1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2401   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2402       Ops.size() == 2) {
2403     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2404       if (UDiv->getOperand(1) == Ops[1])
2405         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2407       if (UDiv->getOperand(1) == Ops[0])
2408         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2409   }
2410 
2411   return Flags;
2412 }
2413 
2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2415   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2416 }
2417 
2418 /// Get a canonical add expression, or something simpler if possible.
2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2420                                         SCEV::NoWrapFlags OrigFlags,
2421                                         unsigned Depth) {
2422   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2423          "only nuw or nsw allowed");
2424   assert(!Ops.empty() && "Cannot get empty add!");
2425   if (Ops.size() == 1) return Ops[0];
2426 #ifndef NDEBUG
2427   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2428   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2429     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2430            "SCEVAddExpr operand types don't match!");
2431   unsigned NumPtrs = count_if(
2432       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2433   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2434 #endif
2435 
2436   // Sort by complexity, this groups all similar expression types together.
2437   GroupByComplexity(Ops, &LI, DT);
2438 
2439   // If there are any constants, fold them together.
2440   unsigned Idx = 0;
2441   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2442     ++Idx;
2443     assert(Idx < Ops.size());
2444     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2445       // We found two constants, fold them together!
2446       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2447       if (Ops.size() == 2) return Ops[0];
2448       Ops.erase(Ops.begin()+1);  // Erase the folded element
2449       LHSC = cast<SCEVConstant>(Ops[0]);
2450     }
2451 
2452     // If we are left with a constant zero being added, strip it off.
2453     if (LHSC->getValue()->isZero()) {
2454       Ops.erase(Ops.begin());
2455       --Idx;
2456     }
2457 
2458     if (Ops.size() == 1) return Ops[0];
2459   }
2460 
2461   // Delay expensive flag strengthening until necessary.
2462   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2463     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2464   };
2465 
2466   // Limit recursion calls depth.
2467   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2468     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2469 
2470   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2471     // Don't strengthen flags if we have no new information.
2472     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2473     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2474       Add->setNoWrapFlags(ComputeFlags(Ops));
2475     return S;
2476   }
2477 
2478   // Okay, check to see if the same value occurs in the operand list more than
2479   // once.  If so, merge them together into an multiply expression.  Since we
2480   // sorted the list, these values are required to be adjacent.
2481   Type *Ty = Ops[0]->getType();
2482   bool FoundMatch = false;
2483   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2484     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2485       // Scan ahead to count how many equal operands there are.
2486       unsigned Count = 2;
2487       while (i+Count != e && Ops[i+Count] == Ops[i])
2488         ++Count;
2489       // Merge the values into a multiply.
2490       const SCEV *Scale = getConstant(Ty, Count);
2491       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2492       if (Ops.size() == Count)
2493         return Mul;
2494       Ops[i] = Mul;
2495       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2496       --i; e -= Count - 1;
2497       FoundMatch = true;
2498     }
2499   if (FoundMatch)
2500     return getAddExpr(Ops, OrigFlags, Depth + 1);
2501 
2502   // Check for truncates. If all the operands are truncated from the same
2503   // type, see if factoring out the truncate would permit the result to be
2504   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2505   // if the contents of the resulting outer trunc fold to something simple.
2506   auto FindTruncSrcType = [&]() -> Type * {
2507     // We're ultimately looking to fold an addrec of truncs and muls of only
2508     // constants and truncs, so if we find any other types of SCEV
2509     // as operands of the addrec then we bail and return nullptr here.
2510     // Otherwise, we return the type of the operand of a trunc that we find.
2511     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2512       return T->getOperand()->getType();
2513     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2514       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2515       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2516         return T->getOperand()->getType();
2517     }
2518     return nullptr;
2519   };
2520   if (auto *SrcType = FindTruncSrcType()) {
2521     SmallVector<const SCEV *, 8> LargeOps;
2522     bool Ok = true;
2523     // Check all the operands to see if they can be represented in the
2524     // source type of the truncate.
2525     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2526       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2527         if (T->getOperand()->getType() != SrcType) {
2528           Ok = false;
2529           break;
2530         }
2531         LargeOps.push_back(T->getOperand());
2532       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2533         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2534       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2535         SmallVector<const SCEV *, 8> LargeMulOps;
2536         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2537           if (const SCEVTruncateExpr *T =
2538                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2539             if (T->getOperand()->getType() != SrcType) {
2540               Ok = false;
2541               break;
2542             }
2543             LargeMulOps.push_back(T->getOperand());
2544           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2545             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2546           } else {
2547             Ok = false;
2548             break;
2549           }
2550         }
2551         if (Ok)
2552           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2553       } else {
2554         Ok = false;
2555         break;
2556       }
2557     }
2558     if (Ok) {
2559       // Evaluate the expression in the larger type.
2560       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2561       // If it folds to something simple, use it. Otherwise, don't.
2562       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2563         return getTruncateExpr(Fold, Ty);
2564     }
2565   }
2566 
2567   if (Ops.size() == 2) {
2568     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2569     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2570     // C1).
2571     const SCEV *A = Ops[0];
2572     const SCEV *B = Ops[1];
2573     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2574     auto *C = dyn_cast<SCEVConstant>(A);
2575     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2576       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2577       auto C2 = C->getAPInt();
2578       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2579 
2580       APInt ConstAdd = C1 + C2;
2581       auto AddFlags = AddExpr->getNoWrapFlags();
2582       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2583       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2584           ConstAdd.ule(C1)) {
2585         PreservedFlags =
2586             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2587       }
2588 
2589       // Adding a constant with the same sign and small magnitude is NSW, if the
2590       // original AddExpr was NSW.
2591       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2592           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2593           ConstAdd.abs().ule(C1.abs())) {
2594         PreservedFlags =
2595             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2596       }
2597 
2598       if (PreservedFlags != SCEV::FlagAnyWrap) {
2599         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2600         NewOps[0] = getConstant(ConstAdd);
2601         return getAddExpr(NewOps, PreservedFlags);
2602       }
2603     }
2604   }
2605 
2606   // Skip past any other cast SCEVs.
2607   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2608     ++Idx;
2609 
2610   // If there are add operands they would be next.
2611   if (Idx < Ops.size()) {
2612     bool DeletedAdd = false;
2613     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2614     // common NUW flag for expression after inlining. Other flags cannot be
2615     // preserved, because they may depend on the original order of operations.
2616     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2617     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2618       if (Ops.size() > AddOpsInlineThreshold ||
2619           Add->getNumOperands() > AddOpsInlineThreshold)
2620         break;
2621       // If we have an add, expand the add operands onto the end of the operands
2622       // list.
2623       Ops.erase(Ops.begin()+Idx);
2624       Ops.append(Add->op_begin(), Add->op_end());
2625       DeletedAdd = true;
2626       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2627     }
2628 
2629     // If we deleted at least one add, we added operands to the end of the list,
2630     // and they are not necessarily sorted.  Recurse to resort and resimplify
2631     // any operands we just acquired.
2632     if (DeletedAdd)
2633       return getAddExpr(Ops, CommonFlags, Depth + 1);
2634   }
2635 
2636   // Skip over the add expression until we get to a multiply.
2637   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2638     ++Idx;
2639 
2640   // Check to see if there are any folding opportunities present with
2641   // operands multiplied by constant values.
2642   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2643     uint64_t BitWidth = getTypeSizeInBits(Ty);
2644     DenseMap<const SCEV *, APInt> M;
2645     SmallVector<const SCEV *, 8> NewOps;
2646     APInt AccumulatedConstant(BitWidth, 0);
2647     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2648                                      Ops.data(), Ops.size(),
2649                                      APInt(BitWidth, 1), *this)) {
2650       struct APIntCompare {
2651         bool operator()(const APInt &LHS, const APInt &RHS) const {
2652           return LHS.ult(RHS);
2653         }
2654       };
2655 
2656       // Some interesting folding opportunity is present, so its worthwhile to
2657       // re-generate the operands list. Group the operands by constant scale,
2658       // to avoid multiplying by the same constant scale multiple times.
2659       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2660       for (const SCEV *NewOp : NewOps)
2661         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2662       // Re-generate the operands list.
2663       Ops.clear();
2664       if (AccumulatedConstant != 0)
2665         Ops.push_back(getConstant(AccumulatedConstant));
2666       for (auto &MulOp : MulOpLists) {
2667         if (MulOp.first == 1) {
2668           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2669         } else if (MulOp.first != 0) {
2670           Ops.push_back(getMulExpr(
2671               getConstant(MulOp.first),
2672               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2673               SCEV::FlagAnyWrap, Depth + 1));
2674         }
2675       }
2676       if (Ops.empty())
2677         return getZero(Ty);
2678       if (Ops.size() == 1)
2679         return Ops[0];
2680       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681     }
2682   }
2683 
2684   // If we are adding something to a multiply expression, make sure the
2685   // something is not already an operand of the multiply.  If so, merge it into
2686   // the multiply.
2687   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2688     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2689     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2690       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2691       if (isa<SCEVConstant>(MulOpSCEV))
2692         continue;
2693       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2694         if (MulOpSCEV == Ops[AddOp]) {
2695           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2696           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2697           if (Mul->getNumOperands() != 2) {
2698             // If the multiply has more than two operands, we must get the
2699             // Y*Z term.
2700             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2701                                                 Mul->op_begin()+MulOp);
2702             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2703             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2704           }
2705           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2706           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2707           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2708                                             SCEV::FlagAnyWrap, Depth + 1);
2709           if (Ops.size() == 2) return OuterMul;
2710           if (AddOp < Idx) {
2711             Ops.erase(Ops.begin()+AddOp);
2712             Ops.erase(Ops.begin()+Idx-1);
2713           } else {
2714             Ops.erase(Ops.begin()+Idx);
2715             Ops.erase(Ops.begin()+AddOp-1);
2716           }
2717           Ops.push_back(OuterMul);
2718           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2719         }
2720 
2721       // Check this multiply against other multiplies being added together.
2722       for (unsigned OtherMulIdx = Idx+1;
2723            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2724            ++OtherMulIdx) {
2725         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2726         // If MulOp occurs in OtherMul, we can fold the two multiplies
2727         // together.
2728         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2729              OMulOp != e; ++OMulOp)
2730           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2731             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2732             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2733             if (Mul->getNumOperands() != 2) {
2734               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735                                                   Mul->op_begin()+MulOp);
2736               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738             }
2739             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2740             if (OtherMul->getNumOperands() != 2) {
2741               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2742                                                   OtherMul->op_begin()+OMulOp);
2743               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2744               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2745             }
2746             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2747             const SCEV *InnerMulSum =
2748                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2750                                               SCEV::FlagAnyWrap, Depth + 1);
2751             if (Ops.size() == 2) return OuterMul;
2752             Ops.erase(Ops.begin()+Idx);
2753             Ops.erase(Ops.begin()+OtherMulIdx-1);
2754             Ops.push_back(OuterMul);
2755             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756           }
2757       }
2758     }
2759   }
2760 
2761   // If there are any add recurrences in the operands list, see if any other
2762   // added values are loop invariant.  If so, we can fold them into the
2763   // recurrence.
2764   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2765     ++Idx;
2766 
2767   // Scan over all recurrences, trying to fold loop invariants into them.
2768   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2769     // Scan all of the other operands to this add and add them to the vector if
2770     // they are loop invariant w.r.t. the recurrence.
2771     SmallVector<const SCEV *, 8> LIOps;
2772     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2773     const Loop *AddRecLoop = AddRec->getLoop();
2774     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2776         LIOps.push_back(Ops[i]);
2777         Ops.erase(Ops.begin()+i);
2778         --i; --e;
2779       }
2780 
2781     // If we found some loop invariants, fold them into the recurrence.
2782     if (!LIOps.empty()) {
2783       // Compute nowrap flags for the addition of the loop-invariant ops and
2784       // the addrec. Temporarily push it as an operand for that purpose.
2785       LIOps.push_back(AddRec);
2786       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2787       LIOps.pop_back();
2788 
2789       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2790       LIOps.push_back(AddRec->getStart());
2791 
2792       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2793       // This follows from the fact that the no-wrap flags on the outer add
2794       // expression are applicable on the 0th iteration, when the add recurrence
2795       // will be equal to its start value.
2796       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2797 
2798       // Build the new addrec. Propagate the NUW and NSW flags if both the
2799       // outer add and the inner addrec are guaranteed to have no overflow.
2800       // Always propagate NW.
2801       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2802       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2803 
2804       // If all of the other operands were loop invariant, we are done.
2805       if (Ops.size() == 1) return NewRec;
2806 
2807       // Otherwise, add the folded AddRec by the non-invariant parts.
2808       for (unsigned i = 0;; ++i)
2809         if (Ops[i] == AddRec) {
2810           Ops[i] = NewRec;
2811           break;
2812         }
2813       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2814     }
2815 
2816     // Okay, if there weren't any loop invariants to be folded, check to see if
2817     // there are multiple AddRec's with the same loop induction variable being
2818     // added together.  If so, we can fold them.
2819     for (unsigned OtherIdx = Idx+1;
2820          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2821          ++OtherIdx) {
2822       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2823       // so that the 1st found AddRecExpr is dominated by all others.
2824       assert(DT.dominates(
2825            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2826            AddRec->getLoop()->getHeader()) &&
2827         "AddRecExprs are not sorted in reverse dominance order?");
2828       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2829         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2830         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2831         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2832              ++OtherIdx) {
2833           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2834           if (OtherAddRec->getLoop() == AddRecLoop) {
2835             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2836                  i != e; ++i) {
2837               if (i >= AddRecOps.size()) {
2838                 AddRecOps.append(OtherAddRec->op_begin()+i,
2839                                  OtherAddRec->op_end());
2840                 break;
2841               }
2842               SmallVector<const SCEV *, 2> TwoOps = {
2843                   AddRecOps[i], OtherAddRec->getOperand(i)};
2844               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2845             }
2846             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2847           }
2848         }
2849         // Step size has changed, so we cannot guarantee no self-wraparound.
2850         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2851         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2852       }
2853     }
2854 
2855     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2856     // next one.
2857   }
2858 
2859   // Okay, it looks like we really DO need an add expr.  Check to see if we
2860   // already have one, otherwise create a new one.
2861   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2862 }
2863 
2864 const SCEV *
2865 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2866                                     SCEV::NoWrapFlags Flags) {
2867   FoldingSetNodeID ID;
2868   ID.AddInteger(scAddExpr);
2869   for (const SCEV *Op : Ops)
2870     ID.AddPointer(Op);
2871   void *IP = nullptr;
2872   SCEVAddExpr *S =
2873       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2874   if (!S) {
2875     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2876     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2877     S = new (SCEVAllocator)
2878         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2879     UniqueSCEVs.InsertNode(S, IP);
2880     addToLoopUseLists(S);
2881   }
2882   S->setNoWrapFlags(Flags);
2883   return S;
2884 }
2885 
2886 const SCEV *
2887 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2888                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2889   FoldingSetNodeID ID;
2890   ID.AddInteger(scAddRecExpr);
2891   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2892     ID.AddPointer(Ops[i]);
2893   ID.AddPointer(L);
2894   void *IP = nullptr;
2895   SCEVAddRecExpr *S =
2896       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2897   if (!S) {
2898     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2899     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2900     S = new (SCEVAllocator)
2901         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2902     UniqueSCEVs.InsertNode(S, IP);
2903     addToLoopUseLists(S);
2904   }
2905   setNoWrapFlags(S, Flags);
2906   return S;
2907 }
2908 
2909 const SCEV *
2910 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2911                                     SCEV::NoWrapFlags Flags) {
2912   FoldingSetNodeID ID;
2913   ID.AddInteger(scMulExpr);
2914   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2915     ID.AddPointer(Ops[i]);
2916   void *IP = nullptr;
2917   SCEVMulExpr *S =
2918     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2919   if (!S) {
2920     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2921     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2922     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2923                                         O, Ops.size());
2924     UniqueSCEVs.InsertNode(S, IP);
2925     addToLoopUseLists(S);
2926   }
2927   S->setNoWrapFlags(Flags);
2928   return S;
2929 }
2930 
2931 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2932   uint64_t k = i*j;
2933   if (j > 1 && k / j != i) Overflow = true;
2934   return k;
2935 }
2936 
2937 /// Compute the result of "n choose k", the binomial coefficient.  If an
2938 /// intermediate computation overflows, Overflow will be set and the return will
2939 /// be garbage. Overflow is not cleared on absence of overflow.
2940 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2941   // We use the multiplicative formula:
2942   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2943   // At each iteration, we take the n-th term of the numeral and divide by the
2944   // (k-n)th term of the denominator.  This division will always produce an
2945   // integral result, and helps reduce the chance of overflow in the
2946   // intermediate computations. However, we can still overflow even when the
2947   // final result would fit.
2948 
2949   if (n == 0 || n == k) return 1;
2950   if (k > n) return 0;
2951 
2952   if (k > n/2)
2953     k = n-k;
2954 
2955   uint64_t r = 1;
2956   for (uint64_t i = 1; i <= k; ++i) {
2957     r = umul_ov(r, n-(i-1), Overflow);
2958     r /= i;
2959   }
2960   return r;
2961 }
2962 
2963 /// Determine if any of the operands in this SCEV are a constant or if
2964 /// any of the add or multiply expressions in this SCEV contain a constant.
