1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   return Flags;
2401 }
2402 
2403 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2404   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2405 }
2406 
2407 /// Get a canonical add expression, or something simpler if possible.
2408 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2409                                         SCEV::NoWrapFlags OrigFlags,
2410                                         unsigned Depth) {
2411   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2412          "only nuw or nsw allowed");
2413   assert(!Ops.empty() && "Cannot get empty add!");
2414   if (Ops.size() == 1) return Ops[0];
2415 #ifndef NDEBUG
2416   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2417   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2418     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2419            "SCEVAddExpr operand types don't match!");
2420   unsigned NumPtrs = count_if(
2421       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2422   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2423 #endif
2424 
2425   // Sort by complexity, this groups all similar expression types together.
2426   GroupByComplexity(Ops, &LI, DT);
2427 
2428   // If there are any constants, fold them together.
2429   unsigned Idx = 0;
2430   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2431     ++Idx;
2432     assert(Idx < Ops.size());
2433     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2434       // We found two constants, fold them together!
2435       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2436       if (Ops.size() == 2) return Ops[0];
2437       Ops.erase(Ops.begin()+1);  // Erase the folded element
2438       LHSC = cast<SCEVConstant>(Ops[0]);
2439     }
2440 
2441     // If we are left with a constant zero being added, strip it off.
2442     if (LHSC->getValue()->isZero()) {
2443       Ops.erase(Ops.begin());
2444       --Idx;
2445     }
2446 
2447     if (Ops.size() == 1) return Ops[0];
2448   }
2449 
2450   // Delay expensive flag strengthening until necessary.
2451   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2452     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2453   };
2454 
2455   // Limit recursion calls depth.
2456   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2457     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2458 
2459   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2460     // Don't strengthen flags if we have no new information.
2461     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2462     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2463       Add->setNoWrapFlags(ComputeFlags(Ops));
2464     return S;
2465   }
2466 
2467   // Okay, check to see if the same value occurs in the operand list more than
2468   // once.  If so, merge them together into an multiply expression.  Since we
2469   // sorted the list, these values are required to be adjacent.
2470   Type *Ty = Ops[0]->getType();
2471   bool FoundMatch = false;
2472   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2473     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2474       // Scan ahead to count how many equal operands there are.
2475       unsigned Count = 2;
2476       while (i+Count != e && Ops[i+Count] == Ops[i])
2477         ++Count;
2478       // Merge the values into a multiply.
2479       const SCEV *Scale = getConstant(Ty, Count);
2480       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2481       if (Ops.size() == Count)
2482         return Mul;
2483       Ops[i] = Mul;
2484       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2485       --i; e -= Count - 1;
2486       FoundMatch = true;
2487     }
2488   if (FoundMatch)
2489     return getAddExpr(Ops, OrigFlags, Depth + 1);
2490 
2491   // Check for truncates. If all the operands are truncated from the same
2492   // type, see if factoring out the truncate would permit the result to be
2493   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2494   // if the contents of the resulting outer trunc fold to something simple.
2495   auto FindTruncSrcType = [&]() -> Type * {
2496     // We're ultimately looking to fold an addrec of truncs and muls of only
2497     // constants and truncs, so if we find any other types of SCEV
2498     // as operands of the addrec then we bail and return nullptr here.
2499     // Otherwise, we return the type of the operand of a trunc that we find.
2500     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2501       return T->getOperand()->getType();
2502     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2503       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2504       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2505         return T->getOperand()->getType();
2506     }
2507     return nullptr;
2508   };
2509   if (auto *SrcType = FindTruncSrcType()) {
2510     SmallVector<const SCEV *, 8> LargeOps;
2511     bool Ok = true;
2512     // Check all the operands to see if they can be represented in the
2513     // source type of the truncate.
2514     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2515       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2516         if (T->getOperand()->getType() != SrcType) {
2517           Ok = false;
2518           break;
2519         }
2520         LargeOps.push_back(T->getOperand());
2521       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2522         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2523       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2524         SmallVector<const SCEV *, 8> LargeMulOps;
2525         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2526           if (const SCEVTruncateExpr *T =
2527                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2528             if (T->getOperand()->getType() != SrcType) {
2529               Ok = false;
2530               break;
2531             }
2532             LargeMulOps.push_back(T->getOperand());
2533           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2534             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2535           } else {
2536             Ok = false;
2537             break;
2538           }
2539         }
2540         if (Ok)
2541           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2542       } else {
2543         Ok = false;
2544         break;
2545       }
2546     }
2547     if (Ok) {
2548       // Evaluate the expression in the larger type.
2549       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2550       // If it folds to something simple, use it. Otherwise, don't.
2551       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2552         return getTruncateExpr(Fold, Ty);
2553     }
2554   }
2555 
2556   if (Ops.size() == 2) {
2557     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2558     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2559     // C1).
2560     const SCEV *A = Ops[0];
2561     const SCEV *B = Ops[1];
2562     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2563     auto *C = dyn_cast<SCEVConstant>(A);
2564     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2565       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2566       auto C2 = C->getAPInt();
2567       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2568 
2569       APInt ConstAdd = C1 + C2;
2570       auto AddFlags = AddExpr->getNoWrapFlags();
2571       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2572       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2573           ConstAdd.ule(C1)) {
2574         PreservedFlags =
2575             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2576       }
2577 
2578       // Adding a constant with the same sign and small magnitude is NSW, if the
2579       // original AddExpr was NSW.
2580       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2581           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2582           ConstAdd.abs().ule(C1.abs())) {
2583         PreservedFlags =
2584             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2585       }
2586 
2587       if (PreservedFlags != SCEV::FlagAnyWrap) {
2588         SmallVector<const SCEV *, 4> NewOps(AddExpr->op_begin(),
2589                                             AddExpr->op_end());
2590         NewOps[0] = getConstant(ConstAdd);
2591         return getAddExpr(NewOps, PreservedFlags);
2592       }
2593     }
2594   }
2595 
2596   // Skip past any other cast SCEVs.
2597   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2598     ++Idx;
2599 
2600   // If there are add operands they would be next.
2601   if (Idx < Ops.size()) {
2602     bool DeletedAdd = false;
2603     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2604     // common NUW flag for expression after inlining. Other flags cannot be
2605     // preserved, because they may depend on the original order of operations.
2606     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2607     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2608       if (Ops.size() > AddOpsInlineThreshold ||
2609           Add->getNumOperands() > AddOpsInlineThreshold)
2610         break;
2611       // If we have an add, expand the add operands onto the end of the operands
2612       // list.
2613       Ops.erase(Ops.begin()+Idx);
2614       Ops.append(Add->op_begin(), Add->op_end());
2615       DeletedAdd = true;
2616       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2617     }
2618 
2619     // If we deleted at least one add, we added operands to the end of the list,
2620     // and they are not necessarily sorted.  Recurse to resort and resimplify
2621     // any operands we just acquired.
2622     if (DeletedAdd)
2623       return getAddExpr(Ops, CommonFlags, Depth + 1);
2624   }
2625 
2626   // Skip over the add expression until we get to a multiply.
2627   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2628     ++Idx;
2629 
2630   // Check to see if there are any folding opportunities present with
2631   // operands multiplied by constant values.
2632   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2633     uint64_t BitWidth = getTypeSizeInBits(Ty);
2634     DenseMap<const SCEV *, APInt> M;
2635     SmallVector<const SCEV *, 8> NewOps;
2636     APInt AccumulatedConstant(BitWidth, 0);
2637     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2638                                      Ops.data(), Ops.size(),
2639                                      APInt(BitWidth, 1), *this)) {
2640       struct APIntCompare {
2641         bool operator()(const APInt &LHS, const APInt &RHS) const {
2642           return LHS.ult(RHS);
2643         }
2644       };
2645 
2646       // Some interesting folding opportunity is present, so its worthwhile to
2647       // re-generate the operands list. Group the operands by constant scale,
2648       // to avoid multiplying by the same constant scale multiple times.
2649       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2650       for (const SCEV *NewOp : NewOps)
2651         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2652       // Re-generate the operands list.
2653       Ops.clear();
2654       if (AccumulatedConstant != 0)
2655         Ops.push_back(getConstant(AccumulatedConstant));
2656       for (auto &MulOp : MulOpLists) {
2657         if (MulOp.first == 1) {
2658           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2659         } else if (MulOp.first != 0) {
2660           Ops.push_back(getMulExpr(
2661               getConstant(MulOp.first),
2662               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2663               SCEV::FlagAnyWrap, Depth + 1));
2664         }
2665       }
2666       if (Ops.empty())
2667         return getZero(Ty);
2668       if (Ops.size() == 1)
2669         return Ops[0];
2670       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2671     }
2672   }
2673 
2674   // If we are adding something to a multiply expression, make sure the
2675   // something is not already an operand of the multiply.  If so, merge it into
2676   // the multiply.
2677   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2678     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2679     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2680       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2681       if (isa<SCEVConstant>(MulOpSCEV))
2682         continue;
2683       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2684         if (MulOpSCEV == Ops[AddOp]) {
2685           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2686           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2687           if (Mul->getNumOperands() != 2) {
2688             // If the multiply has more than two operands, we must get the
2689             // Y*Z term.
2690             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2691                                                 Mul->op_begin()+MulOp);
2692             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2693             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2694           }
2695           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2696           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2697           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2698                                             SCEV::FlagAnyWrap, Depth + 1);
2699           if (Ops.size() == 2) return OuterMul;
2700           if (AddOp < Idx) {
2701             Ops.erase(Ops.begin()+AddOp);
2702             Ops.erase(Ops.begin()+Idx-1);
2703           } else {
2704             Ops.erase(Ops.begin()+Idx);
2705             Ops.erase(Ops.begin()+AddOp-1);
2706           }
2707           Ops.push_back(OuterMul);
2708           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2709         }
2710 
2711       // Check this multiply against other multiplies being added together.
2712       for (unsigned OtherMulIdx = Idx+1;
2713            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2714            ++OtherMulIdx) {
2715         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2716         // If MulOp occurs in OtherMul, we can fold the two multiplies
2717         // together.
2718         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2719              OMulOp != e; ++OMulOp)
2720           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2721             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2722             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2723             if (Mul->getNumOperands() != 2) {
2724               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2725                                                   Mul->op_begin()+MulOp);
2726               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2727               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2728             }
2729             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2730             if (OtherMul->getNumOperands() != 2) {
2731               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2732                                                   OtherMul->op_begin()+OMulOp);
2733               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2734               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2735             }
2736             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2737             const SCEV *InnerMulSum =
2738                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2739             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2740                                               SCEV::FlagAnyWrap, Depth + 1);
2741             if (Ops.size() == 2) return OuterMul;
2742             Ops.erase(Ops.begin()+Idx);
2743             Ops.erase(Ops.begin()+OtherMulIdx-1);
2744             Ops.push_back(OuterMul);
2745             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2746           }
2747       }
2748     }
2749   }
2750 
2751   // If there are any add recurrences in the operands list, see if any other
2752   // added values are loop invariant.  If so, we can fold them into the
2753   // recurrence.
2754   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2755     ++Idx;
2756 
2757   // Scan over all recurrences, trying to fold loop invariants into them.
2758   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2759     // Scan all of the other operands to this add and add them to the vector if
2760     // they are loop invariant w.r.t. the recurrence.
2761     SmallVector<const SCEV *, 8> LIOps;
2762     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2763     const Loop *AddRecLoop = AddRec->getLoop();
2764     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2765       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2766         LIOps.push_back(Ops[i]);
2767         Ops.erase(Ops.begin()+i);
2768         --i; --e;
2769       }
2770 
2771     // If we found some loop invariants, fold them into the recurrence.
2772     if (!LIOps.empty()) {
2773       // Compute nowrap flags for the addition of the loop-invariant ops and
2774       // the addrec. Temporarily push it as an operand for that purpose.
2775       LIOps.push_back(AddRec);
2776       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2777       LIOps.pop_back();
2778 
2779       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2780       LIOps.push_back(AddRec->getStart());
2781 
2782       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2783       // This follows from the fact that the no-wrap flags on the outer add
2784       // expression are applicable on the 0th iteration, when the add recurrence
2785       // will be equal to its start value.
2786       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2787 
2788       // Build the new addrec. Propagate the NUW and NSW flags if both the
2789       // outer add and the inner addrec are guaranteed to have no overflow.
2790       // Always propagate NW.
2791       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2792       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2793 
2794       // If all of the other operands were loop invariant, we are done.
2795       if (Ops.size() == 1) return NewRec;
2796 
2797       // Otherwise, add the folded AddRec by the non-invariant parts.
2798       for (unsigned i = 0;; ++i)
2799         if (Ops[i] == AddRec) {
2800           Ops[i] = NewRec;
2801           break;
2802         }
2803       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2804     }
2805 
2806     // Okay, if there weren't any loop invariants to be folded, check to see if
2807     // there are multiple AddRec's with the same loop induction variable being
2808     // added together.  If so, we can fold them.
2809     for (unsigned OtherIdx = Idx+1;
2810          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2811          ++OtherIdx) {
2812       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2813       // so that the 1st found AddRecExpr is dominated by all others.
2814       assert(DT.dominates(
2815            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2816            AddRec->getLoop()->getHeader()) &&
2817         "AddRecExprs are not sorted in reverse dominance order?");
2818       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2819         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2820         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2821         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2822              ++OtherIdx) {
2823           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2824           if (OtherAddRec->getLoop() == AddRecLoop) {
2825             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2826                  i != e; ++i) {
2827               if (i >= AddRecOps.size()) {
2828                 AddRecOps.append(OtherAddRec->op_begin()+i,
2829                                  OtherAddRec->op_end());
2830                 break;
2831               }
2832               SmallVector<const SCEV *, 2> TwoOps = {
2833                   AddRecOps[i], OtherAddRec->getOperand(i)};
2834               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2835             }
2836             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2837           }
2838         }
2839         // Step size has changed, so we cannot guarantee no self-wraparound.
2840         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2841         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2842       }
2843     }
2844 
2845     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2846     // next one.
2847   }
2848 
2849   // Okay, it looks like we really DO need an add expr.  Check to see if we
2850   // already have one, otherwise create a new one.
2851   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2852 }
2853 
2854 const SCEV *
2855 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2856                                     SCEV::NoWrapFlags Flags) {
2857   FoldingSetNodeID ID;
2858   ID.AddInteger(scAddExpr);
2859   for (const SCEV *Op : Ops)
2860     ID.AddPointer(Op);
2861   void *IP = nullptr;
2862   SCEVAddExpr *S =
2863       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2864   if (!S) {
2865     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2866     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2867     S = new (SCEVAllocator)
2868         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2869     UniqueSCEVs.InsertNode(S, IP);
2870     addToLoopUseLists(S);
2871   }
2872   S->setNoWrapFlags(Flags);
2873   return S;
2874 }
2875 
2876 const SCEV *
2877 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2878                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2879   FoldingSetNodeID ID;
2880   ID.AddInteger(scAddRecExpr);
2881   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2882     ID.AddPointer(Ops[i]);
2883   ID.AddPointer(L);
2884   void *IP = nullptr;
2885   SCEVAddRecExpr *S =
2886       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2887   if (!S) {
2888     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2889     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2890     S = new (SCEVAllocator)
2891         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2892     UniqueSCEVs.InsertNode(S, IP);
2893     addToLoopUseLists(S);
2894   }
2895   setNoWrapFlags(S, Flags);
2896   return S;
2897 }
2898 
2899 const SCEV *
2900 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2901                                     SCEV::NoWrapFlags Flags) {
2902   FoldingSetNodeID ID;
2903   ID.AddInteger(scMulExpr);
2904   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2905     ID.AddPointer(Ops[i]);
2906   void *IP = nullptr;
2907   SCEVMulExpr *S =
2908     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2909   if (!S) {
2910     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2911     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2912     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2913                                         O, Ops.size());
2914     UniqueSCEVs.InsertNode(S, IP);
2915     addToLoopUseLists(S);
2916   }
2917   S->setNoWrapFlags(Flags);
2918   return S;
2919 }
2920 
2921 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2922   uint64_t k = i*j;
2923   if (j > 1 && k / j != i) Overflow = true;
2924   return k;
2925 }
2926 
2927 /// Compute the result of "n choose k", the binomial coefficient.  If an
2928 /// intermediate computation overflows, Overflow will be set and the return will
2929 /// be garbage. Overflow is not cleared on absence of overflow.
2930 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2931   // We use the multiplicative formula:
2932   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2933   // At each iteration, we take the n-th term of the numeral and divide by the
2934   // (k-n)th term of the denominator.  This division will always produce an
2935   // integral result, and helps reduce the chance of overflow in the
2936   // intermediate computations. However, we can still overflow even when the
2937   // final result would fit.
2938 
2939   if (n == 0 || n == k) return 1;
2940   if (k > n) return 0;
2941 
2942   if (k > n/2)
2943     k = n-k;
2944 
2945   uint64_t r = 1;
2946   for (uint64_t i = 1; i <= k; ++i) {
2947     r = umul_ov(r, n-(i-1), Overflow);
2948     r /= i;
2949   }
2950   return r;
2951 }
2952 
2953 /// Determine if any of the operands in this SCEV are a constant or if
2954 /// any of the add or multiply expressions in this SCEV contain a constant.
2955 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2956   struct FindConstantInAddMulChain {
2957     bool FoundConstant = false;
2958 
2959     bool follow(const SCEV *S) {
2960       FoundConstant |= isa<SCEVConstant>(S);
2961       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2962     }
2963 
2964     bool isDone() const {
2965       return FoundConstant;
2966     }
2967   };
2968 
2969   FindConstantInAddMulChain F;
2970   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2971   ST.visitAll(StartExpr);
2972   return F.FoundConstant;
2973 }
2974 
2975 /// Get a canonical multiply expression, or something simpler if possible.
2976 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2977                                         SCEV::NoWrapFlags OrigFlags,
2978                                         unsigned Depth) {
2979   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2980          "only nuw or nsw allowed");
2981   assert(!Ops.empty() && "Cannot get empty mul!");
2982   if (Ops.size() == 1) return Ops[0];
2983 #ifndef NDEBUG
2984   Type *ETy = Ops[0]->getType();
2985   assert(!ETy->isPointerTy());
2986   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2987     assert(Ops[i]->getType() == ETy &&
2988            "SCEVMulExpr operand types don't match!");
2989 #endif
2990 
2991   // Sort by complexity, this groups all similar expression types together.
2992   GroupByComplexity(Ops, &LI, DT);
2993 
2994   // If there are any constants, fold them together.
2995   unsigned Idx = 0;
2996   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2997     ++Idx;
2998     assert(Idx < Ops.size());
2999     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3000       // We found two constants, fold them together!
3001       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3002       if (Ops.size() == 2) return Ops[0];
3003       Ops.erase(Ops.begin()+1);  // Erase the folded element
3004       LHSC = cast<SCEVConstant>(Ops[0]);
3005     }
3006 
3007     // If we have a multiply of zero, it will always be zero.
3008     if (LHSC->getValue()->isZero())
3009       return LHSC;
3010 
3011     // If we are left with a constant one being multiplied, strip it off.
3012     if (LHSC->getValue()->isOne()) {
3013       Ops.erase(Ops.begin());
3014       --Idx;
3015     }
3016 
3017     if (Ops.size() == 1)
3018       return Ops[0];
3019   }
3020 
3021   // Delay expensive flag strengthening until necessary.
3022   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3023     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3024   };
3025 
3026   // Limit recursion calls depth.
3027   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3028     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3029 
3030   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
3031     // Don't strengthen flags if we have no new information.
3032     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3033     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3034       Mul->setNoWrapFlags(ComputeFlags(Ops));
3035     return S;
3036   }
3037 
3038   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3039     if (Ops.size() == 2) {
3040       // C1*(C2+V) -> C1*C2 + C1*V
3041       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3042         // If any of Add's ops are Adds or Muls with a constant, apply this
3043         // transformation as well.
3044         //
3045         // TODO: There are some cases where this transformation is not
3046         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3047         // this transformation should be narrowed down.
3048         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3049           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3050                                        SCEV::FlagAnyWrap, Depth + 1),
3051                             getMulExpr(LHSC, Add->getOperand(1),
3052                                        SCEV::FlagAnyWrap, Depth + 1),
3053                             SCEV::FlagAnyWrap, Depth + 1);
3054 
3055       if (Ops[0]->isAllOnesValue()) {
3056         // If we have a mul by -1 of an add, try distributing the -1 among the
3057         // add operands.
3058         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3059           SmallVector<const SCEV *, 4> NewOps;
3060           bool AnyFolded = false;
3061           for (const SCEV *AddOp : Add->operands()) {
3062             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3063                                          Depth + 1);
3064             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3065             NewOps.push_back(Mul);
3066           }
3067           if (AnyFolded)
3068             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3069         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3070           // Negation preserves a recurrence's no self-wrap property.
3071           SmallVector<const SCEV *, 4> Operands;
3072           for (const SCEV *AddRecOp : AddRec->operands())
3073             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3074                                           Depth + 1));
3075 
3076           return getAddRecExpr(Operands, AddRec->getLoop(),
3077                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3078         }
3079       }
3080     }
3081   }
3082 
3083   // Skip over the add expression until we get to a multiply.
3084   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3085     ++Idx;
3086 
3087   // If there are mul operands inline them all into this expression.
3088   if (Idx < Ops.size()) {
3089     bool DeletedMul = false;
3090     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3091       if (Ops.size() > MulOpsInlineThreshold)
3092         break;
3093       // If we have an mul, expand the mul operands onto the end of the
3094       // operands list.
3095       Ops.erase(Ops.begin()+Idx);
3096       Ops.append(Mul->op_begin(), Mul->op_end());
3097       DeletedMul = true;
3098     }
3099 
3100     // If we deleted at least one mul, we added operands to the end of the
3101     // list, and they are not necessarily sorted.  Recurse to resort and
3102     // resimplify any operands we just acquired.
3103     if (DeletedMul)
3104       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3105   }
3106 
3107   // If there are any add recurrences in the operands list, see if any other
3108   // added values are loop invariant.  If so, we can fold them into the
3109   // recurrence.
3110   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3111     ++Idx;
3112 
3113   // Scan over all recurrences, trying to fold loop invariants into them.
3114   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3115     // Scan all of the other operands to this mul and add them to the vector
3116     // if they are loop invariant w.r.t. the recurrence.
3117     SmallVector<const SCEV *, 8> LIOps;
3118     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3119     const Loop *AddRecLoop = AddRec->getLoop();
3120     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3121       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3122         LIOps.push_back(Ops[i]);
3123         Ops.erase(Ops.begin()+i);
3124         --i; --e;
3125       }
3126 
3127     // If we found some loop invariants, fold them into the recurrence.
3128     if (!LIOps.empty()) {
3129       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3130       SmallVector<const SCEV *, 4> NewOps;
3131       NewOps.reserve(AddRec->getNumOperands());
3132       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3133       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3134         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3135                                     SCEV::FlagAnyWrap, Depth + 1));
3136 
3137       // Build the new addrec. Propagate the NUW and NSW flags if both the
3138       // outer mul and the inner addrec are guaranteed to have no overflow.
3139       //
3140       // No self-wrap cannot be guaranteed after changing the step size, but
3141       // will be inferred if either NUW or NSW is true.
3142       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3143       const SCEV *NewRec = getAddRecExpr(
3144           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3145 
3146       // If all of the other operands were loop invariant, we are done.
3147       if (Ops.size() == 1) return NewRec;
3148 
3149       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3150       for (unsigned i = 0;; ++i)
3151         if (Ops[i] == AddRec) {
3152           Ops[i] = NewRec;
3153           break;
3154         }
3155       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3156     }
3157 
3158     // Okay, if there weren't any loop invariants to be folded, check to see
3159     // if there are multiple AddRec's with the same loop induction variable
3160     // being multiplied together.  If so, we can fold them.
3161 
3162     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3163     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3164     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3165     //   ]]],+,...up to x=2n}.
3166     // Note that the arguments to choose() are always integers with values
3167     // known at compile time, never SCEV objects.
3168     //
3169     // The implementation avoids pointless extra computations when the two
3170     // addrec's are of different length (mathematically, it's equivalent to
3171     // an infinite stream of zeros on the right).
3172     bool OpsModified = false;
3173     for (unsigned OtherIdx = Idx+1;
3174          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3175          ++OtherIdx) {
3176       const SCEVAddRecExpr *OtherAddRec =
3177         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3178       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3179         continue;
3180 
3181       // Limit max number of arguments to avoid creation of unreasonably big
3182       // SCEVAddRecs with very complex operands.
3183       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3184           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3185         continue;
3186 
3187       bool Overflow = false;
3188       Type *Ty = AddRec->getType();
3189       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3190       SmallVector<const SCEV*, 7> AddRecOps;
3191       for (int x = 0, xe = AddRec->getNumOperands() +
3192              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3193         SmallVector <const SCEV *, 7> SumOps;
3194         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3195           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3196           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3197                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3198                z < ze && !Overflow; ++z) {
3199             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3200             uint64_t Coeff;
3201             if (LargerThan64Bits)
3202               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3203             else
3204               Coeff = Coeff1*Coeff2;
3205             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3206             const SCEV *Term1 = AddRec->getOperand(y-z);
3207             const SCEV *Term2 = OtherAddRec->getOperand(z);
3208             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3209                                         SCEV::FlagAnyWrap, Depth + 1));
3210           }
3211         }
3212         if (SumOps.empty())
3213           SumOps.push_back(getZero(Ty));
3214         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3215       }
3216       if (!Overflow) {
3217         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3218                                               SCEV::FlagAnyWrap);
3219         if (Ops.size() == 2) return NewAddRec;
3220         Ops[Idx] = NewAddRec;
3221         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3222         OpsModified = true;
3223         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3224         if (!AddRec)
3225           break;
3226       }
3227     }
3228     if (OpsModified)
3229       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3230 
3231     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3232     // next one.
3233   }
3234 
3235   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3236   // already have one, otherwise create a new one.
3237   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3238 }
3239 
3240 /// Represents an unsigned remainder expression based on unsigned division.
3241 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3242                                          const SCEV *RHS) {
3243   assert(getEffectiveSCEVType(LHS->getType()) ==
3244          getEffectiveSCEVType(RHS->getType()) &&
3245          "SCEVURemExpr operand types don't match!");
3246 
3247   // Short-circuit easy cases
3248   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3249     // If constant is one, the result is trivial
3250     if (RHSC->getValue()->isOne())
3251       return getZero(LHS->getType()); // X urem 1 --> 0
3252 
3253     // If constant is a power of two, fold into a zext(trunc(LHS)).
3254     if (RHSC->getAPInt().isPowerOf2()) {
3255       Type *FullTy = LHS->getType();
3256       Type *TruncTy =
3257           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3258       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3259     }
3260   }
3261 
3262   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3263   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3264   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3265   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3266 }
3267 
3268 /// Get a canonical unsigned division expression, or something simpler if
3269 /// possible.
3270 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3271                                          const SCEV *RHS) {
3272   assert(!LHS->getType()->isPointerTy() &&
3273          "SCEVUDivExpr operand can't be pointer!");
3274   assert(LHS->getType() == RHS->getType() &&
3275          "SCEVUDivExpr operand types don't match!");
3276 
3277   FoldingSetNodeID ID;
3278   ID.AddInteger(scUDivExpr);
3279   ID.AddPointer(LHS);
3280   ID.AddPointer(RHS);
3281   void *IP = nullptr;
3282   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3283     return S;
3284 
3285   // 0 udiv Y == 0
3286   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3287     if (LHSC->getValue()->isZero())
3288       return LHS;
3289 
3290   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3291     if (RHSC->getValue()->isOne())
3292       return LHS;                               // X udiv 1 --> x
3293     // If the denominator is zero, the result of the udiv is undefined. Don't
3294     // try to analyze it, because the resolution chosen here may differ from
3295     // the resolution chosen in other parts of the compiler.
3296     if (!RHSC->getValue()->isZero()) {
3297       // Determine if the division can be folded into the operands of
3298       // its operands.
3299       // TODO: Generalize this to non-constants by using known-bits information.
3300       Type *Ty = LHS->getType();
3301       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3302       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3303       // For non-power-of-two values, effectively round the value up to the
3304       // nearest power of two.
3305       if (!RHSC->getAPInt().isPowerOf2())
3306         ++MaxShiftAmt;
3307       IntegerType *ExtTy =
3308         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3309       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3310         if (const SCEVConstant *Step =
3311             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3312           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3313           const APInt &StepInt = Step->getAPInt();
3314           const APInt &DivInt = RHSC->getAPInt();
3315           if (!StepInt.urem(DivInt) &&
3316               getZeroExtendExpr(AR, ExtTy) ==
3317               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3318                             getZeroExtendExpr(Step, ExtTy),
3319                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3320             SmallVector<const SCEV *, 4> Operands;
3321             for (const SCEV *Op : AR->operands())
3322               Operands.push_back(getUDivExpr(Op, RHS));
3323             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3324           }
3325           /// Get a canonical UDivExpr for a recurrence.
3326           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3327           // We can currently only fold X%N if X is constant.
3328           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3329           if (StartC && !DivInt.urem(StepInt) &&
3330               getZeroExtendExpr(AR, ExtTy) ==
3331               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3332                             getZeroExtendExpr(Step, ExtTy),
3333                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3334             const APInt &StartInt = StartC->getAPInt();
3335             const APInt &StartRem = StartInt.urem(StepInt);
3336             if (StartRem != 0) {
3337               const SCEV *NewLHS =
3338                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3339                                 AR->getLoop(), SCEV::FlagNW);
3340               if (LHS != NewLHS) {
3341                 LHS = NewLHS;
3342 
3343                 // Reset the ID to include the new LHS, and check if it is
3344                 // already cached.
3345                 ID.clear();
3346                 ID.AddInteger(scUDivExpr);
3347                 ID.AddPointer(LHS);
3348                 ID.AddPointer(RHS);
3349                 IP = nullptr;
3350                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3351                   return S;
3352               }
3353             }
3354           }
3355         }
3356       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3357       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3358         SmallVector<const SCEV *, 4> Operands;
3359         for (const SCEV *Op : M->operands())
3360           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3361         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3362           // Find an operand that's safely divisible.
3363           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3364             const SCEV *Op = M->getOperand(i);
3365             const SCEV *Div = getUDivExpr(Op, RHSC);
3366             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3367               Operands = SmallVector<const SCEV *, 4>(M->operands());
3368               Operands[i] = Div;
3369               return getMulExpr(Operands);
3370             }
3371           }
3372       }
3373 
3374       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3375       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3376         if (auto *DivisorConstant =
3377                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3378           bool Overflow = false;
3379           APInt NewRHS =
3380               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3381           if (Overflow) {
3382             return getConstant(RHSC->getType(), 0, false);
3383           }
3384           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3385         }
3386       }
3387 
3388       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3389       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3390         SmallVector<const SCEV *, 4> Operands;
3391         for (const SCEV *Op : A->operands())
3392           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3393         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3394           Operands.clear();
3395           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3396             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3397             if (isa<SCEVUDivExpr>(Op) ||
3398                 getMulExpr(Op, RHS) != A->getOperand(i))
3399               break;
3400             Operands.push_back(Op);
3401           }
3402           if (Operands.size() == A->getNumOperands())
3403             return getAddExpr(Operands);
3404         }
3405       }
3406 
3407       // Fold if both operands are constant.
3408       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3409         Constant *LHSCV = LHSC->getValue();
3410         Constant *RHSCV = RHSC->getValue();
3411         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3412                                                                    RHSCV)));
3413       }
3414     }
3415   }
3416 
3417   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3418   // changes). Make sure we get a new one.
3419   IP = nullptr;
3420   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3421   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3422                                              LHS, RHS);
3423   UniqueSCEVs.InsertNode(S, IP);
3424   addToLoopUseLists(S);
3425   return S;
3426 }
3427 
3428 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3429   APInt A = C1->getAPInt().abs();
3430   APInt B = C2->getAPInt().abs();
3431   uint32_t ABW = A.getBitWidth();
3432   uint32_t BBW = B.getBitWidth();
3433 
3434   if (ABW > BBW)
3435     B = B.zext(ABW);
3436   else if (ABW < BBW)
3437     A = A.zext(BBW);
3438 
3439   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3440 }
3441 
3442 /// Get a canonical unsigned division expression, or something simpler if
3443 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3444 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3445 /// it's not exact because the udiv may be clearing bits.
3446 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3447                                               const SCEV *RHS) {
3448   // TODO: we could try to find factors in all sorts of things, but for now we
3449   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3450   // end of this file for inspiration.
3451 
3452   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3453   if (!Mul || !Mul->hasNoUnsignedWrap())
3454     return getUDivExpr(LHS, RHS);
3455 
3456   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3457     // If the mulexpr multiplies by a constant, then that constant must be the
3458     // first element of the mulexpr.
3459     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3460       if (LHSCst == RHSCst) {
3461         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3462         return getMulExpr(Operands);
3463       }
3464 
3465       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3466       // that there's a factor provided by one of the other terms. We need to
3467       // check.
3468       APInt Factor = gcd(LHSCst, RHSCst);
3469       if (!Factor.isIntN(1)) {
3470         LHSCst =
3471             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3472         RHSCst =
3473             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3474         SmallVector<const SCEV *, 2> Operands;
3475         Operands.push_back(LHSCst);
3476         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3477         LHS = getMulExpr(Operands);
3478         RHS = RHSCst;
3479         Mul = dyn_cast<SCEVMulExpr>(LHS);
3480         if (!Mul)
3481           return getUDivExactExpr(LHS, RHS);
3482       }
3483     }
3484   }
3485 
3486   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3487     if (Mul->getOperand(i) == RHS) {
3488       SmallVector<const SCEV *, 2> Operands;
3489       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3490       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3491       return getMulExpr(Operands);
3492     }
3493   }
3494 
3495   return getUDivExpr(LHS, RHS);
3496 }
3497 
3498 /// Get an add recurrence expression for the specified loop.  Simplify the
3499 /// expression as much as possible.
3500 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3501                                            const Loop *L,
3502                                            SCEV::NoWrapFlags Flags) {
3503   SmallVector<const SCEV *, 4> Operands;
3504   Operands.push_back(Start);
3505   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3506     if (StepChrec->getLoop() == L) {
3507       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3508       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3509     }
3510 
3511   Operands.push_back(Step);
3512   return getAddRecExpr(Operands, L, Flags);
3513 }
3514 
3515 /// Get an add recurrence expression for the specified loop.  Simplify the
3516 /// expression as much as possible.
3517 const SCEV *
3518 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3519                                const Loop *L, SCEV::NoWrapFlags Flags) {
3520   if (Operands.size() == 1) return Operands[0];
3521 #ifndef NDEBUG
3522   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3523   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3524     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3525            "SCEVAddRecExpr operand types don't match!");
3526     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3527   }
3528   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3529     assert(isLoopInvariant(Operands[i], L) &&
3530            "SCEVAddRecExpr operand is not loop-invariant!");
3531 #endif
3532 
3533   if (Operands.back()->isZero()) {
3534     Operands.pop_back();
3535     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3536   }
3537 
3538   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3539   // use that information to infer NUW and NSW flags. However, computing a
3540   // BE count requires calling getAddRecExpr, so we may not yet have a
3541   // meaningful BE count at this point (and if we don't, we'd be stuck
3542   // with a SCEVCouldNotCompute as the cached BE count).
3543 
3544   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3545 
3546   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3547   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3548     const Loop *NestedLoop = NestedAR->getLoop();
3549     if (L->contains(NestedLoop)
3550             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3551             : (!NestedLoop->contains(L) &&
3552                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3553       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3554       Operands[0] = NestedAR->getStart();
3555       // AddRecs require their operands be loop-invariant with respect to their
3556       // loops. Don't perform this transformation if it would break this
3557       // requirement.
3558       bool AllInvariant = all_of(
3559           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3560 
3561       if (AllInvariant) {
3562         // Create a recurrence for the outer loop with the same step size.
3563         //
3564         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3565         // inner recurrence has the same property.
3566         SCEV::NoWrapFlags OuterFlags =
3567           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3568 
3569         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3570         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3571           return isLoopInvariant(Op, NestedLoop);
3572         });
3573 
3574         if (AllInvariant) {
3575           // Ok, both add recurrences are valid after the transformation.
3576           //
3577           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3578           // the outer recurrence has the same property.
3579           SCEV::NoWrapFlags InnerFlags =
3580             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3581           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3582         }
3583       }
3584       // Reset Operands to its original state.
3585       Operands[0] = NestedAR;
3586     }
3587   }
3588 
3589   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3590   // already have one, otherwise create a new one.
3591   return getOrCreateAddRecExpr(Operands, L, Flags);
3592 }
3593 
3594 const SCEV *
3595 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3596                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3597   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3598   // getSCEV(Base)->getType() has the same address space as Base->getType()
3599   // because SCEV::getType() preserves the address space.
3600   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3601   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3602   // instruction to its SCEV, because the Instruction may be guarded by control
3603   // flow and the no-overflow bits may not be valid for the expression in any
3604   // context. This can be fixed similarly to how these flags are handled for
3605   // adds.
3606   SCEV::NoWrapFlags OffsetWrap =
3607       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3608 
3609   Type *CurTy = GEP->getType();
3610   bool FirstIter = true;
3611   SmallVector<const SCEV *, 4> Offsets;
3612   for (const SCEV *IndexExpr : IndexExprs) {
3613     // Compute the (potentially symbolic) offset in bytes for this index.
3614     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3615       // For a struct, add the member offset.
3616       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3617       unsigned FieldNo = Index->getZExtValue();
3618       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3619       Offsets.push_back(FieldOffset);
3620 
3621       // Update CurTy to the type of the field at Index.
3622       CurTy = STy->getTypeAtIndex(Index);
3623     } else {
3624       // Update CurTy to its element type.
3625       if (FirstIter) {
3626         assert(isa<PointerType>(CurTy) &&
3627                "The first index of a GEP indexes a pointer");
3628         CurTy = GEP->getSourceElementType();
3629         FirstIter = false;
3630       } else {
3631         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3632       }
3633       // For an array, add the element offset, explicitly scaled.
3634       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3635       // Getelementptr indices are signed.
3636       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3637 
3638       // Multiply the index by the element size to compute the element offset.
3639       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3640       Offsets.push_back(LocalOffset);
3641     }
3642   }
3643 
3644   // Handle degenerate case of GEP without offsets.
3645   if (Offsets.empty())
3646     return BaseExpr;
3647 
3648   // Add the offsets together, assuming nsw if inbounds.
3649   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3650   // Add the base address and the offset. We cannot use the nsw flag, as the
3651   // base address is unsigned. However, if we know that the offset is
3652   // non-negative, we can use nuw.
3653   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3654                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3655   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3656   assert(BaseExpr->getType() == GEPExpr->getType() &&
3657          "GEP should not change type mid-flight.");
3658   return GEPExpr;
3659 }
3660 
3661 std::tuple<SCEV *, FoldingSetNodeID, void *>
3662 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3663                                          ArrayRef<const SCEV *> Ops) {
3664   FoldingSetNodeID ID;
3665   void *IP = nullptr;
3666   ID.AddInteger(SCEVType);
3667   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3668     ID.AddPointer(Ops[i]);
3669   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3670       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3671 }
3672 
3673 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3674   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3675   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3676 }
3677 
3678 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3679                                            SmallVectorImpl<const SCEV *> &Ops) {
3680   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3681   if (Ops.size() == 1) return Ops[0];
3682 #ifndef NDEBUG
3683   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3684   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3685     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3686            "Operand types don't match!");
3687     assert(Ops[0]->getType()->isPointerTy() ==
3688                Ops[i]->getType()->isPointerTy() &&
3689            "min/max should be consistently pointerish");
3690   }
3691 #endif
3692 
3693   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3694   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3695 
3696   // Sort by complexity, this groups all similar expression types together.
3697   GroupByComplexity(Ops, &LI, DT);
3698 
3699   // Check if we have created the same expression before.
3700   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3701     return S;
3702   }
3703 
3704   // If there are any constants, fold them together.
3705   unsigned Idx = 0;
3706   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3707     ++Idx;
3708     assert(Idx < Ops.size());
3709     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3710       if (Kind == scSMaxExpr)
3711         return APIntOps::smax(LHS, RHS);
3712       else if (Kind == scSMinExpr)
3713         return APIntOps::smin(LHS, RHS);
3714       else if (Kind == scUMaxExpr)
3715         return APIntOps::umax(LHS, RHS);
3716       else if (Kind == scUMinExpr)
3717         return APIntOps::umin(LHS, RHS);
3718       llvm_unreachable("Unknown SCEV min/max opcode");
3719     };
3720 
3721     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3722       // We found two constants, fold them together!
3723       ConstantInt *Fold = ConstantInt::get(
3724           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3725       Ops[0] = getConstant(Fold);
3726       Ops.erase(Ops.begin()+1);  // Erase the folded element
3727       if (Ops.size() == 1) return Ops[0];
3728       LHSC = cast<SCEVConstant>(Ops[0]);
3729     }
3730 
3731     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3732     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3733 
3734     if (IsMax ? IsMinV : IsMaxV) {
3735       // If we are left with a constant minimum(/maximum)-int, strip it off.
3736       Ops.erase(Ops.begin());
3737       --Idx;
3738     } else if (IsMax ? IsMaxV : IsMinV) {
3739       // If we have a max(/min) with a constant maximum(/minimum)-int,
3740       // it will always be the extremum.
3741       return LHSC;
3742     }
3743 
3744     if (Ops.size() == 1) return Ops[0];
3745   }
3746 
3747   // Find the first operation of the same kind
3748   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3749     ++Idx;
3750 
3751   // Check to see if one of the operands is of the same kind. If so, expand its
3752   // operands onto our operand list, and recurse to simplify.
3753   if (Idx < Ops.size()) {
3754     bool DeletedAny = false;
3755     while (Ops[Idx]->getSCEVType() == Kind) {
3756       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3757       Ops.erase(Ops.begin()+Idx);
3758       Ops.append(SMME->op_begin(), SMME->op_end());
3759       DeletedAny = true;
3760     }
3761 
3762     if (DeletedAny)
3763       return getMinMaxExpr(Kind, Ops);
3764   }
3765 
3766   // Okay, check to see if the same value occurs in the operand list twice.  If
3767   // so, delete one.  Since we sorted the list, these values are required to
3768   // be adjacent.
3769   llvm::CmpInst::Predicate GEPred =
3770       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3771   llvm::CmpInst::Predicate LEPred =
3772       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3773   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3774   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3775   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3776     if (Ops[i] == Ops[i + 1] ||
3777         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3778       //  X op Y op Y  -->  X op Y
3779       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3780       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3781       --i;
3782       --e;
3783     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3784                                                Ops[i + 1])) {
3785       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3786       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3787       --i;
3788       --e;
3789     }
3790   }
3791 
3792   if (Ops.size() == 1) return Ops[0];
3793 
3794   assert(!Ops.empty() && "Reduced smax down to nothing!");
3795 
3796   // Okay, it looks like we really DO need an expr.  Check to see if we
3797   // already have one, otherwise create a new one.
3798   const SCEV *ExistingSCEV;
3799   FoldingSetNodeID ID;
3800   void *IP;
3801   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3802   if (ExistingSCEV)
3803     return ExistingSCEV;
3804   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3805   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3806   SCEV *S = new (SCEVAllocator)
3807       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3808 
3809   UniqueSCEVs.InsertNode(S, IP);
3810   addToLoopUseLists(S);
3811   return S;
3812 }
3813 
3814 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3815   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3816   return getSMaxExpr(Ops);
3817 }
3818 
3819 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3820   return getMinMaxExpr(scSMaxExpr, Ops);
3821 }
3822 
3823 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3824   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3825   return getUMaxExpr(Ops);
3826 }
3827 
3828 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3829   return getMinMaxExpr(scUMaxExpr, Ops);
3830 }
3831 
3832 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3833                                          const SCEV *RHS) {
3834   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3835   return getSMinExpr(Ops);
3836 }
3837 
3838 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3839   return getMinMaxExpr(scSMinExpr, Ops);
3840 }
3841 
3842 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3843                                          const SCEV *RHS) {
3844   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3845   return getUMinExpr(Ops);
3846 }
3847 
3848 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3849   return getMinMaxExpr(scUMinExpr, Ops);
3850 }
3851 
3852 const SCEV *
3853 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3854                                              ScalableVectorType *ScalableTy) {
3855   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3856   Constant *One = ConstantInt::get(IntTy, 1);
3857   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3858   // Note that the expression we created is the final expression, we don't
3859   // want to simplify it any further Also, if we call a normal getSCEV(),
3860   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3861   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3862 }
3863 
3864 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3865   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3866     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3867   // We can bypass creating a target-independent constant expression and then
3868   // folding it back into a ConstantInt. This is just a compile-time
3869   // optimization.
