.insert({S, FoundAddRec}); 3975 return FoundAddRec; 3976 } 3977 3978 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3979 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3980 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3981 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3982 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3983 if (!Add) 3984 return {S, nullptr}; 3985 3986 if (Add->getNumOperands() != 2) 3987 return {S, nullptr}; 3988 3989 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3990 if (!ConstOp) 3991 return {S, nullptr}; 3992 3993 return {Add->getOperand(1), ConstOp->getValue()}; 3994 } 3995 3996 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3997 /// by the value and offset from any ValueOffsetPair in the set. 3998 ScalarEvolution::ValueOffsetPairSetVector * 3999 ScalarEvolution::getSCEVValues(const SCEV *S) { 4000 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4001 if (SI == ExprValueMap.end()) 4002 return nullptr; 4003 #ifndef NDEBUG 4004 if (VerifySCEVMap) { 4005 // Check there is no dangling Value in the set returned. 4006 for (const auto &VE : SI->second) 4007 assert(ValueExprMap.count(VE.first)); 4008 } 4009 #endif 4010 return &SI->second; 4011 } 4012 4013 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4014 /// cannot be used separately. eraseValueFromMap should be used to remove 4015 /// V from ValueExprMap and ExprValueMap at the same time. 4016 void ScalarEvolution::eraseValueFromMap(Value *V) { 4017 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4018 if (I != ValueExprMap.end()) { 4019 const SCEV *S = I->second; 4020 // Remove {V, 0} from the set of ExprValueMap[S] 4021 if (auto *SV = getSCEVValues(S)) 4022 SV->remove({V, nullptr}); 4023 4024 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4025 const SCEV *Stripped; 4026 ConstantInt *Offset; 4027 std::tie(Stripped, Offset) = splitAddExpr(S); 4028 if (Offset != nullptr) { 4029 if (auto *SV = getSCEVValues(Stripped)) 4030 SV->remove({V, Offset}); 4031 } 4032 ValueExprMap.erase(V); 4033 } 4034 } 4035 4036 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4037 /// TODO: In reality it is better to check the poison recursively 4038 /// but this is better than nothing. 4039 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4040 if (auto *I = dyn_cast<Instruction>(V)) { 4041 if (isa<OverflowingBinaryOperator>(I)) { 4042 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4043 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4044 return true; 4045 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4046 return true; 4047 } 4048 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4049 return true; 4050 } 4051 return false; 4052 } 4053 4054 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4055 /// create a new one. 4056 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4057 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4058 4059 const SCEV *S = getExistingSCEV(V); 4060 if (S == nullptr) { 4061 S = createSCEV(V); 4062 // During PHI resolution, it is possible to create two SCEVs for the same 4063 // V, so it is needed to double check whether V->S is inserted into 4064 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4065 std::pair<ValueExprMapType::iterator, bool> Pair = 4066 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4067 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4068 ExprValueMap[S].insert({V, nullptr}); 4069 4070 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4071 // ExprValueMap. 4072 const SCEV *Stripped = S; 4073 ConstantInt *Offset = nullptr; 4074 std::tie(Stripped, Offset) = splitAddExpr(S); 4075 // If stripped is SCEVUnknown, don't bother to save 4076 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4077 // increase the complexity of the expansion code. 4078 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4079 // because it may generate add/sub instead of GEP in SCEV expansion. 4080 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4081 !isa<GetElementPtrInst>(V)) 4082 ExprValueMap[Stripped].insert({V, Offset}); 4083 } 4084 } 4085 return S; 4086 } 4087 4088 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4089 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4090 4091 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4092 if (I != ValueExprMap.end()) { 4093 const SCEV *S = I->second; 4094 if (checkValidity(S)) 4095 return S; 4096 eraseValueFromMap(V); 4097 forgetMemoizedResults(S); 4098 } 4099 return nullptr; 4100 } 4101 4102 /// Return a SCEV corresponding to -V = -1*V 4103 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4104 SCEV::NoWrapFlags Flags) { 4105 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4106 return getConstant( 4107 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4108 4109 Type *Ty = V->getType(); 4110 Ty = getEffectiveSCEVType(Ty); 4111 return getMulExpr(V, getMinusOne(Ty), Flags); 4112 } 4113 4114 /// If Expr computes ~A, return A else return nullptr 4115 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4116 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4117 if (!Add || Add->getNumOperands() != 2 || 4118 !Add->getOperand(0)->isAllOnesValue()) 4119 return nullptr; 4120 4121 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4122 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4123 !AddRHS->getOperand(0)->isAllOnesValue()) 4124 return nullptr; 4125 4126 return AddRHS->getOperand(1); 4127 } 4128 4129 /// Return a SCEV corresponding to ~V = -1-V 4130 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4131 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4132 return getConstant( 4133 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4134 4135 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4136 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4137 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4138 SmallVector<const SCEV *, 2> MatchedOperands; 4139 for (const SCEV *Operand : MME->operands()) { 4140 const SCEV *Matched = MatchNotExpr(Operand); 4141 if (!Matched) 4142 return (const SCEV *)nullptr; 4143 MatchedOperands.push_back(Matched); 4144 } 4145 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4146 MatchedOperands); 4147 }; 4148 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4149 return Replaced; 4150 } 4151 4152 Type *Ty = V->getType(); 4153 Ty = getEffectiveSCEVType(Ty); 4154 return getMinusSCEV(getMinusOne(Ty), V); 4155 } 4156 4157 /// Compute an expression equivalent to S - getPointerBase(S). 4158 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) { 4159 assert(P->getType()->isPointerTy()); 4160 4161 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4162 // The base of an AddRec is the first operand. 4163 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4164 Ops[0] = removePointerBase(SE, Ops[0]); 4165 // Don't try to transfer nowrap flags for now. We could in some cases 4166 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4167 return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4168 } 4169 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4170 // The base of an Add is the pointer operand. 4171 SmallVector<const SCEV *> Ops{Add->operands()}; 4172 const SCEV **PtrOp = nullptr; 4173 for (const SCEV *&AddOp : Ops) { 4174 if (AddOp->getType()->isPointerTy()) { 4175 // If we find an Add with multiple pointer operands, treat it as a 4176 // pointer base to be consistent with getPointerBase. Eventually 4177 // we should be able to assert this is impossible. 4178 if (PtrOp) 4179 return SE->getZero(P->getType()); 4180 PtrOp = &AddOp; 4181 } 4182 } 4183 *PtrOp = removePointerBase(SE, *PtrOp); 4184 // Don't try to transfer nowrap flags for now. We could in some cases 4185 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4186 return SE->getAddExpr(Ops); 4187 } 4188 // Any other expression must be a pointer base. 4189 return SE->getZero(P->getType()); 4190 } 4191 4192 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4193 SCEV::NoWrapFlags Flags, 4194 unsigned Depth) { 4195 // Fast path: X - X --> 0. 4196 if (LHS == RHS) 4197 return getZero(LHS->getType()); 4198 4199 // If we subtract two pointers with different pointer bases, bail. 4200 // Eventually, we're going to add an assertion to getMulExpr that we 4201 // can't multiply by a pointer. 4202 if (RHS->getType()->isPointerTy()) { 4203 if (!LHS->getType()->isPointerTy() || 4204 getPointerBase(LHS) != getPointerBase(RHS)) 4205 return getCouldNotCompute(); 4206 LHS = removePointerBase(this, LHS); 4207 RHS = removePointerBase(this, RHS); 4208 } 4209 4210 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4211 // makes it so that we cannot make much use of NUW. 4212 auto AddFlags = SCEV::FlagAnyWrap; 4213 const bool RHSIsNotMinSigned = 4214 !getSignedRangeMin(RHS).isMinSignedValue(); 4215 if (hasFlags(Flags, SCEV::FlagNSW)) { 4216 // Let M be the minimum representable signed value. Then (-1)*RHS 4217 // signed-wraps if and only if RHS is M. That can happen even for 4218 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4219 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4220 // (-1)*RHS, we need to prove that RHS != M. 4221 // 4222 // If LHS is non-negative and we know that LHS - RHS does not 4223 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4224 // either by proving that RHS > M or that LHS >= 0. 4225 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4226 AddFlags = SCEV::FlagNSW; 4227 } 4228 } 4229 4230 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4231 // RHS is NSW and LHS >= 0. 4232 // 4233 // The difficulty here is that the NSW flag may have been proven 4234 // relative to a loop that is to be found in a recurrence in LHS and 4235 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4236 // larger scope than intended. 4237 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4238 4239 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4240 } 4241 4242 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4243 unsigned Depth) { 4244 Type *SrcTy = V->getType(); 4245 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4246 "Cannot truncate or zero extend with non-integer arguments!"); 4247 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4248 return V; // No conversion 4249 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4250 return getTruncateExpr(V, Ty, Depth); 4251 return getZeroExtendExpr(V, Ty, Depth); 4252 } 4253 4254 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4255 unsigned Depth) { 4256 Type *SrcTy = V->getType(); 4257 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4258 "Cannot truncate or zero extend with non-integer arguments!"); 4259 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4260 return V; // No conversion 4261 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4262 return getTruncateExpr(V, Ty, Depth); 4263 return getSignExtendExpr(V, Ty, Depth); 4264 } 4265 4266 const SCEV * 4267 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4268 Type *SrcTy = V->getType(); 4269 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4270 "Cannot noop or zero extend with non-integer arguments!"); 4271 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4272 "getNoopOrZeroExtend cannot truncate!"); 4273 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4274 return V; // No conversion 4275 return getZeroExtendExpr(V, Ty); 4276 } 4277 4278 const SCEV * 4279 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4280 Type *SrcTy = V->getType(); 4281 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4282 "Cannot noop or sign extend with non-integer arguments!"); 4283 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4284 "getNoopOrSignExtend cannot truncate!"); 4285 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4286 return V; // No conversion 4287 return getSignExtendExpr(V, Ty); 4288 } 4289 4290 const SCEV * 4291 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4292 Type *SrcTy = V->getType(); 4293 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4294 "Cannot noop or any extend with non-integer arguments!"); 4295 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4296 "getNoopOrAnyExtend cannot truncate!"); 4297 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4298 return V; // No conversion 4299 return getAnyExtendExpr(V, Ty); 4300 } 4301 4302 const SCEV * 4303 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4304 Type *SrcTy = V->getType(); 4305 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4306 "Cannot truncate or noop with non-integer arguments!"); 4307 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4308 "getTruncateOrNoop cannot extend!"); 4309 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4310 return V; // No conversion 4311 return getTruncateExpr(V, Ty); 4312 } 4313 4314 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4315 const SCEV *RHS) { 4316 const SCEV *PromotedLHS = LHS; 4317 const SCEV *PromotedRHS = RHS; 4318 4319 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4320 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4321 else 4322 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4323 4324 return getUMaxExpr(PromotedLHS, PromotedRHS); 4325 } 4326 4327 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4328 const SCEV *RHS) { 4329 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4330 return getUMinFromMismatchedTypes(Ops); 4331 } 4332 4333 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4334 SmallVectorImpl<const SCEV *> &Ops) { 4335 assert(!Ops.empty() && "At least one operand must be!"); 4336 // Trivial case. 4337 if (Ops.size() == 1) 4338 return Ops[0]; 4339 4340 // Find the max type first. 4341 Type *MaxType = nullptr; 4342 for (auto *S : Ops) 4343 if (MaxType) 4344 MaxType = getWiderType(MaxType, S->getType()); 4345 else 4346 MaxType = S->getType(); 4347 assert(MaxType && "Failed to find maximum type!"); 4348 4349 // Extend all ops to max type. 4350 SmallVector<const SCEV *, 2> PromotedOps; 4351 for (auto *S : Ops) 4352 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4353 4354 // Generate umin. 4355 return getUMinExpr(PromotedOps); 4356 } 4357 4358 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4359 // A pointer operand may evaluate to a nonpointer expression, such as null. 4360 if (!V->getType()->isPointerTy()) 4361 return V; 4362 4363 while (true) { 4364 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4365 V = AddRec->getStart(); 4366 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4367 const SCEV *PtrOp = nullptr; 4368 for (const SCEV *AddOp : Add->operands()) { 4369 if (AddOp->getType()->isPointerTy()) { 4370 // Cannot find the base of an expression with multiple pointer ops. 4371 if (PtrOp) 4372 return V; 4373 PtrOp = AddOp; 4374 } 4375 } 4376 if (!PtrOp) // All operands were non-pointer. 4377 return V; 4378 V = PtrOp; 4379 } else // Not something we can look further into. 4380 return V; 4381 } 4382 } 4383 4384 /// Push users of the given Instruction onto the given Worklist. 4385 static void 4386 PushDefUseChildren(Instruction *I, 4387 SmallVectorImpl<Instruction *> &Worklist) { 4388 // Push the def-use children onto the Worklist stack. 4389 for (User *U : I->users()) 4390 Worklist.push_back(cast<Instruction>(U)); 4391 } 4392 4393 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4394 SmallVector<Instruction *, 16> Worklist; 4395 PushDefUseChildren(PN, Worklist); 4396 4397 SmallPtrSet<Instruction *, 8> Visited; 4398 Visited.insert(PN); 4399 while (!Worklist.empty()) { 4400 Instruction *I = Worklist.pop_back_val(); 4401 if (!Visited.insert(I).second) 4402 continue; 4403 4404 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4405 if (It != ValueExprMap.end()) { 4406 const SCEV *Old = It->second; 4407 4408 // Short-circuit the def-use traversal if the symbolic name 4409 // ceases to appear in expressions. 4410 if (Old != SymName && !hasOperand(Old, SymName)) 4411 continue; 4412 4413 // SCEVUnknown for a PHI either means that it has an unrecognized 4414 // structure, it's a PHI that's in the progress of being computed 4415 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4416 // additional loop trip count information isn't going to change anything. 4417 // In the second case, createNodeForPHI will perform the necessary 4418 // updates on its own when it gets to that point. In the third, we do 4419 // want to forget the SCEVUnknown. 4420 if (!isa<PHINode>(I) || 4421 !isa<SCEVUnknown>(Old) || 4422 (I != PN && Old == SymName)) { 4423 eraseValueFromMap(It->first); 4424 forgetMemoizedResults(Old); 4425 } 4426 } 4427 4428 PushDefUseChildren(I, Worklist); 4429 } 4430 } 4431 4432 namespace { 4433 4434 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4435 /// expression in case its Loop is L. If it is not L then 4436 /// if IgnoreOtherLoops is true then use AddRec itself 4437 /// otherwise rewrite cannot be done. 4438 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4439 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4440 public: 4441 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4442 bool IgnoreOtherLoops = true) { 4443 SCEVInitRewriter Rewriter(L, SE); 4444 const SCEV *Result = Rewriter.visit(S); 4445 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4446 return SE.getCouldNotCompute(); 4447 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4448 ? SE.getCouldNotCompute() 4449 : Result; 4450 } 4451 4452 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4453 if (!SE.isLoopInvariant(Expr, L)) 4454 SeenLoopVariantSCEVUnknown = true; 4455 return Expr; 4456 } 4457 4458 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4459 // Only re-write AddRecExprs for this loop. 4460 if (Expr->getLoop() == L) 4461 return Expr->getStart(); 4462 SeenOtherLoops = true; 4463 return Expr; 4464 } 4465 4466 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4467 4468 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4469 4470 private: 4471 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4472 : SCEVRewriteVisitor(SE), L(L) {} 4473 4474 const Loop *L; 4475 bool SeenLoopVariantSCEVUnknown = false; 4476 bool SeenOtherLoops = false; 4477 }; 4478 4479 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4480 /// increment expression in case its Loop is L. If it is not L then 4481 /// use AddRec itself. 4482 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4483 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4484 public: 4485 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4486 SCEVPostIncRewriter Rewriter(L, SE); 4487 const SCEV *Result = Rewriter.visit(S); 4488 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4489 ? SE.getCouldNotCompute() 4490 : Result; 4491 } 4492 4493 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4494 if (!SE.isLoopInvariant(Expr, L)) 4495 SeenLoopVariantSCEVUnknown = true; 4496 return Expr; 4497 } 4498 4499 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4500 // Only re-write AddRecExprs for this loop. 4501 if (Expr->getLoop() == L) 4502 return Expr->getPostIncExpr(SE); 4503 SeenOtherLoops = true; 4504 return Expr; 4505 } 4506 4507 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4508 4509 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4510 4511 private: 4512 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4513 : SCEVRewriteVisitor(SE), L(L) {} 4514 4515 const Loop *L; 4516 bool SeenLoopVariantSCEVUnknown = false; 4517 bool SeenOtherLoops = false; 4518 }; 4519 4520 /// This class evaluates the compare condition by matching it against the 4521 /// condition of loop latch. If there is a match we assume a true value 4522 /// for the condition while building SCEV nodes. 4523 class SCEVBackedgeConditionFolder 4524 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4525 public: 4526 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4527 ScalarEvolution &SE) { 4528 bool IsPosBECond = false; 4529 Value *BECond = nullptr; 4530 if (BasicBlock *Latch = L->getLoopLatch()) { 4531 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4532 if (BI && BI->isConditional()) { 4533 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4534 "Both outgoing branches should not target same header!"); 4535 BECond = BI->getCondition(); 4536 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4537 } else { 4538 return S; 4539 } 4540 } 4541 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4542 return Rewriter.visit(S); 4543 } 4544 4545 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4546 const SCEV *Result = Expr; 4547 bool InvariantF = SE.isLoopInvariant(Expr, L); 4548 4549 if (!InvariantF) { 4550 Instruction *I = cast<Instruction>(Expr->getValue()); 4551 switch (I->getOpcode()) { 4552 case Instruction::Select: { 4553 SelectInst *SI = cast<SelectInst>(I); 4554 Optional<const SCEV *> Res = 4555 compareWithBackedgeCondition(SI->getCondition()); 4556 if (Res.hasValue()) { 4557 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4558 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4559 } 4560 break; 4561 } 4562 default: { 4563 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4564 if (Res.hasValue()) 4565 Result = Res.getValue(); 4566 break; 4567 } 4568 } 4569 } 4570 return Result; 4571 } 4572 4573 private: 4574 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4575 bool IsPosBECond, ScalarEvolution &SE) 4576 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4577 IsPositiveBECond(IsPosBECond) {} 4578 4579 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4580 4581 const Loop *L; 4582 /// Loop back condition. 4583 Value *BackedgeCond = nullptr; 4584 /// Set to true if loop back is on positive branch condition. 4585 bool IsPositiveBECond; 4586 }; 4587 4588 Optional<const SCEV *> 4589 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4590 4591 // If value matches the backedge condition for loop latch, 4592 // then return a constant evolution node based on loopback 4593 // branch taken. 4594 if (BackedgeCond == IC) 4595 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4596 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4597 return None; 4598 } 4599 4600 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4601 public: 4602 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4603 ScalarEvolution &SE) { 4604 SCEVShiftRewriter Rewriter(L, SE); 4605 const SCEV *Result = Rewriter.visit(S); 4606 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4607 } 4608 4609 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4610 // Only allow AddRecExprs for this loop. 4611 if (!SE.isLoopInvariant(Expr, L)) 4612 Valid = false; 4613 return Expr; 4614 } 4615 4616 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4617 if (Expr->getLoop() == L && Expr->isAffine()) 4618 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4619 Valid = false; 4620 return Expr; 4621 } 4622 4623 bool isValid() { return Valid; } 4624 4625 private: 4626 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4627 : SCEVRewriteVisitor(SE), L(L) {} 4628 4629 const Loop *L; 4630 bool Valid = true; 4631 }; 4632 4633 } // end anonymous namespace 4634 4635 SCEV::NoWrapFlags 4636 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4637 if (!AR->isAffine()) 4638 return SCEV::FlagAnyWrap; 4639 4640 using OBO = OverflowingBinaryOperator; 4641 4642 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4643 4644 if (!AR->hasNoSignedWrap()) { 4645 ConstantRange AddRecRange = getSignedRange(AR); 4646 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4647 4648 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4649 Instruction::Add, IncRange, OBO::NoSignedWrap); 4650 if (NSWRegion.contains(AddRecRange)) 4651 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4652 } 4653 4654 if (!AR->hasNoUnsignedWrap()) { 4655 ConstantRange AddRecRange = getUnsignedRange(AR); 4656 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4657 4658 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4659 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4660 if (NUWRegion.contains(AddRecRange)) 4661 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4662 } 4663 4664 return Result; 4665 } 4666 4667 SCEV::NoWrapFlags 4668 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4669 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4670 4671 if (AR->hasNoSignedWrap()) 4672 return Result; 4673 4674 if (!AR->isAffine()) 4675 return Result; 4676 4677 const SCEV *Step = AR->getStepRecurrence(*this); 4678 const Loop *L = AR->getLoop(); 4679 4680 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4681 // Note that this serves two purposes: It filters out loops that are 4682 // simply not analyzable, and it covers the case where this code is 4683 // being called from within backedge-taken count analysis, such that 4684 // attempting to ask for the backedge-taken count would likely result 4685 // in infinite recursion. In the later case, the analysis code will 4686 // cope with a conservative value, and it will take care to purge 4687 // that value once it has finished. 4688 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4689 4690 // Normally, in the cases we can prove no-overflow via a 4691 // backedge guarding condition, we can also compute a backedge 4692 // taken count for the loop. The exceptions are assumptions and 4693 // guards present in the loop -- SCEV is not great at exploiting 4694 // these to compute max backedge taken counts, but can still use 4695 // these to prove lack of overflow. Use this fact to avoid 4696 // doing extra work that may not pay off. 4697 4698 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4699 AC.assumptions().empty()) 4700 return Result; 4701 4702 // If the backedge is guarded by a comparison with the pre-inc value the 4703 // addrec is safe. Also, if the entry is guarded by a comparison with the 4704 // start value and the backedge is guarded by a comparison with the post-inc 4705 // value, the addrec is safe. 4706 ICmpInst::Predicate Pred; 4707 const SCEV *OverflowLimit = 4708 getSignedOverflowLimitForStep(Step, &Pred, this); 4709 if (OverflowLimit && 4710 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4711 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4712 Result = setFlags(Result, SCEV::FlagNSW); 4713 } 4714 return Result; 4715 } 4716 SCEV::NoWrapFlags 4717 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4718 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4719 4720 if (AR->hasNoUnsignedWrap()) 4721 return Result; 4722 4723 if (!AR->isAffine()) 4724 return Result; 4725 4726 const SCEV *Step = AR->getStepRecurrence(*this); 4727 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4728 const Loop *L = AR->getLoop(); 4729 4730 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4731 // Note that this serves two purposes: It filters out loops that are 4732 // simply not analyzable, and it covers the case where this code is 4733 // being called from within backedge-taken count analysis, such that 4734 // attempting to ask for the backedge-taken count would likely result 4735 // in infinite recursion. In the later case, the analysis code will 4736 // cope with a conservative value, and it will take care to purge 4737 // that value once it has finished. 4738 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4739 4740 // Normally, in the cases we can prove no-overflow via a 4741 // backedge guarding condition, we can also compute a backedge 4742 // taken count for the loop. The exceptions are assumptions and 4743 // guards present in the loop -- SCEV is not great at exploiting 4744 // these to compute max backedge taken counts, but can still use 4745 // these to prove lack of overflow. Use this fact to avoid 4746 // doing extra work that may not pay off. 4747 4748 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4749 AC.assumptions().empty()) 4750 return Result; 4751 4752 // If the backedge is guarded by a comparison with the pre-inc value the 4753 // addrec is safe. Also, if the entry is guarded by a comparison with the 4754 // start value and the backedge is guarded by a comparison with the post-inc 4755 // value, the addrec is safe. 4756 if (isKnownPositive(Step)) { 4757 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4758 getUnsignedRangeMax(Step)); 4759 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4760 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4761 Result = setFlags(Result, SCEV::FlagNUW); 4762 } 4763 } 4764 4765 return Result; 4766 } 4767 4768 namespace { 4769 4770 /// Represents an abstract binary operation. This may exist as a 4771 /// normal instruction or constant expression, or may have been 4772 /// derived from an expression tree. 4773 struct BinaryOp { 4774 unsigned Opcode; 4775 Value *LHS; 4776 Value *RHS; 4777 bool IsNSW = false; 4778 bool IsNUW = false; 4779 4780 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4781 /// constant expression. 4782 Operator *Op = nullptr; 4783 4784 explicit BinaryOp(Operator *Op) 4785 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4786 Op(Op) { 4787 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4788 IsNSW = OBO->hasNoSignedWrap(); 4789 IsNUW = OBO->hasNoUnsignedWrap(); 4790 } 4791 } 4792 4793 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4794 bool IsNUW = false) 4795 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4796 }; 4797 4798 } // end anonymous namespace 4799 4800 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4801 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4802 auto *Op = dyn_cast<Operator>(V); 4803 if (!Op) 4804 return None; 4805 4806 // Implementation detail: all the cleverness here should happen without 4807 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4808 // SCEV expressions when possible, and we should not break that. 4809 4810 switch (Op->getOpcode()) { 4811 case Instruction::Add: 4812 case Instruction::Sub: 4813 case Instruction::Mul: 4814 case Instruction::UDiv: 4815 case Instruction::URem: 4816 case Instruction::And: 4817 case Instruction::Or: 4818 case Instruction::AShr: 4819 case Instruction::Shl: 4820 return BinaryOp(Op); 4821 4822 case Instruction::Xor: 4823 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4824 // If the RHS of the xor is a signmask, then this is just an add. 4825 // Instcombine turns add of signmask into xor as a strength reduction step. 4826 if (RHSC->getValue().isSignMask()) 4827 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4828 return BinaryOp(Op); 4829 4830 case Instruction::LShr: 4831 // Turn logical shift right of a constant into a unsigned divide. 4832 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4833 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4834 4835 // If the shift count is not less than the bitwidth, the result of 4836 // the shift is undefined. Don't try to analyze it, because the 4837 // resolution chosen here may differ from the resolution chosen in 4838 // other parts of the compiler. 4839 if (SA->getValue().ult(BitWidth)) { 4840 Constant *X = 4841 ConstantInt::get(SA->getContext(), 4842 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4843 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4844 } 4845 } 4846 return BinaryOp(Op); 4847 4848 case Instruction::ExtractValue: { 4849 auto *EVI = cast<ExtractValueInst>(Op); 4850 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4851 break; 4852 4853 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4854 if (!WO) 4855 break; 4856 4857 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4858 bool Signed = WO->isSigned(); 4859 // TODO: Should add nuw/nsw flags for mul as well. 4860 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4861 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4862 4863 // Now that we know that all uses of the arithmetic-result component of 4864 // CI are guarded by the overflow check, we can go ahead and pretend 4865 // that the arithmetic is non-overflowing. 4866 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4867 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4868 } 4869 4870 default: 4871 break; 4872 } 4873 4874 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4875 // semantics as a Sub, return a binary sub expression. 4876 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4877 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4878 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4879 4880 return None; 4881 } 4882 4883 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4884 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4885 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4886 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4887 /// follows one of the following patterns: 4888 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4889 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4890 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4891 /// we return the type of the truncation operation, and indicate whether the 4892 /// truncated type should be treated as signed/unsigned by setting 4893 /// \p Signed to true/false, respectively. 4894 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4895 bool &Signed, ScalarEvolution &SE) { 4896 // The case where Op == SymbolicPHI (that is, with no type conversions on 4897 // the way) is handled by the regular add recurrence creating logic and 4898 // would have already been triggered in createAddRecForPHI. Reaching it here 4899 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4900 // because one of the other operands of the SCEVAddExpr updating this PHI is 4901 // not invariant). 4902 // 4903 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4904 // this case predicates that allow us to prove that Op == SymbolicPHI will 4905 // be added. 4906 if (Op == SymbolicPHI) 4907 return nullptr; 4908 4909 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4910 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4911 if (SourceBits != NewBits) 4912 return nullptr; 4913 4914 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4915 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4916 if (!SExt && !ZExt) 4917 return nullptr; 4918 const SCEVTruncateExpr *Trunc = 4919 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4920 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4921 if (!Trunc) 4922 return nullptr; 4923 const SCEV *X = Trunc->getOperand(); 4924 if (X != SymbolicPHI) 4925 return nullptr; 4926 Signed = SExt != nullptr; 4927 return Trunc->getType(); 4928 } 4929 4930 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4931 if (!PN->getType()->isIntegerTy()) 4932 return nullptr; 4933 const Loop *L = LI.getLoopFor(PN->getParent()); 4934 if (!L || L->getHeader() != PN->getParent()) 4935 return nullptr; 4936 return L; 4937 } 4938 4939 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4940 // computation that updates the phi follows the following pattern: 4941 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4942 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4943 // If so, try to see if it can be rewritten as an AddRecExpr under some 4944 // Predicates. If successful, return them as a pair. Also cache the results 4945 // of the analysis. 4946 // 4947 // Example usage scenario: 4948 // Say the Rewriter is called for the following SCEV: 4949 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4950 // where: 4951 // %X = phi i64 (%Start, %BEValue) 4952 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4953 // and call this function with %SymbolicPHI = %X. 4954 // 4955 // The analysis will find that the value coming around the backedge has 4956 // the following SCEV: 4957 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4958 // Upon concluding that this matches the desired pattern, the function 4959 // will return the pair {NewAddRec, SmallPredsVec} where: 4960 // NewAddRec = {%Start,+,%Step} 4961 // SmallPredsVec = {P1, P2, P3} as follows: 4962 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4963 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4964 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4965 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4966 // under the predicates {P1,P2,P3}. 4967 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4968 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4969 // 4970 // TODO's: 4971 // 4972 // 1) Extend the Induction descriptor to also support inductions that involve 4973 // casts: When needed (namely, when we are called in the context of the 4974 // vectorizer induction analysis), a Set of cast instructions will be 4975 // populated by this method, and provided back to isInductionPHI. This is 4976 // needed to allow the vectorizer to properly record them to be ignored by 4977 // the cost model and to avoid vectorizing them (otherwise these casts, 4978 // which are redundant under the runtime overflow checks, will be 4979 // vectorized, which can be costly). 4980 // 4981 // 2) Support additional induction/PHISCEV patterns: We also want to support 4982 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4983 // after the induction update operation (the induction increment): 4984 // 4985 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4986 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4987 // 4988 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4989 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4990 // 4991 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4992 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4993 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4994 SmallVector<const SCEVPredicate *, 3> Predicates; 4995 4996 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4997 // return an AddRec expression under some predicate. 4998 4999 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5000 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5001 assert(L && "Expecting an integer loop header phi"); 5002 5003 // The loop may have multiple entrances or multiple exits; we can analyze 5004 // this phi as an addrec if it has a unique entry value and a unique 5005 // backedge value. 5006 Value *BEValueV = nullptr, *StartValueV = nullptr; 5007 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5008 Value *V = PN->getIncomingValue(i); 5009 if (L->contains(PN->getIncomingBlock(i))) { 5010 if (!BEValueV) { 5011 BEValueV = V; 5012 } else if (BEValueV != V) { 5013 BEValueV = nullptr; 5014 break; 5015 } 5016 } else if (!StartValueV) { 5017 StartValueV = V; 5018 } else if (StartValueV != V) { 5019 StartValueV = nullptr; 5020 break; 5021 } 5022 } 5023 if (!BEValueV || !StartValueV) 5024 return None; 5025 5026 const SCEV *BEValue = getSCEV(BEValueV); 5027 5028 // If the value coming around the backedge is an add with the symbolic 5029 // value we just inserted, possibly with casts that we can ignore under 5030 // an appropriate runtime guard, then we found a simple induction variable! 5031 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5032 if (!Add) 5033 return None; 5034 5035 // If there is a single occurrence of the symbolic value, possibly 5036 // casted, replace it with a recurrence. 5037 unsigned FoundIndex = Add->getNumOperands(); 5038 Type *TruncTy = nullptr; 5039 bool Signed; 5040 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5041 if ((TruncTy = 5042 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5043 if (FoundIndex == e) { 5044 FoundIndex = i; 5045 break; 5046 } 5047 5048 if (FoundIndex == Add->getNumOperands()) 5049 return None; 5050 5051 // Create an add with everything but the specified operand. 5052 SmallVector<const SCEV *, 8> Ops; 5053 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5054 if (i != FoundIndex) 5055 Ops.push_back(Add->getOperand(i)); 5056 const SCEV *Accum = getAddExpr(Ops); 5057 5058 // The runtime checks will not be valid if the step amount is 5059 // varying inside the loop. 5060 if (!isLoopInvariant(Accum, L)) 5061 return None; 5062 5063 // *** Part2: Create the predicates 5064 5065 // Analysis was successful: we have a phi-with-cast pattern for which we 5066 // can return an AddRec expression under the following predicates: 5067 // 5068 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5069 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5070 // P2: An Equal predicate that guarantees that 5071 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5072 // P3: An Equal predicate that guarantees that 5073 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5074 // 5075 // As we next prove, the above predicates guarantee that: 5076 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5077 // 5078 // 5079 // More formally, we want to prove that: 5080 // Expr(i+1) = Start + (i+1) * Accum 5081 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5082 // 5083 // Given that: 5084 // 1) Expr(0) = Start 5085 // 2) Expr(1) = Start + Accum 5086 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5087 // 3) Induction hypothesis (step i): 5088 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5089 // 5090 // Proof: 5091 // Expr(i+1) = 5092 // = Start + (i+1)*Accum 5093 // = (Start + i*Accum) + Accum 5094 // = Expr(i) + Accum 5095 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5096 // :: from step i 5097 // 5098 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5099 // 5100 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5101 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5102 // + Accum :: from P3 5103 // 5104 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5105 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5106 // 5107 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5108 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5109 // 5110 // By induction, the same applies to all iterations 1<=i<n: 5111 // 5112 5113 // Create a truncated addrec for which we will add a no overflow check (P1). 5114 const SCEV *StartVal = getSCEV(StartValueV); 5115 const SCEV *PHISCEV = 5116 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5117 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5118 5119 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5120 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5121 // will be constant. 5122 // 5123 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5124 // add P1. 5125 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5126 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5127 Signed ? SCEVWrapPredicate::IncrementNSSW 5128 : SCEVWrapPredicate::IncrementNUSW; 5129 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5130 Predicates.push_back(AddRecPred); 5131 } 5132 5133 // Create the Equal Predicates P2,P3: 5134 5135 // It is possible that the predicates P2 and/or P3 are computable at 5136 // compile time due to StartVal and/or Accum being constants. 5137 // If either one is, then we can check that now and escape if either P2 5138 // or P3 is false. 5139 5140 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5141 // for each of StartVal and Accum 5142 auto getExtendedExpr = [&](const SCEV *Expr, 5143 bool CreateSignExtend) -> const SCEV * { 5144 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5145 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5146 const SCEV *ExtendedExpr = 5147 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5148 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5149 return ExtendedExpr; 5150 }; 5151 5152 // Given: 5153 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5154 // = getExtendedExpr(Expr) 5155 // Determine whether the predicate P: Expr == ExtendedExpr 5156 // is known to be false at compile time 5157 auto PredIsKnownFalse = [&](const SCEV *Expr, 5158 const SCEV *ExtendedExpr) -> bool { 5159 return Expr != ExtendedExpr && 5160 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5161 }; 5162 5163 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5164 if (PredIsKnownFalse(StartVal, StartExtended)) { 5165 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5166 return None; 5167 } 5168 5169 // The Step is always Signed (because the overflow checks are either 5170 // NSSW or NUSW) 5171 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5172 if (PredIsKnownFalse(Accum, AccumExtended)) { 5173 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5174 return None; 5175 } 5176 5177 auto AppendPredicate = [&](const SCEV *Expr, 5178 const SCEV *ExtendedExpr) -> void { 5179 if (Expr != ExtendedExpr && 5180 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5181 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5182 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5183 Predicates.push_back(Pred); 5184 } 5185 }; 5186 5187 AppendPredicate(StartVal, StartExtended); 5188 AppendPredicate(Accum, AccumExtended); 5189 5190 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5191 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5192 // into NewAR if it will also add the runtime overflow checks specified in 5193 // Predicates. 5194 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5195 5196 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5197 std::make_pair(NewAR, Predicates); 5198 // Remember the result of the analysis for this SCEV at this locayyytion. 5199 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5200 return PredRewrite; 5201 } 5202 5203 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5204 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5205 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5206 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5207 if (!L) 5208 return None; 5209 5210 // Check to see if we already analyzed this PHI. 5211 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5212 if (I != PredicatedSCEVRewrites.end()) { 5213 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5214 I->second; 5215 // Analysis was done before and failed to create an AddRec: 5216 if (Rewrite.first == SymbolicPHI) 5217 return None; 5218 // Analysis was done before and succeeded to create an AddRec under 5219 // a predicate: 5220 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5221 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5222 return Rewrite; 5223 } 5224 5225 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5226 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5227 5228 // Record in the cache that the analysis failed 5229 if (!Rewrite) { 5230 SmallVector<const SCEVPredicate *, 3> Predicates; 5231 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5232 return None; 5233 } 5234 5235 return Rewrite; 5236 } 5237 5238 // FIXME: This utility is currently required because the Rewriter currently 5239 // does not rewrite this expression: 5240 // {0, +, (sext ix (trunc iy to ix) to iy)} 5241 // into {0, +, %step}, 5242 // even when the following Equal predicate exists: 5243 // "%step == (sext ix (trunc iy to ix) to iy)". 5244 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5245 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5246 if (AR1 == AR2) 5247 return true; 5248 5249 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5250 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5251 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5252 return false; 5253 return true; 5254 }; 5255 5256 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5257 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5258 return false; 5259 return true; 5260 } 5261 5262 /// A helper function for createAddRecFromPHI to handle simple cases. 