2965 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2966   struct FindConstantInAddMulChain {
2967     bool FoundConstant = false;
2968 
2969     bool follow(const SCEV *S) {
2970       FoundConstant |= isa<SCEVConstant>(S);
2971       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2972     }
2973 
2974     bool isDone() const {
2975       return FoundConstant;
2976     }
2977   };
2978 
2979   FindConstantInAddMulChain F;
2980   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2981   ST.visitAll(StartExpr);
2982   return F.FoundConstant;
2983 }
2984 
2985 /// Get a canonical multiply expression, or something simpler if possible.
2986 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2987                                         SCEV::NoWrapFlags OrigFlags,
2988                                         unsigned Depth) {
2989   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2990          "only nuw or nsw allowed");
2991   assert(!Ops.empty() && "Cannot get empty mul!");
2992   if (Ops.size() == 1) return Ops[0];
2993 #ifndef NDEBUG
2994   Type *ETy = Ops[0]->getType();
2995   assert(!ETy->isPointerTy());
2996   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2997     assert(Ops[i]->getType() == ETy &&
2998            "SCEVMulExpr operand types don't match!");
2999 #endif
3000 
3001   // Sort by complexity, this groups all similar expression types together.
3002   GroupByComplexity(Ops, &LI, DT);
3003 
3004   // If there are any constants, fold them together.
3005   unsigned Idx = 0;
3006   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3007     ++Idx;
3008     assert(Idx < Ops.size());
3009     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3010       // We found two constants, fold them together!
3011       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3012       if (Ops.size() == 2) return Ops[0];
3013       Ops.erase(Ops.begin()+1);  // Erase the folded element
3014       LHSC = cast<SCEVConstant>(Ops[0]);
3015     }
3016 
3017     // If we have a multiply of zero, it will always be zero.
3018     if (LHSC->getValue()->isZero())
3019       return LHSC;
3020 
3021     // If we are left with a constant one being multiplied, strip it off.
3022     if (LHSC->getValue()->isOne()) {
3023       Ops.erase(Ops.begin());
3024       --Idx;
3025     }
3026 
3027     if (Ops.size() == 1)
3028       return Ops[0];
3029   }
3030 
3031   // Delay expensive flag strengthening until necessary.
3032   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3033     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3034   };
3035 
3036   // Limit recursion calls depth.
3037   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3038     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3039 
3040   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3041     // Don't strengthen flags if we have no new information.
3042     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3043     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3044       Mul->setNoWrapFlags(ComputeFlags(Ops));
3045     return S;
3046   }
3047 
3048   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3049     if (Ops.size() == 2) {
3050       // C1*(C2+V) -> C1*C2 + C1*V
3051       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3052         // If any of Add's ops are Adds or Muls with a constant, apply this
3053         // transformation as well.
3054         //
3055         // TODO: There are some cases where this transformation is not
3056         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3057         // this transformation should be narrowed down.
3058         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3059           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3060                                        SCEV::FlagAnyWrap, Depth + 1),
3061                             getMulExpr(LHSC, Add->getOperand(1),
3062                                        SCEV::FlagAnyWrap, Depth + 1),
3063                             SCEV::FlagAnyWrap, Depth + 1);
3064 
3065       if (Ops[0]->isAllOnesValue()) {
3066         // If we have a mul by -1 of an add, try distributing the -1 among the
3067         // add operands.
3068         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3069           SmallVector<const SCEV *, 4> NewOps;
3070           bool AnyFolded = false;
3071           for (const SCEV *AddOp : Add->operands()) {
3072             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3073                                          Depth + 1);
3074             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3075             NewOps.push_back(Mul);
3076           }
3077           if (AnyFolded)
3078             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3079         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3080           // Negation preserves a recurrence's no self-wrap property.
3081           SmallVector<const SCEV *, 4> Operands;
3082           for (const SCEV *AddRecOp : AddRec->operands())
3083             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3084                                           Depth + 1));
3085 
3086           return getAddRecExpr(Operands, AddRec->getLoop(),
3087                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3088         }
3089       }
3090     }
3091   }
3092 
3093   // Skip over the add expression until we get to a multiply.
3094   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3095     ++Idx;
3096 
3097   // If there are mul operands inline them all into this expression.
3098   if (Idx < Ops.size()) {
3099     bool DeletedMul = false;
3100     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3101       if (Ops.size() > MulOpsInlineThreshold)
3102         break;
3103       // If we have an mul, expand the mul operands onto the end of the
3104       // operands list.
3105       Ops.erase(Ops.begin()+Idx);
3106       Ops.append(Mul->op_begin(), Mul->op_end());
3107       DeletedMul = true;
3108     }
3109 
3110     // If we deleted at least one mul, we added operands to the end of the
3111     // list, and they are not necessarily sorted.  Recurse to resort and
3112     // resimplify any operands we just acquired.
3113     if (DeletedMul)
3114       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3115   }
3116 
3117   // If there are any add recurrences in the operands list, see if any other
3118   // added values are loop invariant.  If so, we can fold them into the
3119   // recurrence.
3120   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3121     ++Idx;
3122 
3123   // Scan over all recurrences, trying to fold loop invariants into them.
3124   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3125     // Scan all of the other operands to this mul and add them to the vector
3126     // if they are loop invariant w.r.t. the recurrence.
3127     SmallVector<const SCEV *, 8> LIOps;
3128     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3129     const Loop *AddRecLoop = AddRec->getLoop();
3130     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3131       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3132         LIOps.push_back(Ops[i]);
3133         Ops.erase(Ops.begin()+i);
3134         --i; --e;
3135       }
3136 
3137     // If we found some loop invariants, fold them into the recurrence.
3138     if (!LIOps.empty()) {
3139       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3140       SmallVector<const SCEV *, 4> NewOps;
3141       NewOps.reserve(AddRec->getNumOperands());
3142       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3143       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3144         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3145                                     SCEV::FlagAnyWrap, Depth + 1));
3146 
3147       // Build the new addrec. Propagate the NUW and NSW flags if both the
3148       // outer mul and the inner addrec are guaranteed to have no overflow.
3149       //
3150       // No self-wrap cannot be guaranteed after changing the step size, but
3151       // will be inferred if either NUW or NSW is true.
3152       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3153       const SCEV *NewRec = getAddRecExpr(
3154           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3155 
3156       // If all of the other operands were loop invariant, we are done.
3157       if (Ops.size() == 1) return NewRec;
3158 
3159       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3160       for (unsigned i = 0;; ++i)
3161         if (Ops[i] == AddRec) {
3162           Ops[i] = NewRec;
3163           break;
3164         }
3165       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3166     }
3167 
3168     // Okay, if there weren't any loop invariants to be folded, check to see
3169     // if there are multiple AddRec's with the same loop induction variable
3170     // being multiplied together.  If so, we can fold them.
3171 
3172     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3173     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3174     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3175     //   ]]],+,...up to x=2n}.
3176     // Note that the arguments to choose() are always integers with values
3177     // known at compile time, never SCEV objects.
3178     //
3179     // The implementation avoids pointless extra computations when the two
3180     // addrec's are of different length (mathematically, it's equivalent to
3181     // an infinite stream of zeros on the right).
3182     bool OpsModified = false;
3183     for (unsigned OtherIdx = Idx+1;
3184          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3185          ++OtherIdx) {
3186       const SCEVAddRecExpr *OtherAddRec =
3187         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3188       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3189         continue;
3190 
3191       // Limit max number of arguments to avoid creation of unreasonably big
3192       // SCEVAddRecs with very complex operands.
3193       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3194           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3195         continue;
3196 
3197       bool Overflow = false;
3198       Type *Ty = AddRec->getType();
3199       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3200       SmallVector<const SCEV*, 7> AddRecOps;
3201       for (int x = 0, xe = AddRec->getNumOperands() +
3202              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3203         SmallVector <const SCEV *, 7> SumOps;
3204         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3205           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3206           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3207                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3208                z < ze && !Overflow; ++z) {
3209             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3210             uint64_t Coeff;
3211             if (LargerThan64Bits)
3212               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3213             else
3214               Coeff = Coeff1*Coeff2;
3215             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3216             const SCEV *Term1 = AddRec->getOperand(y-z);
3217             const SCEV *Term2 = OtherAddRec->getOperand(z);
3218             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3219                                         SCEV::FlagAnyWrap, Depth + 1));
3220           }
3221         }
3222         if (SumOps.empty())
3223           SumOps.push_back(getZero(Ty));
3224         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3225       }
3226       if (!Overflow) {
3227         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3228                                               SCEV::FlagAnyWrap);
3229         if (Ops.size() == 2) return NewAddRec;
3230         Ops[Idx] = NewAddRec;
3231         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3232         OpsModified = true;
3233         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3234         if (!AddRec)
3235           break;
3236       }
3237     }
3238     if (OpsModified)
3239       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3240 
3241     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3242     // next one.
3243   }
3244 
3245   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3246   // already have one, otherwise create a new one.
3247   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3248 }
3249 
3250 /// Represents an unsigned remainder expression based on unsigned division.
3251 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3252                                          const SCEV *RHS) {
3253   assert(getEffectiveSCEVType(LHS->getType()) ==
3254          getEffectiveSCEVType(RHS->getType()) &&
3255          "SCEVURemExpr operand types don't match!");
3256 
3257   // Short-circuit easy cases
3258   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3259     // If constant is one, the result is trivial
3260     if (RHSC->getValue()->isOne())
3261       return getZero(LHS->getType()); // X urem 1 --> 0
3262 
3263     // If constant is a power of two, fold into a zext(trunc(LHS)).
3264     if (RHSC->getAPInt().isPowerOf2()) {
3265       Type *FullTy = LHS->getType();
3266       Type *TruncTy =
3267           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3268       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3269     }
3270   }
3271 
3272   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3273   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3274   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3275   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3276 }
3277 
3278 /// Get a canonical unsigned division expression, or something simpler if
3279 /// possible.
3280 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3281                                          const SCEV *RHS) {
3282   assert(!LHS->getType()->isPointerTy() &&
3283          "SCEVUDivExpr operand can't be pointer!");
3284   assert(LHS->getType() == RHS->getType() &&
3285          "SCEVUDivExpr operand types don't match!");
3286 
3287   FoldingSetNodeID ID;
3288   ID.AddInteger(scUDivExpr);
3289   ID.AddPointer(LHS);
3290   ID.AddPointer(RHS);
3291   void *IP = nullptr;
3292   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3293     return S;
3294 
3295   // 0 udiv Y == 0
3296   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3297     if (LHSC->getValue()->isZero())
3298       return LHS;
3299 
3300   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3301     if (RHSC->getValue()->isOne())
3302       return LHS;                               // X udiv 1 --> x
3303     // If the denominator is zero, the result of the udiv is undefined. Don't
3304     // try to analyze it, because the resolution chosen here may differ from
3305     // the resolution chosen in other parts of the compiler.
3306     if (!RHSC->getValue()->isZero()) {
3307       // Determine if the division can be folded into the operands of
3308       // its operands.
3309       // TODO: Generalize this to non-constants by using known-bits information.
3310       Type *Ty = LHS->getType();
3311       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3312       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3313       // For non-power-of-two values, effectively round the value up to the
3314       // nearest power of two.
3315       if (!RHSC->getAPInt().isPowerOf2())
3316         ++MaxShiftAmt;
3317       IntegerType *ExtTy =
3318         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3319       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3320         if (const SCEVConstant *Step =
3321             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3322           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3323           const APInt &StepInt = Step->getAPInt();
3324           const APInt &DivInt = RHSC->getAPInt();
3325           if (!StepInt.urem(DivInt) &&
3326               getZeroExtendExpr(AR, ExtTy) ==
3327               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3328                             getZeroExtendExpr(Step, ExtTy),
3329                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3330             SmallVector<const SCEV *, 4> Operands;
3331             for (const SCEV *Op : AR->operands())
3332               Operands.push_back(getUDivExpr(Op, RHS));
3333             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3334           }
3335           /// Get a canonical UDivExpr for a recurrence.
3336           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3337           // We can currently only fold X%N if X is constant.
3338           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3339           if (StartC && !DivInt.urem(StepInt) &&
3340               getZeroExtendExpr(AR, ExtTy) ==
3341               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3342                             getZeroExtendExpr(Step, ExtTy),
3343                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3344             const APInt &StartInt = StartC->getAPInt();
3345             const APInt &StartRem = StartInt.urem(StepInt);
3346             if (StartRem != 0) {
3347               const SCEV *NewLHS =
3348                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3349                                 AR->getLoop(), SCEV::FlagNW);
3350               if (LHS != NewLHS) {
3351                 LHS = NewLHS;
3352 
3353                 // Reset the ID to include the new LHS, and check if it is
3354                 // already cached.
3355                 ID.clear();
3356                 ID.AddInteger(scUDivExpr);
3357                 ID.AddPointer(LHS);
3358                 ID.AddPointer(RHS);
3359                 IP = nullptr;
3360                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3361                   return S;
3362               }
3363             }
3364           }
3365         }
3366       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3367       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3368         SmallVector<const SCEV *, 4> Operands;
3369         for (const SCEV *Op : M->operands())
3370           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3371         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3372           // Find an operand that's safely divisible.
3373           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3374             const SCEV *Op = M->getOperand(i);
3375             const SCEV *Div = getUDivExpr(Op, RHSC);
3376             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3377               Operands = SmallVector<const SCEV *, 4>(M->operands());
3378               Operands[i] = Div;
3379               return getMulExpr(Operands);
3380             }
3381           }
3382       }
3383 
3384       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3385       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3386         if (auto *DivisorConstant =
3387                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3388           bool Overflow = false;
3389           APInt NewRHS =
3390               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3391           if (Overflow) {
3392             return getConstant(RHSC->getType(), 0, false);
3393           }
3394           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3395         }
3396       }
3397 
3398       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3399       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3400         SmallVector<const SCEV *, 4> Operands;
3401         for (const SCEV *Op : A->operands())
3402           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3403         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3404           Operands.clear();
3405           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3406             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3407             if (isa<SCEVUDivExpr>(Op) ||
3408                 getMulExpr(Op, RHS) != A->getOperand(i))
3409               break;
3410             Operands.push_back(Op);
3411           }
3412           if (Operands.size() == A->getNumOperands())
3413             return getAddExpr(Operands);
3414         }
3415       }
3416 
3417       // Fold if both operands are constant.
3418       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3419         Constant *LHSCV = LHSC->getValue();
3420         Constant *RHSCV = RHSC->getValue();
3421         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3422                                                                    RHSCV)));
3423       }
3424     }
3425   }
3426 
3427   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3428   // changes). Make sure we get a new one.
3429   IP = nullptr;
3430   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3431   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3432                                              LHS, RHS);
3433   UniqueSCEVs.InsertNode(S, IP);
3434   addToLoopUseLists(S);
3435   return S;
3436 }
3437 
3438 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3439   APInt A = C1->getAPInt().abs();
3440   APInt B = C2->getAPInt().abs();
3441   uint32_t ABW = A.getBitWidth();
3442   uint32_t BBW = B.getBitWidth();
3443 
3444   if (ABW > BBW)
3445     B = B.zext(ABW);
3446   else if (ABW < BBW)
3447     A = A.zext(BBW);
3448 
3449   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3450 }
3451 
3452 /// Get a canonical unsigned division expression, or something simpler if
3453 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3454 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3455 /// it's not exact because the udiv may be clearing bits.
3456 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3457                                               const SCEV *RHS) {
3458   // TODO: we could try to find factors in all sorts of things, but for now we
3459   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3460   // end of this file for inspiration.
3461 
3462   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3463   if (!Mul || !Mul->hasNoUnsignedWrap())
3464     return getUDivExpr(LHS, RHS);
3465 
3466   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3467     // If the mulexpr multiplies by a constant, then that constant must be the
3468     // first element of the mulexpr.
3469     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3470       if (LHSCst == RHSCst) {
3471         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3472         return getMulExpr(Operands);
3473       }
3474 
3475       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3476       // that there's a factor provided by one of the other terms. We need to
3477       // check.
3478       APInt Factor = gcd(LHSCst, RHSCst);
3479       if (!Factor.isIntN(1)) {
3480         LHSCst =
3481             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3482         RHSCst =
3483             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3484         SmallVector<const SCEV *, 2> Operands;
3485         Operands.push_back(LHSCst);
3486         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3487         LHS = getMulExpr(Operands);
3488         RHS = RHSCst;
3489         Mul = dyn_cast<SCEVMulExpr>(LHS);
3490         if (!Mul)
3491           return getUDivExactExpr(LHS, RHS);
3492       }
3493     }
3494   }
3495 
3496   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3497     if (Mul->getOperand(i) == RHS) {
3498       SmallVector<const SCEV *, 2> Operands;
3499       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3500       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3501       return getMulExpr(Operands);
3502     }
3503   }
3504 
3505   return getUDivExpr(LHS, RHS);
3506 }
3507 
3508 /// Get an add recurrence expression for the specified loop.  Simplify the
3509 /// expression as much as possible.