3870   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3871 }
3872 
3873 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3874   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3875     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3876   // We can bypass creating a target-independent constant expression and then
3877   // folding it back into a ConstantInt. This is just a compile-time
3878   // optimization.
3879   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3880 }
3881 
3882 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3883                                              StructType *STy,
3884                                              unsigned FieldNo) {
3885   // We can bypass creating a target-independent constant expression and then
3886   // folding it back into a ConstantInt. This is just a compile-time
3887   // optimization.
3888   return getConstant(
3889       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3890 }
3891 
3892 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3893   // Don't attempt to do anything other than create a SCEVUnknown object
3894   // here.  createSCEV only calls getUnknown after checking for all other
3895   // interesting possibilities, and any other code that calls getUnknown
3896   // is doing so in order to hide a value from SCEV canonicalization.
3897 
3898   FoldingSetNodeID ID;
3899   ID.AddInteger(scUnknown);
3900   ID.AddPointer(V);
3901   void *IP = nullptr;
3902   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3903     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3904            "Stale SCEVUnknown in uniquing map!");
3905     return S;
3906   }
3907   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3908                                             FirstUnknown);
3909   FirstUnknown = cast<SCEVUnknown>(S);
3910   UniqueSCEVs.InsertNode(S, IP);
3911   return S;
3912 }
3913 
3914 //===----------------------------------------------------------------------===//
3915 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3916 //
3917 
3918 /// Test if values of the given type are analyzable within the SCEV
3919 /// framework. This primarily includes integer types, and it can optionally
3920 /// include pointer types if the ScalarEvolution class has access to
3921 /// target-specific information.
3922 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3923   // Integers and pointers are always SCEVable.
3924   return Ty->isIntOrPtrTy();
3925 }
3926 
3927 /// Return the size in bits of the specified type, for which isSCEVable must
3928 /// return true.
3929 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3930   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3931   if (Ty->isPointerTy())
3932     return getDataLayout().getIndexTypeSizeInBits(Ty);
3933   return getDataLayout().getTypeSizeInBits(Ty);
3934 }
3935 
3936 /// Return a type with the same bitwidth as the given type and which represents
3937 /// how SCEV will treat the given type, for which isSCEVable must return
3938 /// true. For pointer types, this is the pointer index sized integer type.
3939 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3940   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3941 
3942   if (Ty->isIntegerTy())
3943     return Ty;
3944 
3945   // The only other support type is pointer.
3946   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3947   return getDataLayout().getIndexType(Ty);
3948 }
3949 
3950 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3951   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3952 }
3953 
3954 const SCEV *ScalarEvolution::getCouldNotCompute() {
3955   return CouldNotCompute.get();
3956 }
3957 
3958 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3959   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3960     auto *SU = dyn_cast<SCEVUnknown>(S);
3961     return SU && SU->getValue() == nullptr;
3962   });
3963 
3964   return !ContainsNulls;
3965 }
3966 
3967 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3968   HasRecMapType::iterator I = HasRecMap.find(S);
3969   if (I != HasRecMap.end())
3970     return I->second;
3971 
3972   bool FoundAddRec =
3973       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3974   HasRecMap.insert({S, FoundAddRec});
3975   return FoundAddRec;
3976 }
3977 
3978 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3979 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3980 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3981 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3982   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3983   if (!Add)
3984     return {S, nullptr};
3985 
3986   if (Add->getNumOperands() != 2)
3987     return {S, nullptr};
3988 
3989   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3990   if (!ConstOp)
3991     return {S, nullptr};
3992 
3993   return {Add->getOperand(1), ConstOp->getValue()};
3994 }
3995 
3996 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3997 /// by the value and offset from any ValueOffsetPair in the set.
3998 ScalarEvolution::ValueOffsetPairSetVector *
3999 ScalarEvolution::getSCEVValues(const SCEV *S) {
4000   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4001   if (SI == ExprValueMap.end())
4002     return nullptr;
4003 #ifndef NDEBUG
4004   if (VerifySCEVMap) {
4005     // Check there is no dangling Value in the set returned.
4006     for (const auto &VE : SI->second)
4007       assert(ValueExprMap.count(VE.first));
4008   }
4009 #endif
4010   return &SI->second;
4011 }
4012 
4013 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4014 /// cannot be used separately. eraseValueFromMap should be used to remove
4015 /// V from ValueExprMap and ExprValueMap at the same time.
4016 void ScalarEvolution::eraseValueFromMap(Value *V) {
4017   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4018   if (I != ValueExprMap.end()) {
4019     const SCEV *S = I->second;
4020     // Remove {V, 0} from the set of ExprValueMap[S]
4021     if (auto *SV = getSCEVValues(S))
4022       SV->remove({V, nullptr});
4023 
4024     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4025     const SCEV *Stripped;
4026     ConstantInt *Offset;
4027     std::tie(Stripped, Offset) = splitAddExpr(S);
4028     if (Offset != nullptr) {
4029       if (auto *SV = getSCEVValues(Stripped))
4030         SV->remove({V, Offset});
4031     }
4032     ValueExprMap.erase(V);
4033   }
4034 }
4035 
4036 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4037 /// TODO: In reality it is better to check the poison recursively
4038 /// but this is better than nothing.
4039 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4040   if (auto *I = dyn_cast<Instruction>(V)) {
4041     if (isa<OverflowingBinaryOperator>(I)) {
4042       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4043         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4044           return true;
4045         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4046           return true;
4047       }
4048     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4049       return true;
4050   }
4051   return false;
4052 }
4053 
4054 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4055 /// create a new one.
4056 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4057   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4058 
4059   const SCEV *S = getExistingSCEV(V);
4060   if (S == nullptr) {
4061     S = createSCEV(V);
4062     // During PHI resolution, it is possible to create two SCEVs for the same
4063     // V, so it is needed to double check whether V->S is inserted into
4064     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4065     std::pair<ValueExprMapType::iterator, bool> Pair =
4066         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4067     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4068       ExprValueMap[S].insert({V, nullptr});
4069 
4070       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4071       // ExprValueMap.
4072       const SCEV *Stripped = S;
4073       ConstantInt *Offset = nullptr;
4074       std::tie(Stripped, Offset) = splitAddExpr(S);
4075       // If stripped is SCEVUnknown, don't bother to save
4076       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4077       // increase the complexity of the expansion code.
4078       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4079       // because it may generate add/sub instead of GEP in SCEV expansion.
4080       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4081           !isa<GetElementPtrInst>(V))
4082         ExprValueMap[Stripped].insert({V, Offset});
4083     }
4084   }
4085   return S;
4086 }
4087 
4088 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4089   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4090 
4091   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4092   if (I != ValueExprMap.end()) {
4093     const SCEV *S = I->second;
4094     if (checkValidity(S))
4095       return S;
4096     eraseValueFromMap(V);
4097     forgetMemoizedResults(S);
4098   }
4099   return nullptr;
4100 }
4101 
4102 /// Return a SCEV corresponding to -V = -1*V
4103 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4104                                              SCEV::NoWrapFlags Flags) {
4105   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4106     return getConstant(
4107                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4108 
4109   Type *Ty = V->getType();
4110   Ty = getEffectiveSCEVType(Ty);
4111   return getMulExpr(V, getMinusOne(Ty), Flags);
4112 }
4113 
4114 /// If Expr computes ~A, return A else return nullptr
4115 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4116   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4117   if (!Add || Add->getNumOperands() != 2 ||
4118       !Add->getOperand(0)->isAllOnesValue())
4119     return nullptr;
4120 
4121   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4122   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4123       !AddRHS->getOperand(0)->isAllOnesValue())
4124     return nullptr;
4125 
4126   return AddRHS->getOperand(1);
4127 }
4128 
4129 /// Return a SCEV corresponding to ~V = -1-V
4130 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4131   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4132     return getConstant(
4133                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4134 
4135   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4136   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4137     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4138       SmallVector<const SCEV *, 2> MatchedOperands;
4139       for (const SCEV *Operand : MME->operands()) {
4140         const SCEV *Matched = MatchNotExpr(Operand);
4141         if (!Matched)
4142           return (const SCEV *)nullptr;
4143         MatchedOperands.push_back(Matched);
4144       }
4145       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4146                            MatchedOperands);
4147     };
4148     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4149       return Replaced;
4150   }
4151 
4152   Type *Ty = V->getType();
4153   Ty = getEffectiveSCEVType(Ty);
4154   return getMinusSCEV(getMinusOne(Ty), V);
4155 }
4156 
4157 /// Compute an expression equivalent to S - getPointerBase(S).
4158 static const SCEV *removePointerBase(ScalarEvolution *SE, const SCEV *P) {
4159   assert(P->getType()->isPointerTy());
4160 
4161   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4162     // The base of an AddRec is the first operand.
4163     SmallVector<const SCEV *> Ops{AddRec->operands()};
4164     Ops[0] = removePointerBase(SE, Ops[0]);
4165     // Don't try to transfer nowrap flags for now. We could in some cases
4166     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4167     return SE->getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4168   }
4169   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4170     // The base of an Add is the pointer operand.
4171     SmallVector<const SCEV *> Ops{Add->operands()};
4172     const SCEV **PtrOp = nullptr;
4173     for (const SCEV *&AddOp : Ops) {
4174       if (AddOp->getType()->isPointerTy()) {
4175         // If we find an Add with multiple pointer operands, treat it as a
4176         // pointer base to be consistent with getPointerBase.  Eventually
4177         // we should be able to assert this is impossible.
4178         if (PtrOp)
4179           return SE->getZero(P->getType());
4180         PtrOp = &AddOp;
4181       }
4182     }
4183     *PtrOp = removePointerBase(SE, *PtrOp);
4184     // Don't try to transfer nowrap flags for now. We could in some cases
4185     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4186     return SE->getAddExpr(Ops);
4187   }
4188   // Any other expression must be a pointer base.
4189   return SE->getZero(P->getType());
4190 }
4191 
4192 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4193                                           SCEV::NoWrapFlags Flags,
4194                                           unsigned Depth) {
4195   // Fast path: X - X --> 0.
4196   if (LHS == RHS)
4197     return getZero(LHS->getType());
4198 
4199   // If we subtract two pointers with different pointer bases, bail.
4200   // Eventually, we're going to add an assertion to getMulExpr that we
4201   // can't multiply by a pointer.
4202   if (RHS->getType()->isPointerTy()) {
4203     if (!LHS->getType()->isPointerTy() ||
4204         getPointerBase(LHS) != getPointerBase(RHS))
4205       return getCouldNotCompute();
4206     LHS = removePointerBase(this, LHS);
4207     RHS = removePointerBase(this, RHS);
4208   }
4209 
4210   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4211   // makes it so that we cannot make much use of NUW.
4212   auto AddFlags = SCEV::FlagAnyWrap;
4213   const bool RHSIsNotMinSigned =
4214       !getSignedRangeMin(RHS).isMinSignedValue();
4215   if (hasFlags(Flags, SCEV::FlagNSW)) {
4216     // Let M be the minimum representable signed value. Then (-1)*RHS
4217     // signed-wraps if and only if RHS is M. That can happen even for
4218     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4219     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4220     // (-1)*RHS, we need to prove that RHS != M.
4221     //
4222     // If LHS is non-negative and we know that LHS - RHS does not
4223     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4224     // either by proving that RHS > M or that LHS >= 0.
4225     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4226       AddFlags = SCEV::FlagNSW;
4227     }
4228   }
4229 
4230   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4231   // RHS is NSW and LHS >= 0.
4232   //
4233   // The difficulty here is that the NSW flag may have been proven
4234   // relative to a loop that is to be found in a recurrence in LHS and
4235   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4236   // larger scope than intended.
4237   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4238 
4239   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4240 }
4241 
4242 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4243                                                      unsigned Depth) {
4244   Type *SrcTy = V->getType();
4245   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4246          "Cannot truncate or zero extend with non-integer arguments!");
4247   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4248     return V;  // No conversion
4249   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4250     return getTruncateExpr(V, Ty, Depth);
4251   return getZeroExtendExpr(V, Ty, Depth);
4252 }
4253 
4254 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4255                                                      unsigned Depth) {
4256   Type *SrcTy = V->getType();
4257   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4258          "Cannot truncate or zero extend with non-integer arguments!");
4259   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4260     return V;  // No conversion
4261   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4262     return getTruncateExpr(V, Ty, Depth);
4263   return getSignExtendExpr(V, Ty, Depth);
4264 }
4265 
4266 const SCEV *
4267 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4268   Type *SrcTy = V->getType();
4269   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4270          "Cannot noop or zero extend with non-integer arguments!");
4271   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4272          "getNoopOrZeroExtend cannot truncate!");
4273   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4274     return V;  // No conversion
4275   return getZeroExtendExpr(V, Ty);
4276 }
4277 
4278 const SCEV *
4279 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4280   Type *SrcTy = V->getType();
4281   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4282          "Cannot noop or sign extend with non-integer arguments!");
4283   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4284          "getNoopOrSignExtend cannot truncate!");
4285   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4286     return V;  // No conversion
4287   return getSignExtendExpr(V, Ty);
4288 }
4289 
4290 const SCEV *
4291 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4292   Type *SrcTy = V->getType();
4293   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4294          "Cannot noop or any extend with non-integer arguments!");
4295   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4296          "getNoopOrAnyExtend cannot truncate!");
4297   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4298     return V;  // No conversion
4299   return getAnyExtendExpr(V, Ty);
4300 }
4301 
4302 const SCEV *
4303 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4304   Type *SrcTy = V->getType();
4305   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4306          "Cannot truncate or noop with non-integer arguments!");
4307   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4308          "getTruncateOrNoop cannot extend!");
4309   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4310     return V;  // No conversion
4311   return getTruncateExpr(V, Ty);
4312 }
4313 
4314 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4315                                                         const SCEV *RHS) {
4316   const SCEV *PromotedLHS = LHS;
4317   const SCEV *PromotedRHS = RHS;
4318 
4319   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4320     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4321   else
4322     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4323 
4324   return getUMaxExpr(PromotedLHS, PromotedRHS);
4325 }
4326 
4327 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4328                                                         const SCEV *RHS) {
4329   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4330   return getUMinFromMismatchedTypes(Ops);
4331 }
4332 
4333 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4334     SmallVectorImpl<const SCEV *> &Ops) {
4335   assert(!Ops.empty() && "At least one operand must be!");
4336   // Trivial case.
4337   if (Ops.size() == 1)
4338     return Ops[0];
4339 
4340   // Find the max type first.
4341   Type *MaxType = nullptr;
4342   for (auto *S : Ops)
4343     if (MaxType)
4344       MaxType = getWiderType(MaxType, S->getType());
4345     else
4346       MaxType = S->getType();
4347   assert(MaxType && "Failed to find maximum type!");
4348 
4349   // Extend all ops to max type.
4350   SmallVector<const SCEV *, 2> PromotedOps;
4351   for (auto *S : Ops)
4352     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4353 
4354   // Generate umin.
4355   return getUMinExpr(PromotedOps);
4356 }
4357 
4358 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4359   // A pointer operand may evaluate to a nonpointer expression, such as null.
4360   if (!V->getType()->isPointerTy())
4361     return V;
4362 
4363   while (true) {
4364     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4365       V = AddRec->getStart();
4366     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4367       const SCEV *PtrOp = nullptr;
4368       for (const SCEV *AddOp : Add->operands()) {
4369         if (AddOp->getType()->isPointerTy()) {
4370           // Cannot find the base of an expression with multiple pointer ops.
4371           if (PtrOp)
4372             return V;
4373           PtrOp = AddOp;
4374         }
4375       }
4376       if (!PtrOp) // All operands were non-pointer.
4377         return V;
4378       V = PtrOp;
4379     } else // Not something we can look further into.
4380       return V;
4381   }
4382 }
4383 
4384 /// Push users of the given Instruction onto the given Worklist.
4385 static void
4386 PushDefUseChildren(Instruction *I,
4387                    SmallVectorImpl<Instruction *> &Worklist) {
4388   // Push the def-use children onto the Worklist stack.
4389   for (User *U : I->users())
4390     Worklist.push_back(cast<Instruction>(U));
4391 }
4392 
4393 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4394   SmallVector<Instruction *, 16> Worklist;
4395   PushDefUseChildren(PN, Worklist);
4396 
4397   SmallPtrSet<Instruction *, 8> Visited;
4398   Visited.insert(PN);
4399   while (!Worklist.empty()) {
4400     Instruction *I = Worklist.pop_back_val();
4401     if (!Visited.insert(I).second)
4402       continue;
4403 
4404     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4405     if (It != ValueExprMap.end()) {
4406       const SCEV *Old = It->second;
4407 
4408       // Short-circuit the def-use traversal if the symbolic name
4409       // ceases to appear in expressions.
4410       if (Old != SymName && !hasOperand(Old, SymName))
4411         continue;
4412 
4413       // SCEVUnknown for a PHI either means that it has an unrecognized
4414       // structure, it's a PHI that's in the progress of being computed
4415       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4416       // additional loop trip count information isn't going to change anything.
4417       // In the second case, createNodeForPHI will perform the necessary
4418       // updates on its own when it gets to that point. In the third, we do
4419       // want to forget the SCEVUnknown.
4420       if (!isa<PHINode>(I) ||
4421           !isa<SCEVUnknown>(Old) ||
4422           (I != PN && Old == SymName)) {
4423         eraseValueFromMap(It->first);
4424         forgetMemoizedResults(Old);
4425       }
4426     }
4427 
4428     PushDefUseChildren(I, Worklist);
4429   }
4430 }
4431 
4432 namespace {
4433 
4434 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4435 /// expression in case its Loop is L. If it is not L then
4436 /// if IgnoreOtherLoops is true then use AddRec itself
4437 /// otherwise rewrite cannot be done.
4438 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4439 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4440 public:
4441   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4442                              bool IgnoreOtherLoops = true) {
4443     SCEVInitRewriter Rewriter(L, SE);
4444     const SCEV *Result = Rewriter.visit(S);
4445     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4446       return SE.getCouldNotCompute();
4447     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4448                ? SE.getCouldNotCompute()
4449                : Result;
4450   }
4451 
4452   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4453     if (!SE.isLoopInvariant(Expr, L))
4454       SeenLoopVariantSCEVUnknown = true;
4455     return Expr;
4456   }
4457 
4458   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4459     // Only re-write AddRecExprs for this loop.
4460     if (Expr->getLoop() == L)
4461       return Expr->getStart();
4462     SeenOtherLoops = true;
4463     return Expr;
4464   }
4465 
4466   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4467 
4468   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4469 
4470 private:
4471   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4472       : SCEVRewriteVisitor(SE), L(L) {}
4473 
4474   const Loop *L;
4475   bool SeenLoopVariantSCEVUnknown = false;
4476   bool SeenOtherLoops = false;
4477 };
4478 
4479 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4480 /// increment expression in case its Loop is L. If it is not L then
4481 /// use AddRec itself.
4482 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4483 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4484 public:
4485   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4486     SCEVPostIncRewriter Rewriter(L, SE);
4487     const SCEV *Result = Rewriter.visit(S);
4488     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4489         ? SE.getCouldNotCompute()
4490         : Result;
4491   }
4492 
4493   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4494     if (!SE.isLoopInvariant(Expr, L))
4495       SeenLoopVariantSCEVUnknown = true;
4496     return Expr;
4497   }
4498 
4499   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4500     // Only re-write AddRecExprs for this loop.
4501     if (Expr->getLoop() == L)
4502       return Expr->getPostIncExpr(SE);
4503     SeenOtherLoops = true;
4504     return Expr;
4505   }
4506 
4507   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4508 
4509   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4510 
4511 private:
4512   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4513       : SCEVRewriteVisitor(SE), L(L) {}
4514 
4515   const Loop *L;
4516   bool SeenLoopVariantSCEVUnknown = false;
4517   bool SeenOtherLoops = false;
4518 };
4519 
4520 /// This class evaluates the compare condition by matching it against the
4521 /// condition of loop latch. If there is a match we assume a true value
4522 /// for the condition while building SCEV nodes.
4523 class SCEVBackedgeConditionFolder
4524     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4525 public:
4526   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4527                              ScalarEvolution &SE) {
4528     bool IsPosBECond = false;
4529     Value *BECond = nullptr;
4530     if (BasicBlock *Latch = L->getLoopLatch()) {
4531       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4532       if (BI && BI->isConditional()) {
4533         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4534                "Both outgoing branches should not target same header!");
4535         BECond = BI->getCondition();
4536         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4537       } else {
4538         return S;
4539       }
4540     }
4541     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4542     return Rewriter.visit(S);
4543   }
4544 
4545   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4546     const SCEV *Result = Expr;
4547     bool InvariantF = SE.isLoopInvariant(Expr, L);
4548 
4549     if (!InvariantF) {
4550       Instruction *I = cast<Instruction>(Expr->getValue());
4551       switch (I->getOpcode()) {
4552       case Instruction::Select: {
4553         SelectInst *SI = cast<SelectInst>(I);
4554         Optional<const SCEV *> Res =
4555             compareWithBackedgeCondition(SI->getCondition());
4556         if (Res.hasValue()) {
4557           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4558           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4559         }
4560         break;
4561       }
4562       default: {
4563         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4564         if (Res.hasValue())
4565           Result = Res.getValue();
4566         break;
4567       }
4568       }
4569     }
4570     return Result;
4571   }
4572 
4573 private:
4574   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4575                                        bool IsPosBECond, ScalarEvolution &SE)
4576       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4577         IsPositiveBECond(IsPosBECond) {}
4578 
4579   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4580 
4581   const Loop *L;
4582   /// Loop back condition.
4583   Value *BackedgeCond = nullptr;
4584   /// Set to true if loop back is on positive branch condition.
4585   bool IsPositiveBECond;
4586 };
4587 
4588 Optional<const SCEV *>
4589 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4590 
4591   // If value matches the backedge condition for loop latch,
4592   // then return a constant evolution node based on loopback
4593   // branch taken.
4594   if (BackedgeCond == IC)
4595     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4596                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4597   return None;
4598 }
4599 
4600 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4601 public:
4602   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4603                              ScalarEvolution &SE) {
4604     SCEVShiftRewriter Rewriter(L, SE);
4605     const SCEV *Result = Rewriter.visit(S);
4606     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4607   }
4608 
4609   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4610     // Only allow AddRecExprs for this loop.
4611     if (!SE.isLoopInvariant(Expr, L))
4612       Valid = false;
4613     return Expr;
4614   }
4615 
4616   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4617     if (Expr->getLoop() == L && Expr->isAffine())
4618       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4619     Valid = false;
4620     return Expr;
4621   }
4622 
4623   bool isValid() { return Valid; }
4624 
4625 private:
4626   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4627       : SCEVRewriteVisitor(SE), L(L) {}
4628 
4629   const Loop *L;
4630   bool Valid = true;
4631 };
4632 
4633 } // end anonymous namespace
4634 
4635 SCEV::NoWrapFlags
4636 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4637   if (!AR->isAffine())
4638     return SCEV::FlagAnyWrap;
4639 
4640   using OBO = OverflowingBinaryOperator;
4641 
4642   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4643 
4644   if (!AR->hasNoSignedWrap()) {
4645     ConstantRange AddRecRange = getSignedRange(AR);
4646     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4647 
4648     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4649         Instruction::Add, IncRange, OBO::NoSignedWrap);
4650     if (NSWRegion.contains(AddRecRange))
4651       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4652   }
4653 
4654   if (!AR->hasNoUnsignedWrap()) {
4655     ConstantRange AddRecRange = getUnsignedRange(AR);
4656     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4657 
4658     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4659         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4660     if (NUWRegion.contains(AddRecRange))
4661       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4662   }
4663 
4664   return Result;
4665 }
4666 
4667 SCEV::NoWrapFlags
4668 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4669   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4670 
4671   if (AR->hasNoSignedWrap())
4672     return Result;
4673 
4674   if (!AR->isAffine())
4675     return Result;
4676 
4677   const SCEV *Step = AR->getStepRecurrence(*this);
4678   const Loop *L = AR->getLoop();
4679 
4680   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4681   // Note that this serves two purposes: It filters out loops that are
4682   // simply not analyzable, and it covers the case where this code is
4683   // being called from within backedge-taken count analysis, such that
4684   // attempting to ask for the backedge-taken count would likely result
4685   // in infinite recursion. In the later case, the analysis code will
4686   // cope with a conservative value, and it will take care to purge
4687   // that value once it has finished.
4688   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4689 
4690   // Normally, in the cases we can prove no-overflow via a
4691   // backedge guarding condition, we can also compute a backedge
4692   // taken count for the loop.  The exceptions are assumptions and
4693   // guards present in the loop -- SCEV is not great at exploiting
4694   // these to compute max backedge taken counts, but can still use
4695   // these to prove lack of overflow.  Use this fact to avoid
4696   // doing extra work that may not pay off.
4697 
4698   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4699       AC.assumptions().empty())
4700     return Result;
4701 
4702   // If the backedge is guarded by a comparison with the pre-inc  value the
4703   // addrec is safe. Also, if the entry is guarded by a comparison with the
4704   // start value and the backedge is guarded by a comparison with the post-inc
4705   // value, the addrec is safe.
4706   ICmpInst::Predicate Pred;
4707   const SCEV *OverflowLimit =
4708     getSignedOverflowLimitForStep(Step, &Pred, this);
4709   if (OverflowLimit &&
4710       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4711        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4712     Result = setFlags(Result, SCEV::FlagNSW);
4713   }
4714   return Result;
4715 }
4716 SCEV::NoWrapFlags
4717 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4718   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4719 
4720   if (AR->hasNoUnsignedWrap())
4721     return Result;
4722 
4723   if (!AR->isAffine())
4724     return Result;
4725 
4726   const SCEV *Step = AR->getStepRecurrence(*this);
4727   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4728   const Loop *L = AR->getLoop();
4729 
4730   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4731   // Note that this serves two purposes: It filters out loops that are
4732   // simply not analyzable, and it covers the case where this code is
4733   // being called from within backedge-taken count analysis, such that
4734   // attempting to ask for the backedge-taken count would likely result
4735   // in infinite recursion. In the later case, the analysis code will
4736   // cope with a conservative value, and it will take care to purge
4737   // that value once it has finished.
4738   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4739 
4740   // Normally, in the cases we can prove no-overflow via a
4741   // backedge guarding condition, we can also compute a backedge
4742   // taken count for the loop.  The exceptions are assumptions and
4743   // guards present in the loop -- SCEV is not great at exploiting
4744   // these to compute max backedge taken counts, but can still use
4745   // these to prove lack of overflow.  Use this fact to avoid
4746   // doing extra work that may not pay off.
4747 
4748   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4749       AC.assumptions().empty())
4750     return Result;
4751 
4752   // If the backedge is guarded by a comparison with the pre-inc  value the
4753   // addrec is safe. Also, if the entry is guarded by a comparison with the
4754   // start value and the backedge is guarded by a comparison with the post-inc
4755   // value, the addrec is safe.
4756   if (isKnownPositive(Step)) {
4757     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4758                                 getUnsignedRangeMax(Step));
4759     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4760         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4761       Result = setFlags(Result, SCEV::FlagNUW);
4762     }
4763   }
4764 
4765   return Result;
4766 }
4767 
4768 namespace {
4769 
4770 /// Represents an abstract binary operation.  This may exist as a
4771 /// normal instruction or constant expression, or may have been
4772 /// derived from an expression tree.
4773 struct BinaryOp {
4774   unsigned Opcode;
4775   Value *LHS;
4776   Value *RHS;
4777   bool IsNSW = false;
4778   bool IsNUW = false;
4779 
4780   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4781   /// constant expression.
4782   Operator *Op = nullptr;
4783 
4784   explicit BinaryOp(Operator *Op)
4785       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4786         Op(Op) {
4787     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4788       IsNSW = OBO->hasNoSignedWrap();
4789       IsNUW = OBO->hasNoUnsignedWrap();
4790     }
4791   }
4792 
4793   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4794                     bool IsNUW = false)
4795       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4796 };
4797 
4798 } // end anonymous namespace
4799 
4800 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4801 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4802   auto *Op = dyn_cast<Operator>(V);
4803   if (!Op)
4804     return None;
4805 
4806   // Implementation detail: all the cleverness here should happen without
4807   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4808   // SCEV expressions when possible, and we should not break that.
4809 
4810   switch (Op->getOpcode()) {
4811   case Instruction::Add:
4812   case Instruction::Sub:
4813   case Instruction::Mul:
4814   case Instruction::UDiv:
4815   case Instruction::URem:
4816   case Instruction::And:
4817   case Instruction::Or:
4818   case Instruction::AShr:
4819   case Instruction::Shl:
4820     return BinaryOp(Op);
4821 
4822   case Instruction::Xor:
4823     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4824       // If the RHS of the xor is a signmask, then this is just an add.
4825       // Instcombine turns add of signmask into xor as a strength reduction step.
4826       if (RHSC->getValue().isSignMask())
4827         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4828     return BinaryOp(Op);
4829 
4830   case Instruction::LShr:
4831     // Turn logical shift right of a constant into a unsigned divide.
4832     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4833       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4834 
4835       // If the shift count is not less than the bitwidth, the result of
4836       // the shift is undefined. Don't try to analyze it, because the
4837       // resolution chosen here may differ from the resolution chosen in
4838       // other parts of the compiler.
4839       if (SA->getValue().ult(BitWidth)) {
4840         Constant *X =
4841             ConstantInt::get(SA->getContext(),
4842                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4843         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4844       }
4845     }
4846     return BinaryOp(Op);
4847 
4848   case Instruction::ExtractValue: {
4849     auto *EVI = cast<ExtractValueInst>(Op);
4850     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4851       break;
4852 
4853     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4854     if (!WO)
4855       break;
4856 
4857     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4858     bool Signed = WO->isSigned();
4859     // TODO: Should add nuw/nsw flags for mul as well.
4860     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4861       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4862 
4863     // Now that we know that all uses of the arithmetic-result component of
4864     // CI are guarded by the overflow check, we can go ahead and pretend
4865     // that the arithmetic is non-overflowing.
4866     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4867                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4868   }
4869 
4870   default:
4871     break;
4872   }
4873 
4874   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4875   // semantics as a Sub, return a binary sub expression.
4876   if (auto *II = dyn_cast<IntrinsicInst>(V))
4877     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4878       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4879 
4880   return None;
4881 }
4882 
4883 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4884 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4885 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4886 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4887 /// follows one of the following patterns:
4888 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4889 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4890 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4891 /// we return the type of the truncation operation, and indicate whether the
4892 /// truncated type should be treated as signed/unsigned by setting
4893 /// \p Signed to true/false, respectively.
4894 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4895                                bool &Signed, ScalarEvolution &SE) {
4896   // The case where Op == SymbolicPHI (that is, with no type conversions on
4897   // the way) is handled by the regular add recurrence creating logic and
4898   // would have already been triggered in createAddRecForPHI. Reaching it here
4899   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4900   // because one of the other operands of the SCEVAddExpr updating this PHI is
4901   // not invariant).
4902   //
4903   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4904   // this case predicates that allow us to prove that Op == SymbolicPHI will
4905   // be added.
4906   if (Op == SymbolicPHI)
4907     return nullptr;
4908 
4909   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4910   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4911   if (SourceBits != NewBits)
4912     return nullptr;
4913 
4914   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4915   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4916   if (!SExt && !ZExt)
4917     return nullptr;
4918   const SCEVTruncateExpr *Trunc =
4919       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4920            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4921   if (!Trunc)
4922     return nullptr;
4923   const SCEV *X = Trunc->getOperand();
4924   if (X != SymbolicPHI)
4925     return nullptr;
4926   Signed = SExt != nullptr;
4927   return Trunc->getType();
4928 }
4929 
4930 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4931   if (!PN->getType()->isIntegerTy())
4932     return nullptr;
4933   const Loop *L = LI.getLoopFor(PN->getParent());
4934   if (!L || L->getHeader() != PN->getParent())
4935     return nullptr;
4936   return L;
4937 }
4938 
4939 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4940 // computation that updates the phi follows the following pattern:
4941 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4942 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4943 // If so, try to see if it can be rewritten as an AddRecExpr under some
4944 // Predicates. If successful, return them as a pair. Also cache the results
4945 // of the analysis.
4946 //
4947 // Example usage scenario:
4948 //    Say the Rewriter is called for the following SCEV:
4949 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4950 //    where:
4951 //         %X = phi i64 (%Start, %BEValue)
4952 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4953 //    and call this function with %SymbolicPHI = %X.
4954 //
4955 //    The analysis will find that the value coming around the backedge has
4956 //    the following SCEV:
4957 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4958 //    Upon concluding that this matches the desired pattern, the function
4959 //    will return the pair {NewAddRec, SmallPredsVec} where:
4960 //         NewAddRec = {%Start,+,%Step}
4961 //         SmallPredsVec = {P1, P2, P3} as follows:
4962 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4963 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4964 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4965 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4966 //    under the predicates {P1,P2,P3}.
4967 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4968 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4969 //
4970 // TODO's:
4971 //
4972 // 1) Extend the Induction descriptor to also support inductions that involve
4973 //    casts: When needed (namely, when we are called in the context of the
4974 //    vectorizer induction analysis), a Set of cast instructions will be
4975 //    populated by this method, and provided back to isInductionPHI. This is
4976 //    needed to allow the vectorizer to properly record them to be ignored by
4977 //    the cost model and to avoid vectorizing them (otherwise these casts,
4978 //    which are redundant under the runtime overflow checks, will be
4979 //    vectorized, which can be costly).
4980 //
4981 // 2) Support additional induction/PHISCEV patterns: We also want to support
4982 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4983 //    after the induction update operation (the induction increment):
4984 //
4985 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4986 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4987 //
4988 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4989 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4990 //
4991 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4992 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4993 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4994   SmallVector<const SCEVPredicate *, 3> Predicates;
4995 
4996   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4997   // return an AddRec expression under some predicate.
4998 
4999   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5000   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5001   assert(L && "Expecting an integer loop header phi");
5002 
5003   // The loop may have multiple entrances or multiple exits; we can analyze
5004   // this phi as an addrec if it has a unique entry value and a unique
5005   // backedge value.
5006   Value *BEValueV = nullptr, *StartValueV = nullptr;
5007   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5008     Value *V = PN->getIncomingValue(i);
5009     if (L->contains(PN->getIncomingBlock(i))) {
5010       if (!BEValueV) {
5011         BEValueV = V;
5012       } else if (BEValueV != V) {
5013         BEValueV = nullptr;
5014         break;
5015       }
5016     } else if (!StartValueV) {
5017       StartValueV = V;
5018     } else if (StartValueV != V) {
5019       StartValueV = nullptr;
5020       break;
5021     }
5022   }
5023   if (!BEValueV || !StartValueV)
5024     return None;
5025 
5026   const SCEV *BEValue = getSCEV(BEValueV);
5027 
5028   // If the value coming around the backedge is an add with the symbolic
5029   // value we just inserted, possibly with casts that we can ignore under
5030   // an appropriate runtime guard, then we found a simple induction variable!
5031   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5032   if (!Add)
5033     return None;
5034 
5035   // If there is a single occurrence of the symbolic value, possibly
5036   // casted, replace it with a recurrence.
5037   unsigned FoundIndex = Add->getNumOperands();
5038   Type *TruncTy = nullptr;
5039   bool Signed;
5040   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5041     if ((TruncTy =
5042              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5043       if (FoundIndex == e) {
5044         FoundIndex = i;
5045         break;
5046       }
5047 
5048   if (FoundIndex == Add->getNumOperands())
5049     return None;
5050 
5051   // Create an add with everything but the specified operand.
5052   SmallVector<const SCEV *, 8> Ops;
5053   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5054     if (i != FoundIndex)
5055       Ops.push_back(Add->getOperand(i));
5056   const SCEV *Accum = getAddExpr(Ops);
5057 
5058   // The runtime checks will not be valid if the step amount is
5059   // varying inside the loop.
5060   if (!isLoopInvariant(Accum, L))
5061     return None;
5062 
5063   // *** Part2: Create the predicates
5064 
5065   // Analysis was successful: we have a phi-with-cast pattern for which we
5066   // can return an AddRec expression under the following predicates:
5067   //
5068   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5069   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5070   // P2: An Equal predicate that guarantees that
5071   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5072   // P3: An Equal predicate that guarantees that
5073   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5074   //
5075   // As we next prove, the above predicates guarantee that:
5076   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5077   //
5078   //
5079   // More formally, we want to prove that:
5080   //     Expr(i+1) = Start + (i+1) * Accum
5081   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5082   //
5083   // Given that:
5084   // 1) Expr(0) = Start
5085   // 2) Expr(1) = Start + Accum
5086   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5087   // 3) Induction hypothesis (step i):
5088   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5089   //
5090   // Proof:
5091   //  Expr(i+1) =
5092   //   = Start + (i+1)*Accum
5093   //   = (Start + i*Accum) + Accum
5094   //   = Expr(i) + Accum
5095   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5096   //                                                             :: from step i
5097   //
5098   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5099   //
5100   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5101   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5102   //     + Accum                                                     :: from P3
5103   //
5104   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5105   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5106   //
5107   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5108   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5109   //
5110   // By induction, the same applies to all iterations 1<=i<n:
5111   //
5112 
5113   // Create a truncated addrec for which we will add a no overflow check (P1).
5114   const SCEV *StartVal = getSCEV(StartValueV);
5115   const SCEV *PHISCEV =
5116       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5117                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5118 
5119   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5120   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5121   // will be constant.
5122   //
5123   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5124   // add P1.
5125   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5126     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5127         Signed ? SCEVWrapPredicate::IncrementNSSW
5128                : SCEVWrapPredicate::IncrementNUSW;
5129     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5130     Predicates.push_back(AddRecPred);
5131   }
5132 
5133   // Create the Equal Predicates P2,P3:
5134 
5135   // It is possible that the predicates P2 and/or P3 are computable at
5136   // compile time due to StartVal and/or Accum being constants.
5137   // If either one is, then we can check that now and escape if either P2
5138   // or P3 is false.
5139 
5140   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5141   // for each of StartVal and Accum
5142   auto getExtendedExpr = [&](const SCEV *Expr,
5143                              bool CreateSignExtend) -> const SCEV * {
5144     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5145     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5146     const SCEV *ExtendedExpr =
5147         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5148                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5149     return ExtendedExpr;
5150   };
5151 
5152   // Given:
5153   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5154   //               = getExtendedExpr(Expr)
5155   // Determine whether the predicate P: Expr == ExtendedExpr
5156   // is known to be false at compile time
5157   auto PredIsKnownFalse = [&](const SCEV *Expr,
5158                               const SCEV *ExtendedExpr) -> bool {
5159     return Expr != ExtendedExpr &&
5160            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5161   };
5162 
5163   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5164   if (PredIsKnownFalse(StartVal, StartExtended)) {
5165     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5166     return None;
5167   }
5168 
5169   // The Step is always Signed (because the overflow checks are either
5170   // NSSW or NUSW)
5171   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5172   if (PredIsKnownFalse(Accum, AccumExtended)) {
5173     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5174     return None;
5175   }
5176 
5177   auto AppendPredicate = [&](const SCEV *Expr,
5178                              const SCEV *ExtendedExpr) -> void {
5179     if (Expr != ExtendedExpr &&
5180         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5181       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5182       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5183       Predicates.push_back(Pred);
5184     }
5185   };
5186 
5187   AppendPredicate(StartVal, StartExtended);
5188   AppendPredicate(Accum, AccumExtended);
5189 
5190   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5191   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5192   // into NewAR if it will also add the runtime overflow checks specified in
5193   // Predicates.
5194   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5195 
5196   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5197       std::make_pair(NewAR, Predicates);
5198   // Remember the result of the analysis for this SCEV at this locayyytion.
5199   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5200   return PredRewrite;
5201 }
5202 
5203 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5204 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5205   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5206   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5207   if (!L)
5208     return None;
5209 
5210   // Check to see if we already analyzed this PHI.
5211   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5212   if (I != PredicatedSCEVRewrites.end()) {
5213     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5214         I->second;
5215     // Analysis was done before and failed to create an AddRec:
5216     if (Rewrite.first == SymbolicPHI)
5217       return None;
5218     // Analysis was done before and succeeded to create an AddRec under
5219     // a predicate:
5220     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5221     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5222     return Rewrite;
5223   }
5224 
5225   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5226     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5227 
5228   // Record in the cache that the analysis failed
5229   if (!Rewrite) {
5230     SmallVector<const SCEVPredicate *, 3> Predicates;
5231     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5232     return None;
5233   }
5234 
5235   return Rewrite;
5236 }
5237 
5238 // FIXME: This utility is currently required because the Rewriter currently
5239 // does not rewrite this expression:
5240 // {0, +, (sext ix (trunc iy to ix) to iy)}
5241 // into {0, +, %step},
5242 // even when the following Equal predicate exists:
5243 // "%step == (sext ix (trunc iy to ix) to iy)".
5244 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5245     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5246   if (AR1 == AR2)
5247     return true;
5248 
5249   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5250     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5251         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5252       return false;
5253     return true;
5254   };
5255 
5256   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5257       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5258     return false;
5259   return true;
5260 }
5261 
5262 /// A helper function for createAddRecFromPHI to handle simple cases.
5263 ///
5264 /// This function tries to find an AddRec expression for the simplest (yet most
5265 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5266 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5267 /// technique for finding the AddRec expression.
5268 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5269                                                       Value *BEValueV,
5270                                                       Value *StartValueV) {
5271   const Loop *L = LI.getLoopFor(PN->getParent());
5272   assert(L && L->getHeader() == PN->getParent());
5273   assert(BEValueV && StartValueV);
5274 
5275   auto BO = MatchBinaryOp(BEValueV, DT);
5276   if (!BO)
5277     return nullptr;
5278 
5279   if (BO->Opcode != Instruction::Add)
5280     return nullptr;
5281 
5282   const SCEV *Accum = nullptr;
5283   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5284     Accum = getSCEV(BO->RHS);
5285   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5286     Accum = getSCEV(BO->LHS);
5287 
5288   if (!Accum)
5289     return nullptr;
5290 
5291   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5292   if (BO->IsNUW)
5293     Flags = setFlags(Flags, SCEV::FlagNUW);
5294   if (BO->IsNSW)
5295     Flags = setFlags(Flags, SCEV::FlagNSW);
5296 
5297   const SCEV *StartVal = getSCEV(StartValueV);
5298   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5299 
5300   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5301 
5302   // We can add Flags to the post-inc expression only if we
5303   // know that it is *undefined behavior* for BEValueV to
5304   // overflow.
5305   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5306     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5307       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5308 
5309   return PHISCEV;
5310 }
5311 
5312 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5313   const Loop *L = LI.getLoopFor(PN->getParent());
5314   if (!L || L->getHeader() != PN->getParent())
5315     return nullptr;
5316 
5317   // The loop may have multiple entrances or multiple exits; we can analyze
5318   // this phi as an addrec if it has a unique entry value and a unique
5319   // backedge value.
5320   Value *BEValueV = nullptr, *StartValueV = nullptr;
5321   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5322     Value *V = PN->getIncomingValue(i);
5323     if (L->contains(PN->getIncomingBlock(i))) {
5324       if (!BEValueV) {
5325         BEValueV = V;
5326       } else if (BEValueV != V) {
5327         BEValueV = nullptr;
5328         break;
5329       }
5330     } else if (!StartValueV) {
5331       StartValueV = V;
5332     } else if (StartValueV != V) {
5333       StartValueV = nullptr;
5334       break;
5335     }
5336   }
5337   if (!BEValueV || !StartValueV)
5338     return nullptr;
5339 
5340   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5341          "PHI node already processed?");
5342 
5343   // First, try to find AddRec expression without creating a fictituos symbolic
5344   // value for PN.
5345   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5346     return S;
5347 
5348   // Handle PHI node value symbolically.
5349   const SCEV *SymbolicName = getUnknown(PN);
5350   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5351 
5352   // Using this symbolic name for the PHI, analyze the value coming around
5353   // the back-edge.
5354   const SCEV *BEValue = getSCEV(BEValueV);
5355 
5356   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5357   // has a special value for the first iteration of the loop.
5358 
5359   // If the value coming around the backedge is an add with the symbolic
5360   // value we just inserted, then we found a simple induction variable!
5361   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5362     // If there is a single occurrence of the symbolic value, replace it
5363     // with a recurrence.
5364     unsigned FoundIndex = Add->getNumOperands();
5365     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5366       if (Add->getOperand(i) == SymbolicName)
5367         if (FoundIndex == e) {
5368           FoundIndex = i;
5369           break;
5370         }
5371 
5372     if (FoundIndex != Add->getNumOperands()) {
5373       // Create an add with everything but the specified operand.