5263 /// 5264 /// This function tries to find an AddRec expression for the simplest (yet most 5265 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5266 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5267 /// technique for finding the AddRec expression. 5268 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5269 Value *BEValueV, 5270 Value *StartValueV) { 5271 const Loop *L = LI.getLoopFor(PN->getParent()); 5272 assert(L && L->getHeader() == PN->getParent()); 5273 assert(BEValueV && StartValueV); 5274 5275 auto BO = MatchBinaryOp(BEValueV, DT); 5276 if (!BO) 5277 return nullptr; 5278 5279 if (BO->Opcode != Instruction::Add) 5280 return nullptr; 5281 5282 const SCEV *Accum = nullptr; 5283 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5284 Accum = getSCEV(BO->RHS); 5285 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5286 Accum = getSCEV(BO->LHS); 5287 5288 if (!Accum) 5289 return nullptr; 5290 5291 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5292 if (BO->IsNUW) 5293 Flags = setFlags(Flags, SCEV::FlagNUW); 5294 if (BO->IsNSW) 5295 Flags = setFlags(Flags, SCEV::FlagNSW); 5296 5297 const SCEV *StartVal = getSCEV(StartValueV); 5298 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5299 5300 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5301 5302 // We can add Flags to the post-inc expression only if we 5303 // know that it is *undefined behavior* for BEValueV to 5304 // overflow. 5305 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5306 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5307 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5308 5309 return PHISCEV; 5310 } 5311 5312 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5313 const Loop *L = LI.getLoopFor(PN->getParent()); 5314 if (!L || L->getHeader() != PN->getParent()) 5315 return nullptr; 5316 5317 // The loop may have multiple entrances or multiple exits; we can analyze 5318 // this phi as an addrec if it has a unique entry value and a unique 5319 // backedge value. 5320 Value *BEValueV = nullptr, *StartValueV = nullptr; 5321 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5322 Value *V = PN->getIncomingValue(i); 5323 if (L->contains(PN->getIncomingBlock(i))) { 5324 if (!BEValueV) { 5325 BEValueV = V; 5326 } else if (BEValueV != V) { 5327 BEValueV = nullptr; 5328 break; 5329 } 5330 } else if (!StartValueV) { 5331 StartValueV = V; 5332 } else if (StartValueV != V) { 5333 StartValueV = nullptr; 5334 break; 5335 } 5336 } 5337 if (!BEValueV || !StartValueV) 5338 return nullptr; 5339 5340 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5341 "PHI node already processed?"); 5342 5343 // First, try to find AddRec expression without creating a fictituos symbolic 5344 // value for PN. 5345 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5346 return S; 5347 5348 // Handle PHI node value symbolically. 5349 const SCEV *SymbolicName = getUnknown(PN); 5350 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5351 5352 // Using this symbolic name for the PHI, analyze the value coming around 5353 // the back-edge. 5354 const SCEV *BEValue = getSCEV(BEValueV); 5355 5356 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5357 // has a special value for the first iteration of the loop. 5358 5359 // If the value coming around the backedge is an add with the symbolic 5360 // value we just inserted, then we found a simple induction variable! 5361 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5362 // If there is a single occurrence of the symbolic value, replace it 5363 // with a recurrence. 5364 unsigned FoundIndex = Add->getNumOperands(); 5365 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5366 if (Add->getOperand(i) == SymbolicName) 5367 if (FoundIndex == e) { 5368 FoundIndex = i; 5369 break; 5370 } 5371 5372 if (FoundIndex != Add->getNumOperands()) { 5373 // Create an add with everything but the specified operand. 5374 SmallVector<const SCEV *, 8> Ops; 5375 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5376 if (i != FoundIndex) 5377 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5378 L, *this)); 5379 const SCEV *Accum = getAddExpr(Ops); 5380 5381 // This is not a valid addrec if the step amount is varying each 5382 // loop iteration, but is not itself an addrec in this loop. 5383 if (isLoopInvariant(Accum, L) || 5384 (isa<SCEVAddRecExpr>(Accum) && 5385 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5386 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5387 5388 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5389 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5390 if (BO->IsNUW) 5391 Flags = setFlags(Flags, SCEV::FlagNUW); 5392 if (BO->IsNSW) 5393 Flags = setFlags(Flags, SCEV::FlagNSW); 5394 } 5395 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5396 // If the increment is an inbounds GEP, then we know the address 5397 // space cannot be wrapped around. We cannot make any guarantee 5398 // about signed or unsigned overflow because pointers are 5399 // unsigned but we may have a negative index from the base 5400 // pointer. We can guarantee that no unsigned wrap occurs if the 5401 // indices form a positive value. 5402 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5403 Flags = setFlags(Flags, SCEV::FlagNW); 5404 5405 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5406 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5407 Flags = setFlags(Flags, SCEV::FlagNUW); 5408 } 5409 5410 // We cannot transfer nuw and nsw flags from subtraction 5411 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5412 // for instance. 5413 } 5414 5415 const SCEV *StartVal = getSCEV(StartValueV); 5416 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5417 5418 // Okay, for the entire analysis of this edge we assumed the PHI 5419 // to be symbolic. We now need to go back and purge all of the 5420 // entries for the scalars that use the symbolic expression. 5421 forgetSymbolicName(PN, SymbolicName); 5422 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5423 5424 // We can add Flags to the post-inc expression only if we 5425 // know that it is *undefined behavior* for BEValueV to 5426 // overflow. 5427 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5428 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5429 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5430 5431 return PHISCEV; 5432 } 5433 } 5434 } else { 5435 // Otherwise, this could be a loop like this: 5436 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5437 // In this case, j = {1,+,1} and BEValue is j. 5438 // Because the other in-value of i (0) fits the evolution of BEValue 5439 // i really is an addrec evolution. 5440 // 5441 // We can generalize this saying that i is the shifted value of BEValue 5442 // by one iteration: 5443 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5444 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5445 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5446 if (Shifted != getCouldNotCompute() && 5447 Start != getCouldNotCompute()) { 5448 const SCEV *StartVal = getSCEV(StartValueV); 5449 if (Start == StartVal) { 5450 // Okay, for the entire analysis of this edge we assumed the PHI 5451 // to be symbolic. We now need to go back and purge all of the 5452 // entries for the scalars that use the symbolic expression. 5453 forgetSymbolicName(PN, SymbolicName); 5454 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5455 return Shifted; 5456 } 5457 } 5458 } 5459 5460 // Remove the temporary PHI node SCEV that has been inserted while intending 5461 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5462 // as it will prevent later (possibly simpler) SCEV expressions to be added 5463 // to the ValueExprMap. 5464 eraseValueFromMap(PN); 5465 5466 return nullptr; 5467 } 5468 5469 // Checks if the SCEV S is available at BB. S is considered available at BB 5470 // if S can be materialized at BB without introducing a fault. 5471 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5472 BasicBlock *BB) { 5473 struct CheckAvailable { 5474 bool TraversalDone = false; 5475 bool Available = true; 5476 5477 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5478 BasicBlock *BB = nullptr; 5479 DominatorTree &DT; 5480 5481 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5482 : L(L), BB(BB), DT(DT) {} 5483 5484 bool setUnavailable() { 5485 TraversalDone = true; 5486 Available = false; 5487 return false; 5488 } 5489 5490 bool follow(const SCEV *S) { 5491 switch (S->getSCEVType()) { 5492 case scConstant: 5493 case scPtrToInt: 5494 case scTruncate: 5495 case scZeroExtend: 5496 case scSignExtend: 5497 case scAddExpr: 5498 case scMulExpr: 5499 case scUMaxExpr: 5500 case scSMaxExpr: 5501 case scUMinExpr: 5502 case scSMinExpr: 5503 // These expressions are available if their operand(s) is/are. 5504 return true; 5505 5506 case scAddRecExpr: { 5507 // We allow add recurrences that are on the loop BB is in, or some 5508 // outer loop. This guarantees availability because the value of the 5509 // add recurrence at BB is simply the "current" value of the induction 5510 // variable. We can relax this in the future; for instance an add 5511 // recurrence on a sibling dominating loop is also available at BB. 5512 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5513 if (L && (ARLoop == L || ARLoop->contains(L))) 5514 return true; 5515 5516 return setUnavailable(); 5517 } 5518 5519 case scUnknown: { 5520 // For SCEVUnknown, we check for simple dominance. 5521 const auto *SU = cast<SCEVUnknown>(S); 5522 Value *V = SU->getValue(); 5523 5524 if (isa<Argument>(V)) 5525 return false; 5526 5527 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5528 return false; 5529 5530 return setUnavailable(); 5531 } 5532 5533 case scUDivExpr: 5534 case scCouldNotCompute: 5535 // We do not try to smart about these at all. 5536 return setUnavailable(); 5537 } 5538 llvm_unreachable("Unknown SCEV kind!"); 5539 } 5540 5541 bool isDone() { return TraversalDone; } 5542 }; 5543 5544 CheckAvailable CA(L, BB, DT); 5545 SCEVTraversal<CheckAvailable> ST(CA); 5546 5547 ST.visitAll(S); 5548 return CA.Available; 5549 } 5550 5551 // Try to match a control flow sequence that branches out at BI and merges back 5552 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5553 // match. 5554 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5555 Value *&C, Value *&LHS, Value *&RHS) { 5556 C = BI->getCondition(); 5557 5558 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5559 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5560 5561 if (!LeftEdge.isSingleEdge()) 5562 return false; 5563 5564 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5565 5566 Use &LeftUse = Merge->getOperandUse(0); 5567 Use &RightUse = Merge->getOperandUse(1); 5568 5569 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5570 LHS = LeftUse; 5571 RHS = RightUse; 5572 return true; 5573 } 5574 5575 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5576 LHS = RightUse; 5577 RHS = LeftUse; 5578 return true; 5579 } 5580 5581 return false; 5582 } 5583 5584 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5585 auto IsReachable = 5586 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5587 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5588 const Loop *L = LI.getLoopFor(PN->getParent()); 5589 5590 // We don't want to break LCSSA, even in a SCEV expression tree. 5591 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5592 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5593 return nullptr; 5594 5595 // Try to match 5596 // 5597 // br %cond, label %left, label %right 5598 // left: 5599 // br label %merge 5600 // right: 5601 // br label %merge 5602 // merge: 5603 // V = phi [ %x, %left ], [ %y, %right ] 5604 // 5605 // as "select %cond, %x, %y" 5606 5607 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5608 assert(IDom && "At least the entry block should dominate PN"); 5609 5610 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5611 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5612 5613 if (BI && BI->isConditional() && 5614 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5615 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5616 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5617 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5618 } 5619 5620 return nullptr; 5621 } 5622 5623 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5624 if (const SCEV *S = createAddRecFromPHI(PN)) 5625 return S; 5626 5627 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5628 return S; 5629 5630 // If the PHI has a single incoming value, follow that value, unless the 5631 // PHI's incoming blocks are in a different loop, in which case doing so 5632 // risks breaking LCSSA form. Instcombine would normally zap these, but 5633 // it doesn't have DominatorTree information, so it may miss cases. 5634 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5635 if (LI.replacementPreservesLCSSAForm(PN, V)) 5636 return getSCEV(V); 5637 5638 // If it's not a loop phi, we can't handle it yet. 5639 return getUnknown(PN); 5640 } 5641 5642 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5643 Value *Cond, 5644 Value *TrueVal, 5645 Value *FalseVal) { 5646 // Handle "constant" branch or select. This can occur for instance when a 5647 // loop pass transforms an inner loop and moves on to process the outer loop. 5648 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5649 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5650 5651 // Try to match some simple smax or umax patterns. 5652 auto *ICI = dyn_cast<ICmpInst>(Cond); 5653 if (!ICI) 5654 return getUnknown(I); 5655 5656 Value *LHS = ICI->getOperand(0); 5657 Value *RHS = ICI->getOperand(1); 5658 5659 switch (ICI->getPredicate()) { 5660 case ICmpInst::ICMP_SLT: 5661 case ICmpInst::ICMP_SLE: 5662 case ICmpInst::ICMP_ULT: 5663 case ICmpInst::ICMP_ULE: 5664 std::swap(LHS, RHS); 5665 LLVM_FALLTHROUGH; 5666 case ICmpInst::ICMP_SGT: 5667 case ICmpInst::ICMP_SGE: 5668 case ICmpInst::ICMP_UGT: 5669 case ICmpInst::ICMP_UGE: 5670 // a > b ? a+x : b+x -> max(a, b)+x 5671 // a > b ? b+x : a+x -> min(a, b)+x 5672 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5673 bool Signed = ICI->isSigned(); 5674 const SCEV *LA = getSCEV(TrueVal); 5675 const SCEV *RA = getSCEV(FalseVal); 5676 const SCEV *LS = getSCEV(LHS); 5677 const SCEV *RS = getSCEV(RHS); 5678 if (LA->getType()->isPointerTy()) { 5679 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5680 // Need to make sure we can't produce weird expressions involving 5681 // negated pointers. 5682 if (LA == LS && RA == RS) 5683 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5684 if (LA == RS && RA == LS) 5685 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5686 } 5687 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5688 if (Op->getType()->isPointerTy()) { 5689 Op = getLosslessPtrToIntExpr(Op); 5690 if (isa<SCEVCouldNotCompute>(Op)) 5691 return Op; 5692 } 5693 if (Signed) 5694 Op = getNoopOrSignExtend(Op, I->getType()); 5695 else 5696 Op = getNoopOrZeroExtend(Op, I->getType()); 5697 return Op; 5698 }; 5699 LS = CoerceOperand(LS); 5700 RS = CoerceOperand(RS); 5701 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5702 break; 5703 const SCEV *LDiff = getMinusSCEV(LA, LS); 5704 const SCEV *RDiff = getMinusSCEV(RA, RS); 5705 if (LDiff == RDiff) 5706 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5707 LDiff); 5708 LDiff = getMinusSCEV(LA, RS); 5709 RDiff = getMinusSCEV(RA, LS); 5710 if (LDiff == RDiff) 5711 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5712 LDiff); 5713 } 5714 break; 5715 case ICmpInst::ICMP_NE: 5716 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5717 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5718 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5719 const SCEV *One = getOne(I->getType()); 5720 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5721 const SCEV *LA = getSCEV(TrueVal); 5722 const SCEV *RA = getSCEV(FalseVal); 5723 const SCEV *LDiff = getMinusSCEV(LA, LS); 5724 const SCEV *RDiff = getMinusSCEV(RA, One); 5725 if (LDiff == RDiff) 5726 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5727 } 5728 break; 5729 case ICmpInst::ICMP_EQ: 5730 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5731 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5732 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5733 const SCEV *One = getOne(I->getType()); 5734 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5735 const SCEV *LA = getSCEV(TrueVal); 5736 const SCEV *RA = getSCEV(FalseVal); 5737 const SCEV *LDiff = getMinusSCEV(LA, One); 5738 const SCEV *RDiff = getMinusSCEV(RA, LS); 5739 if (LDiff == RDiff) 5740 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5741 } 5742 break; 5743 default: 5744 break; 5745 } 5746 5747 return getUnknown(I); 5748 } 5749 5750 /// Expand GEP instructions into add and multiply operations. This allows them 5751 /// to be analyzed by regular SCEV code. 5752 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5753 // Don't attempt to analyze GEPs over unsized objects. 5754 if (!GEP->getSourceElementType()->isSized()) 5755 return getUnknown(GEP); 5756 5757 SmallVector<const SCEV *, 4> IndexExprs; 5758 for (Value *Index : GEP->indices()) 5759 IndexExprs.push_back(getSCEV(Index)); 5760 return getGEPExpr(GEP, IndexExprs); 5761 } 5762 5763 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5764 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5765 return C->getAPInt().countTrailingZeros(); 5766 5767 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5768 return GetMinTrailingZeros(I->getOperand()); 5769 5770 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5771 return std::min(GetMinTrailingZeros(T->getOperand()), 5772 (uint32_t)getTypeSizeInBits(T->getType())); 5773 5774 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5775 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5776 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5777 ? getTypeSizeInBits(E->getType()) 5778 : OpRes; 5779 } 5780 5781 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5782 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5783 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5784 ? getTypeSizeInBits(E->getType()) 5785 : OpRes; 5786 } 5787 5788 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5789 // The result is the min of all operands results. 5790 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5791 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5792 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5793 return MinOpRes; 5794 } 5795 5796 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5797 // The result is the sum of all operands results. 5798 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5799 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5800 for (unsigned i = 1, e = M->getNumOperands(); 5801 SumOpRes != BitWidth && i != e; ++i) 5802 SumOpRes = 5803 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5804 return SumOpRes; 5805 } 5806 5807 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5808 // The result is the min of all operands results. 5809 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5810 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5811 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5812 return MinOpRes; 5813 } 5814 5815 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5816 // The result is the min of all operands results. 5817 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5818 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5819 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5820 return MinOpRes; 5821 } 5822 5823 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5824 // The result is the min of all operands results. 5825 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5826 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5827 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5828 return MinOpRes; 5829 } 5830 5831 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5832 // For a SCEVUnknown, ask ValueTracking. 5833 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5834 return Known.countMinTrailingZeros(); 5835 } 5836 5837 // SCEVUDivExpr 5838 return 0; 5839 } 5840 5841 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5842 auto I = MinTrailingZerosCache.find(S); 5843 if (I != MinTrailingZerosCache.end()) 5844 return I->second; 5845 5846 uint32_t Result = GetMinTrailingZerosImpl(S); 5847 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5848 assert(InsertPair.second && "Should insert a new key"); 5849 return InsertPair.first->second; 5850 } 5851 5852 /// Helper method to assign a range to V from metadata present in the IR. 5853 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5854 if (Instruction *I = dyn_cast<Instruction>(V)) 5855 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5856 return getConstantRangeFromMetadata(*MD); 5857 5858 return None; 5859 } 5860 5861 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5862 SCEV::NoWrapFlags Flags) { 5863 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5864 AddRec->setNoWrapFlags(Flags); 5865 UnsignedRanges.erase(AddRec); 5866 SignedRanges.erase(AddRec); 5867 } 5868 } 5869 5870 ConstantRange ScalarEvolution:: 5871 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5872 const DataLayout &DL = getDataLayout(); 5873 5874 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5875 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5876 5877 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5878 // use information about the trip count to improve our available range. Note 5879 // that the trip count independent cases are already handled by known bits. 5880 // WARNING: The definition of recurrence used here is subtly different than 5881 // the one used by AddRec (and thus most of this file). Step is allowed to 5882 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5883 // and other addrecs in the same loop (for non-affine addrecs). The code 5884 // below intentionally handles the case where step is not loop invariant. 5885 auto *P = dyn_cast<PHINode>(U->getValue()); 5886 if (!P) 5887 return FullSet; 5888 5889 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5890 // even the values that are not available in these blocks may come from them, 5891 // and this leads to false-positive recurrence test. 5892 for (auto *Pred : predecessors(P->getParent())) 5893 if (!DT.isReachableFromEntry(Pred)) 5894 return FullSet; 5895 5896 BinaryOperator *BO; 5897 Value *Start, *Step; 5898 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5899 return FullSet; 5900 5901 // If we found a recurrence in reachable code, we must be in a loop. Note 5902 // that BO might be in some subloop of L, and that's completely okay. 5903 auto *L = LI.getLoopFor(P->getParent()); 5904 assert(L && L->getHeader() == P->getParent()); 5905 if (!L->contains(BO->getParent())) 5906 // NOTE: This bailout should be an assert instead. However, asserting 5907 // the condition here exposes a case where LoopFusion is querying SCEV 5908 // with malformed loop information during the midst of the transform. 5909 // There doesn't appear to be an obvious fix, so for the moment bailout 5910 // until the caller issue can be fixed. PR49566 tracks the bug. 5911 return FullSet; 5912 5913 // TODO: Extend to other opcodes such as mul, and div 5914 switch (BO->getOpcode()) { 5915 default: 5916 return FullSet; 5917 case Instruction::AShr: 5918 case Instruction::LShr: 5919 case Instruction::Shl: 5920 break; 5921 }; 5922 5923 if (BO->getOperand(0) != P) 5924 // TODO: Handle the power function forms some day. 5925 return FullSet; 5926 5927 unsigned TC = getSmallConstantMaxTripCount(L); 5928 if (!TC || TC >= BitWidth) 5929 return FullSet; 5930 5931 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5932 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5933 assert(KnownStart.getBitWidth() == BitWidth && 5934 KnownStep.getBitWidth() == BitWidth); 5935 5936 // Compute total shift amount, being careful of overflow and bitwidths. 5937 auto MaxShiftAmt = KnownStep.getMaxValue(); 5938 APInt TCAP(BitWidth, TC-1); 5939 bool Overflow = false; 5940 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5941 if (Overflow) 5942 return FullSet; 5943 5944 switch (BO->getOpcode()) { 5945 default: 5946 llvm_unreachable("filtered out above"); 5947 case Instruction::AShr: { 5948 // For each ashr, three cases: 5949 // shift = 0 => unchanged value 5950 // saturation => 0 or -1 5951 // other => a value closer to zero (of the same sign) 5952 // Thus, the end value is closer to zero than the start. 5953 auto KnownEnd = KnownBits::ashr(KnownStart, 5954 KnownBits::makeConstant(TotalShift)); 5955 if (KnownStart.isNonNegative()) 5956 // Analogous to lshr (simply not yet canonicalized) 5957 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5958 KnownStart.getMaxValue() + 1); 5959 if (KnownStart.isNegative()) 5960 // End >=u Start && End <=s Start 5961 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5962 KnownEnd.getMaxValue() + 1); 5963 break; 5964 } 5965 case Instruction::LShr: { 5966 // For each lshr, three cases: 5967 // shift = 0 => unchanged value 5968 // saturation => 0 5969 // other => a smaller positive number 5970 // Thus, the low end of the unsigned range is the last value produced. 5971 auto KnownEnd = KnownBits::lshr(KnownStart, 5972 KnownBits::makeConstant(TotalShift)); 5973 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5974 KnownStart.getMaxValue() + 1); 5975 } 5976 case Instruction::Shl: { 5977 // Iff no bits are shifted out, value increases on every shift. 5978 auto KnownEnd = KnownBits::shl(KnownStart, 5979 KnownBits::makeConstant(TotalShift)); 5980 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5981 return ConstantRange(KnownStart.getMinValue(), 5982 KnownEnd.getMaxValue() + 1); 5983 break; 5984 } 5985 }; 5986 return FullSet; 5987 } 5988 5989 /// Determine the range for a particular SCEV. If SignHint is 5990 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5991 /// with a "cleaner" unsigned (resp. signed) representation. 5992 const ConstantRange & 5993 ScalarEvolution::getRangeRef(const SCEV *S, 5994 ScalarEvolution::RangeSignHint SignHint) { 5995 DenseMap<const SCEV *, ConstantRange> &Cache = 5996 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5997 : SignedRanges; 5998 ConstantRange::PreferredRangeType RangeType = 5999 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6000 ? ConstantRange::Unsigned : ConstantRange::Signed; 6001 6002 // See if we've computed this range already. 6003 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6004 if (I != Cache.end()) 6005 return I->second; 6006 6007 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6008 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6009 6010 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6011 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6012 using OBO = OverflowingBinaryOperator; 6013 6014 // If the value has known zeros, the maximum value will have those known zeros 6015 // as well. 6016 uint32_t TZ = GetMinTrailingZeros(S); 6017 if (TZ != 0) { 6018 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6019 ConservativeResult = 6020 ConstantRange(APInt::getMinValue(BitWidth), 6021 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6022 else 6023 ConservativeResult = ConstantRange( 6024 APInt::getSignedMinValue(BitWidth), 6025 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6026 } 6027 6028 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6029 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6030 unsigned WrapType = OBO::AnyWrap; 6031 if (Add->hasNoSignedWrap()) 6032 WrapType |= OBO::NoSignedWrap; 6033 if (Add->hasNoUnsignedWrap()) 6034 WrapType |= OBO::NoUnsignedWrap; 6035 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6036 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6037 WrapType, RangeType); 6038 return setRange(Add, SignHint, 6039 ConservativeResult.intersectWith(X, RangeType)); 6040 } 6041 6042 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6043 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6044 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6045 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6046 return setRange(Mul, SignHint, 6047 ConservativeResult.intersectWith(X, RangeType)); 6048 } 6049 6050 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6051 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6052 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6053 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6054 return setRange(SMax, SignHint, 6055 ConservativeResult.intersectWith(X, RangeType)); 6056 } 6057 6058 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6059 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6060 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6061 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6062 return setRange(UMax, SignHint, 6063 ConservativeResult.intersectWith(X, RangeType)); 6064 } 6065 6066 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6067 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6068 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6069 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6070 return setRange(SMin, SignHint, 6071 ConservativeResult.intersectWith(X, RangeType)); 6072 } 6073 6074 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6075 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6076 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6077 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6078 return setRange(UMin, SignHint, 6079 ConservativeResult.intersectWith(X, RangeType)); 6080 } 6081 6082 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6083 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6084 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6085 return setRange(UDiv, SignHint, 6086 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6087 } 6088 6089 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6090 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6091 return setRange(ZExt, SignHint, 6092 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6093 RangeType)); 6094 } 6095 6096 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6097 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6098 return setRange(SExt, SignHint, 6099 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6100 RangeType)); 6101 } 6102 6103 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6104 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6105 return setRange(PtrToInt, SignHint, X); 6106 } 6107 6108 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6109 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6110 return setRange(Trunc, SignHint, 6111 ConservativeResult.intersectWith(X.truncate(BitWidth), 6112 RangeType)); 6113 } 6114 6115 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6116 // If there's no unsigned wrap, the value will never be less than its 6117 // initial value. 6118 if (AddRec->hasNoUnsignedWrap()) { 6119 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6120 if (!UnsignedMinValue.isNullValue()) 6121 ConservativeResult = ConservativeResult.intersectWith( 6122 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6123 } 6124 6125 // If there's no signed wrap, and all the operands except initial value have 6126 // the same sign or zero, the value won't ever be: 6127 // 1: smaller than initial value if operands are non negative, 6128 // 2: bigger than initial value if operands are non positive. 6129 // For both cases, value can not cross signed min/max boundary. 6130 if (AddRec->hasNoSignedWrap()) { 6131 bool AllNonNeg = true; 6132 bool AllNonPos = true; 6133 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6134 if (!isKnownNonNegative(AddRec->getOperand(i))) 6135 AllNonNeg = false; 6136 if (!isKnownNonPositive(AddRec->getOperand(i))) 6137 AllNonPos = false; 6138 } 6139 if (AllNonNeg) 6140 ConservativeResult = ConservativeResult.intersectWith( 6141 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6142 APInt::getSignedMinValue(BitWidth)), 6143 RangeType); 6144 else if (AllNonPos) 6145 ConservativeResult = ConservativeResult.intersectWith( 6146 ConstantRange::getNonEmpty( 6147 APInt::getSignedMinValue(BitWidth), 6148 getSignedRangeMax(AddRec->getStart()) + 1), 6149 RangeType); 6150 } 6151 6152 // TODO: non-affine addrec 6153 if (AddRec->isAffine()) { 6154 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6155 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6156 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6157 auto RangeFromAffine = getRangeForAffineAR( 6158 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6159 BitWidth); 6160 ConservativeResult = 6161 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6162 6163 auto RangeFromFactoring = getRangeViaFactoring( 6164 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6165 BitWidth); 6166 ConservativeResult = 6167 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6168 } 6169 6170 // Now try symbolic BE count and more powerful methods. 6171 if (UseExpensiveRangeSharpening) { 6172 const SCEV *SymbolicMaxBECount = 6173 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6174 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6175 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6176 AddRec->hasNoSelfWrap()) { 6177 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6178 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6179 ConservativeResult = 6180 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6181 } 6182 } 6183 } 6184 6185 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6186 } 6187 6188 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6189 6190 // Check if the IR explicitly contains !range metadata. 6191 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6192 if (MDRange.hasValue()) 6193 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6194 RangeType); 6195 6196 // Use facts about recurrences in the underlying IR. Note that add 6197 // recurrences are AddRecExprs and thus don't hit this path. This 6198 // primarily handles shift recurrences. 6199 auto CR = getRangeForUnknownRecurrence(U); 6200 ConservativeResult = ConservativeResult.intersectWith(CR); 6201 6202 // See if ValueTracking can give us a useful range. 6203 const DataLayout &DL = getDataLayout(); 6204 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6205 if (Known.getBitWidth() != BitWidth) 6206 Known = Known.zextOrTrunc(BitWidth); 6207 6208 // ValueTracking may be able to compute a tighter result for the number of 6209 // sign bits than for the value of those sign bits. 6210 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6211 if (U->getType()->isPointerTy()) { 6212 // If the pointer size is larger than the index size type, this can cause 6213 // NS to be larger than BitWidth. So compensate for this. 6214 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6215 int ptrIdxDiff = ptrSize - BitWidth; 6216 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6217 NS -= ptrIdxDiff; 6218 } 6219 6220 if (NS > 1) { 6221 // If we know any of the sign bits, we know all of the sign bits. 6222 if (!Known.Zero.getHiBits(NS).isNullValue()) 6223 Known.Zero.setHighBits(NS); 6224 if (!Known.One.getHiBits(NS).isNullValue()) 6225 Known.One.setHighBits(NS); 6226 } 6227 6228 if (Known.getMinValue() != Known.getMaxValue() + 1) 6229 ConservativeResult = ConservativeResult.intersectWith( 6230 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6231 RangeType); 6232 if (NS > 1) 6233 ConservativeResult = ConservativeResult.intersectWith( 6234 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6235 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6236 RangeType); 6237 6238 // A range of Phi is a subset of union of all ranges of its input. 6239 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6240 // Make sure that we do not run over cycled Phis. 6241 if (PendingPhiRanges.insert(Phi).second) { 6242 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6243 for (auto &Op : Phi->operands()) { 6244 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6245 RangeFromOps = RangeFromOps.unionWith(OpRange); 6246 // No point to continue if we already have a full set. 6247 if (RangeFromOps.isFullSet()) 6248 break; 6249 } 6250 ConservativeResult = 6251 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6252 bool Erased = PendingPhiRanges.erase(Phi); 6253 assert(Erased && "Failed to erase Phi properly?"); 6254 (void) Erased; 6255 } 6256 } 6257 6258 return setRange(U, SignHint, std::move(ConservativeResult)); 6259 } 6260 6261 return setRange(S, SignHint, std::move(ConservativeResult)); 6262 } 6263 6264 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6265 // values that the expression can take. Initially, the expression has a value 6266 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6267 // argument defines if we treat Step as signed or unsigned. 6268 static ConstantRange getRangeForAffineARHelper(APInt Step, 6269 const ConstantRange &StartRange, 6270 const APInt &MaxBECount, 6271 unsigned BitWidth, bool Signed) { 6272 // If either Step or MaxBECount is 0, then the expression won't change, and we 6273 // just need to return the initial range. 6274 if (Step == 0 || MaxBECount == 0) 6275 return StartRange; 6276 6277 // If we don't know anything about the initial value (i.e. StartRange is 6278 // FullRange), then we don't know anything about the final range either. 6279 // Return FullRange. 6280 if (StartRange.isFullSet()) 6281 return ConstantRange::getFull(BitWidth); 6282 6283 // If Step is signed and negative, then we use its absolute value, but we also 6284 // note that we're moving in the opposite direction. 6285 bool Descending = Signed && Step.isNegative(); 6286 6287 if (Signed) 6288 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6289 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6290 // This equations hold true due to the well-defined wrap-around behavior of 6291 // APInt. 6292 Step = Step.abs(); 6293 6294 // Check if Offset is more than full span of BitWidth. If it is, the 6295 // expression is guaranteed to overflow. 6296 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6297 return ConstantRange::getFull(BitWidth); 6298 6299 // Offset is by how much the expression can change. Checks above guarantee no 6300 // overflow here. 6301 APInt Offset = Step * MaxBECount; 6302 6303 // Minimum value of the final range will match the minimal value of StartRange 6304 // if the expression is increasing and will be decreased by Offset otherwise. 6305 // Maximum value of the final range will match the maximal value of StartRange 6306 // if the expression is decreasing and will be increased by Offset otherwise. 6307 APInt StartLower = StartRange.getLower(); 6308 APInt StartUpper = StartRange.getUpper() - 1; 6309 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6310 : (StartUpper + std::move(Offset)); 6311 6312 // It's possible that the new minimum/maximum value will fall into the initial 6313 // range (due to wrap around). This means that the expression can take any 6314 // value in this bitwidth, and we have to return full range. 6315 if (StartRange.contains(MovedBoundary)) 6316 return ConstantRange::getFull(BitWidth); 6317 6318 APInt NewLower = 6319 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6320 APInt NewUpper = 6321 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6322 NewUpper += 1; 6323 6324 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6325 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6326 } 6327 6328 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6329 const SCEV *Step, 6330 const SCEV *MaxBECount, 6331 unsigned BitWidth) { 6332 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6333 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6334 "Precondition!"); 6335 6336 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6337 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6338 6339 // First, consider step signed. 6340 ConstantRange StartSRange = getSignedRange(Start); 6341 ConstantRange StepSRange = getSignedRange(Step); 6342 6343 // If Step can be both positive and negative, we need to find ranges for the 6344 // maximum absolute step values in both directions and union them. 6345 ConstantRange SR = 6346 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6347 MaxBECountValue, BitWidth, /* Signed = */ true); 6348 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6349 StartSRange, MaxBECountValue, 6350 BitWidth, /* Signed = */ true)); 6351 6352 // Next, consider step unsigned. 6353 ConstantRange UR = getRangeForAffineARHelper( 6354 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6355 MaxBECountValue, BitWidth, /* Signed = */ false); 6356 6357 // Finally, intersect signed and unsigned ranges. 6358 return SR.intersectWith(UR, ConstantRange::Smallest); 6359 } 6360 6361 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6362 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6363 ScalarEvolution::RangeSignHint SignHint) { 6364 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6365 assert(AddRec->hasNoSelfWrap() && 6366 "This only works for non-self-wrapping AddRecs!"); 6367 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6368 const SCEV *Step = AddRec->getStepRecurrence(*this); 6369 // Only deal with constant step to save compile time. 6370 if (!isa<SCEVConstant>(Step)) 6371 return ConstantRange::getFull(BitWidth); 6372 // Let's make sure that we can prove that we do not self-wrap during 6373 // MaxBECount iterations. We need this because MaxBECount is a maximum 6374 // iteration count estimate, and we might infer nw from some exit for which we 6375 // do not know max exit count (or any other side reasoning). 6376 // TODO: Turn into assert at some point. 6377 if (getTypeSizeInBits(MaxBECount->getType()) > 6378 getTypeSizeInBits(AddRec->getType())) 6379 return ConstantRange::getFull(BitWidth); 6380 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6381 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6382 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6383 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6384 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6385 MaxItersWithoutWrap)) 6386 return ConstantRange::getFull(BitWidth); 6387 6388 ICmpInst::Predicate LEPred = 6389 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6390 ICmpInst::Predicate GEPred = 6391 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6392 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6393 6394 // We know that there is no self-wrap. Let's take Start and End values and 6395 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6396 // the iteration. They either lie inside the range [Min(Start, End), 6397 // Max(Start, End)] or outside it: 6398 // 6399 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6400 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6401 // 6402 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6403 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6404 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6405 // Start <= End and step is positive, or Start >= End and step is negative. 6406 const SCEV *Start = AddRec->getStart(); 6407 ConstantRange StartRange = getRangeRef(Start, SignHint); 6408 ConstantRange EndRange = getRangeRef(End, SignHint); 6409 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6410 // If they already cover full iteration space, we will know nothing useful 6411 // even if we prove what we want to prove. 6412 if (RangeBetween.isFullSet()) 6413 return RangeBetween; 6414 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6415 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6416 : RangeBetween.isWrappedSet(); 6417 if (IsWrappedSet) 6418 return ConstantRange::getFull(BitWidth); 6419 6420 if (isKnownPositive(Step) && 6421 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6422 return RangeBetween; 6423 else if (isKnownNegative(Step) && 6424 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6425 return RangeBetween; 6426 return ConstantRange::getFull(BitWidth); 6427 } 6428 6429 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6430 const SCEV *Step, 6431 const SCEV *MaxBECount, 6432 unsigned BitWidth) { 6433 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6434 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6435 6436 struct SelectPattern { 6437 Value *Condition = nullptr; 6438 APInt TrueValue; 6439 APInt FalseValue; 6440 6441 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6442 const SCEV *S) { 6443 Optional<unsigned> CastOp; 6444 APInt Offset(BitWidth, 0); 6445 6446 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6447 "Should be!"); 6448 6449 // Peel off a constant offset: 6450 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6451 // In the future we could consider being smarter here and handle 6452 // {Start+Step,+,Step} too. 6453 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6454 return; 6455 6456 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6457 S = SA->getOperand(1); 6458 } 6459 6460 // Peel off a cast operation 6461 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6462 CastOp = SCast->getSCEVType(); 6463 S = SCast->getOperand(); 6464 } 6465 6466 using namespace llvm::PatternMatch; 6467 6468 auto *SU = dyn_cast<SCEVUnknown>(S); 6469 const APInt *TrueVal, *FalseVal; 6470 if (!SU || 6471 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6472 m_APInt(FalseVal)))) { 6473 Condition = nullptr; 6474 return; 6475 } 6476 6477 TrueValue = *TrueVal; 6478 FalseValue = *FalseVal; 6479 6480 // Re-apply the cast we peeled off earlier 6481 if (CastOp.hasValue()) 6482 switch (*CastOp) { 6483 default: 6484 llvm_unreachable("Unknown SCEV cast type!"); 6485 6486 case scTruncate: 6487 TrueValue = TrueValue.trunc(BitWidth); 6488 FalseValue = FalseValue.trunc(BitWidth); 6489 break; 6490 case scZeroExtend: 6491 TrueValue = TrueValue.zext(BitWidth); 6492 FalseValue = FalseValue.zext(BitWidth); 6493 break; 6494 case scSignExtend: 6495 TrueValue = TrueValue.sext(BitWidth); 6496 FalseValue = FalseValue.sext(BitWidth); 6497 break; 6498 } 6499 6500 // Re-apply the constant offset we peeled off earlier 6501 TrueValue += Offset; 6502 FalseValue += Offset; 6503 } 6504 6505 bool isRecognized() { return Condition != nullptr; } 6506 }; 6507 6508 SelectPattern StartPattern(*this, BitWidth, Start); 6509 if (!StartPattern.isRecognized()) 6510 return ConstantRange::getFull(BitWidth); 6511 6512 SelectPattern StepPattern(*this, BitWidth, Step); 6513 if (!StepPattern.isRecognized()) 6514 return ConstantRange::getFull(BitWidth); 6515 6516 if (StartPattern.Condition != StepPattern.Condition) { 6517 // We don't handle this case today; but we could, by considering four 6518 // possibilities below instead of two. I'm not sure if there are cases where 6519 // that will help over what getRange already does, though. 