3510 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3511                                            const Loop *L,
3512                                            SCEV::NoWrapFlags Flags) {
3513   SmallVector<const SCEV *, 4> Operands;
3514   Operands.push_back(Start);
3515   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3516     if (StepChrec->getLoop() == L) {
3517       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3518       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3519     }
3520 
3521   Operands.push_back(Step);
3522   return getAddRecExpr(Operands, L, Flags);
3523 }
3524 
3525 /// Get an add recurrence expression for the specified loop.  Simplify the
3526 /// expression as much as possible.
3527 const SCEV *
3528 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3529                                const Loop *L, SCEV::NoWrapFlags Flags) {
3530   if (Operands.size() == 1) return Operands[0];
3531 #ifndef NDEBUG
3532   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3533   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3534     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3535            "SCEVAddRecExpr operand types don't match!");
3536     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3537   }
3538   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3539     assert(isLoopInvariant(Operands[i], L) &&
3540            "SCEVAddRecExpr operand is not loop-invariant!");
3541 #endif
3542 
3543   if (Operands.back()->isZero()) {
3544     Operands.pop_back();
3545     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3546   }
3547 
3548   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3549   // use that information to infer NUW and NSW flags. However, computing a
3550   // BE count requires calling getAddRecExpr, so we may not yet have a
3551   // meaningful BE count at this point (and if we don't, we'd be stuck
3552   // with a SCEVCouldNotCompute as the cached BE count).
3553 
3554   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3555 
3556   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3557   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3558     const Loop *NestedLoop = NestedAR->getLoop();
3559     if (L->contains(NestedLoop)
3560             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3561             : (!NestedLoop->contains(L) &&
3562                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3563       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3564       Operands[0] = NestedAR->getStart();
3565       // AddRecs require their operands be loop-invariant with respect to their
3566       // loops. Don't perform this transformation if it would break this
3567       // requirement.
3568       bool AllInvariant = all_of(
3569           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3570 
3571       if (AllInvariant) {
3572         // Create a recurrence for the outer loop with the same step size.
3573         //
3574         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3575         // inner recurrence has the same property.
3576         SCEV::NoWrapFlags OuterFlags =
3577           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3578 
3579         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3580         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3581           return isLoopInvariant(Op, NestedLoop);
3582         });
3583 
3584         if (AllInvariant) {
3585           // Ok, both add recurrences are valid after the transformation.
3586           //
3587           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3588           // the outer recurrence has the same property.
3589           SCEV::NoWrapFlags InnerFlags =
3590             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3591           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3592         }
3593       }
3594       // Reset Operands to its original state.
3595       Operands[0] = NestedAR;
3596     }
3597   }
3598 
3599   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3600   // already have one, otherwise create a new one.
3601   return getOrCreateAddRecExpr(Operands, L, Flags);
3602 }
3603 
3604 const SCEV *
3605 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3606                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3607   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3608   // getSCEV(Base)->getType() has the same address space as Base->getType()
3609   // because SCEV::getType() preserves the address space.
3610   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3611   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3612   // instruction to its SCEV, because the Instruction may be guarded by control
3613   // flow and the no-overflow bits may not be valid for the expression in any
3614   // context. This can be fixed similarly to how these flags are handled for
3615   // adds.
3616   SCEV::NoWrapFlags OffsetWrap =
3617       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3618 
3619   Type *CurTy = GEP->getType();
3620   bool FirstIter = true;
3621   SmallVector<const SCEV *, 4> Offsets;
3622   for (const SCEV *IndexExpr : IndexExprs) {
3623     // Compute the (potentially symbolic) offset in bytes for this index.
3624     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3625       // For a struct, add the member offset.
3626       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3627       unsigned FieldNo = Index->getZExtValue();
3628       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3629       Offsets.push_back(FieldOffset);
3630 
3631       // Update CurTy to the type of the field at Index.
3632       CurTy = STy->getTypeAtIndex(Index);
3633     } else {
3634       // Update CurTy to its element type.
3635       if (FirstIter) {
3636         assert(isa<PointerType>(CurTy) &&
3637                "The first index of a GEP indexes a pointer");
3638         CurTy = GEP->getSourceElementType();
3639         FirstIter = false;
3640       } else {
3641         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3642       }
3643       // For an array, add the element offset, explicitly scaled.
3644       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3645       // Getelementptr indices are signed.
3646       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3647 
3648       // Multiply the index by the element size to compute the element offset.
3649       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3650       Offsets.push_back(LocalOffset);
3651     }
3652   }
3653 
3654   // Handle degenerate case of GEP without offsets.
3655   if (Offsets.empty())
3656     return BaseExpr;
3657 
3658   // Add the offsets together, assuming nsw if inbounds.
3659   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3660   // Add the base address and the offset. We cannot use the nsw flag, as the
3661   // base address is unsigned. However, if we know that the offset is
3662   // non-negative, we can use nuw.
3663   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3664                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3665   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3666   assert(BaseExpr->getType() == GEPExpr->getType() &&
3667          "GEP should not change type mid-flight.");
3668   return GEPExpr;
3669 }
3670 
3671 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3672                                                ArrayRef<const SCEV *> Ops) {
3673   FoldingSetNodeID ID;
3674   ID.AddInteger(SCEVType);
3675   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3676     ID.AddPointer(Ops[i]);
3677   void *IP = nullptr;
3678   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3679 }
3680 
3681 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3682   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3683   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3684 }
3685 
3686 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3687                                            SmallVectorImpl<const SCEV *> &Ops) {
3688   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3689   if (Ops.size() == 1) return Ops[0];
3690 #ifndef NDEBUG
3691   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3692   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3693     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3694            "Operand types don't match!");
3695     assert(Ops[0]->getType()->isPointerTy() ==
3696                Ops[i]->getType()->isPointerTy() &&
3697            "min/max should be consistently pointerish");
3698   }
3699 #endif
3700 
3701   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3702   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3703 
3704   // Sort by complexity, this groups all similar expression types together.
3705   GroupByComplexity(Ops, &LI, DT);
3706 
3707   // Check if we have created the same expression before.
3708   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3709     return S;
3710   }
3711 
3712   // If there are any constants, fold them together.
3713   unsigned Idx = 0;
3714   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3715     ++Idx;
3716     assert(Idx < Ops.size());
3717     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3718       if (Kind == scSMaxExpr)
3719         return APIntOps::smax(LHS, RHS);
3720       else if (Kind == scSMinExpr)
3721         return APIntOps::smin(LHS, RHS);
3722       else if (Kind == scUMaxExpr)
3723         return APIntOps::umax(LHS, RHS);
3724       else if (Kind == scUMinExpr)
3725         return APIntOps::umin(LHS, RHS);
3726       llvm_unreachable("Unknown SCEV min/max opcode");
3727     };
3728 
3729     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3730       // We found two constants, fold them together!
3731       ConstantInt *Fold = ConstantInt::get(
3732           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3733       Ops[0] = getConstant(Fold);
3734       Ops.erase(Ops.begin()+1);  // Erase the folded element
3735       if (Ops.size() == 1) return Ops[0];
3736       LHSC = cast<SCEVConstant>(Ops[0]);
3737     }
3738 
3739     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3740     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3741 
3742     if (IsMax ? IsMinV : IsMaxV) {
3743       // If we are left with a constant minimum(/maximum)-int, strip it off.
3744       Ops.erase(Ops.begin());
3745       --Idx;
3746     } else if (IsMax ? IsMaxV : IsMinV) {
3747       // If we have a max(/min) with a constant maximum(/minimum)-int,
3748       // it will always be the extremum.
3749       return LHSC;
3750     }
3751 
3752     if (Ops.size() == 1) return Ops[0];
3753   }
3754 
3755   // Find the first operation of the same kind
3756   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3757     ++Idx;
3758 
3759   // Check to see if one of the operands is of the same kind. If so, expand its
3760   // operands onto our operand list, and recurse to simplify.
3761   if (Idx < Ops.size()) {
3762     bool DeletedAny = false;
3763     while (Ops[Idx]->getSCEVType() == Kind) {
3764       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3765       Ops.erase(Ops.begin()+Idx);
3766       Ops.append(SMME->op_begin(), SMME->op_end());
3767       DeletedAny = true;
3768     }
3769 
3770     if (DeletedAny)
3771       return getMinMaxExpr(Kind, Ops);
3772   }
3773 
3774   // Okay, check to see if the same value occurs in the operand list twice.  If
3775   // so, delete one.  Since we sorted the list, these values are required to
3776   // be adjacent.
3777   llvm::CmpInst::Predicate GEPred =
3778       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3779   llvm::CmpInst::Predicate LEPred =
3780       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3781   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3782   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3783   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3784     if (Ops[i] == Ops[i + 1] ||
3785         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3786       //  X op Y op Y  -->  X op Y
3787       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3788       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3789       --i;
3790       --e;
3791     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3792                                                Ops[i + 1])) {
3793       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3794       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3795       --i;
3796       --e;
3797     }
3798   }
3799 
3800   if (Ops.size() == 1) return Ops[0];
3801 
3802   assert(!Ops.empty() && "Reduced smax down to nothing!");
3803 
3804   // Okay, it looks like we really DO need an expr.  Check to see if we
3805   // already have one, otherwise create a new one.
3806   FoldingSetNodeID ID;
3807   ID.AddInteger(Kind);
3808   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3809     ID.AddPointer(Ops[i]);
3810   void *IP = nullptr;
3811   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3812   if (ExistingSCEV)
3813     return ExistingSCEV;
3814   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3815   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3816   SCEV *S = new (SCEVAllocator)
3817       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3818 
3819   UniqueSCEVs.InsertNode(S, IP);
3820   addToLoopUseLists(S);
3821   return S;
3822 }
3823 
3824 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3825   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3826   return getSMaxExpr(Ops);
3827 }
3828 
3829 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3830   return getMinMaxExpr(scSMaxExpr, Ops);
3831 }
3832 
3833 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3834   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3835   return getUMaxExpr(Ops);
3836 }
3837 
3838 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3839   return getMinMaxExpr(scUMaxExpr, Ops);
3840 }
3841 
3842 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3843                                          const SCEV *RHS) {
3844   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3845   return getSMinExpr(Ops);
3846 }
3847 
3848 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3849   return getMinMaxExpr(scSMinExpr, Ops);
3850 }
3851 
3852 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3853                                          const SCEV *RHS) {
3854   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3855   return getUMinExpr(Ops);
3856 }
3857 
3858 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3859   return getMinMaxExpr(scUMinExpr, Ops);
3860 }
3861 
3862 const SCEV *
3863 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3864                                              ScalableVectorType *ScalableTy) {
3865   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3866   Constant *One = ConstantInt::get(IntTy, 1);
3867   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3868   // Note that the expression we created is the final expression, we don't
3869   // want to simplify it any further Also, if we call a normal getSCEV(),
3870   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3871   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3872 }
3873 
3874 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3875   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3876     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3877   // We can bypass creating a target-independent constant expression and then
3878   // folding it back into a ConstantInt. This is just a compile-time
3879   // optimization.
3880   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3881 }
3882 
3883 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3884   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3885     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3886   // We can bypass creating a target-independent constant expression and then
3887   // folding it back into a ConstantInt. This is just a compile-time
3888   // optimization.
3889   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3890 }
3891 
3892 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3893                                              StructType *STy,
3894                                              unsigned FieldNo) {
3895   // We can bypass creating a target-independent constant expression and then
3896   // folding it back into a ConstantInt. This is just a compile-time
3897   // optimization.
3898   return getConstant(
3899       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3900 }
3901 
3902 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3903   // Don't attempt to do anything other than create a SCEVUnknown object
3904   // here.  createSCEV only calls getUnknown after checking for all other
3905   // interesting possibilities, and any other code that calls getUnknown
3906   // is doing so in order to hide a value from SCEV canonicalization.
3907 
3908   FoldingSetNodeID ID;
3909   ID.AddInteger(scUnknown);
3910   ID.AddPointer(V);
3911   void *IP = nullptr;
3912   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3913     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3914            "Stale SCEVUnknown in uniquing map!");
3915     return S;
3916   }
3917   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3918                                             FirstUnknown);
3919   FirstUnknown = cast<SCEVUnknown>(S);
3920   UniqueSCEVs.InsertNode(S, IP);
3921   return S;
3922 }
3923 
3924 //===----------------------------------------------------------------------===//
3925 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3926 //
3927 
3928 /// Test if values of the given type are analyzable within the SCEV
3929 /// framework. This primarily includes integer types, and it can optionally
3930 /// include pointer types if the ScalarEvolution class has access to
3931 /// target-specific information.
3932 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3933   // Integers and pointers are always SCEVable.
3934   return Ty->isIntOrPtrTy();
3935 }
3936 
3937 /// Return the size in bits of the specified type, for which isSCEVable must
3938 /// return true.
3939 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3940   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3941   if (Ty->isPointerTy())
3942     return getDataLayout().getIndexTypeSizeInBits(Ty);
3943   return getDataLayout().getTypeSizeInBits(Ty);
3944 }
3945 
3946 /// Return a type with the same bitwidth as the given type and which represents
3947 /// how SCEV will treat the given type, for which isSCEVable must return
3948 /// true. For pointer types, this is the pointer index sized integer type.
3949 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3950   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3951 
3952   if (Ty->isIntegerTy())
3953     return Ty;
3954 
3955   // The only other support type is pointer.
3956   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3957   return getDataLayout().getIndexType(Ty);
3958 }
3959 
3960 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3961   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3962 }
3963 
3964 const SCEV *ScalarEvolution::getCouldNotCompute() {
3965   return CouldNotCompute.get();
3966 }
3967 
3968 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3969   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3970     auto *SU = dyn_cast<SCEVUnknown>(S);
3971     return SU && SU->getValue() == nullptr;
3972   });
3973 
3974   return !ContainsNulls;
3975 }
3976 
3977 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3978   HasRecMapType::iterator I = HasRecMap.find(S);
3979   if (I != HasRecMap.end())
3980     return I->second;
3981 
3982   bool FoundAddRec =
3983       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3984   HasRecMap.insert({S, FoundAddRec});
3985   return FoundAddRec;
3986 }
3987 
3988 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3989 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3990 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3991 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3992   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3993   if (!Add)
3994     return {S, nullptr};
3995 
3996   if (Add->getNumOperands() != 2)
3997     return {S, nullptr};
3998 
3999   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4000   if (!ConstOp)
4001     return {S, nullptr};
4002 
4003   return {Add->getOperand(1), ConstOp->getValue()};
4004 }
4005 
4006 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4007 /// by the value and offset from any ValueOffsetPair in the set.
4008 ScalarEvolution::ValueOffsetPairSetVector *
4009 ScalarEvolution::getSCEVValues(const SCEV *S) {
4010   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4011   if (SI == ExprValueMap.end())
4012     return nullptr;
4013 #ifndef NDEBUG
4014   if (VerifySCEVMap) {
4015     // Check there is no dangling Value in the set returned.
4016     for (const auto &VE : SI->second)
4017       assert(ValueExprMap.count(VE.first));
4018   }
4019 #endif
4020   return &SI->second;
4021 }
4022 
4023 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4024 /// cannot be used separately. eraseValueFromMap should be used to remove
4025 /// V from ValueExprMap and ExprValueMap at the same time.
4026 void ScalarEvolution::eraseValueFromMap(Value *V) {
4027   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4028   if (I != ValueExprMap.end()) {
4029     const SCEV *S = I->second;
4030     // Remove {V, 0} from the set of ExprValueMap[S]
4031     if (auto *SV = getSCEVValues(S))
4032       SV->remove({V, nullptr});
4033 
4034     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4035     const SCEV *Stripped;
4036     ConstantInt *Offset;
4037     std::tie(Stripped, Offset) = splitAddExpr(S);
4038     if (Offset != nullptr) {
4039       if (auto *SV = getSCEVValues(Stripped))
4040         SV->remove({V, Offset});
4041     }
4042     ValueExprMap.erase(V);
4043   }
4044 }
4045 
4046 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4047 /// TODO: In reality it is better to check the poison recursively
4048 /// but this is better than nothing.
4049 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4050   if (auto *I = dyn_cast<Instruction>(V)) {
4051     if (isa<OverflowingBinaryOperator>(I)) {
4052       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4053         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4054           return true;
4055         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4056           return true;
4057       }
4058     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4059       return true;
4060   }
4061   return false;
4062 }
4063 
4064 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4065 /// create a new one.
4066 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4067   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4068 
4069   const SCEV *S = getExistingSCEV(V);
4070   if (S == nullptr) {
4071     S = createSCEV(V);
4072     // During PHI resolution, it is possible to create two SCEVs for the same
4073     // V, so it is needed to double check whether V->S is inserted into
4074     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4075     std::pair<ValueExprMapType::iterator, bool> Pair =
4076         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4077     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4078       ExprValueMap[S].insert({V, nullptr});
4079 
4080       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4081       // ExprValueMap.
4082       const SCEV *Stripped = S;
4083       ConstantInt *Offset = nullptr;
4084       std::tie(Stripped, Offset) = splitAddExpr(S);
4085       // If stripped is SCEVUnknown, don't bother to save
4086       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4087       // increase the complexity of the expansion code.