5374       SmallVector<const SCEV *, 8> Ops;
5375       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5376         if (i != FoundIndex)
5377           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5378                                                              L, *this));
5379       const SCEV *Accum = getAddExpr(Ops);
5380 
5381       // This is not a valid addrec if the step amount is varying each
5382       // loop iteration, but is not itself an addrec in this loop.
5383       if (isLoopInvariant(Accum, L) ||
5384           (isa<SCEVAddRecExpr>(Accum) &&
5385            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5386         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5387 
5388         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5389           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5390             if (BO->IsNUW)
5391               Flags = setFlags(Flags, SCEV::FlagNUW);
5392             if (BO->IsNSW)
5393               Flags = setFlags(Flags, SCEV::FlagNSW);
5394           }
5395         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5396           // If the increment is an inbounds GEP, then we know the address
5397           // space cannot be wrapped around. We cannot make any guarantee
5398           // about signed or unsigned overflow because pointers are
5399           // unsigned but we may have a negative index from the base
5400           // pointer. We can guarantee that no unsigned wrap occurs if the
5401           // indices form a positive value.
5402           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5403             Flags = setFlags(Flags, SCEV::FlagNW);
5404 
5405             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5406             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5407               Flags = setFlags(Flags, SCEV::FlagNUW);
5408           }
5409 
5410           // We cannot transfer nuw and nsw flags from subtraction
5411           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5412           // for instance.
5413         }
5414 
5415         const SCEV *StartVal = getSCEV(StartValueV);
5416         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5417 
5418         // Okay, for the entire analysis of this edge we assumed the PHI
5419         // to be symbolic.  We now need to go back and purge all of the
5420         // entries for the scalars that use the symbolic expression.
5421         forgetSymbolicName(PN, SymbolicName);
5422         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5423 
5424         // We can add Flags to the post-inc expression only if we
5425         // know that it is *undefined behavior* for BEValueV to
5426         // overflow.
5427         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5428           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5429             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5430 
5431         return PHISCEV;
5432       }
5433     }
5434   } else {
5435     // Otherwise, this could be a loop like this:
5436     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5437     // In this case, j = {1,+,1}  and BEValue is j.
5438     // Because the other in-value of i (0) fits the evolution of BEValue
5439     // i really is an addrec evolution.
5440     //
5441     // We can generalize this saying that i is the shifted value of BEValue
5442     // by one iteration:
5443     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5444     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5445     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5446     if (Shifted != getCouldNotCompute() &&
5447         Start != getCouldNotCompute()) {
5448       const SCEV *StartVal = getSCEV(StartValueV);
5449       if (Start == StartVal) {
5450         // Okay, for the entire analysis of this edge we assumed the PHI
5451         // to be symbolic.  We now need to go back and purge all of the
5452         // entries for the scalars that use the symbolic expression.
5453         forgetSymbolicName(PN, SymbolicName);
5454         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5455         return Shifted;
5456       }
5457     }
5458   }
5459 
5460   // Remove the temporary PHI node SCEV that has been inserted while intending
5461   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5462   // as it will prevent later (possibly simpler) SCEV expressions to be added
5463   // to the ValueExprMap.
5464   eraseValueFromMap(PN);
5465 
5466   return nullptr;
5467 }
5468 
5469 // Checks if the SCEV S is available at BB.  S is considered available at BB
5470 // if S can be materialized at BB without introducing a fault.
5471 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5472                                BasicBlock *BB) {
5473   struct CheckAvailable {
5474     bool TraversalDone = false;
5475     bool Available = true;
5476 
5477     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5478     BasicBlock *BB = nullptr;
5479     DominatorTree &DT;
5480 
5481     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5482       : L(L), BB(BB), DT(DT) {}
5483 
5484     bool setUnavailable() {
5485       TraversalDone = true;
5486       Available = false;
5487       return false;
5488     }
5489 
5490     bool follow(const SCEV *S) {
5491       switch (S->getSCEVType()) {
5492       case scConstant:
5493       case scPtrToInt:
5494       case scTruncate:
5495       case scZeroExtend:
5496       case scSignExtend:
5497       case scAddExpr:
5498       case scMulExpr:
5499       case scUMaxExpr:
5500       case scSMaxExpr:
5501       case scUMinExpr:
5502       case scSMinExpr:
5503         // These expressions are available if their operand(s) is/are.
5504         return true;
5505 
5506       case scAddRecExpr: {
5507         // We allow add recurrences that are on the loop BB is in, or some
5508         // outer loop.  This guarantees availability because the value of the
5509         // add recurrence at BB is simply the "current" value of the induction
5510         // variable.  We can relax this in the future; for instance an add
5511         // recurrence on a sibling dominating loop is also available at BB.
5512         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5513         if (L && (ARLoop == L || ARLoop->contains(L)))
5514           return true;
5515 
5516         return setUnavailable();
5517       }
5518 
5519       case scUnknown: {
5520         // For SCEVUnknown, we check for simple dominance.
5521         const auto *SU = cast<SCEVUnknown>(S);
5522         Value *V = SU->getValue();
5523 
5524         if (isa<Argument>(V))
5525           return false;
5526 
5527         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5528           return false;
5529 
5530         return setUnavailable();
5531       }
5532 
5533       case scUDivExpr:
5534       case scCouldNotCompute:
5535         // We do not try to smart about these at all.
5536         return setUnavailable();
5537       }
5538       llvm_unreachable("Unknown SCEV kind!");
5539     }
5540 
5541     bool isDone() { return TraversalDone; }
5542   };
5543 
5544   CheckAvailable CA(L, BB, DT);
5545   SCEVTraversal<CheckAvailable> ST(CA);
5546 
5547   ST.visitAll(S);
5548   return CA.Available;
5549 }
5550 
5551 // Try to match a control flow sequence that branches out at BI and merges back
5552 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5553 // match.
5554 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5555                           Value *&C, Value *&LHS, Value *&RHS) {
5556   C = BI->getCondition();
5557 
5558   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5559   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5560 
5561   if (!LeftEdge.isSingleEdge())
5562     return false;
5563 
5564   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5565 
5566   Use &LeftUse = Merge->getOperandUse(0);
5567   Use &RightUse = Merge->getOperandUse(1);
5568 
5569   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5570     LHS = LeftUse;
5571     RHS = RightUse;
5572     return true;
5573   }
5574 
5575   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5576     LHS = RightUse;
5577     RHS = LeftUse;
5578     return true;
5579   }
5580 
5581   return false;
5582 }
5583 
5584 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5585   auto IsReachable =
5586       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5587   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5588     const Loop *L = LI.getLoopFor(PN->getParent());
5589 
5590     // We don't want to break LCSSA, even in a SCEV expression tree.
5591     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5592       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5593         return nullptr;
5594 
5595     // Try to match
5596     //
5597     //  br %cond, label %left, label %right
5598     // left:
5599     //  br label %merge
5600     // right:
5601     //  br label %merge
5602     // merge:
5603     //  V = phi [ %x, %left ], [ %y, %right ]
5604     //
5605     // as "select %cond, %x, %y"
5606 
5607     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5608     assert(IDom && "At least the entry block should dominate PN");
5609 
5610     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5611     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5612 
5613     if (BI && BI->isConditional() &&
5614         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5615         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5616         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5617       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5618   }
5619 
5620   return nullptr;
5621 }
5622 
5623 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5624   if (const SCEV *S = createAddRecFromPHI(PN))
5625     return S;
5626 
5627   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5628     return S;
5629 
5630   // If the PHI has a single incoming value, follow that value, unless the
5631   // PHI's incoming blocks are in a different loop, in which case doing so
5632   // risks breaking LCSSA form. Instcombine would normally zap these, but
5633   // it doesn't have DominatorTree information, so it may miss cases.
5634   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5635     if (LI.replacementPreservesLCSSAForm(PN, V))
5636       return getSCEV(V);
5637 
5638   // If it's not a loop phi, we can't handle it yet.
5639   return getUnknown(PN);
5640 }
5641 
5642 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5643                                                       Value *Cond,
5644                                                       Value *TrueVal,
5645                                                       Value *FalseVal) {
5646   // Handle "constant" branch or select. This can occur for instance when a
5647   // loop pass transforms an inner loop and moves on to process the outer loop.
5648   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5649     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5650 
5651   // Try to match some simple smax or umax patterns.
5652   auto *ICI = dyn_cast<ICmpInst>(Cond);
5653   if (!ICI)
5654     return getUnknown(I);
5655 
5656   Value *LHS = ICI->getOperand(0);
5657   Value *RHS = ICI->getOperand(1);
5658 
5659   switch (ICI->getPredicate()) {
5660   case ICmpInst::ICMP_SLT:
5661   case ICmpInst::ICMP_SLE:
5662   case ICmpInst::ICMP_ULT:
5663   case ICmpInst::ICMP_ULE:
5664     std::swap(LHS, RHS);
5665     LLVM_FALLTHROUGH;
5666   case ICmpInst::ICMP_SGT:
5667   case ICmpInst::ICMP_SGE:
5668   case ICmpInst::ICMP_UGT:
5669   case ICmpInst::ICMP_UGE:
5670     // a > b ? a+x : b+x  ->  max(a, b)+x
5671     // a > b ? b+x : a+x  ->  min(a, b)+x
5672     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5673       bool Signed = ICI->isSigned();
5674       const SCEV *LA = getSCEV(TrueVal);
5675       const SCEV *RA = getSCEV(FalseVal);
5676       const SCEV *LS = getSCEV(LHS);
5677       const SCEV *RS = getSCEV(RHS);
5678       if (LA->getType()->isPointerTy()) {
5679         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5680         // Need to make sure we can't produce weird expressions involving
5681         // negated pointers.
5682         if (LA == LS && RA == RS)
5683           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5684         if (LA == RS && RA == LS)
5685           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5686       }
5687       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5688         if (Op->getType()->isPointerTy()) {
5689           Op = getLosslessPtrToIntExpr(Op);
5690           if (isa<SCEVCouldNotCompute>(Op))
5691             return Op;
5692         }
5693         if (Signed)
5694           Op = getNoopOrSignExtend(Op, I->getType());
5695         else
5696           Op = getNoopOrZeroExtend(Op, I->getType());
5697         return Op;
5698       };
5699       LS = CoerceOperand(LS);
5700       RS = CoerceOperand(RS);
5701       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5702         break;
5703       const SCEV *LDiff = getMinusSCEV(LA, LS);
5704       const SCEV *RDiff = getMinusSCEV(RA, RS);
5705       if (LDiff == RDiff)
5706         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5707                           LDiff);
5708       LDiff = getMinusSCEV(LA, RS);
5709       RDiff = getMinusSCEV(RA, LS);
5710       if (LDiff == RDiff)
5711         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5712                           LDiff);
5713     }
5714     break;
5715   case ICmpInst::ICMP_NE:
5716     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5717     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5718         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5719       const SCEV *One = getOne(I->getType());
5720       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5721       const SCEV *LA = getSCEV(TrueVal);
5722       const SCEV *RA = getSCEV(FalseVal);
5723       const SCEV *LDiff = getMinusSCEV(LA, LS);
5724       const SCEV *RDiff = getMinusSCEV(RA, One);
5725       if (LDiff == RDiff)
5726         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5727     }
5728     break;
5729   case ICmpInst::ICMP_EQ:
5730     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5731     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5732         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5733       const SCEV *One = getOne(I->getType());
5734       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5735       const SCEV *LA = getSCEV(TrueVal);
5736       const SCEV *RA = getSCEV(FalseVal);
5737       const SCEV *LDiff = getMinusSCEV(LA, One);
5738       const SCEV *RDiff = getMinusSCEV(RA, LS);
5739       if (LDiff == RDiff)
5740         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5741     }
5742     break;
5743   default:
5744     break;
5745   }
5746 
5747   return getUnknown(I);
5748 }
5749 
5750 /// Expand GEP instructions into add and multiply operations. This allows them
5751 /// to be analyzed by regular SCEV code.
5752 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5753   // Don't attempt to analyze GEPs over unsized objects.
5754   if (!GEP->getSourceElementType()->isSized())
5755     return getUnknown(GEP);
5756 
5757   SmallVector<const SCEV *, 4> IndexExprs;
5758   for (Value *Index : GEP->indices())
5759     IndexExprs.push_back(getSCEV(Index));
5760   return getGEPExpr(GEP, IndexExprs);
5761 }
5762 
5763 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5764   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5765     return C->getAPInt().countTrailingZeros();
5766 
5767   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5768     return GetMinTrailingZeros(I->getOperand());
5769 
5770   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5771     return std::min(GetMinTrailingZeros(T->getOperand()),
5772                     (uint32_t)getTypeSizeInBits(T->getType()));
5773 
5774   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5775     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5776     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5777                ? getTypeSizeInBits(E->getType())
5778                : OpRes;
5779   }
5780 
5781   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5782     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5783     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5784                ? getTypeSizeInBits(E->getType())
5785                : OpRes;
5786   }
5787 
5788   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5789     // The result is the min of all operands results.
5790     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5791     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5792       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5793     return MinOpRes;
5794   }
5795 
5796   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5797     // The result is the sum of all operands results.
5798     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5799     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5800     for (unsigned i = 1, e = M->getNumOperands();
5801          SumOpRes != BitWidth && i != e; ++i)
5802       SumOpRes =
5803           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5804     return SumOpRes;
5805   }
5806 
5807   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5808     // The result is the min of all operands results.
5809     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5810     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5811       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5812     return MinOpRes;
5813   }
5814 
5815   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5816     // The result is the min of all operands results.
5817     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5818     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5819       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5820     return MinOpRes;
5821   }
5822 
5823   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5824     // The result is the min of all operands results.
5825     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5826     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5827       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5828     return MinOpRes;
5829   }
5830 
5831   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5832     // For a SCEVUnknown, ask ValueTracking.
5833     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5834     return Known.countMinTrailingZeros();
5835   }
5836 
5837   // SCEVUDivExpr
5838   return 0;
5839 }
5840 
5841 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5842   auto I = MinTrailingZerosCache.find(S);
5843   if (I != MinTrailingZerosCache.end())
5844     return I->second;
5845 
5846   uint32_t Result = GetMinTrailingZerosImpl(S);
5847   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5848   assert(InsertPair.second && "Should insert a new key");
5849   return InsertPair.first->second;
5850 }
5851 
5852 /// Helper method to assign a range to V from metadata present in the IR.
5853 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5854   if (Instruction *I = dyn_cast<Instruction>(V))
5855     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5856       return getConstantRangeFromMetadata(*MD);
5857 
5858   return None;
5859 }
5860 
5861 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5862                                      SCEV::NoWrapFlags Flags) {
5863   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5864     AddRec->setNoWrapFlags(Flags);
5865     UnsignedRanges.erase(AddRec);
5866     SignedRanges.erase(AddRec);
5867   }
5868 }
5869 
5870 ConstantRange ScalarEvolution::
5871 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5872   const DataLayout &DL = getDataLayout();
5873 
5874   unsigned BitWidth = getTypeSizeInBits(U->getType());
5875   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5876 
5877   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5878   // use information about the trip count to improve our available range.  Note
5879   // that the trip count independent cases are already handled by known bits.
5880   // WARNING: The definition of recurrence used here is subtly different than
5881   // the one used by AddRec (and thus most of this file).  Step is allowed to
5882   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5883   // and other addrecs in the same loop (for non-affine addrecs).  The code
5884   // below intentionally handles the case where step is not loop invariant.
5885   auto *P = dyn_cast<PHINode>(U->getValue());
5886   if (!P)
5887     return FullSet;
5888 
5889   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5890   // even the values that are not available in these blocks may come from them,
5891   // and this leads to false-positive recurrence test.
5892   for (auto *Pred : predecessors(P->getParent()))
5893     if (!DT.isReachableFromEntry(Pred))
5894       return FullSet;
5895 
5896   BinaryOperator *BO;
5897   Value *Start, *Step;
5898   if (!matchSimpleRecurrence(P, BO, Start, Step))
5899     return FullSet;
5900 
5901   // If we found a recurrence in reachable code, we must be in a loop. Note
5902   // that BO might be in some subloop of L, and that's completely okay.
5903   auto *L = LI.getLoopFor(P->getParent());
5904   assert(L && L->getHeader() == P->getParent());
5905   if (!L->contains(BO->getParent()))
5906     // NOTE: This bailout should be an assert instead.  However, asserting
5907     // the condition here exposes a case where LoopFusion is querying SCEV
5908     // with malformed loop information during the midst of the transform.
5909     // There doesn't appear to be an obvious fix, so for the moment bailout
5910     // until the caller issue can be fixed.  PR49566 tracks the bug.
5911     return FullSet;
5912 
5913   // TODO: Extend to other opcodes such as mul, and div
5914   switch (BO->getOpcode()) {
5915   default:
5916     return FullSet;
5917   case Instruction::AShr:
5918   case Instruction::LShr:
5919   case Instruction::Shl:
5920     break;
5921   };
5922 
5923   if (BO->getOperand(0) != P)
5924     // TODO: Handle the power function forms some day.
5925     return FullSet;
5926 
5927   unsigned TC = getSmallConstantMaxTripCount(L);
5928   if (!TC || TC >= BitWidth)
5929     return FullSet;
5930 
5931   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5932   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5933   assert(KnownStart.getBitWidth() == BitWidth &&
5934          KnownStep.getBitWidth() == BitWidth);
5935 
5936   // Compute total shift amount, being careful of overflow and bitwidths.
5937   auto MaxShiftAmt = KnownStep.getMaxValue();
5938   APInt TCAP(BitWidth, TC-1);
5939   bool Overflow = false;
5940   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5941   if (Overflow)
5942     return FullSet;
5943 
5944   switch (BO->getOpcode()) {
5945   default:
5946     llvm_unreachable("filtered out above");
5947   case Instruction::AShr: {
5948     // For each ashr, three cases:
5949     //   shift = 0 => unchanged value
5950     //   saturation => 0 or -1
5951     //   other => a value closer to zero (of the same sign)
5952     // Thus, the end value is closer to zero than the start.
5953     auto KnownEnd = KnownBits::ashr(KnownStart,
5954                                     KnownBits::makeConstant(TotalShift));
5955     if (KnownStart.isNonNegative())
5956       // Analogous to lshr (simply not yet canonicalized)
5957       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5958                                         KnownStart.getMaxValue() + 1);
5959     if (KnownStart.isNegative())
5960       // End >=u Start && End <=s Start
5961       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5962                                         KnownEnd.getMaxValue() + 1);
5963     break;
5964   }
5965   case Instruction::LShr: {
5966     // For each lshr, three cases:
5967     //   shift = 0 => unchanged value
5968     //   saturation => 0
5969     //   other => a smaller positive number
5970     // Thus, the low end of the unsigned range is the last value produced.
5971     auto KnownEnd = KnownBits::lshr(KnownStart,
5972                                     KnownBits::makeConstant(TotalShift));
5973     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5974                                       KnownStart.getMaxValue() + 1);
5975   }
5976   case Instruction::Shl: {
5977     // Iff no bits are shifted out, value increases on every shift.
5978     auto KnownEnd = KnownBits::shl(KnownStart,
5979                                    KnownBits::makeConstant(TotalShift));
5980     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5981       return ConstantRange(KnownStart.getMinValue(),
5982                            KnownEnd.getMaxValue() + 1);
5983     break;
5984   }
5985   };
5986   return FullSet;
5987 }
5988 
5989 /// Determine the range for a particular SCEV.  If SignHint is
5990 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5991 /// with a "cleaner" unsigned (resp. signed) representation.
5992 const ConstantRange &
5993 ScalarEvolution::getRangeRef(const SCEV *S,
5994                              ScalarEvolution::RangeSignHint SignHint) {
5995   DenseMap<const SCEV *, ConstantRange> &Cache =
5996       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5997                                                        : SignedRanges;
5998   ConstantRange::PreferredRangeType RangeType =
5999       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6000           ? ConstantRange::Unsigned : ConstantRange::Signed;
6001 
6002   // See if we've computed this range already.
6003   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6004   if (I != Cache.end())
6005     return I->second;
6006 
6007   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6008     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6009 
6010   unsigned BitWidth = getTypeSizeInBits(S->getType());
6011   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6012   using OBO = OverflowingBinaryOperator;
6013 
6014   // If the value has known zeros, the maximum value will have those known zeros
6015   // as well.
6016   uint32_t TZ = GetMinTrailingZeros(S);
6017   if (TZ != 0) {
6018     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6019       ConservativeResult =
6020           ConstantRange(APInt::getMinValue(BitWidth),
6021                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6022     else
6023       ConservativeResult = ConstantRange(
6024           APInt::getSignedMinValue(BitWidth),
6025           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6026   }
6027 
6028   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6029     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6030     unsigned WrapType = OBO::AnyWrap;
6031     if (Add->hasNoSignedWrap())
6032       WrapType |= OBO::NoSignedWrap;
6033     if (Add->hasNoUnsignedWrap())
6034       WrapType |= OBO::NoUnsignedWrap;
6035     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6036       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6037                           WrapType, RangeType);
6038     return setRange(Add, SignHint,
6039                     ConservativeResult.intersectWith(X, RangeType));
6040   }
6041 
6042   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6043     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6044     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6045       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6046     return setRange(Mul, SignHint,
6047                     ConservativeResult.intersectWith(X, RangeType));
6048   }
6049 
6050   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6051     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6052     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6053       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6054     return setRange(SMax, SignHint,
6055                     ConservativeResult.intersectWith(X, RangeType));
6056   }
6057 
6058   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6059     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6060     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6061       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6062     return setRange(UMax, SignHint,
6063                     ConservativeResult.intersectWith(X, RangeType));
6064   }
6065 
6066   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6067     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6068     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6069       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6070     return setRange(SMin, SignHint,
6071                     ConservativeResult.intersectWith(X, RangeType));
6072   }
6073 
6074   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6075     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6076     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6077       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6078     return setRange(UMin, SignHint,
6079                     ConservativeResult.intersectWith(X, RangeType));
6080   }
6081 
6082   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6083     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6084     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6085     return setRange(UDiv, SignHint,
6086                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6087   }
6088 
6089   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6090     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6091     return setRange(ZExt, SignHint,
6092                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6093                                                      RangeType));
6094   }
6095 
6096   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6097     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6098     return setRange(SExt, SignHint,
6099                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6100                                                      RangeType));
6101   }
6102 
6103   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6104     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6105     return setRange(PtrToInt, SignHint, X);
6106   }
6107 
6108   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6109     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6110     return setRange(Trunc, SignHint,
6111                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6112                                                      RangeType));
6113   }
6114 
6115   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6116     // If there's no unsigned wrap, the value will never be less than its
6117     // initial value.
6118     if (AddRec->hasNoUnsignedWrap()) {
6119       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6120       if (!UnsignedMinValue.isNullValue())
6121         ConservativeResult = ConservativeResult.intersectWith(
6122             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6123     }
6124 
6125     // If there's no signed wrap, and all the operands except initial value have
6126     // the same sign or zero, the value won't ever be:
6127     // 1: smaller than initial value if operands are non negative,
6128     // 2: bigger than initial value if operands are non positive.
6129     // For both cases, value can not cross signed min/max boundary.
6130     if (AddRec->hasNoSignedWrap()) {
6131       bool AllNonNeg = true;
6132       bool AllNonPos = true;
6133       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6134         if (!isKnownNonNegative(AddRec->getOperand(i)))
6135           AllNonNeg = false;
6136         if (!isKnownNonPositive(AddRec->getOperand(i)))
6137           AllNonPos = false;
6138       }
6139       if (AllNonNeg)
6140         ConservativeResult = ConservativeResult.intersectWith(
6141             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6142                                        APInt::getSignedMinValue(BitWidth)),
6143             RangeType);
6144       else if (AllNonPos)
6145         ConservativeResult = ConservativeResult.intersectWith(
6146             ConstantRange::getNonEmpty(
6147                 APInt::getSignedMinValue(BitWidth),
6148                 getSignedRangeMax(AddRec->getStart()) + 1),
6149             RangeType);
6150     }
6151 
6152     // TODO: non-affine addrec
6153     if (AddRec->isAffine()) {
6154       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6155       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6156           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6157         auto RangeFromAffine = getRangeForAffineAR(
6158             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6159             BitWidth);
6160         ConservativeResult =
6161             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6162 
6163         auto RangeFromFactoring = getRangeViaFactoring(
6164             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6165             BitWidth);
6166         ConservativeResult =
6167             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6168       }
6169 
6170       // Now try symbolic BE count and more powerful methods.
6171       if (UseExpensiveRangeSharpening) {
6172         const SCEV *SymbolicMaxBECount =
6173             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6174         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6175             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6176             AddRec->hasNoSelfWrap()) {
6177           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6178               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6179           ConservativeResult =
6180               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6181         }
6182       }
6183     }
6184 
6185     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6186   }
6187 
6188   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6189 
6190     // Check if the IR explicitly contains !range metadata.
6191     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6192     if (MDRange.hasValue())
6193       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6194                                                             RangeType);
6195 
6196     // Use facts about recurrences in the underlying IR.  Note that add
6197     // recurrences are AddRecExprs and thus don't hit this path.  This
6198     // primarily handles shift recurrences.
6199     auto CR = getRangeForUnknownRecurrence(U);
6200     ConservativeResult = ConservativeResult.intersectWith(CR);
6201 
6202     // See if ValueTracking can give us a useful range.
6203     const DataLayout &DL = getDataLayout();
6204     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6205     if (Known.getBitWidth() != BitWidth)
6206       Known = Known.zextOrTrunc(BitWidth);
6207 
6208     // ValueTracking may be able to compute a tighter result for the number of
6209     // sign bits than for the value of those sign bits.
6210     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6211     if (U->getType()->isPointerTy()) {
6212       // If the pointer size is larger than the index size type, this can cause
6213       // NS to be larger than BitWidth. So compensate for this.
6214       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6215       int ptrIdxDiff = ptrSize - BitWidth;
6216       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6217         NS -= ptrIdxDiff;
6218     }
6219 
6220     if (NS > 1) {
6221       // If we know any of the sign bits, we know all of the sign bits.
6222       if (!Known.Zero.getHiBits(NS).isNullValue())
6223         Known.Zero.setHighBits(NS);
6224       if (!Known.One.getHiBits(NS).isNullValue())
6225         Known.One.setHighBits(NS);
6226     }
6227 
6228     if (Known.getMinValue() != Known.getMaxValue() + 1)
6229       ConservativeResult = ConservativeResult.intersectWith(
6230           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6231           RangeType);
6232     if (NS > 1)
6233       ConservativeResult = ConservativeResult.intersectWith(
6234           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6235                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6236           RangeType);
6237 
6238     // A range of Phi is a subset of union of all ranges of its input.
6239     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6240       // Make sure that we do not run over cycled Phis.
6241       if (PendingPhiRanges.insert(Phi).second) {
6242         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6243         for (auto &Op : Phi->operands()) {
6244           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6245           RangeFromOps = RangeFromOps.unionWith(OpRange);
6246           // No point to continue if we already have a full set.
6247           if (RangeFromOps.isFullSet())
6248             break;
6249         }
6250         ConservativeResult =
6251             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6252         bool Erased = PendingPhiRanges.erase(Phi);
6253         assert(Erased && "Failed to erase Phi properly?");
6254         (void) Erased;
6255       }
6256     }
6257 
6258     return setRange(U, SignHint, std::move(ConservativeResult));
6259   }
6260 
6261   return setRange(S, SignHint, std::move(ConservativeResult));
6262 }
6263 
6264 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6265 // values that the expression can take. Initially, the expression has a value
6266 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6267 // argument defines if we treat Step as signed or unsigned.
6268 static ConstantRange getRangeForAffineARHelper(APInt Step,
6269                                                const ConstantRange &StartRange,
6270                                                const APInt &MaxBECount,
6271                                                unsigned BitWidth, bool Signed) {
6272   // If either Step or MaxBECount is 0, then the expression won't change, and we
6273   // just need to return the initial range.
6274   if (Step == 0 || MaxBECount == 0)
6275     return StartRange;
6276 
6277   // If we don't know anything about the initial value (i.e. StartRange is
6278   // FullRange), then we don't know anything about the final range either.
6279   // Return FullRange.
6280   if (StartRange.isFullSet())
6281     return ConstantRange::getFull(BitWidth);
6282 
6283   // If Step is signed and negative, then we use its absolute value, but we also
6284   // note that we're moving in the opposite direction.
6285   bool Descending = Signed && Step.isNegative();
6286 
6287   if (Signed)
6288     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6289     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6290     // This equations hold true due to the well-defined wrap-around behavior of
6291     // APInt.
6292     Step = Step.abs();
6293 
6294   // Check if Offset is more than full span of BitWidth. If it is, the
6295   // expression is guaranteed to overflow.
6296   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6297     return ConstantRange::getFull(BitWidth);
6298 
6299   // Offset is by how much the expression can change. Checks above guarantee no
6300   // overflow here.
6301   APInt Offset = Step * MaxBECount;
6302 
6303   // Minimum value of the final range will match the minimal value of StartRange
6304   // if the expression is increasing and will be decreased by Offset otherwise.
6305   // Maximum value of the final range will match the maximal value of StartRange
6306   // if the expression is decreasing and will be increased by Offset otherwise.
6307   APInt StartLower = StartRange.getLower();
6308   APInt StartUpper = StartRange.getUpper() - 1;
6309   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6310                                    : (StartUpper + std::move(Offset));
6311 
6312   // It's possible that the new minimum/maximum value will fall into the initial
6313   // range (due to wrap around). This means that the expression can take any
6314   // value in this bitwidth, and we have to return full range.
6315   if (StartRange.contains(MovedBoundary))
6316     return ConstantRange::getFull(BitWidth);
6317 
6318   APInt NewLower =
6319       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6320   APInt NewUpper =
6321       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6322   NewUpper += 1;
6323 
6324   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6325   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6326 }
6327 
6328 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6329                                                    const SCEV *Step,
6330                                                    const SCEV *MaxBECount,
6331                                                    unsigned BitWidth) {
6332   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6333          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6334          "Precondition!");
6335 
6336   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6337   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6338 
6339   // First, consider step signed.
6340   ConstantRange StartSRange = getSignedRange(Start);
6341   ConstantRange StepSRange = getSignedRange(Step);
6342 
6343   // If Step can be both positive and negative, we need to find ranges for the
6344   // maximum absolute step values in both directions and union them.
6345   ConstantRange SR =
6346       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6347                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6348   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6349                                               StartSRange, MaxBECountValue,
6350                                               BitWidth, /* Signed = */ true));
6351 
6352   // Next, consider step unsigned.
6353   ConstantRange UR = getRangeForAffineARHelper(
6354       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6355       MaxBECountValue, BitWidth, /* Signed = */ false);
6356 
6357   // Finally, intersect signed and unsigned ranges.
6358   return SR.intersectWith(UR, ConstantRange::Smallest);
6359 }
6360 
6361 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6362     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6363     ScalarEvolution::RangeSignHint SignHint) {
6364   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6365   assert(AddRec->hasNoSelfWrap() &&
6366          "This only works for non-self-wrapping AddRecs!");
6367   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6368   const SCEV *Step = AddRec->getStepRecurrence(*this);
6369   // Only deal with constant step to save compile time.
6370   if (!isa<SCEVConstant>(Step))
6371     return ConstantRange::getFull(BitWidth);
6372   // Let's make sure that we can prove that we do not self-wrap during
6373   // MaxBECount iterations. We need this because MaxBECount is a maximum
6374   // iteration count estimate, and we might infer nw from some exit for which we
6375   // do not know max exit count (or any other side reasoning).
6376   // TODO: Turn into assert at some point.
6377   if (getTypeSizeInBits(MaxBECount->getType()) >
6378       getTypeSizeInBits(AddRec->getType()))
6379     return ConstantRange::getFull(BitWidth);
6380   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6381   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6382   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6383   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6384   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6385                                          MaxItersWithoutWrap))
6386     return ConstantRange::getFull(BitWidth);
6387 
6388   ICmpInst::Predicate LEPred =
6389       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6390   ICmpInst::Predicate GEPred =
6391       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6392   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6393 
6394   // We know that there is no self-wrap. Let's take Start and End values and
6395   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6396   // the iteration. They either lie inside the range [Min(Start, End),
6397   // Max(Start, End)] or outside it:
6398   //
6399   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6400   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6401   //
6402   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6403   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6404   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6405   // Start <= End and step is positive, or Start >= End and step is negative.
6406   const SCEV *Start = AddRec->getStart();
6407   ConstantRange StartRange = getRangeRef(Start, SignHint);
6408   ConstantRange EndRange = getRangeRef(End, SignHint);
6409   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6410   // If they already cover full iteration space, we will know nothing useful
6411   // even if we prove what we want to prove.
6412   if (RangeBetween.isFullSet())
6413     return RangeBetween;
6414   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6415   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6416                                : RangeBetween.isWrappedSet();
6417   if (IsWrappedSet)
6418     return ConstantRange::getFull(BitWidth);
6419 
6420   if (isKnownPositive(Step) &&
6421       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6422     return RangeBetween;
6423   else if (isKnownNegative(Step) &&
6424            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6425     return RangeBetween;
6426   return ConstantRange::getFull(BitWidth);
6427 }
6428 
6429 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6430                                                     const SCEV *Step,
6431                                                     const SCEV *MaxBECount,
6432                                                     unsigned BitWidth) {
6433   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6434   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6435 
6436   struct SelectPattern {
6437     Value *Condition = nullptr;
6438     APInt TrueValue;
6439     APInt FalseValue;
6440 
6441     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6442                            const SCEV *S) {
6443       Optional<unsigned> CastOp;
6444       APInt Offset(BitWidth, 0);
6445 
6446       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6447              "Should be!");
6448 
6449       // Peel off a constant offset:
6450       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6451         // In the future we could consider being smarter here and handle
6452         // {Start+Step,+,Step} too.
6453         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6454           return;
6455 
6456         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6457         S = SA->getOperand(1);
6458       }
6459 
6460       // Peel off a cast operation
6461       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6462         CastOp = SCast->getSCEVType();
6463         S = SCast->getOperand();
6464       }
6465 
6466       using namespace llvm::PatternMatch;
6467 
6468       auto *SU = dyn_cast<SCEVUnknown>(S);
6469       const APInt *TrueVal, *FalseVal;
6470       if (!SU ||
6471           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6472                                           m_APInt(FalseVal)))) {
6473         Condition = nullptr;
6474         return;
6475       }
6476 
6477       TrueValue = *TrueVal;
6478       FalseValue = *FalseVal;
6479 
6480       // Re-apply the cast we peeled off earlier
6481       if (CastOp.hasValue())
6482         switch (*CastOp) {
6483         default:
6484           llvm_unreachable("Unknown SCEV cast type!");
6485 
6486         case scTruncate:
6487           TrueValue = TrueValue.trunc(BitWidth);
6488           FalseValue = FalseValue.trunc(BitWidth);
6489           break;
6490         case scZeroExtend:
6491           TrueValue = TrueValue.zext(BitWidth);
6492           FalseValue = FalseValue.zext(BitWidth);
6493           break;
6494         case scSignExtend:
6495           TrueValue = TrueValue.sext(BitWidth);
6496           FalseValue = FalseValue.sext(BitWidth);
6497           break;
6498         }
6499 
6500       // Re-apply the constant offset we peeled off earlier
6501       TrueValue += Offset;
6502       FalseValue += Offset;
6503     }
6504 
6505     bool isRecognized() { return Condition != nullptr; }
6506   };
6507 
6508   SelectPattern StartPattern(*this, BitWidth, Start);
6509   if (!StartPattern.isRecognized())
6510     return ConstantRange::getFull(BitWidth);
6511 
6512   SelectPattern StepPattern(*this, BitWidth, Step);
6513   if (!StepPattern.isRecognized())
6514     return ConstantRange::getFull(BitWidth);
6515 
6516   if (StartPattern.Condition != StepPattern.Condition) {
6517     // We don't handle this case today; but we could, by considering four
6518     // possibilities below instead of two. I'm not sure if there are cases where
6519     // that will help over what getRange already does, though.
6520     return ConstantRange::getFull(BitWidth);
6521   }
6522 
6523   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6524   // construct arbitrary general SCEV expressions here.  This function is called
6525   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6526   // say) can end up caching a suboptimal value.
6527 
6528   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6529   // C2352 and C2512 (otherwise it isn't needed).
6530 
6531   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6532   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6533   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6534   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6535 
6536   ConstantRange TrueRange =
6537       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6538   ConstantRange FalseRange =
6539       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6540 
6541   return TrueRange.unionWith(FalseRange);
6542 }
6543 
6544 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6545   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6546   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6547 
6548   // Return early if there are no flags to propagate to the SCEV.
6549   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6550   if (BinOp->hasNoUnsignedWrap())
6551     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6552   if (BinOp->hasNoSignedWrap())
6553     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6554   if (Flags == SCEV::FlagAnyWrap)
6555     return SCEV::FlagAnyWrap;
6556 
6557   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6558 }
6559 
6560 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6561   // Here we check that I is in the header of the innermost loop containing I,
6562   // since we only deal with instructions in the loop header. The actual loop we
6563   // need to check later will come from an add recurrence, but getting that
6564   // requires computing the SCEV of the operands, which can be expensive. This
6565   // check we can do cheaply to rule out some cases early.
6566   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6567   if (InnermostContainingLoop == nullptr ||
6568       InnermostContainingLoop->getHeader() != I->getParent())
6569     return false;
6570 
6571   // Only proceed if we can prove that I does not yield poison.
6572   if (!programUndefinedIfPoison(I))
6573     return false;
6574 
6575   // At this point we know that if I is executed, then it does not wrap
6576   // according to at least one of NSW or NUW. If I is not executed, then we do
6577   // not know if the calculation that I represents would wrap. Multiple
6578   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6579   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6580   // derived from other instructions that map to the same SCEV. We cannot make
6581   // that guarantee for cases where I is not executed. So we need to find the
6582   // loop that I is considered in relation to and prove that I is executed for
6583   // every iteration of that loop. That implies that the value that I
6584   // calculates does not wrap anywhere in the loop, so then we can apply the
6585   // flags to the SCEV.
6586   //
6587   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6588   // from different loops, so that we know which loop to prove that I is
6589   // executed in.
6590   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6591     // I could be an extractvalue from a call to an overflow intrinsic.
6592     // TODO: We can do better here in some cases.
6593     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6594       return false;
6595     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6596     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6597       bool AllOtherOpsLoopInvariant = true;
6598       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6599            ++OtherOpIndex) {
6600         if (OtherOpIndex != OpIndex) {
6601           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6602           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6603             AllOtherOpsLoopInvariant = false;
6604             break;
6605           }
6606         }
6607       }
6608       if (AllOtherOpsLoopInvariant &&
6609           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6610         return true;
6611     }
6612   }
6613   return false;
6614 }
6615 
6616 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6617   // If we know that \c I can never be poison period, then that's enough.
6618   if (isSCEVExprNeverPoison(I))
6619     return true;
6620 
6621   // For an add recurrence specifically, we assume that infinite loops without
6622   // side effects are undefined behavior, and then reason as follows:
6623   //
6624   // If the add recurrence is poison in any iteration, it is poison on all
6625   // future iterations (since incrementing poison yields poison). If the result
6626   // of the add recurrence is fed into the loop latch condition and the loop
6627   // does not contain any throws or exiting blocks other than the latch, we now
6628   // have the ability to "choose" whether the backedge is taken or not (by
6629   // choosing a sufficiently evil value for the poison feeding into the branch)
6630   // for every iteration including and after the one in which \p I first became
6631   // poison.  There are two possibilities (let's call the iteration in which \p
6632   // I first became poison as K):
6633   //
6634   //  1. In the set of iterations including and after K, the loop body executes
6635   //     no side effects.  In this case executing the backege an infinte number
6636   //     of times will yield undefined behavior.
6637   //
6638   //  2. In the set of iterations including and after K, the loop body executes
6639   //     at least one side effect.  In this case, that specific instance of side
6640   //     effect is control dependent on poison, which also yields undefined
6641   //     behavior.
6642 
6643   auto *ExitingBB = L->getExitingBlock();
6644   auto *LatchBB = L->getLoopLatch();
6645   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6646     return false;
6647 
6648   SmallPtrSet<const Instruction *, 16> Pushed;
6649   SmallVector<const Instruction *, 8> PoisonStack;
6650 
6651   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6652   // things that are known to be poison under that assumption go on the
6653   // PoisonStack.
6654   Pushed.insert(I);
6655   PoisonStack.push_back(I);
6656 
6657   bool LatchControlDependentOnPoison = false;
6658   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6659     const Instruction *Poison = PoisonStack.pop_back_val();
6660 
6661     for (auto *PoisonUser : Poison->users()) {
6662       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6663         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6664           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6665       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6666         assert(BI->isConditional() && "Only possibility!");
6667         if (BI->getParent() == LatchBB) {
6668           LatchControlDependentOnPoison = true;
6669           break;
6670         }
6671       }
6672     }
6673   }
6674 
6675   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6676 }
6677 
6678 ScalarEvolution::LoopProperties
6679 ScalarEvolution::getLoopProperties(const Loop *L) {
6680   using LoopProperties = ScalarEvolution::LoopProperties;
6681 
6682   auto Itr = LoopPropertiesCache.find(L);
6683   if (Itr == LoopPropertiesCache.end()) {
6684     auto HasSideEffects = [](Instruction *I) {
6685       if (auto *SI = dyn_cast<StoreInst>(I))
6686         return !SI->isSimple();
6687 
6688       return I->mayThrow() || I->mayWriteToMemory();
6689     };
6690 
6691     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6692                          /*HasNoSideEffects*/ true};
6693 
6694     for (auto *BB : L->getBlocks())
6695       for (auto &I : *BB) {
6696         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6697           LP.HasNoAbnormalExits = false;
6698         if (HasSideEffects(&I))
6699           LP.HasNoSideEffects = false;
6700         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6701           break; // We're already as pessimistic as we can get.
6702       }
6703 
6704     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6705     assert(InsertPair.second && "We just checked!");
6706     Itr = InsertPair.first;
6707   }
6708 
6709   return Itr->second;
6710 }
6711 
6712 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6713   // A mustprogress loop without side effects must be finite.
6714   // TODO: The check used here is very conservative.  It's only *specific*
6715   // side effects which are well defined in infinite loops.
6716   return isMustProgress(L) && loopHasNoSideEffects(L);
6717 }
6718 
6719 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6720   if (!isSCEVable(V->getType()))
6721     return getUnknown(V);
6722 
6723   if (Instruction *I = dyn_cast<Instruction>(V)) {
6724     // Don't attempt to analyze instructions in blocks that aren't
6725     // reachable. Such instructions don't matter, and they aren't required
6726     // to obey basic rules for definitions dominating uses which this
6727     // analysis depends on.
6728     if (!DT.isReachableFromEntry(I->getParent()))
6729       return getUnknown(UndefValue::get(V->getType()));
6730   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6731     return getConstant(CI);
6732   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6733     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6734   else if (!isa<ConstantExpr>(V))
6735     return getUnknown(V);
6736 
6737   Operator *U = cast<Operator>(V);
6738   if (auto BO = MatchBinaryOp(U, DT)) {
6739     switch (BO->Opcode) {
6740     case Instruction::Add: {
6741       // The simple thing to do would be to just call getSCEV on both operands
6742       // and call getAddExpr with the result. However if we're looking at a
6743       // bunch of things all added together, this can be quite inefficient,
6744       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6745       // Instead, gather up all the operands and make a single getAddExpr call.
6746       // LLVM IR canonical form means we need only traverse the left operands.
6747       SmallVector<const SCEV *, 4> AddOps;
6748       do {
6749         if (BO->Op) {
6750           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6751             AddOps.push_back(OpSCEV);
6752             break;
6753           }
6754 
6755           // If a NUW or NSW flag can be applied to the SCEV for this
6756           // addition, then compute the SCEV for this addition by itself
6757           // with a separate call to getAddExpr. We need to do that
6758           // instead of pushing the operands of the addition onto AddOps,
6759           // since the flags are only known to apply to this particular
6760           // addition - they may not apply to other additions that can be
6761           // formed with operands from AddOps.