6520 return ConstantRange::getFull(BitWidth); 6521 } 6522 6523 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6524 // construct arbitrary general SCEV expressions here. This function is called 6525 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6526 // say) can end up caching a suboptimal value. 6527 6528 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6529 // C2352 and C2512 (otherwise it isn't needed). 6530 6531 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6532 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6533 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6534 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6535 6536 ConstantRange TrueRange = 6537 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6538 ConstantRange FalseRange = 6539 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6540 6541 return TrueRange.unionWith(FalseRange); 6542 } 6543 6544 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6545 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6546 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6547 6548 // Return early if there are no flags to propagate to the SCEV. 6549 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6550 if (BinOp->hasNoUnsignedWrap()) 6551 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6552 if (BinOp->hasNoSignedWrap()) 6553 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6554 if (Flags == SCEV::FlagAnyWrap) 6555 return SCEV::FlagAnyWrap; 6556 6557 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6558 } 6559 6560 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6561 // Here we check that I is in the header of the innermost loop containing I, 6562 // since we only deal with instructions in the loop header. The actual loop we 6563 // need to check later will come from an add recurrence, but getting that 6564 // requires computing the SCEV of the operands, which can be expensive. This 6565 // check we can do cheaply to rule out some cases early. 6566 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6567 if (InnermostContainingLoop == nullptr || 6568 InnermostContainingLoop->getHeader() != I->getParent()) 6569 return false; 6570 6571 // Only proceed if we can prove that I does not yield poison. 6572 if (!programUndefinedIfPoison(I)) 6573 return false; 6574 6575 // At this point we know that if I is executed, then it does not wrap 6576 // according to at least one of NSW or NUW. If I is not executed, then we do 6577 // not know if the calculation that I represents would wrap. Multiple 6578 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6579 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6580 // derived from other instructions that map to the same SCEV. We cannot make 6581 // that guarantee for cases where I is not executed. So we need to find the 6582 // loop that I is considered in relation to and prove that I is executed for 6583 // every iteration of that loop. That implies that the value that I 6584 // calculates does not wrap anywhere in the loop, so then we can apply the 6585 // flags to the SCEV. 6586 // 6587 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6588 // from different loops, so that we know which loop to prove that I is 6589 // executed in. 6590 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6591 // I could be an extractvalue from a call to an overflow intrinsic. 6592 // TODO: We can do better here in some cases. 6593 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6594 return false; 6595 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6596 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6597 bool AllOtherOpsLoopInvariant = true; 6598 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6599 ++OtherOpIndex) { 6600 if (OtherOpIndex != OpIndex) { 6601 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6602 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6603 AllOtherOpsLoopInvariant = false; 6604 break; 6605 } 6606 } 6607 } 6608 if (AllOtherOpsLoopInvariant && 6609 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6610 return true; 6611 } 6612 } 6613 return false; 6614 } 6615 6616 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6617 // If we know that \c I can never be poison period, then that's enough. 6618 if (isSCEVExprNeverPoison(I)) 6619 return true; 6620 6621 // For an add recurrence specifically, we assume that infinite loops without 6622 // side effects are undefined behavior, and then reason as follows: 6623 // 6624 // If the add recurrence is poison in any iteration, it is poison on all 6625 // future iterations (since incrementing poison yields poison). If the result 6626 // of the add recurrence is fed into the loop latch condition and the loop 6627 // does not contain any throws or exiting blocks other than the latch, we now 6628 // have the ability to "choose" whether the backedge is taken or not (by 6629 // choosing a sufficiently evil value for the poison feeding into the branch) 6630 // for every iteration including and after the one in which \p I first became 6631 // poison. There are two possibilities (let's call the iteration in which \p 6632 // I first became poison as K): 6633 // 6634 // 1. In the set of iterations including and after K, the loop body executes 6635 // no side effects. In this case executing the backege an infinte number 6636 // of times will yield undefined behavior. 6637 // 6638 // 2. In the set of iterations including and after K, the loop body executes 6639 // at least one side effect. In this case, that specific instance of side 6640 // effect is control dependent on poison, which also yields undefined 6641 // behavior. 6642 6643 auto *ExitingBB = L->getExitingBlock(); 6644 auto *LatchBB = L->getLoopLatch(); 6645 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6646 return false; 6647 6648 SmallPtrSet<const Instruction *, 16> Pushed; 6649 SmallVector<const Instruction *, 8> PoisonStack; 6650 6651 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6652 // things that are known to be poison under that assumption go on the 6653 // PoisonStack. 6654 Pushed.insert(I); 6655 PoisonStack.push_back(I); 6656 6657 bool LatchControlDependentOnPoison = false; 6658 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6659 const Instruction *Poison = PoisonStack.pop_back_val(); 6660 6661 for (auto *PoisonUser : Poison->users()) { 6662 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6663 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6664 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6665 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6666 assert(BI->isConditional() && "Only possibility!"); 6667 if (BI->getParent() == LatchBB) { 6668 LatchControlDependentOnPoison = true; 6669 break; 6670 } 6671 } 6672 } 6673 } 6674 6675 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6676 } 6677 6678 ScalarEvolution::LoopProperties 6679 ScalarEvolution::getLoopProperties(const Loop *L) { 6680 using LoopProperties = ScalarEvolution::LoopProperties; 6681 6682 auto Itr = LoopPropertiesCache.find(L); 6683 if (Itr == LoopPropertiesCache.end()) { 6684 auto HasSideEffects = [](Instruction *I) { 6685 if (auto *SI = dyn_cast<StoreInst>(I)) 6686 return !SI->isSimple(); 6687 6688 return I->mayThrow() || I->mayWriteToMemory(); 6689 }; 6690 6691 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6692 /*HasNoSideEffects*/ true}; 6693 6694 for (auto *BB : L->getBlocks()) 6695 for (auto &I : *BB) { 6696 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6697 LP.HasNoAbnormalExits = false; 6698 if (HasSideEffects(&I)) 6699 LP.HasNoSideEffects = false; 6700 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6701 break; // We're already as pessimistic as we can get. 6702 } 6703 6704 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6705 assert(InsertPair.second && "We just checked!"); 6706 Itr = InsertPair.first; 6707 } 6708 6709 return Itr->second; 6710 } 6711 6712 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6713 // A mustprogress loop without side effects must be finite. 6714 // TODO: The check used here is very conservative. It's only *specific* 6715 // side effects which are well defined in infinite loops. 6716 return isMustProgress(L) && loopHasNoSideEffects(L); 6717 } 6718 6719 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6720 if (!isSCEVable(V->getType())) 6721 return getUnknown(V); 6722 6723 if (Instruction *I = dyn_cast<Instruction>(V)) { 6724 // Don't attempt to analyze instructions in blocks that aren't 6725 // reachable. Such instructions don't matter, and they aren't required 6726 // to obey basic rules for definitions dominating uses which this 6727 // analysis depends on. 6728 if (!DT.isReachableFromEntry(I->getParent())) 6729 return getUnknown(UndefValue::get(V->getType())); 6730 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6731 return getConstant(CI); 6732 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6733 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6734 else if (!isa<ConstantExpr>(V)) 6735 return getUnknown(V); 6736 6737 Operator *U = cast<Operator>(V); 6738 if (auto BO = MatchBinaryOp(U, DT)) { 6739 switch (BO->Opcode) { 6740 case Instruction::Add: { 6741 // The simple thing to do would be to just call getSCEV on both operands 6742 // and call getAddExpr with the result. However if we're looking at a 6743 // bunch of things all added together, this can be quite inefficient, 6744 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6745 // Instead, gather up all the operands and make a single getAddExpr call. 6746 // LLVM IR canonical form means we need only traverse the left operands. 6747 SmallVector<const SCEV *, 4> AddOps; 6748 do { 6749 if (BO->Op) { 6750 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6751 AddOps.push_back(OpSCEV); 6752 break; 6753 } 6754 6755 // If a NUW or NSW flag can be applied to the SCEV for this 6756 // addition, then compute the SCEV for this addition by itself 6757 // with a separate call to getAddExpr. We need to do that 6758 // instead of pushing the operands of the addition onto AddOps, 6759 // since the flags are only known to apply to this particular 6760 // addition - they may not apply to other additions that can be 6761 // formed with operands from AddOps. 6762 const SCEV *RHS = getSCEV(BO->RHS); 6763 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6764 if (Flags != SCEV::FlagAnyWrap) { 6765 const SCEV *LHS = getSCEV(BO->LHS); 6766 if (BO->Opcode == Instruction::Sub) 6767 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6768 else 6769 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6770 break; 6771 } 6772 } 6773 6774 if (BO->Opcode == Instruction::Sub) 6775 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6776 else 6777 AddOps.push_back(getSCEV(BO->RHS)); 6778 6779 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6780 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6781 NewBO->Opcode != Instruction::Sub)) { 6782 AddOps.push_back(getSCEV(BO->LHS)); 6783 break; 6784 } 6785 BO = NewBO; 6786 } while (true); 6787 6788 return getAddExpr(AddOps); 6789 } 6790 6791 case Instruction::Mul: { 6792 SmallVector<const SCEV *, 4> MulOps; 6793 do { 6794 if (BO->Op) { 6795 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6796 MulOps.push_back(OpSCEV); 6797 break; 6798 } 6799 6800 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6801 if (Flags != SCEV::FlagAnyWrap) { 6802 MulOps.push_back( 6803 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6804 break; 6805 } 6806 } 6807 6808 MulOps.push_back(getSCEV(BO->RHS)); 6809 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6810 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6811 MulOps.push_back(getSCEV(BO->LHS)); 6812 break; 6813 } 6814 BO = NewBO; 6815 } while (true); 6816 6817 return getMulExpr(MulOps); 6818 } 6819 case Instruction::UDiv: 6820 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6821 case Instruction::URem: 6822 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6823 case Instruction::Sub: { 6824 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6825 if (BO->Op) 6826 Flags = getNoWrapFlagsFromUB(BO->Op); 6827 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6828 } 6829 case Instruction::And: 6830 // For an expression like x&255 that merely masks off the high bits, 6831 // use zext(trunc(x)) as the SCEV expression. 6832 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6833 if (CI->isZero()) 6834 return getSCEV(BO->RHS); 6835 if (CI->isMinusOne()) 6836 return getSCEV(BO->LHS); 6837 const APInt &A = CI->getValue(); 6838 6839 // Instcombine's ShrinkDemandedConstant may strip bits out of 6840 // constants, obscuring what would otherwise be a low-bits mask. 6841 // Use computeKnownBits to compute what ShrinkDemandedConstant 6842 // knew about to reconstruct a low-bits mask value. 6843 unsigned LZ = A.countLeadingZeros(); 6844 unsigned TZ = A.countTrailingZeros(); 6845 unsigned BitWidth = A.getBitWidth(); 6846 KnownBits Known(BitWidth); 6847 computeKnownBits(BO->LHS, Known, getDataLayout(), 6848 0, &AC, nullptr, &DT); 6849 6850 APInt EffectiveMask = 6851 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6852 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6853 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6854 const SCEV *LHS = getSCEV(BO->LHS); 6855 const SCEV *ShiftedLHS = nullptr; 6856 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6857 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6858 // For an expression like (x * 8) & 8, simplify the multiply. 6859 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6860 unsigned GCD = std::min(MulZeros, TZ); 6861 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6862 SmallVector<const SCEV*, 4> MulOps; 6863 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6864 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6865 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6866 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6867 } 6868 } 6869 if (!ShiftedLHS) 6870 ShiftedLHS = getUDivExpr(LHS, MulCount); 6871 return getMulExpr( 6872 getZeroExtendExpr( 6873 getTruncateExpr(ShiftedLHS, 6874 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6875 BO->LHS->getType()), 6876 MulCount); 6877 } 6878 } 6879 break; 6880 6881 case Instruction::Or: 6882 // If the RHS of the Or is a constant, we may have something like: 6883 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6884 // optimizations will transparently handle this case. 6885 // 6886 // In order for this transformation to be safe, the LHS must be of the 6887 // form X*(2^n) and the Or constant must be less than 2^n. 6888 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6889 const SCEV *LHS = getSCEV(BO->LHS); 6890 const APInt &CIVal = CI->getValue(); 6891 if (GetMinTrailingZeros(LHS) >= 6892 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6893 // Build a plain add SCEV. 6894 return getAddExpr(LHS, getSCEV(CI), 6895 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6896 } 6897 } 6898 break; 6899 6900 case Instruction::Xor: 6901 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6902 // If the RHS of xor is -1, then this is a not operation. 6903 if (CI->isMinusOne()) 6904 return getNotSCEV(getSCEV(BO->LHS)); 6905 6906 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6907 // This is a variant of the check for xor with -1, and it handles 6908 // the case where instcombine has trimmed non-demanded bits out 6909 // of an xor with -1. 6910 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6911 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6912 if (LBO->getOpcode() == Instruction::And && 6913 LCI->getValue() == CI->getValue()) 6914 if (const SCEVZeroExtendExpr *Z = 6915 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6916 Type *UTy = BO->LHS->getType(); 6917 const SCEV *Z0 = Z->getOperand(); 6918 Type *Z0Ty = Z0->getType(); 6919 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6920 6921 // If C is a low-bits mask, the zero extend is serving to 6922 // mask off the high bits. Complement the operand and 6923 // re-apply the zext. 6924 if (CI->getValue().isMask(Z0TySize)) 6925 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6926 6927 // If C is a single bit, it may be in the sign-bit position 6928 // before the zero-extend. In this case, represent the xor 6929 // using an add, which is equivalent, and re-apply the zext. 6930 APInt Trunc = CI->getValue().trunc(Z0TySize); 6931 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6932 Trunc.isSignMask()) 6933 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6934 UTy); 6935 } 6936 } 6937 break; 6938 6939 case Instruction::Shl: 6940 // Turn shift left of a constant amount into a multiply. 6941 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6942 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6943 6944 // If the shift count is not less than the bitwidth, the result of 6945 // the shift is undefined. Don't try to analyze it, because the 6946 // resolution chosen here may differ from the resolution chosen in 6947 // other parts of the compiler. 6948 if (SA->getValue().uge(BitWidth)) 6949 break; 6950 6951 // We can safely preserve the nuw flag in all cases. It's also safe to 6952 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6953 // requires special handling. It can be preserved as long as we're not 6954 // left shifting by bitwidth - 1. 6955 auto Flags = SCEV::FlagAnyWrap; 6956 if (BO->Op) { 6957 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6958 if ((MulFlags & SCEV::FlagNSW) && 6959 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6960 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6961 if (MulFlags & SCEV::FlagNUW) 6962 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6963 } 6964 6965 Constant *X = ConstantInt::get( 6966 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6967 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6968 } 6969 break; 6970 6971 case Instruction::AShr: { 6972 // AShr X, C, where C is a constant. 6973 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6974 if (!CI) 6975 break; 6976 6977 Type *OuterTy = BO->LHS->getType(); 6978 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6979 // If the shift count is not less than the bitwidth, the result of 6980 // the shift is undefined. Don't try to analyze it, because the 6981 // resolution chosen here may differ from the resolution chosen in 6982 // other parts of the compiler. 6983 if (CI->getValue().uge(BitWidth)) 6984 break; 6985 6986 if (CI->isZero()) 6987 return getSCEV(BO->LHS); // shift by zero --> noop 6988 6989 uint64_t AShrAmt = CI->getZExtValue(); 6990 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6991 6992 Operator *L = dyn_cast<Operator>(BO->LHS); 6993 if (L && L->getOpcode() == Instruction::Shl) { 6994 // X = Shl A, n 6995 // Y = AShr X, m 6996 // Both n and m are constant. 6997 6998 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6999 if (L->getOperand(1) == BO->RHS) 7000 // For a two-shift sext-inreg, i.e. n = m, 7001 // use sext(trunc(x)) as the SCEV expression. 7002 return getSignExtendExpr( 7003 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7004 7005 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7006 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7007 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7008 if (ShlAmt > AShrAmt) { 7009 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7010 // expression. We already checked that ShlAmt < BitWidth, so 7011 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7012 // ShlAmt - AShrAmt < Amt. 7013 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7014 ShlAmt - AShrAmt); 7015 return getSignExtendExpr( 7016 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7017 getConstant(Mul)), OuterTy); 7018 } 7019 } 7020 } 7021 break; 7022 } 7023 } 7024 } 7025 7026 switch (U->getOpcode()) { 7027 case Instruction::Trunc: 7028 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7029 7030 case Instruction::ZExt: 7031 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7032 7033 case Instruction::SExt: 7034 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7035 // The NSW flag of a subtract does not always survive the conversion to 7036 // A + (-1)*B. By pushing sign extension onto its operands we are much 7037 // more likely to preserve NSW and allow later AddRec optimisations. 7038 // 7039 // NOTE: This is effectively duplicating this logic from getSignExtend: 7040 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7041 // but by that point the NSW information has potentially been lost. 7042 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7043 Type *Ty = U->getType(); 7044 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7045 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7046 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7047 } 7048 } 7049 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7050 7051 case Instruction::BitCast: 7052 // BitCasts are no-op casts so we just eliminate the cast. 7053 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7054 return getSCEV(U->getOperand(0)); 7055 break; 7056 7057 case Instruction::PtrToInt: { 7058 // Pointer to integer cast is straight-forward, so do model it. 7059 const SCEV *Op = getSCEV(U->getOperand(0)); 7060 Type *DstIntTy = U->getType(); 7061 // But only if effective SCEV (integer) type is wide enough to represent 7062 // all possible pointer values. 7063 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7064 if (isa<SCEVCouldNotCompute>(IntOp)) 7065 return getUnknown(V); 7066 return IntOp; 7067 } 7068 case Instruction::IntToPtr: 7069 // Just don't deal with inttoptr casts. 7070 return getUnknown(V); 7071 7072 case Instruction::SDiv: 7073 // If both operands are non-negative, this is just an udiv. 7074 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7075 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7076 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7077 break; 7078 7079 case Instruction::SRem: 7080 // If both operands are non-negative, this is just an urem. 7081 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7082 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7083 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7084 break; 7085 7086 case Instruction::GetElementPtr: 7087 return createNodeForGEP(cast<GEPOperator>(U)); 7088 7089 case Instruction::PHI: 7090 return createNodeForPHI(cast<PHINode>(U)); 7091 7092 case Instruction::Select: 7093 // U can also be a select constant expr, which let fall through. Since 7094 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7095 // constant expressions cannot have instructions as operands, we'd have 7096 // returned getUnknown for a select constant expressions anyway. 7097 if (isa<Instruction>(U)) 7098 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7099 U->getOperand(1), U->getOperand(2)); 7100 break; 7101 7102 case Instruction::Call: 7103 case Instruction::Invoke: 7104 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7105 return getSCEV(RV); 7106 7107 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7108 switch (II->getIntrinsicID()) { 7109 case Intrinsic::abs: 7110 return getAbsExpr( 7111 getSCEV(II->getArgOperand(0)), 7112 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7113 case Intrinsic::umax: 7114 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7115 getSCEV(II->getArgOperand(1))); 7116 case Intrinsic::umin: 7117 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7118 getSCEV(II->getArgOperand(1))); 7119 case Intrinsic::smax: 7120 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7121 getSCEV(II->getArgOperand(1))); 7122 case Intrinsic::smin: 7123 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7124 getSCEV(II->getArgOperand(1))); 7125 case Intrinsic::usub_sat: { 7126 const SCEV *X = getSCEV(II->getArgOperand(0)); 7127 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7128 const SCEV *ClampedY = getUMinExpr(X, Y); 7129 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7130 } 7131 case Intrinsic::uadd_sat: { 7132 const SCEV *X = getSCEV(II->getArgOperand(0)); 7133 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7134 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7135 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7136 } 7137 case Intrinsic::start_loop_iterations: 7138 // A start_loop_iterations is just equivalent to the first operand for 7139 // SCEV purposes. 7140 return getSCEV(II->getArgOperand(0)); 7141 default: 7142 break; 7143 } 7144 } 7145 break; 7146 } 7147 7148 return getUnknown(V); 7149 } 7150 7151 //===----------------------------------------------------------------------===// 7152 // Iteration Count Computation Code 7153 // 7154 7155 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7156 // Get the trip count from the BE count by adding 1. Overflow, results 7157 // in zero which means "unknown". 7158 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7159 } 7160 7161 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7162 if (!ExitCount) 7163 return 0; 7164 7165 ConstantInt *ExitConst = ExitCount->getValue(); 7166 7167 // Guard against huge trip counts. 7168 if (ExitConst->getValue().getActiveBits() > 32) 7169 return 0; 7170 7171 // In case of integer overflow, this returns 0, which is correct. 7172 return ((unsigned)ExitConst->getZExtValue()) + 1; 7173 } 7174 7175 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7176 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7177 return getConstantTripCount(ExitCount); 7178 } 7179 7180 unsigned 7181 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7182 const BasicBlock *ExitingBlock) { 7183 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7184 assert(L->isLoopExiting(ExitingBlock) && 7185 "Exiting block must actually branch out of the loop!"); 7186 const SCEVConstant *ExitCount = 7187 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7188 return getConstantTripCount(ExitCount); 7189 } 7190 7191 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7192 const auto *MaxExitCount = 7193 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7194 return getConstantTripCount(MaxExitCount); 7195 } 7196 7197 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7198 SmallVector<BasicBlock *, 8> ExitingBlocks; 7199 L->getExitingBlocks(ExitingBlocks); 7200 7201 Optional<unsigned> Res = None; 7202 for (auto *ExitingBB : ExitingBlocks) { 7203 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7204 if (!Res) 7205 Res = Multiple; 7206 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7207 } 7208 return Res.getValueOr(1); 7209 } 7210 7211 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7212 const SCEV *ExitCount) { 7213 if (ExitCount == getCouldNotCompute()) 7214 return 1; 7215 7216 // Get the trip count 7217 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7218 7219 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7220 if (!TC) 7221 // Attempt to factor more general cases. Returns the greatest power of 7222 // two divisor. If overflow happens, the trip count expression is still 7223 // divisible by the greatest power of 2 divisor returned. 7224 return 1U << std::min((uint32_t)31, 7225 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7226 7227 ConstantInt *Result = TC->getValue(); 7228 7229 // Guard against huge trip counts (this requires checking 7230 // for zero to handle the case where the trip count == -1 and the 7231 // addition wraps). 7232 if (!Result || Result->getValue().getActiveBits() > 32 || 7233 Result->getValue().getActiveBits() == 0) 7234 return 1; 7235 7236 return (unsigned)Result->getZExtValue(); 7237 } 7238 7239 /// Returns the largest constant divisor of the trip count of this loop as a 7240 /// normal unsigned value, if possible. This means that the actual trip count is 7241 /// always a multiple of the returned value (don't forget the trip count could 7242 /// very well be zero as well!). 7243 /// 7244 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7245 /// multiple of a constant (which is also the case if the trip count is simply 7246 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7247 /// if the trip count is very large (>= 2^32). 7248 /// 7249 /// As explained in the comments for getSmallConstantTripCount, this assumes 7250 /// that control exits the loop via ExitingBlock. 7251 unsigned 7252 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7253 const BasicBlock *ExitingBlock) { 7254 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7255 assert(L->isLoopExiting(ExitingBlock) && 7256 "Exiting block must actually branch out of the loop!"); 7257 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7258 return getSmallConstantTripMultiple(L, ExitCount); 7259 } 7260 7261 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7262 const BasicBlock *ExitingBlock, 7263 ExitCountKind Kind) { 7264 switch (Kind) { 7265 case Exact: 7266 case SymbolicMaximum: 7267 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7268 case ConstantMaximum: 7269 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7270 }; 7271 llvm_unreachable("Invalid ExitCountKind!"); 7272 } 7273 7274 const SCEV * 7275 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7276 SCEVUnionPredicate &Preds) { 7277 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7278 } 7279 7280 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7281 ExitCountKind Kind) { 7282 switch (Kind) { 7283 case Exact: 7284 return getBackedgeTakenInfo(L).getExact(L, this); 7285 case ConstantMaximum: 7286 return getBackedgeTakenInfo(L).getConstantMax(this); 7287 case SymbolicMaximum: 7288 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7289 }; 7290 llvm_unreachable("Invalid ExitCountKind!"); 7291 } 7292 7293 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7294 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7295 } 7296 7297 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7298 static void 7299 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7300 BasicBlock *Header = L->getHeader(); 7301 7302 // Push all Loop-header PHIs onto the Worklist stack. 7303 for (PHINode &PN : Header->phis()) 7304 Worklist.push_back(&PN); 7305 } 7306 7307 const ScalarEvolution::BackedgeTakenInfo & 7308 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7309 auto &BTI = getBackedgeTakenInfo(L); 7310 if (BTI.hasFullInfo()) 7311 return BTI; 7312 7313 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7314 7315 if (!Pair.second) 7316 return Pair.first->second; 7317 7318 BackedgeTakenInfo Result = 7319 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7320 7321 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7322 } 7323 7324 ScalarEvolution::BackedgeTakenInfo & 7325 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7326 // Initially insert an invalid entry for this loop. If the insertion 7327 // succeeds, proceed to actually compute a backedge-taken count and 7328 // update the value. The temporary CouldNotCompute value tells SCEV 7329 // code elsewhere that it shouldn't attempt to request a new 7330 // backedge-taken count, which could result in infinite recursion. 7331 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7332 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7333 if (!Pair.second) 7334 return Pair.first->second; 7335 7336 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7337 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7338 // must be cleared in this scope. 7339 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7340 7341 // In product build, there are no usage of statistic. 7342 (void)NumTripCountsComputed; 7343 (void)NumTripCountsNotComputed; 7344 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7345 const SCEV *BEExact = Result.getExact(L, this); 7346 if (BEExact != getCouldNotCompute()) { 7347 assert(isLoopInvariant(BEExact, L) && 7348 isLoopInvariant(Result.getConstantMax(this), L) && 7349 "Computed backedge-taken count isn't loop invariant for loop!"); 7350 ++NumTripCountsComputed; 7351 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7352 isa<PHINode>(L->getHeader()->begin())) { 7353 // Only count loops that have phi nodes as not being computable. 7354 ++NumTripCountsNotComputed; 7355 } 7356 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7357 7358 // Now that we know more about the trip count for this loop, forget any 7359 // existing SCEV values for PHI nodes in this loop since they are only 7360 // conservative estimates made without the benefit of trip count 7361 // information. This is similar to the code in forgetLoop, except that 7362 // it handles SCEVUnknown PHI nodes specially. 7363 if (Result.hasAnyInfo()) { 7364 SmallVector<Instruction *, 16> Worklist; 7365 PushLoopPHIs(L, Worklist); 7366 7367 SmallPtrSet<Instruction *, 8> Discovered; 7368 while (!Worklist.empty()) { 7369 Instruction *I = Worklist.pop_back_val(); 7370 7371 ValueExprMapType::iterator It = 7372 ValueExprMap.find_as(static_cast<Value *>(I)); 7373 if (It != ValueExprMap.end()) { 7374 const SCEV *Old = It->second; 7375 7376 // SCEVUnknown for a PHI either means that it has an unrecognized 7377 // structure, or it's a PHI that's in the progress of being computed 7378 // by createNodeForPHI. In the former case, additional loop trip 7379 // count information isn't going to change anything. In the later 7380 // case, createNodeForPHI will perform the necessary updates on its 7381 // own when it gets to that point. 7382 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7383 eraseValueFromMap(It->first); 7384 forgetMemoizedResults(Old); 7385 } 7386 if (PHINode *PN = dyn_cast<PHINode>(I)) 7387 ConstantEvolutionLoopExitValue.erase(PN); 7388 } 7389 7390 // Since we don't need to invalidate anything for correctness and we're 7391 // only invalidating to make SCEV's results more precise, we get to stop 7392 // early to avoid invalidating too much. This is especially important in 7393 // cases like: 7394 // 7395 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7396 // loop0: 7397 // %pn0 = phi 7398 // ... 7399 // loop1: 7400 // %pn1 = phi 7401 // ... 7402 // 7403 // where both loop0 and loop1's backedge taken count uses the SCEV 7404 // expression for %v. If we don't have the early stop below then in cases 7405 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7406 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7407 // count for loop1, effectively nullifying SCEV's trip count cache. 7408 for (auto *U : I->users()) 7409 if (auto *I = dyn_cast<Instruction>(U)) { 7410 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7411 if (LoopForUser && L->contains(LoopForUser) && 7412 Discovered.insert(I).second) 7413 Worklist.push_back(I); 7414 } 7415 } 7416 } 7417 7418 // Re-lookup the insert position, since the call to 7419 // computeBackedgeTakenCount above could result in a 7420 // recusive call to getBackedgeTakenInfo (on a different 7421 // loop), which would invalidate the iterator computed 7422 // earlier. 7423 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7424 } 7425 7426 void ScalarEvolution::forgetAllLoops() { 7427 // This method is intended to forget all info about loops. It should 7428 // invalidate caches as if the following happened: 7429 // - The trip counts of all loops have changed arbitrarily 7430 // - Every llvm::Value has been updated in place to produce a different 7431 // result. 7432 BackedgeTakenCounts.clear(); 7433 PredicatedBackedgeTakenCounts.clear(); 7434 LoopPropertiesCache.clear(); 7435 ConstantEvolutionLoopExitValue.clear(); 7436 ValueExprMap.clear(); 7437 ValuesAtScopes.clear(); 7438 LoopDispositions.clear(); 7439 BlockDispositions.clear(); 7440 UnsignedRanges.clear(); 7441 SignedRanges.clear(); 7442 ExprValueMap.clear(); 7443 HasRecMap.clear(); 7444 MinTrailingZerosCache.clear(); 7445 PredicatedSCEVRewrites.clear(); 7446 } 7447 7448 void ScalarEvolution::forgetLoop(const Loop *L) { 7449 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7450 SmallVector<Instruction *, 32> Worklist; 7451 SmallPtrSet<Instruction *, 16> Visited; 7452 7453 // Iterate over all the loops and sub-loops to drop SCEV information. 7454 while (!LoopWorklist.empty()) { 7455 auto *CurrL = LoopWorklist.pop_back_val(); 7456 7457 // Drop any stored trip count value. 7458 BackedgeTakenCounts.erase(CurrL); 7459 PredicatedBackedgeTakenCounts.erase(CurrL); 7460 7461 // Drop information about predicated SCEV rewrites for this loop. 7462 for (auto I = PredicatedSCEVRewrites.begin(); 7463 I != PredicatedSCEVRewrites.end();) { 7464 std::pair<const SCEV *, const Loop *> Entry = I->first; 7465 if (Entry.second == CurrL) 7466 PredicatedSCEVRewrites.erase(I++); 7467 else 7468 ++I; 7469 } 7470 7471 auto LoopUsersItr = LoopUsers.find(CurrL); 7472 if (LoopUsersItr != LoopUsers.end()) { 7473 for (auto *S : LoopUsersItr->second) 7474 forgetMemoizedResults(S); 7475 LoopUsers.erase(LoopUsersItr); 7476 } 7477 7478 // Drop information about expressions based on loop-header PHIs. 7479 PushLoopPHIs(CurrL, Worklist); 7480 7481 while (!Worklist.empty()) { 7482 Instruction *I = Worklist.pop_back_val(); 7483 if (!Visited.insert(I).second) 7484 continue; 7485 7486 ValueExprMapType::iterator It = 7487 ValueExprMap.find_as(static_cast<Value *>(I)); 7488 if (It != ValueExprMap.end()) { 7489 eraseValueFromMap(It->first); 7490 forgetMemoizedResults(It->second); 7491 if (PHINode *PN = dyn_cast<PHINode>(I)) 7492 ConstantEvolutionLoopExitValue.erase(PN); 7493 } 7494 7495 PushDefUseChildren(I, Worklist); 7496 } 7497 7498 LoopPropertiesCache.erase(CurrL); 7499 // Forget all contained loops too, to avoid dangling entries in the 7500 // ValuesAtScopes map. 7501 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7502 } 7503 } 7504 7505 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7506 while (Loop *Parent = L->getParentLoop()) 7507 L = Parent; 7508 forgetLoop(L); 7509 } 7510 7511 void ScalarEvolution::forgetValue(Value *V) { 7512 Instruction *I = dyn_cast<Instruction>(V); 7513 if (!I) return; 7514 7515 // Drop information about expressions based on loop-header PHIs. 7516 SmallVector<Instruction *, 16> Worklist; 7517 Worklist.push_back(I); 7518 7519 SmallPtrSet<Instruction *, 8> Visited; 7520 while (!Worklist.empty()) { 7521 I = Worklist.pop_back_val(); 7522 if (!Visited.insert(I).second) 7523 continue; 7524 7525 ValueExprMapType::iterator It = 7526 ValueExprMap.find_as(static_cast<Value *>(I)); 7527 if (It != ValueExprMap.end()) { 7528 eraseValueFromMap(It->first); 7529 forgetMemoizedResults(It->second); 7530 if (PHINode *PN = dyn_cast<PHINode>(I)) 7531 ConstantEvolutionLoopExitValue.erase(PN); 7532 } 7533 7534 PushDefUseChildren(I, Worklist); 7535 } 7536 } 7537 7538 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7539 LoopDispositions.clear(); 7540 } 7541 7542 /// Get the exact loop backedge taken count considering all loop exits. A 7543 /// computable result can only be returned for loops with all exiting blocks 7544 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7545 /// is never skipped. This is a valid assumption as long as the loop exits via 7546 /// that test. For precise results, it is the caller's responsibility to specify 7547 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7548 const SCEV * 7549 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7550 SCEVUnionPredicate *Preds) const { 7551 // If any exits were not computable, the loop is not computable. 7552 if (!isComplete() || ExitNotTaken.empty()) 7553 return SE->getCouldNotCompute(); 7554 7555 const BasicBlock *Latch = L->getLoopLatch(); 7556 // All exiting blocks we have collected must dominate the only backedge. 7557 if (!Latch) 7558 return SE->getCouldNotCompute(); 7559 7560 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7561 // count is simply a minimum out of all these calculated exit counts. 7562 SmallVector<const SCEV *, 2> Ops; 7563 for (auto &ENT : ExitNotTaken) { 7564 const SCEV *BECount = ENT.ExactNotTaken; 7565 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7566 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7567 "We should only have known counts for exiting blocks that dominate " 7568 "latch!"); 7569 7570 Ops.push_back(BECount); 7571 7572 if (Preds && !ENT.hasAlwaysTruePredicate()) 7573 Preds->add(ENT.Predicate.get()); 7574 7575 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7576 "Predicate should be always true!"); 7577 } 7578 7579 return SE->getUMinFromMismatchedTypes(Ops); 7580 } 7581 7582 /// Get the exact not taken count for this loop exit. 7583 const SCEV * 7584 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7585 ScalarEvolution *SE) const { 7586 for (auto &ENT : ExitNotTaken) 7587 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7588 return ENT.ExactNotTaken; 7589 7590 return SE->getCouldNotCompute(); 7591 } 7592 7593 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7594 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7595 for (auto &ENT : ExitNotTaken) 7596 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7597 return ENT.MaxNotTaken; 7598 7599 return SE->getCouldNotCompute(); 7600 } 7601 7602 /// getConstantMax - Get the constant max backedge taken count for the loop. 7603 const SCEV * 7604 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7605 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7606 return !ENT.hasAlwaysTruePredicate(); 7607 }; 7608 7609 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7610 return SE->getCouldNotCompute(); 7611 7612 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7613 isa<SCEVConstant>(getConstantMax())) && 7614 "No point in having a non-constant max backedge taken count!"); 7615 return getConstantMax(); 7616 } 7617 7618 const SCEV * 7619 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7620 ScalarEvolution *SE) { 7621 if (!SymbolicMax) 7622 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7623 return SymbolicMax; 7624 } 7625 7626 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7627 ScalarEvolution *SE) const { 7628 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7629 return !ENT.hasAlwaysTruePredicate(); 7630 }; 7631 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7632 } 7633 7634 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7635 return Operands.contains(S); 7636 } 7637 7638 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7639 : ExitLimit(E, E, false, None) { 7640 } 7641 7642 ScalarEvolution::ExitLimit::ExitLimit( 7643 const SCEV *E, const SCEV *M, bool MaxOrZero, 7644 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7645 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7646 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7647 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7648 "Exact is not allowed to be less precise than Max"); 7649 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7650 isa<SCEVConstant>(MaxNotTaken)) && 7651 "No point in having a non-constant max backedge taken count!"); 7652 for (auto *PredSet : PredSetList) 7653 for (auto *P : *PredSet) 7654 addPredicate(P); 7655 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7656 "Backedge count should be int"); 7657 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7658 "Max backedge count should be int"); 7659 } 7660 7661 ScalarEvolution::ExitLimit::ExitLimit( 7662 const SCEV *E, const SCEV *M, bool MaxOrZero, 7663 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7664 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7665 } 7666 7667 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7668 bool MaxOrZero) 7669 : ExitLimit(E, M, MaxOrZero, None) { 7670 } 7671 7672 class SCEVRecordOperands { 7673 SmallPtrSetImpl<const SCEV *> &Operands; 7674 7675 public: 7676 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7677 : Operands(Operands) {} 7678 bool follow(const SCEV *S) { 7679 Operands.insert(S); 7680 return true; 7681 } 7682 bool isDone() { return false; } 7683 }; 7684 7685 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7686 /// computable exit into a persistent ExitNotTakenInfo array. 7687 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7688 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7689 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7690 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7691 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7692 7693 ExitNotTaken.reserve(ExitCounts.size()); 7694 std::transform( 7695 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7696 [&](const EdgeExitInfo &EEI) { 7697 BasicBlock *ExitBB = EEI.first; 7698 const ExitLimit &EL = EEI.second; 7699 if (EL.Predicates.empty()) 7700 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7701 nullptr); 7702 7703 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7704 for (auto *Pred : EL.Predicates) 7705 Predicate->add(Pred); 7706 7707 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7708 std::move(Predicate)); 7709 }); 7710 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7711 isa<SCEVConstant>(ConstantMax)) && 7712 "No point in having a non-constant max backedge taken count!"); 7713 7714 SCEVRecordOperands RecordOperands(Operands); 7715 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7716 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7717 ST.visitAll(ConstantMax); 7718 for (auto &ENT : ExitNotTaken) 7719 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7720 ST.visitAll(ENT.ExactNotTaken); 7721 } 7722 7723 /// Compute the number of times the backedge of the specified loop will execute. 7724 ScalarEvolution::BackedgeTakenInfo 7725 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7726 bool AllowPredicates) { 7727 SmallVector<BasicBlock *, 8> ExitingBlocks; 7728 L->getExitingBlocks(ExitingBlocks); 7729 7730 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7731 7732 SmallVector<EdgeExitInfo, 4> ExitCounts; 7733 bool CouldComputeBECount = true; 7734 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7735 const SCEV *MustExitMaxBECount = nullptr; 7736 const SCEV *MayExitMaxBECount = nullptr; 7737 bool MustExitMaxOrZero = false; 7738 7739 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7740 // and compute maxBECount. 7741 // Do a union of all the predicates here. 7742 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7743 BasicBlock *ExitBB = ExitingBlocks[i]; 7744 7745 // We canonicalize untaken exits to br (constant), ignore them so that 7746 // proving an exit untaken doesn't negatively impact our ability to reason 7747 // about the loop as whole. 7748 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7749 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7750 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7751 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7752 continue; 7753 } 7754 7755 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7756 7757 assert((AllowPredicates || EL.Predicates.empty()) && 7758 "Predicated exit limit when predicates are not allowed!"); 7759 7760 // 1. For each exit that can be computed, add an entry to ExitCounts. 