4088       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4089       // because it may generate add/sub instead of GEP in SCEV expansion.
4090       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4091           !isa<GetElementPtrInst>(V))
4092         ExprValueMap[Stripped].insert({V, Offset});
4093     }
4094   }
4095   return S;
4096 }
4097 
4098 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4099   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4100 
4101   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4102   if (I != ValueExprMap.end()) {
4103     const SCEV *S = I->second;
4104     if (checkValidity(S))
4105       return S;
4106     eraseValueFromMap(V);
4107     forgetMemoizedResults(S);
4108   }
4109   return nullptr;
4110 }
4111 
4112 /// Return a SCEV corresponding to -V = -1*V
4113 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4114                                              SCEV::NoWrapFlags Flags) {
4115   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4116     return getConstant(
4117                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4118 
4119   Type *Ty = V->getType();
4120   Ty = getEffectiveSCEVType(Ty);
4121   return getMulExpr(V, getMinusOne(Ty), Flags);
4122 }
4123 
4124 /// If Expr computes ~A, return A else return nullptr
4125 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4126   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4127   if (!Add || Add->getNumOperands() != 2 ||
4128       !Add->getOperand(0)->isAllOnesValue())
4129     return nullptr;
4130 
4131   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4132   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4133       !AddRHS->getOperand(0)->isAllOnesValue())
4134     return nullptr;
4135 
4136   return AddRHS->getOperand(1);
4137 }
4138 
4139 /// Return a SCEV corresponding to ~V = -1-V
4140 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4141   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4142 
4143   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4144     return getConstant(
4145                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4146 
4147   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4148   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4149     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4150       SmallVector<const SCEV *, 2> MatchedOperands;
4151       for (const SCEV *Operand : MME->operands()) {
4152         const SCEV *Matched = MatchNotExpr(Operand);
4153         if (!Matched)
4154           return (const SCEV *)nullptr;
4155         MatchedOperands.push_back(Matched);
4156       }
4157       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4158                            MatchedOperands);
4159     };
4160     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4161       return Replaced;
4162   }
4163 
4164   Type *Ty = V->getType();
4165   Ty = getEffectiveSCEVType(Ty);
4166   return getMinusSCEV(getMinusOne(Ty), V);
4167 }
4168 
4169 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4170   assert(P->getType()->isPointerTy());
4171 
4172   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4173     // The base of an AddRec is the first operand.
4174     SmallVector<const SCEV *> Ops{AddRec->operands()};
4175     Ops[0] = removePointerBase(Ops[0]);
4176     // Don't try to transfer nowrap flags for now. We could in some cases
4177     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4178     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4179   }
4180   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4181     // The base of an Add is the pointer operand.
4182     SmallVector<const SCEV *> Ops{Add->operands()};
4183     const SCEV **PtrOp = nullptr;
4184     for (const SCEV *&AddOp : Ops) {
4185       if (AddOp->getType()->isPointerTy()) {
4186         assert(!PtrOp && "Cannot have multiple pointer ops");
4187         PtrOp = &AddOp;
4188       }
4189     }
4190     *PtrOp = removePointerBase(*PtrOp);
4191     // Don't try to transfer nowrap flags for now. We could in some cases
4192     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4193     return getAddExpr(Ops);
4194   }
4195   // Any other expression must be a pointer base.
4196   return getZero(P->getType());
4197 }
4198 
4199 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4200                                           SCEV::NoWrapFlags Flags,
4201                                           unsigned Depth) {
4202   // Fast path: X - X --> 0.
4203   if (LHS == RHS)
4204     return getZero(LHS->getType());
4205 
4206   // If we subtract two pointers with different pointer bases, bail.
4207   // Eventually, we're going to add an assertion to getMulExpr that we
4208   // can't multiply by a pointer.
4209   if (RHS->getType()->isPointerTy()) {
4210     if (!LHS->getType()->isPointerTy() ||
4211         getPointerBase(LHS) != getPointerBase(RHS))
4212       return getCouldNotCompute();
4213     LHS = removePointerBase(LHS);
4214     RHS = removePointerBase(RHS);
4215   }
4216 
4217   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4218   // makes it so that we cannot make much use of NUW.
4219   auto AddFlags = SCEV::FlagAnyWrap;
4220   const bool RHSIsNotMinSigned =
4221       !getSignedRangeMin(RHS).isMinSignedValue();
4222   if (hasFlags(Flags, SCEV::FlagNSW)) {
4223     // Let M be the minimum representable signed value. Then (-1)*RHS
4224     // signed-wraps if and only if RHS is M. That can happen even for
4225     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4226     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4227     // (-1)*RHS, we need to prove that RHS != M.
4228     //
4229     // If LHS is non-negative and we know that LHS - RHS does not
4230     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4231     // either by proving that RHS > M or that LHS >= 0.
4232     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4233       AddFlags = SCEV::FlagNSW;
4234     }
4235   }
4236 
4237   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4238   // RHS is NSW and LHS >= 0.
4239   //
4240   // The difficulty here is that the NSW flag may have been proven
4241   // relative to a loop that is to be found in a recurrence in LHS and
4242   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4243   // larger scope than intended.
4244   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4245 
4246   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4247 }
4248 
4249 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4250                                                      unsigned Depth) {
4251   Type *SrcTy = V->getType();
4252   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4253          "Cannot truncate or zero extend with non-integer arguments!");
4254   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4255     return V;  // No conversion
4256   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4257     return getTruncateExpr(V, Ty, Depth);
4258   return getZeroExtendExpr(V, Ty, Depth);
4259 }
4260 
4261 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4262                                                      unsigned Depth) {
4263   Type *SrcTy = V->getType();
4264   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4265          "Cannot truncate or zero extend with non-integer arguments!");
4266   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4267     return V;  // No conversion
4268   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4269     return getTruncateExpr(V, Ty, Depth);
4270   return getSignExtendExpr(V, Ty, Depth);
4271 }
4272 
4273 const SCEV *
4274 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4275   Type *SrcTy = V->getType();
4276   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4277          "Cannot noop or zero extend with non-integer arguments!");
4278   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4279          "getNoopOrZeroExtend cannot truncate!");
4280   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4281     return V;  // No conversion
4282   return getZeroExtendExpr(V, Ty);
4283 }
4284 
4285 const SCEV *
4286 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4287   Type *SrcTy = V->getType();
4288   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4289          "Cannot noop or sign extend with non-integer arguments!");
4290   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4291          "getNoopOrSignExtend cannot truncate!");
4292   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4293     return V;  // No conversion
4294   return getSignExtendExpr(V, Ty);
4295 }
4296 
4297 const SCEV *
4298 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4299   Type *SrcTy = V->getType();
4300   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4301          "Cannot noop or any extend with non-integer arguments!");
4302   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4303          "getNoopOrAnyExtend cannot truncate!");
4304   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4305     return V;  // No conversion
4306   return getAnyExtendExpr(V, Ty);
4307 }
4308 
4309 const SCEV *
4310 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4311   Type *SrcTy = V->getType();
4312   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4313          "Cannot truncate or noop with non-integer arguments!");
4314   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4315          "getTruncateOrNoop cannot extend!");
4316   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4317     return V;  // No conversion
4318   return getTruncateExpr(V, Ty);
4319 }
4320 
4321 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4322                                                         const SCEV *RHS) {
4323   const SCEV *PromotedLHS = LHS;
4324   const SCEV *PromotedRHS = RHS;
4325 
4326   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4327     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4328   else
4329     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4330 
4331   return getUMaxExpr(PromotedLHS, PromotedRHS);
4332 }
4333 
4334 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4335                                                         const SCEV *RHS) {
4336   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4337   return getUMinFromMismatchedTypes(Ops);
4338 }
4339 
4340 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4341     SmallVectorImpl<const SCEV *> &Ops) {
4342   assert(!Ops.empty() && "At least one operand must be!");
4343   // Trivial case.
4344   if (Ops.size() == 1)
4345     return Ops[0];
4346 
4347   // Find the max type first.
4348   Type *MaxType = nullptr;
4349   for (auto *S : Ops)
4350     if (MaxType)
4351       MaxType = getWiderType(MaxType, S->getType());
4352     else
4353       MaxType = S->getType();
4354   assert(MaxType && "Failed to find maximum type!");
4355 
4356   // Extend all ops to max type.
4357   SmallVector<const SCEV *, 2> PromotedOps;
4358   for (auto *S : Ops)
4359     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4360 
4361   // Generate umin.
4362   return getUMinExpr(PromotedOps);
4363 }
4364 
4365 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4366   // A pointer operand may evaluate to a nonpointer expression, such as null.
4367   if (!V->getType()->isPointerTy())
4368     return V;
4369 
4370   while (true) {
4371     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4372       V = AddRec->getStart();
4373     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4374       const SCEV *PtrOp = nullptr;
4375       for (const SCEV *AddOp : Add->operands()) {
4376         if (AddOp->getType()->isPointerTy()) {
4377           assert(!PtrOp && "Cannot have multiple pointer ops");
4378           PtrOp = AddOp;
4379         }
4380       }
4381       assert(PtrOp && "Must have pointer op");
4382       V = PtrOp;
4383     } else // Not something we can look further into.
4384       return V;
4385   }
4386 }
4387 
4388 /// Push users of the given Instruction onto the given Worklist.
4389 static void
4390 PushDefUseChildren(Instruction *I,
4391                    SmallVectorImpl<Instruction *> &Worklist) {
4392   // Push the def-use children onto the Worklist stack.
4393   for (User *U : I->users())
4394     Worklist.push_back(cast<Instruction>(U));
4395 }
4396 
4397 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4398   SmallVector<Instruction *, 16> Worklist;
4399   PushDefUseChildren(PN, Worklist);
4400 
4401   SmallPtrSet<Instruction *, 8> Visited;
4402   Visited.insert(PN);
4403   while (!Worklist.empty()) {
4404     Instruction *I = Worklist.pop_back_val();
4405     if (!Visited.insert(I).second)
4406       continue;
4407 
4408     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4409     if (It != ValueExprMap.end()) {
4410       const SCEV *Old = It->second;
4411 
4412       // Short-circuit the def-use traversal if the symbolic name
4413       // ceases to appear in expressions.
4414       if (Old != SymName && !hasOperand(Old, SymName))
4415         continue;
4416 
4417       // SCEVUnknown for a PHI either means that it has an unrecognized
4418       // structure, it's a PHI that's in the progress of being computed
4419       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4420       // additional loop trip count information isn't going to change anything.
4421       // In the second case, createNodeForPHI will perform the necessary
4422       // updates on its own when it gets to that point. In the third, we do
4423       // want to forget the SCEVUnknown.
4424       if (!isa<PHINode>(I) ||
4425           !isa<SCEVUnknown>(Old) ||
4426           (I != PN && Old == SymName)) {
4427         eraseValueFromMap(It->first);
4428         forgetMemoizedResults(Old);
4429       }
4430     }
4431 
4432     PushDefUseChildren(I, Worklist);
4433   }
4434 }
4435 
4436 namespace {
4437 
4438 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4439 /// expression in case its Loop is L. If it is not L then
4440 /// if IgnoreOtherLoops is true then use AddRec itself
4441 /// otherwise rewrite cannot be done.
4442 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4443 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4444 public:
4445   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4446                              bool IgnoreOtherLoops = true) {
4447     SCEVInitRewriter Rewriter(L, SE);
4448     const SCEV *Result = Rewriter.visit(S);
4449     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4450       return SE.getCouldNotCompute();
4451     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4452                ? SE.getCouldNotCompute()
4453                : Result;
4454   }
4455 
4456   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4457     if (!SE.isLoopInvariant(Expr, L))
4458       SeenLoopVariantSCEVUnknown = true;
4459     return Expr;
4460   }
4461 
4462   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4463     // Only re-write AddRecExprs for this loop.
4464     if (Expr->getLoop() == L)
4465       return Expr->getStart();
4466     SeenOtherLoops = true;
4467     return Expr;
4468   }
4469 
4470   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4471 
4472   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4473 
4474 private:
4475   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4476       : SCEVRewriteVisitor(SE), L(L) {}
4477 
4478   const Loop *L;
4479   bool SeenLoopVariantSCEVUnknown = false;
4480   bool SeenOtherLoops = false;
4481 };
4482 
4483 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4484 /// increment expression in case its Loop is L. If it is not L then
4485 /// use AddRec itself.
4486 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4487 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4488 public:
4489   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4490     SCEVPostIncRewriter Rewriter(L, SE);
4491     const SCEV *Result = Rewriter.visit(S);
4492     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4493         ? SE.getCouldNotCompute()
4494         : Result;
4495   }
4496 
4497   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4498     if (!SE.isLoopInvariant(Expr, L))
4499       SeenLoopVariantSCEVUnknown = true;
4500     return Expr;
4501   }
4502 
4503   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4504     // Only re-write AddRecExprs for this loop.
4505     if (Expr->getLoop() == L)
4506       return Expr->getPostIncExpr(SE);
4507     SeenOtherLoops = true;
4508     return Expr;
4509   }
4510 
4511   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4512 
4513   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4514 
4515 private:
4516   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4517       : SCEVRewriteVisitor(SE), L(L) {}
4518 
4519   const Loop *L;
4520   bool SeenLoopVariantSCEVUnknown = false;
4521   bool SeenOtherLoops = false;
4522 };
4523 
4524 /// This class evaluates the compare condition by matching it against the
4525 /// condition of loop latch. If there is a match we assume a true value
4526 /// for the condition while building SCEV nodes.
4527 class SCEVBackedgeConditionFolder
4528     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4529 public:
4530   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4531                              ScalarEvolution &SE) {
4532     bool IsPosBECond = false;
4533     Value *BECond = nullptr;
4534     if (BasicBlock *Latch = L->getLoopLatch()) {
4535       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4536       if (BI && BI->isConditional()) {
4537         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4538                "Both outgoing branches should not target same header!");
4539         BECond = BI->getCondition();
4540         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4541       } else {
4542         return S;
4543       }
4544     }
4545     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4546     return Rewriter.visit(S);
4547   }
4548 
4549   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4550     const SCEV *Result = Expr;
4551     bool InvariantF = SE.isLoopInvariant(Expr, L);
4552 
4553     if (!InvariantF) {
4554       Instruction *I = cast<Instruction>(Expr->getValue());
4555       switch (I->getOpcode()) {
4556       case Instruction::Select: {
4557         SelectInst *SI = cast<SelectInst>(I);
4558         Optional<const SCEV *> Res =
4559             compareWithBackedgeCondition(SI->getCondition());
4560         if (Res.hasValue()) {
4561           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4562           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4563         }
4564         break;
4565       }
4566       default: {
4567         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4568         if (Res.hasValue())
4569           Result = Res.getValue();
4570         break;
4571       }
4572       }
4573     }
4574     return Result;
4575   }
4576 
4577 private:
4578   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4579                                        bool IsPosBECond, ScalarEvolution &SE)
4580       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4581         IsPositiveBECond(IsPosBECond) {}
4582 
4583   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4584 
4585   const Loop *L;
4586   /// Loop back condition.
4587   Value *BackedgeCond = nullptr;
4588   /// Set to true if loop back is on positive branch condition.
4589   bool IsPositiveBECond;
4590 };
4591 
4592 Optional<const SCEV *>
4593 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4594 
4595   // If value matches the backedge condition for loop latch,
4596   // then return a constant evolution node based on loopback
4597   // branch taken.
4598   if (BackedgeCond == IC)
4599     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4600                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4601   return None;
4602 }
4603 
4604 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4605 public:
4606   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4607                              ScalarEvolution &SE) {
4608     SCEVShiftRewriter Rewriter(L, SE);
4609     const SCEV *Result = Rewriter.visit(S);
4610     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4611   }
4612 
4613   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4614     // Only allow AddRecExprs for this loop.
4615     if (!SE.isLoopInvariant(Expr, L))
4616       Valid = false;
4617     return Expr;
4618   }
4619 
4620   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4621     if (Expr->getLoop() == L && Expr->isAffine())
4622       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4623     Valid = false;
4624     return Expr;
4625   }
4626 
4627   bool isValid() { return Valid; }
4628 
4629 private:
4630   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4631       : SCEVRewriteVisitor(SE), L(L) {}
4632 
4633   const Loop *L;
4634   bool Valid = true;
4635 };
4636 
4637 } // end anonymous namespace
4638 
4639 SCEV::NoWrapFlags
4640 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4641   if (!AR->isAffine())
4642     return SCEV::FlagAnyWrap;
4643 
4644   using OBO = OverflowingBinaryOperator;
4645 
4646   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4647 
4648   if (!AR->hasNoSignedWrap()) {
4649     ConstantRange AddRecRange = getSignedRange(AR);
4650     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4651 
4652     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4653         Instruction::Add, IncRange, OBO::NoSignedWrap);
4654     if (NSWRegion.contains(AddRecRange))
4655       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4656   }
4657 
4658   if (!AR->hasNoUnsignedWrap()) {
4659     ConstantRange AddRecRange = getUnsignedRange(AR);
4660     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4661 
4662     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4663         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4664     if (NUWRegion.contains(AddRecRange))
4665       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4666   }
4667 
4668   return Result;
4669 }
4670 
4671 SCEV::NoWrapFlags
4672 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4673   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4674 
4675   if (AR->hasNoSignedWrap())
4676     return Result;
4677 
4678   if (!AR->isAffine())
4679     return Result;
4680 
4681   const SCEV *Step = AR->getStepRecurrence(*this);
4682   const Loop *L = AR->getLoop();
4683 
4684   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4685   // Note that this serves two purposes: It filters out loops that are
4686   // simply not analyzable, and it covers the case where this code is
4687   // being called from within backedge-taken count analysis, such that
4688   // attempting to ask for the backedge-taken count would likely result
4689   // in infinite recursion. In the later case, the analysis code will
4690   // cope with a conservative value, and it will take care to purge
4691   // that value once it has finished.