6762           const SCEV *RHS = getSCEV(BO->RHS);
6763           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6764           if (Flags != SCEV::FlagAnyWrap) {
6765             const SCEV *LHS = getSCEV(BO->LHS);
6766             if (BO->Opcode == Instruction::Sub)
6767               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6768             else
6769               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6770             break;
6771           }
6772         }
6773 
6774         if (BO->Opcode == Instruction::Sub)
6775           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6776         else
6777           AddOps.push_back(getSCEV(BO->RHS));
6778 
6779         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6780         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6781                        NewBO->Opcode != Instruction::Sub)) {
6782           AddOps.push_back(getSCEV(BO->LHS));
6783           break;
6784         }
6785         BO = NewBO;
6786       } while (true);
6787 
6788       return getAddExpr(AddOps);
6789     }
6790 
6791     case Instruction::Mul: {
6792       SmallVector<const SCEV *, 4> MulOps;
6793       do {
6794         if (BO->Op) {
6795           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6796             MulOps.push_back(OpSCEV);
6797             break;
6798           }
6799 
6800           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6801           if (Flags != SCEV::FlagAnyWrap) {
6802             MulOps.push_back(
6803                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6804             break;
6805           }
6806         }
6807 
6808         MulOps.push_back(getSCEV(BO->RHS));
6809         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6810         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6811           MulOps.push_back(getSCEV(BO->LHS));
6812           break;
6813         }
6814         BO = NewBO;
6815       } while (true);
6816 
6817       return getMulExpr(MulOps);
6818     }
6819     case Instruction::UDiv:
6820       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6821     case Instruction::URem:
6822       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6823     case Instruction::Sub: {
6824       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6825       if (BO->Op)
6826         Flags = getNoWrapFlagsFromUB(BO->Op);
6827       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6828     }
6829     case Instruction::And:
6830       // For an expression like x&255 that merely masks off the high bits,
6831       // use zext(trunc(x)) as the SCEV expression.
6832       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6833         if (CI->isZero())
6834           return getSCEV(BO->RHS);
6835         if (CI->isMinusOne())
6836           return getSCEV(BO->LHS);
6837         const APInt &A = CI->getValue();
6838 
6839         // Instcombine's ShrinkDemandedConstant may strip bits out of
6840         // constants, obscuring what would otherwise be a low-bits mask.
6841         // Use computeKnownBits to compute what ShrinkDemandedConstant
6842         // knew about to reconstruct a low-bits mask value.
6843         unsigned LZ = A.countLeadingZeros();
6844         unsigned TZ = A.countTrailingZeros();
6845         unsigned BitWidth = A.getBitWidth();
6846         KnownBits Known(BitWidth);
6847         computeKnownBits(BO->LHS, Known, getDataLayout(),
6848                          0, &AC, nullptr, &DT);
6849 
6850         APInt EffectiveMask =
6851             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6852         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6853           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6854           const SCEV *LHS = getSCEV(BO->LHS);
6855           const SCEV *ShiftedLHS = nullptr;
6856           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6857             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6858               // For an expression like (x * 8) & 8, simplify the multiply.
6859               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6860               unsigned GCD = std::min(MulZeros, TZ);
6861               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6862               SmallVector<const SCEV*, 4> MulOps;
6863               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6864               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6865               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6866               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6867             }
6868           }
6869           if (!ShiftedLHS)
6870             ShiftedLHS = getUDivExpr(LHS, MulCount);
6871           return getMulExpr(
6872               getZeroExtendExpr(
6873                   getTruncateExpr(ShiftedLHS,
6874                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6875                   BO->LHS->getType()),
6876               MulCount);
6877         }
6878       }
6879       break;
6880 
6881     case Instruction::Or:
6882       // If the RHS of the Or is a constant, we may have something like:
6883       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6884       // optimizations will transparently handle this case.
6885       //
6886       // In order for this transformation to be safe, the LHS must be of the
6887       // form X*(2^n) and the Or constant must be less than 2^n.
6888       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6889         const SCEV *LHS = getSCEV(BO->LHS);
6890         const APInt &CIVal = CI->getValue();
6891         if (GetMinTrailingZeros(LHS) >=
6892             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6893           // Build a plain add SCEV.
6894           return getAddExpr(LHS, getSCEV(CI),
6895                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6896         }
6897       }
6898       break;
6899 
6900     case Instruction::Xor:
6901       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6902         // If the RHS of xor is -1, then this is a not operation.
6903         if (CI->isMinusOne())
6904           return getNotSCEV(getSCEV(BO->LHS));
6905 
6906         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6907         // This is a variant of the check for xor with -1, and it handles
6908         // the case where instcombine has trimmed non-demanded bits out
6909         // of an xor with -1.
6910         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6911           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6912             if (LBO->getOpcode() == Instruction::And &&
6913                 LCI->getValue() == CI->getValue())
6914               if (const SCEVZeroExtendExpr *Z =
6915                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6916                 Type *UTy = BO->LHS->getType();
6917                 const SCEV *Z0 = Z->getOperand();
6918                 Type *Z0Ty = Z0->getType();
6919                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6920 
6921                 // If C is a low-bits mask, the zero extend is serving to
6922                 // mask off the high bits. Complement the operand and
6923                 // re-apply the zext.
6924                 if (CI->getValue().isMask(Z0TySize))
6925                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6926 
6927                 // If C is a single bit, it may be in the sign-bit position
6928                 // before the zero-extend. In this case, represent the xor
6929                 // using an add, which is equivalent, and re-apply the zext.
6930                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6931                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6932                     Trunc.isSignMask())
6933                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6934                                            UTy);
6935               }
6936       }
6937       break;
6938 
6939     case Instruction::Shl:
6940       // Turn shift left of a constant amount into a multiply.
6941       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6942         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6943 
6944         // If the shift count is not less than the bitwidth, the result of
6945         // the shift is undefined. Don't try to analyze it, because the
6946         // resolution chosen here may differ from the resolution chosen in
6947         // other parts of the compiler.
6948         if (SA->getValue().uge(BitWidth))
6949           break;
6950 
6951         // We can safely preserve the nuw flag in all cases. It's also safe to
6952         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6953         // requires special handling. It can be preserved as long as we're not
6954         // left shifting by bitwidth - 1.
6955         auto Flags = SCEV::FlagAnyWrap;
6956         if (BO->Op) {
6957           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6958           if ((MulFlags & SCEV::FlagNSW) &&
6959               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6960             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6961           if (MulFlags & SCEV::FlagNUW)
6962             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6963         }
6964 
6965         Constant *X = ConstantInt::get(
6966             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6967         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6968       }
6969       break;
6970 
6971     case Instruction::AShr: {
6972       // AShr X, C, where C is a constant.
6973       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6974       if (!CI)
6975         break;
6976 
6977       Type *OuterTy = BO->LHS->getType();
6978       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6979       // If the shift count is not less than the bitwidth, the result of
6980       // the shift is undefined. Don't try to analyze it, because the
6981       // resolution chosen here may differ from the resolution chosen in
6982       // other parts of the compiler.
6983       if (CI->getValue().uge(BitWidth))
6984         break;
6985 
6986       if (CI->isZero())
6987         return getSCEV(BO->LHS); // shift by zero --> noop
6988 
6989       uint64_t AShrAmt = CI->getZExtValue();
6990       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6991 
6992       Operator *L = dyn_cast<Operator>(BO->LHS);
6993       if (L && L->getOpcode() == Instruction::Shl) {
6994         // X = Shl A, n
6995         // Y = AShr X, m
6996         // Both n and m are constant.
6997 
6998         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6999         if (L->getOperand(1) == BO->RHS)
7000           // For a two-shift sext-inreg, i.e. n = m,
7001           // use sext(trunc(x)) as the SCEV expression.
7002           return getSignExtendExpr(
7003               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7004 
7005         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7006         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7007           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7008           if (ShlAmt > AShrAmt) {
7009             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7010             // expression. We already checked that ShlAmt < BitWidth, so
7011             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7012             // ShlAmt - AShrAmt < Amt.
7013             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7014                                             ShlAmt - AShrAmt);
7015             return getSignExtendExpr(
7016                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7017                 getConstant(Mul)), OuterTy);
7018           }
7019         }
7020       }
7021       break;
7022     }
7023     }
7024   }
7025 
7026   switch (U->getOpcode()) {
7027   case Instruction::Trunc:
7028     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7029 
7030   case Instruction::ZExt:
7031     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7032 
7033   case Instruction::SExt:
7034     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7035       // The NSW flag of a subtract does not always survive the conversion to
7036       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7037       // more likely to preserve NSW and allow later AddRec optimisations.
7038       //
7039       // NOTE: This is effectively duplicating this logic from getSignExtend:
7040       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7041       // but by that point the NSW information has potentially been lost.
7042       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7043         Type *Ty = U->getType();
7044         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7045         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7046         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7047       }
7048     }
7049     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7050 
7051   case Instruction::BitCast:
7052     // BitCasts are no-op casts so we just eliminate the cast.
7053     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7054       return getSCEV(U->getOperand(0));
7055     break;
7056 
7057   case Instruction::PtrToInt: {
7058     // Pointer to integer cast is straight-forward, so do model it.
7059     const SCEV *Op = getSCEV(U->getOperand(0));
7060     Type *DstIntTy = U->getType();
7061     // But only if effective SCEV (integer) type is wide enough to represent
7062     // all possible pointer values.
7063     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7064     if (isa<SCEVCouldNotCompute>(IntOp))
7065       return getUnknown(V);
7066     return IntOp;
7067   }
7068   case Instruction::IntToPtr:
7069     // Just don't deal with inttoptr casts.
7070     return getUnknown(V);
7071 
7072   case Instruction::SDiv:
7073     // If both operands are non-negative, this is just an udiv.
7074     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7075         isKnownNonNegative(getSCEV(U->getOperand(1))))
7076       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7077     break;
7078 
7079   case Instruction::SRem:
7080     // If both operands are non-negative, this is just an urem.
7081     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7082         isKnownNonNegative(getSCEV(U->getOperand(1))))
7083       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7084     break;
7085 
7086   case Instruction::GetElementPtr:
7087     return createNodeForGEP(cast<GEPOperator>(U));
7088 
7089   case Instruction::PHI:
7090     return createNodeForPHI(cast<PHINode>(U));
7091 
7092   case Instruction::Select:
7093     // U can also be a select constant expr, which let fall through.  Since
7094     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7095     // constant expressions cannot have instructions as operands, we'd have
7096     // returned getUnknown for a select constant expressions anyway.
7097     if (isa<Instruction>(U))
7098       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7099                                       U->getOperand(1), U->getOperand(2));
7100     break;
7101 
7102   case Instruction::Call:
7103   case Instruction::Invoke:
7104     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7105       return getSCEV(RV);
7106 
7107     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7108       switch (II->getIntrinsicID()) {
7109       case Intrinsic::abs:
7110         return getAbsExpr(
7111             getSCEV(II->getArgOperand(0)),
7112             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7113       case Intrinsic::umax:
7114         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7115                            getSCEV(II->getArgOperand(1)));
7116       case Intrinsic::umin:
7117         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7118                            getSCEV(II->getArgOperand(1)));
7119       case Intrinsic::smax:
7120         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7121                            getSCEV(II->getArgOperand(1)));
7122       case Intrinsic::smin:
7123         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7124                            getSCEV(II->getArgOperand(1)));
7125       case Intrinsic::usub_sat: {
7126         const SCEV *X = getSCEV(II->getArgOperand(0));
7127         const SCEV *Y = getSCEV(II->getArgOperand(1));
7128         const SCEV *ClampedY = getUMinExpr(X, Y);
7129         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7130       }
7131       case Intrinsic::uadd_sat: {
7132         const SCEV *X = getSCEV(II->getArgOperand(0));
7133         const SCEV *Y = getSCEV(II->getArgOperand(1));
7134         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7135         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7136       }
7137       case Intrinsic::start_loop_iterations:
7138         // A start_loop_iterations is just equivalent to the first operand for
7139         // SCEV purposes.
7140         return getSCEV(II->getArgOperand(0));
7141       default:
7142         break;
7143       }
7144     }
7145     break;
7146   }
7147 
7148   return getUnknown(V);
7149 }
7150 
7151 //===----------------------------------------------------------------------===//
7152 //                   Iteration Count Computation Code
7153 //
7154 
7155 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7156   // Get the trip count from the BE count by adding 1.  Overflow, results
7157   // in zero which means "unknown".
7158   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7159 }
7160 
7161 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7162   if (!ExitCount)
7163     return 0;
7164 
7165   ConstantInt *ExitConst = ExitCount->getValue();
7166 
7167   // Guard against huge trip counts.
7168   if (ExitConst->getValue().getActiveBits() > 32)
7169     return 0;
7170 
7171   // In case of integer overflow, this returns 0, which is correct.
7172   return ((unsigned)ExitConst->getZExtValue()) + 1;
7173 }
7174 
7175 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7176   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7177   return getConstantTripCount(ExitCount);
7178 }
7179 
7180 unsigned
7181 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7182                                            const BasicBlock *ExitingBlock) {
7183   assert(ExitingBlock && "Must pass a non-null exiting block!");
7184   assert(L->isLoopExiting(ExitingBlock) &&
7185          "Exiting block must actually branch out of the loop!");
7186   const SCEVConstant *ExitCount =
7187       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7188   return getConstantTripCount(ExitCount);
7189 }
7190 
7191 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7192   const auto *MaxExitCount =
7193       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7194   return getConstantTripCount(MaxExitCount);
7195 }
7196 
7197 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7198   SmallVector<BasicBlock *, 8> ExitingBlocks;
7199   L->getExitingBlocks(ExitingBlocks);
7200 
7201   Optional<unsigned> Res = None;
7202   for (auto *ExitingBB : ExitingBlocks) {
7203     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7204     if (!Res)
7205       Res = Multiple;
7206     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7207   }
7208   return Res.getValueOr(1);
7209 }
7210 
7211 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7212                                                        const SCEV *ExitCount) {
7213   if (ExitCount == getCouldNotCompute())
7214     return 1;
7215 
7216   // Get the trip count
7217   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7218 
7219   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7220   if (!TC)
7221     // Attempt to factor more general cases. Returns the greatest power of
7222     // two divisor. If overflow happens, the trip count expression is still
7223     // divisible by the greatest power of 2 divisor returned.
7224     return 1U << std::min((uint32_t)31,
7225                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7226 
7227   ConstantInt *Result = TC->getValue();
7228 
7229   // Guard against huge trip counts (this requires checking
7230   // for zero to handle the case where the trip count == -1 and the
7231   // addition wraps).
7232   if (!Result || Result->getValue().getActiveBits() > 32 ||
7233       Result->getValue().getActiveBits() == 0)
7234     return 1;
7235 
7236   return (unsigned)Result->getZExtValue();
7237 }
7238 
7239 /// Returns the largest constant divisor of the trip count of this loop as a
7240 /// normal unsigned value, if possible. This means that the actual trip count is
7241 /// always a multiple of the returned value (don't forget the trip count could
7242 /// very well be zero as well!).
7243 ///
7244 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7245 /// multiple of a constant (which is also the case if the trip count is simply
7246 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7247 /// if the trip count is very large (>= 2^32).
7248 ///
7249 /// As explained in the comments for getSmallConstantTripCount, this assumes
7250 /// that control exits the loop via ExitingBlock.
7251 unsigned
7252 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7253                                               const BasicBlock *ExitingBlock) {
7254   assert(ExitingBlock && "Must pass a non-null exiting block!");
7255   assert(L->isLoopExiting(ExitingBlock) &&
7256          "Exiting block must actually branch out of the loop!");
7257   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7258   return getSmallConstantTripMultiple(L, ExitCount);
7259 }
7260 
7261 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7262                                           const BasicBlock *ExitingBlock,
7263                                           ExitCountKind Kind) {
7264   switch (Kind) {
7265   case Exact:
7266   case SymbolicMaximum:
7267     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7268   case ConstantMaximum:
7269     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7270   };
7271   llvm_unreachable("Invalid ExitCountKind!");
7272 }
7273 
7274 const SCEV *
7275 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7276                                                  SCEVUnionPredicate &Preds) {
7277   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7278 }
7279 
7280 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7281                                                    ExitCountKind Kind) {
7282   switch (Kind) {
7283   case Exact:
7284     return getBackedgeTakenInfo(L).getExact(L, this);
7285   case ConstantMaximum:
7286     return getBackedgeTakenInfo(L).getConstantMax(this);
7287   case SymbolicMaximum:
7288     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7289   };
7290   llvm_unreachable("Invalid ExitCountKind!");
7291 }
7292 
7293 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7294   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7295 }
7296 
7297 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7298 static void
7299 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7300   BasicBlock *Header = L->getHeader();
7301 
7302   // Push all Loop-header PHIs onto the Worklist stack.
7303   for (PHINode &PN : Header->phis())
7304     Worklist.push_back(&PN);
7305 }
7306 
7307 const ScalarEvolution::BackedgeTakenInfo &
7308 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7309   auto &BTI = getBackedgeTakenInfo(L);
7310   if (BTI.hasFullInfo())
7311     return BTI;
7312 
7313   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7314 
7315   if (!Pair.second)
7316     return Pair.first->second;
7317 
7318   BackedgeTakenInfo Result =
7319       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7320 
7321   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7322 }
7323 
7324 ScalarEvolution::BackedgeTakenInfo &
7325 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7326   // Initially insert an invalid entry for this loop. If the insertion
7327   // succeeds, proceed to actually compute a backedge-taken count and
7328   // update the value. The temporary CouldNotCompute value tells SCEV
7329   // code elsewhere that it shouldn't attempt to request a new
7330   // backedge-taken count, which could result in infinite recursion.
7331   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7332       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7333   if (!Pair.second)
7334     return Pair.first->second;
7335 
7336   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7337   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7338   // must be cleared in this scope.
7339   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7340 
7341   // In product build, there are no usage of statistic.
7342   (void)NumTripCountsComputed;
7343   (void)NumTripCountsNotComputed;
7344 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7345   const SCEV *BEExact = Result.getExact(L, this);
7346   if (BEExact != getCouldNotCompute()) {
7347     assert(isLoopInvariant(BEExact, L) &&
7348            isLoopInvariant(Result.getConstantMax(this), L) &&
7349            "Computed backedge-taken count isn't loop invariant for loop!");
7350     ++NumTripCountsComputed;
7351   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7352              isa<PHINode>(L->getHeader()->begin())) {
7353     // Only count loops that have phi nodes as not being computable.
7354     ++NumTripCountsNotComputed;
7355   }
7356 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7357 
7358   // Now that we know more about the trip count for this loop, forget any
7359   // existing SCEV values for PHI nodes in this loop since they are only
7360   // conservative estimates made without the benefit of trip count
7361   // information. This is similar to the code in forgetLoop, except that
7362   // it handles SCEVUnknown PHI nodes specially.
7363   if (Result.hasAnyInfo()) {
7364     SmallVector<Instruction *, 16> Worklist;
7365     PushLoopPHIs(L, Worklist);
7366 
7367     SmallPtrSet<Instruction *, 8> Discovered;
7368     while (!Worklist.empty()) {
7369       Instruction *I = Worklist.pop_back_val();
7370 
7371       ValueExprMapType::iterator It =
7372         ValueExprMap.find_as(static_cast<Value *>(I));
7373       if (It != ValueExprMap.end()) {
7374         const SCEV *Old = It->second;
7375 
7376         // SCEVUnknown for a PHI either means that it has an unrecognized
7377         // structure, or it's a PHI that's in the progress of being computed
7378         // by createNodeForPHI.  In the former case, additional loop trip
7379         // count information isn't going to change anything. In the later
7380         // case, createNodeForPHI will perform the necessary updates on its
7381         // own when it gets to that point.
7382         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7383           eraseValueFromMap(It->first);
7384           forgetMemoizedResults(Old);
7385         }
7386         if (PHINode *PN = dyn_cast<PHINode>(I))
7387           ConstantEvolutionLoopExitValue.erase(PN);
7388       }
7389 
7390       // Since we don't need to invalidate anything for correctness and we're
7391       // only invalidating to make SCEV's results more precise, we get to stop
7392       // early to avoid invalidating too much.  This is especially important in
7393       // cases like:
7394       //
7395       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7396       // loop0:
7397       //   %pn0 = phi
7398       //   ...
7399       // loop1:
7400       //   %pn1 = phi
7401       //   ...
7402       //
7403       // where both loop0 and loop1's backedge taken count uses the SCEV
7404       // expression for %v.  If we don't have the early stop below then in cases
7405       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7406       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7407       // count for loop1, effectively nullifying SCEV's trip count cache.
7408       for (auto *U : I->users())
7409         if (auto *I = dyn_cast<Instruction>(U)) {
7410           auto *LoopForUser = LI.getLoopFor(I->getParent());
7411           if (LoopForUser && L->contains(LoopForUser) &&
7412               Discovered.insert(I).second)
7413             Worklist.push_back(I);
7414         }
7415     }
7416   }
7417 
7418   // Re-lookup the insert position, since the call to
7419   // computeBackedgeTakenCount above could result in a
7420   // recusive call to getBackedgeTakenInfo (on a different
7421   // loop), which would invalidate the iterator computed
7422   // earlier.
7423   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7424 }
7425 
7426 void ScalarEvolution::forgetAllLoops() {
7427   // This method is intended to forget all info about loops. It should
7428   // invalidate caches as if the following happened:
7429   // - The trip counts of all loops have changed arbitrarily
7430   // - Every llvm::Value has been updated in place to produce a different
7431   // result.
7432   BackedgeTakenCounts.clear();
7433   PredicatedBackedgeTakenCounts.clear();
7434   LoopPropertiesCache.clear();
7435   ConstantEvolutionLoopExitValue.clear();
7436   ValueExprMap.clear();
7437   ValuesAtScopes.clear();
7438   LoopDispositions.clear();
7439   BlockDispositions.clear();
7440   UnsignedRanges.clear();
7441   SignedRanges.clear();
7442   ExprValueMap.clear();
7443   HasRecMap.clear();
7444   MinTrailingZerosCache.clear();
7445   PredicatedSCEVRewrites.clear();
7446 }
7447 
7448 void ScalarEvolution::forgetLoop(const Loop *L) {
7449   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7450   SmallVector<Instruction *, 32> Worklist;
7451   SmallPtrSet<Instruction *, 16> Visited;
7452 
7453   // Iterate over all the loops and sub-loops to drop SCEV information.
7454   while (!LoopWorklist.empty()) {
7455     auto *CurrL = LoopWorklist.pop_back_val();
7456 
7457     // Drop any stored trip count value.
7458     BackedgeTakenCounts.erase(CurrL);
7459     PredicatedBackedgeTakenCounts.erase(CurrL);
7460 
7461     // Drop information about predicated SCEV rewrites for this loop.
7462     for (auto I = PredicatedSCEVRewrites.begin();
7463          I != PredicatedSCEVRewrites.end();) {
7464       std::pair<const SCEV *, const Loop *> Entry = I->first;
7465       if (Entry.second == CurrL)
7466         PredicatedSCEVRewrites.erase(I++);
7467       else
7468         ++I;
7469     }
7470 
7471     auto LoopUsersItr = LoopUsers.find(CurrL);
7472     if (LoopUsersItr != LoopUsers.end()) {
7473       for (auto *S : LoopUsersItr->second)
7474         forgetMemoizedResults(S);
7475       LoopUsers.erase(LoopUsersItr);
7476     }
7477 
7478     // Drop information about expressions based on loop-header PHIs.
7479     PushLoopPHIs(CurrL, Worklist);
7480 
7481     while (!Worklist.empty()) {
7482       Instruction *I = Worklist.pop_back_val();
7483       if (!Visited.insert(I).second)
7484         continue;
7485 
7486       ValueExprMapType::iterator It =
7487           ValueExprMap.find_as(static_cast<Value *>(I));
7488       if (It != ValueExprMap.end()) {
7489         eraseValueFromMap(It->first);
7490         forgetMemoizedResults(It->second);
7491         if (PHINode *PN = dyn_cast<PHINode>(I))
7492           ConstantEvolutionLoopExitValue.erase(PN);
7493       }
7494 
7495       PushDefUseChildren(I, Worklist);
7496     }
7497 
7498     LoopPropertiesCache.erase(CurrL);
7499     // Forget all contained loops too, to avoid dangling entries in the
7500     // ValuesAtScopes map.
7501     LoopWorklist.append(CurrL->begin(), CurrL->end());
7502   }
7503 }
7504 
7505 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7506   while (Loop *Parent = L->getParentLoop())
7507     L = Parent;
7508   forgetLoop(L);
7509 }
7510 
7511 void ScalarEvolution::forgetValue(Value *V) {
7512   Instruction *I = dyn_cast<Instruction>(V);
7513   if (!I) return;
7514 
7515   // Drop information about expressions based on loop-header PHIs.
7516   SmallVector<Instruction *, 16> Worklist;
7517   Worklist.push_back(I);
7518 
7519   SmallPtrSet<Instruction *, 8> Visited;
7520   while (!Worklist.empty()) {
7521     I = Worklist.pop_back_val();
7522     if (!Visited.insert(I).second)
7523       continue;
7524 
7525     ValueExprMapType::iterator It =
7526       ValueExprMap.find_as(static_cast<Value *>(I));
7527     if (It != ValueExprMap.end()) {
7528       eraseValueFromMap(It->first);
7529       forgetMemoizedResults(It->second);
7530       if (PHINode *PN = dyn_cast<PHINode>(I))
7531         ConstantEvolutionLoopExitValue.erase(PN);
7532     }
7533 
7534     PushDefUseChildren(I, Worklist);
7535   }
7536 }
7537 
7538 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7539   LoopDispositions.clear();
7540 }
7541 
7542 /// Get the exact loop backedge taken count considering all loop exits. A
7543 /// computable result can only be returned for loops with all exiting blocks
7544 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7545 /// is never skipped. This is a valid assumption as long as the loop exits via
7546 /// that test. For precise results, it is the caller's responsibility to specify
7547 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7548 const SCEV *
7549 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7550                                              SCEVUnionPredicate *Preds) const {
7551   // If any exits were not computable, the loop is not computable.
7552   if (!isComplete() || ExitNotTaken.empty())
7553     return SE->getCouldNotCompute();
7554 
7555   const BasicBlock *Latch = L->getLoopLatch();
7556   // All exiting blocks we have collected must dominate the only backedge.
7557   if (!Latch)
7558     return SE->getCouldNotCompute();
7559 
7560   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7561   // count is simply a minimum out of all these calculated exit counts.
7562   SmallVector<const SCEV *, 2> Ops;
7563   for (auto &ENT : ExitNotTaken) {
7564     const SCEV *BECount = ENT.ExactNotTaken;
7565     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7566     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7567            "We should only have known counts for exiting blocks that dominate "
7568            "latch!");
7569 
7570     Ops.push_back(BECount);
7571 
7572     if (Preds && !ENT.hasAlwaysTruePredicate())
7573       Preds->add(ENT.Predicate.get());
7574 
7575     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7576            "Predicate should be always true!");
7577   }
7578 
7579   return SE->getUMinFromMismatchedTypes(Ops);
7580 }
7581 
7582 /// Get the exact not taken count for this loop exit.
7583 const SCEV *
7584 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7585                                              ScalarEvolution *SE) const {
7586   for (auto &ENT : ExitNotTaken)
7587     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7588       return ENT.ExactNotTaken;
7589 
7590   return SE->getCouldNotCompute();
7591 }
7592 
7593 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7594     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7595   for (auto &ENT : ExitNotTaken)
7596     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7597       return ENT.MaxNotTaken;
7598 
7599   return SE->getCouldNotCompute();
7600 }
7601 
7602 /// getConstantMax - Get the constant max backedge taken count for the loop.
7603 const SCEV *
7604 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7605   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7606     return !ENT.hasAlwaysTruePredicate();
7607   };
7608 
7609   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7610     return SE->getCouldNotCompute();
7611 
7612   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7613           isa<SCEVConstant>(getConstantMax())) &&
7614          "No point in having a non-constant max backedge taken count!");
7615   return getConstantMax();
7616 }
7617 
7618 const SCEV *
7619 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7620                                                    ScalarEvolution *SE) {
7621   if (!SymbolicMax)
7622     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7623   return SymbolicMax;
7624 }
7625 
7626 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7627     ScalarEvolution *SE) const {
7628   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7629     return !ENT.hasAlwaysTruePredicate();
7630   };
7631   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7632 }
7633 
7634 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7635   return Operands.contains(S);
7636 }
7637 
7638 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7639     : ExitLimit(E, E, false, None) {
7640 }
7641 
7642 ScalarEvolution::ExitLimit::ExitLimit(
7643     const SCEV *E, const SCEV *M, bool MaxOrZero,
7644     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7645     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7646   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7647           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7648          "Exact is not allowed to be less precise than Max");
7649   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7650           isa<SCEVConstant>(MaxNotTaken)) &&
7651          "No point in having a non-constant max backedge taken count!");
7652   for (auto *PredSet : PredSetList)
7653     for (auto *P : *PredSet)
7654       addPredicate(P);
7655   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7656          "Backedge count should be int");
7657   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7658          "Max backedge count should be int");
7659 }
7660 
7661 ScalarEvolution::ExitLimit::ExitLimit(
7662     const SCEV *E, const SCEV *M, bool MaxOrZero,
7663     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7664     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7665 }
7666 
7667 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7668                                       bool MaxOrZero)
7669     : ExitLimit(E, M, MaxOrZero, None) {
7670 }
7671 
7672 class SCEVRecordOperands {
7673   SmallPtrSetImpl<const SCEV *> &Operands;
7674 
7675 public:
7676   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7677     : Operands(Operands) {}
7678   bool follow(const SCEV *S) {
7679     Operands.insert(S);
7680     return true;
7681   }
7682   bool isDone() { return false; }
7683 };
7684 
7685 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7686 /// computable exit into a persistent ExitNotTakenInfo array.
7687 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7688     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7689     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7690     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7691   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7692 
7693   ExitNotTaken.reserve(ExitCounts.size());
7694   std::transform(
7695       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7696       [&](const EdgeExitInfo &EEI) {
7697         BasicBlock *ExitBB = EEI.first;
7698         const ExitLimit &EL = EEI.second;
7699         if (EL.Predicates.empty())
7700           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7701                                   nullptr);
7702 
7703         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7704         for (auto *Pred : EL.Predicates)
7705           Predicate->add(Pred);
7706 
7707         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7708                                 std::move(Predicate));
7709       });
7710   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7711           isa<SCEVConstant>(ConstantMax)) &&
7712          "No point in having a non-constant max backedge taken count!");
7713 
7714   SCEVRecordOperands RecordOperands(Operands);
7715   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7716   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7717     ST.visitAll(ConstantMax);
7718   for (auto &ENT : ExitNotTaken)
7719     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7720       ST.visitAll(ENT.ExactNotTaken);
7721 }
7722 
7723 /// Compute the number of times the backedge of the specified loop will execute.
7724 ScalarEvolution::BackedgeTakenInfo
7725 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7726                                            bool AllowPredicates) {
7727   SmallVector<BasicBlock *, 8> ExitingBlocks;
7728   L->getExitingBlocks(ExitingBlocks);
7729 
7730   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7731 
7732   SmallVector<EdgeExitInfo, 4> ExitCounts;
7733   bool CouldComputeBECount = true;
7734   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7735   const SCEV *MustExitMaxBECount = nullptr;
7736   const SCEV *MayExitMaxBECount = nullptr;
7737   bool MustExitMaxOrZero = false;
7738 
7739   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7740   // and compute maxBECount.
7741   // Do a union of all the predicates here.
7742   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7743     BasicBlock *ExitBB = ExitingBlocks[i];
7744 
7745     // We canonicalize untaken exits to br (constant), ignore them so that
7746     // proving an exit untaken doesn't negatively impact our ability to reason
7747     // about the loop as whole.
7748     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7749       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7750         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7751         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7752           continue;
7753       }
7754 
7755     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7756 
7757     assert((AllowPredicates || EL.Predicates.empty()) &&
7758            "Predicated exit limit when predicates are not allowed!");
7759 
7760     // 1. For each exit that can be computed, add an entry to ExitCounts.
7761     // CouldComputeBECount is true only if all exits can be computed.
7762     if (EL.ExactNotTaken == getCouldNotCompute())
7763       // We couldn't compute an exact value for this exit, so
7764       // we won't be able to compute an exact value for the loop.
7765       CouldComputeBECount = false;
7766     else
7767       ExitCounts.emplace_back(ExitBB, EL);
7768 
7769     // 2. Derive the loop's MaxBECount from each exit's max number of
7770     // non-exiting iterations. Partition the loop exits into two kinds:
7771     // LoopMustExits and LoopMayExits.
7772     //
7773     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7774     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7775     // MaxBECount is the minimum EL.MaxNotTaken of computable
7776     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7777     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7778     // computable EL.MaxNotTaken.
7779     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7780         DT.dominates(ExitBB, Latch)) {
7781       if (!MustExitMaxBECount) {
7782         MustExitMaxBECount = EL.MaxNotTaken;
7783         MustExitMaxOrZero = EL.MaxOrZero;
7784       } else {
7785         MustExitMaxBECount =
7786             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7787       }
7788     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7789       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7790         MayExitMaxBECount = EL.MaxNotTaken;
7791       else {
7792         MayExitMaxBECount =
7793             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7794       }
7795     }
7796   }
7797   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7798     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7799   // The loop backedge will be taken the maximum or zero times if there's
7800   // a single exit that must be taken the maximum or zero times.
7801   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7802   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7803                            MaxBECount, MaxOrZero);
7804 }
7805 
7806 ScalarEvolution::ExitLimit
7807 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7808                                       bool AllowPredicates) {
7809   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7810   // If our exiting block does not dominate the latch, then its connection with
7811   // loop's exit limit may be far from trivial.
7812   const BasicBlock *Latch = L->getLoopLatch();
7813   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7814     return getCouldNotCompute();
7815 
7816   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7817   Instruction *Term = ExitingBlock->getTerminator();
7818   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7819     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7820     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7821     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7822            "It should have one successor in loop and one exit block!");
7823     // Proceed to the next level to examine the exit condition expression.
7824     return computeExitLimitFromCond(
7825         L, BI->getCondition(), ExitIfTrue,
7826         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7827   }
7828 
7829   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7830     // For switch, make sure that there is a single exit from the loop.
7831     BasicBlock *Exit = nullptr;
7832     for (auto *SBB : successors(ExitingBlock))
7833       if (!L->contains(SBB)) {
7834         if (Exit) // Multiple exit successors.
7835           return getCouldNotCompute();
7836         Exit = SBB;
7837       }
7838     assert(Exit && "Exiting block must have at least one exit");
7839     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7840                                                 /*ControlsExit=*/IsOnlyExit);
7841   }
7842 
7843   return getCouldNotCompute();
7844 }
7845 
7846 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7847     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7848     bool ControlsExit, bool AllowPredicates) {
7849   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7850   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7851                                         ControlsExit, AllowPredicates);
7852 }
7853 
7854 Optional<ScalarEvolution::ExitLimit>
7855 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7856                                       bool ExitIfTrue, bool ControlsExit,
7857                                       bool AllowPredicates) {
7858   (void)this->L;
7859   (void)this->ExitIfTrue;
7860   (void)this->AllowPredicates;
7861 
7862   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7863          this->AllowPredicates == AllowPredicates &&
7864          "Variance in assumed invariant key components!");
7865   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7866   if (Itr == TripCountMap.end())
7867     return None;
7868   return Itr->second;
7869 }
7870 
7871 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7872                                              bool ExitIfTrue,
7873                                              bool ControlsExit,
7874                                              bool AllowPredicates,
7875                                              const ExitLimit &EL) {
7876   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7877          this->AllowPredicates == AllowPredicates &&
7878          "Variance in assumed invariant key components!");
7879 
7880   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7881   assert(InsertResult.second && "Expected successful insertion!");
7882   (void)InsertResult;
7883   (void)ExitIfTrue;
7884 }
7885 
7886 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7887     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7888     bool ControlsExit, bool AllowPredicates) {
7889 
7890   if (auto MaybeEL =
7891           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7892     return *MaybeEL;
7893 
7894   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7895                                               ControlsExit, AllowPredicates);
7896   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7897   return EL;
7898 }
7899 
7900 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7901     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7902     bool ControlsExit, bool AllowPredicates) {
7903   // Handle BinOp conditions (And, Or).
7904   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7905           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7906     return *LimitFromBinOp;
7907 
7908   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7909   // Proceed to the next level to examine the icmp.
7910   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7911     ExitLimit EL =
7912         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7913     if (EL.hasFullInfo() || !AllowPredicates)
7914       return EL;
7915 
7916     // Try again, but use SCEV predicates this time.
7917     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7918                                     /*AllowPredicates=*/true);
7919   }
7920 
7921   // Check for a constant condition. These are normally stripped out by
7922   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7923   // preserve the CFG and is temporarily leaving constant conditions
7924   // in place.
7925   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7926     if (ExitIfTrue == !CI->getZExtValue())
7927       // The backedge is always taken.
7928       return getCouldNotCompute();
7929     else
7930       // The backedge is never taken.
7931       return getZero(CI->getType());
7932   }
7933 
7934   // If it's not an integer or pointer comparison then compute it the hard way.
7935   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7936 }
7937 
7938 Optional<ScalarEvolution::ExitLimit>
7939 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7940     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7941     bool ControlsExit, bool AllowPredicates) {
7942   // Check if the controlling expression for this loop is an And or Or.
7943   Value *Op0, *Op1;
7944   bool IsAnd = false;
7945   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7946     IsAnd = true;
7947   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7948     IsAnd = false;
7949   else
7950     return None;
7951 
7952   // EitherMayExit is true in these two cases:
7953   //   br (and Op0 Op1), loop, exit
7954   //   br (or  Op0 Op1), exit, loop
7955   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7956   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7957                                                  ControlsExit && !EitherMayExit,
7958                                                  AllowPredicates);
7959   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7960                                                  ControlsExit && !EitherMayExit,
7961                                                  AllowPredicates);
7962 
7963   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7964   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7965   if (isa<ConstantInt>(Op1))
7966     return Op1 == NeutralElement ? EL0 : EL1;
7967   if (isa<ConstantInt>(Op0))
7968     return Op0 == NeutralElement ? EL1 : EL0;
7969 
7970   const SCEV *BECount = getCouldNotCompute();
7971   const SCEV *MaxBECount = getCouldNotCompute();
7972   if (EitherMayExit) {
7973     // Both conditions must be same for the loop to continue executing.
7974     // Choose the less conservative count.
7975     // If ExitCond is a short-circuit form (select), using
7976     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7977     // To see the detailed examples, please see
7978     // test/Analysis/ScalarEvolution/exit-count-select.ll
7979     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7980     if (!PoisonSafe)
7981       // Even if ExitCond is select, we can safely derive BECount using both
7982       // EL0 and EL1 in these cases:
7983       // (1) EL0.ExactNotTaken is non-zero
7984       // (2) EL1.ExactNotTaken is non-poison
7985       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7986       //     it cannot be umin(0, ..))
7987       // The PoisonSafe assignment below is simplified and the assertion after
7988       // BECount calculation fully guarantees the condition (3).
7989       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7990                    isa<SCEVConstant>(EL1.ExactNotTaken);
7991     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7992         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7993       BECount =
7994           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7995 
7996       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
7997       // it should have been simplified to zero (see the condition (3) above)
7998       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
7999              BECount->isZero());
8000     }
8001     if (EL0.MaxNotTaken == getCouldNotCompute())
8002       MaxBECount = EL1.MaxNotTaken;
8003     else if (EL1.MaxNotTaken == getCouldNotCompute())
8004       MaxBECount = EL0.MaxNotTaken;
8005     else
8006       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8007   } else {
8008     // Both conditions must be same at the same time for the loop to exit.
8009     // For now, be conservative.
8010     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8011       BECount = EL0.ExactNotTaken;
8012   }
8013 
8014   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8015   // to be more aggressive when computing BECount than when computing
8016   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8017   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8018   // to not.
8019   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8020       !isa<SCEVCouldNotCompute>(BECount))
8021     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8022 
8023   return ExitLimit(BECount, MaxBECount, false,
8024                    { &EL0.Predicates, &EL1.Predicates });
8025 }
8026 
8027 ScalarEvolution::ExitLimit
8028 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8029                                           ICmpInst *ExitCond,
8030                                           bool ExitIfTrue,
8031                                           bool ControlsExit,
8032                                           bool AllowPredicates) {
8033   // If the condition was exit on true, convert the condition to exit on false
8034   ICmpInst::Predicate Pred;
8035   if (!ExitIfTrue)
8036     Pred = ExitCond->getPredicate();
8037   else
8038     Pred = ExitCond->getInversePredicate();
8039   const ICmpInst::Predicate OriginalPred = Pred;
8040 
8041   // Handle common loops like: for (X = "string"; *X; ++X)
8042   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8043     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8044       ExitLimit ItCnt =
8045         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8046       if (ItCnt.hasAnyInfo())
8047         return ItCnt;
8048     }
8049 
8050   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8051   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8052 
8053   // Try to evaluate any dependencies out of the loop.
8054   LHS = getSCEVAtScope(LHS, L);
8055   RHS = getSCEVAtScope(RHS, L);
8056 
8057   // At this point, we would like to compute how many iterations of the
8058   // loop the predicate will return true for these inputs.
8059   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8060     // If there is a loop-invariant, force it into the RHS.
8061     std::swap(LHS, RHS);
8062     Pred = ICmpInst::getSwappedPredicate(Pred);
8063   }
8064 
8065   // Simplify the operands before analyzing them.
8066   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8067 
8068   // If we have a comparison of a chrec against a constant, try to use value
8069   // ranges to answer this query.
8070   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8071     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8072       if (AddRec->getLoop() == L) {
8073         // Form the constant range.
8074         ConstantRange CompRange =
8075             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8076 
8077         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8078         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8079       }
8080 
8081   switch (Pred) {
8082   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8083     // Convert to: while (X-Y != 0)
8084     if (LHS->getType()->isPointerTy()) {
8085       LHS = getLosslessPtrToIntExpr(LHS);
8086       if (isa<SCEVCouldNotCompute>(LHS))
8087         return LHS;
8088     }
8089     if (RHS->getType()->isPointerTy()) {
8090       RHS = getLosslessPtrToIntExpr(RHS);
8091       if (isa<SCEVCouldNotCompute>(RHS))
8092         return RHS;
8093     }
8094     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8095                                 AllowPredicates);
8096     if (EL.hasAnyInfo()) return EL;
8097     break;
8098   }
8099   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8100     // Convert to: while (X-Y == 0)
8101     if (LHS->getType()->isPointerTy()) {
8102       LHS = getLosslessPtrToIntExpr(LHS);
8103       if (isa<SCEVCouldNotCompute>(LHS))
8104         return LHS;
8105     }
8106     if (RHS->getType()->isPointerTy()) {
8107       RHS = getLosslessPtrToIntExpr(RHS);
8108       if (isa<SCEVCouldNotCompute>(RHS))
8109         return RHS;
8110     }
8111     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8112     if (EL.hasAnyInfo()) return EL;
8113     break;
8114   }
8115   case ICmpInst::ICMP_SLT:
8116   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8117     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8118     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8119                                     AllowPredicates);
8120     if (EL.hasAnyInfo()) return EL;
8121     break;
8122   }
8123   case ICmpInst::ICMP_SGT:
8124   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8125     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8126     ExitLimit EL =
8127         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8128                             AllowPredicates);
8129     if (EL.hasAnyInfo()) return EL;
8130     break;
8131   }
8132   default:
8133     break;
8134   }
8135 
8136   auto *ExhaustiveCount =
8137       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8138 
8139   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8140     return ExhaustiveCount;
8141 
8142   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8143                                       ExitCond->getOperand(1), L, OriginalPred);
8144 }
8145 
8146 ScalarEvolution::ExitLimit
8147 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8148                                                       SwitchInst *Switch,
8149                                                       BasicBlock *ExitingBlock,
8150                                                       bool ControlsExit) {
8151   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8152 
8153   // Give up if the exit is the default dest of a switch.
8154   if (Switch->getDefaultDest() == ExitingBlock)
8155     return getCouldNotCompute();
8156 
8157   assert(L->contains(Switch->getDefaultDest()) &&
8158          "Default case must not exit the loop!");
8159   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8160   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8161 
8162   // while (X != Y) --> while (X-Y != 0)
8163   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8164   if (EL.hasAnyInfo())
8165     return EL;
8166 
8167   return getCouldNotCompute();
8168 }
8169 
8170 static ConstantInt *
8171 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8172                                 ScalarEvolution &SE) {
8173   const SCEV *InVal = SE.getConstant(C);
8174   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8175   assert(isa<SCEVConstant>(Val) &&
8176          "Evaluation of SCEV at constant didn't fold correctly?");
8177   return cast<SCEVConstant>(Val)->getValue();
8178 }
8179 
8180 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8181 /// compute the backedge execution count.
8182 ScalarEvolution::ExitLimit
8183 ScalarEvolution::computeLoadConstantCompareExitLimit(
8184   LoadInst *LI,
8185   Constant *RHS,
8186   const Loop *L,
8187   ICmpInst::Predicate predicate) {
8188   if (LI->isVolatile()) return getCouldNotCompute();
8189 
8190   // Check to see if the loaded pointer is a getelementptr of a global.
8191   // TODO: Use SCEV instead of manually grubbing with GEPs.
8192   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8193   if (!GEP) return getCouldNotCompute();
8194 
8195   // Make sure that it is really a constant global we are gepping, with an
8196   // initializer, and make sure the first IDX is really 0.