7761 // CouldComputeBECount is true only if all exits can be computed. 7762 if (EL.ExactNotTaken == getCouldNotCompute()) 7763 // We couldn't compute an exact value for this exit, so 7764 // we won't be able to compute an exact value for the loop. 7765 CouldComputeBECount = false; 7766 else 7767 ExitCounts.emplace_back(ExitBB, EL); 7768 7769 // 2. Derive the loop's MaxBECount from each exit's max number of 7770 // non-exiting iterations. Partition the loop exits into two kinds: 7771 // LoopMustExits and LoopMayExits. 7772 // 7773 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7774 // is a LoopMayExit. If any computable LoopMustExit is found, then 7775 // MaxBECount is the minimum EL.MaxNotTaken of computable 7776 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7777 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7778 // computable EL.MaxNotTaken. 7779 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7780 DT.dominates(ExitBB, Latch)) { 7781 if (!MustExitMaxBECount) { 7782 MustExitMaxBECount = EL.MaxNotTaken; 7783 MustExitMaxOrZero = EL.MaxOrZero; 7784 } else { 7785 MustExitMaxBECount = 7786 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7787 } 7788 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7789 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7790 MayExitMaxBECount = EL.MaxNotTaken; 7791 else { 7792 MayExitMaxBECount = 7793 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7794 } 7795 } 7796 } 7797 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7798 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7799 // The loop backedge will be taken the maximum or zero times if there's 7800 // a single exit that must be taken the maximum or zero times. 7801 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7802 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7803 MaxBECount, MaxOrZero); 7804 } 7805 7806 ScalarEvolution::ExitLimit 7807 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7808 bool AllowPredicates) { 7809 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7810 // If our exiting block does not dominate the latch, then its connection with 7811 // loop's exit limit may be far from trivial. 7812 const BasicBlock *Latch = L->getLoopLatch(); 7813 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7814 return getCouldNotCompute(); 7815 7816 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7817 Instruction *Term = ExitingBlock->getTerminator(); 7818 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7819 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7820 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7821 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7822 "It should have one successor in loop and one exit block!"); 7823 // Proceed to the next level to examine the exit condition expression. 7824 return computeExitLimitFromCond( 7825 L, BI->getCondition(), ExitIfTrue, 7826 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7827 } 7828 7829 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7830 // For switch, make sure that there is a single exit from the loop. 7831 BasicBlock *Exit = nullptr; 7832 for (auto *SBB : successors(ExitingBlock)) 7833 if (!L->contains(SBB)) { 7834 if (Exit) // Multiple exit successors. 7835 return getCouldNotCompute(); 7836 Exit = SBB; 7837 } 7838 assert(Exit && "Exiting block must have at least one exit"); 7839 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7840 /*ControlsExit=*/IsOnlyExit); 7841 } 7842 7843 return getCouldNotCompute(); 7844 } 7845 7846 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7847 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7848 bool ControlsExit, bool AllowPredicates) { 7849 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7850 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7851 ControlsExit, AllowPredicates); 7852 } 7853 7854 Optional<ScalarEvolution::ExitLimit> 7855 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7856 bool ExitIfTrue, bool ControlsExit, 7857 bool AllowPredicates) { 7858 (void)this->L; 7859 (void)this->ExitIfTrue; 7860 (void)this->AllowPredicates; 7861 7862 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7863 this->AllowPredicates == AllowPredicates && 7864 "Variance in assumed invariant key components!"); 7865 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7866 if (Itr == TripCountMap.end()) 7867 return None; 7868 return Itr->second; 7869 } 7870 7871 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7872 bool ExitIfTrue, 7873 bool ControlsExit, 7874 bool AllowPredicates, 7875 const ExitLimit &EL) { 7876 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7877 this->AllowPredicates == AllowPredicates && 7878 "Variance in assumed invariant key components!"); 7879 7880 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7881 assert(InsertResult.second && "Expected successful insertion!"); 7882 (void)InsertResult; 7883 (void)ExitIfTrue; 7884 } 7885 7886 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7887 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7888 bool ControlsExit, bool AllowPredicates) { 7889 7890 if (auto MaybeEL = 7891 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7892 return *MaybeEL; 7893 7894 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7895 ControlsExit, AllowPredicates); 7896 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7897 return EL; 7898 } 7899 7900 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7901 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7902 bool ControlsExit, bool AllowPredicates) { 7903 // Handle BinOp conditions (And, Or). 7904 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7905 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7906 return *LimitFromBinOp; 7907 7908 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7909 // Proceed to the next level to examine the icmp. 7910 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7911 ExitLimit EL = 7912 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7913 if (EL.hasFullInfo() || !AllowPredicates) 7914 return EL; 7915 7916 // Try again, but use SCEV predicates this time. 7917 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7918 /*AllowPredicates=*/true); 7919 } 7920 7921 // Check for a constant condition. These are normally stripped out by 7922 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7923 // preserve the CFG and is temporarily leaving constant conditions 7924 // in place. 7925 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7926 if (ExitIfTrue == !CI->getZExtValue()) 7927 // The backedge is always taken. 7928 return getCouldNotCompute(); 7929 else 7930 // The backedge is never taken. 7931 return getZero(CI->getType()); 7932 } 7933 7934 // If it's not an integer or pointer comparison then compute it the hard way. 7935 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7936 } 7937 7938 Optional<ScalarEvolution::ExitLimit> 7939 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7940 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7941 bool ControlsExit, bool AllowPredicates) { 7942 // Check if the controlling expression for this loop is an And or Or. 7943 Value *Op0, *Op1; 7944 bool IsAnd = false; 7945 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7946 IsAnd = true; 7947 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7948 IsAnd = false; 7949 else 7950 return None; 7951 7952 // EitherMayExit is true in these two cases: 7953 // br (and Op0 Op1), loop, exit 7954 // br (or Op0 Op1), exit, loop 7955 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7956 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7957 ControlsExit && !EitherMayExit, 7958 AllowPredicates); 7959 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7960 ControlsExit && !EitherMayExit, 7961 AllowPredicates); 7962 7963 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7964 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7965 if (isa<ConstantInt>(Op1)) 7966 return Op1 == NeutralElement ? EL0 : EL1; 7967 if (isa<ConstantInt>(Op0)) 7968 return Op0 == NeutralElement ? EL1 : EL0; 7969 7970 const SCEV *BECount = getCouldNotCompute(); 7971 const SCEV *MaxBECount = getCouldNotCompute(); 7972 if (EitherMayExit) { 7973 // Both conditions must be same for the loop to continue executing. 7974 // Choose the less conservative count. 7975 // If ExitCond is a short-circuit form (select), using 7976 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7977 // To see the detailed examples, please see 7978 // test/Analysis/ScalarEvolution/exit-count-select.ll 7979 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7980 if (!PoisonSafe) 7981 // Even if ExitCond is select, we can safely derive BECount using both 7982 // EL0 and EL1 in these cases: 7983 // (1) EL0.ExactNotTaken is non-zero 7984 // (2) EL1.ExactNotTaken is non-poison 7985 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7986 // it cannot be umin(0, ..)) 7987 // The PoisonSafe assignment below is simplified and the assertion after 7988 // BECount calculation fully guarantees the condition (3). 7989 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7990 isa<SCEVConstant>(EL1.ExactNotTaken); 7991 if (EL0.ExactNotTaken != getCouldNotCompute() && 7992 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7993 BECount = 7994 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7995 7996 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7997 // it should have been simplified to zero (see the condition (3) above) 7998 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7999 BECount->isZero()); 8000 } 8001 if (EL0.MaxNotTaken == getCouldNotCompute()) 8002 MaxBECount = EL1.MaxNotTaken; 8003 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8004 MaxBECount = EL0.MaxNotTaken; 8005 else 8006 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8007 } else { 8008 // Both conditions must be same at the same time for the loop to exit. 8009 // For now, be conservative. 8010 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8011 BECount = EL0.ExactNotTaken; 8012 } 8013 8014 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8015 // to be more aggressive when computing BECount than when computing 8016 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8017 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8018 // to not. 8019 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8020 !isa<SCEVCouldNotCompute>(BECount)) 8021 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8022 8023 return ExitLimit(BECount, MaxBECount, false, 8024 { &EL0.Predicates, &EL1.Predicates }); 8025 } 8026 8027 ScalarEvolution::ExitLimit 8028 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8029 ICmpInst *ExitCond, 8030 bool ExitIfTrue, 8031 bool ControlsExit, 8032 bool AllowPredicates) { 8033 // If the condition was exit on true, convert the condition to exit on false 8034 ICmpInst::Predicate Pred; 8035 if (!ExitIfTrue) 8036 Pred = ExitCond->getPredicate(); 8037 else 8038 Pred = ExitCond->getInversePredicate(); 8039 const ICmpInst::Predicate OriginalPred = Pred; 8040 8041 // Handle common loops like: for (X = "string"; *X; ++X) 8042 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8043 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8044 ExitLimit ItCnt = 8045 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8046 if (ItCnt.hasAnyInfo()) 8047 return ItCnt; 8048 } 8049 8050 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8051 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8052 8053 // Try to evaluate any dependencies out of the loop. 8054 LHS = getSCEVAtScope(LHS, L); 8055 RHS = getSCEVAtScope(RHS, L); 8056 8057 // At this point, we would like to compute how many iterations of the 8058 // loop the predicate will return true for these inputs. 8059 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8060 // If there is a loop-invariant, force it into the RHS. 8061 std::swap(LHS, RHS); 8062 Pred = ICmpInst::getSwappedPredicate(Pred); 8063 } 8064 8065 // Simplify the operands before analyzing them. 8066 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8067 8068 // If we have a comparison of a chrec against a constant, try to use value 8069 // ranges to answer this query. 8070 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8071 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8072 if (AddRec->getLoop() == L) { 8073 // Form the constant range. 8074 ConstantRange CompRange = 8075 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8076 8077 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8078 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8079 } 8080 8081 switch (Pred) { 8082 case ICmpInst::ICMP_NE: { // while (X != Y) 8083 // Convert to: while (X-Y != 0) 8084 if (LHS->getType()->isPointerTy()) { 8085 LHS = getLosslessPtrToIntExpr(LHS); 8086 if (isa<SCEVCouldNotCompute>(LHS)) 8087 return LHS; 8088 } 8089 if (RHS->getType()->isPointerTy()) { 8090 RHS = getLosslessPtrToIntExpr(RHS); 8091 if (isa<SCEVCouldNotCompute>(RHS)) 8092 return RHS; 8093 } 8094 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8095 AllowPredicates); 8096 if (EL.hasAnyInfo()) return EL; 8097 break; 8098 } 8099 case ICmpInst::ICMP_EQ: { // while (X == Y) 8100 // Convert to: while (X-Y == 0) 8101 if (LHS->getType()->isPointerTy()) { 8102 LHS = getLosslessPtrToIntExpr(LHS); 8103 if (isa<SCEVCouldNotCompute>(LHS)) 8104 return LHS; 8105 } 8106 if (RHS->getType()->isPointerTy()) { 8107 RHS = getLosslessPtrToIntExpr(RHS); 8108 if (isa<SCEVCouldNotCompute>(RHS)) 8109 return RHS; 8110 } 8111 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8112 if (EL.hasAnyInfo()) return EL; 8113 break; 8114 } 8115 case ICmpInst::ICMP_SLT: 8116 case ICmpInst::ICMP_ULT: { // while (X < Y) 8117 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8118 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8119 AllowPredicates); 8120 if (EL.hasAnyInfo()) return EL; 8121 break; 8122 } 8123 case ICmpInst::ICMP_SGT: 8124 case ICmpInst::ICMP_UGT: { // while (X > Y) 8125 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8126 ExitLimit EL = 8127 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8128 AllowPredicates); 8129 if (EL.hasAnyInfo()) return EL; 8130 break; 8131 } 8132 default: 8133 break; 8134 } 8135 8136 auto *ExhaustiveCount = 8137 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8138 8139 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8140 return ExhaustiveCount; 8141 8142 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8143 ExitCond->getOperand(1), L, OriginalPred); 8144 } 8145 8146 ScalarEvolution::ExitLimit 8147 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8148 SwitchInst *Switch, 8149 BasicBlock *ExitingBlock, 8150 bool ControlsExit) { 8151 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8152 8153 // Give up if the exit is the default dest of a switch. 8154 if (Switch->getDefaultDest() == ExitingBlock) 8155 return getCouldNotCompute(); 8156 8157 assert(L->contains(Switch->getDefaultDest()) && 8158 "Default case must not exit the loop!"); 8159 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8160 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8161 8162 // while (X != Y) --> while (X-Y != 0) 8163 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8164 if (EL.hasAnyInfo()) 8165 return EL; 8166 8167 return getCouldNotCompute(); 8168 } 8169 8170 static ConstantInt * 8171 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8172 ScalarEvolution &SE) { 8173 const SCEV *InVal = SE.getConstant(C); 8174 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8175 assert(isa<SCEVConstant>(Val) && 8176 "Evaluation of SCEV at constant didn't fold correctly?"); 8177 return cast<SCEVConstant>(Val)->getValue(); 8178 } 8179 8180 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8181 /// compute the backedge execution count. 8182 ScalarEvolution::ExitLimit 8183 ScalarEvolution::computeLoadConstantCompareExitLimit( 8184 LoadInst *LI, 8185 Constant *RHS, 8186 const Loop *L, 8187 ICmpInst::Predicate predicate) { 8188 if (LI->isVolatile()) return getCouldNotCompute(); 8189 8190 // Check to see if the loaded pointer is a getelementptr of a global. 8191 // TODO: Use SCEV instead of manually grubbing with GEPs. 8192 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8193 if (!GEP) return getCouldNotCompute(); 8194 8195 // Make sure that it is really a constant global we are gepping, with an 8196 // initializer, and make sure the first IDX is really 0. 8197 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8198 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8199 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8200 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8201 return getCouldNotCompute(); 8202 8203 // Okay, we allow one non-constant index into the GEP instruction. 8204 Value *VarIdx = nullptr; 8205 std::vector<Constant*> Indexes; 8206 unsigned VarIdxNum = 0; 8207 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8208 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8209 Indexes.push_back(CI); 8210 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8211 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8212 VarIdx = GEP->getOperand(i); 8213 VarIdxNum = i-2; 8214 Indexes.push_back(nullptr); 8215 } 8216 8217 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8218 if (!VarIdx) 8219 return getCouldNotCompute(); 8220 8221 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8222 // Check to see if X is a loop variant variable value now. 8223 const SCEV *Idx = getSCEV(VarIdx); 8224 Idx = getSCEVAtScope(Idx, L); 8225 8226 // We can only recognize very limited forms of loop index expressions, in 8227 // particular, only affine AddRec's like {C1,+,C2}<L>. 8228 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8229 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8230 isLoopInvariant(IdxExpr, L) || 8231 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8232 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8233 return getCouldNotCompute(); 8234 8235 unsigned MaxSteps = MaxBruteForceIterations; 8236 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8237 ConstantInt *ItCst = ConstantInt::get( 8238 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8239 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8240 8241 // Form the GEP offset. 8242 Indexes[VarIdxNum] = Val; 8243 8244 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8245 Indexes); 8246 if (!Result) break; // Cannot compute! 8247 8248 // Evaluate the condition for this iteration. 8249 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8250 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8251 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8252 ++NumArrayLenItCounts; 8253 return getConstant(ItCst); // Found terminating iteration! 8254 } 8255 } 8256 return getCouldNotCompute(); 8257 } 8258 8259 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8260 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8261 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8262 if (!RHS) 8263 return getCouldNotCompute(); 8264 8265 const BasicBlock *Latch = L->getLoopLatch(); 8266 if (!Latch) 8267 return getCouldNotCompute(); 8268 8269 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8270 if (!Predecessor) 8271 return getCouldNotCompute(); 8272 8273 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8274 // Return LHS in OutLHS and shift_opt in OutOpCode. 8275 auto MatchPositiveShift = 8276 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8277 8278 using namespace PatternMatch; 8279 8280 ConstantInt *ShiftAmt; 8281 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8282 OutOpCode = Instruction::LShr; 8283 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8284 OutOpCode = Instruction::AShr; 8285 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8286 OutOpCode = Instruction::Shl; 8287 else 8288 return false; 8289 8290 return ShiftAmt->getValue().isStrictlyPositive(); 8291 }; 8292 8293 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8294 // 8295 // loop: 8296 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8297 // %iv.shifted = lshr i32 %iv, <positive constant> 8298 // 8299 // Return true on a successful match. Return the corresponding PHI node (%iv 8300 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8301 auto MatchShiftRecurrence = 8302 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8303 Optional<Instruction::BinaryOps> PostShiftOpCode; 8304 8305 { 8306 Instruction::BinaryOps OpC; 8307 Value *V; 8308 8309 // If we encounter a shift instruction, "peel off" the shift operation, 8310 // and remember that we did so. Later when we inspect %iv's backedge 8311 // value, we will make sure that the backedge value uses the same 8312 // operation. 8313 // 8314 // Note: the peeled shift operation does not have to be the same 8315 // instruction as the one feeding into the PHI's backedge value. We only 8316 // really care about it being the same *kind* of shift instruction -- 8317 // that's all that is required for our later inferences to hold. 8318 if (MatchPositiveShift(LHS, V, OpC)) { 8319 PostShiftOpCode = OpC; 8320 LHS = V; 8321 } 8322 } 8323 8324 PNOut = dyn_cast<PHINode>(LHS); 8325 if (!PNOut || PNOut->getParent() != L->getHeader()) 8326 return false; 8327 8328 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8329 Value *OpLHS; 8330 8331 return 8332 // The backedge value for the PHI node must be a shift by a positive 8333 // amount 8334 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8335 8336 // of the PHI node itself 8337 OpLHS == PNOut && 8338 8339 // and the kind of shift should be match the kind of shift we peeled 8340 // off, if any. 8341 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8342 }; 8343 8344 PHINode *PN; 8345 Instruction::BinaryOps OpCode; 8346 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8347 return getCouldNotCompute(); 8348 8349 const DataLayout &DL = getDataLayout(); 8350 8351 // The key rationale for this optimization is that for some kinds of shift 8352 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8353 // within a finite number of iterations. If the condition guarding the 8354 // backedge (in the sense that the backedge is taken if the condition is true) 8355 // is false for the value the shift recurrence stabilizes to, then we know 8356 // that the backedge is taken only a finite number of times. 8357 8358 ConstantInt *StableValue = nullptr; 8359 switch (OpCode) { 8360 default: 8361 llvm_unreachable("Impossible case!"); 8362 8363 case Instruction::AShr: { 8364 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8365 // bitwidth(K) iterations. 8366 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8367 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8368 Predecessor->getTerminator(), &DT); 8369 auto *Ty = cast<IntegerType>(RHS->getType()); 8370 if (Known.isNonNegative()) 8371 StableValue = ConstantInt::get(Ty, 0); 8372 else if (Known.isNegative()) 8373 StableValue = ConstantInt::get(Ty, -1, true); 8374 else 8375 return getCouldNotCompute(); 8376 8377 break; 8378 } 8379 case Instruction::LShr: 8380 case Instruction::Shl: 8381 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8382 // stabilize to 0 in at most bitwidth(K) iterations. 8383 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8384 break; 8385 } 8386 8387 auto *Result = 8388 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8389 assert(Result->getType()->isIntegerTy(1) && 8390 "Otherwise cannot be an operand to a branch instruction"); 8391 8392 if (Result->isZeroValue()) { 8393 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8394 const SCEV *UpperBound = 8395 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8396 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8397 } 8398 8399 return getCouldNotCompute(); 8400 } 8401 8402 /// Return true if we can constant fold an instruction of the specified type, 8403 /// assuming that all operands were constants. 8404 static bool CanConstantFold(const Instruction *I) { 8405 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8406 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8407 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8408 return true; 8409 8410 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8411 if (const Function *F = CI->getCalledFunction()) 8412 return canConstantFoldCallTo(CI, F); 8413 return false; 8414 } 8415 8416 /// Determine whether this instruction can constant evolve within this loop 8417 /// assuming its operands can all constant evolve. 8418 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8419 // An instruction outside of the loop can't be derived from a loop PHI. 8420 if (!L->contains(I)) return false; 8421 8422 if (isa<PHINode>(I)) { 8423 // We don't currently keep track of the control flow needed to evaluate 8424 // PHIs, so we cannot handle PHIs inside of loops. 8425 return L->getHeader() == I->getParent(); 8426 } 8427 8428 // If we won't be able to constant fold this expression even if the operands 8429 // are constants, bail early. 8430 return CanConstantFold(I); 8431 } 8432 8433 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8434 /// recursing through each instruction operand until reaching a loop header phi. 8435 static PHINode * 8436 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8437 DenseMap<Instruction *, PHINode *> &PHIMap, 8438 unsigned Depth) { 8439 if (Depth > MaxConstantEvolvingDepth) 8440 return nullptr; 8441 8442 // Otherwise, we can evaluate this instruction if all of its operands are 8443 // constant or derived from a PHI node themselves. 8444 PHINode *PHI = nullptr; 8445 for (Value *Op : UseInst->operands()) { 8446 if (isa<Constant>(Op)) continue; 8447 8448 Instruction *OpInst = dyn_cast<Instruction>(Op); 8449 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8450 8451 PHINode *P = dyn_cast<PHINode>(OpInst); 8452 if (!P) 8453 // If this operand is already visited, reuse the prior result. 8454 // We may have P != PHI if this is the deepest point at which the 8455 // inconsistent paths meet. 8456 P = PHIMap.lookup(OpInst); 8457 if (!P) { 8458 // Recurse and memoize the results, whether a phi is found or not. 8459 // This recursive call invalidates pointers into PHIMap. 8460 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8461 PHIMap[OpInst] = P; 8462 } 8463 if (!P) 8464 return nullptr; // Not evolving from PHI 8465 if (PHI && PHI != P) 8466 return nullptr; // Evolving from multiple different PHIs. 8467 PHI = P; 8468 } 8469 // This is a expression evolving from a constant PHI! 8470 return PHI; 8471 } 8472 8473 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8474 /// in the loop that V is derived from. We allow arbitrary operations along the 8475 /// way, but the operands of an operation must either be constants or a value 8476 /// derived from a constant PHI. If this expression does not fit with these 8477 /// constraints, return null. 8478 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8479 Instruction *I = dyn_cast<Instruction>(V); 8480 if (!I || !canConstantEvolve(I, L)) return nullptr; 8481 8482 if (PHINode *PN = dyn_cast<PHINode>(I)) 8483 return PN; 8484 8485 // Record non-constant instructions contained by the loop. 8486 DenseMap<Instruction *, PHINode *> PHIMap; 8487 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8488 } 8489 8490 /// EvaluateExpression - Given an expression that passes the 8491 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8492 /// in the loop has the value PHIVal. If we can't fold this expression for some 8493 /// reason, return null. 8494 static Constant *EvaluateExpression(Value *V, const Loop *L, 8495 DenseMap<Instruction *, Constant *> &Vals, 8496 const DataLayout &DL, 8497 const TargetLibraryInfo *TLI) { 8498 // Convenient constant check, but redundant for recursive calls. 8499 if (Constant *C = dyn_cast<Constant>(V)) return C; 8500 Instruction *I = dyn_cast<Instruction>(V); 8501 if (!I) return nullptr; 8502 8503 if (Constant *C = Vals.lookup(I)) return C; 8504 8505 // An instruction inside the loop depends on a value outside the loop that we 8506 // weren't given a mapping for, or a value such as a call inside the loop. 8507 if (!canConstantEvolve(I, L)) return nullptr; 8508 8509 // An unmapped PHI can be due to a branch or another loop inside this loop, 8510 // or due to this not being the initial iteration through a loop where we 8511 // couldn't compute the evolution of this particular PHI last time. 8512 if (isa<PHINode>(I)) return nullptr; 8513 8514 std::vector<Constant*> Operands(I->getNumOperands()); 8515 8516 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8517 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8518 if (!Operand) { 8519 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8520 if (!Operands[i]) return nullptr; 8521 continue; 8522 } 8523 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8524 Vals[Operand] = C; 8525 if (!C) return nullptr; 8526 Operands[i] = C; 8527 } 8528 8529 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8530 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8531 Operands[1], DL, TLI); 8532 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8533 if (!LI->isVolatile()) 8534 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8535 } 8536 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8537 } 8538 8539 8540 // If every incoming value to PN except the one for BB is a specific Constant, 8541 // return that, else return nullptr. 8542 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8543 Constant *IncomingVal = nullptr; 8544 8545 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8546 if (PN->getIncomingBlock(i) == BB) 8547 continue; 8548 8549 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8550 if (!CurrentVal) 8551 return nullptr; 8552 8553 if (IncomingVal != CurrentVal) { 8554 if (IncomingVal) 8555 return nullptr; 8556 IncomingVal = CurrentVal; 8557 } 8558 } 8559 8560 return IncomingVal; 8561 } 8562 8563 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8564 /// in the header of its containing loop, we know the loop executes a 8565 /// constant number of times, and the PHI node is just a recurrence 8566 /// involving constants, fold it. 8567 Constant * 8568 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8569 const APInt &BEs, 8570 const Loop *L) { 8571 auto I = ConstantEvolutionLoopExitValue.find(PN); 8572 if (I != ConstantEvolutionLoopExitValue.end()) 8573 return I->second; 8574 8575 if (BEs.ugt(MaxBruteForceIterations)) 8576 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8577 8578 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8579 8580 DenseMap<Instruction *, Constant *> CurrentIterVals; 8581 BasicBlock *Header = L->getHeader(); 8582 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8583 8584 BasicBlock *Latch = L->getLoopLatch(); 8585 if (!Latch) 8586 return nullptr; 8587 8588 for (PHINode &PHI : Header->phis()) { 8589 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8590 CurrentIterVals[&PHI] = StartCST; 8591 } 8592 if (!CurrentIterVals.count(PN)) 8593 return RetVal = nullptr; 8594 8595 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8596 8597 // Execute the loop symbolically to determine the exit value. 8598 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8599 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8600 8601 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8602 unsigned IterationNum = 0; 8603 const DataLayout &DL = getDataLayout(); 8604 for (; ; ++IterationNum) { 8605 if (IterationNum == NumIterations) 8606 return RetVal = CurrentIterVals[PN]; // Got exit value! 8607 8608 // Compute the value of the PHIs for the next iteration. 8609 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8610 DenseMap<Instruction *, Constant *> NextIterVals; 8611 Constant *NextPHI = 8612 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8613 if (!NextPHI) 8614 return nullptr; // Couldn't evaluate! 8615 NextIterVals[PN] = NextPHI; 8616 8617 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8618 8619 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8620 // cease to be able to evaluate one of them or if they stop evolving, 8621 // because that doesn't necessarily prevent us from computing PN. 8622 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8623 for (const auto &I : CurrentIterVals) { 8624 PHINode *PHI = dyn_cast<PHINode>(I.first); 8625 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8626 PHIsToCompute.emplace_back(PHI, I.second); 8627 } 8628 // We use two distinct loops because EvaluateExpression may invalidate any 8629 // iterators into CurrentIterVals. 8630 for (const auto &I : PHIsToCompute) { 8631 PHINode *PHI = I.first; 8632 Constant *&NextPHI = NextIterVals[PHI]; 8633 if (!NextPHI) { // Not already computed. 8634 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8635 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8636 } 8637 if (NextPHI != I.second) 8638 StoppedEvolving = false; 8639 } 8640 8641 // If all entries in CurrentIterVals == NextIterVals then we can stop 8642 // iterating, the loop can't continue to change. 8643 if (StoppedEvolving) 8644 return RetVal = CurrentIterVals[PN]; 8645 8646 CurrentIterVals.swap(NextIterVals); 8647 } 8648 } 8649 8650 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8651 Value *Cond, 8652 bool ExitWhen) { 8653 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8654 if (!PN) return getCouldNotCompute(); 8655 8656 // If the loop is canonicalized, the PHI will have exactly two entries. 8657 // That's the only form we support here. 8658 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8659 8660 DenseMap<Instruction *, Constant *> CurrentIterVals; 8661 BasicBlock *Header = L->getHeader(); 8662 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8663 8664 BasicBlock *Latch = L->getLoopLatch(); 8665 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8666 8667 for (PHINode &PHI : Header->phis()) { 8668 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8669 CurrentIterVals[&PHI] = StartCST; 8670 } 8671 if (!CurrentIterVals.count(PN)) 8672 return getCouldNotCompute(); 8673 8674 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8675 // the loop symbolically to determine when the condition gets a value of 8676 // "ExitWhen". 8677 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8678 const DataLayout &DL = getDataLayout(); 8679 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8680 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8681 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8682 8683 // Couldn't symbolically evaluate. 8684 if (!CondVal) return getCouldNotCompute(); 8685 8686 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8687 ++NumBruteForceTripCountsComputed; 8688 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8689 } 8690 8691 // Update all the PHI nodes for the next iteration. 8692 DenseMap<Instruction *, Constant *> NextIterVals; 8693 8694 // Create a list of which PHIs we need to compute. We want to do this before 8695 // calling EvaluateExpression on them because that may invalidate iterators 8696 // into CurrentIterVals. 8697 SmallVector<PHINode *, 8> PHIsToCompute; 8698 for (const auto &I : CurrentIterVals) { 8699 PHINode *PHI = dyn_cast<PHINode>(I.first); 8700 if (!PHI || PHI->getParent() != Header) continue; 8701 PHIsToCompute.push_back(PHI); 8702 } 8703 for (PHINode *PHI : PHIsToCompute) { 8704 Constant *&NextPHI = NextIterVals[PHI]; 8705 if (NextPHI) continue; // Already computed! 8706 8707 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8708 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8709 } 8710 CurrentIterVals.swap(NextIterVals); 8711 } 8712 8713 // Too many iterations were needed to evaluate. 8714 return getCouldNotCompute(); 8715 } 8716 8717 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8718 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8719 ValuesAtScopes[V]; 8720 // Check to see if we've folded this expression at this loop before. 8721 for (auto &LS : Values) 8722 if (LS.first == L) 8723 return LS.second ? LS.second : V; 8724 8725 Values.emplace_back(L, nullptr); 8726 8727 // Otherwise compute it. 8728 const SCEV *C = computeSCEVAtScope(V, L); 8729 for (auto &LS : reverse(ValuesAtScopes[V])) 8730 if (LS.first == L) { 8731 LS.second = C; 8732 break; 8733 } 8734 return C; 8735 } 8736 8737 /// This builds up a Constant using the ConstantExpr interface. That way, we 8738 /// will return Constants for objects which aren't represented by a 8739 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8740 /// Returns NULL if the SCEV isn't representable as a Constant. 8741 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8742 switch (V->getSCEVType()) { 8743 case scCouldNotCompute: 8744 case scAddRecExpr: 8745 return nullptr; 8746 case scConstant: 8747 return cast<SCEVConstant>(V)->getValue(); 8748 case scUnknown: 8749 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8750 case scSignExtend: { 8751 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8752 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8753 return ConstantExpr::getSExt(CastOp, SS->getType()); 8754 return nullptr; 8755 } 8756 case scZeroExtend: { 8757 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8758 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8759 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8760 return nullptr; 8761 } 8762 case scPtrToInt: { 8763 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8764 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8765 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8766 8767 return nullptr; 8768 } 8769 case scTruncate: { 8770 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8771 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8772 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8773 return nullptr; 8774 } 8775 case scAddExpr: { 8776 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8777 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8778 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8779 unsigned AS = PTy->getAddressSpace(); 8780 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8781 C = ConstantExpr::getBitCast(C, DestPtrTy); 8782 } 8783 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8784 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8785 if (!C2) 8786 return nullptr; 8787 8788 // First pointer! 8789 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8790 unsigned AS = C2->getType()->getPointerAddressSpace(); 8791 std::swap(C, C2); 8792 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8793 // The offsets have been converted to bytes. We can add bytes to an 8794 // i8* by GEP with the byte count in the first index. 8795 C = ConstantExpr::getBitCast(C, DestPtrTy); 8796 } 8797 8798 // Don't bother trying to sum two pointers. We probably can't 8799 // statically compute a load that results from it anyway. 8800 if (C2->getType()->isPointerTy()) 8801 return nullptr; 8802 8803 if (C->getType()->isPointerTy()) { 8804 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8805 C, C2); 8806 } else { 8807 C = ConstantExpr::getAdd(C, C2); 8808 } 8809 } 8810 return C; 8811 } 8812 return nullptr; 8813 } 8814 case scMulExpr: { 8815 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8816 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8817 // Don't bother with pointers at all. 8818 if (C->getType()->isPointerTy()) 8819 return nullptr; 8820 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8821 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8822 if (!C2 || C2->getType()->isPointerTy()) 8823 return nullptr; 8824 C = ConstantExpr::getMul(C, C2); 8825 } 8826 return C; 8827 } 8828 return nullptr; 8829 } 8830 case scUDivExpr: { 8831 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8832 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8833 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8834 if (LHS->getType() == RHS->getType()) 8835 return ConstantExpr::getUDiv(LHS, RHS); 8836 return nullptr; 8837 } 8838 case scSMaxExpr: 8839 case scUMaxExpr: 8840 case scSMinExpr: 8841 case scUMinExpr: 8842 return nullptr; // TODO: smax, umax, smin, umax. 8843 } 8844 llvm_unreachable("Unknown SCEV kind!"); 8845 } 8846 8847 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8848 if (isa<SCEVConstant>(V)) return V; 8849 8850 // If this instruction is evolved from a constant-evolving PHI, compute the 8851 // exit value from the loop without using SCEVs. 8852 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8853 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8854 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8855 const Loop *CurrLoop = this->LI[I->getParent()]; 8856 // Looking for loop exit value. 8857 if (CurrLoop && CurrLoop->getParentLoop() == L && 8858 PN->getParent() == CurrLoop->getHeader()) { 8859 // Okay, there is no closed form solution for the PHI node. Check 8860 // to see if the loop that contains it has a known backedge-taken 8861 // count. If so, we may be able to force computation of the exit 8862 // value. 8863 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8864 // This trivial case can show up in some degenerate cases where 8865 // the incoming IR has not yet been fully simplified. 8866 if (BackedgeTakenCount->isZero()) { 8867 Value *InitValue = nullptr; 8868 bool MultipleInitValues = false; 8869 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8870 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8871 if (!InitValue) 8872 InitValue = PN->getIncomingValue(i); 8873 else if (InitValue != PN->getIncomingValue(i)) { 8874 MultipleInitValues = true; 8875 break; 8876 } 8877 } 8878 } 8879 if (!MultipleInitValues && InitValue) 8880 return getSCEV(InitValue); 8881 } 8882 // Do we have a loop invariant value flowing around the backedge 8883 // for a loop which must execute the backedge? 8884 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8885 isKnownPositive(BackedgeTakenCount) && 8886 PN->getNumIncomingValues() == 2) { 8887 8888 unsigned InLoopPred = 8889 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8890 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8891 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8892 return getSCEV(BackedgeVal); 8893 } 8894 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8895 // Okay, we know how many times the containing loop executes. If 8896 // this is a constant evolving PHI node, get the final value at 8897 // the specified iteration number. 8898 Constant *RV = getConstantEvolutionLoopExitValue( 8899 PN, BTCC->getAPInt(), CurrLoop); 8900 if (RV) return getSCEV(RV); 8901 } 8902 } 8903 8904 // If there is a single-input Phi, evaluate it at our scope. If we can 8905 // prove that this replacement does not break LCSSA form, use new value. 8906 if (PN->getNumOperands() == 1) { 8907 const SCEV *Input = getSCEV(PN->getOperand(0)); 8908 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8909 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8910 // for the simplest case just support constants. 8911 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8912 } 8913 } 8914 8915 // Okay, this is an expression that we cannot symbolically evaluate 8916 // into a SCEV. Check to see if it's possible to symbolically evaluate 8917 // the arguments into constants, and if so, try to constant propagate the 8918 // result. This is particularly useful for computing loop exit values. 8919 if (CanConstantFold(I)) { 8920 SmallVector<Constant *, 4> Operands; 8921 bool MadeImprovement = false; 8922 for (Value *Op : I->operands()) { 8923 if (Constant *C = dyn_cast<Constant>(Op)) { 8924 Operands.push_back(C); 8925 continue; 8926 } 8927 8928 // If any of the operands is non-constant and if they are 8929 // non-integer and non-pointer, don't even try to analyze them 8930 // with scev techniques. 8931 if (!isSCEVable(Op->getType())) 8932 return V; 8933 8934 const SCEV *OrigV = getSCEV(Op); 8935 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8936 MadeImprovement |= OrigV != OpV; 8937 8938 Constant *C = BuildConstantFromSCEV(OpV); 8939 if (!C) return V; 8940 if (C->getType() != Op->getType()) 8941 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8942 Op->getType(), 8943 false), 8944 C, Op->getType()); 8945 Operands.push_back(C); 8946 } 8947 8948 // Check to see if getSCEVAtScope actually made an improvement. 8949 if (MadeImprovement) { 8950 Constant *C = nullptr; 8951 const DataLayout &DL = getDataLayout(); 8952 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8953 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8954 Operands[1], DL, &TLI); 8955 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8956 if (!Load->isVolatile()) 8957 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8958 DL); 8959 } else 8960 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8961 if (!C) return V; 8962 return getSCEV(C); 8963 } 8964 } 8965 } 8966 8967 // This is some other type of SCEVUnknown, just return it. 8968 return V; 8969 } 8970 8971 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8972 // Avoid performing the look-up in the common case where the specified 8973 // expression has no loop-variant portions. 8974 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8975 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8976 if (OpAtScope != Comm->getOperand(i)) { 8977 // Okay, at least one of these operands is loop variant but might be 8978 // foldable. Build a new instance of the folded commutative expression. 8979 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8980 Comm->op_begin()+i); 8981 NewOps.push_back(OpAtScope); 8982 8983 for (++i; i != e; ++i) { 8984 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8985 NewOps.push_back(OpAtScope); 8986 } 8987 if (isa<SCEVAddExpr>(Comm)) 8988 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8989 if (isa<SCEVMulExpr>(Comm)) 8990 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8991 if (isa<SCEVMinMaxExpr>(Comm)) 8992 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8993 llvm_unreachable("Unknown commutative SCEV type!"); 8994 } 8995 } 8996 // If we got here, all operands are loop invariant. 8997 return Comm; 8998 } 8999 9000 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9001 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9002 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9003 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9004 return Div; // must be loop invariant 9005 return getUDivExpr(LHS, RHS); 9006 } 9007 9008 // If this is a loop recurrence for a loop that does not contain L, then we 9009 // are dealing with the final value computed by the loop. 9010 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9011 // First, attempt to evaluate each operand. 9012 // Avoid performing the look-up in the common case where the specified 9013 // expression has no loop-variant portions. 