4692   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4693 
4694   // Normally, in the cases we can prove no-overflow via a
4695   // backedge guarding condition, we can also compute a backedge
4696   // taken count for the loop.  The exceptions are assumptions and
4697   // guards present in the loop -- SCEV is not great at exploiting
4698   // these to compute max backedge taken counts, but can still use
4699   // these to prove lack of overflow.  Use this fact to avoid
4700   // doing extra work that may not pay off.
4701 
4702   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4703       AC.assumptions().empty())
4704     return Result;
4705 
4706   // If the backedge is guarded by a comparison with the pre-inc  value the
4707   // addrec is safe. Also, if the entry is guarded by a comparison with the
4708   // start value and the backedge is guarded by a comparison with the post-inc
4709   // value, the addrec is safe.
4710   ICmpInst::Predicate Pred;
4711   const SCEV *OverflowLimit =
4712     getSignedOverflowLimitForStep(Step, &Pred, this);
4713   if (OverflowLimit &&
4714       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4715        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4716     Result = setFlags(Result, SCEV::FlagNSW);
4717   }
4718   return Result;
4719 }
4720 SCEV::NoWrapFlags
4721 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4722   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4723 
4724   if (AR->hasNoUnsignedWrap())
4725     return Result;
4726 
4727   if (!AR->isAffine())
4728     return Result;
4729 
4730   const SCEV *Step = AR->getStepRecurrence(*this);
4731   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4732   const Loop *L = AR->getLoop();
4733 
4734   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4735   // Note that this serves two purposes: It filters out loops that are
4736   // simply not analyzable, and it covers the case where this code is
4737   // being called from within backedge-taken count analysis, such that
4738   // attempting to ask for the backedge-taken count would likely result
4739   // in infinite recursion. In the later case, the analysis code will
4740   // cope with a conservative value, and it will take care to purge
4741   // that value once it has finished.
4742   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4743 
4744   // Normally, in the cases we can prove no-overflow via a
4745   // backedge guarding condition, we can also compute a backedge
4746   // taken count for the loop.  The exceptions are assumptions and
4747   // guards present in the loop -- SCEV is not great at exploiting
4748   // these to compute max backedge taken counts, but can still use
4749   // these to prove lack of overflow.  Use this fact to avoid
4750   // doing extra work that may not pay off.
4751 
4752   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4753       AC.assumptions().empty())
4754     return Result;
4755 
4756   // If the backedge is guarded by a comparison with the pre-inc  value the
4757   // addrec is safe. Also, if the entry is guarded by a comparison with the
4758   // start value and the backedge is guarded by a comparison with the post-inc
4759   // value, the addrec is safe.
4760   if (isKnownPositive(Step)) {
4761     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4762                                 getUnsignedRangeMax(Step));
4763     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4764         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4765       Result = setFlags(Result, SCEV::FlagNUW);
4766     }
4767   }
4768 
4769   return Result;
4770 }
4771 
4772 namespace {
4773 
4774 /// Represents an abstract binary operation.  This may exist as a
4775 /// normal instruction or constant expression, or may have been
4776 /// derived from an expression tree.
4777 struct BinaryOp {
4778   unsigned Opcode;
4779   Value *LHS;
4780   Value *RHS;
4781   bool IsNSW = false;
4782   bool IsNUW = false;
4783 
4784   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4785   /// constant expression.
4786   Operator *Op = nullptr;
4787 
4788   explicit BinaryOp(Operator *Op)
4789       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4790         Op(Op) {
4791     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4792       IsNSW = OBO->hasNoSignedWrap();
4793       IsNUW = OBO->hasNoUnsignedWrap();
4794     }
4795   }
4796 
4797   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4798                     bool IsNUW = false)
4799       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4800 };
4801 
4802 } // end anonymous namespace
4803 
4804 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4805 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4806   auto *Op = dyn_cast<Operator>(V);
4807   if (!Op)
4808     return None;
4809 
4810   // Implementation detail: all the cleverness here should happen without
4811   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4812   // SCEV expressions when possible, and we should not break that.
4813 
4814   switch (Op->getOpcode()) {
4815   case Instruction::Add:
4816   case Instruction::Sub:
4817   case Instruction::Mul:
4818   case Instruction::UDiv:
4819   case Instruction::URem:
4820   case Instruction::And:
4821   case Instruction::Or:
4822   case Instruction::AShr:
4823   case Instruction::Shl:
4824     return BinaryOp(Op);
4825 
4826   case Instruction::Xor:
4827     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4828       // If the RHS of the xor is a signmask, then this is just an add.
4829       // Instcombine turns add of signmask into xor as a strength reduction step.
4830       if (RHSC->getValue().isSignMask())
4831         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4832     return BinaryOp(Op);
4833 
4834   case Instruction::LShr:
4835     // Turn logical shift right of a constant into a unsigned divide.
4836     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4837       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4838 
4839       // If the shift count is not less than the bitwidth, the result of
4840       // the shift is undefined. Don't try to analyze it, because the
4841       // resolution chosen here may differ from the resolution chosen in
4842       // other parts of the compiler.
4843       if (SA->getValue().ult(BitWidth)) {
4844         Constant *X =
4845             ConstantInt::get(SA->getContext(),
4846                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4847         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4848       }
4849     }
4850     return BinaryOp(Op);
4851 
4852   case Instruction::ExtractValue: {
4853     auto *EVI = cast<ExtractValueInst>(Op);
4854     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4855       break;
4856 
4857     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4858     if (!WO)
4859       break;
4860 
4861     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4862     bool Signed = WO->isSigned();
4863     // TODO: Should add nuw/nsw flags for mul as well.
4864     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4865       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4866 
4867     // Now that we know that all uses of the arithmetic-result component of
4868     // CI are guarded by the overflow check, we can go ahead and pretend
4869     // that the arithmetic is non-overflowing.
4870     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4871                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4872   }
4873 
4874   default:
4875     break;
4876   }
4877 
4878   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4879   // semantics as a Sub, return a binary sub expression.
4880   if (auto *II = dyn_cast<IntrinsicInst>(V))
4881     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4882       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4883 
4884   return None;
4885 }
4886 
4887 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4888 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4889 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4890 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4891 /// follows one of the following patterns:
4892 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4893 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4894 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4895 /// we return the type of the truncation operation, and indicate whether the
4896 /// truncated type should be treated as signed/unsigned by setting
4897 /// \p Signed to true/false, respectively.
4898 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4899                                bool &Signed, ScalarEvolution &SE) {
4900   // The case where Op == SymbolicPHI (that is, with no type conversions on
4901   // the way) is handled by the regular add recurrence creating logic and
4902   // would have already been triggered in createAddRecForPHI. Reaching it here
4903   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4904   // because one of the other operands of the SCEVAddExpr updating this PHI is
4905   // not invariant).
4906   //
4907   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4908   // this case predicates that allow us to prove that Op == SymbolicPHI will
4909   // be added.
4910   if (Op == SymbolicPHI)
4911     return nullptr;
4912 
4913   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4914   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4915   if (SourceBits != NewBits)
4916     return nullptr;
4917 
4918   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4919   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4920   if (!SExt && !ZExt)
4921     return nullptr;
4922   const SCEVTruncateExpr *Trunc =
4923       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4924            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4925   if (!Trunc)
4926     return nullptr;
4927   const SCEV *X = Trunc->getOperand();
4928   if (X != SymbolicPHI)
4929     return nullptr;
4930   Signed = SExt != nullptr;
4931   return Trunc->getType();
4932 }
4933 
4934 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4935   if (!PN->getType()->isIntegerTy())
4936     return nullptr;
4937   const Loop *L = LI.getLoopFor(PN->getParent());
4938   if (!L || L->getHeader() != PN->getParent())
4939     return nullptr;
4940   return L;
4941 }
4942 
4943 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4944 // computation that updates the phi follows the following pattern:
4945 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4946 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4947 // If so, try to see if it can be rewritten as an AddRecExpr under some
4948 // Predicates. If successful, return them as a pair. Also cache the results
4949 // of the analysis.
4950 //
4951 // Example usage scenario:
4952 //    Say the Rewriter is called for the following SCEV:
4953 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4954 //    where:
4955 //         %X = phi i64 (%Start, %BEValue)
4956 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4957 //    and call this function with %SymbolicPHI = %X.
4958 //
4959 //    The analysis will find that the value coming around the backedge has
4960 //    the following SCEV:
4961 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4962 //    Upon concluding that this matches the desired pattern, the function
4963 //    will return the pair {NewAddRec, SmallPredsVec} where:
4964 //         NewAddRec = {%Start,+,%Step}
4965 //         SmallPredsVec = {P1, P2, P3} as follows:
4966 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4967 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4968 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4969 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4970 //    under the predicates {P1,P2,P3}.
4971 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4972 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4973 //
4974 // TODO's:
4975 //
4976 // 1) Extend the Induction descriptor to also support inductions that involve
4977 //    casts: When needed (namely, when we are called in the context of the
4978 //    vectorizer induction analysis), a Set of cast instructions will be
4979 //    populated by this method, and provided back to isInductionPHI. This is
4980 //    needed to allow the vectorizer to properly record them to be ignored by
4981 //    the cost model and to avoid vectorizing them (otherwise these casts,
4982 //    which are redundant under the runtime overflow checks, will be
4983 //    vectorized, which can be costly).
4984 //
4985 // 2) Support additional induction/PHISCEV patterns: We also want to support
4986 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4987 //    after the induction update operation (the induction increment):
4988 //
4989 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4990 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4991 //
4992 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4993 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4994 //
4995 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4996 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4997 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4998   SmallVector<const SCEVPredicate *, 3> Predicates;
4999 
5000   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5001   // return an AddRec expression under some predicate.
5002 
5003   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5004   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5005   assert(L && "Expecting an integer loop header phi");
5006 
5007   // The loop may have multiple entrances or multiple exits; we can analyze
5008   // this phi as an addrec if it has a unique entry value and a unique
5009   // backedge value.
5010   Value *BEValueV = nullptr, *StartValueV = nullptr;
5011   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5012     Value *V = PN->getIncomingValue(i);
5013     if (L->contains(PN->getIncomingBlock(i))) {
5014       if (!BEValueV) {
5015         BEValueV = V;
5016       } else if (BEValueV != V) {
5017         BEValueV = nullptr;
5018         break;
5019       }
5020     } else if (!StartValueV) {
5021       StartValueV = V;
5022     } else if (StartValueV != V) {
5023       StartValueV = nullptr;
5024       break;
5025     }
5026   }
5027   if (!BEValueV || !StartValueV)
5028     return None;
5029 
5030   const SCEV *BEValue = getSCEV(BEValueV);
5031 
5032   // If the value coming around the backedge is an add with the symbolic
5033   // value we just inserted, possibly with casts that we can ignore under
5034   // an appropriate runtime guard, then we found a simple induction variable!
5035   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5036   if (!Add)
5037     return None;
5038 
5039   // If there is a single occurrence of the symbolic value, possibly
5040   // casted, replace it with a recurrence.
5041   unsigned FoundIndex = Add->getNumOperands();
5042   Type *TruncTy = nullptr;
5043   bool Signed;
5044   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5045     if ((TruncTy =
5046              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5047       if (FoundIndex == e) {
5048         FoundIndex = i;
5049         break;
5050       }
5051 
5052   if (FoundIndex == Add->getNumOperands())
5053     return None;
5054 
5055   // Create an add with everything but the specified operand.
5056   SmallVector<const SCEV *, 8> Ops;
5057   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5058     if (i != FoundIndex)
5059       Ops.push_back(Add->getOperand(i));
5060   const SCEV *Accum = getAddExpr(Ops);
5061 
5062   // The runtime checks will not be valid if the step amount is
5063   // varying inside the loop.
5064   if (!isLoopInvariant(Accum, L))
5065     return None;
5066 
5067   // *** Part2: Create the predicates
5068 
5069   // Analysis was successful: we have a phi-with-cast pattern for which we
5070   // can return an AddRec expression under the following predicates:
5071   //
5072   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5073   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5074   // P2: An Equal predicate that guarantees that
5075   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5076   // P3: An Equal predicate that guarantees that
5077   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5078   //
5079   // As we next prove, the above predicates guarantee that:
5080   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5081   //
5082   //
5083   // More formally, we want to prove that:
5084   //     Expr(i+1) = Start + (i+1) * Accum
5085   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5086   //
5087   // Given that:
5088   // 1) Expr(0) = Start
5089   // 2) Expr(1) = Start + Accum
5090   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5091   // 3) Induction hypothesis (step i):
5092   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5093   //
5094   // Proof:
5095   //  Expr(i+1) =
5096   //   = Start + (i+1)*Accum
5097   //   = (Start + i*Accum) + Accum
5098   //   = Expr(i) + Accum
5099   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5100   //                                                             :: from step i
5101   //
5102   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5103   //
5104   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5105   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5106   //     + Accum                                                     :: from P3
5107   //
5108   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5109   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5110   //
5111   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5112   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5113   //
5114   // By induction, the same applies to all iterations 1<=i<n:
5115   //
5116 
5117   // Create a truncated addrec for which we will add a no overflow check (P1).
5118   const SCEV *StartVal = getSCEV(StartValueV);
5119   const SCEV *PHISCEV =
5120       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5121                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5122 
5123   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5124   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5125   // will be constant.
5126   //
5127   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5128   // add P1.
5129   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5130     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5131         Signed ? SCEVWrapPredicate::IncrementNSSW
5132                : SCEVWrapPredicate::IncrementNUSW;
5133     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5134     Predicates.push_back(AddRecPred);
5135   }
5136 
5137   // Create the Equal Predicates P2,P3:
5138 
5139   // It is possible that the predicates P2 and/or P3 are computable at
5140   // compile time due to StartVal and/or Accum being constants.
5141   // If either one is, then we can check that now and escape if either P2
5142   // or P3 is false.
5143 
5144   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5145   // for each of StartVal and Accum
5146   auto getExtendedExpr = [&](const SCEV *Expr,
5147                              bool CreateSignExtend) -> const SCEV * {
5148     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5149     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5150     const SCEV *ExtendedExpr =
5151         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5152                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5153     return ExtendedExpr;
5154   };
5155 
5156   // Given:
5157   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5158   //               = getExtendedExpr(Expr)
5159   // Determine whether the predicate P: Expr == ExtendedExpr
5160   // is known to be false at compile time
5161   auto PredIsKnownFalse = [&](const SCEV *Expr,
5162                               const SCEV *ExtendedExpr) -> bool {
5163     return Expr != ExtendedExpr &&
5164            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5165   };
5166 
5167   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5168   if (PredIsKnownFalse(StartVal, StartExtended)) {
5169     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5170     return None;
5171   }
5172 
5173   // The Step is always Signed (because the overflow checks are either
5174   // NSSW or NUSW)
5175   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5176   if (PredIsKnownFalse(Accum, AccumExtended)) {
5177     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5178     return None;
5179   }
5180 
5181   auto AppendPredicate = [&](const SCEV *Expr,
5182                              const SCEV *ExtendedExpr) -> void {
5183     if (Expr != ExtendedExpr &&
5184         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5185       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5186       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5187       Predicates.push_back(Pred);
5188     }
5189   };
5190 
5191   AppendPredicate(StartVal, StartExtended);
5192   AppendPredicate(Accum, AccumExtended);
5193 
5194   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5195   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5196   // into NewAR if it will also add the runtime overflow checks specified in
5197   // Predicates.
5198   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5199 
5200   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5201       std::make_pair(NewAR, Predicates);
5202   // Remember the result of the analysis for this SCEV at this locayyytion.
5203   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5204   return PredRewrite;
5205 }
5206 
5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5208 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5209   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5210   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5211   if (!L)
5212     return None;
5213 
5214   // Check to see if we already analyzed this PHI.