8197   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8198   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8199       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8200       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8201     return getCouldNotCompute();
8202 
8203   // Okay, we allow one non-constant index into the GEP instruction.
8204   Value *VarIdx = nullptr;
8205   std::vector<Constant*> Indexes;
8206   unsigned VarIdxNum = 0;
8207   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8208     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8209       Indexes.push_back(CI);
8210     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8211       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8212       VarIdx = GEP->getOperand(i);
8213       VarIdxNum = i-2;
8214       Indexes.push_back(nullptr);
8215     }
8216 
8217   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8218   if (!VarIdx)
8219     return getCouldNotCompute();
8220 
8221   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8222   // Check to see if X is a loop variant variable value now.
8223   const SCEV *Idx = getSCEV(VarIdx);
8224   Idx = getSCEVAtScope(Idx, L);
8225 
8226   // We can only recognize very limited forms of loop index expressions, in
8227   // particular, only affine AddRec's like {C1,+,C2}<L>.
8228   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8229   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8230       isLoopInvariant(IdxExpr, L) ||
8231       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8232       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8233     return getCouldNotCompute();
8234 
8235   unsigned MaxSteps = MaxBruteForceIterations;
8236   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8237     ConstantInt *ItCst = ConstantInt::get(
8238                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8239     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8240 
8241     // Form the GEP offset.
8242     Indexes[VarIdxNum] = Val;
8243 
8244     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8245                                                          Indexes);
8246     if (!Result) break;  // Cannot compute!
8247 
8248     // Evaluate the condition for this iteration.
8249     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8250     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8251     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8252       ++NumArrayLenItCounts;
8253       return getConstant(ItCst);   // Found terminating iteration!
8254     }
8255   }
8256   return getCouldNotCompute();
8257 }
8258 
8259 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8260     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8261   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8262   if (!RHS)
8263     return getCouldNotCompute();
8264 
8265   const BasicBlock *Latch = L->getLoopLatch();
8266   if (!Latch)
8267     return getCouldNotCompute();
8268 
8269   const BasicBlock *Predecessor = L->getLoopPredecessor();
8270   if (!Predecessor)
8271     return getCouldNotCompute();
8272 
8273   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8274   // Return LHS in OutLHS and shift_opt in OutOpCode.
8275   auto MatchPositiveShift =
8276       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8277 
8278     using namespace PatternMatch;
8279 
8280     ConstantInt *ShiftAmt;
8281     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8282       OutOpCode = Instruction::LShr;
8283     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8284       OutOpCode = Instruction::AShr;
8285     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8286       OutOpCode = Instruction::Shl;
8287     else
8288       return false;
8289 
8290     return ShiftAmt->getValue().isStrictlyPositive();
8291   };
8292 
8293   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8294   //
8295   // loop:
8296   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8297   //   %iv.shifted = lshr i32 %iv, <positive constant>
8298   //
8299   // Return true on a successful match.  Return the corresponding PHI node (%iv
8300   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8301   auto MatchShiftRecurrence =
8302       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8303     Optional<Instruction::BinaryOps> PostShiftOpCode;
8304 
8305     {
8306       Instruction::BinaryOps OpC;
8307       Value *V;
8308 
8309       // If we encounter a shift instruction, "peel off" the shift operation,
8310       // and remember that we did so.  Later when we inspect %iv's backedge
8311       // value, we will make sure that the backedge value uses the same
8312       // operation.
8313       //
8314       // Note: the peeled shift operation does not have to be the same
8315       // instruction as the one feeding into the PHI's backedge value.  We only
8316       // really care about it being the same *kind* of shift instruction --
8317       // that's all that is required for our later inferences to hold.
8318       if (MatchPositiveShift(LHS, V, OpC)) {
8319         PostShiftOpCode = OpC;
8320         LHS = V;
8321       }
8322     }
8323 
8324     PNOut = dyn_cast<PHINode>(LHS);
8325     if (!PNOut || PNOut->getParent() != L->getHeader())
8326       return false;
8327 
8328     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8329     Value *OpLHS;
8330 
8331     return
8332         // The backedge value for the PHI node must be a shift by a positive
8333         // amount
8334         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8335 
8336         // of the PHI node itself
8337         OpLHS == PNOut &&
8338 
8339         // and the kind of shift should be match the kind of shift we peeled
8340         // off, if any.
8341         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8342   };
8343 
8344   PHINode *PN;
8345   Instruction::BinaryOps OpCode;
8346   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8347     return getCouldNotCompute();
8348 
8349   const DataLayout &DL = getDataLayout();
8350 
8351   // The key rationale for this optimization is that for some kinds of shift
8352   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8353   // within a finite number of iterations.  If the condition guarding the
8354   // backedge (in the sense that the backedge is taken if the condition is true)
8355   // is false for the value the shift recurrence stabilizes to, then we know
8356   // that the backedge is taken only a finite number of times.
8357 
8358   ConstantInt *StableValue = nullptr;
8359   switch (OpCode) {
8360   default:
8361     llvm_unreachable("Impossible case!");
8362 
8363   case Instruction::AShr: {
8364     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8365     // bitwidth(K) iterations.
8366     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8367     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8368                                        Predecessor->getTerminator(), &DT);
8369     auto *Ty = cast<IntegerType>(RHS->getType());
8370     if (Known.isNonNegative())
8371       StableValue = ConstantInt::get(Ty, 0);
8372     else if (Known.isNegative())
8373       StableValue = ConstantInt::get(Ty, -1, true);
8374     else
8375       return getCouldNotCompute();
8376 
8377     break;
8378   }
8379   case Instruction::LShr:
8380   case Instruction::Shl:
8381     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8382     // stabilize to 0 in at most bitwidth(K) iterations.
8383     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8384     break;
8385   }
8386 
8387   auto *Result =
8388       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8389   assert(Result->getType()->isIntegerTy(1) &&
8390          "Otherwise cannot be an operand to a branch instruction");
8391 
8392   if (Result->isZeroValue()) {
8393     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8394     const SCEV *UpperBound =
8395         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8396     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8397   }
8398 
8399   return getCouldNotCompute();
8400 }
8401 
8402 /// Return true if we can constant fold an instruction of the specified type,
8403 /// assuming that all operands were constants.
8404 static bool CanConstantFold(const Instruction *I) {
8405   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8406       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8407       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8408     return true;
8409 
8410   if (const CallInst *CI = dyn_cast<CallInst>(I))
8411     if (const Function *F = CI->getCalledFunction())
8412       return canConstantFoldCallTo(CI, F);
8413   return false;
8414 }
8415 
8416 /// Determine whether this instruction can constant evolve within this loop
8417 /// assuming its operands can all constant evolve.
8418 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8419   // An instruction outside of the loop can't be derived from a loop PHI.
8420   if (!L->contains(I)) return false;
8421 
8422   if (isa<PHINode>(I)) {
8423     // We don't currently keep track of the control flow needed to evaluate
8424     // PHIs, so we cannot handle PHIs inside of loops.
8425     return L->getHeader() == I->getParent();
8426   }
8427 
8428   // If we won't be able to constant fold this expression even if the operands
8429   // are constants, bail early.
8430   return CanConstantFold(I);
8431 }
8432 
8433 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8434 /// recursing through each instruction operand until reaching a loop header phi.
8435 static PHINode *
8436 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8437                                DenseMap<Instruction *, PHINode *> &PHIMap,
8438                                unsigned Depth) {
8439   if (Depth > MaxConstantEvolvingDepth)
8440     return nullptr;
8441 
8442   // Otherwise, we can evaluate this instruction if all of its operands are
8443   // constant or derived from a PHI node themselves.
8444   PHINode *PHI = nullptr;
8445   for (Value *Op : UseInst->operands()) {
8446     if (isa<Constant>(Op)) continue;
8447 
8448     Instruction *OpInst = dyn_cast<Instruction>(Op);
8449     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8450 
8451     PHINode *P = dyn_cast<PHINode>(OpInst);
8452     if (!P)
8453       // If this operand is already visited, reuse the prior result.
8454       // We may have P != PHI if this is the deepest point at which the
8455       // inconsistent paths meet.
8456       P = PHIMap.lookup(OpInst);
8457     if (!P) {
8458       // Recurse and memoize the results, whether a phi is found or not.
8459       // This recursive call invalidates pointers into PHIMap.
8460       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8461       PHIMap[OpInst] = P;
8462     }
8463     if (!P)
8464       return nullptr;  // Not evolving from PHI
8465     if (PHI && PHI != P)
8466       return nullptr;  // Evolving from multiple different PHIs.
8467     PHI = P;
8468   }
8469   // This is a expression evolving from a constant PHI!
8470   return PHI;
8471 }
8472 
8473 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8474 /// in the loop that V is derived from.  We allow arbitrary operations along the
8475 /// way, but the operands of an operation must either be constants or a value
8476 /// derived from a constant PHI.  If this expression does not fit with these
8477 /// constraints, return null.
8478 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8479   Instruction *I = dyn_cast<Instruction>(V);
8480   if (!I || !canConstantEvolve(I, L)) return nullptr;
8481 
8482   if (PHINode *PN = dyn_cast<PHINode>(I))
8483     return PN;
8484 
8485   // Record non-constant instructions contained by the loop.
8486   DenseMap<Instruction *, PHINode *> PHIMap;
8487   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8488 }
8489 
8490 /// EvaluateExpression - Given an expression that passes the
8491 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8492 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8493 /// reason, return null.
8494 static Constant *EvaluateExpression(Value *V, const Loop *L,
8495                                     DenseMap<Instruction *, Constant *> &Vals,
8496                                     const DataLayout &DL,
8497                                     const TargetLibraryInfo *TLI) {
8498   // Convenient constant check, but redundant for recursive calls.
8499   if (Constant *C = dyn_cast<Constant>(V)) return C;
8500   Instruction *I = dyn_cast<Instruction>(V);
8501   if (!I) return nullptr;
8502 
8503   if (Constant *C = Vals.lookup(I)) return C;
8504 
8505   // An instruction inside the loop depends on a value outside the loop that we
8506   // weren't given a mapping for, or a value such as a call inside the loop.
8507   if (!canConstantEvolve(I, L)) return nullptr;
8508 
8509   // An unmapped PHI can be due to a branch or another loop inside this loop,
8510   // or due to this not being the initial iteration through a loop where we
8511   // couldn't compute the evolution of this particular PHI last time.
8512   if (isa<PHINode>(I)) return nullptr;
8513 
8514   std::vector<Constant*> Operands(I->getNumOperands());
8515 
8516   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8517     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8518     if (!Operand) {
8519       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8520       if (!Operands[i]) return nullptr;
8521       continue;
8522     }
8523     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8524     Vals[Operand] = C;
8525     if (!C) return nullptr;
8526     Operands[i] = C;
8527   }
8528 
8529   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8530     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8531                                            Operands[1], DL, TLI);
8532   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8533     if (!LI->isVolatile())
8534       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8535   }
8536   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8537 }
8538 
8539 
8540 // If every incoming value to PN except the one for BB is a specific Constant,
8541 // return that, else return nullptr.
8542 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8543   Constant *IncomingVal = nullptr;
8544 
8545   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8546     if (PN->getIncomingBlock(i) == BB)
8547       continue;
8548 
8549     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8550     if (!CurrentVal)
8551       return nullptr;
8552 
8553     if (IncomingVal != CurrentVal) {
8554       if (IncomingVal)
8555         return nullptr;
8556       IncomingVal = CurrentVal;
8557     }
8558   }
8559 
8560   return IncomingVal;
8561 }
8562 
8563 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8564 /// in the header of its containing loop, we know the loop executes a
8565 /// constant number of times, and the PHI node is just a recurrence
8566 /// involving constants, fold it.
8567 Constant *
8568 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8569                                                    const APInt &BEs,
8570                                                    const Loop *L) {
8571   auto I = ConstantEvolutionLoopExitValue.find(PN);
8572   if (I != ConstantEvolutionLoopExitValue.end())
8573     return I->second;
8574 
8575   if (BEs.ugt(MaxBruteForceIterations))
8576     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8577 
8578   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8579 
8580   DenseMap<Instruction *, Constant *> CurrentIterVals;
8581   BasicBlock *Header = L->getHeader();
8582   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8583 
8584   BasicBlock *Latch = L->getLoopLatch();
8585   if (!Latch)
8586     return nullptr;
8587 
8588   for (PHINode &PHI : Header->phis()) {
8589     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8590       CurrentIterVals[&PHI] = StartCST;
8591   }
8592   if (!CurrentIterVals.count(PN))
8593     return RetVal = nullptr;
8594 
8595   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8596 
8597   // Execute the loop symbolically to determine the exit value.
8598   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8599          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8600 
8601   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8602   unsigned IterationNum = 0;
8603   const DataLayout &DL = getDataLayout();
8604   for (; ; ++IterationNum) {
8605     if (IterationNum == NumIterations)
8606       return RetVal = CurrentIterVals[PN];  // Got exit value!
8607 
8608     // Compute the value of the PHIs for the next iteration.
8609     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8610     DenseMap<Instruction *, Constant *> NextIterVals;
8611     Constant *NextPHI =
8612         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8613     if (!NextPHI)
8614       return nullptr;        // Couldn't evaluate!
8615     NextIterVals[PN] = NextPHI;
8616 
8617     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8618 
8619     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8620     // cease to be able to evaluate one of them or if they stop evolving,
8621     // because that doesn't necessarily prevent us from computing PN.
8622     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8623     for (const auto &I : CurrentIterVals) {
8624       PHINode *PHI = dyn_cast<PHINode>(I.first);
8625       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8626       PHIsToCompute.emplace_back(PHI, I.second);
8627     }
8628     // We use two distinct loops because EvaluateExpression may invalidate any
8629     // iterators into CurrentIterVals.
8630     for (const auto &I : PHIsToCompute) {
8631       PHINode *PHI = I.first;
8632       Constant *&NextPHI = NextIterVals[PHI];
8633       if (!NextPHI) {   // Not already computed.
8634         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8635         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8636       }
8637       if (NextPHI != I.second)
8638         StoppedEvolving = false;
8639     }
8640 
8641     // If all entries in CurrentIterVals == NextIterVals then we can stop
8642     // iterating, the loop can't continue to change.
8643     if (StoppedEvolving)
8644       return RetVal = CurrentIterVals[PN];
8645 
8646     CurrentIterVals.swap(NextIterVals);
8647   }
8648 }
8649 
8650 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8651                                                           Value *Cond,
8652                                                           bool ExitWhen) {
8653   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8654   if (!PN) return getCouldNotCompute();
8655 
8656   // If the loop is canonicalized, the PHI will have exactly two entries.
8657   // That's the only form we support here.
8658   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8659 
8660   DenseMap<Instruction *, Constant *> CurrentIterVals;
8661   BasicBlock *Header = L->getHeader();
8662   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8663 
8664   BasicBlock *Latch = L->getLoopLatch();
8665   assert(Latch && "Should follow from NumIncomingValues == 2!");
8666 
8667   for (PHINode &PHI : Header->phis()) {
8668     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8669       CurrentIterVals[&PHI] = StartCST;
8670   }
8671   if (!CurrentIterVals.count(PN))
8672     return getCouldNotCompute();
8673 
8674   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8675   // the loop symbolically to determine when the condition gets a value of
8676   // "ExitWhen".
8677   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8678   const DataLayout &DL = getDataLayout();
8679   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8680     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8681         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8682 
8683     // Couldn't symbolically evaluate.
8684     if (!CondVal) return getCouldNotCompute();
8685 
8686     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8687       ++NumBruteForceTripCountsComputed;
8688       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8689     }
8690 
8691     // Update all the PHI nodes for the next iteration.
8692     DenseMap<Instruction *, Constant *> NextIterVals;
8693 
8694     // Create a list of which PHIs we need to compute. We want to do this before
8695     // calling EvaluateExpression on them because that may invalidate iterators
8696     // into CurrentIterVals.
8697     SmallVector<PHINode *, 8> PHIsToCompute;
8698     for (const auto &I : CurrentIterVals) {
8699       PHINode *PHI = dyn_cast<PHINode>(I.first);
8700       if (!PHI || PHI->getParent() != Header) continue;
8701       PHIsToCompute.push_back(PHI);
8702     }
8703     for (PHINode *PHI : PHIsToCompute) {
8704       Constant *&NextPHI = NextIterVals[PHI];
8705       if (NextPHI) continue;    // Already computed!
8706 
8707       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8708       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8709     }
8710     CurrentIterVals.swap(NextIterVals);
8711   }
8712 
8713   // Too many iterations were needed to evaluate.
8714   return getCouldNotCompute();
8715 }
8716 
8717 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8718   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8719       ValuesAtScopes[V];
8720   // Check to see if we've folded this expression at this loop before.
8721   for (auto &LS : Values)
8722     if (LS.first == L)
8723       return LS.second ? LS.second : V;
8724 
8725   Values.emplace_back(L, nullptr);
8726 
8727   // Otherwise compute it.
8728   const SCEV *C = computeSCEVAtScope(V, L);
8729   for (auto &LS : reverse(ValuesAtScopes[V]))
8730     if (LS.first == L) {
8731       LS.second = C;
8732       break;
8733     }
8734   return C;
8735 }
8736 
8737 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8738 /// will return Constants for objects which aren't represented by a
8739 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8740 /// Returns NULL if the SCEV isn't representable as a Constant.
8741 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8742   switch (V->getSCEVType()) {
8743   case scCouldNotCompute:
8744   case scAddRecExpr:
8745     return nullptr;
8746   case scConstant:
8747     return cast<SCEVConstant>(V)->getValue();
8748   case scUnknown:
8749     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8750   case scSignExtend: {
8751     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8752     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8753       return ConstantExpr::getSExt(CastOp, SS->getType());
8754     return nullptr;
8755   }
8756   case scZeroExtend: {
8757     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8758     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8759       return ConstantExpr::getZExt(CastOp, SZ->getType());
8760     return nullptr;
8761   }
8762   case scPtrToInt: {
8763     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8764     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8765       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8766 
8767     return nullptr;
8768   }
8769   case scTruncate: {
8770     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8771     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8772       return ConstantExpr::getTrunc(CastOp, ST->getType());
8773     return nullptr;
8774   }
8775   case scAddExpr: {
8776     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8777     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8778       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8779         unsigned AS = PTy->getAddressSpace();
8780         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8781         C = ConstantExpr::getBitCast(C, DestPtrTy);
8782       }
8783       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8784         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8785         if (!C2)
8786           return nullptr;
8787 
8788         // First pointer!
8789         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8790           unsigned AS = C2->getType()->getPointerAddressSpace();
8791           std::swap(C, C2);
8792           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8793           // The offsets have been converted to bytes.  We can add bytes to an
8794           // i8* by GEP with the byte count in the first index.
8795           C = ConstantExpr::getBitCast(C, DestPtrTy);
8796         }
8797 
8798         // Don't bother trying to sum two pointers. We probably can't
8799         // statically compute a load that results from it anyway.
8800         if (C2->getType()->isPointerTy())
8801           return nullptr;
8802 
8803         if (C->getType()->isPointerTy()) {
8804           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8805                                              C, C2);
8806         } else {
8807           C = ConstantExpr::getAdd(C, C2);
8808         }
8809       }
8810       return C;
8811     }
8812     return nullptr;
8813   }
8814   case scMulExpr: {
8815     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8816     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8817       // Don't bother with pointers at all.
8818       if (C->getType()->isPointerTy())
8819         return nullptr;
8820       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8821         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8822         if (!C2 || C2->getType()->isPointerTy())
8823           return nullptr;
8824         C = ConstantExpr::getMul(C, C2);
8825       }
8826       return C;
8827     }
8828     return nullptr;
8829   }
8830   case scUDivExpr: {
8831     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8832     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8833       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8834         if (LHS->getType() == RHS->getType())
8835           return ConstantExpr::getUDiv(LHS, RHS);
8836     return nullptr;
8837   }
8838   case scSMaxExpr:
8839   case scUMaxExpr:
8840   case scSMinExpr:
8841   case scUMinExpr:
8842     return nullptr; // TODO: smax, umax, smin, umax.
8843   }
8844   llvm_unreachable("Unknown SCEV kind!");
8845 }
8846 
8847 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8848   if (isa<SCEVConstant>(V)) return V;
8849 
8850   // If this instruction is evolved from a constant-evolving PHI, compute the
8851   // exit value from the loop without using SCEVs.
8852   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8853     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8854       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8855         const Loop *CurrLoop = this->LI[I->getParent()];
8856         // Looking for loop exit value.
8857         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8858             PN->getParent() == CurrLoop->getHeader()) {
8859           // Okay, there is no closed form solution for the PHI node.  Check
8860           // to see if the loop that contains it has a known backedge-taken
8861           // count.  If so, we may be able to force computation of the exit
8862           // value.
8863           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8864           // This trivial case can show up in some degenerate cases where
8865           // the incoming IR has not yet been fully simplified.
8866           if (BackedgeTakenCount->isZero()) {
8867             Value *InitValue = nullptr;
8868             bool MultipleInitValues = false;
8869             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8870               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8871                 if (!InitValue)
8872                   InitValue = PN->getIncomingValue(i);
8873                 else if (InitValue != PN->getIncomingValue(i)) {
8874                   MultipleInitValues = true;
8875                   break;
8876                 }
8877               }
8878             }
8879             if (!MultipleInitValues && InitValue)
8880               return getSCEV(InitValue);
8881           }
8882           // Do we have a loop invariant value flowing around the backedge
8883           // for a loop which must execute the backedge?
8884           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8885               isKnownPositive(BackedgeTakenCount) &&
8886               PN->getNumIncomingValues() == 2) {
8887 
8888             unsigned InLoopPred =
8889                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8890             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8891             if (CurrLoop->isLoopInvariant(BackedgeVal))
8892               return getSCEV(BackedgeVal);
8893           }
8894           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8895             // Okay, we know how many times the containing loop executes.  If
8896             // this is a constant evolving PHI node, get the final value at
8897             // the specified iteration number.
8898             Constant *RV = getConstantEvolutionLoopExitValue(
8899                 PN, BTCC->getAPInt(), CurrLoop);
8900             if (RV) return getSCEV(RV);
8901           }
8902         }
8903 
8904         // If there is a single-input Phi, evaluate it at our scope. If we can
8905         // prove that this replacement does not break LCSSA form, use new value.
8906         if (PN->getNumOperands() == 1) {
8907           const SCEV *Input = getSCEV(PN->getOperand(0));
8908           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8909           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8910           // for the simplest case just support constants.
8911           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8912         }
8913       }
8914 
8915       // Okay, this is an expression that we cannot symbolically evaluate
8916       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8917       // the arguments into constants, and if so, try to constant propagate the
8918       // result.  This is particularly useful for computing loop exit values.
8919       if (CanConstantFold(I)) {
8920         SmallVector<Constant *, 4> Operands;
8921         bool MadeImprovement = false;
8922         for (Value *Op : I->operands()) {
8923           if (Constant *C = dyn_cast<Constant>(Op)) {
8924             Operands.push_back(C);
8925             continue;
8926           }
8927 
8928           // If any of the operands is non-constant and if they are
8929           // non-integer and non-pointer, don't even try to analyze them
8930           // with scev techniques.
8931           if (!isSCEVable(Op->getType()))
8932             return V;
8933 
8934           const SCEV *OrigV = getSCEV(Op);
8935           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8936           MadeImprovement |= OrigV != OpV;
8937 
8938           Constant *C = BuildConstantFromSCEV(OpV);
8939           if (!C) return V;
8940           if (C->getType() != Op->getType())
8941             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8942                                                               Op->getType(),
8943                                                               false),
8944                                       C, Op->getType());
8945           Operands.push_back(C);
8946         }
8947 
8948         // Check to see if getSCEVAtScope actually made an improvement.
8949         if (MadeImprovement) {
8950           Constant *C = nullptr;
8951           const DataLayout &DL = getDataLayout();
8952           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8953             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8954                                                 Operands[1], DL, &TLI);
8955           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8956             if (!Load->isVolatile())
8957               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8958                                                DL);
8959           } else
8960             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8961           if (!C) return V;
8962           return getSCEV(C);
8963         }
8964       }
8965     }
8966 
8967     // This is some other type of SCEVUnknown, just return it.
8968     return V;
8969   }
8970 
8971   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8972     // Avoid performing the look-up in the common case where the specified
8973     // expression has no loop-variant portions.
8974     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8975       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8976       if (OpAtScope != Comm->getOperand(i)) {
8977         // Okay, at least one of these operands is loop variant but might be
8978         // foldable.  Build a new instance of the folded commutative expression.
8979         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8980                                             Comm->op_begin()+i);
8981         NewOps.push_back(OpAtScope);
8982 
8983         for (++i; i != e; ++i) {
8984           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8985           NewOps.push_back(OpAtScope);
8986         }
8987         if (isa<SCEVAddExpr>(Comm))
8988           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8989         if (isa<SCEVMulExpr>(Comm))
8990           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8991         if (isa<SCEVMinMaxExpr>(Comm))
8992           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8993         llvm_unreachable("Unknown commutative SCEV type!");
8994       }
8995     }
8996     // If we got here, all operands are loop invariant.
8997     return Comm;
8998   }
8999 
9000   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9001     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9002     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9003     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9004       return Div;   // must be loop invariant
9005     return getUDivExpr(LHS, RHS);
9006   }
9007 
9008   // If this is a loop recurrence for a loop that does not contain L, then we
9009   // are dealing with the final value computed by the loop.
9010   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9011     // First, attempt to evaluate each operand.
9012     // Avoid performing the look-up in the common case where the specified
9013     // expression has no loop-variant portions.
9014     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9015       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9016       if (OpAtScope == AddRec->getOperand(i))
9017         continue;
9018 
9019       // Okay, at least one of these operands is loop variant but might be
9020       // foldable.  Build a new instance of the folded commutative expression.
9021       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9022                                           AddRec->op_begin()+i);
9023       NewOps.push_back(OpAtScope);
9024       for (++i; i != e; ++i)
9025         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9026 
9027       const SCEV *FoldedRec =
9028         getAddRecExpr(NewOps, AddRec->getLoop(),
9029                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9030       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9031       // The addrec may be folded to a nonrecurrence, for example, if the
9032       // induction variable is multiplied by zero after constant folding. Go
9033       // ahead and return the folded value.
9034       if (!AddRec)
9035         return FoldedRec;
9036       break;
9037     }
9038 
9039     // If the scope is outside the addrec's loop, evaluate it by using the
9040     // loop exit value of the addrec.
9041     if (!AddRec->getLoop()->contains(L)) {
9042       // To evaluate this recurrence, we need to know how many times the AddRec
9043       // loop iterates.  Compute this now.
9044       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9045       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9046 
9047       // Then, evaluate the AddRec.
9048       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9049     }
9050 
9051     return AddRec;
9052   }
9053 
9054   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9055     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9056     if (Op == Cast->getOperand())
9057       return Cast;  // must be loop invariant
9058     return getZeroExtendExpr(Op, Cast->getType());
9059   }
9060 
9061   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9062     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9063     if (Op == Cast->getOperand())
9064       return Cast;  // must be loop invariant
9065     return getSignExtendExpr(Op, Cast->getType());
9066   }
9067 
9068   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9069     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9070     if (Op == Cast->getOperand())
9071       return Cast;  // must be loop invariant
9072     return getTruncateExpr(Op, Cast->getType());
9073   }
9074 
9075   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9076     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9077     if (Op == Cast->getOperand())
9078       return Cast; // must be loop invariant
9079     return getPtrToIntExpr(Op, Cast->getType());
9080   }
9081 
9082   llvm_unreachable("Unknown SCEV type!");
9083 }
9084 
9085 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9086   return getSCEVAtScope(getSCEV(V), L);
9087 }
9088 
9089 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9090   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9091     return stripInjectiveFunctions(ZExt->getOperand());
9092   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9093     return stripInjectiveFunctions(SExt->getOperand());
9094   return S;
9095 }
9096 
9097 /// Finds the minimum unsigned root of the following equation:
9098 ///
9099 ///     A * X = B (mod N)
9100 ///
9101 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9102 /// A and B isn't important.
9103 ///
9104 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9105 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9106                                                ScalarEvolution &SE) {
9107   uint32_t BW = A.getBitWidth();
9108   assert(BW == SE.getTypeSizeInBits(B->getType()));
9109   assert(A != 0 && "A must be non-zero.");
9110 
9111   // 1. D = gcd(A, N)
9112   //
9113   // The gcd of A and N may have only one prime factor: 2. The number of
9114   // trailing zeros in A is its multiplicity
9115   uint32_t Mult2 = A.countTrailingZeros();
9116   // D = 2^Mult2
9117 
9118   // 2. Check if B is divisible by D.
9119   //
9120   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9121   // is not less than multiplicity of this prime factor for D.
9122   if (SE.GetMinTrailingZeros(B) < Mult2)
9123     return SE.getCouldNotCompute();
9124 
9125   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9126   // modulo (N / D).
9127   //
9128   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9129   // (N / D) in general. The inverse itself always fits into BW bits, though,
9130   // so we immediately truncate it.
9131   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9132   APInt Mod(BW + 1, 0);
9133   Mod.setBit(BW - Mult2);  // Mod = N / D
9134   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9135 
9136   // 4. Compute the minimum unsigned root of the equation:
9137   // I * (B / D) mod (N / D)
9138   // To simplify the computation, we factor out the divide by D:
9139   // (I * B mod N) / D
9140   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9141   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9142 }
9143 
9144 /// For a given quadratic addrec, generate coefficients of the corresponding
9145 /// quadratic equation, multiplied by a common value to ensure that they are
9146 /// integers.
9147 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9148 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9149 /// were multiplied by, and BitWidth is the bit width of the original addrec
9150 /// coefficients.
9151 /// This function returns None if the addrec coefficients are not compile-
9152 /// time constants.
9153 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9154 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9155   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9156   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9157   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9158   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9159   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9160                     << *AddRec << '\n');
9161 
9162   // We currently can only solve this if the coefficients are constants.
9163   if (!LC || !MC || !NC) {
9164     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9165     return None;
9166   }
9167 
9168   APInt L = LC->getAPInt();
9169   APInt M = MC->getAPInt();
9170   APInt N = NC->getAPInt();
9171   assert(!N.isNullValue() && "This is not a quadratic addrec");
9172 
9173   unsigned BitWidth = LC->getAPInt().getBitWidth();
9174   unsigned NewWidth = BitWidth + 1;
9175   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9176                     << BitWidth << '\n');
9177   // The sign-extension (as opposed to a zero-extension) here matches the
9178   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9179   N = N.sext(NewWidth);
9180   M = M.sext(NewWidth);
9181   L = L.sext(NewWidth);
9182 
9183   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9184   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9185   //   L+M, L+2M+N, L+3M+3N, ...
9186   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9187   //
9188   // The equation Acc = 0 is then
9189   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9190   // In a quadratic form it becomes:
9191   //   N n^2 + (2M-N) n + 2L = 0.
9192 
9193   APInt A = N;
9194   APInt B = 2 * M - A;
9195   APInt C = 2 * L;
9196   APInt T = APInt(NewWidth, 2);
9197   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9198                     << "x + " << C << ", coeff bw: " << NewWidth
9199                     << ", multiplied by " << T << '\n');
9200   return std::make_tuple(A, B, C, T, BitWidth);
9201 }
9202 
9203 /// Helper function to compare optional APInts:
9204 /// (a) if X and Y both exist, return min(X, Y),
9205 /// (b) if neither X nor Y exist, return None,
9206 /// (c) if exactly one of X and Y exists, return that value.
9207 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9208   if (X.hasValue() && Y.hasValue()) {
9209     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9210     APInt XW = X->sextOrSelf(W);
9211     APInt YW = Y->sextOrSelf(W);
9212     return XW.slt(YW) ? *X : *Y;
9213   }
9214   if (!X.hasValue() && !Y.hasValue())
9215     return None;
9216   return X.hasValue() ? *X : *Y;
9217 }
9218 
9219 /// Helper function to truncate an optional APInt to a given BitWidth.
9220 /// When solving addrec-related equations, it is preferable to return a value
9221 /// that has the same bit width as the original addrec's coefficients. If the
9222 /// solution fits in the original bit width, truncate it (except for i1).
9223 /// Returning a value of a different bit width may inhibit some optimizations.
9224 ///
9225 /// In general, a solution to a quadratic equation generated from an addrec
9226 /// may require BW+1 bits, where BW is the bit width of the addrec's
9227 /// coefficients. The reason is that the coefficients of the quadratic
9228 /// equation are BW+1 bits wide (to avoid truncation when converting from
9229 /// the addrec to the equation).
9230 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9231   if (!X.hasValue())
9232     return None;
9233   unsigned W = X->getBitWidth();
9234   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9235     return X->trunc(BitWidth);
9236   return X;
9237 }
9238 
9239 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9240 /// iterations. The values L, M, N are assumed to be signed, and they
9241 /// should all have the same bit widths.
9242 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9243 /// where BW is the bit width of the addrec's coefficients.
9244 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9245 /// returned as such, otherwise the bit width of the returned value may
9246 /// be greater than BW.
9247 ///
9248 /// This function returns None if
9249 /// (a) the addrec coefficients are not constant, or
9250 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9251 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9252 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9253 static Optional<APInt>
9254 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9255   APInt A, B, C, M;
9256   unsigned BitWidth;
9257   auto T = GetQuadraticEquation(AddRec);
9258   if (!T.hasValue())
9259     return None;
9260 
9261   std::tie(A, B, C, M, BitWidth) = *T;
9262   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9263   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9264   if (!X.hasValue())
9265     return None;
9266 
9267   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9268   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9269   if (!V->isZero())
9270     return None;
9271 
9272   return TruncIfPossible(X, BitWidth);
9273 }
9274 
9275 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9276 /// iterations. The values M, N are assumed to be signed, and they
9277 /// should all have the same bit widths.
9278 /// Find the least n such that c(n) does not belong to the given range,
9279 /// while c(n-1) does.
9280 ///
9281 /// This function returns None if
9282 /// (a) the addrec coefficients are not constant, or
9283 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9284 ///     bounds of the range.
9285 static Optional<APInt>
9286 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9287                           const ConstantRange &Range, ScalarEvolution &SE) {
9288   assert(AddRec->getOperand(0)->isZero() &&
9289          "Starting value of addrec should be 0");
9290   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9291                     << Range << ", addrec " << *AddRec << '\n');
9292   // This case is handled in getNumIterationsInRange. Here we can assume that
9293   // we start in the range.
9294   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9295          "Addrec's initial value should be in range");
9296 
9297   APInt A, B, C, M;
9298   unsigned BitWidth;
9299   auto T = GetQuadraticEquation(AddRec);
9300   if (!T.hasValue())
9301     return None;
9302 
9303   // Be careful about the return value: there can be two reasons for not
9304   // returning an actual number. First, if no solutions to the equations
9305   // were found, and second, if the solutions don't leave the given range.
9306   // The first case means that the actual solution is "unknown", the second
9307   // means that it's known, but not valid. If the solution is unknown, we
9308   // cannot make any conclusions.
9309   // Return a pair: the optional solution and a flag indicating if the
9310   // solution was found.
9311   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9312     // Solve for signed overflow and unsigned overflow, pick the lower
9313     // solution.
9314     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9315                       << Bound << " (before multiplying by " << M << ")\n");
9316     Bound *= M; // The quadratic equation multiplier.
9317 
9318     Optional<APInt> SO = None;
9319     if (BitWidth > 1) {
9320       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9321                            "signed overflow\n");
9322       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9323     }
9324     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9325                          "unsigned overflow\n");
9326     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9327                                                               BitWidth+1);
9328 
9329     auto LeavesRange = [&] (const APInt &X) {
9330       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9331       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9332       if (Range.contains(V0->getValue()))
9333         return false;
9334       // X should be at least 1, so X-1 is non-negative.
9335       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9336       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9337       if (Range.contains(V1->getValue()))
9338         return true;
9339       return false;
9340     };
9341 
9342     // If SolveQuadraticEquationWrap returns None, it means that there can
9343     // be a solution, but the function failed to find it. We cannot treat it
9344     // as "no solution".
9345     if (!SO.hasValue() || !UO.hasValue())
9346       return { None, false };
9347 
9348     // Check the smaller value first to see if it leaves the range.
9349     // At this point, both SO and UO must have values.
9350     Optional<APInt> Min = MinOptional(SO, UO);
9351     if (LeavesRange(*Min))
9352       return { Min, true };
9353     Optional<APInt> Max = Min == SO ? UO : SO;
9354     if (LeavesRange(*Max))
9355       return { Max, true };
9356 
9357     // Solutions were found, but were eliminated, hence the "true".
9358     return { None, true };
9359   };
9360 
9361   std::tie(A, B, C, M, BitWidth) = *T;
9362   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9363   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9364   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9365   auto SL = SolveForBoundary(Lower);
9366   auto SU = SolveForBoundary(Upper);
9367   // If any of the solutions was unknown, no meaninigful conclusions can
9368   // be made.
9369   if (!SL.second || !SU.second)
9370     return None;
9371 
9372   // Claim: The correct solution is not some value between Min and Max.
9373   //
9374   // Justification: Assuming that Min and Max are different values, one of
9375   // them is when the first signed overflow happens, the other is when the
9376   // first unsigned overflow happens. Crossing the range boundary is only
9377   // possible via an overflow (treating 0 as a special case of it, modeling
9378   // an overflow as crossing k*2^W for some k).
9379   //
9380   // The interesting case here is when Min was eliminated as an invalid
9381   // solution, but Max was not. The argument is that if there was another
9382   // overflow between Min and Max, it would also have been eliminated if
9383   // it was considered.
9384   //
9385   // For a given boundary, it is possible to have two overflows of the same
9386   // type (signed/unsigned) without having the other type in between: this
9387   // can happen when the vertex of the parabola is between the iterations
9388   // corresponding to the overflows. This is only possible when the two
9389   // overflows cross k*2^W for the same k. In such case, if the second one
9390   // left the range (and was the first one to do so), the first overflow
9391   // would have to enter the range, which would mean that either we had left
9392   // the range before or that we started outside of it. Both of these cases
9393   // are contradictions.
9394   //
9395   // Claim: In the case where SolveForBoundary returns None, the correct
9396   // solution is not some value between the Max for this boundary and the
9397   // Min of the other boundary.
9398   //
9399   // Justification: Assume that we had such Max_A and Min_B corresponding
9400   // to range boundaries A and B and such that Max_A < Min_B. If there was
9401   // a solution between Max_A and Min_B, it would have to be caused by an
9402   // overflow corresponding to either A or B. It cannot correspond to B,
9403   // since Min_B is the first occurrence of such an overflow. If it
9404   // corresponded to A, it would have to be either a signed or an unsigned
9405   // overflow that is larger than both eliminated overflows for A. But
9406   // between the eliminated overflows and this overflow, the values would
9407   // cover the entire value space, thus crossing the other boundary, which
9408   // is a contradiction.
9409 
9410   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9411 }
9412 
9413 ScalarEvolution::ExitLimit
9414 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9415                               bool AllowPredicates) {
9416 
9417   // This is only used for loops with a "x != y" exit test. The exit condition
9418   // is now expressed as a single expression, V = x-y. So the exit test is
9419   // effectively V != 0.  We know and take advantage of the fact that this
9420   // expression only being used in a comparison by zero context.
9421 
9422   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9423   // If the value is a constant
9424   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9425     // If the value is already zero, the branch will execute zero times.
9426     if (C->getValue()->isZero()) return C;
9427     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9428   }
9429 
9430   const SCEVAddRecExpr *AddRec =
9431       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9432 
9433   if (!AddRec && AllowPredicates)
9434     // Try to make this an AddRec using runtime tests, in the first X
9435     // iterations of this loop, where X is the SCEV expression found by the
9436     // algorithm below.
9437     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9438 
9439   if (!AddRec || AddRec->getLoop() != L)
9440     return getCouldNotCompute();
9441 
9442   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9443   // the quadratic equation to solve it.
9444   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9445     // We can only use this value if the chrec ends up with an exact zero
9446     // value at this index.  When solving for "X*X != 5", for example, we
9447     // should not accept a root of 2.
9448     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9449       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9450       return ExitLimit(R, R, false, Predicates);
9451     }
9452     return getCouldNotCompute();
9453   }
9454 
9455   // Otherwise we can only handle this if it is affine.
9456   if (!AddRec->isAffine())
9457     return getCouldNotCompute();
9458 
9459   // If this is an affine expression, the execution count of this branch is
9460   // the minimum unsigned root of the following equation:
9461   //
9462   //     Start + Step*N = 0 (mod 2^BW)
9463   //
9464   // equivalent to:
9465   //
9466   //             Step*N = -Start (mod 2^BW)
9467   //
9468   // where BW is the common bit width of Start and Step.
9469 
9470   // Get the initial value for the loop.
9471   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9472   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9473 
9474   // For now we handle only constant steps.
9475   //
9476   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9477   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9478   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9479   // We have not yet seen any such cases.
9480   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9481   if (!StepC || StepC->getValue()->isZero())
9482     return getCouldNotCompute();
9483 
9484   // For positive steps (counting up until unsigned overflow):
9485   //   N = -Start/Step (as unsigned)
9486   // For negative steps (counting down to zero):
9487   //   N = Start/-Step
9488   // First compute the unsigned distance from zero in the direction of Step.
9489   bool CountDown = StepC->getAPInt().isNegative();
9490   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9491 
9492   // Handle unitary steps, which cannot wraparound.
9493   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9494   //   N = Distance (as unsigned)
9495   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9496     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9497     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9498     if (MaxBECountBase.ult(MaxBECount))
9499       MaxBECount = MaxBECountBase;
9500 
9501     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9502     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9503     // case, and see if we can improve the bound.
9504     //
9505     // Explicitly handling this here is necessary because getUnsignedRange
9506     // isn't context-sensitive; it doesn't know that we only care about the
9507     // range inside the loop.
9508     const SCEV *Zero = getZero(Distance->getType());
9509     const SCEV *One = getOne(Distance->getType());
9510     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9511     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9512       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9513       // as "unsigned_max(Distance + 1) - 1".
9514       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9515       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9516     }
9517     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9518   }
9519 
9520   // If the condition controls loop exit (the loop exits only if the expression
9521   // is true) and the addition is no-wrap we can use unsigned divide to
9522   // compute the backedge count.  In this case, the step may not divide the
9523   // distance, but we don't care because if the condition is "missed" the loop
9524   // will have undefined behavior due to wrapping.
9525   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9526       loopHasNoAbnormalExits(AddRec->getLoop())) {
9527     const SCEV *Exact =
9528         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9529     const SCEV *Max = getCouldNotCompute();
9530     if (Exact != getCouldNotCompute()) {
9531       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9532       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9533       if (BaseMaxInt.ult(MaxInt))
9534         Max = getConstant(BaseMaxInt);
9535       else
9536         Max = getConstant(MaxInt);
9537     }
9538     return ExitLimit(Exact, Max, false, Predicates);
9539   }
9540 
9541   // Solve the general equation.
9542   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9543                                                getNegativeSCEV(Start), *this);
9544   const SCEV *M = E == getCouldNotCompute()
9545                       ? E
9546                       : getConstant(getUnsignedRangeMax(E));
9547   return ExitLimit(E, M, false, Predicates);
9548 }
9549 
9550 ScalarEvolution::ExitLimit
9551 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9552   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9553   // handle them yet except for the trivial case.  This could be expanded in the
9554   // future as needed.
9555 
9556   // If the value is a constant, check to see if it is known to be non-zero
9557   // already.  If so, the backedge will execute zero times.
9558   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9559     if (!C->getValue()->isZero())
9560       return getZero(C->getType());
9561     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9562   }
9563 
9564   // We could implement others, but I really doubt anyone writes loops like
9565   // this, and if they did, they would already be constant folded.
9566   return getCouldNotCompute();
9567 }
9568 
9569 std::pair<const BasicBlock *, const BasicBlock *>
9570 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9571     const {
9572   // If the block has a unique predecessor, then there is no path from the
9573   // predecessor to the block that does not go through the direct edge
9574   // from the predecessor to the block.
9575   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9576     return {Pred, BB};
9577 
9578   // A loop's header is defined to be a block that dominates the loop.
9579   // If the header has a unique predecessor outside the loop, it must be
9580   // a block that has exactly one successor that can reach the loop.
9581   if (const Loop *L = LI.getLoopFor(BB))
9582     return {L->getLoopPredecessor(), L->getHeader()};
9583 
9584   return {nullptr, nullptr};
9585 }
9586 
9587 /// SCEV structural equivalence is usually sufficient for testing whether two
9588 /// expressions are equal, however for the purposes of looking for a condition
9589 /// guarding a loop, it can be useful to be a little more general, since a
9590 /// front-end may have replicated the controlling expression.
9591 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9592   // Quick check to see if they are the same SCEV.