9014 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9015 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9016 if (OpAtScope == AddRec->getOperand(i)) 9017 continue; 9018 9019 // Okay, at least one of these operands is loop variant but might be 9020 // foldable. Build a new instance of the folded commutative expression. 9021 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9022 AddRec->op_begin()+i); 9023 NewOps.push_back(OpAtScope); 9024 for (++i; i != e; ++i) 9025 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9026 9027 const SCEV *FoldedRec = 9028 getAddRecExpr(NewOps, AddRec->getLoop(), 9029 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9030 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9031 // The addrec may be folded to a nonrecurrence, for example, if the 9032 // induction variable is multiplied by zero after constant folding. Go 9033 // ahead and return the folded value. 9034 if (!AddRec) 9035 return FoldedRec; 9036 break; 9037 } 9038 9039 // If the scope is outside the addrec's loop, evaluate it by using the 9040 // loop exit value of the addrec. 9041 if (!AddRec->getLoop()->contains(L)) { 9042 // To evaluate this recurrence, we need to know how many times the AddRec 9043 // loop iterates. Compute this now. 9044 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9045 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9046 9047 // Then, evaluate the AddRec. 9048 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9049 } 9050 9051 return AddRec; 9052 } 9053 9054 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9055 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9056 if (Op == Cast->getOperand()) 9057 return Cast; // must be loop invariant 9058 return getZeroExtendExpr(Op, Cast->getType()); 9059 } 9060 9061 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9062 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9063 if (Op == Cast->getOperand()) 9064 return Cast; // must be loop invariant 9065 return getSignExtendExpr(Op, Cast->getType()); 9066 } 9067 9068 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9069 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9070 if (Op == Cast->getOperand()) 9071 return Cast; // must be loop invariant 9072 return getTruncateExpr(Op, Cast->getType()); 9073 } 9074 9075 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9076 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9077 if (Op == Cast->getOperand()) 9078 return Cast; // must be loop invariant 9079 return getPtrToIntExpr(Op, Cast->getType()); 9080 } 9081 9082 llvm_unreachable("Unknown SCEV type!"); 9083 } 9084 9085 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9086 return getSCEVAtScope(getSCEV(V), L); 9087 } 9088 9089 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9090 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9091 return stripInjectiveFunctions(ZExt->getOperand()); 9092 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9093 return stripInjectiveFunctions(SExt->getOperand()); 9094 return S; 9095 } 9096 9097 /// Finds the minimum unsigned root of the following equation: 9098 /// 9099 /// A * X = B (mod N) 9100 /// 9101 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9102 /// A and B isn't important. 9103 /// 9104 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9105 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9106 ScalarEvolution &SE) { 9107 uint32_t BW = A.getBitWidth(); 9108 assert(BW == SE.getTypeSizeInBits(B->getType())); 9109 assert(A != 0 && "A must be non-zero."); 9110 9111 // 1. D = gcd(A, N) 9112 // 9113 // The gcd of A and N may have only one prime factor: 2. The number of 9114 // trailing zeros in A is its multiplicity 9115 uint32_t Mult2 = A.countTrailingZeros(); 9116 // D = 2^Mult2 9117 9118 // 2. Check if B is divisible by D. 9119 // 9120 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9121 // is not less than multiplicity of this prime factor for D. 9122 if (SE.GetMinTrailingZeros(B) < Mult2) 9123 return SE.getCouldNotCompute(); 9124 9125 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9126 // modulo (N / D). 9127 // 9128 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9129 // (N / D) in general. The inverse itself always fits into BW bits, though, 9130 // so we immediately truncate it. 9131 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9132 APInt Mod(BW + 1, 0); 9133 Mod.setBit(BW - Mult2); // Mod = N / D 9134 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9135 9136 // 4. Compute the minimum unsigned root of the equation: 9137 // I * (B / D) mod (N / D) 9138 // To simplify the computation, we factor out the divide by D: 9139 // (I * B mod N) / D 9140 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9141 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9142 } 9143 9144 /// For a given quadratic addrec, generate coefficients of the corresponding 9145 /// quadratic equation, multiplied by a common value to ensure that they are 9146 /// integers. 9147 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9148 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9149 /// were multiplied by, and BitWidth is the bit width of the original addrec 9150 /// coefficients. 9151 /// This function returns None if the addrec coefficients are not compile- 9152 /// time constants. 9153 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9154 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9155 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9156 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9157 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9158 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9159 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9160 << *AddRec << '\n'); 9161 9162 // We currently can only solve this if the coefficients are constants. 9163 if (!LC || !MC || !NC) { 9164 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9165 return None; 9166 } 9167 9168 APInt L = LC->getAPInt(); 9169 APInt M = MC->getAPInt(); 9170 APInt N = NC->getAPInt(); 9171 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9172 9173 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9174 unsigned NewWidth = BitWidth + 1; 9175 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9176 << BitWidth << '\n'); 9177 // The sign-extension (as opposed to a zero-extension) here matches the 9178 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9179 N = N.sext(NewWidth); 9180 M = M.sext(NewWidth); 9181 L = L.sext(NewWidth); 9182 9183 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9184 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9185 // L+M, L+2M+N, L+3M+3N, ... 9186 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9187 // 9188 // The equation Acc = 0 is then 9189 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9190 // In a quadratic form it becomes: 9191 // N n^2 + (2M-N) n + 2L = 0. 9192 9193 APInt A = N; 9194 APInt B = 2 * M - A; 9195 APInt C = 2 * L; 9196 APInt T = APInt(NewWidth, 2); 9197 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9198 << "x + " << C << ", coeff bw: " << NewWidth 9199 << ", multiplied by " << T << '\n'); 9200 return std::make_tuple(A, B, C, T, BitWidth); 9201 } 9202 9203 /// Helper function to compare optional APInts: 9204 /// (a) if X and Y both exist, return min(X, Y), 9205 /// (b) if neither X nor Y exist, return None, 9206 /// (c) if exactly one of X and Y exists, return that value. 9207 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9208 if (X.hasValue() && Y.hasValue()) { 9209 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9210 APInt XW = X->sextOrSelf(W); 9211 APInt YW = Y->sextOrSelf(W); 9212 return XW.slt(YW) ? *X : *Y; 9213 } 9214 if (!X.hasValue() && !Y.hasValue()) 9215 return None; 9216 return X.hasValue() ? *X : *Y; 9217 } 9218 9219 /// Helper function to truncate an optional APInt to a given BitWidth. 9220 /// When solving addrec-related equations, it is preferable to return a value 9221 /// that has the same bit width as the original addrec's coefficients. If the 9222 /// solution fits in the original bit width, truncate it (except for i1). 9223 /// Returning a value of a different bit width may inhibit some optimizations. 9224 /// 9225 /// In general, a solution to a quadratic equation generated from an addrec 9226 /// may require BW+1 bits, where BW is the bit width of the addrec's 9227 /// coefficients. The reason is that the coefficients of the quadratic 9228 /// equation are BW+1 bits wide (to avoid truncation when converting from 9229 /// the addrec to the equation). 9230 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9231 if (!X.hasValue()) 9232 return None; 9233 unsigned W = X->getBitWidth(); 9234 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9235 return X->trunc(BitWidth); 9236 return X; 9237 } 9238 9239 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9240 /// iterations. The values L, M, N are assumed to be signed, and they 9241 /// should all have the same bit widths. 9242 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9243 /// where BW is the bit width of the addrec's coefficients. 9244 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9245 /// returned as such, otherwise the bit width of the returned value may 9246 /// be greater than BW. 9247 /// 9248 /// This function returns None if 9249 /// (a) the addrec coefficients are not constant, or 9250 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9251 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9252 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9253 static Optional<APInt> 9254 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9255 APInt A, B, C, M; 9256 unsigned BitWidth; 9257 auto T = GetQuadraticEquation(AddRec); 9258 if (!T.hasValue()) 9259 return None; 9260 9261 std::tie(A, B, C, M, BitWidth) = *T; 9262 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9263 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9264 if (!X.hasValue()) 9265 return None; 9266 9267 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9268 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9269 if (!V->isZero()) 9270 return None; 9271 9272 return TruncIfPossible(X, BitWidth); 9273 } 9274 9275 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9276 /// iterations. The values M, N are assumed to be signed, and they 9277 /// should all have the same bit widths. 9278 /// Find the least n such that c(n) does not belong to the given range, 9279 /// while c(n-1) does. 9280 /// 9281 /// This function returns None if 9282 /// (a) the addrec coefficients are not constant, or 9283 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9284 /// bounds of the range. 9285 static Optional<APInt> 9286 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9287 const ConstantRange &Range, ScalarEvolution &SE) { 9288 assert(AddRec->getOperand(0)->isZero() && 9289 "Starting value of addrec should be 0"); 9290 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9291 << Range << ", addrec " << *AddRec << '\n'); 9292 // This case is handled in getNumIterationsInRange. Here we can assume that 9293 // we start in the range. 9294 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9295 "Addrec's initial value should be in range"); 9296 9297 APInt A, B, C, M; 9298 unsigned BitWidth; 9299 auto T = GetQuadraticEquation(AddRec); 9300 if (!T.hasValue()) 9301 return None; 9302 9303 // Be careful about the return value: there can be two reasons for not 9304 // returning an actual number. First, if no solutions to the equations 9305 // were found, and second, if the solutions don't leave the given range. 9306 // The first case means that the actual solution is "unknown", the second 9307 // means that it's known, but not valid. If the solution is unknown, we 9308 // cannot make any conclusions. 9309 // Return a pair: the optional solution and a flag indicating if the 9310 // solution was found. 9311 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9312 // Solve for signed overflow and unsigned overflow, pick the lower 9313 // solution. 9314 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9315 << Bound << " (before multiplying by " << M << ")\n"); 9316 Bound *= M; // The quadratic equation multiplier. 9317 9318 Optional<APInt> SO = None; 9319 if (BitWidth > 1) { 9320 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9321 "signed overflow\n"); 9322 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9323 } 9324 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9325 "unsigned overflow\n"); 9326 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9327 BitWidth+1); 9328 9329 auto LeavesRange = [&] (const APInt &X) { 9330 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9331 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9332 if (Range.contains(V0->getValue())) 9333 return false; 9334 // X should be at least 1, so X-1 is non-negative. 9335 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9336 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9337 if (Range.contains(V1->getValue())) 9338 return true; 9339 return false; 9340 }; 9341 9342 // If SolveQuadraticEquationWrap returns None, it means that there can 9343 // be a solution, but the function failed to find it. We cannot treat it 9344 // as "no solution". 9345 if (!SO.hasValue() || !UO.hasValue()) 9346 return { None, false }; 9347 9348 // Check the smaller value first to see if it leaves the range. 9349 // At this point, both SO and UO must have values. 9350 Optional<APInt> Min = MinOptional(SO, UO); 9351 if (LeavesRange(*Min)) 9352 return { Min, true }; 9353 Optional<APInt> Max = Min == SO ? UO : SO; 9354 if (LeavesRange(*Max)) 9355 return { Max, true }; 9356 9357 // Solutions were found, but were eliminated, hence the "true". 9358 return { None, true }; 9359 }; 9360 9361 std::tie(A, B, C, M, BitWidth) = *T; 9362 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9363 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9364 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9365 auto SL = SolveForBoundary(Lower); 9366 auto SU = SolveForBoundary(Upper); 9367 // If any of the solutions was unknown, no meaninigful conclusions can 9368 // be made. 9369 if (!SL.second || !SU.second) 9370 return None; 9371 9372 // Claim: The correct solution is not some value between Min and Max. 9373 // 9374 // Justification: Assuming that Min and Max are different values, one of 9375 // them is when the first signed overflow happens, the other is when the 9376 // first unsigned overflow happens. Crossing the range boundary is only 9377 // possible via an overflow (treating 0 as a special case of it, modeling 9378 // an overflow as crossing k*2^W for some k). 9379 // 9380 // The interesting case here is when Min was eliminated as an invalid 9381 // solution, but Max was not. The argument is that if there was another 9382 // overflow between Min and Max, it would also have been eliminated if 9383 // it was considered. 9384 // 9385 // For a given boundary, it is possible to have two overflows of the same 9386 // type (signed/unsigned) without having the other type in between: this 9387 // can happen when the vertex of the parabola is between the iterations 9388 // corresponding to the overflows. This is only possible when the two 9389 // overflows cross k*2^W for the same k. In such case, if the second one 9390 // left the range (and was the first one to do so), the first overflow 9391 // would have to enter the range, which would mean that either we had left 9392 // the range before or that we started outside of it. Both of these cases 9393 // are contradictions. 9394 // 9395 // Claim: In the case where SolveForBoundary returns None, the correct 9396 // solution is not some value between the Max for this boundary and the 9397 // Min of the other boundary. 9398 // 9399 // Justification: Assume that we had such Max_A and Min_B corresponding 9400 // to range boundaries A and B and such that Max_A < Min_B. If there was 9401 // a solution between Max_A and Min_B, it would have to be caused by an 9402 // overflow corresponding to either A or B. It cannot correspond to B, 9403 // since Min_B is the first occurrence of such an overflow. If it 9404 // corresponded to A, it would have to be either a signed or an unsigned 9405 // overflow that is larger than both eliminated overflows for A. But 9406 // between the eliminated overflows and this overflow, the values would 9407 // cover the entire value space, thus crossing the other boundary, which 9408 // is a contradiction. 9409 9410 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9411 } 9412 9413 ScalarEvolution::ExitLimit 9414 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9415 bool AllowPredicates) { 9416 9417 // This is only used for loops with a "x != y" exit test. The exit condition 9418 // is now expressed as a single expression, V = x-y. So the exit test is 9419 // effectively V != 0. We know and take advantage of the fact that this 9420 // expression only being used in a comparison by zero context. 9421 9422 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9423 // If the value is a constant 9424 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9425 // If the value is already zero, the branch will execute zero times. 9426 if (C->getValue()->isZero()) return C; 9427 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9428 } 9429 9430 const SCEVAddRecExpr *AddRec = 9431 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9432 9433 if (!AddRec && AllowPredicates) 9434 // Try to make this an AddRec using runtime tests, in the first X 9435 // iterations of this loop, where X is the SCEV expression found by the 9436 // algorithm below. 9437 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9438 9439 if (!AddRec || AddRec->getLoop() != L) 9440 return getCouldNotCompute(); 9441 9442 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9443 // the quadratic equation to solve it. 9444 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9445 // We can only use this value if the chrec ends up with an exact zero 9446 // value at this index. When solving for "X*X != 5", for example, we 9447 // should not accept a root of 2. 9448 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9449 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9450 return ExitLimit(R, R, false, Predicates); 9451 } 9452 return getCouldNotCompute(); 9453 } 9454 9455 // Otherwise we can only handle this if it is affine. 9456 if (!AddRec->isAffine()) 9457 return getCouldNotCompute(); 9458 9459 // If this is an affine expression, the execution count of this branch is 9460 // the minimum unsigned root of the following equation: 9461 // 9462 // Start + Step*N = 0 (mod 2^BW) 9463 // 9464 // equivalent to: 9465 // 9466 // Step*N = -Start (mod 2^BW) 9467 // 9468 // where BW is the common bit width of Start and Step. 9469 9470 // Get the initial value for the loop. 9471 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9472 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9473 9474 // For now we handle only constant steps. 9475 // 9476 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9477 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9478 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9479 // We have not yet seen any such cases. 9480 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9481 if (!StepC || StepC->getValue()->isZero()) 9482 return getCouldNotCompute(); 9483 9484 // For positive steps (counting up until unsigned overflow): 9485 // N = -Start/Step (as unsigned) 9486 // For negative steps (counting down to zero): 9487 // N = Start/-Step 9488 // First compute the unsigned distance from zero in the direction of Step. 9489 bool CountDown = StepC->getAPInt().isNegative(); 9490 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9491 9492 // Handle unitary steps, which cannot wraparound. 9493 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9494 // N = Distance (as unsigned) 9495 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9496 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9497 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9498 if (MaxBECountBase.ult(MaxBECount)) 9499 MaxBECount = MaxBECountBase; 9500 9501 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9502 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9503 // case, and see if we can improve the bound. 9504 // 9505 // Explicitly handling this here is necessary because getUnsignedRange 9506 // isn't context-sensitive; it doesn't know that we only care about the 9507 // range inside the loop. 9508 const SCEV *Zero = getZero(Distance->getType()); 9509 const SCEV *One = getOne(Distance->getType()); 9510 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9511 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9512 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9513 // as "unsigned_max(Distance + 1) - 1". 9514 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9515 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9516 } 9517 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9518 } 9519 9520 // If the condition controls loop exit (the loop exits only if the expression 9521 // is true) and the addition is no-wrap we can use unsigned divide to 9522 // compute the backedge count. In this case, the step may not divide the 9523 // distance, but we don't care because if the condition is "missed" the loop 9524 // will have undefined behavior due to wrapping. 9525 if (ControlsExit && AddRec->hasNoSelfWrap() && 9526 loopHasNoAbnormalExits(AddRec->getLoop())) { 9527 const SCEV *Exact = 9528 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9529 const SCEV *Max = getCouldNotCompute(); 9530 if (Exact != getCouldNotCompute()) { 9531 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9532 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9533 if (BaseMaxInt.ult(MaxInt)) 9534 Max = getConstant(BaseMaxInt); 9535 else 9536 Max = getConstant(MaxInt); 9537 } 9538 return ExitLimit(Exact, Max, false, Predicates); 9539 } 9540 9541 // Solve the general equation. 9542 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9543 getNegativeSCEV(Start), *this); 9544 const SCEV *M = E == getCouldNotCompute() 9545 ? E 9546 : getConstant(getUnsignedRangeMax(E)); 9547 return ExitLimit(E, M, false, Predicates); 9548 } 9549 9550 ScalarEvolution::ExitLimit 9551 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9552 // Loops that look like: while (X == 0) are very strange indeed. We don't 9553 // handle them yet except for the trivial case. This could be expanded in the 9554 // future as needed. 9555 9556 // If the value is a constant, check to see if it is known to be non-zero 9557 // already. If so, the backedge will execute zero times. 9558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9559 if (!C->getValue()->isZero()) 9560 return getZero(C->getType()); 9561 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9562 } 9563 9564 // We could implement others, but I really doubt anyone writes loops like 9565 // this, and if they did, they would already be constant folded. 9566 return getCouldNotCompute(); 9567 } 9568 9569 std::pair<const BasicBlock *, const BasicBlock *> 9570 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9571 const { 9572 // If the block has a unique predecessor, then there is no path from the 9573 // predecessor to the block that does not go through the direct edge 9574 // from the predecessor to the block. 9575 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9576 return {Pred, BB}; 9577 9578 // A loop's header is defined to be a block that dominates the loop. 9579 // If the header has a unique predecessor outside the loop, it must be 9580 // a block that has exactly one successor that can reach the loop. 9581 if (const Loop *L = LI.getLoopFor(BB)) 9582 return {L->getLoopPredecessor(), L->getHeader()}; 9583 9584 return {nullptr, nullptr}; 9585 } 9586 9587 /// SCEV structural equivalence is usually sufficient for testing whether two 9588 /// expressions are equal, however for the purposes of looking for a condition 9589 /// guarding a loop, it can be useful to be a little more general, since a 9590 /// front-end may have replicated the controlling expression. 9591 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9592 // Quick check to see if they are the same SCEV. 9593 if (A == B) return true; 9594 9595 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9596 // Not all instructions that are "identical" compute the same value. For 9597 // instance, two distinct alloca instructions allocating the same type are 9598 // identical and do not read memory; but compute distinct values. 9599 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9600 }; 9601 9602 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9603 // two different instructions with the same value. Check for this case. 9604 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9605 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9606 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9607 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9608 if (ComputesEqualValues(AI, BI)) 9609 return true; 9610 9611 // Otherwise assume they may have a different value. 9612 return false; 9613 } 9614 9615 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9616 const SCEV *&LHS, const SCEV *&RHS, 9617 unsigned Depth) { 9618 bool Changed = false; 9619 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9620 // '0 != 0'. 9621 auto TrivialCase = [&](bool TriviallyTrue) { 9622 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9623 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9624 return true; 9625 }; 9626 // If we hit the max recursion limit bail out. 9627 if (Depth >= 3) 9628 return false; 9629 9630 // Canonicalize a constant to the right side. 9631 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9632 // Check for both operands constant. 9633 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9634 if (ConstantExpr::getICmp(Pred, 9635 LHSC->getValue(), 9636 RHSC->getValue())->isNullValue()) 9637 return TrivialCase(false); 9638 else 9639 return TrivialCase(true); 9640 } 9641 // Otherwise swap the operands to put the constant on the right. 9642 std::swap(LHS, RHS); 9643 Pred = ICmpInst::getSwappedPredicate(Pred); 9644 Changed = true; 9645 } 9646 9647 // If we're comparing an addrec with a value which is loop-invariant in the 9648 // addrec's loop, put the addrec on the left. Also make a dominance check, 9649 // as both operands could be addrecs loop-invariant in each other's loop. 9650 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9651 const Loop *L = AR->getLoop(); 9652 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9653 std::swap(LHS, RHS); 9654 Pred = ICmpInst::getSwappedPredicate(Pred); 9655 Changed = true; 9656 } 9657 } 9658 9659 // If there's a constant operand, canonicalize comparisons with boundary 9660 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9661 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9662 const APInt &RA = RC->getAPInt(); 9663 9664 bool SimplifiedByConstantRange = false; 9665 9666 if (!ICmpInst::isEquality(Pred)) { 9667 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9668 if (ExactCR.isFullSet()) 9669 return TrivialCase(true); 9670 else if (ExactCR.isEmptySet()) 9671 return TrivialCase(false); 9672 9673 APInt NewRHS; 9674 CmpInst::Predicate NewPred; 9675 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9676 ICmpInst::isEquality(NewPred)) { 9677 // We were able to convert an inequality to an equality. 9678 Pred = NewPred; 9679 RHS = getConstant(NewRHS); 9680 Changed = SimplifiedByConstantRange = true; 9681 } 9682 } 9683 9684 if (!SimplifiedByConstantRange) { 9685 switch (Pred) { 9686 default: 9687 break; 9688 case ICmpInst::ICMP_EQ: 9689 case ICmpInst::ICMP_NE: 9690 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9691 if (!RA) 9692 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9693 if (const SCEVMulExpr *ME = 9694 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9695 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9696 ME->getOperand(0)->isAllOnesValue()) { 9697 RHS = AE->getOperand(1); 9698 LHS = ME->getOperand(1); 9699 Changed = true; 9700 } 9701 break; 9702 9703 9704 // The "Should have been caught earlier!" messages refer to the fact 9705 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9706 // should have fired on the corresponding cases, and canonicalized the 9707 // check to trivial case. 9708 9709 case ICmpInst::ICMP_UGE: 9710 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9711 Pred = ICmpInst::ICMP_UGT; 9712 RHS = getConstant(RA - 1); 9713 Changed = true; 9714 break; 9715 case ICmpInst::ICMP_ULE: 9716 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9717 Pred = ICmpInst::ICMP_ULT; 9718 RHS = getConstant(RA + 1); 9719 Changed = true; 9720 break; 9721 case ICmpInst::ICMP_SGE: 9722 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9723 Pred = ICmpInst::ICMP_SGT; 9724 RHS = getConstant(RA - 1); 9725 Changed = true; 9726 break; 9727 case ICmpInst::ICMP_SLE: 9728 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9729 Pred = ICmpInst::ICMP_SLT; 9730 RHS = getConstant(RA + 1); 9731 Changed = true; 9732 break; 9733 } 9734 } 9735 } 9736 9737 // Check for obvious equality. 9738 if (HasSameValue(LHS, RHS)) { 9739 if (ICmpInst::isTrueWhenEqual(Pred)) 9740 return TrivialCase(true); 9741 if (ICmpInst::isFalseWhenEqual(Pred)) 9742 return TrivialCase(false); 9743 } 9744 9745 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9746 // adding or subtracting 1 from one of the operands. 9747 switch (Pred) { 9748 case ICmpInst::ICMP_SLE: 9749 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9750 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9751 SCEV::FlagNSW); 9752 Pred = ICmpInst::ICMP_SLT; 9753 Changed = true; 9754 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9755 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9756 SCEV::FlagNSW); 9757 Pred = ICmpInst::ICMP_SLT; 9758 Changed = true; 9759 } 9760 break; 9761 case ICmpInst::ICMP_SGE: 9762 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9763 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9764 SCEV::FlagNSW); 9765 Pred = ICmpInst::ICMP_SGT; 9766 Changed = true; 9767 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9768 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9769 SCEV::FlagNSW); 9770 Pred = ICmpInst::ICMP_SGT; 9771 Changed = true; 9772 } 9773 break; 9774 case ICmpInst::ICMP_ULE: 9775 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9776 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9777 SCEV::FlagNUW); 9778 Pred = ICmpInst::ICMP_ULT; 9779 Changed = true; 9780 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9781 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9782 Pred = ICmpInst::ICMP_ULT; 9783 Changed = true; 9784 } 9785 break; 9786 case ICmpInst::ICMP_UGE: 9787 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9788 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9789 Pred = ICmpInst::ICMP_UGT; 9790 Changed = true; 9791 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9792 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9793 SCEV::FlagNUW); 9794 Pred = ICmpInst::ICMP_UGT; 9795 Changed = true; 9796 } 9797 break; 9798 default: 9799 break; 9800 } 9801 9802 // TODO: More simplifications are possible here. 9803 9804 // Recursively simplify until we either hit a recursion limit or nothing 9805 // changes. 9806 if (Changed) 9807 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9808 9809 return Changed; 9810 } 9811 9812 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9813 return getSignedRangeMax(S).isNegative(); 9814 } 9815 9816 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9817 return getSignedRangeMin(S).isStrictlyPositive(); 9818 } 9819 9820 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9821 return !getSignedRangeMin(S).isNegative(); 9822 } 9823 9824 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9825 return !getSignedRangeMax(S).isStrictlyPositive(); 9826 } 9827 9828 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9829 return getUnsignedRangeMin(S) != 0; 9830 } 9831 9832 std::pair<const SCEV *, const SCEV *> 9833 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9834 // Compute SCEV on entry of loop L. 9835 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9836 if (Start == getCouldNotCompute()) 9837 return { Start, Start }; 9838 // Compute post increment SCEV for loop L. 9839 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9840 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9841 return { Start, PostInc }; 9842 } 9843 9844 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9845 const SCEV *LHS, const SCEV *RHS) { 9846 // First collect all loops. 9847 SmallPtrSet<const Loop *, 8> LoopsUsed; 9848 getUsedLoops(LHS, LoopsUsed); 9849 getUsedLoops(RHS, LoopsUsed); 9850 9851 if (LoopsUsed.empty()) 9852 return false; 9853 9854 // Domination relationship must be a linear order on collected loops. 9855 #ifndef NDEBUG 9856 for (auto *L1 : LoopsUsed) 9857 for (auto *L2 : LoopsUsed) 9858 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9859 DT.dominates(L2->getHeader(), L1->getHeader())) && 9860 "Domination relationship is not a linear order"); 9861 #endif 9862 9863 const Loop *MDL = 9864 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9865 [&](const Loop *L1, const Loop *L2) { 9866 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9867 }); 9868 9869 // Get init and post increment value for LHS. 9870 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9871 // if LHS contains unknown non-invariant SCEV then bail out. 9872 if (SplitLHS.first == getCouldNotCompute()) 9873 return false; 9874 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9875 // Get init and post increment value for RHS. 9876 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9877 // if RHS contains unknown non-invariant SCEV then bail out. 9878 if (SplitRHS.first == getCouldNotCompute()) 9879 return false; 9880 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9881 // It is possible that init SCEV contains an invariant load but it does 9882 // not dominate MDL and is not available at MDL loop entry, so we should 9883 // check it here. 9884 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9885 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9886 return false; 9887 9888 // It seems backedge guard check is faster than entry one so in some cases 9889 // it can speed up whole estimation by short circuit 9890 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9891 SplitRHS.second) && 9892 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9893 } 9894 9895 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9896 const SCEV *LHS, const SCEV *RHS) { 9897 // Canonicalize the inputs first. 9898 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9899 9900 if (isKnownViaInduction(Pred, LHS, RHS)) 9901 return true; 9902 9903 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9904 return true; 9905 9906 // Otherwise see what can be done with some simple reasoning. 9907 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9908 } 9909 9910 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9911 const SCEV *LHS, 9912 const SCEV *RHS) { 9913 if (isKnownPredicate(Pred, LHS, RHS)) 9914 return true; 9915 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9916 return false; 9917 return None; 9918 } 9919 9920 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9921 const SCEV *LHS, const SCEV *RHS, 9922 const Instruction *Context) { 9923 // TODO: Analyze guards and assumes from Context's block. 9924 return isKnownPredicate(Pred, LHS, RHS) || 9925 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9926 } 9927 9928 Optional<bool> 9929 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9930 const SCEV *RHS, 9931 const Instruction *Context) { 9932 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9933 if (KnownWithoutContext) 9934 return KnownWithoutContext; 9935 9936 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9937 return true; 9938 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9939 ICmpInst::getInversePredicate(Pred), 9940 LHS, RHS)) 9941 return false; 9942 return None; 9943 } 9944 9945 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9946 const SCEVAddRecExpr *LHS, 9947 const SCEV *RHS) { 9948 const Loop *L = LHS->getLoop(); 9949 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9950 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9951 } 9952 9953 Optional<ScalarEvolution::MonotonicPredicateType> 9954 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9955 ICmpInst::Predicate Pred) { 9956 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9957 9958 #ifndef NDEBUG 9959 // Verify an invariant: inverting the predicate should turn a monotonically 9960 // increasing change to a monotonically decreasing one, and vice versa. 9961 if (Result) { 9962 auto ResultSwapped = 9963 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9964 9965 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9966 assert(ResultSwapped.getValue() != Result.getValue() && 9967 "monotonicity should flip as we flip the predicate"); 9968 } 9969 #endif 9970 9971 return Result; 9972 } 9973 9974 Optional<ScalarEvolution::MonotonicPredicateType> 9975 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9976 ICmpInst::Predicate Pred) { 9977 // A zero step value for LHS means the induction variable is essentially a 9978 // loop invariant value. We don't really depend on the predicate actually 9979 // flipping from false to true (for increasing predicates, and the other way 9980 // around for decreasing predicates), all we care about is that *if* the 9981 // predicate changes then it only changes from false to true. 9982 // 9983 // A zero step value in itself is not very useful, but there may be places 9984 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9985 // as general as possible. 9986 9987 // Only handle LE/LT/GE/GT predicates. 9988 if (!ICmpInst::isRelational(Pred)) 9989 return None; 9990 9991 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9992 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9993 "Should be greater or less!"); 9994 9995 // Check that AR does not wrap. 9996 if (ICmpInst::isUnsigned(Pred)) { 9997 if (!LHS->hasNoUnsignedWrap()) 9998 return None; 9999 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10000 } else { 10001 assert(ICmpInst::isSigned(Pred) && 10002 "Relational predicate is either signed or unsigned!"); 10003 if (!LHS->hasNoSignedWrap()) 10004 return None; 10005 10006 const SCEV *Step = LHS->getStepRecurrence(*this); 10007 10008 if (isKnownNonNegative(Step)) 10009 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10010 10011 if (isKnownNonPositive(Step)) 10012 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10013 10014 return None; 10015 } 10016 } 10017 10018 Optional<ScalarEvolution::LoopInvariantPredicate> 10019 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10020 const SCEV *LHS, const SCEV *RHS, 10021 const Loop *L) { 10022 10023 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10024 if (!isLoopInvariant(RHS, L)) { 10025 if (!isLoopInvariant(LHS, L)) 10026 return None; 10027 10028 std::swap(LHS, RHS); 10029 Pred = ICmpInst::getSwappedPredicate(Pred); 10030 } 10031 10032 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10033 if (!ArLHS || ArLHS->getLoop() != L) 10034 return None; 10035 10036 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10037 if (!MonotonicType) 10038 return None; 10039 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10040 // true as the loop iterates, and the backedge is control dependent on 10041 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10042 // 10043 // * if the predicate was false in the first iteration then the predicate 10044 // is never evaluated again, since the loop exits without taking the 10045 // backedge. 10046 // * if the predicate was true in the first iteration then it will 10047 // continue to be true for all future iterations since it is 10048 // monotonically increasing. 10049 // 10050 // For both the above possibilities, we can replace the loop varying 10051 // predicate with its value on the first iteration of the loop (which is 10052 // loop invariant). 10053 // 10054 // A similar reasoning applies for a monotonically decreasing predicate, by 10055 // replacing true with false and false with true in the above two bullets. 10056 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10057 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10058 10059 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10060 return None; 10061 10062 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10063 } 10064 10065 Optional<ScalarEvolution::LoopInvariantPredicate> 10066 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10067 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10068 const Instruction *Context, const SCEV *MaxIter) { 10069 // Try to prove the following set of facts: 10070 // - The predicate is monotonic in the iteration space. 10071 // - If the check does not fail on the 1st iteration: 10072 // - No overflow will happen during first MaxIter iterations; 10073 // - It will not fail on the MaxIter'th iteration. 10074 // If the check does fail on the 1st iteration, we leave the loop and no 10075 // other checks matter. 10076 10077 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10078 if (!isLoopInvariant(RHS, L)) { 10079 if (!isLoopInvariant(LHS, L)) 10080 return None; 10081 10082 std::swap(LHS, RHS); 10083 Pred = ICmpInst::getSwappedPredicate(Pred); 10084 } 10085 10086 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10087 if (!AR || AR->getLoop() != L) 10088 return None; 10089 10090 // The predicate must be relational (i.e. <, <=, >=, >). 10091 if (!ICmpInst::isRelational(Pred)) 10092 return None; 10093 10094 // TODO: Support steps other than +/- 1. 10095 const SCEV *Step = AR->getStepRecurrence(*this); 10096 auto *One = getOne(Step->getType()); 10097 auto *MinusOne = getNegativeSCEV(One); 10098 if (Step != One && Step != MinusOne) 10099 return None; 10100 10101 // Type mismatch here means that MaxIter is potentially larger than max 10102 // unsigned value in start type, which mean we cannot prove no wrap for the 10103 // indvar. 10104 if (AR->getType() != MaxIter->getType()) 10105 return None; 10106 10107 // Value of IV on suggested last iteration. 10108 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10109 // Does it still meet the requirement? 10110 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10111 return None; 10112 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10113 // not exceed max unsigned value of this type), this effectively proves 10114 // that there is no wrap during the iteration. To prove that there is no 10115 // signed/unsigned wrap, we need to check that 10116 // Start <= Last for step = 1 or Start >= Last for step = -1. 10117 ICmpInst::Predicate NoOverflowPred = 10118 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10119 if (Step == MinusOne) 10120 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10121 const SCEV *Start = AR->getStart(); 10122 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 10123 return None; 10124 10125 // Everything is fine. 10126 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10127 } 10128 10129 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10130 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10131 if (HasSameValue(LHS, RHS)) 10132 return ICmpInst::isTrueWhenEqual(Pred); 10133 10134 // This code is split out from isKnownPredicate because it is called from 10135 // within isLoopEntryGuardedByCond. 10136 10137 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10138 const ConstantRange &RangeRHS) { 10139 return RangeLHS.icmp(Pred, RangeRHS); 10140 }; 10141 10142 // The check at the top of the function catches the case where the values are 10143 // known to be equal. 10144 if (Pred == CmpInst::ICMP_EQ) 10145 return false; 10146 10147 if (Pred == CmpInst::ICMP_NE) { 10148 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10149 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10150 return true; 10151 auto *Diff = getMinusSCEV(LHS, RHS); 10152 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10153 } 10154 10155 if (CmpInst::isSigned(Pred)) 10156 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10157 10158 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10159 } 10160 10161 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10162 const SCEV *LHS, 10163 const SCEV *RHS) { 10164 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10165 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10166 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10167 // OutC1 and OutC2. 10168 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10169 APInt &OutC1, APInt &OutC2, 10170 SCEV::NoWrapFlags ExpectedFlags) { 10171 const SCEV *XNonConstOp, *XConstOp; 10172 const SCEV *YNonConstOp, *YConstOp; 10173 SCEV::NoWrapFlags XFlagsPresent; 10174 SCEV::NoWrapFlags YFlagsPresent; 10175 10176 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10177 XConstOp = getZero(X->getType()); 10178 XNonConstOp = X; 10179 XFlagsPresent = ExpectedFlags; 10180 } 10181 if (!isa<SCEVConstant>(XConstOp) || 10182 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10183 return false; 10184 10185 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10186 YConstOp = getZero(Y->getType()); 10187 YNonConstOp = Y; 10188 YFlagsPresent = ExpectedFlags; 10189 } 10190 10191 if (!isa<SCEVConstant>(YConstOp) || 10192 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10193 return false; 10194 10195 if (YNonConstOp != XNonConstOp) 10196 return false; 10197 10198 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10199 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10200 10201 return true; 10202 }; 10203 10204 APInt C1; 10205 APInt C2; 10206 10207 switch (Pred) { 10208 default: 10209 break; 10210 10211 case ICmpInst::ICMP_SGE: 10212 std::swap(LHS, RHS); 10213 LLVM_FALLTHROUGH; 10214 case ICmpInst::ICMP_SLE: 10215 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10216 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10217 return true; 10218 10219 break; 10220 10221 case ICmpInst::ICMP_SGT: 10222 std::swap(LHS, RHS); 10223 LLVM_FALLTHROUGH; 10224 case ICmpInst::ICMP_SLT: 10225 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10226 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10227 return true; 10228 10229 break; 10230 10231 case ICmpInst::ICMP_UGE: 10232 std::swap(LHS, RHS); 10233 LLVM_FALLTHROUGH; 10234 case ICmpInst::ICMP_ULE: 10235 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10236 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10237 return true; 10238 10239 break; 10240 10241 case ICmpInst::ICMP_UGT: 10242 std::swap(LHS, RHS); 10243 LLVM_FALLTHROUGH; 10244 case ICmpInst::ICMP_ULT: 10245 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10246 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10247 return true; 10248 break; 10249 } 10250 10251 return false; 10252 } 10253 10254 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10255 const SCEV *LHS, 10256 const SCEV *RHS) { 10257 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10258 return false; 10259 10260 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10261 // the stack can result in exponential time complexity. 