5215   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5216   if (I != PredicatedSCEVRewrites.end()) {
5217     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5218         I->second;
5219     // Analysis was done before and failed to create an AddRec:
5220     if (Rewrite.first == SymbolicPHI)
5221       return None;
5222     // Analysis was done before and succeeded to create an AddRec under
5223     // a predicate:
5224     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5225     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5226     return Rewrite;
5227   }
5228 
5229   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5230     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5231 
5232   // Record in the cache that the analysis failed
5233   if (!Rewrite) {
5234     SmallVector<const SCEVPredicate *, 3> Predicates;
5235     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5236     return None;
5237   }
5238 
5239   return Rewrite;
5240 }
5241 
5242 // FIXME: This utility is currently required because the Rewriter currently
5243 // does not rewrite this expression:
5244 // {0, +, (sext ix (trunc iy to ix) to iy)}
5245 // into {0, +, %step},
5246 // even when the following Equal predicate exists:
5247 // "%step == (sext ix (trunc iy to ix) to iy)".
5248 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5249     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5250   if (AR1 == AR2)
5251     return true;
5252 
5253   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5254     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5255         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5256       return false;
5257     return true;
5258   };
5259 
5260   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5261       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5262     return false;
5263   return true;
5264 }
5265 
5266 /// A helper function for createAddRecFromPHI to handle simple cases.
5267 ///
5268 /// This function tries to find an AddRec expression for the simplest (yet most
5269 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5270 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5271 /// technique for finding the AddRec expression.
5272 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5273                                                       Value *BEValueV,
5274                                                       Value *StartValueV) {
5275   const Loop *L = LI.getLoopFor(PN->getParent());
5276   assert(L && L->getHeader() == PN->getParent());
5277   assert(BEValueV && StartValueV);
5278 
5279   auto BO = MatchBinaryOp(BEValueV, DT);
5280   if (!BO)
5281     return nullptr;
5282 
5283   if (BO->Opcode != Instruction::Add)
5284     return nullptr;
5285 
5286   const SCEV *Accum = nullptr;
5287   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5288     Accum = getSCEV(BO->RHS);
5289   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5290     Accum = getSCEV(BO->LHS);
5291 
5292   if (!Accum)
5293     return nullptr;
5294 
5295   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5296   if (BO->IsNUW)
5297     Flags = setFlags(Flags, SCEV::FlagNUW);
5298   if (BO->IsNSW)
5299     Flags = setFlags(Flags, SCEV::FlagNSW);
5300 
5301   const SCEV *StartVal = getSCEV(StartValueV);
5302   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5303 
5304   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5305 
5306   // We can add Flags to the post-inc expression only if we
5307   // know that it is *undefined behavior* for BEValueV to
5308   // overflow.
5309   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5310     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5311       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5312 
5313   return PHISCEV;
5314 }
5315 
5316 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5317   const Loop *L = LI.getLoopFor(PN->getParent());
5318   if (!L || L->getHeader() != PN->getParent())
5319     return nullptr;
5320 
5321   // The loop may have multiple entrances or multiple exits; we can analyze
5322   // this phi as an addrec if it has a unique entry value and a unique
5323   // backedge value.
5324   Value *BEValueV = nullptr, *StartValueV = nullptr;
5325   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5326     Value *V = PN->getIncomingValue(i);
5327     if (L->contains(PN->getIncomingBlock(i))) {
5328       if (!BEValueV) {
5329         BEValueV = V;
5330       } else if (BEValueV != V) {
5331         BEValueV = nullptr;
5332         break;
5333       }
5334     } else if (!StartValueV) {
5335       StartValueV = V;
5336     } else if (StartValueV != V) {
5337       StartValueV = nullptr;
5338       break;
5339     }
5340   }
5341   if (!BEValueV || !StartValueV)
5342     return nullptr;
5343 
5344   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5345          "PHI node already processed?");
5346 
5347   // First, try to find AddRec expression without creating a fictituos symbolic
5348   // value for PN.
5349   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5350     return S;
5351 
5352   // Handle PHI node value symbolically.
5353   const SCEV *SymbolicName = getUnknown(PN);
5354   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5355 
5356   // Using this symbolic name for the PHI, analyze the value coming around
5357   // the back-edge.
5358   const SCEV *BEValue = getSCEV(BEValueV);
5359 
5360   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5361   // has a special value for the first iteration of the loop.
5362 
5363   // If the value coming around the backedge is an add with the symbolic
5364   // value we just inserted, then we found a simple induction variable!
5365   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5366     // If there is a single occurrence of the symbolic value, replace it
5367     // with a recurrence.
5368     unsigned FoundIndex = Add->getNumOperands();
5369     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5370       if (Add->getOperand(i) == SymbolicName)
5371         if (FoundIndex == e) {
5372           FoundIndex = i;
5373           break;
5374         }
5375 
5376     if (FoundIndex != Add->getNumOperands()) {
5377       // Create an add with everything but the specified operand.
5378       SmallVector<const SCEV *, 8> Ops;
5379       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5380         if (i != FoundIndex)
5381           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5382                                                              L, *this));
5383       const SCEV *Accum = getAddExpr(Ops);
5384 
5385       // This is not a valid addrec if the step amount is varying each
5386       // loop iteration, but is not itself an addrec in this loop.
5387       if (isLoopInvariant(Accum, L) ||
5388           (isa<SCEVAddRecExpr>(Accum) &&
5389            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5390         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5391 
5392         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5393           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5394             if (BO->IsNUW)
5395               Flags = setFlags(Flags, SCEV::FlagNUW);
5396             if (BO->IsNSW)
5397               Flags = setFlags(Flags, SCEV::FlagNSW);
5398           }
5399         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5400           // If the increment is an inbounds GEP, then we know the address
5401           // space cannot be wrapped around. We cannot make any guarantee
5402           // about signed or unsigned overflow because pointers are
5403           // unsigned but we may have a negative index from the base
5404           // pointer. We can guarantee that no unsigned wrap occurs if the
5405           // indices form a positive value.
5406           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5407             Flags = setFlags(Flags, SCEV::FlagNW);
5408 
5409             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5410             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5411               Flags = setFlags(Flags, SCEV::FlagNUW);
5412           }
5413 
5414           // We cannot transfer nuw and nsw flags from subtraction
5415           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5416           // for instance.
5417         }
5418 
5419         const SCEV *StartVal = getSCEV(StartValueV);
5420         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5421 
5422         // Okay, for the entire analysis of this edge we assumed the PHI
5423         // to be symbolic.  We now need to go back and purge all of the
5424         // entries for the scalars that use the symbolic expression.
5425         forgetSymbolicName(PN, SymbolicName);
5426         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5427 
5428         // We can add Flags to the post-inc expression only if we
5429         // know that it is *undefined behavior* for BEValueV to
5430         // overflow.
5431         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5432           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5433             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5434 
5435         return PHISCEV;
5436       }
5437     }
5438   } else {
5439     // Otherwise, this could be a loop like this:
5440     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5441     // In this case, j = {1,+,1}  and BEValue is j.
5442     // Because the other in-value of i (0) fits the evolution of BEValue
5443     // i really is an addrec evolution.
5444     //
5445     // We can generalize this saying that i is the shifted value of BEValue
5446     // by one iteration:
5447     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5448     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5449     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5450     if (Shifted != getCouldNotCompute() &&
5451         Start != getCouldNotCompute()) {
5452       const SCEV *StartVal = getSCEV(StartValueV);
5453       if (Start == StartVal) {
5454         // Okay, for the entire analysis of this edge we assumed the PHI
5455         // to be symbolic.  We now need to go back and purge all of the
5456         // entries for the scalars that use the symbolic expression.
5457         forgetSymbolicName(PN, SymbolicName);
5458         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5459         return Shifted;
5460       }
5461     }
5462   }
5463 
5464   // Remove the temporary PHI node SCEV that has been inserted while intending
5465   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5466   // as it will prevent later (possibly simpler) SCEV expressions to be added
5467   // to the ValueExprMap.
5468   eraseValueFromMap(PN);
5469 
5470   return nullptr;
5471 }
5472 
5473 // Checks if the SCEV S is available at BB.  S is considered available at BB
5474 // if S can be materialized at BB without introducing a fault.
5475 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5476                                BasicBlock *BB) {
5477   struct CheckAvailable {
5478     bool TraversalDone = false;
5479     bool Available = true;
5480 
5481     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5482     BasicBlock *BB = nullptr;
5483     DominatorTree &DT;
5484 
5485     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5486       : L(L), BB(BB), DT(DT) {}
5487 
5488     bool setUnavailable() {
5489       TraversalDone = true;
5490       Available = false;
5491       return false;
5492     }
5493 
5494     bool follow(const SCEV *S) {
5495       switch (S->getSCEVType()) {
5496       case scConstant:
5497       case scPtrToInt:
5498       case scTruncate:
5499       case scZeroExtend:
5500       case scSignExtend:
5501       case scAddExpr:
5502       case scMulExpr:
5503       case scUMaxExpr:
5504       case scSMaxExpr:
5505       case scUMinExpr:
5506       case scSMinExpr:
5507         // These expressions are available if their operand(s) is/are.
5508         return true;
5509 
5510       case scAddRecExpr: {
5511         // We allow add recurrences that are on the loop BB is in, or some
5512         // outer loop.  This guarantees availability because the value of the
5513         // add recurrence at BB is simply the "current" value of the induction
5514         // variable.  We can relax this in the future; for instance an add
5515         // recurrence on a sibling dominating loop is also available at BB.
5516         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5517         if (L && (ARLoop == L || ARLoop->contains(L)))
5518           return true;
5519 
5520         return setUnavailable();
5521       }
5522 
5523       case scUnknown: {
5524         // For SCEVUnknown, we check for simple dominance.
5525         const auto *SU = cast<SCEVUnknown>(S);
5526         Value *V = SU->getValue();
5527 
5528         if (isa<Argument>(V))
5529           return false;
5530 
5531         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5532           return false;
5533 
5534         return setUnavailable();
5535       }
5536 
5537       case scUDivExpr:
5538       case scCouldNotCompute:
5539         // We do not try to smart about these at all.
5540         return setUnavailable();
5541       }
5542       llvm_unreachable("Unknown SCEV kind!");
5543     }
5544 
5545     bool isDone() { return TraversalDone; }
5546   };
5547 
5548   CheckAvailable CA(L, BB, DT);
5549   SCEVTraversal<CheckAvailable> ST(CA);
5550 
5551   ST.visitAll(S);
5552   return CA.Available;
5553 }
5554 
5555 // Try to match a control flow sequence that branches out at BI and merges back
5556 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5557 // match.
5558 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5559                           Value *&C, Value *&LHS, Value *&RHS) {
5560   C = BI->getCondition();
5561 
5562   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5563   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5564 
5565   if (!LeftEdge.isSingleEdge())
5566     return false;
5567 
5568   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5569 
5570   Use &LeftUse = Merge->getOperandUse(0);
5571   Use &RightUse = Merge->getOperandUse(1);
5572 
5573   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5574     LHS = LeftUse;
5575     RHS = RightUse;
5576     return true;
5577   }
5578 
5579   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5580     LHS = RightUse;
5581     RHS = LeftUse;
5582     return true;
5583   }
5584 
5585   return false;
5586 }
5587 
5588 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5589   auto IsReachable =
5590       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5591   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5592     const Loop *L = LI.getLoopFor(PN->getParent());
5593 
5594     // We don't want to break LCSSA, even in a SCEV expression tree.
5595     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5596       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5597         return nullptr;
5598 
5599     // Try to match
5600     //
5601     //  br %cond, label %left, label %right
5602     // left:
5603     //  br label %merge
5604     // right:
5605     //  br label %merge
5606     // merge:
5607     //  V = phi [ %x, %left ], [ %y, %right ]
5608     //
5609     // as "select %cond, %x, %y"
5610 
5611     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5612     assert(IDom && "At least the entry block should dominate PN");
5613 
5614     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5615     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5616 
5617     if (BI && BI->isConditional() &&
5618         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5619         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5620         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5621       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5622   }
5623 
5624   return nullptr;
5625 }
5626 
5627 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5628   if (const SCEV *S = createAddRecFromPHI(PN))
5629     return S;
5630 
5631   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5632     return S;
5633 
5634   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5635     return getSCEV(V);
5636 
5637   // If it's not a loop phi, we can't handle it yet.
5638   return getUnknown(PN);
5639 }
5640 
5641 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5642                                                       Value *Cond,
5643                                                       Value *TrueVal,
5644                                                       Value *FalseVal) {
5645   // Handle "constant" branch or select. This can occur for instance when a
5646   // loop pass transforms an inner loop and moves on to process the outer loop.
5647   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5648     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5649 
5650   // Try to match some simple smax or umax patterns.
5651   auto *ICI = dyn_cast<ICmpInst>(Cond);
5652   if (!ICI)
5653     return getUnknown(I);
5654 
5655   Value *LHS = ICI->getOperand(0);
5656   Value *RHS = ICI->getOperand(1);
5657 
5658   switch (ICI->getPredicate()) {
5659   case ICmpInst::ICMP_SLT:
5660   case ICmpInst::ICMP_SLE:
5661   case ICmpInst::ICMP_ULT:
5662   case ICmpInst::ICMP_ULE:
5663     std::swap(LHS, RHS);
5664     LLVM_FALLTHROUGH;
5665   case ICmpInst::ICMP_SGT:
5666   case ICmpInst::ICMP_SGE:
5667   case ICmpInst::ICMP_UGT:
5668   case ICmpInst::ICMP_UGE:
5669     // a > b ? a+x : b+x  ->  max(a, b)+x
5670     // a > b ? b+x : a+x  ->  min(a, b)+x
5671     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5672       bool Signed = ICI->isSigned();
5673       const SCEV *LA = getSCEV(TrueVal);
5674       const SCEV *RA = getSCEV(FalseVal);
5675       const SCEV *LS = getSCEV(LHS);
5676       const SCEV *RS = getSCEV(RHS);
5677       if (LA->getType()->isPointerTy()) {
5678         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5679         // Need to make sure we can't produce weird expressions involving
5680         // negated pointers.
5681         if (LA == LS && RA == RS)
5682           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5683         if (LA == RS && RA == LS)
5684           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5685       }
5686       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5687         if (Op->getType()->isPointerTy()) {
5688           Op = getLosslessPtrToIntExpr(Op);
5689           if (isa<SCEVCouldNotCompute>(Op))
5690             return Op;
5691         }
5692         if (Signed)
5693           Op = getNoopOrSignExtend(Op, I->getType());
5694         else
5695           Op = getNoopOrZeroExtend(Op, I->getType());
5696         return Op;
5697       };
5698       LS = CoerceOperand(LS);
5699       RS = CoerceOperand(RS);
5700       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5701         break;
5702       const SCEV *LDiff = getMinusSCEV(LA, LS);
5703       const SCEV *RDiff = getMinusSCEV(RA, RS);
5704       if (LDiff == RDiff)
5705         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5706                           LDiff);
5707       LDiff = getMinusSCEV(LA, RS);
5708       RDiff = getMinusSCEV(RA, LS);
5709       if (LDiff == RDiff)
5710         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5711                           LDiff);
5712     }
5713     break;
5714   case ICmpInst::ICMP_NE:
5715     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5716     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5717         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5718       const SCEV *One = getOne(I->getType());
5719       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5720       const SCEV *LA = getSCEV(TrueVal);
5721       const SCEV *RA = getSCEV(FalseVal);
5722       const SCEV *LDiff = getMinusSCEV(LA, LS);
5723       const SCEV *RDiff = getMinusSCEV(RA, One);
5724       if (LDiff == RDiff)
5725         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5726     }
5727     break;
5728   case ICmpInst::ICMP_EQ:
5729     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5730     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5731         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5732       const SCEV *One = getOne(I->getType());
5733       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5734       const SCEV *LA = getSCEV(TrueVal);
5735       const SCEV *RA = getSCEV(FalseVal);
5736       const SCEV *LDiff = getMinusSCEV(LA, One);
5737       const SCEV *RDiff = getMinusSCEV(RA, LS);
5738       if (LDiff == RDiff)
5739         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5740     }
5741     break;
5742   default:
5743     break;
5744   }
5745 
5746   return getUnknown(I);
5747 }
5748 
5749 /// Expand GEP instructions into add and multiply operations. This allows them
5750 /// to be analyzed by regular SCEV code.
5751 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5752   // Don't attempt to analyze GEPs over unsized objects.
5753   if (!GEP->getSourceElementType()->isSized())
5754     return getUnknown(GEP);
5755 
5756   SmallVector<const SCEV *, 4> IndexExprs;
5757   for (Value *Index : GEP->indices())
5758     IndexExprs.push_back(getSCEV(Index));
5759   return getGEPExpr(GEP, IndexExprs);
5760 }
5761 
5762 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5763   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5764     return C->getAPInt().countTrailingZeros();
5765 
5766   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5767     return GetMinTrailingZeros(I->getOperand());
5768 
5769   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5770     return std::min(GetMinTrailingZeros(T->getOperand()),
5771                     (uint32_t)getTypeSizeInBits(T->getType()));
5772 
5773   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5774     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5775     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5776                ? getTypeSizeInBits(E->getType())
5777                : OpRes;
5778   }
5779 
5780   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5781     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5782     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5783                ? getTypeSizeInBits(E->getType())
5784                : OpRes;
5785   }
5786 
5787   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5788     // The result is the min of all operands results.
5789     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5790     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5791       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5792     return MinOpRes;
5793   }
5794 
5795   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5796     // The result is the sum of all operands results.