9593   if (A == B) return true;
9594 
9595   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9596     // Not all instructions that are "identical" compute the same value.  For
9597     // instance, two distinct alloca instructions allocating the same type are
9598     // identical and do not read memory; but compute distinct values.
9599     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9600   };
9601 
9602   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9603   // two different instructions with the same value. Check for this case.
9604   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9605     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9606       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9607         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9608           if (ComputesEqualValues(AI, BI))
9609             return true;
9610 
9611   // Otherwise assume they may have a different value.
9612   return false;
9613 }
9614 
9615 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9616                                            const SCEV *&LHS, const SCEV *&RHS,
9617                                            unsigned Depth) {
9618   bool Changed = false;
9619   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9620   // '0 != 0'.
9621   auto TrivialCase = [&](bool TriviallyTrue) {
9622     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9623     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9624     return true;
9625   };
9626   // If we hit the max recursion limit bail out.
9627   if (Depth >= 3)
9628     return false;
9629 
9630   // Canonicalize a constant to the right side.
9631   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9632     // Check for both operands constant.
9633     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9634       if (ConstantExpr::getICmp(Pred,
9635                                 LHSC->getValue(),
9636                                 RHSC->getValue())->isNullValue())
9637         return TrivialCase(false);
9638       else
9639         return TrivialCase(true);
9640     }
9641     // Otherwise swap the operands to put the constant on the right.
9642     std::swap(LHS, RHS);
9643     Pred = ICmpInst::getSwappedPredicate(Pred);
9644     Changed = true;
9645   }
9646 
9647   // If we're comparing an addrec with a value which is loop-invariant in the
9648   // addrec's loop, put the addrec on the left. Also make a dominance check,
9649   // as both operands could be addrecs loop-invariant in each other's loop.
9650   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9651     const Loop *L = AR->getLoop();
9652     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9653       std::swap(LHS, RHS);
9654       Pred = ICmpInst::getSwappedPredicate(Pred);
9655       Changed = true;
9656     }
9657   }
9658 
9659   // If there's a constant operand, canonicalize comparisons with boundary
9660   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9661   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9662     const APInt &RA = RC->getAPInt();
9663 
9664     bool SimplifiedByConstantRange = false;
9665 
9666     if (!ICmpInst::isEquality(Pred)) {
9667       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9668       if (ExactCR.isFullSet())
9669         return TrivialCase(true);
9670       else if (ExactCR.isEmptySet())
9671         return TrivialCase(false);
9672 
9673       APInt NewRHS;
9674       CmpInst::Predicate NewPred;
9675       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9676           ICmpInst::isEquality(NewPred)) {
9677         // We were able to convert an inequality to an equality.
9678         Pred = NewPred;
9679         RHS = getConstant(NewRHS);
9680         Changed = SimplifiedByConstantRange = true;
9681       }
9682     }
9683 
9684     if (!SimplifiedByConstantRange) {
9685       switch (Pred) {
9686       default:
9687         break;
9688       case ICmpInst::ICMP_EQ:
9689       case ICmpInst::ICMP_NE:
9690         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9691         if (!RA)
9692           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9693             if (const SCEVMulExpr *ME =
9694                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9695               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9696                   ME->getOperand(0)->isAllOnesValue()) {
9697                 RHS = AE->getOperand(1);
9698                 LHS = ME->getOperand(1);
9699                 Changed = true;
9700               }
9701         break;
9702 
9703 
9704         // The "Should have been caught earlier!" messages refer to the fact
9705         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9706         // should have fired on the corresponding cases, and canonicalized the
9707         // check to trivial case.
9708 
9709       case ICmpInst::ICMP_UGE:
9710         assert(!RA.isMinValue() && "Should have been caught earlier!");
9711         Pred = ICmpInst::ICMP_UGT;
9712         RHS = getConstant(RA - 1);
9713         Changed = true;
9714         break;
9715       case ICmpInst::ICMP_ULE:
9716         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9717         Pred = ICmpInst::ICMP_ULT;
9718         RHS = getConstant(RA + 1);
9719         Changed = true;
9720         break;
9721       case ICmpInst::ICMP_SGE:
9722         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9723         Pred = ICmpInst::ICMP_SGT;
9724         RHS = getConstant(RA - 1);
9725         Changed = true;
9726         break;
9727       case ICmpInst::ICMP_SLE:
9728         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9729         Pred = ICmpInst::ICMP_SLT;
9730         RHS = getConstant(RA + 1);
9731         Changed = true;
9732         break;
9733       }
9734     }
9735   }
9736 
9737   // Check for obvious equality.
9738   if (HasSameValue(LHS, RHS)) {
9739     if (ICmpInst::isTrueWhenEqual(Pred))
9740       return TrivialCase(true);
9741     if (ICmpInst::isFalseWhenEqual(Pred))
9742       return TrivialCase(false);
9743   }
9744 
9745   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9746   // adding or subtracting 1 from one of the operands.
9747   switch (Pred) {
9748   case ICmpInst::ICMP_SLE:
9749     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9750       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9751                        SCEV::FlagNSW);
9752       Pred = ICmpInst::ICMP_SLT;
9753       Changed = true;
9754     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9755       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9756                        SCEV::FlagNSW);
9757       Pred = ICmpInst::ICMP_SLT;
9758       Changed = true;
9759     }
9760     break;
9761   case ICmpInst::ICMP_SGE:
9762     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9763       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9764                        SCEV::FlagNSW);
9765       Pred = ICmpInst::ICMP_SGT;
9766       Changed = true;
9767     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9768       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9769                        SCEV::FlagNSW);
9770       Pred = ICmpInst::ICMP_SGT;
9771       Changed = true;
9772     }
9773     break;
9774   case ICmpInst::ICMP_ULE:
9775     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9776       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9777                        SCEV::FlagNUW);
9778       Pred = ICmpInst::ICMP_ULT;
9779       Changed = true;
9780     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9781       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9782       Pred = ICmpInst::ICMP_ULT;
9783       Changed = true;
9784     }
9785     break;
9786   case ICmpInst::ICMP_UGE:
9787     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9788       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9789       Pred = ICmpInst::ICMP_UGT;
9790       Changed = true;
9791     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9792       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9793                        SCEV::FlagNUW);
9794       Pred = ICmpInst::ICMP_UGT;
9795       Changed = true;
9796     }
9797     break;
9798   default:
9799     break;
9800   }
9801 
9802   // TODO: More simplifications are possible here.
9803 
9804   // Recursively simplify until we either hit a recursion limit or nothing
9805   // changes.
9806   if (Changed)
9807     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9808 
9809   return Changed;
9810 }
9811 
9812 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9813   return getSignedRangeMax(S).isNegative();
9814 }
9815 
9816 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9817   return getSignedRangeMin(S).isStrictlyPositive();
9818 }
9819 
9820 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9821   return !getSignedRangeMin(S).isNegative();
9822 }
9823 
9824 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9825   return !getSignedRangeMax(S).isStrictlyPositive();
9826 }
9827 
9828 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9829   return getUnsignedRangeMin(S) != 0;
9830 }
9831 
9832 std::pair<const SCEV *, const SCEV *>
9833 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9834   // Compute SCEV on entry of loop L.
9835   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9836   if (Start == getCouldNotCompute())
9837     return { Start, Start };
9838   // Compute post increment SCEV for loop L.
9839   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9840   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9841   return { Start, PostInc };
9842 }
9843 
9844 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9845                                           const SCEV *LHS, const SCEV *RHS) {
9846   // First collect all loops.
9847   SmallPtrSet<const Loop *, 8> LoopsUsed;
9848   getUsedLoops(LHS, LoopsUsed);
9849   getUsedLoops(RHS, LoopsUsed);
9850 
9851   if (LoopsUsed.empty())
9852     return false;
9853 
9854   // Domination relationship must be a linear order on collected loops.
9855 #ifndef NDEBUG
9856   for (auto *L1 : LoopsUsed)
9857     for (auto *L2 : LoopsUsed)
9858       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9859               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9860              "Domination relationship is not a linear order");
9861 #endif
9862 
9863   const Loop *MDL =
9864       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9865                         [&](const Loop *L1, const Loop *L2) {
9866          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9867        });
9868 
9869   // Get init and post increment value for LHS.
9870   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9871   // if LHS contains unknown non-invariant SCEV then bail out.
9872   if (SplitLHS.first == getCouldNotCompute())
9873     return false;
9874   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9875   // Get init and post increment value for RHS.
9876   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9877   // if RHS contains unknown non-invariant SCEV then bail out.
9878   if (SplitRHS.first == getCouldNotCompute())
9879     return false;
9880   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9881   // It is possible that init SCEV contains an invariant load but it does
9882   // not dominate MDL and is not available at MDL loop entry, so we should
9883   // check it here.
9884   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9885       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9886     return false;
9887 
9888   // It seems backedge guard check is faster than entry one so in some cases
9889   // it can speed up whole estimation by short circuit
9890   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9891                                      SplitRHS.second) &&
9892          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9893 }
9894 
9895 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9896                                        const SCEV *LHS, const SCEV *RHS) {
9897   // Canonicalize the inputs first.
9898   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9899 
9900   if (isKnownViaInduction(Pred, LHS, RHS))
9901     return true;
9902 
9903   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9904     return true;
9905 
9906   // Otherwise see what can be done with some simple reasoning.
9907   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9908 }
9909 
9910 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9911                                                   const SCEV *LHS,
9912                                                   const SCEV *RHS) {
9913   if (isKnownPredicate(Pred, LHS, RHS))
9914     return true;
9915   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9916     return false;
9917   return None;
9918 }
9919 
9920 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9921                                          const SCEV *LHS, const SCEV *RHS,
9922                                          const Instruction *Context) {
9923   // TODO: Analyze guards and assumes from Context's block.
9924   return isKnownPredicate(Pred, LHS, RHS) ||
9925          isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS);
9926 }
9927 
9928 Optional<bool>
9929 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS,
9930                                      const SCEV *RHS,
9931                                      const Instruction *Context) {
9932   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9933   if (KnownWithoutContext)
9934     return KnownWithoutContext;
9935 
9936   if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS))
9937     return true;
9938   else if (isBasicBlockEntryGuardedByCond(Context->getParent(),
9939                                           ICmpInst::getInversePredicate(Pred),
9940                                           LHS, RHS))
9941     return false;
9942   return None;
9943 }
9944 
9945 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9946                                               const SCEVAddRecExpr *LHS,
9947                                               const SCEV *RHS) {
9948   const Loop *L = LHS->getLoop();
9949   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9950          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9951 }
9952 
9953 Optional<ScalarEvolution::MonotonicPredicateType>
9954 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9955                                            ICmpInst::Predicate Pred) {
9956   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9957 
9958 #ifndef NDEBUG
9959   // Verify an invariant: inverting the predicate should turn a monotonically
9960   // increasing change to a monotonically decreasing one, and vice versa.
9961   if (Result) {
9962     auto ResultSwapped =
9963         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9964 
9965     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9966     assert(ResultSwapped.getValue() != Result.getValue() &&
9967            "monotonicity should flip as we flip the predicate");
9968   }
9969 #endif
9970 
9971   return Result;
9972 }
9973 
9974 Optional<ScalarEvolution::MonotonicPredicateType>
9975 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9976                                                ICmpInst::Predicate Pred) {
9977   // A zero step value for LHS means the induction variable is essentially a
9978   // loop invariant value. We don't really depend on the predicate actually
9979   // flipping from false to true (for increasing predicates, and the other way
9980   // around for decreasing predicates), all we care about is that *if* the
9981   // predicate changes then it only changes from false to true.
9982   //
9983   // A zero step value in itself is not very useful, but there may be places
9984   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9985   // as general as possible.
9986 
9987   // Only handle LE/LT/GE/GT predicates.
9988   if (!ICmpInst::isRelational(Pred))
9989     return None;
9990 
9991   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9992   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9993          "Should be greater or less!");
9994 
9995   // Check that AR does not wrap.
9996   if (ICmpInst::isUnsigned(Pred)) {
9997     if (!LHS->hasNoUnsignedWrap())
9998       return None;
9999     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10000   } else {
10001     assert(ICmpInst::isSigned(Pred) &&
10002            "Relational predicate is either signed or unsigned!");
10003     if (!LHS->hasNoSignedWrap())
10004       return None;
10005 
10006     const SCEV *Step = LHS->getStepRecurrence(*this);
10007 
10008     if (isKnownNonNegative(Step))
10009       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10010 
10011     if (isKnownNonPositive(Step))
10012       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10013 
10014     return None;
10015   }
10016 }
10017 
10018 Optional<ScalarEvolution::LoopInvariantPredicate>
10019 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10020                                            const SCEV *LHS, const SCEV *RHS,
10021                                            const Loop *L) {
10022 
10023   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10024   if (!isLoopInvariant(RHS, L)) {
10025     if (!isLoopInvariant(LHS, L))
10026       return None;
10027 
10028     std::swap(LHS, RHS);
10029     Pred = ICmpInst::getSwappedPredicate(Pred);
10030   }
10031 
10032   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10033   if (!ArLHS || ArLHS->getLoop() != L)
10034     return None;
10035 
10036   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10037   if (!MonotonicType)
10038     return None;
10039   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10040   // true as the loop iterates, and the backedge is control dependent on
10041   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10042   //
10043   //   * if the predicate was false in the first iteration then the predicate
10044   //     is never evaluated again, since the loop exits without taking the
10045   //     backedge.
10046   //   * if the predicate was true in the first iteration then it will
10047   //     continue to be true for all future iterations since it is
10048   //     monotonically increasing.
10049   //
10050   // For both the above possibilities, we can replace the loop varying
10051   // predicate with its value on the first iteration of the loop (which is
10052   // loop invariant).
10053   //
10054   // A similar reasoning applies for a monotonically decreasing predicate, by
10055   // replacing true with false and false with true in the above two bullets.
10056   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10057   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10058 
10059   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10060     return None;
10061 
10062   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10063 }
10064 
10065 Optional<ScalarEvolution::LoopInvariantPredicate>
10066 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10067     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10068     const Instruction *Context, const SCEV *MaxIter) {
10069   // Try to prove the following set of facts:
10070   // - The predicate is monotonic in the iteration space.
10071   // - If the check does not fail on the 1st iteration:
10072   //   - No overflow will happen during first MaxIter iterations;
10073   //   - It will not fail on the MaxIter'th iteration.
10074   // If the check does fail on the 1st iteration, we leave the loop and no
10075   // other checks matter.
10076 
10077   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10078   if (!isLoopInvariant(RHS, L)) {
10079     if (!isLoopInvariant(LHS, L))
10080       return None;
10081 
10082     std::swap(LHS, RHS);
10083     Pred = ICmpInst::getSwappedPredicate(Pred);
10084   }
10085 
10086   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10087   if (!AR || AR->getLoop() != L)
10088     return None;
10089 
10090   // The predicate must be relational (i.e. <, <=, >=, >).
10091   if (!ICmpInst::isRelational(Pred))
10092     return None;
10093 
10094   // TODO: Support steps other than +/- 1.
10095   const SCEV *Step = AR->getStepRecurrence(*this);
10096   auto *One = getOne(Step->getType());
10097   auto *MinusOne = getNegativeSCEV(One);
10098   if (Step != One && Step != MinusOne)
10099     return None;
10100 
10101   // Type mismatch here means that MaxIter is potentially larger than max
10102   // unsigned value in start type, which mean we cannot prove no wrap for the
10103   // indvar.
10104   if (AR->getType() != MaxIter->getType())
10105     return None;
10106 
10107   // Value of IV on suggested last iteration.
10108   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10109   // Does it still meet the requirement?
10110   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10111     return None;
10112   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10113   // not exceed max unsigned value of this type), this effectively proves
10114   // that there is no wrap during the iteration. To prove that there is no
10115   // signed/unsigned wrap, we need to check that
10116   // Start <= Last for step = 1 or Start >= Last for step = -1.
10117   ICmpInst::Predicate NoOverflowPred =
10118       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10119   if (Step == MinusOne)
10120     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10121   const SCEV *Start = AR->getStart();
10122   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context))
10123     return None;
10124 
10125   // Everything is fine.
10126   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10127 }
10128 
10129 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10130     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10131   if (HasSameValue(LHS, RHS))
10132     return ICmpInst::isTrueWhenEqual(Pred);
10133 
10134   // This code is split out from isKnownPredicate because it is called from
10135   // within isLoopEntryGuardedByCond.
10136 
10137   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10138                          const ConstantRange &RangeRHS) {
10139     return RangeLHS.icmp(Pred, RangeRHS);
10140   };
10141 
10142   // The check at the top of the function catches the case where the values are
10143   // known to be equal.
10144   if (Pred == CmpInst::ICMP_EQ)
10145     return false;
10146 
10147   if (Pred == CmpInst::ICMP_NE) {
10148     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10149         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10150       return true;
10151     auto *Diff = getMinusSCEV(LHS, RHS);
10152     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10153   }
10154 
10155   if (CmpInst::isSigned(Pred))
10156     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10157 
10158   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10159 }
10160 
10161 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10162                                                     const SCEV *LHS,
10163                                                     const SCEV *RHS) {
10164   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10165   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10166   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10167   // OutC1 and OutC2.
10168   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10169                                       APInt &OutC1, APInt &OutC2,
10170                                       SCEV::NoWrapFlags ExpectedFlags) {
10171     const SCEV *XNonConstOp, *XConstOp;
10172     const SCEV *YNonConstOp, *YConstOp;
10173     SCEV::NoWrapFlags XFlagsPresent;
10174     SCEV::NoWrapFlags YFlagsPresent;
10175 
10176     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10177       XConstOp = getZero(X->getType());
10178       XNonConstOp = X;
10179       XFlagsPresent = ExpectedFlags;
10180     }
10181     if (!isa<SCEVConstant>(XConstOp) ||
10182         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10183       return false;
10184 
10185     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10186       YConstOp = getZero(Y->getType());
10187       YNonConstOp = Y;
10188       YFlagsPresent = ExpectedFlags;
10189     }
10190 
10191     if (!isa<SCEVConstant>(YConstOp) ||
10192         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10193       return false;
10194 
10195     if (YNonConstOp != XNonConstOp)
10196       return false;
10197 
10198     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10199     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10200 
10201     return true;
10202   };
10203 
10204   APInt C1;
10205   APInt C2;
10206 
10207   switch (Pred) {
10208   default:
10209     break;
10210 
10211   case ICmpInst::ICMP_SGE:
10212     std::swap(LHS, RHS);
10213     LLVM_FALLTHROUGH;
10214   case ICmpInst::ICMP_SLE:
10215     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10216     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10217       return true;
10218 
10219     break;
10220 
10221   case ICmpInst::ICMP_SGT:
10222     std::swap(LHS, RHS);
10223     LLVM_FALLTHROUGH;
10224   case ICmpInst::ICMP_SLT:
10225     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10226     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10227       return true;
10228 
10229     break;
10230 
10231   case ICmpInst::ICMP_UGE:
10232     std::swap(LHS, RHS);
10233     LLVM_FALLTHROUGH;
10234   case ICmpInst::ICMP_ULE:
10235     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10236     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10237       return true;
10238 
10239     break;
10240 
10241   case ICmpInst::ICMP_UGT:
10242     std::swap(LHS, RHS);
10243     LLVM_FALLTHROUGH;
10244   case ICmpInst::ICMP_ULT:
10245     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10246     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10247       return true;
10248     break;
10249   }
10250 
10251   return false;
10252 }
10253 
10254 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10255                                                    const SCEV *LHS,
10256                                                    const SCEV *RHS) {
10257   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10258     return false;
10259 
10260   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10261   // the stack can result in exponential time complexity.
10262   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10263 
10264   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10265   //
10266   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10267   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10268   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10269   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10270   // use isKnownPredicate later if needed.
10271   return isKnownNonNegative(RHS) &&
10272          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10273          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10274 }
10275 
10276 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10277                                         ICmpInst::Predicate Pred,
10278                                         const SCEV *LHS, const SCEV *RHS) {
10279   // No need to even try if we know the module has no guards.
10280   if (!HasGuards)
10281     return false;
10282 
10283   return any_of(*BB, [&](const Instruction &I) {
10284     using namespace llvm::PatternMatch;
10285 
10286     Value *Condition;
10287     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10288                          m_Value(Condition))) &&
10289            isImpliedCond(Pred, LHS, RHS, Condition, false);
10290   });
10291 }
10292 
10293 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10294 /// protected by a conditional between LHS and RHS.  This is used to
10295 /// to eliminate casts.
10296 bool
10297 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10298                                              ICmpInst::Predicate Pred,
10299                                              const SCEV *LHS, const SCEV *RHS) {
10300   // Interpret a null as meaning no loop, where there is obviously no guard
10301   // (interprocedural conditions notwithstanding).
10302   if (!L) return true;
10303 
10304   if (VerifyIR)
10305     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10306            "This cannot be done on broken IR!");
10307 
10308 
10309   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10310     return true;
10311 
10312   BasicBlock *Latch = L->getLoopLatch();
10313   if (!Latch)
10314     return false;
10315 
10316   BranchInst *LoopContinuePredicate =
10317     dyn_cast<BranchInst>(Latch->getTerminator());
10318   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10319       isImpliedCond(Pred, LHS, RHS,
10320                     LoopContinuePredicate->getCondition(),
10321                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10322     return true;
10323 
10324   // We don't want more than one activation of the following loops on the stack
10325   // -- that can lead to O(n!) time complexity.
10326   if (WalkingBEDominatingConds)
10327     return false;
10328 
10329   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10330 
10331   // See if we can exploit a trip count to prove the predicate.
10332   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10333   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10334   if (LatchBECount != getCouldNotCompute()) {
10335     // We know that Latch branches back to the loop header exactly
10336     // LatchBECount times.  This means the backdege condition at Latch is
10337     // equivalent to  "{0,+,1} u< LatchBECount".
10338     Type *Ty = LatchBECount->getType();
10339     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10340     const SCEV *LoopCounter =
10341       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10342     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10343                       LatchBECount))
10344       return true;
10345   }
10346 
10347   // Check conditions due to any @llvm.assume intrinsics.
10348   for (auto &AssumeVH : AC.assumptions()) {
10349     if (!AssumeVH)
10350       continue;
10351     auto *CI = cast<CallInst>(AssumeVH);
10352     if (!DT.dominates(CI, Latch->getTerminator()))
10353       continue;
10354 
10355     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10356       return true;
10357   }
10358 
10359   // If the loop is not reachable from the entry block, we risk running into an
10360   // infinite loop as we walk up into the dom tree.  These loops do not matter
10361   // anyway, so we just return a conservative answer when we see them.
10362   if (!DT.isReachableFromEntry(L->getHeader()))
10363     return false;
10364 
10365   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10366     return true;
10367 
10368   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10369        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10370     assert(DTN && "should reach the loop header before reaching the root!");
10371 
10372     BasicBlock *BB = DTN->getBlock();
10373     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10374       return true;
10375 
10376     BasicBlock *PBB = BB->getSinglePredecessor();
10377     if (!PBB)
10378       continue;
10379 
10380     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10381     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10382       continue;
10383 
10384     Value *Condition = ContinuePredicate->getCondition();
10385 
10386     // If we have an edge `E` within the loop body that dominates the only
10387     // latch, the condition guarding `E` also guards the backedge.  This
10388     // reasoning works only for loops with a single latch.
10389 
10390     BasicBlockEdge DominatingEdge(PBB, BB);
10391     if (DominatingEdge.isSingleEdge()) {
10392       // We're constructively (and conservatively) enumerating edges within the
10393       // loop body that dominate the latch.  The dominator tree better agree
10394       // with us on this:
10395       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10396 
10397       if (isImpliedCond(Pred, LHS, RHS, Condition,
10398                         BB != ContinuePredicate->getSuccessor(0)))
10399         return true;
10400     }
10401   }
10402 
10403   return false;
10404 }
10405 
10406 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10407                                                      ICmpInst::Predicate Pred,
10408                                                      const SCEV *LHS,
10409                                                      const SCEV *RHS) {
10410   if (VerifyIR)
10411     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10412            "This cannot be done on broken IR!");
10413 
10414   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10415   // the facts (a >= b && a != b) separately. A typical situation is when the
10416   // non-strict comparison is known from ranges and non-equality is known from
10417   // dominating predicates. If we are proving strict comparison, we always try
10418   // to prove non-equality and non-strict comparison separately.
10419   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10420   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10421   bool ProvedNonStrictComparison = false;
10422   bool ProvedNonEquality = false;
10423 
10424   auto SplitAndProve =
10425     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10426     if (!ProvedNonStrictComparison)
10427       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10428     if (!ProvedNonEquality)
10429       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10430     if (ProvedNonStrictComparison && ProvedNonEquality)
10431       return true;
10432     return false;
10433   };
10434 
10435   if (ProvingStrictComparison) {
10436     auto ProofFn = [&](ICmpInst::Predicate P) {
10437       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10438     };
10439     if (SplitAndProve(ProofFn))
10440       return true;
10441   }
10442 
10443   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10444   auto ProveViaGuard = [&](const BasicBlock *Block) {
10445     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10446       return true;
10447     if (ProvingStrictComparison) {
10448       auto ProofFn = [&](ICmpInst::Predicate P) {
10449         return isImpliedViaGuard(Block, P, LHS, RHS);
10450       };
10451       if (SplitAndProve(ProofFn))
10452         return true;
10453     }
10454     return false;
10455   };
10456 
10457   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10458   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10459     const Instruction *Context = &BB->front();
10460     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context))
10461       return true;
10462     if (ProvingStrictComparison) {
10463       auto ProofFn = [&](ICmpInst::Predicate P) {
10464         return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context);
10465       };
10466       if (SplitAndProve(ProofFn))
10467         return true;
10468     }
10469     return false;
10470   };
10471 
10472   // Starting at the block's predecessor, climb up the predecessor chain, as long
10473   // as there are predecessors that can be found that have unique successors
10474   // leading to the original block.
10475   const Loop *ContainingLoop = LI.getLoopFor(BB);
10476   const BasicBlock *PredBB;
10477   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10478     PredBB = ContainingLoop->getLoopPredecessor();
10479   else
10480     PredBB = BB->getSinglePredecessor();
10481   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10482        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10483     if (ProveViaGuard(Pair.first))
10484       return true;
10485 
10486     const BranchInst *LoopEntryPredicate =
10487         dyn_cast<BranchInst>(Pair.first->getTerminator());
10488     if (!LoopEntryPredicate ||
10489         LoopEntryPredicate->isUnconditional())
10490       continue;
10491 
10492     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10493                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10494       return true;
10495   }
10496 
10497   // Check conditions due to any @llvm.assume intrinsics.
10498   for (auto &AssumeVH : AC.assumptions()) {
10499     if (!AssumeVH)
10500       continue;
10501     auto *CI = cast<CallInst>(AssumeVH);
10502     if (!DT.dominates(CI, BB))
10503       continue;
10504 
10505     if (ProveViaCond(CI->getArgOperand(0), false))
10506       return true;
10507   }
10508 
10509   return false;
10510 }
10511 
10512 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10513                                                ICmpInst::Predicate Pred,
10514                                                const SCEV *LHS,
10515                                                const SCEV *RHS) {
10516   // Interpret a null as meaning no loop, where there is obviously no guard
10517   // (interprocedural conditions notwithstanding).
10518   if (!L)
10519     return false;
10520 
10521   // Both LHS and RHS must be available at loop entry.
10522   assert(isAvailableAtLoopEntry(LHS, L) &&
10523          "LHS is not available at Loop Entry");
10524   assert(isAvailableAtLoopEntry(RHS, L) &&
10525          "RHS is not available at Loop Entry");
10526 
10527   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10528     return true;
10529 
10530   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10531 }
10532 
10533 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10534                                     const SCEV *RHS,
10535                                     const Value *FoundCondValue, bool Inverse,
10536                                     const Instruction *Context) {
10537   // False conditions implies anything. Do not bother analyzing it further.
10538   if (FoundCondValue ==
10539       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10540     return true;
10541 
10542   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10543     return false;
10544 
10545   auto ClearOnExit =
10546       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10547 
10548   // Recursively handle And and Or conditions.
10549   const Value *Op0, *Op1;
10550   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10551     if (!Inverse)
10552       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10553               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10554   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10555     if (Inverse)
10556       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) ||
10557               isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context);
10558   }
10559 
10560   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10561   if (!ICI) return false;
10562 
10563   // Now that we found a conditional branch that dominates the loop or controls
10564   // the loop latch. Check to see if it is the comparison we are looking for.
10565   ICmpInst::Predicate FoundPred;
10566   if (Inverse)
10567     FoundPred = ICI->getInversePredicate();
10568   else
10569     FoundPred = ICI->getPredicate();
10570 
10571   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10572   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10573 
10574   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context);
10575 }
10576 
10577 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10578                                     const SCEV *RHS,
10579                                     ICmpInst::Predicate FoundPred,
10580                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10581                                     const Instruction *Context) {
10582   // Balance the types.
10583   if (getTypeSizeInBits(LHS->getType()) <
10584       getTypeSizeInBits(FoundLHS->getType())) {
10585     // For unsigned and equality predicates, try to prove that both found
10586     // operands fit into narrow unsigned range. If so, try to prove facts in
10587     // narrow types.
10588     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10589       auto *NarrowType = LHS->getType();
10590       auto *WideType = FoundLHS->getType();
10591       auto BitWidth = getTypeSizeInBits(NarrowType);
10592       const SCEV *MaxValue = getZeroExtendExpr(
10593           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10594       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10595           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10596         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10597         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10598         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10599                                        TruncFoundRHS, Context))
10600           return true;
10601       }
10602     }
10603 
10604     if (LHS->getType()->isPointerTy())
10605       return false;
10606     if (CmpInst::isSigned(Pred)) {
10607       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10608       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10609     } else {
10610       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10611       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10612     }
10613   } else if (getTypeSizeInBits(LHS->getType()) >
10614       getTypeSizeInBits(FoundLHS->getType())) {
10615     if (FoundLHS->getType()->isPointerTy())
10616       return false;
10617     if (CmpInst::isSigned(FoundPred)) {
10618       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10619       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10620     } else {
10621       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10622       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10623     }
10624   }
10625   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10626                                     FoundRHS, Context);
10627 }
10628 
10629 bool ScalarEvolution::isImpliedCondBalancedTypes(
10630     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10631     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10632     const Instruction *Context) {
10633   assert(getTypeSizeInBits(LHS->getType()) ==
10634              getTypeSizeInBits(FoundLHS->getType()) &&
10635          "Types should be balanced!");
10636   // Canonicalize the query to match the way instcombine will have
10637   // canonicalized the comparison.
10638   if (SimplifyICmpOperands(Pred, LHS, RHS))
10639     if (LHS == RHS)
10640       return CmpInst::isTrueWhenEqual(Pred);
10641   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10642     if (FoundLHS == FoundRHS)
10643       return CmpInst::isFalseWhenEqual(FoundPred);
10644 
10645   // Check to see if we can make the LHS or RHS match.
10646   if (LHS == FoundRHS || RHS == FoundLHS) {
10647     if (isa<SCEVConstant>(RHS)) {
10648       std::swap(FoundLHS, FoundRHS);
10649       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10650     } else {
10651       std::swap(LHS, RHS);
10652       Pred = ICmpInst::getSwappedPredicate(Pred);
10653     }
10654   }
10655 
10656   // Check whether the found predicate is the same as the desired predicate.
10657   if (FoundPred == Pred)
10658     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10659 
10660   // Check whether swapping the found predicate makes it the same as the
10661   // desired predicate.
10662   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10663     // We can write the implication
10664     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10665     // using one of the following ways:
10666     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10667     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10668     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10669     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10670     // Forms 1. and 2. require swapping the operands of one condition. Don't
10671     // do this if it would break canonical constant/addrec ordering.
10672     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10673       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10674                                    Context);
10675     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10676       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context);
10677 
10678     // Don't try to getNotSCEV pointers.
10679     if (LHS->getType()->isPointerTy() || FoundLHS->getType()->isPointerTy())
10680       return false;
10681 
10682     // There's no clear preference between forms 3. and 4., try both.
10683     return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10684                                  FoundLHS, FoundRHS, Context) ||
10685            isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10686                                  getNotSCEV(FoundRHS), Context);
10687   }
10688 
10689   // Unsigned comparison is the same as signed comparison when both the operands
10690   // are non-negative.
10691   if (CmpInst::isUnsigned(FoundPred) &&
10692       CmpInst::getSignedPredicate(FoundPred) == Pred &&
10693       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
10694     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context);
10695 
10696   // Check if we can make progress by sharpening ranges.
10697   if (FoundPred == ICmpInst::ICMP_NE &&
10698       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10699 
10700     const SCEVConstant *C = nullptr;
10701     const SCEV *V = nullptr;
10702 
10703     if (isa<SCEVConstant>(FoundLHS)) {
10704       C = cast<SCEVConstant>(FoundLHS);
10705       V = FoundRHS;
10706     } else {
10707       C = cast<SCEVConstant>(FoundRHS);
10708       V = FoundLHS;
10709     }
10710 
10711     // The guarding predicate tells us that C != V. If the known range
10712     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10713     // range we consider has to correspond to same signedness as the
10714     // predicate we're interested in folding.
10715 
10716     APInt Min = ICmpInst::isSigned(Pred) ?
10717         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10718 
10719     if (Min == C->getAPInt()) {
10720       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10721       // This is true even if (Min + 1) wraps around -- in case of
10722       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10723 
10724       APInt SharperMin = Min + 1;
10725 
10726       switch (Pred) {
10727         case ICmpInst::ICMP_SGE:
10728         case ICmpInst::ICMP_UGE:
10729           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10730           // RHS, we're done.
10731           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10732                                     Context))
10733             return true;
10734           LLVM_FALLTHROUGH;
10735 
10736         case ICmpInst::ICMP_SGT:
10737         case ICmpInst::ICMP_UGT:
10738           // We know from the range information that (V `Pred` Min ||
10739           // V == Min).  We know from the guarding condition that !(V
10740           // == Min).  This gives us
10741           //
10742           //       V `Pred` Min || V == Min && !(V == Min)
10743           //   =>  V `Pred` Min
10744           //
10745           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10746 
10747           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min),
10748                                     Context))
10749             return true;
10750           break;
10751 
10752         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10753         case ICmpInst::ICMP_SLE:
10754         case ICmpInst::ICMP_ULE:
10755           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10756                                     LHS, V, getConstant(SharperMin), Context))
10757             return true;
10758           LLVM_FALLTHROUGH;
10759 
10760         case ICmpInst::ICMP_SLT:
10761         case ICmpInst::ICMP_ULT:
10762           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10763                                     LHS, V, getConstant(Min), Context))
10764             return true;
10765           break;
10766 
10767         default:
10768           // No change
10769           break;
10770       }
10771     }
10772   }
10773 
10774   // Check whether the actual condition is beyond sufficient.
10775   if (FoundPred == ICmpInst::ICMP_EQ)
10776     if (ICmpInst::isTrueWhenEqual(Pred))
10777       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context))
10778         return true;
10779   if (Pred == ICmpInst::ICMP_NE)
10780     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10781       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS,
10782                                 Context))
10783         return true;
10784 
10785   // Otherwise assume the worst.
10786   return false;
10787 }
10788 
10789 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10790                                      const SCEV *&L, const SCEV *&R,
10791                                      SCEV::NoWrapFlags &Flags) {
10792   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10793   if (!AE || AE->getNumOperands() != 2)
10794     return false;
10795 
10796   L = AE->getOperand(0);
10797   R = AE->getOperand(1);
10798   Flags = AE->getNoWrapFlags();
10799   return true;
10800 }
10801 
10802 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10803                                                            const SCEV *Less) {
10804   // We avoid subtracting expressions here because this function is usually
10805   // fairly deep in the call stack (i.e. is called many times).
10806 
10807   // X - X = 0.
10808   if (More == Less)
10809     return APInt(getTypeSizeInBits(More->getType()), 0);
10810 
10811   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10812     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10813     const auto *MAR = cast<SCEVAddRecExpr>(More);
10814 
10815     if (LAR->getLoop() != MAR->getLoop())
10816       return None;
10817 
10818     // We look at affine expressions only; not for correctness but to keep
10819     // getStepRecurrence cheap.
10820     if (!LAR->isAffine() || !MAR->isAffine())
10821       return None;
10822 
10823     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10824       return None;
10825 
10826     Less = LAR->getStart();
10827     More = MAR->getStart();
10828 
10829     // fall through
10830   }
10831 
10832   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10833     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10834     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10835     return M - L;
10836   }
10837 
10838   SCEV::NoWrapFlags Flags;
10839   const SCEV *LLess = nullptr, *RLess = nullptr;
10840   const SCEV *LMore = nullptr, *RMore = nullptr;
10841   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10842   // Compare (X + C1) vs X.
10843   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10844     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10845       if (RLess == More)
10846         return -(C1->getAPInt());
10847 
10848   // Compare X vs (X + C2).
10849   if (splitBinaryAdd(More, LMore, RMore, Flags))
10850     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10851       if (RMore == Less)
10852         return C2->getAPInt();
10853 
10854   // Compare (X + C1) vs (X + C2).
10855   if (C1 && C2 && RLess == RMore)
10856     return C2->getAPInt() - C1->getAPInt();
10857 
10858   return None;
10859 }
10860 
10861 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10862     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10863     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) {
10864   // Try to recognize the following pattern:
10865   //
10866   //   FoundRHS = ...
10867   // ...
10868   // loop:
10869   //   FoundLHS = {Start,+,W}
10870   // context_bb: // Basic block from the same loop
10871   //   known(Pred, FoundLHS, FoundRHS)
10872   //
10873   // If some predicate is known in the context of a loop, it is also known on
10874   // each iteration of this loop, including the first iteration. Therefore, in
10875   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10876   // prove the original pred using this fact.
10877   if (!Context)
10878     return false;
10879   const BasicBlock *ContextBB = Context->getParent();
10880   // Make sure AR varies in the context block.
10881   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10882     const Loop *L = AR->getLoop();
10883     // Make sure that context belongs to the loop and executes on 1st iteration
10884     // (if it ever executes at all).
10885     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10886       return false;
10887     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10888       return false;
10889     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10890   }
10891 
10892   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10893     const Loop *L = AR->getLoop();
10894     // Make sure that context belongs to the loop and executes on 1st iteration
10895     // (if it ever executes at all).
10896     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10897       return false;
10898     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10899       return false;
10900     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10901   }
10902 
10903   return false;
10904 }
10905 
10906 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10907     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10908     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10909   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10910     return false;
10911 
10912   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10913   if (!AddRecLHS)
10914     return false;
10915 
10916   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10917   if (!AddRecFoundLHS)
10918     return false;
10919 
10920   // We'd like to let SCEV reason about control dependencies, so we constrain
10921   // both the inequalities to be about add recurrences on the same loop.  This
10922   // way we can use isLoopEntryGuardedByCond later.
10923 
10924   const Loop *L = AddRecFoundLHS->getLoop();
10925   if (L != AddRecLHS->getLoop())
10926     return false;
10927 
10928   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10929   //
10930   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10931   //                                                                  ... (2)
10932   //
10933   // Informal proof for (2), assuming (1) [*]:
10934   //
10935   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10936   //
10937   // Then
10938   //
10939   //       FoundLHS s< FoundRHS s< INT_MIN - C
10940   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10941   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10942   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10943   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10944   // <=>  FoundLHS + C s< FoundRHS + C
10945   //
10946   // [*]: (1) can be proved by ruling out overflow.
10947   //
10948   // [**]: This can be proved by analyzing all the four possibilities:
10949   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10950   //    (A s>= 0, B s>= 0).
10951   //
10952   // Note:
10953   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10954   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10955   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10956   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10957   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10958   // C)".
10959 
10960   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10961   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10962   if (!LDiff || !RDiff || *LDiff != *RDiff)
10963     return false;
10964 
10965   if (LDiff->isMinValue())
10966     return true;
10967 
10968   APInt FoundRHSLimit;
10969 
10970   if (Pred == CmpInst::ICMP_ULT) {
10971     FoundRHSLimit = -(*RDiff);
10972   } else {
10973     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10974     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10975   }
10976 
10977   // Try to prove (1) or (2), as needed.
10978   return isAvailableAtLoopEntry(FoundRHS, L) &&
10979          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10980                                   getConstant(FoundRHSLimit));
10981 }
10982 
10983 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10984                                         const SCEV *LHS, const SCEV *RHS,
10985                                         const SCEV *FoundLHS,
10986                                         const SCEV *FoundRHS, unsigned Depth) {
10987   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10988 
10989   auto ClearOnExit = make_scope_exit([&]() {
10990     if (LPhi) {
10991       bool Erased = PendingMerges.erase(LPhi);
10992       assert(Erased && "Failed to erase LPhi!");
10993       (void)Erased;
10994     }
10995     if (RPhi) {
10996       bool Erased = PendingMerges.erase(RPhi);
10997       assert(Erased && "Failed to erase RPhi!");
10998       (void)Erased;
10999     }
11000   });
11001 
11002   // Find respective Phis and check that they are not being pending.
11003   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11004     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11005       if (!PendingMerges.insert(Phi).second)
11006         return false;
11007       LPhi = Phi;
11008     }
11009   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11010     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11011       // If we detect a loop of Phi nodes being processed by this method, for
11012       // example:
11013       //
11014       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11015       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11016       //
11017       // we don't want to deal with a case that complex, so return conservative
11018       // answer false.
11019       if (!PendingMerges.insert(Phi).second)
11020         return false;
11021       RPhi = Phi;
11022     }
11023 
11024   // If none of LHS, RHS is a Phi, nothing to do here.
11025   if (!LPhi && !RPhi)
11026     return false;
11027 
11028   // If there is a SCEVUnknown Phi we are interested in, make it left.
11029   if (!LPhi) {
11030     std::swap(LHS, RHS);
11031     std::swap(FoundLHS, FoundRHS);
11032     std::swap(LPhi, RPhi);
11033     Pred = ICmpInst::getSwappedPredicate(Pred);
11034   }
11035 
11036   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11037   const BasicBlock *LBB = LPhi->getParent();
11038   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11039 
11040   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11041     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11042            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11043            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11044   };
11045 
11046   if (RPhi && RPhi->getParent() == LBB) {
11047     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11048     // If we compare two Phis from the same block, and for each entry block
11049     // the predicate is true for incoming values from this block, then the
11050     // predicate is also true for the Phis.
11051     for (const BasicBlock *IncBB : predecessors(LBB)) {
11052       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11053       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11054       if (!ProvedEasily(L, R))
11055         return false;
11056     }
11057   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11058     // Case two: RHS is also a Phi from the same basic block, and it is an
11059     // AddRec. It means that there is a loop which has both AddRec and Unknown
11060     // PHIs, for it we can compare incoming values of AddRec from above the loop
11061     // and latch with their respective incoming values of LPhi.
11062     // TODO: Generalize to handle loops with many inputs in a header.
11063     if (LPhi->getNumIncomingValues() != 2) return false;
11064 
11065     auto *RLoop = RAR->getLoop();
11066     auto *Predecessor = RLoop->getLoopPredecessor();
11067     assert(Predecessor && "Loop with AddRec with no predecessor?");
11068     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11069     if (!ProvedEasily(L1, RAR->getStart()))
11070       return false;
11071     auto *Latch = RLoop->getLoopLatch();
11072     assert(Latch && "Loop with AddRec with no latch?");
11073     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11074     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11075       return false;
11076   } else {
11077     // In all other cases go over inputs of LHS and compare each of them to RHS,
11078     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11079     // At this point RHS is either a non-Phi, or it is a Phi from some block
11080     // different from LBB.
11081     for (const BasicBlock *IncBB : predecessors(LBB)) {
11082       // Check that RHS is available in this block.
11083       if (!dominates(RHS, IncBB))
11084         return false;
11085       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11086       // Make sure L does not refer to a value from a potentially previous
11087       // iteration of a loop.
11088       if (!properlyDominates(L, IncBB))
11089         return false;
11090       if (!ProvedEasily(L, RHS))
11091         return false;
11092     }
11093   }
11094   return true;
11095 }
11096 
11097 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11098                                             const SCEV *LHS, const SCEV *RHS,
11099                                             const SCEV *FoundLHS,
11100                                             const SCEV *FoundRHS,
11101                                             const Instruction *Context) {
11102   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11103     return true;
11104 
11105   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11106     return true;
11107 
11108   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11109                                           Context))
11110     return true;
11111 
11112   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11113                                      FoundLHS, FoundRHS);
11114 }
11115 
11116 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11117 template <typename MinMaxExprType>
11118 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11119                                  const SCEV *Candidate) {
11120   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11121   if (!MinMaxExpr)
11122     return false;
11123 
11124   return is_contained(MinMaxExpr->operands(), Candidate);
11125 }
11126 
11127 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11128                                            ICmpInst::Predicate Pred,
11129                                            const SCEV *LHS, const SCEV *RHS) {
11130   // If both sides are affine addrecs for the same loop, with equal
11131   // steps, and we know the recurrences don't wrap, then we only
11132   // need to check the predicate on the starting values.