10262 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10263 10264 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10265 // 10266 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10267 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10268 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10269 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10270 // use isKnownPredicate later if needed. 10271 return isKnownNonNegative(RHS) && 10272 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10273 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10274 } 10275 10276 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10277 ICmpInst::Predicate Pred, 10278 const SCEV *LHS, const SCEV *RHS) { 10279 // No need to even try if we know the module has no guards. 10280 if (!HasGuards) 10281 return false; 10282 10283 return any_of(*BB, [&](const Instruction &I) { 10284 using namespace llvm::PatternMatch; 10285 10286 Value *Condition; 10287 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10288 m_Value(Condition))) && 10289 isImpliedCond(Pred, LHS, RHS, Condition, false); 10290 }); 10291 } 10292 10293 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10294 /// protected by a conditional between LHS and RHS. This is used to 10295 /// to eliminate casts. 10296 bool 10297 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10298 ICmpInst::Predicate Pred, 10299 const SCEV *LHS, const SCEV *RHS) { 10300 // Interpret a null as meaning no loop, where there is obviously no guard 10301 // (interprocedural conditions notwithstanding). 10302 if (!L) return true; 10303 10304 if (VerifyIR) 10305 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10306 "This cannot be done on broken IR!"); 10307 10308 10309 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10310 return true; 10311 10312 BasicBlock *Latch = L->getLoopLatch(); 10313 if (!Latch) 10314 return false; 10315 10316 BranchInst *LoopContinuePredicate = 10317 dyn_cast<BranchInst>(Latch->getTerminator()); 10318 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10319 isImpliedCond(Pred, LHS, RHS, 10320 LoopContinuePredicate->getCondition(), 10321 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10322 return true; 10323 10324 // We don't want more than one activation of the following loops on the stack 10325 // -- that can lead to O(n!) time complexity. 10326 if (WalkingBEDominatingConds) 10327 return false; 10328 10329 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10330 10331 // See if we can exploit a trip count to prove the predicate. 10332 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10333 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10334 if (LatchBECount != getCouldNotCompute()) { 10335 // We know that Latch branches back to the loop header exactly 10336 // LatchBECount times. This means the backdege condition at Latch is 10337 // equivalent to "{0,+,1} u< LatchBECount". 10338 Type *Ty = LatchBECount->getType(); 10339 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10340 const SCEV *LoopCounter = 10341 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10342 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10343 LatchBECount)) 10344 return true; 10345 } 10346 10347 // Check conditions due to any @llvm.assume intrinsics. 10348 for (auto &AssumeVH : AC.assumptions()) { 10349 if (!AssumeVH) 10350 continue; 10351 auto *CI = cast<CallInst>(AssumeVH); 10352 if (!DT.dominates(CI, Latch->getTerminator())) 10353 continue; 10354 10355 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10356 return true; 10357 } 10358 10359 // If the loop is not reachable from the entry block, we risk running into an 10360 // infinite loop as we walk up into the dom tree. These loops do not matter 10361 // anyway, so we just return a conservative answer when we see them. 10362 if (!DT.isReachableFromEntry(L->getHeader())) 10363 return false; 10364 10365 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10366 return true; 10367 10368 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10369 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10370 assert(DTN && "should reach the loop header before reaching the root!"); 10371 10372 BasicBlock *BB = DTN->getBlock(); 10373 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10374 return true; 10375 10376 BasicBlock *PBB = BB->getSinglePredecessor(); 10377 if (!PBB) 10378 continue; 10379 10380 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10381 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10382 continue; 10383 10384 Value *Condition = ContinuePredicate->getCondition(); 10385 10386 // If we have an edge `E` within the loop body that dominates the only 10387 // latch, the condition guarding `E` also guards the backedge. This 10388 // reasoning works only for loops with a single latch. 10389 10390 BasicBlockEdge DominatingEdge(PBB, BB); 10391 if (DominatingEdge.isSingleEdge()) { 10392 // We're constructively (and conservatively) enumerating edges within the 10393 // loop body that dominate the latch. The dominator tree better agree 10394 // with us on this: 10395 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10396 10397 if (isImpliedCond(Pred, LHS, RHS, Condition, 10398 BB != ContinuePredicate->getSuccessor(0))) 10399 return true; 10400 } 10401 } 10402 10403 return false; 10404 } 10405 10406 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10407 ICmpInst::Predicate Pred, 10408 const SCEV *LHS, 10409 const SCEV *RHS) { 10410 if (VerifyIR) 10411 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10412 "This cannot be done on broken IR!"); 10413 10414 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10415 // the facts (a >= b && a != b) separately. A typical situation is when the 10416 // non-strict comparison is known from ranges and non-equality is known from 10417 // dominating predicates. If we are proving strict comparison, we always try 10418 // to prove non-equality and non-strict comparison separately. 10419 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10420 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10421 bool ProvedNonStrictComparison = false; 10422 bool ProvedNonEquality = false; 10423 10424 auto SplitAndProve = 10425 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10426 if (!ProvedNonStrictComparison) 10427 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10428 if (!ProvedNonEquality) 10429 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10430 if (ProvedNonStrictComparison && ProvedNonEquality) 10431 return true; 10432 return false; 10433 }; 10434 10435 if (ProvingStrictComparison) { 10436 auto ProofFn = [&](ICmpInst::Predicate P) { 10437 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10438 }; 10439 if (SplitAndProve(ProofFn)) 10440 return true; 10441 } 10442 10443 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10444 auto ProveViaGuard = [&](const BasicBlock *Block) { 10445 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10446 return true; 10447 if (ProvingStrictComparison) { 10448 auto ProofFn = [&](ICmpInst::Predicate P) { 10449 return isImpliedViaGuard(Block, P, LHS, RHS); 10450 }; 10451 if (SplitAndProve(ProofFn)) 10452 return true; 10453 } 10454 return false; 10455 }; 10456 10457 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10458 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10459 const Instruction *Context = &BB->front(); 10460 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10461 return true; 10462 if (ProvingStrictComparison) { 10463 auto ProofFn = [&](ICmpInst::Predicate P) { 10464 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10465 }; 10466 if (SplitAndProve(ProofFn)) 10467 return true; 10468 } 10469 return false; 10470 }; 10471 10472 // Starting at the block's predecessor, climb up the predecessor chain, as long 10473 // as there are predecessors that can be found that have unique successors 10474 // leading to the original block. 10475 const Loop *ContainingLoop = LI.getLoopFor(BB); 10476 const BasicBlock *PredBB; 10477 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10478 PredBB = ContainingLoop->getLoopPredecessor(); 10479 else 10480 PredBB = BB->getSinglePredecessor(); 10481 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10482 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10483 if (ProveViaGuard(Pair.first)) 10484 return true; 10485 10486 const BranchInst *LoopEntryPredicate = 10487 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10488 if (!LoopEntryPredicate || 10489 LoopEntryPredicate->isUnconditional()) 10490 continue; 10491 10492 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10493 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10494 return true; 10495 } 10496 10497 // Check conditions due to any @llvm.assume intrinsics. 10498 for (auto &AssumeVH : AC.assumptions()) { 10499 if (!AssumeVH) 10500 continue; 10501 auto *CI = cast<CallInst>(AssumeVH); 10502 if (!DT.dominates(CI, BB)) 10503 continue; 10504 10505 if (ProveViaCond(CI->getArgOperand(0), false)) 10506 return true; 10507 } 10508 10509 return false; 10510 } 10511 10512 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10513 ICmpInst::Predicate Pred, 10514 const SCEV *LHS, 10515 const SCEV *RHS) { 10516 // Interpret a null as meaning no loop, where there is obviously no guard 10517 // (interprocedural conditions notwithstanding). 10518 if (!L) 10519 return false; 10520 10521 // Both LHS and RHS must be available at loop entry. 10522 assert(isAvailableAtLoopEntry(LHS, L) && 10523 "LHS is not available at Loop Entry"); 10524 assert(isAvailableAtLoopEntry(RHS, L) && 10525 "RHS is not available at Loop Entry"); 10526 10527 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10528 return true; 10529 10530 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10531 } 10532 10533 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10534 const SCEV *RHS, 10535 const Value *FoundCondValue, bool Inverse, 10536 const Instruction *Context) { 10537 // False conditions implies anything. Do not bother analyzing it further. 10538 if (FoundCondValue == 10539 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10540 return true; 10541 10542 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10543 return false; 10544 10545 auto ClearOnExit = 10546 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10547 10548 // Recursively handle And and Or conditions. 10549 const Value *Op0, *Op1; 10550 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10551 if (!Inverse) 10552 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10553 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10554 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10555 if (Inverse) 10556 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10557 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10558 } 10559 10560 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10561 if (!ICI) return false; 10562 10563 // Now that we found a conditional branch that dominates the loop or controls 10564 // the loop latch. Check to see if it is the comparison we are looking for. 10565 ICmpInst::Predicate FoundPred; 10566 if (Inverse) 10567 FoundPred = ICI->getInversePredicate(); 10568 else 10569 FoundPred = ICI->getPredicate(); 10570 10571 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10572 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10573 10574 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10575 } 10576 10577 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10578 const SCEV *RHS, 10579 ICmpInst::Predicate FoundPred, 10580 const SCEV *FoundLHS, const SCEV *FoundRHS, 10581 const Instruction *Context) { 10582 // Balance the types. 10583 if (getTypeSizeInBits(LHS->getType()) < 10584 getTypeSizeInBits(FoundLHS->getType())) { 10585 // For unsigned and equality predicates, try to prove that both found 10586 // operands fit into narrow unsigned range. If so, try to prove facts in 10587 // narrow types. 10588 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10589 auto *NarrowType = LHS->getType(); 10590 auto *WideType = FoundLHS->getType(); 10591 auto BitWidth = getTypeSizeInBits(NarrowType); 10592 const SCEV *MaxValue = getZeroExtendExpr( 10593 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10594 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10595 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10596 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10597 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10598 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10599 TruncFoundRHS, Context)) 10600 return true; 10601 } 10602 } 10603 10604 if (LHS->getType()->isPointerTy()) 10605 return false; 10606 if (CmpInst::isSigned(Pred)) { 10607 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10608 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10609 } else { 10610 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10611 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10612 } 10613 } else if (getTypeSizeInBits(LHS->getType()) > 10614 getTypeSizeInBits(FoundLHS->getType())) { 10615 if (FoundLHS->getType()->isPointerTy()) 10616 return false; 10617 if (CmpInst::isSigned(FoundPred)) { 10618 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10619 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10620 } else { 10621 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10622 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10623 } 10624 } 10625 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10626 FoundRHS, Context); 10627 } 10628 10629 bool ScalarEvolution::isImpliedCondBalancedTypes( 10630 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10631 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10632 const Instruction *Context) { 10633 assert(getTypeSizeInBits(LHS->getType()) == 10634 getTypeSizeInBits(FoundLHS->getType()) && 10635 "Types should be balanced!"); 10636 // Canonicalize the query to match the way instcombine will have 10637 // canonicalized the comparison. 10638 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10639 if (LHS == RHS) 10640 return CmpInst::isTrueWhenEqual(Pred); 10641 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10642 if (FoundLHS == FoundRHS) 10643 return CmpInst::isFalseWhenEqual(FoundPred); 10644 10645 // Check to see if we can make the LHS or RHS match. 10646 if (LHS == FoundRHS || RHS == FoundLHS) { 10647 if (isa<SCEVConstant>(RHS)) { 10648 std::swap(FoundLHS, FoundRHS); 10649 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10650 } else { 10651 std::swap(LHS, RHS); 10652 Pred = ICmpInst::getSwappedPredicate(Pred); 10653 } 10654 } 10655 10656 // Check whether the found predicate is the same as the desired predicate. 10657 if (FoundPred == Pred) 10658 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10659 10660 // Check whether swapping the found predicate makes it the same as the 10661 // desired predicate. 10662 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10663 // We can write the implication 10664 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10665 // using one of the following ways: 10666 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10667 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10668 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10669 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10670 // Forms 1. and 2. require swapping the operands of one condition. Don't 10671 // do this if it would break canonical constant/addrec ordering. 10672 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10673 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10674 Context); 10675 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10676 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10677 10678 // Don't try to getNotSCEV pointers. 10679 if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy()) 10680 return false; 10681 10682 // There's no clear preference between forms 3. and 4., try both. 10683 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10684 FoundLHS, FoundRHS, Context) || 10685 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10686 getNotSCEV(FoundRHS), Context); 10687 } 10688 10689 // Unsigned comparison is the same as signed comparison when both the operands 10690 // are non-negative. 10691 if (CmpInst::isUnsigned(FoundPred) && 10692 CmpInst::getSignedPredicate(FoundPred) == Pred && 10693 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10694 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10695 10696 // Check if we can make progress by sharpening ranges. 10697 if (FoundPred == ICmpInst::ICMP_NE && 10698 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10699 10700 const SCEVConstant *C = nullptr; 10701 const SCEV *V = nullptr; 10702 10703 if (isa<SCEVConstant>(FoundLHS)) { 10704 C = cast<SCEVConstant>(FoundLHS); 10705 V = FoundRHS; 10706 } else { 10707 C = cast<SCEVConstant>(FoundRHS); 10708 V = FoundLHS; 10709 } 10710 10711 // The guarding predicate tells us that C != V. If the known range 10712 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10713 // range we consider has to correspond to same signedness as the 10714 // predicate we're interested in folding. 10715 10716 APInt Min = ICmpInst::isSigned(Pred) ? 10717 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10718 10719 if (Min == C->getAPInt()) { 10720 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10721 // This is true even if (Min + 1) wraps around -- in case of 10722 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10723 10724 APInt SharperMin = Min + 1; 10725 10726 switch (Pred) { 10727 case ICmpInst::ICMP_SGE: 10728 case ICmpInst::ICMP_UGE: 10729 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10730 // RHS, we're done. 10731 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10732 Context)) 10733 return true; 10734 LLVM_FALLTHROUGH; 10735 10736 case ICmpInst::ICMP_SGT: 10737 case ICmpInst::ICMP_UGT: 10738 // We know from the range information that (V `Pred` Min || 10739 // V == Min). We know from the guarding condition that !(V 10740 // == Min). This gives us 10741 // 10742 // V `Pred` Min || V == Min && !(V == Min) 10743 // => V `Pred` Min 10744 // 10745 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10746 10747 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10748 Context)) 10749 return true; 10750 break; 10751 10752 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10753 case ICmpInst::ICMP_SLE: 10754 case ICmpInst::ICMP_ULE: 10755 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10756 LHS, V, getConstant(SharperMin), Context)) 10757 return true; 10758 LLVM_FALLTHROUGH; 10759 10760 case ICmpInst::ICMP_SLT: 10761 case ICmpInst::ICMP_ULT: 10762 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10763 LHS, V, getConstant(Min), Context)) 10764 return true; 10765 break; 10766 10767 default: 10768 // No change 10769 break; 10770 } 10771 } 10772 } 10773 10774 // Check whether the actual condition is beyond sufficient. 10775 if (FoundPred == ICmpInst::ICMP_EQ) 10776 if (ICmpInst::isTrueWhenEqual(Pred)) 10777 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10778 return true; 10779 if (Pred == ICmpInst::ICMP_NE) 10780 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10781 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10782 Context)) 10783 return true; 10784 10785 // Otherwise assume the worst. 10786 return false; 10787 } 10788 10789 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10790 const SCEV *&L, const SCEV *&R, 10791 SCEV::NoWrapFlags &Flags) { 10792 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10793 if (!AE || AE->getNumOperands() != 2) 10794 return false; 10795 10796 L = AE->getOperand(0); 10797 R = AE->getOperand(1); 10798 Flags = AE->getNoWrapFlags(); 10799 return true; 10800 } 10801 10802 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10803 const SCEV *Less) { 10804 // We avoid subtracting expressions here because this function is usually 10805 // fairly deep in the call stack (i.e. is called many times). 10806 10807 // X - X = 0. 10808 if (More == Less) 10809 return APInt(getTypeSizeInBits(More->getType()), 0); 10810 10811 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10812 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10813 const auto *MAR = cast<SCEVAddRecExpr>(More); 10814 10815 if (LAR->getLoop() != MAR->getLoop()) 10816 return None; 10817 10818 // We look at affine expressions only; not for correctness but to keep 10819 // getStepRecurrence cheap. 10820 if (!LAR->isAffine() || !MAR->isAffine()) 10821 return None; 10822 10823 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10824 return None; 10825 10826 Less = LAR->getStart(); 10827 More = MAR->getStart(); 10828 10829 // fall through 10830 } 10831 10832 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10833 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10834 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10835 return M - L; 10836 } 10837 10838 SCEV::NoWrapFlags Flags; 10839 const SCEV *LLess = nullptr, *RLess = nullptr; 10840 const SCEV *LMore = nullptr, *RMore = nullptr; 10841 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10842 // Compare (X + C1) vs X. 10843 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10844 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10845 if (RLess == More) 10846 return -(C1->getAPInt()); 10847 10848 // Compare X vs (X + C2). 10849 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10850 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10851 if (RMore == Less) 10852 return C2->getAPInt(); 10853 10854 // Compare (X + C1) vs (X + C2). 10855 if (C1 && C2 && RLess == RMore) 10856 return C2->getAPInt() - C1->getAPInt(); 10857 10858 return None; 10859 } 10860 10861 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10862 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10863 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10864 // Try to recognize the following pattern: 10865 // 10866 // FoundRHS = ... 10867 // ... 10868 // loop: 10869 // FoundLHS = {Start,+,W} 10870 // context_bb: // Basic block from the same loop 10871 // known(Pred, FoundLHS, FoundRHS) 10872 // 10873 // If some predicate is known in the context of a loop, it is also known on 10874 // each iteration of this loop, including the first iteration. Therefore, in 10875 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10876 // prove the original pred using this fact. 10877 if (!Context) 10878 return false; 10879 const BasicBlock *ContextBB = Context->getParent(); 10880 // Make sure AR varies in the context block. 10881 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10882 const Loop *L = AR->getLoop(); 10883 // Make sure that context belongs to the loop and executes on 1st iteration 10884 // (if it ever executes at all). 10885 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10886 return false; 10887 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10888 return false; 10889 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10890 } 10891 10892 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10893 const Loop *L = AR->getLoop(); 10894 // Make sure that context belongs to the loop and executes on 1st iteration 10895 // (if it ever executes at all). 10896 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10897 return false; 10898 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10899 return false; 10900 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10901 } 10902 10903 return false; 10904 } 10905 10906 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10907 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10908 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10909 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10910 return false; 10911 10912 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10913 if (!AddRecLHS) 10914 return false; 10915 10916 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10917 if (!AddRecFoundLHS) 10918 return false; 10919 10920 // We'd like to let SCEV reason about control dependencies, so we constrain 10921 // both the inequalities to be about add recurrences on the same loop. This 10922 // way we can use isLoopEntryGuardedByCond later. 10923 10924 const Loop *L = AddRecFoundLHS->getLoop(); 10925 if (L != AddRecLHS->getLoop()) 10926 return false; 10927 10928 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10929 // 10930 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10931 // ... (2) 10932 // 10933 // Informal proof for (2), assuming (1) [*]: 10934 // 10935 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10936 // 10937 // Then 10938 // 10939 // FoundLHS s< FoundRHS s< INT_MIN - C 10940 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10941 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10942 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10943 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10944 // <=> FoundLHS + C s< FoundRHS + C 10945 // 10946 // [*]: (1) can be proved by ruling out overflow. 10947 // 10948 // [**]: This can be proved by analyzing all the four possibilities: 10949 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10950 // (A s>= 0, B s>= 0). 10951 // 10952 // Note: 10953 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10954 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10955 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10956 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10957 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10958 // C)". 10959 10960 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10961 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10962 if (!LDiff || !RDiff || *LDiff != *RDiff) 10963 return false; 10964 10965 if (LDiff->isMinValue()) 10966 return true; 10967 10968 APInt FoundRHSLimit; 10969 10970 if (Pred == CmpInst::ICMP_ULT) { 10971 FoundRHSLimit = -(*RDiff); 10972 } else { 10973 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10974 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10975 } 10976 10977 // Try to prove (1) or (2), as needed. 10978 return isAvailableAtLoopEntry(FoundRHS, L) && 10979 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10980 getConstant(FoundRHSLimit)); 10981 } 10982 10983 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10984 const SCEV *LHS, const SCEV *RHS, 10985 const SCEV *FoundLHS, 10986 const SCEV *FoundRHS, unsigned Depth) { 10987 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10988 10989 auto ClearOnExit = make_scope_exit([&]() { 10990 if (LPhi) { 10991 bool Erased = PendingMerges.erase(LPhi); 10992 assert(Erased && "Failed to erase LPhi!"); 10993 (void)Erased; 10994 } 10995 if (RPhi) { 10996 bool Erased = PendingMerges.erase(RPhi); 10997 assert(Erased && "Failed to erase RPhi!"); 10998 (void)Erased; 10999 } 11000 }); 11001 11002 // Find respective Phis and check that they are not being pending. 11003 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11004 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11005 if (!PendingMerges.insert(Phi).second) 11006 return false; 11007 LPhi = Phi; 11008 } 11009 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11010 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11011 // If we detect a loop of Phi nodes being processed by this method, for 11012 // example: 11013 // 11014 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11015 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11016 // 11017 // we don't want to deal with a case that complex, so return conservative 11018 // answer false. 11019 if (!PendingMerges.insert(Phi).second) 11020 return false; 11021 RPhi = Phi; 11022 } 11023 11024 // If none of LHS, RHS is a Phi, nothing to do here. 11025 if (!LPhi && !RPhi) 11026 return false; 11027 11028 // If there is a SCEVUnknown Phi we are interested in, make it left. 11029 if (!LPhi) { 11030 std::swap(LHS, RHS); 11031 std::swap(FoundLHS, FoundRHS); 11032 std::swap(LPhi, RPhi); 11033 Pred = ICmpInst::getSwappedPredicate(Pred); 11034 } 11035 11036 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11037 const BasicBlock *LBB = LPhi->getParent(); 11038 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11039 11040 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11041 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11042 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11043 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11044 }; 11045 11046 if (RPhi && RPhi->getParent() == LBB) { 11047 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11048 // If we compare two Phis from the same block, and for each entry block 11049 // the predicate is true for incoming values from this block, then the 11050 // predicate is also true for the Phis. 11051 for (const BasicBlock *IncBB : predecessors(LBB)) { 11052 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11053 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11054 if (!ProvedEasily(L, R)) 11055 return false; 11056 } 11057 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11058 // Case two: RHS is also a Phi from the same basic block, and it is an 11059 // AddRec. It means that there is a loop which has both AddRec and Unknown 11060 // PHIs, for it we can compare incoming values of AddRec from above the loop 11061 // and latch with their respective incoming values of LPhi. 11062 // TODO: Generalize to handle loops with many inputs in a header. 11063 if (LPhi->getNumIncomingValues() != 2) return false; 11064 11065 auto *RLoop = RAR->getLoop(); 11066 auto *Predecessor = RLoop->getLoopPredecessor(); 11067 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11068 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11069 if (!ProvedEasily(L1, RAR->getStart())) 11070 return false; 11071 auto *Latch = RLoop->getLoopLatch(); 11072 assert(Latch && "Loop with AddRec with no latch?"); 11073 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11074 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11075 return false; 11076 } else { 11077 // In all other cases go over inputs of LHS and compare each of them to RHS, 11078 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11079 // At this point RHS is either a non-Phi, or it is a Phi from some block 11080 // different from LBB. 11081 for (const BasicBlock *IncBB : predecessors(LBB)) { 11082 // Check that RHS is available in this block. 11083 if (!dominates(RHS, IncBB)) 11084 return false; 11085 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11086 // Make sure L does not refer to a value from a potentially previous 11087 // iteration of a loop. 11088 if (!properlyDominates(L, IncBB)) 11089 return false; 11090 if (!ProvedEasily(L, RHS)) 11091 return false; 11092 } 11093 } 11094 return true; 11095 } 11096 11097 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11098 const SCEV *LHS, const SCEV *RHS, 11099 const SCEV *FoundLHS, 11100 const SCEV *FoundRHS, 11101 const Instruction *Context) { 11102 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11103 return true; 11104 11105 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11106 return true; 11107 11108 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11109 Context)) 11110 return true; 11111 11112 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11113 FoundLHS, FoundRHS); 11114 } 11115 11116 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11117 template <typename MinMaxExprType> 11118 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11119 const SCEV *Candidate) { 11120 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11121 if (!MinMaxExpr) 11122 return false; 11123 11124 return is_contained(MinMaxExpr->operands(), Candidate); 11125 } 11126 11127 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11128 ICmpInst::Predicate Pred, 11129 const SCEV *LHS, const SCEV *RHS) { 11130 // If both sides are affine addrecs for the same loop, with equal 11131 // steps, and we know the recurrences don't wrap, then we only 11132 // need to check the predicate on the starting values. 11133 11134 if (!ICmpInst::isRelational(Pred)) 11135 return false; 11136 11137 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11138 if (!LAR) 11139 return false; 11140 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11141 if (!RAR) 11142 return false; 11143 if (LAR->getLoop() != RAR->getLoop()) 11144 return false; 11145 if (!LAR->isAffine() || !RAR->isAffine()) 11146 return false; 11147 11148 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11149 return false; 11150 11151 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11152 SCEV::FlagNSW : SCEV::FlagNUW; 11153 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11154 return false; 11155 11156 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11157 } 11158 11159 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11160 /// expression? 11161 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11162 ICmpInst::Predicate Pred, 11163 const SCEV *LHS, const SCEV *RHS) { 11164 switch (Pred) { 11165 default: 11166 return false; 11167 11168 case ICmpInst::ICMP_SGE: 11169 std::swap(LHS, RHS); 11170 LLVM_FALLTHROUGH; 11171 case ICmpInst::ICMP_SLE: 11172 return 11173 // min(A, ...) <= A 11174 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11175 // A <= max(A, ...) 11176 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11177 11178 case ICmpInst::ICMP_UGE: 11179 std::swap(LHS, RHS); 11180 LLVM_FALLTHROUGH; 11181 case ICmpInst::ICMP_ULE: 11182 return 11183 // min(A, ...) <= A 11184 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11185 // A <= max(A, ...) 11186 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11187 } 11188 11189 llvm_unreachable("covered switch fell through?!"); 11190 } 11191 11192 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11193 const SCEV *LHS, const SCEV *RHS, 11194 const SCEV *FoundLHS, 11195 const SCEV *FoundRHS, 11196 unsigned Depth) { 11197 assert(getTypeSizeInBits(LHS->getType()) == 11198 getTypeSizeInBits(RHS->getType()) && 11199 "LHS and RHS have different sizes?"); 11200 assert(getTypeSizeInBits(FoundLHS->getType()) == 11201 getTypeSizeInBits(FoundRHS->getType()) && 11202 "FoundLHS and FoundRHS have different sizes?"); 11203 // We want to avoid hurting the compile time with analysis of too big trees. 11204 if (Depth > MaxSCEVOperationsImplicationDepth) 11205 return false; 11206 11207 // We only want to work with GT comparison so far. 11208 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11209 Pred = CmpInst::getSwappedPredicate(Pred); 11210 std::swap(LHS, RHS); 11211 std::swap(FoundLHS, FoundRHS); 11212 } 11213 11214 // For unsigned, try to reduce it to corresponding signed comparison. 11215 if (Pred == ICmpInst::ICMP_UGT) 11216 // We can replace unsigned predicate with its signed counterpart if all 11217 // involved values are non-negative. 11218 // TODO: We could have better support for unsigned. 11219 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11220 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11221 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11222 // use this fact to prove that LHS and RHS are non-negative. 11223 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11224 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11225 FoundRHS) && 11226 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11227 FoundRHS)) 11228 Pred = ICmpInst::ICMP_SGT; 11229 } 11230 11231 if (Pred != ICmpInst::ICMP_SGT) 11232 return false; 11233 11234 auto GetOpFromSExt = [&](const SCEV *S) { 11235 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11236 return Ext->getOperand(); 11237 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11238 // the constant in some cases. 11239 return S; 11240 }; 11241 11242 // Acquire values from extensions. 11243 auto *OrigLHS = LHS; 11244 auto *OrigFoundLHS = FoundLHS; 11245 LHS = GetOpFromSExt(LHS); 11246 FoundLHS = GetOpFromSExt(FoundLHS); 11247 11248 // Is the SGT predicate can be proved trivially or using the found context. 11249 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11250 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11251 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11252 FoundRHS, Depth + 1); 11253 }; 11254 11255 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11256 // We want to avoid creation of any new non-constant SCEV. Since we are 11257 // going to compare the operands to RHS, we should be certain that we don't 11258 // need any size extensions for this. So let's decline all cases when the 11259 // sizes of types of LHS and RHS do not match. 11260 // TODO: Maybe try to get RHS from sext to catch more cases? 11261 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11262 return false; 11263 11264 // Should not overflow. 11265 if (!LHSAddExpr->hasNoSignedWrap()) 11266 return false; 11267 11268 auto *LL = LHSAddExpr->getOperand(0); 11269 auto *LR = LHSAddExpr->getOperand(1); 11270 auto *MinusOne = getMinusOne(RHS->getType()); 11271 11272 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11273 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11274 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11275 }; 11276 // Try to prove the following rule: 11277 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11278 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11279 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11280 return true; 11281 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11282 Value *LL, *LR; 11283 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11284 11285 using namespace llvm::PatternMatch; 11286 11287 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11288 // Rules for division. 11289 // We are going to perform some comparisons with Denominator and its 11290 // derivative expressions. In general case, creating a SCEV for it may 11291 // lead to a complex analysis of the entire graph, and in particular it 11292 // can request trip count recalculation for the same loop. This would 11293 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11294 // this, we only want to create SCEVs that are constants in this section. 11295 // So we bail if Denominator is not a constant. 11296 if (!isa<ConstantInt>(LR)) 11297 return false; 11298 11299 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11300 11301 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11302 // then a SCEV for the numerator already exists and matches with FoundLHS. 11303 auto *Numerator = getExistingSCEV(LL); 11304 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11305 return false; 11306 11307 // Make sure that the numerator matches with FoundLHS and the denominator 11308 // is positive. 11309 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11310 return false; 11311 11312 auto *DTy = Denominator->getType(); 11313 auto *FRHSTy = FoundRHS->getType(); 11314 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11315 // One of types is a pointer and another one is not. We cannot extend 11316 // them properly to a wider type, so let us just reject this case. 11317 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11318 // to avoid this check. 11319 return false; 11320 11321 // Given that: 11322 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11323 auto *WTy = getWiderType(DTy, FRHSTy); 11324 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11325 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11326 11327 // Try to prove the following rule: 11328 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11329 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11330 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11331 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11332 if (isKnownNonPositive(RHS) && 11333 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11334 return true; 11335 11336 // Try to prove the following rule: 11337 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11338 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11339 // If we divide it by Denominator > 2, then: 11340 // 1. If FoundLHS is negative, then the result is 0. 11341 // 2. If FoundLHS is non-negative, then the result is non-negative. 11342 // Anyways, the result is non-negative. 11343 auto *MinusOne = getMinusOne(WTy); 11344 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11345 if (isKnownNegative(RHS) && 11346 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11347 return true; 11348 } 11349 } 11350 11351 // If our expression contained SCEVUnknown Phis, and we split it down and now 11352 // need to prove something for them, try to prove the predicate for every 11353 // possible incoming values of those Phis. 11354 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11355 return true; 11356 11357 return false; 11358 } 11359 11360 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11361 const SCEV *LHS, const SCEV *RHS) { 11362 // zext x u<= sext x, sext x s<= zext x 11363 switch (Pred) { 11364 case ICmpInst::ICMP_SGE: 11365 std::swap(LHS, RHS); 11366 LLVM_FALLTHROUGH; 11367 case ICmpInst::ICMP_SLE: { 11368 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11369 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11370 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11371 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11372 return true; 11373 break; 11374 } 11375 case ICmpInst::ICMP_UGE: 11376 std::swap(LHS, RHS); 11377 LLVM_FALLTHROUGH; 11378 case ICmpInst::ICMP_ULE: { 11379 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11380 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11381 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11382 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11383 return true; 11384 break; 11385 } 11386 default: 11387 break; 11388 }; 11389 return false; 11390 } 11391 11392 bool 11393 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11394 const SCEV *LHS, const SCEV *RHS) { 11395 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11396 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11397 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11398 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11399 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11400 } 11401 11402 bool 11403 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11404 const SCEV *LHS, const SCEV *RHS, 11405 const SCEV *FoundLHS, 11406 const SCEV *FoundRHS) { 11407 switch (Pred) { 11408 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11409 case ICmpInst::ICMP_EQ: 11410 case ICmpInst::ICMP_NE: 11411 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11412 return true; 11413 break; 11414 case ICmpInst::ICMP_SLT: 11415 case ICmpInst::ICMP_SLE: 11416 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11417 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11418 return true; 11419 break; 11420 case ICmpInst::ICMP_SGT: 11421 case ICmpInst::ICMP_SGE: 11422 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11423 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11424 return true; 11425 break; 11426 case ICmpInst::ICMP_ULT: 11427 case ICmpInst::ICMP_ULE: 11428 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11429 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11430 return true; 11431 break; 11432 case ICmpInst::ICMP_UGT: 11433 case ICmpInst::ICMP_UGE: 11434 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11435 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11436 return true; 11437 break; 11438 } 11439 11440 // Maybe it can be proved via operations? 11441 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11442 return true; 11443 11444 return false; 11445 } 11446 11447 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11448 const SCEV *LHS, 11449 const SCEV *RHS, 11450 const SCEV *FoundLHS, 11451 const SCEV *FoundRHS) { 11452 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11453 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11454 // reduce the compile time impact of this optimization. 11455 return false; 11456 11457 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11458 if (!Addend) 11459 return false; 11460 11461 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11462 11463 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11464 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11465 ConstantRange FoundLHSRange = 11466 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11467 11468 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11469 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11470 11471 // We can also compute the range of values for `LHS` that satisfy the 11472 // consequent, "`LHS` `Pred` `RHS`": 11473 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11474 // The antecedent implies the consequent if every value of `LHS` that 11475 // satisfies the antecedent also satisfies the consequent. 11476 return LHSRange.icmp(Pred, ConstRHS); 11477 } 11478 11479 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11480 bool IsSigned) { 11481 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11482 11483 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11484 const SCEV *One = getOne(Stride->getType()); 11485 11486 if (IsSigned) { 11487 APInt MaxRHS = getSignedRangeMax(RHS); 11488 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11489 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11490 11491 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11492 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11493 } 11494 11495 APInt MaxRHS = getUnsignedRangeMax(RHS); 11496 APInt MaxValue = APInt::getMaxValue(BitWidth); 11497 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11498 11499 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11500 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11501 } 11502 11503 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11504 bool IsSigned) { 11505 11506 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11507 const SCEV *One = getOne(Stride->getType()); 11508 11509 if (IsSigned) { 11510 APInt MinRHS = getSignedRangeMin(RHS); 11511 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11512 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11513 11514 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11515 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11516 } 11517 11518 APInt MinRHS = getUnsignedRangeMin(RHS); 11519 APInt MinValue = APInt::getMinValue(BitWidth); 11520 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11521 11522 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11523 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11524 } 11525 11526 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11527 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11528 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11529 // expression fixes the case of N=0. 