5797     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5798     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5799     for (unsigned i = 1, e = M->getNumOperands();
5800          SumOpRes != BitWidth && i != e; ++i)
5801       SumOpRes =
5802           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5803     return SumOpRes;
5804   }
5805 
5806   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5807     // The result is the min of all operands results.
5808     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5809     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5810       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5811     return MinOpRes;
5812   }
5813 
5814   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5815     // The result is the min of all operands results.
5816     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5817     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5818       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5819     return MinOpRes;
5820   }
5821 
5822   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5823     // The result is the min of all operands results.
5824     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5825     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5826       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5827     return MinOpRes;
5828   }
5829 
5830   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5831     // For a SCEVUnknown, ask ValueTracking.
5832     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5833     return Known.countMinTrailingZeros();
5834   }
5835 
5836   // SCEVUDivExpr
5837   return 0;
5838 }
5839 
5840 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5841   auto I = MinTrailingZerosCache.find(S);
5842   if (I != MinTrailingZerosCache.end())
5843     return I->second;
5844 
5845   uint32_t Result = GetMinTrailingZerosImpl(S);
5846   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5847   assert(InsertPair.second && "Should insert a new key");
5848   return InsertPair.first->second;
5849 }
5850 
5851 /// Helper method to assign a range to V from metadata present in the IR.
5852 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5853   if (Instruction *I = dyn_cast<Instruction>(V))
5854     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5855       return getConstantRangeFromMetadata(*MD);
5856 
5857   return None;
5858 }
5859 
5860 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5861                                      SCEV::NoWrapFlags Flags) {
5862   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5863     AddRec->setNoWrapFlags(Flags);
5864     UnsignedRanges.erase(AddRec);
5865     SignedRanges.erase(AddRec);
5866   }
5867 }
5868 
5869 ConstantRange ScalarEvolution::
5870 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5871   const DataLayout &DL = getDataLayout();
5872 
5873   unsigned BitWidth = getTypeSizeInBits(U->getType());
5874   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5875 
5876   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5877   // use information about the trip count to improve our available range.  Note
5878   // that the trip count independent cases are already handled by known bits.
5879   // WARNING: The definition of recurrence used here is subtly different than
5880   // the one used by AddRec (and thus most of this file).  Step is allowed to
5881   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5882   // and other addrecs in the same loop (for non-affine addrecs).  The code
5883   // below intentionally handles the case where step is not loop invariant.
5884   auto *P = dyn_cast<PHINode>(U->getValue());
5885   if (!P)
5886     return FullSet;
5887 
5888   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5889   // even the values that are not available in these blocks may come from them,
5890   // and this leads to false-positive recurrence test.
5891   for (auto *Pred : predecessors(P->getParent()))
5892     if (!DT.isReachableFromEntry(Pred))
5893       return FullSet;
5894 
5895   BinaryOperator *BO;
5896   Value *Start, *Step;
5897   if (!matchSimpleRecurrence(P, BO, Start, Step))
5898     return FullSet;
5899 
5900   // If we found a recurrence in reachable code, we must be in a loop. Note
5901   // that BO might be in some subloop of L, and that's completely okay.
5902   auto *L = LI.getLoopFor(P->getParent());
5903   assert(L && L->getHeader() == P->getParent());
5904   if (!L->contains(BO->getParent()))
5905     // NOTE: This bailout should be an assert instead.  However, asserting
5906     // the condition here exposes a case where LoopFusion is querying SCEV
5907     // with malformed loop information during the midst of the transform.
5908     // There doesn't appear to be an obvious fix, so for the moment bailout
5909     // until the caller issue can be fixed.  PR49566 tracks the bug.
5910     return FullSet;
5911 
5912   // TODO: Extend to other opcodes such as mul, and div
5913   switch (BO->getOpcode()) {
5914   default:
5915     return FullSet;
5916   case Instruction::AShr:
5917   case Instruction::LShr:
5918   case Instruction::Shl:
5919     break;
5920   };
5921 
5922   if (BO->getOperand(0) != P)
5923     // TODO: Handle the power function forms some day.
5924     return FullSet;
5925 
5926   unsigned TC = getSmallConstantMaxTripCount(L);
5927   if (!TC || TC >= BitWidth)
5928     return FullSet;
5929 
5930   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5931   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5932   assert(KnownStart.getBitWidth() == BitWidth &&
5933          KnownStep.getBitWidth() == BitWidth);
5934 
5935   // Compute total shift amount, being careful of overflow and bitwidths.
5936   auto MaxShiftAmt = KnownStep.getMaxValue();
5937   APInt TCAP(BitWidth, TC-1);
5938   bool Overflow = false;
5939   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5940   if (Overflow)
5941     return FullSet;
5942 
5943   switch (BO->getOpcode()) {
5944   default:
5945     llvm_unreachable("filtered out above");
5946   case Instruction::AShr: {
5947     // For each ashr, three cases:
5948     //   shift = 0 => unchanged value
5949     //   saturation => 0 or -1
5950     //   other => a value closer to zero (of the same sign)
5951     // Thus, the end value is closer to zero than the start.
5952     auto KnownEnd = KnownBits::ashr(KnownStart,
5953                                     KnownBits::makeConstant(TotalShift));
5954     if (KnownStart.isNonNegative())
5955       // Analogous to lshr (simply not yet canonicalized)
5956       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5957                                         KnownStart.getMaxValue() + 1);
5958     if (KnownStart.isNegative())
5959       // End >=u Start && End <=s Start
5960       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5961                                         KnownEnd.getMaxValue() + 1);
5962     break;
5963   }
5964   case Instruction::LShr: {
5965     // For each lshr, three cases:
5966     //   shift = 0 => unchanged value
5967     //   saturation => 0
5968     //   other => a smaller positive number
5969     // Thus, the low end of the unsigned range is the last value produced.
5970     auto KnownEnd = KnownBits::lshr(KnownStart,
5971                                     KnownBits::makeConstant(TotalShift));
5972     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5973                                       KnownStart.getMaxValue() + 1);
5974   }
5975   case Instruction::Shl: {
5976     // Iff no bits are shifted out, value increases on every shift.
5977     auto KnownEnd = KnownBits::shl(KnownStart,
5978                                    KnownBits::makeConstant(TotalShift));
5979     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5980       return ConstantRange(KnownStart.getMinValue(),
5981                            KnownEnd.getMaxValue() + 1);
5982     break;
5983   }
5984   };
5985   return FullSet;
5986 }
5987 
5988 /// Determine the range for a particular SCEV.  If SignHint is
5989 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5990 /// with a "cleaner" unsigned (resp. signed) representation.
5991 const ConstantRange &
5992 ScalarEvolution::getRangeRef(const SCEV *S,
5993                              ScalarEvolution::RangeSignHint SignHint) {
5994   DenseMap<const SCEV *, ConstantRange> &Cache =
5995       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5996                                                        : SignedRanges;
5997   ConstantRange::PreferredRangeType RangeType =
5998       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5999           ? ConstantRange::Unsigned : ConstantRange::Signed;
6000 
6001   // See if we've computed this range already.
6002   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6003   if (I != Cache.end())
6004     return I->second;
6005 
6006   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6007     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6008 
6009   unsigned BitWidth = getTypeSizeInBits(S->getType());
6010   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6011   using OBO = OverflowingBinaryOperator;
6012 
6013   // If the value has known zeros, the maximum value will have those known zeros
6014   // as well.
6015   uint32_t TZ = GetMinTrailingZeros(S);
6016   if (TZ != 0) {
6017     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6018       ConservativeResult =
6019           ConstantRange(APInt::getMinValue(BitWidth),
6020                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6021     else
6022       ConservativeResult = ConstantRange(
6023           APInt::getSignedMinValue(BitWidth),
6024           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6025   }
6026 
6027   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6028     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6029     unsigned WrapType = OBO::AnyWrap;
6030     if (Add->hasNoSignedWrap())
6031       WrapType |= OBO::NoSignedWrap;
6032     if (Add->hasNoUnsignedWrap())
6033       WrapType |= OBO::NoUnsignedWrap;
6034     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6035       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6036                           WrapType, RangeType);
6037     return setRange(Add, SignHint,
6038                     ConservativeResult.intersectWith(X, RangeType));
6039   }
6040 
6041   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6042     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6043     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6044       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6045     return setRange(Mul, SignHint,
6046                     ConservativeResult.intersectWith(X, RangeType));
6047   }
6048 
6049   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6050     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6051     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6052       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6053     return setRange(SMax, SignHint,
6054                     ConservativeResult.intersectWith(X, RangeType));
6055   }
6056 
6057   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6058     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6059     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6060       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6061     return setRange(UMax, SignHint,
6062                     ConservativeResult.intersectWith(X, RangeType));
6063   }
6064 
6065   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6066     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6067     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6068       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6069     return setRange(SMin, SignHint,
6070                     ConservativeResult.intersectWith(X, RangeType));
6071   }
6072 
6073   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6074     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6075     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6076       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6077     return setRange(UMin, SignHint,
6078                     ConservativeResult.intersectWith(X, RangeType));
6079   }
6080 
6081   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6082     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6083     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6084     return setRange(UDiv, SignHint,
6085                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6086   }
6087 
6088   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6089     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6090     return setRange(ZExt, SignHint,
6091                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6092                                                      RangeType));
6093   }
6094 
6095   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6096     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6097     return setRange(SExt, SignHint,
6098                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6099                                                      RangeType));
6100   }
6101 
6102   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6103     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6104     return setRange(PtrToInt, SignHint, X);
6105   }
6106 
6107   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6108     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6109     return setRange(Trunc, SignHint,
6110                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6111                                                      RangeType));
6112   }
6113 
6114   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6115     // If there's no unsigned wrap, the value will never be less than its
6116     // initial value.
6117     if (AddRec->hasNoUnsignedWrap()) {
6118       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6119       if (!UnsignedMinValue.isNullValue())
6120         ConservativeResult = ConservativeResult.intersectWith(
6121             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6122     }
6123 
6124     // If there's no signed wrap, and all the operands except initial value have
6125     // the same sign or zero, the value won't ever be:
6126     // 1: smaller than initial value if operands are non negative,
6127     // 2: bigger than initial value if operands are non positive.
6128     // For both cases, value can not cross signed min/max boundary.
6129     if (AddRec->hasNoSignedWrap()) {
6130       bool AllNonNeg = true;
6131       bool AllNonPos = true;
6132       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6133         if (!isKnownNonNegative(AddRec->getOperand(i)))
6134           AllNonNeg = false;
6135         if (!isKnownNonPositive(AddRec->getOperand(i)))
6136           AllNonPos = false;
6137       }
6138       if (AllNonNeg)
6139         ConservativeResult = ConservativeResult.intersectWith(
6140             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6141                                        APInt::getSignedMinValue(BitWidth)),
6142             RangeType);
6143       else if (AllNonPos)
6144         ConservativeResult = ConservativeResult.intersectWith(
6145             ConstantRange::getNonEmpty(
6146                 APInt::getSignedMinValue(BitWidth),
6147                 getSignedRangeMax(AddRec->getStart()) + 1),
6148             RangeType);
6149     }
6150 
6151     // TODO: non-affine addrec
6152     if (AddRec->isAffine()) {
6153       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6154       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6155           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6156         auto RangeFromAffine = getRangeForAffineAR(
6157             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6158             BitWidth);
6159         ConservativeResult =
6160             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6161 
6162         auto RangeFromFactoring = getRangeViaFactoring(
6163             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6164             BitWidth);
6165         ConservativeResult =
6166             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6167       }
6168 
6169       // Now try symbolic BE count and more powerful methods.
6170       if (UseExpensiveRangeSharpening) {
6171         const SCEV *SymbolicMaxBECount =
6172             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6173         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6174             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6175             AddRec->hasNoSelfWrap()) {
6176           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6177               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6178           ConservativeResult =
6179               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6180         }
6181       }
6182     }
6183 
6184     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6185   }
6186 
6187   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6188 
6189     // Check if the IR explicitly contains !range metadata.
6190     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6191     if (MDRange.hasValue())
6192       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6193                                                             RangeType);
6194 
6195     // Use facts about recurrences in the underlying IR.  Note that add
6196     // recurrences are AddRecExprs and thus don't hit this path.  This
6197     // primarily handles shift recurrences.
6198     auto CR = getRangeForUnknownRecurrence(U);
6199     ConservativeResult = ConservativeResult.intersectWith(CR);
6200 
6201     // See if ValueTracking can give us a useful range.
6202     const DataLayout &DL = getDataLayout();
6203     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6204     if (Known.getBitWidth() != BitWidth)
6205       Known = Known.zextOrTrunc(BitWidth);
6206 
6207     // ValueTracking may be able to compute a tighter result for the number of
6208     // sign bits than for the value of those sign bits.
6209     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6210     if (U->getType()->isPointerTy()) {
6211       // If the pointer size is larger than the index size type, this can cause
6212       // NS to be larger than BitWidth. So compensate for this.
6213       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6214       int ptrIdxDiff = ptrSize - BitWidth;
6215       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6216         NS -= ptrIdxDiff;
6217     }
6218 
6219     if (NS > 1) {
6220       // If we know any of the sign bits, we know all of the sign bits.
6221       if (!Known.Zero.getHiBits(NS).isNullValue())
6222         Known.Zero.setHighBits(NS);
6223       if (!Known.One.getHiBits(NS).isNullValue())
6224         Known.One.setHighBits(NS);
6225     }
6226 
6227     if (Known.getMinValue() != Known.getMaxValue() + 1)
6228       ConservativeResult = ConservativeResult.intersectWith(
6229           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6230           RangeType);
6231     if (NS > 1)
6232       ConservativeResult = ConservativeResult.intersectWith(
6233           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6234                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6235           RangeType);
6236 
6237     // A range of Phi is a subset of union of all ranges of its input.
6238     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6239       // Make sure that we do not run over cycled Phis.
6240       if (PendingPhiRanges.insert(Phi).second) {
6241         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6242         for (auto &Op : Phi->operands()) {
6243           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6244           RangeFromOps = RangeFromOps.unionWith(OpRange);
6245           // No point to continue if we already have a full set.
6246           if (RangeFromOps.isFullSet())
6247             break;
6248         }
6249         ConservativeResult =
6250             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6251         bool Erased = PendingPhiRanges.erase(Phi);
6252         assert(Erased && "Failed to erase Phi properly?");
6253         (void) Erased;
6254       }
6255     }
6256 
6257     return setRange(U, SignHint, std::move(ConservativeResult));
6258   }
6259 
6260   return setRange(S, SignHint, std::move(ConservativeResult));
6261 }
6262 
6263 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6264 // values that the expression can take. Initially, the expression has a value
6265 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6266 // argument defines if we treat Step as signed or unsigned.
6267 static ConstantRange getRangeForAffineARHelper(APInt Step,
6268                                                const ConstantRange &StartRange,
6269                                                const APInt &MaxBECount,
6270                                                unsigned BitWidth, bool Signed) {
6271   // If either Step or MaxBECount is 0, then the expression won't change, and we
6272   // just need to return the initial range.
6273   if (Step == 0 || MaxBECount == 0)
6274     return StartRange;
6275 
6276   // If we don't know anything about the initial value (i.e. StartRange is
6277   // FullRange), then we don't know anything about the final range either.
6278   // Return FullRange.
6279   if (StartRange.isFullSet())
6280     return ConstantRange::getFull(BitWidth);
6281 
6282   // If Step is signed and negative, then we use its absolute value, but we also
6283   // note that we're moving in the opposite direction.
6284   bool Descending = Signed && Step.isNegative();
6285 
6286   if (Signed)
6287     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6288     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6289     // This equations hold true due to the well-defined wrap-around behavior of
6290     // APInt.
6291     Step = Step.abs();
6292 
6293   // Check if Offset is more than full span of BitWidth. If it is, the
6294   // expression is guaranteed to overflow.
6295   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6296     return ConstantRange::getFull(BitWidth);
6297 
6298   // Offset is by how much the expression can change. Checks above guarantee no
6299   // overflow here.
6300   APInt Offset = Step * MaxBECount;
6301 
6302   // Minimum value of the final range will match the minimal value of StartRange
6303   // if the expression is increasing and will be decreased by Offset otherwise.
6304   // Maximum value of the final range will match the maximal value of StartRange
6305   // if the expression is decreasing and will be increased by Offset otherwise.
6306   APInt StartLower = StartRange.getLower();
6307   APInt StartUpper = StartRange.getUpper() - 1;
6308   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6309                                    : (StartUpper + std::move(Offset));
6310 
6311   // It's possible that the new minimum/maximum value will fall into the initial
6312   // range (due to wrap around). This means that the expression can take any
6313   // value in this bitwidth, and we have to return full range.
6314   if (StartRange.contains(MovedBoundary))
6315     return ConstantRange::getFull(BitWidth);
6316 
6317   APInt NewLower =
6318       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6319   APInt NewUpper =
6320       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6321   NewUpper += 1;
6322 
6323   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6324   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6325 }
6326 
6327 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6328                                                    const SCEV *Step,
6329                                                    const SCEV *MaxBECount,
6330                                                    unsigned BitWidth) {
6331   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6332          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6333          "Precondition!");
6334 
6335   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6336   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6337 
6338   // First, consider step signed.