11133 
11134   if (!ICmpInst::isRelational(Pred))
11135     return false;
11136 
11137   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11138   if (!LAR)
11139     return false;
11140   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11141   if (!RAR)
11142     return false;
11143   if (LAR->getLoop() != RAR->getLoop())
11144     return false;
11145   if (!LAR->isAffine() || !RAR->isAffine())
11146     return false;
11147 
11148   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11149     return false;
11150 
11151   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11152                          SCEV::FlagNSW : SCEV::FlagNUW;
11153   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11154     return false;
11155 
11156   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11157 }
11158 
11159 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11160 /// expression?
11161 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11162                                         ICmpInst::Predicate Pred,
11163                                         const SCEV *LHS, const SCEV *RHS) {
11164   switch (Pred) {
11165   default:
11166     return false;
11167 
11168   case ICmpInst::ICMP_SGE:
11169     std::swap(LHS, RHS);
11170     LLVM_FALLTHROUGH;
11171   case ICmpInst::ICMP_SLE:
11172     return
11173         // min(A, ...) <= A
11174         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11175         // A <= max(A, ...)
11176         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11177 
11178   case ICmpInst::ICMP_UGE:
11179     std::swap(LHS, RHS);
11180     LLVM_FALLTHROUGH;
11181   case ICmpInst::ICMP_ULE:
11182     return
11183         // min(A, ...) <= A
11184         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11185         // A <= max(A, ...)
11186         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11187   }
11188 
11189   llvm_unreachable("covered switch fell through?!");
11190 }
11191 
11192 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11193                                              const SCEV *LHS, const SCEV *RHS,
11194                                              const SCEV *FoundLHS,
11195                                              const SCEV *FoundRHS,
11196                                              unsigned Depth) {
11197   assert(getTypeSizeInBits(LHS->getType()) ==
11198              getTypeSizeInBits(RHS->getType()) &&
11199          "LHS and RHS have different sizes?");
11200   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11201              getTypeSizeInBits(FoundRHS->getType()) &&
11202          "FoundLHS and FoundRHS have different sizes?");
11203   // We want to avoid hurting the compile time with analysis of too big trees.
11204   if (Depth > MaxSCEVOperationsImplicationDepth)
11205     return false;
11206 
11207   // We only want to work with GT comparison so far.
11208   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11209     Pred = CmpInst::getSwappedPredicate(Pred);
11210     std::swap(LHS, RHS);
11211     std::swap(FoundLHS, FoundRHS);
11212   }
11213 
11214   // For unsigned, try to reduce it to corresponding signed comparison.
11215   if (Pred == ICmpInst::ICMP_UGT)
11216     // We can replace unsigned predicate with its signed counterpart if all
11217     // involved values are non-negative.
11218     // TODO: We could have better support for unsigned.
11219     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11220       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11221       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11222       // use this fact to prove that LHS and RHS are non-negative.
11223       const SCEV *MinusOne = getMinusOne(LHS->getType());
11224       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11225                                 FoundRHS) &&
11226           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11227                                 FoundRHS))
11228         Pred = ICmpInst::ICMP_SGT;
11229     }
11230 
11231   if (Pred != ICmpInst::ICMP_SGT)
11232     return false;
11233 
11234   auto GetOpFromSExt = [&](const SCEV *S) {
11235     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11236       return Ext->getOperand();
11237     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11238     // the constant in some cases.
11239     return S;
11240   };
11241 
11242   // Acquire values from extensions.
11243   auto *OrigLHS = LHS;
11244   auto *OrigFoundLHS = FoundLHS;
11245   LHS = GetOpFromSExt(LHS);
11246   FoundLHS = GetOpFromSExt(FoundLHS);
11247 
11248   // Is the SGT predicate can be proved trivially or using the found context.
11249   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11250     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11251            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11252                                   FoundRHS, Depth + 1);
11253   };
11254 
11255   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11256     // We want to avoid creation of any new non-constant SCEV. Since we are
11257     // going to compare the operands to RHS, we should be certain that we don't
11258     // need any size extensions for this. So let's decline all cases when the
11259     // sizes of types of LHS and RHS do not match.
11260     // TODO: Maybe try to get RHS from sext to catch more cases?
11261     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11262       return false;
11263 
11264     // Should not overflow.
11265     if (!LHSAddExpr->hasNoSignedWrap())
11266       return false;
11267 
11268     auto *LL = LHSAddExpr->getOperand(0);
11269     auto *LR = LHSAddExpr->getOperand(1);
11270     auto *MinusOne = getMinusOne(RHS->getType());
11271 
11272     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11273     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11274       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11275     };
11276     // Try to prove the following rule:
11277     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11278     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11279     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11280       return true;
11281   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11282     Value *LL, *LR;
11283     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11284 
11285     using namespace llvm::PatternMatch;
11286 
11287     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11288       // Rules for division.
11289       // We are going to perform some comparisons with Denominator and its
11290       // derivative expressions. In general case, creating a SCEV for it may
11291       // lead to a complex analysis of the entire graph, and in particular it
11292       // can request trip count recalculation for the same loop. This would
11293       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11294       // this, we only want to create SCEVs that are constants in this section.
11295       // So we bail if Denominator is not a constant.
11296       if (!isa<ConstantInt>(LR))
11297         return false;
11298 
11299       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11300 
11301       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11302       // then a SCEV for the numerator already exists and matches with FoundLHS.
11303       auto *Numerator = getExistingSCEV(LL);
11304       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11305         return false;
11306 
11307       // Make sure that the numerator matches with FoundLHS and the denominator
11308       // is positive.
11309       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11310         return false;
11311 
11312       auto *DTy = Denominator->getType();
11313       auto *FRHSTy = FoundRHS->getType();
11314       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11315         // One of types is a pointer and another one is not. We cannot extend
11316         // them properly to a wider type, so let us just reject this case.
11317         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11318         // to avoid this check.
11319         return false;
11320 
11321       // Given that:
11322       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11323       auto *WTy = getWiderType(DTy, FRHSTy);
11324       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11325       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11326 
11327       // Try to prove the following rule:
11328       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11329       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11330       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11331       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11332       if (isKnownNonPositive(RHS) &&
11333           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11334         return true;
11335 
11336       // Try to prove the following rule:
11337       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11338       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11339       // If we divide it by Denominator > 2, then:
11340       // 1. If FoundLHS is negative, then the result is 0.
11341       // 2. If FoundLHS is non-negative, then the result is non-negative.
11342       // Anyways, the result is non-negative.
11343       auto *MinusOne = getMinusOne(WTy);
11344       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11345       if (isKnownNegative(RHS) &&
11346           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11347         return true;
11348     }
11349   }
11350 
11351   // If our expression contained SCEVUnknown Phis, and we split it down and now
11352   // need to prove something for them, try to prove the predicate for every
11353   // possible incoming values of those Phis.
11354   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11355     return true;
11356 
11357   return false;
11358 }
11359 
11360 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11361                                         const SCEV *LHS, const SCEV *RHS) {
11362   // zext x u<= sext x, sext x s<= zext x
11363   switch (Pred) {
11364   case ICmpInst::ICMP_SGE:
11365     std::swap(LHS, RHS);
11366     LLVM_FALLTHROUGH;
11367   case ICmpInst::ICMP_SLE: {
11368     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11369     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11370     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11371     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11372       return true;
11373     break;
11374   }
11375   case ICmpInst::ICMP_UGE:
11376     std::swap(LHS, RHS);
11377     LLVM_FALLTHROUGH;
11378   case ICmpInst::ICMP_ULE: {
11379     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11380     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11381     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11382     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11383       return true;
11384     break;
11385   }
11386   default:
11387     break;
11388   };
11389   return false;
11390 }
11391 
11392 bool
11393 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11394                                            const SCEV *LHS, const SCEV *RHS) {
11395   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11396          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11397          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11398          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11399          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11400 }
11401 
11402 bool
11403 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11404                                              const SCEV *LHS, const SCEV *RHS,
11405                                              const SCEV *FoundLHS,
11406                                              const SCEV *FoundRHS) {
11407   switch (Pred) {
11408   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11409   case ICmpInst::ICMP_EQ:
11410   case ICmpInst::ICMP_NE:
11411     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11412       return true;
11413     break;
11414   case ICmpInst::ICMP_SLT:
11415   case ICmpInst::ICMP_SLE:
11416     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11417         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11418       return true;
11419     break;
11420   case ICmpInst::ICMP_SGT:
11421   case ICmpInst::ICMP_SGE:
11422     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11423         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11424       return true;
11425     break;
11426   case ICmpInst::ICMP_ULT:
11427   case ICmpInst::ICMP_ULE:
11428     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11429         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11430       return true;
11431     break;
11432   case ICmpInst::ICMP_UGT:
11433   case ICmpInst::ICMP_UGE:
11434     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11435         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11436       return true;
11437     break;
11438   }
11439 
11440   // Maybe it can be proved via operations?
11441   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11442     return true;
11443 
11444   return false;
11445 }
11446 
11447 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11448                                                      const SCEV *LHS,
11449                                                      const SCEV *RHS,
11450                                                      const SCEV *FoundLHS,
11451                                                      const SCEV *FoundRHS) {
11452   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11453     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11454     // reduce the compile time impact of this optimization.
11455     return false;
11456 
11457   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11458   if (!Addend)
11459     return false;
11460 
11461   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11462 
11463   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11464   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11465   ConstantRange FoundLHSRange =
11466       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11467 
11468   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11469   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11470 
11471   // We can also compute the range of values for `LHS` that satisfy the
11472   // consequent, "`LHS` `Pred` `RHS`":
11473   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11474   // The antecedent implies the consequent if every value of `LHS` that
11475   // satisfies the antecedent also satisfies the consequent.
11476   return LHSRange.icmp(Pred, ConstRHS);
11477 }
11478 
11479 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11480                                         bool IsSigned) {
11481   assert(isKnownPositive(Stride) && "Positive stride expected!");
11482 
11483   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11484   const SCEV *One = getOne(Stride->getType());
11485 
11486   if (IsSigned) {
11487     APInt MaxRHS = getSignedRangeMax(RHS);
11488     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11489     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11490 
11491     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11492     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11493   }
11494 
11495   APInt MaxRHS = getUnsignedRangeMax(RHS);
11496   APInt MaxValue = APInt::getMaxValue(BitWidth);
11497   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11498 
11499   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11500   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11501 }
11502 
11503 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11504                                         bool IsSigned) {
11505 
11506   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11507   const SCEV *One = getOne(Stride->getType());
11508 
11509   if (IsSigned) {
11510     APInt MinRHS = getSignedRangeMin(RHS);
11511     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11512     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11513 
11514     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11515     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11516   }
11517 
11518   APInt MinRHS = getUnsignedRangeMin(RHS);
11519   APInt MinValue = APInt::getMinValue(BitWidth);
11520   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11521 
11522   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11523   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11524 }
11525 
11526 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11527   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11528   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11529   // expression fixes the case of N=0.
11530   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11531   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11532   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11533 }
11534 
11535 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11536                                                     const SCEV *Stride,
11537                                                     const SCEV *End,
11538                                                     unsigned BitWidth,
11539                                                     bool IsSigned) {
11540   // The logic in this function assumes we can represent a positive stride.
11541   // If we can't, the backedge-taken count must be zero.
11542   if (IsSigned && BitWidth == 1)
11543     return getZero(Stride->getType());
11544 
11545   // Calculate the maximum backedge count based on the range of values
11546   // permitted by Start, End, and Stride.
11547   APInt MinStart =
11548       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11549 
11550   APInt MinStride =
11551       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11552 
11553   // We assume either the stride is positive, or the backedge-taken count
11554   // is zero. So force StrideForMaxBECount to be at least one.
11555   APInt One(BitWidth, 1);
11556   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11557                                        : APIntOps::umax(One, MinStride);
11558 
11559   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11560                             : APInt::getMaxValue(BitWidth);
11561   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11562 
11563   // Although End can be a MAX expression we estimate MaxEnd considering only
11564   // the case End = RHS of the loop termination condition. This is safe because
11565   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11566   // taken count.
11567   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11568                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11569 
11570   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11571   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11572                     : APIntOps::umax(MaxEnd, MinStart);
11573 
11574   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11575                          getConstant(StrideForMaxBECount) /* Step */);
11576 }
11577 
11578 ScalarEvolution::ExitLimit
11579 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11580                                   const Loop *L, bool IsSigned,
11581                                   bool ControlsExit, bool AllowPredicates) {
11582   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11583 
11584   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11585   bool PredicatedIV = false;
11586 
11587   if (!IV && AllowPredicates) {
11588     // Try to make this an AddRec using runtime tests, in the first X
11589     // iterations of this loop, where X is the SCEV expression found by the
11590     // algorithm below.
11591     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11592     PredicatedIV = true;
11593   }
11594 
11595   // Avoid weird loops
11596   if (!IV || IV->getLoop() != L || !IV->isAffine())
11597     return getCouldNotCompute();
11598 
11599   // A precondition of this method is that the condition being analyzed
11600   // reaches an exiting branch which dominates the latch.  Given that, we can
11601   // assume that an increment which violates the nowrap specification and
11602   // produces poison must cause undefined behavior when the resulting poison
11603   // value is branched upon and thus we can conclude that the backedge is
11604   // taken no more often than would be required to produce that poison value.
11605   // Note that a well defined loop can exit on the iteration which violates
11606   // the nowrap specification if there is another exit (either explicit or
11607   // implicit/exceptional) which causes the loop to execute before the
11608   // exiting instruction we're analyzing would trigger UB.
11609   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11610   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11611   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11612 
11613   const SCEV *Stride = IV->getStepRecurrence(*this);
11614 
11615   bool PositiveStride = isKnownPositive(Stride);
11616 
11617   // Avoid negative or zero stride values.
11618   if (!PositiveStride) {
11619     // We can compute the correct backedge taken count for loops with unknown
11620     // strides if we can prove that the loop is not an infinite loop with side
11621     // effects. Here's the loop structure we are trying to handle -
11622     //
11623     // i = start
11624     // do {
11625     //   A[i] = i;
11626     //   i += s;
11627     // } while (i < end);
11628     //
11629     // The backedge taken count for such loops is evaluated as -
11630     // (max(end, start + stride) - start - 1) /u stride
11631     //
11632     // The additional preconditions that we need to check to prove correctness
11633     // of the above formula is as follows -
11634     //
11635     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11636     //    NoWrap flag).
11637     // b) loop is single exit with no side effects.
11638     //
11639     //
11640     // Precondition a) implies that if the stride is negative, this is a single
11641     // trip loop. The backedge taken count formula reduces to zero in this case.
11642     //
11643     // Precondition b) implies that if rhs is invariant in L, then unknown
11644     // stride being zero means the backedge can't be taken without UB.
11645     //
11646     // The positive stride case is the same as isKnownPositive(Stride) returning
11647     // true (original behavior of the function).
11648     //
11649     // We want to make sure that the stride is truly unknown as there are edge
11650     // cases where ScalarEvolution propagates no wrap flags to the
11651     // post-increment/decrement IV even though the increment/decrement operation
11652     // itself is wrapping. The computed backedge taken count may be wrong in
11653     // such cases. This is prevented by checking that the stride is not known to
11654     // be either positive or non-positive. For example, no wrap flags are
11655     // propagated to the post-increment IV of this loop with a trip count of 2 -
11656     //
11657     // unsigned char i;
11658     // for(i=127; i<128; i+=129)
11659     //   A[i] = i;
11660     //
11661     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
11662         !loopIsFiniteByAssumption(L))
11663       return getCouldNotCompute();
11664 
11665     if (!isKnownNonZero(Stride)) {
11666       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11667       // if it might eventually be greater than start and if so, on which
11668       // iteration.  We can't even produce a useful upper bound.
11669       if (!isLoopInvariant(RHS, L))
11670         return getCouldNotCompute();
11671 
11672       // We allow a potentially zero stride, but we need to divide by stride
11673       // below.  Since the loop can't be infinite and this check must control
11674       // the sole exit, we can infer the exit must be taken on the first
11675       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11676       // we know the numerator in the divides below must be zero, so we can
11677       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11678       // and produce the right result.
11679       // FIXME: Handle the case where Stride is poison?
11680       auto wouldZeroStrideBeUB = [&]() {
11681         // Proof by contradiction.  Suppose the stride were zero.  If we can
11682         // prove that the backedge *is* taken on the first iteration, then since
11683         // we know this condition controls the sole exit, we must have an
11684         // infinite loop.  We can't have a (well defined) infinite loop per
11685         // check just above.
11686         // Note: The (Start - Stride) term is used to get the start' term from
11687         // (start' + stride,+,stride). Remember that we only care about the
11688         // result of this expression when stride == 0 at runtime.
11689         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11690         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11691       };
11692       if (!wouldZeroStrideBeUB()) {
11693         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11694       }
11695     }
11696   } else if (!Stride->isOne() && !NoWrap) {
11697     auto isUBOnWrap = [&]() {
11698       // Can we prove this loop *must* be UB if overflow of IV occurs?
11699       // Reasoning goes as follows:
11700       // * Suppose the IV did self wrap.
11701       // * If Stride evenly divides the iteration space, then once wrap
11702       //   occurs, the loop must revisit the same values.
11703       // * We know that RHS is invariant, and that none of those values
11704       //   caused this exit to be taken previously.  Thus, this exit is
11705       //   dynamically dead.
11706       // * If this is the sole exit, then a dead exit implies the loop
11707       //   must be infinite if there are no abnormal exits.
11708       // * If the loop were infinite, then it must either not be mustprogress
11709       //   or have side effects. Otherwise, it must be UB.
11710       // * It can't (by assumption), be UB so we have contradicted our
11711       //   premise and can conclude the IV did not in fact self-wrap.
11712       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11713       // follows trivially from the fact that every (un)signed-wrapped, but
11714       // not self-wrapped value must be LT than the last value before
11715       // (un)signed wrap.  Since we know that last value didn't exit, nor
11716       // will any smaller one.
11717 
11718       if (!isLoopInvariant(RHS, L))
11719         return false;
11720 
11721       auto *StrideC = dyn_cast<SCEVConstant>(Stride);
11722       if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11723         return false;
11724 
11725       if (!ControlsExit || !loopHasNoAbnormalExits(L))
11726         return false;
11727 
11728       return loopIsFiniteByAssumption(L);
11729     };
11730 
11731     // Avoid proven overflow cases: this will ensure that the backedge taken
11732     // count will not generate any unsigned overflow. Relaxed no-overflow
11733     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11734     // undefined behaviors like the case of C language.
11735     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11736       return getCouldNotCompute();
11737   }
11738 
11739   // On all paths just preceeding, we established the following invariant:
11740   //   IV can be assumed not to overflow up to and including the exiting
11741   //   iteration.  We proved this in one of two ways:
11742   //   1) We can show overflow doesn't occur before the exiting iteration
11743   //      1a) canIVOverflowOnLT, and b) step of one
11744   //   2) We can show that if overflow occurs, the loop must execute UB
11745   //      before any possible exit.
11746   // Note that we have not yet proved RHS invariant (in general).
11747 
11748   const SCEV *Start = IV->getStart();
11749 
11750   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11751   // Use integer-typed versions for actual computation.
11752   const SCEV *OrigStart = Start;
11753   const SCEV *OrigRHS = RHS;
11754   if (Start->getType()->isPointerTy()) {
11755     Start = getLosslessPtrToIntExpr(Start);
11756     if (isa<SCEVCouldNotCompute>(Start))
11757       return Start;
11758   }
11759   if (RHS->getType()->isPointerTy()) {
11760     RHS = getLosslessPtrToIntExpr(RHS);
11761     if (isa<SCEVCouldNotCompute>(RHS))
11762       return RHS;
11763   }
11764 
11765   // When the RHS is not invariant, we do not know the end bound of the loop and
11766   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11767   // calculate the MaxBECount, given the start, stride and max value for the end
11768   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11769   // checked above).
11770   if (!isLoopInvariant(RHS, L)) {
11771     const SCEV *MaxBECount = computeMaxBECountForLT(
11772         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11773     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11774                      false /*MaxOrZero*/, Predicates);
11775   }
11776 
11777   // We use the expression (max(End,Start)-Start)/Stride to describe the
11778   // backedge count, as if the backedge is taken at least once max(End,Start)
11779   // is End and so the result is as above, and if not max(End,Start) is Start
11780   // so we get a backedge count of zero.
11781   const SCEV *BECount = nullptr;
11782   auto *StartMinusStride = getMinusSCEV(OrigStart, Stride);
11783   // Can we prove (max(RHS,Start) > Start - Stride?
11784   if (isLoopEntryGuardedByCond(L, Cond, StartMinusStride, Start) &&
11785       isLoopEntryGuardedByCond(L, Cond, StartMinusStride, RHS)) {
11786     // In this case, we can use a refined formula for computing backedge taken
11787     // count.  The general formula remains:
11788     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11789     // We want to use the alternate formula:
11790     //   "((End - 1) - (Start - Stride)) /u Stride"
11791     // Let's do a quick case analysis to show these are equivalent under
11792     // our precondition that max(RHS,Start) > Start - Stride.
11793     // * For RHS <= Start, the backedge-taken count must be zero.
11794     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11795     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11796     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11797     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11798     //     this to the stride of 1 case.
11799     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11800     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11801     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11802     //   "((RHS - (Start - Stride) - 1) /u Stride".
11803     //   Our preconditions trivially imply no overflow in that form.
11804     const SCEV *MinusOne = getMinusOne(Stride->getType());
11805     const SCEV *Numerator =
11806         getMinusSCEV(getAddExpr(RHS, MinusOne), StartMinusStride);
11807     if (!isa<SCEVCouldNotCompute>(Numerator)) {
11808       BECount = getUDivExpr(Numerator, Stride);
11809     }
11810   }
11811 
11812   const SCEV *BECountIfBackedgeTaken = nullptr;
11813   if (!BECount) {
11814     auto canProveRHSGreaterThanEqualStart = [&]() {
11815       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11816       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11817         return true;
11818 
11819       // (RHS > Start - 1) implies RHS >= Start.
11820       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11821       //   "Start - 1" doesn't overflow.
11822       // * For signed comparison, if Start - 1 does overflow, it's equal
11823       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11824       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11825       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11826       //
11827       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11828       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11829       auto *StartMinusOne = getAddExpr(OrigStart,
11830                                        getMinusOne(OrigStart->getType()));
11831       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11832     };
11833 
11834     // If we know that RHS >= Start in the context of loop, then we know that
11835     // max(RHS, Start) = RHS at this point.
11836     const SCEV *End;
11837     if (canProveRHSGreaterThanEqualStart()) {
11838       End = RHS;
11839     } else {
11840       // If RHS < Start, the backedge will be taken zero times.  So in
11841       // general, we can write the backedge-taken count as:
11842       //
11843       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11844       //
11845       // We convert it to the following to make it more convenient for SCEV:
11846       //
11847       //     ceil(max(RHS, Start) - Start) / Stride
11848       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11849 
11850       // See what would happen if we assume the backedge is taken. This is
11851       // used to compute MaxBECount.
11852       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11853     }
11854 
11855     // At this point, we know:
11856     //
11857     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11858     // 2. The index variable doesn't overflow.
11859     //
11860     // Therefore, we know N exists such that
11861     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11862     // doesn't overflow.
11863     //
11864     // Using this information, try to prove whether the addition in
11865     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11866     const SCEV *One = getOne(Stride->getType());
11867     bool MayAddOverflow = [&] {
11868       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11869         if (StrideC->getAPInt().isPowerOf2()) {
11870           // Suppose Stride is a power of two, and Start/End are unsigned
11871           // integers.  Let UMAX be the largest representable unsigned
11872           // integer.
11873           //
11874           // By the preconditions of this function, we know
11875           // "(Start + Stride * N) >= End", and this doesn't overflow.
11876           // As a formula:
11877           //
11878           //   End <= (Start + Stride * N) <= UMAX
11879           //
11880           // Subtracting Start from all the terms:
11881           //
11882           //   End - Start <= Stride * N <= UMAX - Start
11883           //
11884           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11885           //
11886           //   End - Start <= Stride * N <= UMAX
11887           //
11888           // Stride * N is a multiple of Stride. Therefore,
11889           //
11890           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11891           //
11892           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11893           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11894           //
11895           //   End - Start <= Stride * N <= UMAX - Stride - 1
11896           //
11897           // Dropping the middle term:
11898           //
11899           //   End - Start <= UMAX - Stride - 1
11900           //
11901           // Adding Stride - 1 to both sides:
11902           //
11903           //   (End - Start) + (Stride - 1) <= UMAX
11904           //
11905           // In other words, the addition doesn't have unsigned overflow.
11906           //
11907           // A similar proof works if we treat Start/End as signed values.
11908           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11909           // use signed max instead of unsigned max. Note that we're trying
11910           // to prove a lack of unsigned overflow in either case.
11911           return false;
11912         }
11913       }
11914       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11915         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11916         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11917         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11918         //
11919         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11920         return false;
11921       }
11922       return true;
11923     }();
11924 
11925     const SCEV *Delta = getMinusSCEV(End, Start);
11926     if (!MayAddOverflow) {
11927       // floor((D + (S - 1)) / S)
11928       // We prefer this formulation if it's legal because it's fewer operations.
11929       BECount =
11930           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11931     } else {
11932       BECount = getUDivCeilSCEV(Delta, Stride);
11933     }
11934   }
11935 
11936   const SCEV *MaxBECount;
11937   bool MaxOrZero = false;
11938   if (isa<SCEVConstant>(BECount)) {
11939     MaxBECount = BECount;
11940   } else if (BECountIfBackedgeTaken &&
11941              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11942     // If we know exactly how many times the backedge will be taken if it's
11943     // taken at least once, then the backedge count will either be that or
11944     // zero.
11945     MaxBECount = BECountIfBackedgeTaken;
11946     MaxOrZero = true;
11947   } else {
11948     MaxBECount = computeMaxBECountForLT(
11949         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11950   }
11951 
11952   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
11953       !isa<SCEVCouldNotCompute>(BECount))
11954     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
11955 
11956   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
11957 }
11958 
11959 ScalarEvolution::ExitLimit
11960 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
11961                                      const Loop *L, bool IsSigned,
11962                                      bool ControlsExit, bool AllowPredicates) {
11963   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11964   // We handle only IV > Invariant
11965   if (!isLoopInvariant(RHS, L))
11966     return getCouldNotCompute();
11967 
11968   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11969   if (!IV && AllowPredicates)
11970     // Try to make this an AddRec using runtime tests, in the first X
11971     // iterations of this loop, where X is the SCEV expression found by the
11972     // algorithm below.
11973     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11974 
11975   // Avoid weird loops
11976   if (!IV || IV->getLoop() != L || !IV->isAffine())
11977     return getCouldNotCompute();
11978 
11979   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11980   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11981   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11982 
11983   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
11984 
11985   // Avoid negative or zero stride values
11986   if (!isKnownPositive(Stride))
11987     return getCouldNotCompute();
11988 
11989   // Avoid proven overflow cases: this will ensure that the backedge taken count
11990   // will not generate any unsigned overflow. Relaxed no-overflow conditions
11991   // exploit NoWrapFlags, allowing to optimize in presence of undefined
11992   // behaviors like the case of C language.
11993   if (!Stride->isOne() && !NoWrap)
11994     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
11995       return getCouldNotCompute();
11996 
11997   const SCEV *Start = IV->getStart();
11998   const SCEV *End = RHS;
11999   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12000     // If we know that Start >= RHS in the context of loop, then we know that
12001     // min(RHS, Start) = RHS at this point.
12002     if (isLoopEntryGuardedByCond(
12003             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12004       End = RHS;
12005     else
12006       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12007   }
12008 
12009   if (Start->getType()->isPointerTy()) {
12010     Start = getLosslessPtrToIntExpr(Start);
12011     if (isa<SCEVCouldNotCompute>(Start))
12012       return Start;
12013   }
12014   if (End->getType()->isPointerTy()) {
12015     End = getLosslessPtrToIntExpr(End);
12016     if (isa<SCEVCouldNotCompute>(End))
12017       return End;
12018   }
12019 
12020   // Compute ((Start - End) + (Stride - 1)) / Stride.
12021   // FIXME: This can overflow. Holding off on fixing this for now;
12022   // howManyGreaterThans will hopefully be gone soon.
12023   const SCEV *One = getOne(Stride->getType());
12024   const SCEV *BECount = getUDivExpr(
12025       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12026 
12027   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12028                             : getUnsignedRangeMax(Start);
12029 
12030   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12031                              : getUnsignedRangeMin(Stride);
12032 
12033   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12034   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12035                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12036 
12037   // Although End can be a MIN expression we estimate MinEnd considering only
12038   // the case End = RHS. This is safe because in the other case (Start - End)
12039   // is zero, leading to a zero maximum backedge taken count.
12040   APInt MinEnd =
12041     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12042              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12043 
12044   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12045                                ? BECount
12046                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12047                                                  getConstant(MinStride));
12048 
12049   if (isa<SCEVCouldNotCompute>(MaxBECount))
12050     MaxBECount = BECount;
12051 
12052   return ExitLimit(BECount, MaxBECount, false, Predicates);
12053 }
12054 
12055 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12056                                                     ScalarEvolution &SE) const {
12057   if (Range.isFullSet())  // Infinite loop.
12058     return SE.getCouldNotCompute();
12059 
12060   // If the start is a non-zero constant, shift the range to simplify things.
12061   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12062     if (!SC->getValue()->isZero()) {
12063       SmallVector<const SCEV *, 4> Operands(operands());
12064       Operands[0] = SE.getZero(SC->getType());
12065       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12066                                              getNoWrapFlags(FlagNW));
12067       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12068         return ShiftedAddRec->getNumIterationsInRange(
12069             Range.subtract(SC->getAPInt()), SE);
12070       // This is strange and shouldn't happen.
12071       return SE.getCouldNotCompute();
12072     }
12073 
12074   // The only time we can solve this is when we have all constant indices.
12075   // Otherwise, we cannot determine the overflow conditions.
12076   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12077     return SE.getCouldNotCompute();
12078 
12079   // Okay at this point we know that all elements of the chrec are constants and
12080   // that the start element is zero.
12081 
12082   // First check to see if the range contains zero.  If not, the first
12083   // iteration exits.
12084   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12085   if (!Range.contains(APInt(BitWidth, 0)))
12086     return SE.getZero(getType());
12087 
12088   if (isAffine()) {
12089     // If this is an affine expression then we have this situation:
12090     //   Solve {0,+,A} in Range  ===  Ax in Range
12091 
12092     // We know that zero is in the range.  If A is positive then we know that
12093     // the upper value of the range must be the first possible exit value.
12094     // If A is negative then the lower of the range is the last possible loop
12095     // value.  Also note that we already checked for a full range.
12096     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12097     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12098 
12099     // The exit value should be (End+A)/A.
12100     APInt ExitVal = (End + A).udiv(A);
12101     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12102 
12103     // Evaluate at the exit value.  If we really did fall out of the valid
12104     // range, then we computed our trip count, otherwise wrap around or other
12105     // things must have happened.
12106     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12107     if (Range.contains(Val->getValue()))
12108       return SE.getCouldNotCompute();  // Something strange happened
12109 
12110     // Ensure that the previous value is in the range.  This is a sanity check.
12111     assert(Range.contains(
12112            EvaluateConstantChrecAtConstant(this,
12113            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12114            "Linear scev computation is off in a bad way!");
12115     return SE.getConstant(ExitValue);
12116   }
12117 
12118   if (isQuadratic()) {
12119     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12120       return SE.getConstant(S.getValue());
12121   }
12122 
12123   return SE.getCouldNotCompute();
12124 }
12125 
12126 const SCEVAddRecExpr *
12127 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12128   assert(getNumOperands() > 1 && "AddRec with zero step?");
12129   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12130   // but in this case we cannot guarantee that the value returned will be an
12131   // AddRec because SCEV does not have a fixed point where it stops
12132   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12133   // may happen if we reach arithmetic depth limit while simplifying. So we
12134   // construct the returned value explicitly.
12135   SmallVector<const SCEV *, 3> Ops;
12136   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12137   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12138   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12139     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12140   // We know that the last operand is not a constant zero (otherwise it would
12141   // have been popped out earlier). This guarantees us that if the result has
12142   // the same last operand, then it will also not be popped out, meaning that
12143   // the returned value will be an AddRec.
12144   const SCEV *Last = getOperand(getNumOperands() - 1);
12145   assert(!Last->isZero() && "Recurrency with zero step?");
12146   Ops.push_back(Last);
12147   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12148                                                SCEV::FlagAnyWrap));
12149 }
12150 
12151 // Return true when S contains at least an undef value.
12152 static inline bool containsUndefs(const SCEV *S) {
12153   return SCEVExprContains(S, [](const SCEV *S) {
12154     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12155       return isa<UndefValue>(SU->getValue());
12156     return false;
12157   });
12158 }
12159 
12160 namespace {
12161 
12162 // Collect all steps of SCEV expressions.
12163 struct SCEVCollectStrides {
12164   ScalarEvolution &SE;
12165   SmallVectorImpl<const SCEV *> &Strides;
12166 
12167   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
12168       : SE(SE), Strides(S) {}
12169 
12170   bool follow(const SCEV *S) {
12171     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
12172       Strides.push_back(AR->getStepRecurrence(SE));
12173     return true;
12174   }
12175 
12176   bool isDone() const { return false; }
12177 };
12178 
12179 // Collect all SCEVUnknown and SCEVMulExpr expressions.
12180 struct SCEVCollectTerms {
12181   SmallVectorImpl<const SCEV *> &Terms;
12182 
12183   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
12184 
12185   bool follow(const SCEV *S) {
12186     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
12187         isa<SCEVSignExtendExpr>(S)) {
12188       if (!containsUndefs(S))
12189         Terms.push_back(S);
12190 
12191       // Stop recursion: once we collected a term, do not walk its operands.
12192       return false;
12193     }
12194 
12195     // Keep looking.
12196     return true;
12197   }
12198 
12199   bool isDone() const { return false; }
12200 };
12201 
12202 // Check if a SCEV contains an AddRecExpr.
12203 struct SCEVHasAddRec {
12204   bool &ContainsAddRec;
12205 
12206   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
12207     ContainsAddRec = false;
12208   }
12209 
12210   bool follow(const SCEV *S) {
12211     if (isa<SCEVAddRecExpr>(S)) {
12212       ContainsAddRec = true;
12213 
12214       // Stop recursion: once we collected a term, do not walk its operands.
12215       return false;
12216     }
12217 
12218     // Keep looking.
12219     return true;
12220   }
12221 
12222   bool isDone() const { return false; }
12223 };
12224 
12225 // Find factors that are multiplied with an expression that (possibly as a
12226 // subexpression) contains an AddRecExpr. In the expression:
12227 //
12228 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
12229 //
12230 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
12231 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
12232 // parameters as they form a product with an induction variable.
12233 //
12234 // This collector expects all array size parameters to be in the same MulExpr.
12235 // It might be necessary to later add support for collecting parameters that are
12236 // spread over different nested MulExpr.
12237 struct SCEVCollectAddRecMultiplies {
12238   SmallVectorImpl<const SCEV *> &Terms;
12239   ScalarEvolution &SE;
12240 
12241   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
12242       : Terms(T), SE(SE) {}
12243 
12244   bool follow(const SCEV *S) {
12245     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
12246       bool HasAddRec = false;
12247       SmallVector<const SCEV *, 0> Operands;
12248       for (auto Op : Mul->operands()) {
12249         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
12250         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
12251           Operands.push_back(Op);
12252         } else if (Unknown) {
12253           HasAddRec = true;
12254         } else {
12255           bool ContainsAddRec = false;
12256           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
12257           visitAll(Op, ContiansAddRec);
12258           HasAddRec |= ContainsAddRec;
12259         }
12260       }
12261       if (Operands.size() == 0)
12262         return true;
12263 
12264       if (!HasAddRec)
12265         return false;
12266 
12267       Terms.push_back(SE.getMulExpr(Operands));
12268       // Stop recursion: once we collected a term, do not walk its operands.
12269       return false;
12270     }
12271 
12272     // Keep looking.
12273     return true;
12274   }
12275 
12276   bool isDone() const { return false; }
12277 };
12278 
12279 } // end anonymous namespace
12280 
12281 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
12282 /// two places:
12283 ///   1) The strides of AddRec expressions.
12284 ///   2) Unknowns that are multiplied with AddRec expressions.
12285 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
12286     SmallVectorImpl<const SCEV *> &Terms) {
12287   SmallVector<const SCEV *, 4> Strides;
12288   SCEVCollectStrides StrideCollector(*this, Strides);
12289   visitAll(Expr, StrideCollector);
12290 
12291   LLVM_DEBUG({
12292     dbgs() << "Strides:\n";
12293     for (const SCEV *S : Strides)
12294       dbgs() << *S << "\n";
12295   });
12296 
12297   for (const SCEV *S : Strides) {
12298     SCEVCollectTerms TermCollector(Terms);
12299     visitAll(S, TermCollector);
12300   }
12301 
12302   LLVM_DEBUG({
12303     dbgs() << "Terms:\n";
12304     for (const SCEV *T : Terms)
12305       dbgs() << *T << "\n";
12306   });
12307 
12308   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
12309   visitAll(Expr, MulCollector);
12310 }
12311 
12312 static bool findArrayDimensionsRec(ScalarEvolution &SE,
12313                                    SmallVectorImpl<const SCEV *> &Terms,
12314                                    SmallVectorImpl<const SCEV *> &Sizes) {
12315   int Last = Terms.size() - 1;
12316   const SCEV *Step = Terms[Last];
12317 
12318   // End of recursion.
12319   if (Last == 0) {
12320     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
12321       SmallVector<const SCEV *, 2> Qs;
12322       for (const SCEV *Op : M->operands())
12323         if (!isa<SCEVConstant>(Op))
12324           Qs.push_back(Op);
12325 
12326       Step = SE.getMulExpr(Qs);
12327     }
12328 
12329     Sizes.push_back(Step);
12330     return true;
12331   }
12332 
12333   for (const SCEV *&Term : Terms) {
12334     // Normalize the terms before the next call to findArrayDimensionsRec.
12335     const SCEV *Q, *R;
12336     SCEVDivision::divide(SE, Term, Step, &Q, &R);
12337 
12338     // Bail out when GCD does not evenly divide one of the terms.
12339     if (!R->isZero())
12340       return false;
12341 
12342     Term = Q;
12343   }
12344 
12345   // Remove all SCEVConstants.
12346   erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); });
12347 
12348   if (Terms.size() > 0)
12349     if (!findArrayDimensionsRec(SE, Terms, Sizes))
12350       return false;
12351 
12352   Sizes.push_back(Step);
12353   return true;
12354 }
12355 
12356 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
12357 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
12358   for (const SCEV *T : Terms)
12359     if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); }))
12360       return true;
12361 
12362   return false;
12363 }
12364 
12365 // Return the number of product terms in S.
12366 static inline int numberOfTerms(const SCEV *S) {
12367   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
12368     return Expr->getNumOperands();
12369   return 1;
12370 }
12371 
12372 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
12373   if (isa<SCEVConstant>(T))
12374     return nullptr;
12375 
12376   if (isa<SCEVUnknown>(T))
12377     return T;
12378 
12379   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
12380     SmallVector<const SCEV *, 2> Factors;
12381     for (const SCEV *Op : M->operands())
12382       if (!isa<SCEVConstant>(Op))
12383         Factors.push_back(Op);
12384 
12385     return SE.getMulExpr(Factors);
12386   }
12387 
12388   return T;
12389 }
12390 
12391 /// Return the size of an element read or written by Inst.
12392 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12393   Type *Ty;
12394   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12395     Ty = Store->getValueOperand()->getType();
12396   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12397     Ty = Load->getType();
12398   else
12399     return nullptr;
12400 
12401   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12402   return getSizeOfExpr(ETy, Ty);
12403 }
12404 
12405 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
12406                                           SmallVectorImpl<const SCEV *> &Sizes,
12407                                           const SCEV *ElementSize) {
12408   if (Terms.size() < 1 || !ElementSize)
12409     return;
12410 
12411   // Early return when Terms do not contain parameters: we do not delinearize
12412   // non parametric SCEVs.
12413   if (!containsParameters(Terms))
12414     return;
12415 
12416   LLVM_DEBUG({
12417     dbgs() << "Terms:\n";
12418     for (const SCEV *T : Terms)
12419       dbgs() << *T << "\n";
12420   });
12421 
12422   // Remove duplicates.
12423   array_pod_sort(Terms.begin(), Terms.end());
12424   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
12425 
12426   // Put larger terms first.
12427   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
12428     return numberOfTerms(LHS) > numberOfTerms(RHS);
12429   });
12430 
12431   // Try to divide all terms by the element size. If term is not divisible by
12432   // element size, proceed with the original term.
12433   for (const SCEV *&Term : Terms) {
12434     const SCEV *Q, *R;
12435     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
12436     if (!Q->isZero())
12437       Term = Q;
12438   }
12439 
12440   SmallVector<const SCEV *, 4> NewTerms;
12441 
12442   // Remove constant factors.
12443   for (const SCEV *T : Terms)
12444     if (const SCEV *NewT = removeConstantFactors(*this, T))
12445       NewTerms.push_back(NewT);
12446 
12447   LLVM_DEBUG({
12448     dbgs() << "Terms after sorting:\n";
12449     for (const SCEV *T : NewTerms)
12450       dbgs() << *T << "\n";
12451   });
12452 
12453   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
12454     Sizes.clear();
12455     return;
12456   }
12457 
12458   // The last element to be pushed into Sizes is the size of an element.
12459   Sizes.push_back(ElementSize);
12460 
12461   LLVM_DEBUG({
12462     dbgs() << "Sizes:\n";
12463     for (const SCEV *S : Sizes)
12464       dbgs() << *S << "\n";
12465   });
12466 }
12467 
12468 void ScalarEvolution::computeAccessFunctions(
12469     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
12470     SmallVectorImpl<const SCEV *> &Sizes) {
12471   // Early exit in case this SCEV is not an affine multivariate function.
12472   if (Sizes.empty())
12473     return;
12474 
12475   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
12476     if (!AR->isAffine())
12477       return;
12478 
12479   const SCEV *Res = Expr;
12480   int Last = Sizes.size() - 1;
12481   for (int i = Last; i >= 0; i--) {
12482     const SCEV *Q, *R;
12483     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
12484 
12485     LLVM_DEBUG({
12486       dbgs() << "Res: " << *Res << "\n";
12487       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
12488       dbgs() << "Res divided by Sizes[i]:\n";
12489       dbgs() << "Quotient: " << *Q << "\n";
12490       dbgs() << "Remainder: " << *R << "\n";
12491     });
12492 
12493     Res = Q;
12494 
12495     // Do not record the last subscript corresponding to the size of elements in
12496     // the array.
12497     if (i == Last) {
12498 
12499       // Bail out if the remainder is too complex.
12500       if (isa<SCEVAddRecExpr>(R)) {
12501         Subscripts.clear();
12502         Sizes.clear();
12503         return;
12504       }
12505 
12506       continue;
12507     }
12508 
12509     // Record the access function for the current subscript.
12510     Subscripts.push_back(R);
12511   }
12512 
12513   // Also push in last position the remainder of the last division: it will be
12514   // the access function of the innermost dimension.
12515   Subscripts.push_back(Res);
12516 
12517   std::reverse(Subscripts.begin(), Subscripts.end());
12518 
12519   LLVM_DEBUG({
12520     dbgs() << "Subscripts:\n";
12521     for (const SCEV *S : Subscripts)
12522       dbgs() << *S << "\n";
12523   });
12524 }
12525 
12526 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
12527 /// sizes of an array access. Returns the remainder of the delinearization that
12528 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
12529 /// the multiples of SCEV coefficients: that is a pattern matching of sub
12530 /// expressions in the stride and base of a SCEV corresponding to the
12531 /// computation of a GCD (greatest common divisor) of base and stride.  When
12532 /// SCEV->delinearize fails, it returns the SCEV unchanged.
12533 ///
12534 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
12535 ///
12536 ///  void foo(long n, long m, long o, double A[n][m][o]) {
12537 ///
12538 ///    for (long i = 0; i < n; i++)
12539 ///      for (long j = 0; j < m; j++)
12540 ///        for (long k = 0; k < o; k++)
12541 ///          A[i][j][k] = 1.0;
12542 ///  }
12543 ///
12544 /// the delinearization input is the following AddRec SCEV:
12545 ///
12546 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
12547 ///
12548 /// From this SCEV, we are able to say that the base offset of the access is %A
12549 /// because it appears as an offset that does not divide any of the strides in
12550 /// the loops:
12551 ///
12552 ///  CHECK: Base offset: %A
12553 ///
12554 /// and then SCEV->delinearize determines the size of some of the dimensions of
12555 /// the array as these are the multiples by which the strides are happening:
12556 ///
12557 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
12558 ///
12559 /// Note that the outermost dimension remains of UnknownSize because there are
12560 /// no strides that would help identifying the size of the last dimension: when
12561 /// the array has been statically allocated, one could compute the size of that
12562 /// dimension by dividing the overall size of the array by the size of the known
12563 /// dimensions: %m * %o * 8.