11530 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11531 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11532 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11533 } 11534 11535 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11536 const SCEV *Stride, 11537 const SCEV *End, 11538 unsigned BitWidth, 11539 bool IsSigned) { 11540 // The logic in this function assumes we can represent a positive stride. 11541 // If we can't, the backedge-taken count must be zero. 11542 if (IsSigned && BitWidth == 1) 11543 return getZero(Stride->getType()); 11544 11545 // Calculate the maximum backedge count based on the range of values 11546 // permitted by Start, End, and Stride. 11547 APInt MinStart = 11548 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11549 11550 APInt MinStride = 11551 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11552 11553 // We assume either the stride is positive, or the backedge-taken count 11554 // is zero. So force StrideForMaxBECount to be at least one. 11555 APInt One(BitWidth, 1); 11556 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11557 : APIntOps::umax(One, MinStride); 11558 11559 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11560 : APInt::getMaxValue(BitWidth); 11561 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11562 11563 // Although End can be a MAX expression we estimate MaxEnd considering only 11564 // the case End = RHS of the loop termination condition. This is safe because 11565 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11566 // taken count. 11567 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11568 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11569 11570 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11571 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11572 : APIntOps::umax(MaxEnd, MinStart); 11573 11574 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11575 getConstant(StrideForMaxBECount) /* Step */); 11576 } 11577 11578 ScalarEvolution::ExitLimit 11579 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11580 const Loop *L, bool IsSigned, 11581 bool ControlsExit, bool AllowPredicates) { 11582 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11583 11584 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11585 bool PredicatedIV = false; 11586 11587 if (!IV && AllowPredicates) { 11588 // Try to make this an AddRec using runtime tests, in the first X 11589 // iterations of this loop, where X is the SCEV expression found by the 11590 // algorithm below. 11591 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11592 PredicatedIV = true; 11593 } 11594 11595 // Avoid weird loops 11596 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11597 return getCouldNotCompute(); 11598 11599 // A precondition of this method is that the condition being analyzed 11600 // reaches an exiting branch which dominates the latch. Given that, we can 11601 // assume that an increment which violates the nowrap specification and 11602 // produces poison must cause undefined behavior when the resulting poison 11603 // value is branched upon and thus we can conclude that the backedge is 11604 // taken no more often than would be required to produce that poison value. 11605 // Note that a well defined loop can exit on the iteration which violates 11606 // the nowrap specification if there is another exit (either explicit or 11607 // implicit/exceptional) which causes the loop to execute before the 11608 // exiting instruction we're analyzing would trigger UB. 11609 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11610 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11611 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11612 11613 const SCEV *Stride = IV->getStepRecurrence(*this); 11614 11615 bool PositiveStride = isKnownPositive(Stride); 11616 11617 // Avoid negative or zero stride values. 11618 if (!PositiveStride) { 11619 // We can compute the correct backedge taken count for loops with unknown 11620 // strides if we can prove that the loop is not an infinite loop with side 11621 // effects. Here's the loop structure we are trying to handle - 11622 // 11623 // i = start 11624 // do { 11625 // A[i] = i; 11626 // i += s; 11627 // } while (i < end); 11628 // 11629 // The backedge taken count for such loops is evaluated as - 11630 // (max(end, start + stride) - start - 1) /u stride 11631 // 11632 // The additional preconditions that we need to check to prove correctness 11633 // of the above formula is as follows - 11634 // 11635 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11636 // NoWrap flag). 11637 // b) loop is single exit with no side effects. 11638 // 11639 // 11640 // Precondition a) implies that if the stride is negative, this is a single 11641 // trip loop. The backedge taken count formula reduces to zero in this case. 11642 // 11643 // Precondition b) implies that if rhs is invariant in L, then unknown 11644 // stride being zero means the backedge can't be taken without UB. 11645 // 11646 // The positive stride case is the same as isKnownPositive(Stride) returning 11647 // true (original behavior of the function). 11648 // 11649 // We want to make sure that the stride is truly unknown as there are edge 11650 // cases where ScalarEvolution propagates no wrap flags to the 11651 // post-increment/decrement IV even though the increment/decrement operation 11652 // itself is wrapping. The computed backedge taken count may be wrong in 11653 // such cases. This is prevented by checking that the stride is not known to 11654 // be either positive or non-positive. For example, no wrap flags are 11655 // propagated to the post-increment IV of this loop with a trip count of 2 - 11656 // 11657 // unsigned char i; 11658 // for(i=127; i<128; i+=129) 11659 // A[i] = i; 11660 // 11661 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11662 !loopIsFiniteByAssumption(L)) 11663 return getCouldNotCompute(); 11664 11665 if (!isKnownNonZero(Stride)) { 11666 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11667 // if it might eventually be greater than start and if so, on which 11668 // iteration. We can't even produce a useful upper bound. 11669 if (!isLoopInvariant(RHS, L)) 11670 return getCouldNotCompute(); 11671 11672 // We allow a potentially zero stride, but we need to divide by stride 11673 // below. Since the loop can't be infinite and this check must control 11674 // the sole exit, we can infer the exit must be taken on the first 11675 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11676 // we know the numerator in the divides below must be zero, so we can 11677 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11678 // and produce the right result. 11679 // FIXME: Handle the case where Stride is poison? 11680 auto wouldZeroStrideBeUB = [&]() { 11681 // Proof by contradiction. Suppose the stride were zero. If we can 11682 // prove that the backedge *is* taken on the first iteration, then since 11683 // we know this condition controls the sole exit, we must have an 11684 // infinite loop. We can't have a (well defined) infinite loop per 11685 // check just above. 11686 // Note: The (Start - Stride) term is used to get the start' term from 11687 // (start' + stride,+,stride). Remember that we only care about the 11688 // result of this expression when stride == 0 at runtime. 11689 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11690 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11691 }; 11692 if (!wouldZeroStrideBeUB()) { 11693 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11694 } 11695 } 11696 } else if (!Stride->isOne() && !NoWrap) { 11697 auto isUBOnWrap = [&]() { 11698 // Can we prove this loop *must* be UB if overflow of IV occurs? 11699 // Reasoning goes as follows: 11700 // * Suppose the IV did self wrap. 11701 // * If Stride evenly divides the iteration space, then once wrap 11702 // occurs, the loop must revisit the same values. 11703 // * We know that RHS is invariant, and that none of those values 11704 // caused this exit to be taken previously. Thus, this exit is 11705 // dynamically dead. 11706 // * If this is the sole exit, then a dead exit implies the loop 11707 // must be infinite if there are no abnormal exits. 11708 // * If the loop were infinite, then it must either not be mustprogress 11709 // or have side effects. Otherwise, it must be UB. 11710 // * It can't (by assumption), be UB so we have contradicted our 11711 // premise and can conclude the IV did not in fact self-wrap. 11712 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11713 // follows trivially from the fact that every (un)signed-wrapped, but 11714 // not self-wrapped value must be LT than the last value before 11715 // (un)signed wrap. Since we know that last value didn't exit, nor 11716 // will any smaller one. 11717 11718 if (!isLoopInvariant(RHS, L)) 11719 return false; 11720 11721 auto *StrideC = dyn_cast<SCEVConstant>(Stride); 11722 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11723 return false; 11724 11725 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11726 return false; 11727 11728 return loopIsFiniteByAssumption(L); 11729 }; 11730 11731 // Avoid proven overflow cases: this will ensure that the backedge taken 11732 // count will not generate any unsigned overflow. Relaxed no-overflow 11733 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11734 // undefined behaviors like the case of C language. 11735 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11736 return getCouldNotCompute(); 11737 } 11738 11739 // On all paths just preceeding, we established the following invariant: 11740 // IV can be assumed not to overflow up to and including the exiting 11741 // iteration. We proved this in one of two ways: 11742 // 1) We can show overflow doesn't occur before the exiting iteration 11743 // 1a) canIVOverflowOnLT, and b) step of one 11744 // 2) We can show that if overflow occurs, the loop must execute UB 11745 // before any possible exit. 11746 // Note that we have not yet proved RHS invariant (in general). 11747 11748 const SCEV *Start = IV->getStart(); 11749 11750 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11751 // Use integer-typed versions for actual computation. 11752 const SCEV *OrigStart = Start; 11753 const SCEV *OrigRHS = RHS; 11754 if (Start->getType()->isPointerTy()) { 11755 Start = getLosslessPtrToIntExpr(Start); 11756 if (isa<SCEVCouldNotCompute>(Start)) 11757 return Start; 11758 } 11759 if (RHS->getType()->isPointerTy()) { 11760 RHS = getLosslessPtrToIntExpr(RHS); 11761 if (isa<SCEVCouldNotCompute>(RHS)) 11762 return RHS; 11763 } 11764 11765 // When the RHS is not invariant, we do not know the end bound of the loop and 11766 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11767 // calculate the MaxBECount, given the start, stride and max value for the end 11768 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11769 // checked above). 11770 if (!isLoopInvariant(RHS, L)) { 11771 const SCEV *MaxBECount = computeMaxBECountForLT( 11772 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11773 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11774 false /*MaxOrZero*/, Predicates); 11775 } 11776 11777 // We use the expression (max(End,Start)-Start)/Stride to describe the 11778 // backedge count, as if the backedge is taken at least once max(End,Start) 11779 // is End and so the result is as above, and if not max(End,Start) is Start 11780 // so we get a backedge count of zero. 11781 const SCEV *BECount = nullptr; 11782 auto *StartMinusStride = getMinusSCEV(OrigStart, Stride); 11783 // Can we prove (max(RHS,Start) > Start - Stride? 11784 if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) && 11785 isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) { 11786 // In this case, we can use a refined formula for computing backedge taken 11787 // count. The general formula remains: 11788 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11789 // We want to use the alternate formula: 11790 // "((End - 1) - (Start - Stride)) /u Stride" 11791 // Let's do a quick case analysis to show these are equivalent under 11792 // our precondition that max(RHS,Start) > Start - Stride. 11793 // * For RHS <= Start, the backedge-taken count must be zero. 11794 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11795 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11796 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11797 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11798 // this to the stride of 1 case. 11799 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11800 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11801 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11802 // "((RHS - (Start - Stride) - 1) /u Stride". 11803 // Our preconditions trivially imply no overflow in that form. 11804 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11805 const SCEV *Numerator = 11806 getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride); 11807 if (!isa<SCEVCouldNotCompute>(Numerator)) { 11808 BECount = getUDivExpr(Numerator, Stride); 11809 } 11810 } 11811 11812 const SCEV *BECountIfBackedgeTaken = nullptr; 11813 if (!BECount) { 11814 auto canProveRHSGreaterThanEqualStart = [&]() { 11815 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11816 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11817 return true; 11818 11819 // (RHS > Start - 1) implies RHS >= Start. 11820 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11821 // "Start - 1" doesn't overflow. 11822 // * For signed comparison, if Start - 1 does overflow, it's equal 11823 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11824 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11825 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11826 // 11827 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11828 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11829 auto *StartMinusOne = getAddExpr(OrigStart, 11830 getMinusOne(OrigStart->getType())); 11831 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11832 }; 11833 11834 // If we know that RHS >= Start in the context of loop, then we know that 11835 // max(RHS, Start) = RHS at this point. 11836 const SCEV *End; 11837 if (canProveRHSGreaterThanEqualStart()) { 11838 End = RHS; 11839 } else { 11840 // If RHS < Start, the backedge will be taken zero times. So in 11841 // general, we can write the backedge-taken count as: 11842 // 11843 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 11844 // 11845 // We convert it to the following to make it more convenient for SCEV: 11846 // 11847 // ceil(max(RHS, Start) - Start) / Stride 11848 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11849 11850 // See what would happen if we assume the backedge is taken. This is 11851 // used to compute MaxBECount. 11852 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 11853 } 11854 11855 // At this point, we know: 11856 // 11857 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 11858 // 2. The index variable doesn't overflow. 11859 // 11860 // Therefore, we know N exists such that 11861 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 11862 // doesn't overflow. 11863 // 11864 // Using this information, try to prove whether the addition in 11865 // "(Start - End) + (Stride - 1)" has unsigned overflow. 11866 const SCEV *One = getOne(Stride->getType()); 11867 bool MayAddOverflow = [&] { 11868 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 11869 if (StrideC->getAPInt().isPowerOf2()) { 11870 // Suppose Stride is a power of two, and Start/End are unsigned 11871 // integers. Let UMAX be the largest representable unsigned 11872 // integer. 11873 // 11874 // By the preconditions of this function, we know 11875 // "(Start + Stride * N) >= End", and this doesn't overflow. 11876 // As a formula: 11877 // 11878 // End <= (Start + Stride * N) <= UMAX 11879 // 11880 // Subtracting Start from all the terms: 11881 // 11882 // End - Start <= Stride * N <= UMAX - Start 11883 // 11884 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 11885 // 11886 // End - Start <= Stride * N <= UMAX 11887 // 11888 // Stride * N is a multiple of Stride. Therefore, 11889 // 11890 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 11891 // 11892 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 11893 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 11894 // 11895 // End - Start <= Stride * N <= UMAX - Stride - 1 11896 // 11897 // Dropping the middle term: 11898 // 11899 // End - Start <= UMAX - Stride - 1 11900 // 11901 // Adding Stride - 1 to both sides: 11902 // 11903 // (End - Start) + (Stride - 1) <= UMAX 11904 // 11905 // In other words, the addition doesn't have unsigned overflow. 11906 // 11907 // A similar proof works if we treat Start/End as signed values. 11908 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 11909 // use signed max instead of unsigned max. Note that we're trying 11910 // to prove a lack of unsigned overflow in either case. 11911 return false; 11912 } 11913 } 11914 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 11915 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 11916 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 11917 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 11918 // 11919 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 11920 return false; 11921 } 11922 return true; 11923 }(); 11924 11925 const SCEV *Delta = getMinusSCEV(End, Start); 11926 if (!MayAddOverflow) { 11927 // floor((D + (S - 1)) / S) 11928 // We prefer this formulation if it's legal because it's fewer operations. 11929 BECount = 11930 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 11931 } else { 11932 BECount = getUDivCeilSCEV(Delta, Stride); 11933 } 11934 } 11935 11936 const SCEV *MaxBECount; 11937 bool MaxOrZero = false; 11938 if (isa<SCEVConstant>(BECount)) { 11939 MaxBECount = BECount; 11940 } else if (BECountIfBackedgeTaken && 11941 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11942 // If we know exactly how many times the backedge will be taken if it's 11943 // taken at least once, then the backedge count will either be that or 11944 // zero. 11945 MaxBECount = BECountIfBackedgeTaken; 11946 MaxOrZero = true; 11947 } else { 11948 MaxBECount = computeMaxBECountForLT( 11949 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11950 } 11951 11952 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11953 !isa<SCEVCouldNotCompute>(BECount)) 11954 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11955 11956 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11957 } 11958 11959 ScalarEvolution::ExitLimit 11960 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11961 const Loop *L, bool IsSigned, 11962 bool ControlsExit, bool AllowPredicates) { 11963 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11964 // We handle only IV > Invariant 11965 if (!isLoopInvariant(RHS, L)) 11966 return getCouldNotCompute(); 11967 11968 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11969 if (!IV && AllowPredicates) 11970 // Try to make this an AddRec using runtime tests, in the first X 11971 // iterations of this loop, where X is the SCEV expression found by the 11972 // algorithm below. 11973 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11974 11975 // Avoid weird loops 11976 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11977 return getCouldNotCompute(); 11978 11979 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11980 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11981 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11982 11983 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11984 11985 // Avoid negative or zero stride values 11986 if (!isKnownPositive(Stride)) 11987 return getCouldNotCompute(); 11988 11989 // Avoid proven overflow cases: this will ensure that the backedge taken count 11990 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11991 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11992 // behaviors like the case of C language. 11993 if (!Stride->isOne() && !NoWrap) 11994 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 11995 return getCouldNotCompute(); 11996 11997 const SCEV *Start = IV->getStart(); 11998 const SCEV *End = RHS; 11999 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12000 // If we know that Start >= RHS in the context of loop, then we know that 12001 // min(RHS, Start) = RHS at this point. 12002 if (isLoopEntryGuardedByCond( 12003 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12004 End = RHS; 12005 else 12006 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12007 } 12008 12009 if (Start->getType()->isPointerTy()) { 12010 Start = getLosslessPtrToIntExpr(Start); 12011 if (isa<SCEVCouldNotCompute>(Start)) 12012 return Start; 12013 } 12014 if (End->getType()->isPointerTy()) { 12015 End = getLosslessPtrToIntExpr(End); 12016 if (isa<SCEVCouldNotCompute>(End)) 12017 return End; 12018 } 12019 12020 // Compute ((Start - End) + (Stride - 1)) / Stride. 12021 // FIXME: This can overflow. Holding off on fixing this for now; 12022 // howManyGreaterThans will hopefully be gone soon. 12023 const SCEV *One = getOne(Stride->getType()); 12024 const SCEV *BECount = getUDivExpr( 12025 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12026 12027 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12028 : getUnsignedRangeMax(Start); 12029 12030 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12031 : getUnsignedRangeMin(Stride); 12032 12033 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12034 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12035 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12036 12037 // Although End can be a MIN expression we estimate MinEnd considering only 12038 // the case End = RHS. This is safe because in the other case (Start - End) 12039 // is zero, leading to a zero maximum backedge taken count. 12040 APInt MinEnd = 12041 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12042 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12043 12044 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12045 ? BECount 12046 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12047 getConstant(MinStride)); 12048 12049 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12050 MaxBECount = BECount; 12051 12052 return ExitLimit(BECount, MaxBECount, false, Predicates); 12053 } 12054 12055 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12056 ScalarEvolution &SE) const { 12057 if (Range.isFullSet()) // Infinite loop. 12058 return SE.getCouldNotCompute(); 12059 12060 // If the start is a non-zero constant, shift the range to simplify things. 12061 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12062 if (!SC->getValue()->isZero()) { 12063 SmallVector<const SCEV *, 4> Operands(operands()); 12064 Operands[0] = SE.getZero(SC->getType()); 12065 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12066 getNoWrapFlags(FlagNW)); 12067 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12068 return ShiftedAddRec->getNumIterationsInRange( 12069 Range.subtract(SC->getAPInt()), SE); 12070 // This is strange and shouldn't happen. 12071 return SE.getCouldNotCompute(); 12072 } 12073 12074 // The only time we can solve this is when we have all constant indices. 12075 // Otherwise, we cannot determine the overflow conditions. 12076 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12077 return SE.getCouldNotCompute(); 12078 12079 // Okay at this point we know that all elements of the chrec are constants and 12080 // that the start element is zero. 12081 12082 // First check to see if the range contains zero. If not, the first 12083 // iteration exits. 12084 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12085 if (!Range.contains(APInt(BitWidth, 0))) 12086 return SE.getZero(getType()); 12087 12088 if (isAffine()) { 12089 // If this is an affine expression then we have this situation: 12090 // Solve {0,+,A} in Range === Ax in Range 12091 12092 // We know that zero is in the range. If A is positive then we know that 12093 // the upper value of the range must be the first possible exit value. 12094 // If A is negative then the lower of the range is the last possible loop 12095 // value. Also note that we already checked for a full range. 12096 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12097 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12098 12099 // The exit value should be (End+A)/A. 12100 APInt ExitVal = (End + A).udiv(A); 12101 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12102 12103 // Evaluate at the exit value. If we really did fall out of the valid 12104 // range, then we computed our trip count, otherwise wrap around or other 12105 // things must have happened. 12106 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12107 if (Range.contains(Val->getValue())) 12108 return SE.getCouldNotCompute(); // Something strange happened 12109 12110 // Ensure that the previous value is in the range. This is a sanity check. 12111 assert(Range.contains( 12112 EvaluateConstantChrecAtConstant(this, 12113 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12114 "Linear scev computation is off in a bad way!"); 12115 return SE.getConstant(ExitValue); 12116 } 12117 12118 if (isQuadratic()) { 12119 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12120 return SE.getConstant(S.getValue()); 12121 } 12122 12123 return SE.getCouldNotCompute(); 12124 } 12125 12126 const SCEVAddRecExpr * 12127 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12128 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12129 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12130 // but in this case we cannot guarantee that the value returned will be an 12131 // AddRec because SCEV does not have a fixed point where it stops 12132 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12133 // may happen if we reach arithmetic depth limit while simplifying. So we 12134 // construct the returned value explicitly. 12135 SmallVector<const SCEV *, 3> Ops; 12136 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12137 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12138 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12139 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12140 // We know that the last operand is not a constant zero (otherwise it would 12141 // have been popped out earlier). This guarantees us that if the result has 12142 // the same last operand, then it will also not be popped out, meaning that 12143 // the returned value will be an AddRec. 12144 const SCEV *Last = getOperand(getNumOperands() - 1); 12145 assert(!Last->isZero() && "Recurrency with zero step?"); 12146 Ops.push_back(Last); 12147 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12148 SCEV::FlagAnyWrap)); 12149 } 12150 12151 // Return true when S contains at least an undef value. 12152 static inline bool containsUndefs(const SCEV *S) { 12153 return SCEVExprContains(S, [](const SCEV *S) { 12154 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12155 return isa<UndefValue>(SU->getValue()); 12156 return false; 12157 }); 12158 } 12159 12160 namespace { 12161 12162 // Collect all steps of SCEV expressions. 12163 struct SCEVCollectStrides { 12164 ScalarEvolution &SE; 12165 SmallVectorImpl<const SCEV *> &Strides; 12166 12167 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 12168 : SE(SE), Strides(S) {} 12169 12170 bool follow(const SCEV *S) { 12171 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 12172 Strides.push_back(AR->getStepRecurrence(SE)); 12173 return true; 12174 } 12175 12176 bool isDone() const { return false; } 12177 }; 12178 12179 // Collect all SCEVUnknown and SCEVMulExpr expressions. 12180 struct SCEVCollectTerms { 12181 SmallVectorImpl<const SCEV *> &Terms; 12182 12183 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 12184 12185 bool follow(const SCEV *S) { 12186 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 12187 isa<SCEVSignExtendExpr>(S)) { 12188 if (!containsUndefs(S)) 12189 Terms.push_back(S); 12190 12191 // Stop recursion: once we collected a term, do not walk its operands. 12192 return false; 12193 } 12194 12195 // Keep looking. 12196 return true; 12197 } 12198 12199 bool isDone() const { return false; } 12200 }; 12201 12202 // Check if a SCEV contains an AddRecExpr. 12203 struct SCEVHasAddRec { 12204 bool &ContainsAddRec; 12205 12206 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 12207 ContainsAddRec = false; 12208 } 12209 12210 bool follow(const SCEV *S) { 12211 if (isa<SCEVAddRecExpr>(S)) { 12212 ContainsAddRec = true; 12213 12214 // Stop recursion: once we collected a term, do not walk its operands. 12215 return false; 12216 } 12217 12218 // Keep looking. 12219 return true; 12220 } 12221 12222 bool isDone() const { return false; } 12223 }; 12224 12225 // Find factors that are multiplied with an expression that (possibly as a 12226 // subexpression) contains an AddRecExpr. In the expression: 12227 // 12228 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 12229 // 12230 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 12231 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 12232 // parameters as they form a product with an induction variable. 12233 // 12234 // This collector expects all array size parameters to be in the same MulExpr. 12235 // It might be necessary to later add support for collecting parameters that are 12236 // spread over different nested MulExpr. 12237 struct SCEVCollectAddRecMultiplies { 12238 SmallVectorImpl<const SCEV *> &Terms; 12239 ScalarEvolution &SE; 12240 12241 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 12242 : Terms(T), SE(SE) {} 12243 12244 bool follow(const SCEV *S) { 12245 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 12246 bool HasAddRec = false; 12247 SmallVector<const SCEV *, 0> Operands; 12248 for (auto Op : Mul->operands()) { 12249 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 12250 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 12251 Operands.push_back(Op); 12252 } else if (Unknown) { 12253 HasAddRec = true; 12254 } else { 12255 bool ContainsAddRec = false; 12256 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 12257 visitAll(Op, ContiansAddRec); 12258 HasAddRec |= ContainsAddRec; 12259 } 12260 } 12261 if (Operands.size() == 0) 12262 return true; 12263 12264 if (!HasAddRec) 12265 return false; 12266 12267 Terms.push_back(SE.getMulExpr(Operands)); 12268 // Stop recursion: once we collected a term, do not walk its operands. 12269 return false; 12270 } 12271 12272 // Keep looking. 12273 return true; 12274 } 12275 12276 bool isDone() const { return false; } 12277 }; 12278 12279 } // end anonymous namespace 12280 12281 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 12282 /// two places: 12283 /// 1) The strides of AddRec expressions. 12284 /// 2) Unknowns that are multiplied with AddRec expressions. 12285 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 12286 SmallVectorImpl<const SCEV *> &Terms) { 12287 SmallVector<const SCEV *, 4> Strides; 12288 SCEVCollectStrides StrideCollector(*this, Strides); 12289 visitAll(Expr, StrideCollector); 12290 12291 LLVM_DEBUG({ 12292 dbgs() << "Strides:\n"; 12293 for (const SCEV *S : Strides) 12294 dbgs() << *S << "\n"; 12295 }); 12296 12297 for (const SCEV *S : Strides) { 12298 SCEVCollectTerms TermCollector(Terms); 12299 visitAll(S, TermCollector); 12300 } 12301 12302 LLVM_DEBUG({ 12303 dbgs() << "Terms:\n"; 12304 for (const SCEV *T : Terms) 12305 dbgs() << *T << "\n"; 12306 }); 12307 12308 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 12309 visitAll(Expr, MulCollector); 12310 } 12311 12312 static bool findArrayDimensionsRec(ScalarEvolution &SE, 12313 SmallVectorImpl<const SCEV *> &Terms, 12314 SmallVectorImpl<const SCEV *> &Sizes) { 12315 int Last = Terms.size() - 1; 12316 const SCEV *Step = Terms[Last]; 12317 12318 // End of recursion. 12319 if (Last == 0) { 12320 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 12321 SmallVector<const SCEV *, 2> Qs; 12322 for (const SCEV *Op : M->operands()) 12323 if (!isa<SCEVConstant>(Op)) 12324 Qs.push_back(Op); 12325 12326 Step = SE.getMulExpr(Qs); 12327 } 12328 12329 Sizes.push_back(Step); 12330 return true; 12331 } 12332 12333 for (const SCEV *&Term : Terms) { 12334 // Normalize the terms before the next call to findArrayDimensionsRec. 12335 const SCEV *Q, *R; 12336 SCEVDivision::divide(SE, Term, Step, &Q, &R); 12337 12338 // Bail out when GCD does not evenly divide one of the terms. 12339 if (!R->isZero()) 12340 return false; 12341 12342 Term = Q; 12343 } 12344 12345 // Remove all SCEVConstants. 12346 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 12347 12348 if (Terms.size() > 0) 12349 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 12350 return false; 12351 12352 Sizes.push_back(Step); 12353 return true; 12354 } 12355 12356 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 12357 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 12358 for (const SCEV *T : Terms) 12359 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 12360 return true; 12361 12362 return false; 12363 } 12364 12365 // Return the number of product terms in S. 12366 static inline int numberOfTerms(const SCEV *S) { 12367 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 12368 return Expr->getNumOperands(); 12369 return 1; 12370 } 12371 12372 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 12373 if (isa<SCEVConstant>(T)) 12374 return nullptr; 12375 12376 if (isa<SCEVUnknown>(T)) 12377 return T; 12378 12379 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 12380 SmallVector<const SCEV *, 2> Factors; 12381 for (const SCEV *Op : M->operands()) 12382 if (!isa<SCEVConstant>(Op)) 12383 Factors.push_back(Op); 12384 12385 return SE.getMulExpr(Factors); 12386 } 12387 12388 return T; 12389 } 12390 12391 /// Return the size of an element read or written by Inst. 12392 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12393 Type *Ty; 12394 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12395 Ty = Store->getValueOperand()->getType(); 12396 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12397 Ty = Load->getType(); 12398 else 12399 return nullptr; 12400 12401 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12402 return getSizeOfExpr(ETy, Ty); 12403 } 12404 12405 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 12406 SmallVectorImpl<const SCEV *> &Sizes, 12407 const SCEV *ElementSize) { 12408 if (Terms.size() < 1 || !ElementSize) 12409 return; 12410 12411 // Early return when Terms do not contain parameters: we do not delinearize 12412 // non parametric SCEVs. 12413 if (!containsParameters(Terms)) 12414 return; 12415 12416 LLVM_DEBUG({ 12417 dbgs() << "Terms:\n"; 12418 for (const SCEV *T : Terms) 12419 dbgs() << *T << "\n"; 12420 }); 12421 12422 // Remove duplicates. 12423 array_pod_sort(Terms.begin(), Terms.end()); 12424 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 12425 12426 // Put larger terms first. 12427 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 12428 return numberOfTerms(LHS) > numberOfTerms(RHS); 12429 }); 12430 12431 // Try to divide all terms by the element size. If term is not divisible by 12432 // element size, proceed with the original term. 12433 for (const SCEV *&Term : Terms) { 12434 const SCEV *Q, *R; 12435 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 12436 if (!Q->isZero()) 12437 Term = Q; 12438 } 12439 12440 SmallVector<const SCEV *, 4> NewTerms; 12441 12442 // Remove constant factors. 12443 for (const SCEV *T : Terms) 12444 if (const SCEV *NewT = removeConstantFactors(*this, T)) 12445 NewTerms.push_back(NewT); 12446 12447 LLVM_DEBUG({ 12448 dbgs() << "Terms after sorting:\n"; 12449 for (const SCEV *T : NewTerms) 12450 dbgs() << *T << "\n"; 12451 }); 12452 12453 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 12454 Sizes.clear(); 12455 return; 12456 } 12457 12458 // The last element to be pushed into Sizes is the size of an element. 12459 Sizes.push_back(ElementSize); 12460 12461 LLVM_DEBUG({ 12462 dbgs() << "Sizes:\n"; 12463 for (const SCEV *S : Sizes) 12464 dbgs() << *S << "\n"; 12465 }); 12466 } 12467 12468 void ScalarEvolution::computeAccessFunctions( 12469 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 12470 SmallVectorImpl<const SCEV *> &Sizes) { 12471 // Early exit in case this SCEV is not an affine multivariate function. 12472 if (Sizes.empty()) 12473 return; 12474 12475 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 12476 if (!AR->isAffine()) 12477 return; 12478 12479 const SCEV *Res = Expr; 12480 int Last = Sizes.size() - 1; 12481 for (int i = Last; i >= 0; i--) { 12482 const SCEV *Q, *R; 12483 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 12484 12485 LLVM_DEBUG({ 12486 dbgs() << "Res: " << *Res << "\n"; 12487 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 12488 dbgs() << "Res divided by Sizes[i]:\n"; 12489 dbgs() << "Quotient: " << *Q << "\n"; 12490 dbgs() << "Remainder: " << *R << "\n"; 12491 }); 12492 12493 Res = Q; 12494 12495 // Do not record the last subscript corresponding to the size of elements in 12496 // the array. 12497 if (i == Last) { 12498 12499 // Bail out if the remainder is too complex. 12500 if (isa<SCEVAddRecExpr>(R)) { 12501 Subscripts.clear(); 12502 Sizes.clear(); 12503 return; 12504 } 12505 12506 continue; 12507 } 12508 12509 // Record the access function for the current subscript. 12510 Subscripts.push_back(R); 12511 } 12512 12513 // Also push in last position the remainder of the last division: it will be 12514 // the access function of the innermost dimension. 12515 Subscripts.push_back(Res); 12516 12517 std::reverse(Subscripts.begin(), Subscripts.end()); 12518 12519 LLVM_DEBUG({ 12520 dbgs() << "Subscripts:\n"; 12521 for (const SCEV *S : Subscripts) 12522 dbgs() << *S << "\n"; 12523 }); 12524 } 12525 12526 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 12527 /// sizes of an array access. Returns the remainder of the delinearization that 12528 /// is the offset start of the array. The SCEV->delinearize algorithm computes 12529 /// the multiples of SCEV coefficients: that is a pattern matching of sub 12530 /// expressions in the stride and base of a SCEV corresponding to the 12531 /// computation of a GCD (greatest common divisor) of base and stride. When 12532 /// SCEV->delinearize fails, it returns the SCEV unchanged. 12533 /// 12534 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 12535 /// 12536 /// void foo(long n, long m, long o, double A[n][m][o]) { 12537 /// 12538 /// for (long i = 0; i < n; i++) 12539 /// for (long j = 0; j < m; j++) 12540 /// for (long k = 0; k < o; k++) 12541 /// A[i][j][k] = 1.0; 12542 /// } 12543 /// 12544 /// the delinearization input is the following AddRec SCEV: 12545 /// 12546 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 12547 /// 12548 /// From this SCEV, we are able to say that the base offset of the access is %A 12549 /// because it appears as an offset that does not divide any of the strides in 12550 /// the loops: 12551 /// 12552 /// CHECK: Base offset: %A 12553 /// 12554 /// and then SCEV->delinearize determines the size of some of the dimensions of 12555 /// the array as these are the multiples by which the strides are happening: 12556 /// 12557 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12558 /// 12559 /// Note that the outermost dimension remains of UnknownSize because there are 12560 /// no strides that would help identifying the size of the last dimension: when 12561 /// the array has been statically allocated, one could compute the size of that 12562 /// dimension by dividing the overall size of the array by the size of the known 12563 /// dimensions: %m * %o * 8. 12564 /// 12565 /// Finally delinearize provides the access functions for the array reference 12566 /// that does correspond to A[i][j][k] of the above C testcase: 12567 /// 12568 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12569 /// 12570 /// The testcases are checking the output of a function pass: 12571 /// DelinearizationPass that walks through all loads and stores of a function 12572 /// asking for the SCEV of the memory access with respect to all enclosing 12573 /// loops, calling SCEV->delinearize on that and printing the results. 12574 void ScalarEvolution::delinearize(const SCEV *Expr, 12575 SmallVectorImpl<const SCEV *> &Subscripts, 12576 SmallVectorImpl<const SCEV *> &Sizes, 12577 const SCEV *ElementSize) { 12578 // First step: collect parametric terms. 12579 SmallVector<const SCEV *, 4> Terms; 12580 collectParametricTerms(Expr, Terms); 12581 12582 if (Terms.empty()) 12583 return; 12584 12585 // Second step: find subscript sizes. 12586 findArrayDimensions(Terms, Sizes, ElementSize); 12587 12588 if (Sizes.empty()) 12589 return; 12590 12591 // Third step: compute the access functions for each subscript. 12592 computeAccessFunctions(Expr, Subscripts, Sizes); 12593 12594 if (Subscripts.empty()) 12595 return; 12596 12597 LLVM_DEBUG({ 12598 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12599 dbgs() << "ArrayDecl[UnknownSize]"; 12600 for (const SCEV *S : Sizes) 12601 dbgs() << "[" << *S << "]"; 12602 12603 dbgs() << "\nArrayRef"; 12604 for (const SCEV *S : Subscripts) 12605 dbgs() << "[" << *S << "]"; 12606 dbgs() << "\n"; 12607 }); 12608 } 12609 12610 bool ScalarEvolution::getIndexExpressionsFromGEP( 12611 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12612 SmallVectorImpl<int> &Sizes) { 12613 assert(Subscripts.empty() && Sizes.empty() && 12614 "Expected output lists to be empty on entry to this function."); 12615 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12616 Type *Ty = nullptr; 12617 bool DroppedFirstDim = false; 12618 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12619 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12620 if (i == 1) { 12621 Ty = GEP->getSourceElementType(); 12622 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12623 if (Const->getValue()->isZero()) { 12624 DroppedFirstDim = true; 12625 continue; 12626 } 12627 Subscripts.push_back(Expr); 12628 continue; 12629 } 12630 12631 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12632 if (!ArrayTy) { 12633 Subscripts.clear(); 12634 Sizes.clear(); 12635 return false; 12636 } 12637 12638 Subscripts.push_back(Expr); 12639 if (!(DroppedFirstDim && i == 2)) 12640 Sizes.push_back(ArrayTy->getNumElements()); 12641 12642 Ty = ArrayTy->getElementType(); 12643 } 12644 return !Subscripts.empty(); 12645 } 12646 12647 //===----------------------------------------------------------------------===// 12648 // SCEVCallbackVH Class Implementation 12649 //===----------------------------------------------------------------------===// 12650 12651 void ScalarEvolution::SCEVCallbackVH::deleted() { 12652 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12653 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12654 SE->ConstantEvolutionLoopExitValue.erase(PN); 12655 SE->eraseValueFromMap(getValPtr()); 12656 // this now dangles! 12657 } 12658 12659 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12660 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12661 12662 // Forget all the expressions associated with users of the old value, 12663 // so that future queries will recompute the expressions using the new 12664 // value. 12665 Value *Old = getValPtr(); 12666 SmallVector<User *, 16> Worklist(Old->users()); 12667 SmallPtrSet<User *, 8> Visited; 12668 while (!Worklist.empty()) { 12669 User *U = Worklist.pop_back_val(); 12670 // Deleting the Old value will cause this to dangle. Postpone 12671 // that until everything else is done. 12672 if (U == Old) 12673 continue; 12674 if (!Visited.insert(U).second) 12675 continue; 12676 if (PHINode *PN = dyn_cast<PHINode>(U)) 12677 SE->ConstantEvolutionLoopExitValue.erase(PN); 12678 SE->eraseValueFromMap(U); 12679 llvm::append_range(Worklist, U->users()); 12680 } 12681 // Delete the Old value. 12682 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12683 SE->ConstantEvolutionLoopExitValue.erase(PN); 12684 SE->eraseValueFromMap(Old); 12685 // this now dangles! 12686 } 12687 12688 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12689 : CallbackVH(V), SE(se) {} 12690 12691 //===----------------------------------------------------------------------===// 12692 // ScalarEvolution Class Implementation 12693 //===----------------------------------------------------------------------===// 12694 12695 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12696 AssumptionCache &AC, DominatorTree &DT, 12697 LoopInfo &LI) 12698 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12699 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12700 LoopDispositions(64), BlockDispositions(64) { 12701 // To use guards for proving predicates, we need to scan every instruction in 12702 // relevant basic blocks, and not just terminators. Doing this is a waste of 12703 // time if the IR does not actually contain any calls to 12704 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12705 // 12706 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12707 // to _add_ guards to the module when there weren't any before, and wants 12708 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12709 // efficient in lieu of being smart in that rather obscure case. 12710 12711 auto *GuardDecl = F.getParent()->getFunction( 12712 Intrinsic::getName(Intrinsic::experimental_guard)); 12713 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12714 } 12715 12716 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12717 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12718 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12719 ValueExprMap(std::move(Arg.ValueExprMap)), 12720 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12721 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12722 PendingMerges(std::move(Arg.PendingMerges)), 12723 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12724 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12725 PredicatedBackedgeTakenCounts( 12726 std::move(Arg.PredicatedBackedgeTakenCounts)), 12727 ConstantEvolutionLoopExitValue( 12728 std::move(Arg.ConstantEvolutionLoopExitValue)), 12729 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12730 LoopDispositions(std::move(Arg.LoopDispositions)), 12731 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12732 BlockDispositions(std::move(Arg.BlockDispositions)), 12733 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12734 SignedRanges(std::move(Arg.SignedRanges)), 12735 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12736 UniquePreds(std::move(Arg.UniquePreds)), 12737 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12738 LoopUsers(std::move(Arg.LoopUsers)), 12739 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12740 FirstUnknown(Arg.FirstUnknown) { 12741 Arg.FirstUnknown = nullptr; 12742 } 12743 12744 ScalarEvolution::~ScalarEvolution() { 12745 // Iterate through all the SCEVUnknown instances and call their 12746 // destructors, so that they release their references to their values. 12747 for (SCEVUnknown *U = FirstUnknown; U;) { 12748 SCEVUnknown *Tmp = U; 12749 U = U->Next; 12750 Tmp->~SCEVUnknown(); 12751 } 12752 FirstUnknown = nullptr; 12753 12754 ExprValueMap.clear(); 12755 ValueExprMap.clear(); 12756 HasRecMap.clear(); 12757 BackedgeTakenCounts.clear(); 12758 PredicatedBackedgeTakenCounts.clear(); 12759 12760 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12761 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12762 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12763 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12764 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12765 } 12766 12767 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12768 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12769 } 12770 12771 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12772 const Loop *L) { 12773 // Print all inner loops first 12774 for (Loop *I : *L) 12775 PrintLoopInfo(OS, SE, I); 12776 12777 OS << "Loop "; 12778 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12779 OS << ": "; 12780 12781 SmallVector<BasicBlock *, 8> ExitingBlocks; 12782 L->getExitingBlocks(ExitingBlocks); 12783 if (ExitingBlocks.size() != 1) 12784 OS << "<multiple exits> "; 12785 12786 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12787 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12788 else 12789 OS << "Unpredictable backedge-taken count.\n"; 12790 12791 if (ExitingBlocks.size() > 1) 12792 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12793 OS << " exit count for " << ExitingBlock->getName() << ": " 12794 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12795 } 12796 12797 OS << "Loop "; 12798 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12799 OS << ": "; 12800 12801 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12802 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12803 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12804 OS << ", actual taken count either this or zero."; 12805 } else { 12806 OS << "Unpredictable max backedge-taken count. "; 12807 } 12808 12809 OS << "\n" 12810 "Loop "; 12811 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12812 OS << ": "; 12813 12814 SCEVUnionPredicate Pred; 12815 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12816 if (!isa<SCEVCouldNotCompute>(PBT)) { 12817 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12818 OS << " Predicates:\n"; 12819 Pred.print(OS, 4); 12820 } else { 12821 OS << "Unpredictable predicated backedge-taken count. "; 12822 } 12823 OS << "\n"; 12824 12825 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12826 OS << "Loop "; 12827 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12828 OS << ": "; 12829 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12830 } 12831 } 12832 12833 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12834 switch (LD) { 12835 case ScalarEvolution::LoopVariant: 12836 return "Variant"; 12837 case ScalarEvolution::LoopInvariant: 12838 return "Invariant"; 12839 case ScalarEvolution::LoopComputable: 12840 return "Computable"; 12841 } 12842 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12843 } 12844 12845 void ScalarEvolution::print(raw_ostream &OS) const { 12846 // ScalarEvolution's implementation of the print method is to print 12847 // out SCEV values of all instructions that are interesting. Doing 12848 // this potentially causes it to create new SCEV objects though, 12849 // which technically conflicts with the const qualifier. This isn't 12850 // observable from outside the class though, so casting away the 12851 // const isn't dangerous. 12852 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12853 12854 if (ClassifyExpressions) { 12855 OS << "Classifying expressions for: "; 12856 F.printAsOperand(OS, /*PrintType=*/false); 12857 OS << "\n"; 12858 for (Instruction &I : instructions(F)) 12859 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12860 OS << I << '\n'; 12861 OS << " --> "; 12862 const SCEV *SV = SE.getSCEV(&I); 12863 SV->print(OS); 12864 if (!isa<SCEVCouldNotCompute>(SV)) { 12865 OS << " U: "; 12866 SE.getUnsignedRange(SV).print(OS); 12867 OS << " S: "; 12868 SE.getSignedRange(SV).print(OS); 12869 } 12870 12871 const Loop *L = LI.getLoopFor(I.getParent()); 12872 12873 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12874 if (AtUse != SV) { 12875 OS << " --> "; 12876 AtUse->print(OS); 12877 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12878 OS << " U: "; 12879 SE.getUnsignedRange(AtUse).print(OS); 12880 OS << " S: "; 12881 SE.getSignedRange(AtUse).print(OS); 12882 } 12883 } 12884 12885 if (L) { 12886 OS << "\t\t" "Exits: "; 12887 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12888 if (!SE.isLoopInvariant(ExitValue, L)) { 12889 OS << "<<Unknown>>"; 12890 } else { 12891 OS << *ExitValue; 12892 } 12893 12894 bool First = true; 12895 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12896 if (First) { 12897 OS << "\t\t" "LoopDispositions: { "; 12898 First = false; 12899 } else { 12900 OS << ", "; 12901 } 12902 12903 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12904 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12905 } 12906 12907 for (auto *InnerL : depth_first(L)) { 12908 if (InnerL == L) 12909 continue; 12910 if (First) { 12911 OS << "\t\t" "LoopDispositions: { "; 12912 First = false; 12913 } else { 12914 OS << ", "; 12915 } 12916 12917 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12918 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12919 } 12920 12921 OS << " }"; 12922 } 12923 12924 OS << "\n"; 12925 } 12926 } 12927 12928 OS << "Determining loop execution counts for: "; 12929 F.printAsOperand(OS, /*PrintType=*/false); 12930 OS << "\n"; 12931 for (Loop *I : LI) 12932 PrintLoopInfo(OS, &SE, I); 12933 } 12934 12935 ScalarEvolution::LoopDisposition 12936 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12937 auto &Values = LoopDispositions[S]; 12938 for (auto &V : Values) { 12939 if (V.getPointer() == L) 12940 return V.getInt(); 12941 } 12942 Values.emplace_back(L, LoopVariant); 12943 LoopDisposition D = computeLoopDisposition(S, L); 12944 auto &Values2 = LoopDispositions[S]; 12945 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12946 if (V.getPointer() == L) { 12947 V.setInt(D); 12948 break; 12949 } 12950 } 12951 return D; 12952 } 12953 12954 ScalarEvolution::LoopDisposition 12955 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12956 switch (S->getSCEVType()) { 12957 case scConstant: 12958 return LoopInvariant; 12959 case scPtrToInt: 12960 case scTruncate: 12961 case scZeroExtend: 12962 case scSignExtend: 12963 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12964 case scAddRecExpr: { 12965 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12966 12967 // If L is the addrec's loop, it's computable. 12968 if (AR->getLoop() == L) 12969 return LoopComputable; 12970 12971 // Add recurrences are never invariant in the function-body (null loop). 12972 if (!L) 12973 return LoopVariant; 12974 12975 // Everything that is not defined at loop entry is variant. 12976 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12977 return LoopVariant; 12978 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12979 " dominate the contained loop's header?"); 12980 12981 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12982 if (AR->getLoop()->contains(L)) 12983 return LoopInvariant; 12984 12985 // This recurrence is variant w.r.t. L if any of its operands 12986 // are variant. 12987 for (auto *Op : AR->operands()) 12988 if (!isLoopInvariant(Op, L)) 12989 return LoopVariant; 12990 12991 // Otherwise it's loop-invariant. 12992 return LoopInvariant; 12993 } 12994 case scAddExpr: 12995 case scMulExpr: 12996 case scUMaxExpr: 12997 case scSMaxExpr: 12998 case scUMinExpr: 12999 case scSMinExpr: { 13000 bool HasVarying = false; 13001 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13002 LoopDisposition D = getLoopDisposition(Op, L); 13003 if (D == LoopVariant) 13004 return LoopVariant; 13005 if (D == LoopComputable) 13006 HasVarying = true; 13007 } 13008 return HasVarying ? LoopComputable : LoopInvariant; 13009 } 13010 case scUDivExpr: { 13011 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13012 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13013 if (LD == LoopVariant) 13014 return LoopVariant; 13015 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13016 if (RD == LoopVariant) 13017 return LoopVariant; 13018 return (LD == LoopInvariant && RD == LoopInvariant) ? 13019 LoopInvariant : LoopComputable; 13020 } 13021 case scUnknown: 13022 // All non-instruction values are loop invariant. All instructions are loop 13023 // invariant if they are not contained in the specified loop. 13024 // Instructions are never considered invariant in the function body 13025 // (null loop) because they are defined within the "loop". 13026 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13027 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13028 return LoopInvariant; 13029 case scCouldNotCompute: 13030 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13031 } 13032 llvm_unreachable("Unknown SCEV kind!"); 13033 } 13034 13035 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13036 return getLoopDisposition(S, L) == LoopInvariant; 13037 } 13038 13039 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13040 return getLoopDisposition(S, L) == LoopComputable; 13041 } 13042 13043 ScalarEvolution::BlockDisposition 13044 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13045 auto &Values = BlockDispositions[S]; 13046 for (auto &V : Values) { 13047 if (V.getPointer() == BB) 13048 return V.getInt(); 13049 } 13050 Values.emplace_back(BB, DoesNotDominateBlock); 13051 BlockDisposition D = computeBlockDisposition(S, BB); 13052 auto &Values2 = BlockDispositions[S]; 13053 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 13054 if (V.getPointer() == BB) { 13055 V.setInt(D); 13056 break; 13057 } 13058 } 13059 return D; 13060 } 13061 13062 ScalarEvolution::BlockDisposition 13063 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13064 switch (S->getSCEVType()) { 13065 case scConstant: 13066 return ProperlyDominatesBlock; 13067 case scPtrToInt: 13068 case scTruncate: 13069 case scZeroExtend: 13070 case scSignExtend: 13071 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13072 case scAddRecExpr: { 13073 // This uses a "dominates" query instead of "properly dominates" query 13074 // to test for proper dominance too, because the instruction which 13075 // produces the addrec's value is a PHI, and a PHI effectively properly 13076 // dominates its entire containing block. 13077 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13078 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13079 return DoesNotDominateBlock; 13080 13081 // Fall through into SCEVNAryExpr handling. 13082 LLVM_FALLTHROUGH; 13083 } 13084 case scAddExpr: 13085 case scMulExpr: 13086 case scUMaxExpr: 13087 case scSMaxExpr: 13088 case scUMinExpr: 13089 case scSMinExpr: { 13090 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13091 bool Proper = true; 13092 for (const SCEV *NAryOp : NAry->operands()) { 13093 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13094 if (D == DoesNotDominateBlock) 13095 return DoesNotDominateBlock; 13096 if (D == DominatesBlock) 13097 Proper = false; 13098 } 13099 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13100 } 13101 case scUDivExpr: { 13102 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13103 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13104 BlockDisposition LD = getBlockDisposition(LHS, BB); 13105 if (LD == DoesNotDominateBlock) 13106 return DoesNotDominateBlock; 13107 BlockDisposition RD = getBlockDisposition(RHS, BB); 13108 if (RD == DoesNotDominateBlock) 13109 return DoesNotDominateBlock; 13110 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13111 ProperlyDominatesBlock : DominatesBlock; 13112 } 13113 case scUnknown: 13114 if (Instruction *I = 13115 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13116 if (I->getParent() == BB) 13117 return DominatesBlock; 13118 if (DT.properlyDominates(I->getParent(), BB)) 13119 return ProperlyDominatesBlock; 13120 return DoesNotDominateBlock; 13121 } 13122 return ProperlyDominatesBlock; 13123 case scCouldNotCompute: 13124 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13125 } 13126 llvm_unreachable("Unknown SCEV kind!"); 13127 } 13128 13129 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13130 return getBlockDisposition(S, BB) >= DominatesBlock; 13131 } 13132 13133 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13134 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13135 } 13136 13137 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13138 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13139 } 13140 13141 void 13142 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 13143 ValuesAtScopes.erase(S); 13144 LoopDispositions.erase(S); 13145 BlockDispositions.erase(S); 13146 UnsignedRanges.erase(S); 13147 SignedRanges.erase(S); 13148 ExprValueMap.erase(S); 13149 HasRecMap.erase(S); 13150 MinTrailingZerosCache.erase(S); 13151 13152 for (auto I = PredicatedSCEVRewrites.begin(); 13153 I != PredicatedSCEVRewrites.end();) { 13154 std::pair<const SCEV *, const Loop *> Entry = I->first; 13155 if (Entry.first == S) 13156 PredicatedSCEVRewrites.erase(I++); 13157 else 13158 ++I; 13159 } 13160 13161 auto RemoveSCEVFromBackedgeMap = 13162 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 13163 for (auto I = Map.begin(), E = Map.end(); I != E;) { 13164 BackedgeTakenInfo &BEInfo = I->second; 13165 if (BEInfo.hasOperand(S)) 13166 Map.erase(I++); 13167 else 13168 ++I; 13169 } 13170 }; 13171 13172 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 13173 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 13174 } 13175 13176 void 13177 ScalarEvolution::getUsedLoops(const SCEV *S, 13178 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13179 struct FindUsedLoops { 13180 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13181 : LoopsUsed(LoopsUsed) {} 13182 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13183 bool follow(const SCEV *S) { 13184 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13185 LoopsUsed.insert(AR->getLoop()); 13186 return true; 13187 } 13188 13189 bool isDone() const { return false; } 13190 }; 13191 13192 FindUsedLoops F(LoopsUsed); 13193 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13194 } 13195 13196 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 13197 SmallPtrSet<const Loop *, 8> LoopsUsed; 13198 getUsedLoops(S, LoopsUsed); 13199 for (auto *L : LoopsUsed) 13200 LoopUsers[L].push_back(S); 13201 } 13202 13203 void ScalarEvolution::verify() const { 13204 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13205 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13206 13207 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13208 13209 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13210 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13211 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13212 13213 const SCEV *visitConstant(const SCEVConstant *Constant) { 13214 return SE.getConstant(Constant->getAPInt()); 13215 } 13216 13217 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13218 return SE.getUnknown(Expr->getValue()); 13219 } 13220 13221 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13222 return SE.getCouldNotCompute(); 13223 } 13224 }; 13225 13226 SCEVMapper SCM(SE2); 13227 13228 while (!LoopStack.empty()) { 13229 auto *L = LoopStack.pop_back_val(); 13230 llvm::append_range(LoopStack, *L); 13231 13232 auto *CurBECount = SCM.visit( 13233 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13234 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13235 13236 if (CurBECount == SE2.getCouldNotCompute() || 13237 NewBECount == SE2.getCouldNotCompute()) { 13238 // NB! This situation is legal, but is very suspicious -- whatever pass 13239 // change the loop to make a trip count go from could not compute to 13240 // computable or vice-versa *should have* invalidated SCEV. However, we 13241 // choose not to assert here (for now) since we don't want false 13242 // positives. 13243 continue; 13244 } 13245 13246 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13247 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13248 // not propagate undef aggressively). This means we can (and do) fail 13249 // verification in cases where a transform makes the trip count of a loop 13250 // go from "undef" to "undef+1" (say). The transform is fine, since in 13251 // both cases the loop iterates "undef" times, but SCEV thinks we 13252 // increased the trip count of the loop by 1 incorrectly. 13253 continue; 13254 } 13255 13256 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13257 SE.getTypeSizeInBits(NewBECount->getType())) 13258 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13259 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13260 SE.getTypeSizeInBits(NewBECount->getType())) 13261 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13262 13263 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13264 13265 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13266 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13267 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13268 dbgs() << "Old: " << *CurBECount << "\n"; 13269 dbgs() << "New: " << *NewBECount << "\n"; 13270 dbgs() << "Delta: " << *Delta << "\n"; 13271 std::abort(); 13272 } 13273 } 13274 13275 // Collect all valid loops currently in LoopInfo. 13276 SmallPtrSet<Loop *, 32> ValidLoops; 13277 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13278 while (!Worklist.empty()) { 13279 Loop *L = Worklist.pop_back_val(); 13280 if (ValidLoops.contains(L)) 13281 continue; 13282 ValidLoops.insert(L); 13283 Worklist.append(L->begin(), L->end()); 13284 } 13285 // Check for SCEV expressions referencing invalid/deleted loops. 13286 for (auto &KV : ValueExprMap) { 13287 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13288 if (!AR) 13289 continue; 13290 assert(ValidLoops.contains(AR->getLoop()) && 13291 "AddRec references invalid loop"); 13292 } 13293 } 13294 13295 bool ScalarEvolution::invalidate( 13296 Function &F, const PreservedAnalyses &PA, 13297 FunctionAnalysisManager::Invalidator &Inv) { 13298 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13299 // of its dependencies is invalidated. 13300 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13301 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13302 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13303 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13304 Inv.invalidate<LoopAnalysis>(F, PA); 13305 } 13306 13307 AnalysisKey ScalarEvolutionAnalysis::Key; 13308 13309 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13310 FunctionAnalysisManager &AM) { 13311 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13312 AM.getResult<AssumptionAnalysis>(F), 13313 AM.getResult<DominatorTreeAnalysis>(F), 13314 AM.getResult<LoopAnalysis>(F)); 13315 } 13316 13317 PreservedAnalyses 13318 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13319 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13320 return PreservedAnalyses::all(); 13321 } 13322 13323 PreservedAnalyses 13324 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13325 // For compatibility with opt's -analyze feature under legacy pass manager 13326 // which was not ported to NPM. This keeps tests using 13327 // update_analyze_test_checks.py working. 13328 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13329 << F.getName() << "':\n"; 13330 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13331 return PreservedAnalyses::all(); 13332 } 13333 13334 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13335 "Scalar Evolution Analysis", false, true) 13336 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13338 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13339 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13340 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13341 "Scalar Evolution Analysis", false, true) 13342 13343 char ScalarEvolutionWrapperPass::ID = 0; 13344 13345 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13346 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13347 } 13348 13349 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13350 SE.reset(new ScalarEvolution( 13351 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13352 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13353 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13354 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13355 return false; 13356 } 13357 13358 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13359 13360 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13361 SE->print(OS); 13362 } 13363 13364 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13365 if (!VerifySCEV) 13366 return; 13367 13368 SE->verify(); 13369 } 13370 13371 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13372 AU.setPreservesAll(); 13373 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13374 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13375 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13376 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13377 } 13378 13379 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13380 const SCEV *RHS) { 13381 FoldingSetNodeID ID; 13382 assert(LHS->getType() == RHS->getType() && 13383 "Type mismatch between LHS and RHS"); 13384 // Unique this node based on the arguments 13385 ID.AddInteger(SCEVPredicate::P_Equal); 13386 ID.AddPointer(LHS); 13387 ID.AddPointer(RHS); 13388 void *IP = nullptr; 13389 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13390 return S; 13391 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13392 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13393 UniquePreds.InsertNode(Eq, IP); 13394 return Eq; 13395 } 13396 13397 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13398 const SCEVAddRecExpr *AR, 13399 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13400 FoldingSetNodeID ID; 13401 // Unique this node based on the arguments 13402 ID.AddInteger(SCEVPredicate::P_Wrap); 13403 ID.AddPointer(AR); 13404 ID.AddInteger(AddedFlags); 13405 void *IP = nullptr; 13406 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13407 return S; 13408 auto *OF = new (SCEVAllocator) 13409 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13410 UniquePreds.InsertNode(OF, IP); 13411 return OF; 13412 } 13413 13414 namespace { 13415 13416 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13417 public: 13418 13419 /// Rewrites \p S in the context of a loop L and the SCEV predication 13420 /// infrastructure. 13421 /// 13422 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13423 /// equivalences present in \p Pred. 13424 /// 13425 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13426 /// \p NewPreds such that the result will be an AddRecExpr. 13427 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13428 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13429 SCEVUnionPredicate *Pred) { 13430 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13431 return Rewriter.visit(S); 13432 } 13433 13434 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13435 if (Pred) { 13436 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13437 for (auto *Pred : ExprPreds) 13438 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13439 if (IPred->getLHS() == Expr) 13440 return IPred->getRHS(); 13441 } 13442 return convertToAddRecWithPreds(Expr); 13443 } 13444 13445 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13446 const SCEV *Operand = visit(Expr->getOperand()); 13447 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13448 if (AR && AR->getLoop() == L && AR->isAffine()) { 13449 // This couldn't be folded because the operand didn't have the nuw 13450 // flag. Add the nusw flag as an assumption that we could make. 13451 const SCEV *Step = AR->getStepRecurrence(SE); 13452 Type *Ty = Expr->getType(); 13453 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13454 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13455 SE.getSignExtendExpr(Step, Ty), L, 13456 AR->getNoWrapFlags()); 13457 } 13458 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13459 } 13460 13461 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13462 const SCEV *Operand = visit(Expr->getOperand()); 13463 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13464 if (AR && AR->getLoop() == L && AR->isAffine()) { 13465 // This couldn't be folded because the operand didn't have the nsw 13466 // flag. Add the nssw flag as an assumption that we could make. 13467 const SCEV *Step = AR->getStepRecurrence(SE); 13468 Type *Ty = Expr->getType(); 13469 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13470 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13471 SE.getSignExtendExpr(Step, Ty), L, 13472 AR->getNoWrapFlags()); 13473 } 13474 return SE.getSignExtendExpr(Operand, Expr->getType()); 13475 } 13476 13477 private: 13478 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13479 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13480 SCEVUnionPredicate *Pred) 13481 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13482 13483 bool addOverflowAssumption(const SCEVPredicate *P) { 13484 if (!NewPreds) { 13485 // Check if we've already made this assumption. 13486 return Pred && Pred->implies(P); 13487 } 13488 NewPreds->insert(P); 13489 return true; 13490 } 13491 13492 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13493 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13494 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13495 return addOverflowAssumption(A); 13496 } 13497 13498 // If \p Expr represents a PHINode, we try to see if it can be represented 13499 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13500 // to add this predicate as a runtime overflow check, we return the AddRec. 13501 // If \p Expr does not meet these conditions (is not a PHI node, or we 13502 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13503 // return \p Expr. 13504 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13505 if (!isa<PHINode>(Expr->getValue())) 13506 return Expr; 13507 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13508 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13509 if (!PredicatedRewrite) 13510 return Expr; 13511 for (auto *P : PredicatedRewrite->second){ 13512 // Wrap predicates from outer loops are not supported. 13513 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13514 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13515 if (L != AR->getLoop()) 13516 return Expr; 13517 } 13518 if (!addOverflowAssumption(P)) 13519 return Expr; 13520 } 13521 return PredicatedRewrite->first; 13522 } 13523 13524 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13525 SCEVUnionPredicate *Pred; 13526 const Loop *L; 13527 }; 13528 13529 } // end anonymous namespace 13530 13531 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13532 SCEVUnionPredicate &Preds) { 13533 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13534 } 13535 13536 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13537 const SCEV *S, const Loop *L, 13538 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13539 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13540 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13541 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13542 13543 if (!AddRec) 13544 return nullptr; 13545 13546 // Since the transformation was successful, we can now transfer the SCEV 13547 // predicates. 13548 for (auto *P : TransformPreds) 13549 Preds.insert(P); 13550 13551 return AddRec; 13552 } 13553 13554 /// SCEV predicates 13555 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13556 SCEVPredicateKind Kind) 13557 : FastID(ID), Kind(Kind) {} 13558 13559 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13560 const SCEV *LHS, const SCEV *RHS) 13561 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13562 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13563 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13564 } 13565 13566 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13567 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13568 13569 if (!Op) 13570 return false; 13571 13572 return Op->LHS == LHS && Op->RHS == RHS; 13573 } 13574 13575 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13576 13577 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13578 13579 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13580 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13581 } 13582 13583 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13584 const SCEVAddRecExpr *AR, 13585 IncrementWrapFlags Flags) 13586 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13587 13588 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13589 13590 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13591 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13592 13593 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13594 } 13595 13596 bool SCEVWrapPredicate::isAlwaysTrue() const { 13597 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13598 IncrementWrapFlags IFlags = Flags; 13599 13600 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13601 IFlags = clearFlags(IFlags, IncrementNSSW); 13602 13603 return IFlags == IncrementAnyWrap; 13604 } 13605 13606 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13607 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13608 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13609 OS << "<nusw>"; 13610 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13611 OS << "<nssw>"; 13612 OS << "\n"; 13613 } 13614 13615 SCEVWrapPredicate::IncrementWrapFlags 13616 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13617 ScalarEvolution &SE) { 13618 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13619 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13620 13621 // We can safely transfer the NSW flag as NSSW. 13622 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13623 ImpliedFlags = IncrementNSSW; 13624 13625 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13626 // If the increment is positive, the SCEV NUW flag will also imply the 13627 // WrapPredicate NUSW flag. 13628 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13629 if (Step->getValue()->getValue().isNonNegative()) 13630 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13631 } 13632 13633 return ImpliedFlags; 13634 } 13635 13636 /// Union predicates don't get cached so create a dummy set ID for it. 13637 SCEVUnionPredicate::SCEVUnionPredicate() 13638 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13639 13640 bool SCEVUnionPredicate::isAlwaysTrue() const { 13641 return all_of(Preds, 13642 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13643 } 13644 13645 ArrayRef<const SCEVPredicate *> 13646 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13647 auto I = SCEVToPreds.find(Expr); 13648 if (I == SCEVToPreds.end()) 13649 return ArrayRef<const SCEVPredicate *>(); 13650 return I->second; 13651 } 13652 13653 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13654 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13655 return all_of(Set->Preds, 13656 [this](const SCEVPredicate *I) { return this->implies(I); }); 13657 13658 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13659 if (ScevPredsIt == SCEVToPreds.end()) 13660 return false; 13661 auto &SCEVPreds = ScevPredsIt->second; 13662 13663 return any_of(SCEVPreds, 13664 [N](const SCEVPredicate *I) { return I->implies(N); }); 13665 } 13666 13667 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13668 13669 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13670 for (auto Pred : Preds) 13671 Pred->print(OS, Depth); 13672 } 13673 13674 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13675 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13676 for (auto Pred : Set->Preds) 13677 add(Pred); 13678 return; 13679 } 13680 13681 if (implies(N)) 13682 return; 13683 13684 const SCEV *Key = N->getExpr(); 13685 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13686 " associated expression!"); 13687 13688 SCEVToPreds[Key].push_back(N); 13689 Preds.push_back(N); 13690 } 13691 13692 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13693 Loop &L) 13694 : SE(SE), L(L) {} 13695 13696 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13697 const SCEV *Expr = SE.getSCEV(V); 13698 RewriteEntry &Entry = RewriteMap[Expr]; 13699 13700 // If we already have an entry and the version matches, return it. 13701 if (Entry.second && Generation == Entry.first) 13702 return Entry.second; 13703 13704 // We found an entry but it's stale. Rewrite the stale entry 13705 // according to the current predicate. 13706 if (Entry.second) 13707 Expr = Entry.second; 13708 13709 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13710 Entry = {Generation, NewSCEV}; 13711 13712 return NewSCEV; 13713 } 13714 13715 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13716 if (!BackedgeCount) { 13717 SCEVUnionPredicate BackedgePred; 13718 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13719 addPredicate(BackedgePred); 13720 } 13721 return BackedgeCount; 13722 } 13723 13724 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13725 if (Preds.implies(&Pred)) 13726 return; 13727 Preds.add(&Pred); 13728 updateGeneration(); 13729 } 13730 13731 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13732 return Preds; 13733 } 13734 13735 void PredicatedScalarEvolution::updateGeneration() { 13736 // If the generation number wrapped recompute everything. 13737 if (++Generation == 0) { 13738 for (auto &II : RewriteMap) { 13739 const SCEV *Rewritten = II.second.second; 13740 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13741 } 13742 } 13743 } 13744 13745 void PredicatedScalarEvolution::setNoOverflow( 13746 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13747 const SCEV *Expr = getSCEV(V); 13748 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13749 13750 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13751 13752 // Clear the statically implied flags. 13753 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13754 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13755 13756 auto II = FlagsMap.insert({V, Flags}); 13757 if (!II.second) 13758 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13759 } 13760 13761 bool PredicatedScalarEvolution::hasNoOverflow( 13762 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13763 const SCEV *Expr = getSCEV(V); 13764 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13765 13766 Flags = SCEVWrapPredicate::clearFlags( 13767 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13768 13769 auto II = FlagsMap.find(V); 13770 13771 if (II != FlagsMap.end()) 13772 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13773 13774 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13775 } 13776 13777 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13778 const SCEV *Expr = this->getSCEV(V); 13779 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13780 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13781 13782 if (!New) 13783 return nullptr; 13784 13785 for (auto *P : NewPreds) 13786 Preds.add(P); 13787 13788 updateGeneration(); 13789 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13790 return New; 13791 } 13792 13793 PredicatedScalarEvolution::PredicatedScalarEvolution( 13794 const PredicatedScalarEvolution &Init) 13795 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13796 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13797 for (auto I : Init.FlagsMap) 13798 FlagsMap.insert(I); 13799 } 13800 13801 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13802 // For each block. 13803 for (auto *BB : L.getBlocks()) 13804 for (auto &I : *BB) { 13805 if (!SE.isSCEVable(I.getType())) 13806 continue; 13807 13808 auto *Expr = SE.getSCEV(&I); 13809 auto II = RewriteMap.find(Expr); 13810 13811 if (II == RewriteMap.end()) 13812 continue; 13813 13814 // Don't print things that are not interesting. 13815 if (II->second.second == Expr) 13816 continue; 13817 13818 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13819 OS.indent(Depth + 2) << *Expr << "\n"; 13820 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13821 } 13822 } 13823 13824 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13825 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13826 // for URem with constant power-of-2 second operands. 13827 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13828 // 4, A / B becomes X / 8). 13829 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13830 const SCEV *&RHS) { 13831 // Try to match 'zext (trunc A to iB) to iY', which is used 13832 // for URem with constant power-of-2 second operands. Make sure the size of 13833 // the operand A matches the size of the whole expressions. 13834 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13835 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13836 LHS = Trunc->getOperand(); 13837 // Bail out if the type of the LHS is larger than the type of the 13838 // expression for now. 13839 if (getTypeSizeInBits(LHS->getType()) > 13840 getTypeSizeInBits(Expr->getType())) 13841 return false; 13842 if (LHS->getType() != Expr->getType()) 13843 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13844 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13845 << getTypeSizeInBits(Trunc->getType())); 13846 return true; 13847 } 13848 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13849 if (Add == nullptr || Add->getNumOperands() != 2) 13850 return false; 13851 13852 const SCEV *A = Add->getOperand(1); 13853 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13854 13855 if (Mul == nullptr) 13856 return false; 13857 13858 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13859 // (SomeExpr + (-(SomeExpr / B) * B)). 13860 if (Expr == getURemExpr(A, B)) { 13861 LHS = A; 13862 RHS = B; 13863 return true; 13864 } 13865 return false; 13866 }; 13867 13868 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13869 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13870 return MatchURemWithDivisor(Mul->getOperand(1)) || 13871 MatchURemWithDivisor(Mul->getOperand(2)); 13872 13873 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13874 if (Mul->getNumOperands() == 2) 13875 return MatchURemWithDivisor(Mul->getOperand(1)) || 13876 MatchURemWithDivisor(Mul->getOperand(0)) || 13877 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13878 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13879 return false; 13880 } 13881 13882 const SCEV * 13883 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13884 SmallVector<BasicBlock*, 16> ExitingBlocks; 13885 L->getExitingBlocks(ExitingBlocks); 13886 13887 // Form an expression for the maximum exit count possible for this loop. We 13888 // merge the max and exact information to approximate a version of 13889 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13890 SmallVector<const SCEV*, 4> ExitCounts; 13891 for (BasicBlock *ExitingBB : ExitingBlocks) { 13892 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13893 if (isa<SCEVCouldNotCompute>(ExitCount)) 13894 ExitCount = getExitCount(L, ExitingBB, 13895 ScalarEvolution::ConstantMaximum); 13896 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13897 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13898 "We should only have known counts for exiting blocks that " 13899 "dominate latch!"); 13900 ExitCounts.push_back(ExitCount); 13901 } 13902 } 13903 if (ExitCounts.empty()) 13904 return getCouldNotCompute(); 13905 return getUMinFromMismatchedTypes(ExitCounts); 13906 } 13907 13908 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13909 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13910 /// we cannot guarantee that the replacement is loop invariant in the loop of 13911 /// the AddRec. 13912 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13913 ValueToSCEVMapTy ⤅ 13914 13915 public: 13916 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13917 : SCEVRewriteVisitor(SE), Map(M) {} 13918 13919 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13920 13921 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13922 auto I = Map.find(Expr->getValue()); 13923 if (I == Map.end()) 13924 return Expr; 13925 return I->second; 13926 } 13927 }; 13928 13929 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13930 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13931 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13932 // If we have LHS == 0, check if LHS is computing a property of some unknown 13933 // SCEV %v which we can rewrite %v to express explicitly. 13934 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13935 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13936 RHSC->getValue()->isNullValue()) { 13937 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13938 // explicitly express that. 13939 const SCEV *URemLHS = nullptr; 13940 const SCEV *URemRHS = nullptr; 13941 if (matchURem(LHS, URemLHS, URemRHS)) { 13942 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13943 Value *V = LHSUnknown->getValue(); 13944 auto Multiple = 13945 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13946 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13947 RewriteMap[V] = Multiple; 13948 return; 13949 } 13950 } 13951 } 13952 13953 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13954 std::swap(LHS, RHS); 13955 Predicate = CmpInst::getSwappedPredicate(Predicate); 13956 } 13957 13958 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13959 // create this form when combining two checks of the form (X u< C2 + C1) and 13960 // (X >=u C1). 13961 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13962 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13963 if (!AddExpr || AddExpr->getNumOperands() != 2) 13964 return false; 13965 13966 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13967 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13968 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13969 if (!C1 || !C2 || !LHSUnknown) 13970 return false; 13971 13972 auto ExactRegion = 13973 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13974 .sub(C1->getAPInt()); 13975 13976 // Bail out, unless we have a non-wrapping, monotonic range. 13977 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13978 return false; 13979 auto I = RewriteMap.find(LHSUnknown->getValue()); 13980 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13981 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13982 getConstant(ExactRegion.getUnsignedMin()), 13983 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13984 return true; 13985 }; 13986 if (MatchRangeCheckIdiom()) 13987 return; 13988 13989 // For now, limit to conditions that provide information about unknown 13990 // expressions. RHS also cannot contain add recurrences. 13991 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13992 if (!LHSUnknown || containsAddRecurrence(RHS)) 13993 return; 13994 13995 // Check whether LHS has already been rewritten. In that case we want to 13996 // chain further rewrites onto the already rewritten value. 13997 auto I = RewriteMap.find(LHSUnknown->getValue()); 13998 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13999 const SCEV *RewrittenRHS = nullptr; 14000 switch (Predicate) { 14001 case CmpInst::ICMP_ULT: 14002 RewrittenRHS = 14003 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14004 break; 14005 case CmpInst::ICMP_SLT: 14006 RewrittenRHS = 14007 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14008 break; 14009 case CmpInst::ICMP_ULE: 14010 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14011 break; 14012 case CmpInst::ICMP_SLE: 14013 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14014 break; 14015 case CmpInst::ICMP_UGT: 14016 RewrittenRHS = 14017 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14018 break; 14019 case CmpInst::ICMP_SGT: 14020 RewrittenRHS = 14021 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14022 break; 14023 case CmpInst::ICMP_UGE: 14024 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14025 break; 14026 case CmpInst::ICMP_SGE: 14027 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14028 break; 14029 case CmpInst::ICMP_EQ: 14030 if (isa<SCEVConstant>(RHS)) 14031 RewrittenRHS = RHS; 14032 break; 14033 case CmpInst::ICMP_NE: 14034 if (isa<SCEVConstant>(RHS) && 14035 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14036 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14037 break; 14038 default: 14039 break; 14040 } 14041 14042 if (RewrittenRHS) 14043 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 14044 }; 14045 // Starting at the loop predecessor, climb up the predecessor chain, as long 14046 // as there are predecessors that can be found that have unique successors 14047 // leading to the original header. 14048 // TODO: share this logic with isLoopEntryGuardedByCond. 14049 ValueToSCEVMapTy RewriteMap; 14050 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14051 L->getLoopPredecessor(), L->getHeader()); 14052 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14053 14054 const BranchInst *LoopEntryPredicate = 14055 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14056 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14057 continue; 14058 14059 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 14060 SmallVector<Value *, 8> Worklist; 14061 SmallPtrSet<Value *, 8> Visited; 14062 Worklist.push_back(LoopEntryPredicate->getCondition()); 14063 while (!Worklist.empty()) { 14064 Value *Cond = Worklist.pop_back_val(); 14065 if (!Visited.insert(Cond).second) 14066 continue; 14067 14068 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14069 auto Predicate = 14070 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14071 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 14072 getSCEV(Cmp->getOperand(1)), RewriteMap); 14073 continue; 14074 } 14075 14076 Value *L, *R; 14077 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14078 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14079 Worklist.push_back(L); 14080 Worklist.push_back(R); 14081 } 14082 } 14083 } 14084 14085 // Also collect information from assumptions dominating the loop. 14086 for (auto &AssumeVH : AC.assumptions()) { 14087 if (!AssumeVH) 14088 continue; 14089 auto *AssumeI = cast<CallInst>(AssumeVH); 14090 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 14091 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 14092 continue; 14093 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 14094 getSCEV(Cmp->getOperand(1)), RewriteMap); 14095 } 14096 14097 if (RewriteMap.empty()) 14098 return Expr; 14099 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14100 return Rewriter.visit(Expr); 14101 } 14102