12564 ///
12565 /// Finally delinearize provides the access functions for the array reference
12566 /// that does correspond to A[i][j][k] of the above C testcase:
12567 ///
12568 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
12569 ///
12570 /// The testcases are checking the output of a function pass:
12571 /// DelinearizationPass that walks through all loads and stores of a function
12572 /// asking for the SCEV of the memory access with respect to all enclosing
12573 /// loops, calling SCEV->delinearize on that and printing the results.
12574 void ScalarEvolution::delinearize(const SCEV *Expr,
12575                                  SmallVectorImpl<const SCEV *> &Subscripts,
12576                                  SmallVectorImpl<const SCEV *> &Sizes,
12577                                  const SCEV *ElementSize) {
12578   // First step: collect parametric terms.
12579   SmallVector<const SCEV *, 4> Terms;
12580   collectParametricTerms(Expr, Terms);
12581 
12582   if (Terms.empty())
12583     return;
12584 
12585   // Second step: find subscript sizes.
12586   findArrayDimensions(Terms, Sizes, ElementSize);
12587 
12588   if (Sizes.empty())
12589     return;
12590 
12591   // Third step: compute the access functions for each subscript.
12592   computeAccessFunctions(Expr, Subscripts, Sizes);
12593 
12594   if (Subscripts.empty())
12595     return;
12596 
12597   LLVM_DEBUG({
12598     dbgs() << "succeeded to delinearize " << *Expr << "\n";
12599     dbgs() << "ArrayDecl[UnknownSize]";
12600     for (const SCEV *S : Sizes)
12601       dbgs() << "[" << *S << "]";
12602 
12603     dbgs() << "\nArrayRef";
12604     for (const SCEV *S : Subscripts)
12605       dbgs() << "[" << *S << "]";
12606     dbgs() << "\n";
12607   });
12608 }
12609 
12610 bool ScalarEvolution::getIndexExpressionsFromGEP(
12611     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
12612     SmallVectorImpl<int> &Sizes) {
12613   assert(Subscripts.empty() && Sizes.empty() &&
12614          "Expected output lists to be empty on entry to this function.");
12615   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
12616   Type *Ty = nullptr;
12617   bool DroppedFirstDim = false;
12618   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
12619     const SCEV *Expr = getSCEV(GEP->getOperand(i));
12620     if (i == 1) {
12621       Ty = GEP->getSourceElementType();
12622       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
12623         if (Const->getValue()->isZero()) {
12624           DroppedFirstDim = true;
12625           continue;
12626         }
12627       Subscripts.push_back(Expr);
12628       continue;
12629     }
12630 
12631     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
12632     if (!ArrayTy) {
12633       Subscripts.clear();
12634       Sizes.clear();
12635       return false;
12636     }
12637 
12638     Subscripts.push_back(Expr);
12639     if (!(DroppedFirstDim && i == 2))
12640       Sizes.push_back(ArrayTy->getNumElements());
12641 
12642     Ty = ArrayTy->getElementType();
12643   }
12644   return !Subscripts.empty();
12645 }
12646 
12647 //===----------------------------------------------------------------------===//
12648 //                   SCEVCallbackVH Class Implementation
12649 //===----------------------------------------------------------------------===//
12650 
12651 void ScalarEvolution::SCEVCallbackVH::deleted() {
12652   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12653   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12654     SE->ConstantEvolutionLoopExitValue.erase(PN);
12655   SE->eraseValueFromMap(getValPtr());
12656   // this now dangles!
12657 }
12658 
12659 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12660   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12661 
12662   // Forget all the expressions associated with users of the old value,
12663   // so that future queries will recompute the expressions using the new
12664   // value.
12665   Value *Old = getValPtr();
12666   SmallVector<User *, 16> Worklist(Old->users());
12667   SmallPtrSet<User *, 8> Visited;
12668   while (!Worklist.empty()) {
12669     User *U = Worklist.pop_back_val();
12670     // Deleting the Old value will cause this to dangle. Postpone
12671     // that until everything else is done.
12672     if (U == Old)
12673       continue;
12674     if (!Visited.insert(U).second)
12675       continue;
12676     if (PHINode *PN = dyn_cast<PHINode>(U))
12677       SE->ConstantEvolutionLoopExitValue.erase(PN);
12678     SE->eraseValueFromMap(U);
12679     llvm::append_range(Worklist, U->users());
12680   }
12681   // Delete the Old value.
12682   if (PHINode *PN = dyn_cast<PHINode>(Old))
12683     SE->ConstantEvolutionLoopExitValue.erase(PN);
12684   SE->eraseValueFromMap(Old);
12685   // this now dangles!
12686 }
12687 
12688 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12689   : CallbackVH(V), SE(se) {}
12690 
12691 //===----------------------------------------------------------------------===//
12692 //                   ScalarEvolution Class Implementation
12693 //===----------------------------------------------------------------------===//
12694 
12695 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12696                                  AssumptionCache &AC, DominatorTree &DT,
12697                                  LoopInfo &LI)
12698     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12699       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12700       LoopDispositions(64), BlockDispositions(64) {
12701   // To use guards for proving predicates, we need to scan every instruction in
12702   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12703   // time if the IR does not actually contain any calls to
12704   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12705   //
12706   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12707   // to _add_ guards to the module when there weren't any before, and wants
12708   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12709   // efficient in lieu of being smart in that rather obscure case.
12710 
12711   auto *GuardDecl = F.getParent()->getFunction(
12712       Intrinsic::getName(Intrinsic::experimental_guard));
12713   HasGuards = GuardDecl && !GuardDecl->use_empty();
12714 }
12715 
12716 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12717     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12718       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12719       ValueExprMap(std::move(Arg.ValueExprMap)),
12720       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12721       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12722       PendingMerges(std::move(Arg.PendingMerges)),
12723       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12724       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12725       PredicatedBackedgeTakenCounts(
12726           std::move(Arg.PredicatedBackedgeTakenCounts)),
12727       ConstantEvolutionLoopExitValue(
12728           std::move(Arg.ConstantEvolutionLoopExitValue)),
12729       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12730       LoopDispositions(std::move(Arg.LoopDispositions)),
12731       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12732       BlockDispositions(std::move(Arg.BlockDispositions)),
12733       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12734       SignedRanges(std::move(Arg.SignedRanges)),
12735       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12736       UniquePreds(std::move(Arg.UniquePreds)),
12737       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12738       LoopUsers(std::move(Arg.LoopUsers)),
12739       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12740       FirstUnknown(Arg.FirstUnknown) {
12741   Arg.FirstUnknown = nullptr;
12742 }
12743 
12744 ScalarEvolution::~ScalarEvolution() {
12745   // Iterate through all the SCEVUnknown instances and call their
12746   // destructors, so that they release their references to their values.
12747   for (SCEVUnknown *U = FirstUnknown; U;) {
12748     SCEVUnknown *Tmp = U;
12749     U = U->Next;
12750     Tmp->~SCEVUnknown();
12751   }
12752   FirstUnknown = nullptr;
12753 
12754   ExprValueMap.clear();
12755   ValueExprMap.clear();
12756   HasRecMap.clear();
12757   BackedgeTakenCounts.clear();
12758   PredicatedBackedgeTakenCounts.clear();
12759 
12760   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12761   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12762   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12763   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12764   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12765 }
12766 
12767 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12768   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12769 }
12770 
12771 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12772                           const Loop *L) {
12773   // Print all inner loops first
12774   for (Loop *I : *L)
12775     PrintLoopInfo(OS, SE, I);
12776 
12777   OS << "Loop ";
12778   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12779   OS << ": ";
12780 
12781   SmallVector<BasicBlock *, 8> ExitingBlocks;
12782   L->getExitingBlocks(ExitingBlocks);
12783   if (ExitingBlocks.size() != 1)
12784     OS << "<multiple exits> ";
12785 
12786   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12787     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12788   else
12789     OS << "Unpredictable backedge-taken count.\n";
12790 
12791   if (ExitingBlocks.size() > 1)
12792     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12793       OS << "  exit count for " << ExitingBlock->getName() << ": "
12794          << *SE->getExitCount(L, ExitingBlock) << "\n";
12795     }
12796 
12797   OS << "Loop ";
12798   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12799   OS << ": ";
12800 
12801   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12802     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12803     if (SE->isBackedgeTakenCountMaxOrZero(L))
12804       OS << ", actual taken count either this or zero.";
12805   } else {
12806     OS << "Unpredictable max backedge-taken count. ";
12807   }
12808 
12809   OS << "\n"
12810         "Loop ";
12811   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12812   OS << ": ";
12813 
12814   SCEVUnionPredicate Pred;
12815   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12816   if (!isa<SCEVCouldNotCompute>(PBT)) {
12817     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12818     OS << " Predicates:\n";
12819     Pred.print(OS, 4);
12820   } else {
12821     OS << "Unpredictable predicated backedge-taken count. ";
12822   }
12823   OS << "\n";
12824 
12825   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12826     OS << "Loop ";
12827     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12828     OS << ": ";
12829     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12830   }
12831 }
12832 
12833 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12834   switch (LD) {
12835   case ScalarEvolution::LoopVariant:
12836     return "Variant";
12837   case ScalarEvolution::LoopInvariant:
12838     return "Invariant";
12839   case ScalarEvolution::LoopComputable:
12840     return "Computable";
12841   }
12842   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12843 }
12844 
12845 void ScalarEvolution::print(raw_ostream &OS) const {
12846   // ScalarEvolution's implementation of the print method is to print
12847   // out SCEV values of all instructions that are interesting. Doing
12848   // this potentially causes it to create new SCEV objects though,
12849   // which technically conflicts with the const qualifier. This isn't
12850   // observable from outside the class though, so casting away the
12851   // const isn't dangerous.
12852   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12853 
12854   if (ClassifyExpressions) {
12855     OS << "Classifying expressions for: ";
12856     F.printAsOperand(OS, /*PrintType=*/false);
12857     OS << "\n";
12858     for (Instruction &I : instructions(F))
12859       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12860         OS << I << '\n';
12861         OS << "  -->  ";
12862         const SCEV *SV = SE.getSCEV(&I);
12863         SV->print(OS);
12864         if (!isa<SCEVCouldNotCompute>(SV)) {
12865           OS << " U: ";
12866           SE.getUnsignedRange(SV).print(OS);
12867           OS << " S: ";
12868           SE.getSignedRange(SV).print(OS);
12869         }
12870 
12871         const Loop *L = LI.getLoopFor(I.getParent());
12872 
12873         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12874         if (AtUse != SV) {
12875           OS << "  -->  ";
12876           AtUse->print(OS);
12877           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12878             OS << " U: ";
12879             SE.getUnsignedRange(AtUse).print(OS);
12880             OS << " S: ";
12881             SE.getSignedRange(AtUse).print(OS);
12882           }
12883         }
12884 
12885         if (L) {
12886           OS << "\t\t" "Exits: ";
12887           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12888           if (!SE.isLoopInvariant(ExitValue, L)) {
12889             OS << "<<Unknown>>";
12890           } else {
12891             OS << *ExitValue;
12892           }
12893 
12894           bool First = true;
12895           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12896             if (First) {
12897               OS << "\t\t" "LoopDispositions: { ";
12898               First = false;
12899             } else {
12900               OS << ", ";
12901             }
12902 
12903             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12904             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12905           }
12906 
12907           for (auto *InnerL : depth_first(L)) {
12908             if (InnerL == L)
12909               continue;
12910             if (First) {
12911               OS << "\t\t" "LoopDispositions: { ";
12912               First = false;
12913             } else {
12914               OS << ", ";
12915             }
12916 
12917             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12918             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12919           }
12920 
12921           OS << " }";
12922         }
12923 
12924         OS << "\n";
12925       }
12926   }
12927 
12928   OS << "Determining loop execution counts for: ";
12929   F.printAsOperand(OS, /*PrintType=*/false);
12930   OS << "\n";
12931   for (Loop *I : LI)
12932     PrintLoopInfo(OS, &SE, I);
12933 }
12934 
12935 ScalarEvolution::LoopDisposition
12936 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12937   auto &Values = LoopDispositions[S];
12938   for (auto &V : Values) {
12939     if (V.getPointer() == L)
12940       return V.getInt();
12941   }
12942   Values.emplace_back(L, LoopVariant);
12943   LoopDisposition D = computeLoopDisposition(S, L);
12944   auto &Values2 = LoopDispositions[S];
12945   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12946     if (V.getPointer() == L) {
12947       V.setInt(D);
12948       break;
12949     }
12950   }
12951   return D;
12952 }
12953 
12954 ScalarEvolution::LoopDisposition
12955 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12956   switch (S->getSCEVType()) {
12957   case scConstant:
12958     return LoopInvariant;
12959   case scPtrToInt:
12960   case scTruncate:
12961   case scZeroExtend:
12962   case scSignExtend:
12963     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12964   case scAddRecExpr: {
12965     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12966 
12967     // If L is the addrec's loop, it's computable.
12968     if (AR->getLoop() == L)
12969       return LoopComputable;
12970 
12971     // Add recurrences are never invariant in the function-body (null loop).
12972     if (!L)
12973       return LoopVariant;
12974 
12975     // Everything that is not defined at loop entry is variant.
12976     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12977       return LoopVariant;
12978     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12979            " dominate the contained loop's header?");
12980 
12981     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12982     if (AR->getLoop()->contains(L))
12983       return LoopInvariant;
12984 
12985     // This recurrence is variant w.r.t. L if any of its operands
12986     // are variant.
12987     for (auto *Op : AR->operands())
12988       if (!isLoopInvariant(Op, L))
12989         return LoopVariant;
12990 
12991     // Otherwise it's loop-invariant.
12992     return LoopInvariant;
12993   }
12994   case scAddExpr:
12995   case scMulExpr:
12996   case scUMaxExpr:
12997   case scSMaxExpr:
12998   case scUMinExpr:
12999   case scSMinExpr: {
13000     bool HasVarying = false;
13001     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13002       LoopDisposition D = getLoopDisposition(Op, L);
13003       if (D == LoopVariant)
13004         return LoopVariant;
13005       if (D == LoopComputable)
13006         HasVarying = true;
13007     }
13008     return HasVarying ? LoopComputable : LoopInvariant;
13009   }
13010   case scUDivExpr: {
13011     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13012     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13013     if (LD == LoopVariant)
13014       return LoopVariant;
13015     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13016     if (RD == LoopVariant)
13017       return LoopVariant;
13018     return (LD == LoopInvariant && RD == LoopInvariant) ?
13019            LoopInvariant : LoopComputable;
13020   }
13021   case scUnknown:
13022     // All non-instruction values are loop invariant.  All instructions are loop
13023     // invariant if they are not contained in the specified loop.
13024     // Instructions are never considered invariant in the function body
13025     // (null loop) because they are defined within the "loop".
13026     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13027       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13028     return LoopInvariant;
13029   case scCouldNotCompute:
13030     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13031   }
13032   llvm_unreachable("Unknown SCEV kind!");
13033 }
13034 
13035 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13036   return getLoopDisposition(S, L) == LoopInvariant;
13037 }
13038 
13039 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13040   return getLoopDisposition(S, L) == LoopComputable;
13041 }
13042 
13043 ScalarEvolution::BlockDisposition
13044 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13045   auto &Values = BlockDispositions[S];
13046   for (auto &V : Values) {
13047     if (V.getPointer() == BB)
13048       return V.getInt();
13049   }
13050   Values.emplace_back(BB, DoesNotDominateBlock);
13051   BlockDisposition D = computeBlockDisposition(S, BB);
13052   auto &Values2 = BlockDispositions[S];
13053   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
13054     if (V.getPointer() == BB) {
13055       V.setInt(D);
13056       break;
13057     }
13058   }
13059   return D;
13060 }
13061 
13062 ScalarEvolution::BlockDisposition
13063 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13064   switch (S->getSCEVType()) {
13065   case scConstant:
13066     return ProperlyDominatesBlock;
13067   case scPtrToInt:
13068   case scTruncate:
13069   case scZeroExtend:
13070   case scSignExtend:
13071     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13072   case scAddRecExpr: {
13073     // This uses a "dominates" query instead of "properly dominates" query
13074     // to test for proper dominance too, because the instruction which
13075     // produces the addrec's value is a PHI, and a PHI effectively properly
13076     // dominates its entire containing block.
13077     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13078     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13079       return DoesNotDominateBlock;
13080 
13081     // Fall through into SCEVNAryExpr handling.
13082     LLVM_FALLTHROUGH;
13083   }
13084   case scAddExpr:
13085   case scMulExpr:
13086   case scUMaxExpr:
13087   case scSMaxExpr:
13088   case scUMinExpr:
13089   case scSMinExpr: {
13090     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13091     bool Proper = true;
13092     for (const SCEV *NAryOp : NAry->operands()) {
13093       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13094       if (D == DoesNotDominateBlock)
13095         return DoesNotDominateBlock;
13096       if (D == DominatesBlock)
13097         Proper = false;
13098     }
13099     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13100   }
13101   case scUDivExpr: {
13102     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13103     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13104     BlockDisposition LD = getBlockDisposition(LHS, BB);
13105     if (LD == DoesNotDominateBlock)
13106       return DoesNotDominateBlock;
13107     BlockDisposition RD = getBlockDisposition(RHS, BB);
13108     if (RD == DoesNotDominateBlock)
13109       return DoesNotDominateBlock;
13110     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13111       ProperlyDominatesBlock : DominatesBlock;
13112   }
13113   case scUnknown:
13114     if (Instruction *I =
13115           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13116       if (I->getParent() == BB)
13117         return DominatesBlock;
13118       if (DT.properlyDominates(I->getParent(), BB))
13119         return ProperlyDominatesBlock;
13120       return DoesNotDominateBlock;
13121     }
13122     return ProperlyDominatesBlock;
13123   case scCouldNotCompute:
13124     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13125   }
13126   llvm_unreachable("Unknown SCEV kind!");
13127 }
13128 
13129 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13130   return getBlockDisposition(S, BB) >= DominatesBlock;
13131 }
13132 
13133 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13134   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13135 }
13136 
13137 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13138   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13139 }
13140 
13141 void
13142 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
13143   ValuesAtScopes.erase(S);
13144   LoopDispositions.erase(S);
13145   BlockDispositions.erase(S);
13146   UnsignedRanges.erase(S);
13147   SignedRanges.erase(S);
13148   ExprValueMap.erase(S);
13149   HasRecMap.erase(S);
13150   MinTrailingZerosCache.erase(S);
13151 
13152   for (auto I = PredicatedSCEVRewrites.begin();
13153        I != PredicatedSCEVRewrites.end();) {
13154     std::pair<const SCEV *, const Loop *> Entry = I->first;
13155     if (Entry.first == S)
13156       PredicatedSCEVRewrites.erase(I++);
13157     else
13158       ++I;
13159   }
13160 
13161   auto RemoveSCEVFromBackedgeMap =
13162       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
13163         for (auto I = Map.begin(), E = Map.end(); I != E;) {
13164           BackedgeTakenInfo &BEInfo = I->second;
13165           if (BEInfo.hasOperand(S))
13166             Map.erase(I++);
13167           else
13168             ++I;
13169         }
13170       };
13171 
13172   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
13173   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
13174 }
13175 
13176 void
13177 ScalarEvolution::getUsedLoops(const SCEV *S,
13178                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13179   struct FindUsedLoops {
13180     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13181         : LoopsUsed(LoopsUsed) {}
13182     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13183     bool follow(const SCEV *S) {
13184       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13185         LoopsUsed.insert(AR->getLoop());
13186       return true;
13187     }
13188 
13189     bool isDone() const { return false; }
13190   };
13191 
13192   FindUsedLoops F(LoopsUsed);
13193   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13194 }
13195 
13196 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
13197   SmallPtrSet<const Loop *, 8> LoopsUsed;
13198   getUsedLoops(S, LoopsUsed);
13199   for (auto *L : LoopsUsed)
13200     LoopUsers[L].push_back(S);
13201 }
13202 
13203 void ScalarEvolution::verify() const {
13204   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13205   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13206 
13207   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13208 
13209   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13210   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13211     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13212 
13213     const SCEV *visitConstant(const SCEVConstant *Constant) {
13214       return SE.getConstant(Constant->getAPInt());
13215     }
13216 
13217     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13218       return SE.getUnknown(Expr->getValue());
13219     }
13220 
13221     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13222       return SE.getCouldNotCompute();
13223     }
13224   };
13225 
13226   SCEVMapper SCM(SE2);
13227 
13228   while (!LoopStack.empty()) {
13229     auto *L = LoopStack.pop_back_val();
13230     llvm::append_range(LoopStack, *L);
13231 
13232     auto *CurBECount = SCM.visit(
13233         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13234     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13235 
13236     if (CurBECount == SE2.getCouldNotCompute() ||
13237         NewBECount == SE2.getCouldNotCompute()) {
13238       // NB! This situation is legal, but is very suspicious -- whatever pass
13239       // change the loop to make a trip count go from could not compute to
13240       // computable or vice-versa *should have* invalidated SCEV.  However, we
13241       // choose not to assert here (for now) since we don't want false
13242       // positives.
13243       continue;
13244     }
13245 
13246     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13247       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13248       // not propagate undef aggressively).  This means we can (and do) fail
13249       // verification in cases where a transform makes the trip count of a loop
13250       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13251       // both cases the loop iterates "undef" times, but SCEV thinks we
13252       // increased the trip count of the loop by 1 incorrectly.
13253       continue;
13254     }
13255 
13256     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13257         SE.getTypeSizeInBits(NewBECount->getType()))
13258       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13259     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13260              SE.getTypeSizeInBits(NewBECount->getType()))
13261       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13262 
13263     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13264 
13265     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13266     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13267       dbgs() << "Trip Count for " << *L << " Changed!\n";
13268       dbgs() << "Old: " << *CurBECount << "\n";
13269       dbgs() << "New: " << *NewBECount << "\n";
13270       dbgs() << "Delta: " << *Delta << "\n";
13271       std::abort();
13272     }
13273   }
13274 
13275   // Collect all valid loops currently in LoopInfo.
13276   SmallPtrSet<Loop *, 32> ValidLoops;
13277   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13278   while (!Worklist.empty()) {
13279     Loop *L = Worklist.pop_back_val();
13280     if (ValidLoops.contains(L))
13281       continue;
13282     ValidLoops.insert(L);
13283     Worklist.append(L->begin(), L->end());
13284   }
13285   // Check for SCEV expressions referencing invalid/deleted loops.
13286   for (auto &KV : ValueExprMap) {
13287     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
13288     if (!AR)
13289       continue;
13290     assert(ValidLoops.contains(AR->getLoop()) &&
13291            "AddRec references invalid loop");
13292   }
13293 }
13294 
13295 bool ScalarEvolution::invalidate(
13296     Function &F, const PreservedAnalyses &PA,
13297     FunctionAnalysisManager::Invalidator &Inv) {
13298   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13299   // of its dependencies is invalidated.
13300   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13301   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13302          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13303          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13304          Inv.invalidate<LoopAnalysis>(F, PA);
13305 }
13306 
13307 AnalysisKey ScalarEvolutionAnalysis::Key;
13308 
13309 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13310                                              FunctionAnalysisManager &AM) {
13311   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13312                          AM.getResult<AssumptionAnalysis>(F),
13313                          AM.getResult<DominatorTreeAnalysis>(F),
13314                          AM.getResult<LoopAnalysis>(F));
13315 }
13316 
13317 PreservedAnalyses
13318 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13319   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13320   return PreservedAnalyses::all();
13321 }
13322 
13323 PreservedAnalyses
13324 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13325   // For compatibility with opt's -analyze feature under legacy pass manager
13326   // which was not ported to NPM. This keeps tests using
13327   // update_analyze_test_checks.py working.
13328   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13329      << F.getName() << "':\n";
13330   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13331   return PreservedAnalyses::all();
13332 }
13333 
13334 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13335                       "Scalar Evolution Analysis", false, true)
13336 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13337 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13338 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13339 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13340 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13341                     "Scalar Evolution Analysis", false, true)
13342 
13343 char ScalarEvolutionWrapperPass::ID = 0;
13344 
13345 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13346   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13347 }
13348 
13349 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13350   SE.reset(new ScalarEvolution(
13351       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13352       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13353       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13354       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13355   return false;
13356 }
13357 
13358 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13359 
13360 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13361   SE->print(OS);
13362 }
13363 
13364 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13365   if (!VerifySCEV)
13366     return;
13367 
13368   SE->verify();
13369 }
13370 
13371 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13372   AU.setPreservesAll();
13373   AU.addRequiredTransitive<AssumptionCacheTracker>();
13374   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13375   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13376   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13377 }
13378 
13379 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13380                                                         const SCEV *RHS) {
13381   FoldingSetNodeID ID;
13382   assert(LHS->getType() == RHS->getType() &&
13383          "Type mismatch between LHS and RHS");
13384   // Unique this node based on the arguments
13385   ID.AddInteger(SCEVPredicate::P_Equal);
13386   ID.AddPointer(LHS);
13387   ID.AddPointer(RHS);
13388   void *IP = nullptr;
13389   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13390     return S;
13391   SCEVEqualPredicate *Eq = new (SCEVAllocator)
13392       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
13393   UniquePreds.InsertNode(Eq, IP);
13394   return Eq;
13395 }
13396 
13397 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13398     const SCEVAddRecExpr *AR,
13399     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13400   FoldingSetNodeID ID;
13401   // Unique this node based on the arguments
13402   ID.AddInteger(SCEVPredicate::P_Wrap);
13403   ID.AddPointer(AR);
13404   ID.AddInteger(AddedFlags);
13405   void *IP = nullptr;
13406   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13407     return S;
13408   auto *OF = new (SCEVAllocator)
13409       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13410   UniquePreds.InsertNode(OF, IP);
13411   return OF;
13412 }
13413 
13414 namespace {
13415 
13416 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13417 public:
13418 
13419   /// Rewrites \p S in the context of a loop L and the SCEV predication
13420   /// infrastructure.
13421   ///
13422   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13423   /// equivalences present in \p Pred.
13424   ///
13425   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13426   /// \p NewPreds such that the result will be an AddRecExpr.
13427   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13428                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13429                              SCEVUnionPredicate *Pred) {
13430     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13431     return Rewriter.visit(S);
13432   }
13433 
13434   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13435     if (Pred) {
13436       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13437       for (auto *Pred : ExprPreds)
13438         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13439           if (IPred->getLHS() == Expr)
13440             return IPred->getRHS();
13441     }
13442     return convertToAddRecWithPreds(Expr);
13443   }
13444 
13445   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13446     const SCEV *Operand = visit(Expr->getOperand());
13447     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13448     if (AR && AR->getLoop() == L && AR->isAffine()) {
13449       // This couldn't be folded because the operand didn't have the nuw
13450       // flag. Add the nusw flag as an assumption that we could make.
13451       const SCEV *Step = AR->getStepRecurrence(SE);
13452       Type *Ty = Expr->getType();
13453       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13454         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13455                                 SE.getSignExtendExpr(Step, Ty), L,
13456                                 AR->getNoWrapFlags());
13457     }
13458     return SE.getZeroExtendExpr(Operand, Expr->getType());
13459   }
13460 
13461   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13462     const SCEV *Operand = visit(Expr->getOperand());
13463     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13464     if (AR && AR->getLoop() == L && AR->isAffine()) {
13465       // This couldn't be folded because the operand didn't have the nsw
13466       // flag. Add the nssw flag as an assumption that we could make.
13467       const SCEV *Step = AR->getStepRecurrence(SE);
13468       Type *Ty = Expr->getType();
13469       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13470         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13471                                 SE.getSignExtendExpr(Step, Ty), L,
13472                                 AR->getNoWrapFlags());
13473     }
13474     return SE.getSignExtendExpr(Operand, Expr->getType());
13475   }
13476 
13477 private:
13478   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13479                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13480                         SCEVUnionPredicate *Pred)
13481       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13482 
13483   bool addOverflowAssumption(const SCEVPredicate *P) {
13484     if (!NewPreds) {
13485       // Check if we've already made this assumption.
13486       return Pred && Pred->implies(P);
13487     }
13488     NewPreds->insert(P);
13489     return true;
13490   }
13491 
13492   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13493                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13494     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13495     return addOverflowAssumption(A);
13496   }
13497 
13498   // If \p Expr represents a PHINode, we try to see if it can be represented
13499   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13500   // to add this predicate as a runtime overflow check, we return the AddRec.
13501   // If \p Expr does not meet these conditions (is not a PHI node, or we
13502   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13503   // return \p Expr.
13504   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13505     if (!isa<PHINode>(Expr->getValue()))
13506       return Expr;
13507     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13508     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13509     if (!PredicatedRewrite)
13510       return Expr;
13511     for (auto *P : PredicatedRewrite->second){
13512       // Wrap predicates from outer loops are not supported.
13513       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13514         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13515         if (L != AR->getLoop())
13516           return Expr;
13517       }
13518       if (!addOverflowAssumption(P))
13519         return Expr;
13520     }
13521     return PredicatedRewrite->first;
13522   }
13523 
13524   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13525   SCEVUnionPredicate *Pred;
13526   const Loop *L;
13527 };
13528 
13529 } // end anonymous namespace
13530 
13531 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13532                                                    SCEVUnionPredicate &Preds) {
13533   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13534 }
13535 
13536 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13537     const SCEV *S, const Loop *L,
13538     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13539   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13540   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13541   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13542 
13543   if (!AddRec)
13544     return nullptr;
13545 
13546   // Since the transformation was successful, we can now transfer the SCEV
13547   // predicates.
13548   for (auto *P : TransformPreds)
13549     Preds.insert(P);
13550 
13551   return AddRec;
13552 }
13553 
13554 /// SCEV predicates
13555 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13556                              SCEVPredicateKind Kind)
13557     : FastID(ID), Kind(Kind) {}
13558 
13559 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13560                                        const SCEV *LHS, const SCEV *RHS)
13561     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13562   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13563   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13564 }
13565 
13566 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13567   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13568 
13569   if (!Op)
13570     return false;
13571 
13572   return Op->LHS == LHS && Op->RHS == RHS;
13573 }
13574 
13575 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13576 
13577 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13578 
13579 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13580   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13581 }
13582 
13583 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13584                                      const SCEVAddRecExpr *AR,
13585                                      IncrementWrapFlags Flags)
13586     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13587 
13588 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13589 
13590 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13591   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13592 
13593   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13594 }
13595 
13596 bool SCEVWrapPredicate::isAlwaysTrue() const {
13597   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13598   IncrementWrapFlags IFlags = Flags;
13599 
13600   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13601     IFlags = clearFlags(IFlags, IncrementNSSW);
13602 
13603   return IFlags == IncrementAnyWrap;
13604 }
13605 
13606 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13607   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13608   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13609     OS << "<nusw>";
13610   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13611     OS << "<nssw>";
13612   OS << "\n";
13613 }
13614 
13615 SCEVWrapPredicate::IncrementWrapFlags
13616 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13617                                    ScalarEvolution &SE) {
13618   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13619   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13620 
13621   // We can safely transfer the NSW flag as NSSW.
13622   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13623     ImpliedFlags = IncrementNSSW;
13624 
13625   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13626     // If the increment is positive, the SCEV NUW flag will also imply the
13627     // WrapPredicate NUSW flag.
13628     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13629       if (Step->getValue()->getValue().isNonNegative())
13630         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13631   }
13632 
13633   return ImpliedFlags;
13634 }
13635 
13636 /// Union predicates don't get cached so create a dummy set ID for it.
13637 SCEVUnionPredicate::SCEVUnionPredicate()
13638     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13639 
13640 bool SCEVUnionPredicate::isAlwaysTrue() const {
13641   return all_of(Preds,
13642                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13643 }
13644 
13645 ArrayRef<const SCEVPredicate *>
13646 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13647   auto I = SCEVToPreds.find(Expr);
13648   if (I == SCEVToPreds.end())
13649     return ArrayRef<const SCEVPredicate *>();
13650   return I->second;
13651 }
13652 
13653 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13654   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13655     return all_of(Set->Preds,
13656                   [this](const SCEVPredicate *I) { return this->implies(I); });
13657 
13658   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13659   if (ScevPredsIt == SCEVToPreds.end())
13660     return false;
13661   auto &SCEVPreds = ScevPredsIt->second;
13662 
13663   return any_of(SCEVPreds,
13664                 [N](const SCEVPredicate *I) { return I->implies(N); });
13665 }
13666 
13667 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13668 
13669 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13670   for (auto Pred : Preds)
13671     Pred->print(OS, Depth);
13672 }
13673 
13674 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13675   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13676     for (auto Pred : Set->Preds)
13677       add(Pred);
13678     return;
13679   }
13680 
13681   if (implies(N))
13682     return;
13683 
13684   const SCEV *Key = N->getExpr();
13685   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13686                 " associated expression!");
13687 
13688   SCEVToPreds[Key].push_back(N);
13689   Preds.push_back(N);
13690 }
13691 
13692 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13693                                                      Loop &L)
13694     : SE(SE), L(L) {}
13695 
13696 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13697   const SCEV *Expr = SE.getSCEV(V);
13698   RewriteEntry &Entry = RewriteMap[Expr];
13699 
13700   // If we already have an entry and the version matches, return it.
13701   if (Entry.second && Generation == Entry.first)
13702     return Entry.second;
13703 
13704   // We found an entry but it's stale. Rewrite the stale entry
13705   // according to the current predicate.
13706   if (Entry.second)
13707     Expr = Entry.second;
13708 
13709   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13710   Entry = {Generation, NewSCEV};
13711 
13712   return NewSCEV;
13713 }
13714 
13715 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13716   if (!BackedgeCount) {
13717     SCEVUnionPredicate BackedgePred;
13718     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13719     addPredicate(BackedgePred);
13720   }
13721   return BackedgeCount;
13722 }
13723 
13724 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13725   if (Preds.implies(&Pred))
13726     return;
13727   Preds.add(&Pred);
13728   updateGeneration();
13729 }
13730 
13731 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13732   return Preds;
13733 }
13734 
13735 void PredicatedScalarEvolution::updateGeneration() {
13736   // If the generation number wrapped recompute everything.
13737   if (++Generation == 0) {
13738     for (auto &II : RewriteMap) {
13739       const SCEV *Rewritten = II.second.second;
13740       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13741     }
13742   }
13743 }
13744 
13745 void PredicatedScalarEvolution::setNoOverflow(
13746     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13747   const SCEV *Expr = getSCEV(V);
13748   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13749 
13750   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13751 
13752   // Clear the statically implied flags.
13753   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13754   addPredicate(*SE.getWrapPredicate(AR, Flags));
13755 
13756   auto II = FlagsMap.insert({V, Flags});
13757   if (!II.second)
13758     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13759 }
13760 
13761 bool PredicatedScalarEvolution::hasNoOverflow(
13762     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13763   const SCEV *Expr = getSCEV(V);
13764   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13765 
13766   Flags = SCEVWrapPredicate::clearFlags(
13767       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13768 
13769   auto II = FlagsMap.find(V);
13770 
13771   if (II != FlagsMap.end())
13772     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13773 
13774   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13775 }
13776 
13777 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13778   const SCEV *Expr = this->getSCEV(V);
13779   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13780   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13781 
13782   if (!New)
13783     return nullptr;
13784 
13785   for (auto *P : NewPreds)
13786     Preds.add(P);
13787 
13788   updateGeneration();
13789   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13790   return New;
13791 }
13792 
13793 PredicatedScalarEvolution::PredicatedScalarEvolution(
13794     const PredicatedScalarEvolution &Init)
13795     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13796       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13797   for (auto I : Init.FlagsMap)
13798     FlagsMap.insert(I);
13799 }
13800 
13801 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13802   // For each block.
13803   for (auto *BB : L.getBlocks())
13804     for (auto &I : *BB) {
13805       if (!SE.isSCEVable(I.getType()))
13806         continue;
13807 
13808       auto *Expr = SE.getSCEV(&I);
13809       auto II = RewriteMap.find(Expr);
13810 
13811       if (II == RewriteMap.end())
13812         continue;
13813 
13814       // Don't print things that are not interesting.
13815       if (II->second.second == Expr)
13816         continue;
13817 
13818       OS.indent(Depth) << "[PSE]" << I << ":\n";
13819       OS.indent(Depth + 2) << *Expr << "\n";
13820       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13821     }
13822 }
13823 
13824 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13825 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13826 // for URem with constant power-of-2 second operands.
13827 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13828 // 4, A / B becomes X / 8).
13829 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13830                                 const SCEV *&RHS) {
13831   // Try to match 'zext (trunc A to iB) to iY', which is used
13832   // for URem with constant power-of-2 second operands. Make sure the size of
13833   // the operand A matches the size of the whole expressions.
13834   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13835     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13836       LHS = Trunc->getOperand();
13837       // Bail out if the type of the LHS is larger than the type of the
13838       // expression for now.
13839       if (getTypeSizeInBits(LHS->getType()) >
13840           getTypeSizeInBits(Expr->getType()))
13841         return false;
13842       if (LHS->getType() != Expr->getType())
13843         LHS = getZeroExtendExpr(LHS, Expr->getType());
13844       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13845                         << getTypeSizeInBits(Trunc->getType()));
13846       return true;
13847     }
13848   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13849   if (Add == nullptr || Add->getNumOperands() != 2)
13850     return false;
13851 
13852   const SCEV *A = Add->getOperand(1);
13853   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13854 
13855   if (Mul == nullptr)
13856     return false;
13857 
13858   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13859     // (SomeExpr + (-(SomeExpr / B) * B)).
13860     if (Expr == getURemExpr(A, B)) {
13861       LHS = A;
13862       RHS = B;
13863       return true;
13864     }
13865     return false;
13866   };
13867 
13868   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13869   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13870     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13871            MatchURemWithDivisor(Mul->getOperand(2));
13872 
13873   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13874   if (Mul->getNumOperands() == 2)
13875     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13876            MatchURemWithDivisor(Mul->getOperand(0)) ||
13877            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13878            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13879   return false;
13880 }
13881 
13882 const SCEV *
13883 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13884   SmallVector<BasicBlock*, 16> ExitingBlocks;
13885   L->getExitingBlocks(ExitingBlocks);
13886 
13887   // Form an expression for the maximum exit count possible for this loop. We
13888   // merge the max and exact information to approximate a version of
13889   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13890   SmallVector<const SCEV*, 4> ExitCounts;
13891   for (BasicBlock *ExitingBB : ExitingBlocks) {
13892     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13893     if (isa<SCEVCouldNotCompute>(ExitCount))
13894       ExitCount = getExitCount(L, ExitingBB,
13895                                   ScalarEvolution::ConstantMaximum);
13896     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13897       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13898              "We should only have known counts for exiting blocks that "
13899              "dominate latch!");
13900       ExitCounts.push_back(ExitCount);
13901     }
13902   }
13903   if (ExitCounts.empty())
13904     return getCouldNotCompute();
13905   return getUMinFromMismatchedTypes(ExitCounts);
13906 }
13907 
13908 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13909 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13910 /// we cannot guarantee that the replacement is loop invariant in the loop of
13911 /// the AddRec.
13912 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13913   ValueToSCEVMapTy &Map;
13914 
13915 public:
13916   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13917       : SCEVRewriteVisitor(SE), Map(M) {}
13918 
13919   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13920 
13921   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13922     auto I = Map.find(Expr->getValue());
13923     if (I == Map.end())
13924       return Expr;
13925     return I->second;
13926   }
13927 };
13928 
13929 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13930   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13931                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13932     // If we have LHS == 0, check if LHS is computing a property of some unknown
13933     // SCEV %v which we can rewrite %v to express explicitly.
13934     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13935     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13936         RHSC->getValue()->isNullValue()) {
13937       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13938       // explicitly express that.
13939       const SCEV *URemLHS = nullptr;
13940       const SCEV *URemRHS = nullptr;
13941       if (matchURem(LHS, URemLHS, URemRHS)) {
13942         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13943           Value *V = LHSUnknown->getValue();
13944           auto Multiple =
13945               getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS,
13946                          (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
13947           RewriteMap[V] = Multiple;
13948           return;
13949         }
13950       }
13951     }
13952 
13953     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13954       std::swap(LHS, RHS);
13955       Predicate = CmpInst::getSwappedPredicate(Predicate);
13956     }
13957 
13958     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13959     // create this form when combining two checks of the form (X u< C2 + C1) and
13960     // (X >=u C1).
13961     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13962       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13963       if (!AddExpr || AddExpr->getNumOperands() != 2)
13964         return false;
13965 
13966       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13967       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13968       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13969       if (!C1 || !C2 || !LHSUnknown)
13970         return false;
13971 
13972       auto ExactRegion =
13973           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13974               .sub(C1->getAPInt());
13975 
13976       // Bail out, unless we have a non-wrapping, monotonic range.
13977       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13978         return false;
13979       auto I = RewriteMap.find(LHSUnknown->getValue());
13980       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13981       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13982           getConstant(ExactRegion.getUnsignedMin()),
13983           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13984       return true;
13985     };
13986     if (MatchRangeCheckIdiom())
13987       return;
13988 
13989     // For now, limit to conditions that provide information about unknown
13990     // expressions. RHS also cannot contain add recurrences.
13991     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13992     if (!LHSUnknown || containsAddRecurrence(RHS))
13993       return;
13994 
13995     // Check whether LHS has already been rewritten. In that case we want to
13996     // chain further rewrites onto the already rewritten value.
13997     auto I = RewriteMap.find(LHSUnknown->getValue());
13998     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13999     const SCEV *RewrittenRHS = nullptr;
14000     switch (Predicate) {
14001     case CmpInst::ICMP_ULT:
14002       RewrittenRHS =
14003           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14004       break;
14005     case CmpInst::ICMP_SLT:
14006       RewrittenRHS =
14007           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14008       break;
14009     case CmpInst::ICMP_ULE:
14010       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14011       break;
14012     case CmpInst::ICMP_SLE:
14013       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14014       break;
14015     case CmpInst::ICMP_UGT:
14016       RewrittenRHS =
14017           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14018       break;
14019     case CmpInst::ICMP_SGT:
14020       RewrittenRHS =
14021           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14022       break;
14023     case CmpInst::ICMP_UGE:
14024       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14025       break;
14026     case CmpInst::ICMP_SGE:
14027       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14028       break;
14029     case CmpInst::ICMP_EQ:
14030       if (isa<SCEVConstant>(RHS))
14031         RewrittenRHS = RHS;
14032       break;
14033     case CmpInst::ICMP_NE:
14034       if (isa<SCEVConstant>(RHS) &&
14035           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14036         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14037       break;
14038     default:
14039       break;
14040     }
14041 
14042     if (RewrittenRHS)
14043       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
14044   };
14045   // Starting at the loop predecessor, climb up the predecessor chain, as long
14046   // as there are predecessors that can be found that have unique successors
14047   // leading to the original header.
14048   // TODO: share this logic with isLoopEntryGuardedByCond.
14049   ValueToSCEVMapTy RewriteMap;
14050   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14051            L->getLoopPredecessor(), L->getHeader());
14052        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14053 
14054     const BranchInst *LoopEntryPredicate =
14055         dyn_cast<BranchInst>(Pair.first->getTerminator());
14056     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14057       continue;
14058 
14059     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
14060     SmallVector<Value *, 8> Worklist;
14061     SmallPtrSet<Value *, 8> Visited;
14062     Worklist.push_back(LoopEntryPredicate->getCondition());
14063     while (!Worklist.empty()) {
14064       Value *Cond = Worklist.pop_back_val();
14065       if (!Visited.insert(Cond).second)
14066         continue;
14067 
14068       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14069         auto Predicate =
14070             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14071         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14072                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14073         continue;
14074       }
14075 
14076       Value *L, *R;
14077       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14078                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14079         Worklist.push_back(L);
14080         Worklist.push_back(R);
14081       }
14082     }
14083   }
14084 
14085   // Also collect information from assumptions dominating the loop.
14086   for (auto &AssumeVH : AC.assumptions()) {
14087     if (!AssumeVH)
14088       continue;
14089     auto *AssumeI = cast<CallInst>(AssumeVH);
14090     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14091     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14092       continue;
14093     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14094                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14095   }
14096 
14097   if (RewriteMap.empty())
14098     return Expr;
14099   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14100   return Rewriter.visit(Expr);
14101 }
14102