6339   ConstantRange StartSRange = getSignedRange(Start);
6340   ConstantRange StepSRange = getSignedRange(Step);
6341 
6342   // If Step can be both positive and negative, we need to find ranges for the
6343   // maximum absolute step values in both directions and union them.
6344   ConstantRange SR =
6345       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6346                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6347   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6348                                               StartSRange, MaxBECountValue,
6349                                               BitWidth, /* Signed = */ true));
6350 
6351   // Next, consider step unsigned.
6352   ConstantRange UR = getRangeForAffineARHelper(
6353       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6354       MaxBECountValue, BitWidth, /* Signed = */ false);
6355 
6356   // Finally, intersect signed and unsigned ranges.
6357   return SR.intersectWith(UR, ConstantRange::Smallest);
6358 }
6359 
6360 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6361     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6362     ScalarEvolution::RangeSignHint SignHint) {
6363   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6364   assert(AddRec->hasNoSelfWrap() &&
6365          "This only works for non-self-wrapping AddRecs!");
6366   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6367   const SCEV *Step = AddRec->getStepRecurrence(*this);
6368   // Only deal with constant step to save compile time.
6369   if (!isa<SCEVConstant>(Step))
6370     return ConstantRange::getFull(BitWidth);
6371   // Let's make sure that we can prove that we do not self-wrap during
6372   // MaxBECount iterations. We need this because MaxBECount is a maximum
6373   // iteration count estimate, and we might infer nw from some exit for which we
6374   // do not know max exit count (or any other side reasoning).
6375   // TODO: Turn into assert at some point.
6376   if (getTypeSizeInBits(MaxBECount->getType()) >
6377       getTypeSizeInBits(AddRec->getType()))
6378     return ConstantRange::getFull(BitWidth);
6379   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6380   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6381   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6382   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6383   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6384                                          MaxItersWithoutWrap))
6385     return ConstantRange::getFull(BitWidth);
6386 
6387   ICmpInst::Predicate LEPred =
6388       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6389   ICmpInst::Predicate GEPred =
6390       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6391   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6392 
6393   // We know that there is no self-wrap. Let's take Start and End values and
6394   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6395   // the iteration. They either lie inside the range [Min(Start, End),
6396   // Max(Start, End)] or outside it:
6397   //
6398   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6399   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6400   //
6401   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6402   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6403   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6404   // Start <= End and step is positive, or Start >= End and step is negative.
6405   const SCEV *Start = AddRec->getStart();
6406   ConstantRange StartRange = getRangeRef(Start, SignHint);
6407   ConstantRange EndRange = getRangeRef(End, SignHint);
6408   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6409   // If they already cover full iteration space, we will know nothing useful
6410   // even if we prove what we want to prove.
6411   if (RangeBetween.isFullSet())
6412     return RangeBetween;
6413   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6414   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6415                                : RangeBetween.isWrappedSet();
6416   if (IsWrappedSet)
6417     return ConstantRange::getFull(BitWidth);
6418 
6419   if (isKnownPositive(Step) &&
6420       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6421     return RangeBetween;
6422   else if (isKnownNegative(Step) &&
6423            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6424     return RangeBetween;
6425   return ConstantRange::getFull(BitWidth);
6426 }
6427 
6428 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6429                                                     const SCEV *Step,
6430                                                     const SCEV *MaxBECount,
6431                                                     unsigned BitWidth) {
6432   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6433   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6434 
6435   struct SelectPattern {
6436     Value *Condition = nullptr;
6437     APInt TrueValue;
6438     APInt FalseValue;
6439 
6440     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6441                            const SCEV *S) {
6442       Optional<unsigned> CastOp;
6443       APInt Offset(BitWidth, 0);
6444 
6445       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6446              "Should be!");
6447 
6448       // Peel off a constant offset:
6449       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6450         // In the future we could consider being smarter here and handle
6451         // {Start+Step,+,Step} too.
6452         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6453           return;
6454 
6455         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6456         S = SA->getOperand(1);
6457       }
6458 
6459       // Peel off a cast operation
6460       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6461         CastOp = SCast->getSCEVType();
6462         S = SCast->getOperand();
6463       }
6464 
6465       using namespace llvm::PatternMatch;
6466 
6467       auto *SU = dyn_cast<SCEVUnknown>(S);
6468       const APInt *TrueVal, *FalseVal;
6469       if (!SU ||
6470           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6471                                           m_APInt(FalseVal)))) {
6472         Condition = nullptr;
6473         return;
6474       }
6475 
6476       TrueValue = *TrueVal;
6477       FalseValue = *FalseVal;
6478 
6479       // Re-apply the cast we peeled off earlier
6480       if (CastOp.hasValue())
6481         switch (*CastOp) {
6482         default:
6483           llvm_unreachable("Unknown SCEV cast type!");
6484 
6485         case scTruncate:
6486           TrueValue = TrueValue.trunc(BitWidth);
6487           FalseValue = FalseValue.trunc(BitWidth);
6488           break;
6489         case scZeroExtend:
6490           TrueValue = TrueValue.zext(BitWidth);
6491           FalseValue = FalseValue.zext(BitWidth);
6492           break;
6493         case scSignExtend:
6494           TrueValue = TrueValue.sext(BitWidth);
6495           FalseValue = FalseValue.sext(BitWidth);
6496           break;
6497         }
6498 
6499       // Re-apply the constant offset we peeled off earlier
6500       TrueValue += Offset;
6501       FalseValue += Offset;
6502     }
6503 
6504     bool isRecognized() { return Condition != nullptr; }
6505   };
6506 
6507   SelectPattern StartPattern(*this, BitWidth, Start);
6508   if (!StartPattern.isRecognized())
6509     return ConstantRange::getFull(BitWidth);
6510 
6511   SelectPattern StepPattern(*this, BitWidth, Step);
6512   if (!StepPattern.isRecognized())
6513     return ConstantRange::getFull(BitWidth);
6514 
6515   if (StartPattern.Condition != StepPattern.Condition) {
6516     // We don't handle this case today; but we could, by considering four
6517     // possibilities below instead of two. I'm not sure if there are cases where
6518     // that will help over what getRange already does, though.
6519     return ConstantRange::getFull(BitWidth);
6520   }
6521 
6522   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6523   // construct arbitrary general SCEV expressions here.  This function is called
6524   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6525   // say) can end up caching a suboptimal value.
6526 
6527   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6528   // C2352 and C2512 (otherwise it isn't needed).
6529 
6530   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6531   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6532   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6533   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6534 
6535   ConstantRange TrueRange =
6536       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6537   ConstantRange FalseRange =
6538       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6539 
6540   return TrueRange.unionWith(FalseRange);
6541 }
6542 
6543 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6544   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6545   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6546 
6547   // Return early if there are no flags to propagate to the SCEV.
6548   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6549   if (BinOp->hasNoUnsignedWrap())
6550     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6551   if (BinOp->hasNoSignedWrap())
6552     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6553   if (Flags == SCEV::FlagAnyWrap)
6554     return SCEV::FlagAnyWrap;
6555 
6556   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6557 }
6558 
6559 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6560   // Here we check that I is in the header of the innermost loop containing I,
6561   // since we only deal with instructions in the loop header. The actual loop we
6562   // need to check later will come from an add recurrence, but getting that
6563   // requires computing the SCEV of the operands, which can be expensive. This
6564   // check we can do cheaply to rule out some cases early.
6565   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6566   if (InnermostContainingLoop == nullptr ||
6567       InnermostContainingLoop->getHeader() != I->getParent())
6568     return false;
6569 
6570   // Only proceed if we can prove that I does not yield poison.
6571   if (!programUndefinedIfPoison(I))
6572     return false;
6573 
6574   // At this point we know that if I is executed, then it does not wrap
6575   // according to at least one of NSW or NUW. If I is not executed, then we do
6576   // not know if the calculation that I represents would wrap. Multiple
6577   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6578   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6579   // derived from other instructions that map to the same SCEV. We cannot make
6580   // that guarantee for cases where I is not executed. So we need to find the
6581   // loop that I is considered in relation to and prove that I is executed for
6582   // every iteration of that loop. That implies that the value that I
6583   // calculates does not wrap anywhere in the loop, so then we can apply the
6584   // flags to the SCEV.
6585   //
6586   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6587   // from different loops, so that we know which loop to prove that I is
6588   // executed in.
6589   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6590     // I could be an extractvalue from a call to an overflow intrinsic.
6591     // TODO: We can do better here in some cases.
6592     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6593       return false;
6594     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6595     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6596       bool AllOtherOpsLoopInvariant = true;
6597       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6598            ++OtherOpIndex) {
6599         if (OtherOpIndex != OpIndex) {
6600           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6601           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6602             AllOtherOpsLoopInvariant = false;
6603             break;
6604           }
6605         }
6606       }
6607       if (AllOtherOpsLoopInvariant &&
6608           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6609         return true;
6610     }
6611   }
6612   return false;
6613 }
6614 
6615 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6616   // If we know that \c I can never be poison period, then that's enough.
6617   if (isSCEVExprNeverPoison(I))
6618     return true;
6619 
6620   // For an add recurrence specifically, we assume that infinite loops without
6621   // side effects are undefined behavior, and then reason as follows:
6622   //
6623   // If the add recurrence is poison in any iteration, it is poison on all
6624   // future iterations (since incrementing poison yields poison). If the result
6625   // of the add recurrence is fed into the loop latch condition and the loop
6626   // does not contain any throws or exiting blocks other than the latch, we now
6627   // have the ability to "choose" whether the backedge is taken or not (by
6628   // choosing a sufficiently evil value for the poison feeding into the branch)
6629   // for every iteration including and after the one in which \p I first became
6630   // poison.  There are two possibilities (let's call the iteration in which \p
6631   // I first became poison as K):
6632   //
6633   //  1. In the set of iterations including and after K, the loop body executes
6634   //     no side effects.  In this case executing the backege an infinte number
6635   //     of times will yield undefined behavior.
6636   //
6637   //  2. In the set of iterations including and after K, the loop body executes
6638   //     at least one side effect.  In this case, that specific instance of side
6639   //     effect is control dependent on poison, which also yields undefined
6640   //     behavior.
6641 
6642   auto *ExitingBB = L->getExitingBlock();
6643   auto *LatchBB = L->getLoopLatch();
6644   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6645     return false;
6646 
6647   SmallPtrSet<const Instruction *, 16> Pushed;
6648   SmallVector<const Instruction *, 8> PoisonStack;
6649 
6650   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6651   // things that are known to be poison under that assumption go on the
6652   // PoisonStack.
6653   Pushed.insert(I);
6654   PoisonStack.push_back(I);
6655 
6656   bool LatchControlDependentOnPoison = false;
6657   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6658     const Instruction *Poison = PoisonStack.pop_back_val();
6659 
6660     for (auto *PoisonUser : Poison->users()) {
6661       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6662         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6663           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6664       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6665         assert(BI->isConditional() && "Only possibility!");
6666         if (BI->getParent() == LatchBB) {
6667           LatchControlDependentOnPoison = true;
6668           break;
6669         }
6670       }
6671     }
6672   }
6673 
6674   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6675 }
6676 
6677 ScalarEvolution::LoopProperties
6678 ScalarEvolution::getLoopProperties(const Loop *L) {
6679   using LoopProperties = ScalarEvolution::LoopProperties;
6680 
6681   auto Itr = LoopPropertiesCache.find(L);
6682   if (Itr == LoopPropertiesCache.end()) {
6683     auto HasSideEffects = [](Instruction *I) {
6684       if (auto *SI = dyn_cast<StoreInst>(I))
6685         return !SI->isSimple();
6686 
6687       return I->mayThrow() || I->mayWriteToMemory();
6688     };
6689 
6690     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6691                          /*HasNoSideEffects*/ true};
6692 
6693     for (auto *BB : L->getBlocks())
6694       for (auto &I : *BB) {
6695         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6696           LP.HasNoAbnormalExits = false;
6697         if (HasSideEffects(&I))
6698           LP.HasNoSideEffects = false;
6699         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6700           break; // We're already as pessimistic as we can get.
6701       }
6702 
6703     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6704     assert(InsertPair.second && "We just checked!");
6705     Itr = InsertPair.first;
6706   }
6707 
6708   return Itr->second;
6709 }
6710 
6711 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6712   // A mustprogress loop without side effects must be finite.
6713   // TODO: The check used here is very conservative.  It's only *specific*
6714   // side effects which are well defined in infinite loops.
6715   return isMustProgress(L) && loopHasNoSideEffects(L);
6716 }
6717 
6718 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6719   if (!isSCEVable(V->getType()))
6720     return getUnknown(V);
6721 
6722   if (Instruction *I = dyn_cast<Instruction>(V)) {
6723     // Don't attempt to analyze instructions in blocks that aren't
6724     // reachable. Such instructions don't matter, and they aren't required
6725     // to obey basic rules for definitions dominating uses which this
6726     // analysis depends on.
6727     if (!DT.isReachableFromEntry(I->getParent()))
6728       return getUnknown(UndefValue::get(V->getType()));
6729   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6730     return getConstant(CI);
6731   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6732     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6733   else if (!isa<ConstantExpr>(V))
6734     return getUnknown(V);
6735 
6736   Operator *U = cast<Operator>(V);
6737   if (auto BO = MatchBinaryOp(U, DT)) {
6738     switch (BO->Opcode) {
6739     case Instruction::Add: {
6740       // The simple thing to do would be to just call getSCEV on both operands
6741       // and call getAddExpr with the result. However if we're looking at a
6742       // bunch of things all added together, this can be quite inefficient,
6743       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6744       // Instead, gather up all the operands and make a single getAddExpr call.
6745       // LLVM IR canonical form means we need only traverse the left operands.
6746       SmallVector<const SCEV *, 4> AddOps;
6747       do {
6748         if (BO->Op) {
6749           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6750             AddOps.push_back(OpSCEV);
6751             break;
6752           }
6753 
6754           // If a NUW or NSW flag can be applied to the SCEV for this
6755           // addition, then compute the SCEV for this addition by itself
6756           // with a separate call to getAddExpr. We need to do that
6757           // instead of pushing the operands of the addition onto AddOps,
6758           // since the flags are only known to apply to this particular
6759           // addition - they may not apply to other additions that can be
6760           // formed with operands from AddOps.
6761           const SCEV *RHS = getSCEV(BO->RHS);
6762           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6763           if (Flags != SCEV::FlagAnyWrap) {
6764             const SCEV *LHS = getSCEV(BO->LHS);
6765             if (BO->Opcode == Instruction::Sub)
6766               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6767             else
6768               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6769             break;
6770           }
6771         }
6772 
6773         if (BO->Opcode == Instruction::Sub)
6774           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6775         else
6776           AddOps.push_back(getSCEV(BO->RHS));
6777 
6778         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6779         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6780                        NewBO->Opcode != Instruction::Sub)) {
6781           AddOps.push_back(getSCEV(BO->LHS));
6782           break;
6783         }
6784         BO = NewBO;
6785       } while (true);
6786 
6787       return getAddExpr(AddOps);
6788     }
6789 
6790     case Instruction::Mul: {
6791       SmallVector<const SCEV *, 4> MulOps;
6792       do {
6793         if (BO->Op) {
6794           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6795             MulOps.push_back(OpSCEV);
6796             break;
6797           }
6798 
6799           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6800           if (Flags != SCEV::FlagAnyWrap) {
6801             MulOps.push_back(
6802                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6803             break;
6804           }
6805         }
6806 
6807         MulOps.push_back(getSCEV(BO->RHS));
6808         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6809         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6810           MulOps.push_back(getSCEV(BO->LHS));
6811           break;
6812         }
6813         BO = NewBO;
6814       } while (true);
6815 
6816       return getMulExpr(MulOps);
6817     }
6818     case Instruction::UDiv:
6819       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6820     case Instruction::URem:
6821       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6822     case Instruction::Sub: {
6823       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6824       if (BO->Op)
6825         Flags = getNoWrapFlagsFromUB(BO->Op);
6826       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6827     }
6828     case Instruction::And:
6829       // For an expression like x&255 that merely masks off the high bits,
6830       // use zext(trunc(x)) as the SCEV expression.
6831       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6832         if (CI->isZero())
6833           return getSCEV(BO->RHS);
6834         if (CI->isMinusOne())
6835           return getSCEV(BO->LHS);
6836         const APInt &A = CI->getValue();
6837 
6838         // Instcombine's ShrinkDemandedConstant may strip bits out of
6839         // constants, obscuring what would otherwise be a low-bits mask.
6840         // Use computeKnownBits to compute what ShrinkDemandedConstant
6841         // knew about to reconstruct a low-bits mask value.
6842         unsigned LZ = A.countLeadingZeros();
6843         unsigned TZ = A.countTrailingZeros();
6844         unsigned BitWidth = A.getBitWidth();
6845         KnownBits Known(BitWidth);
6846         computeKnownBits(BO->LHS, Known, getDataLayout(),
6847                          0, &AC, nullptr, &DT);
6848 
6849         APInt EffectiveMask =
6850             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6851         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6852           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6853           const SCEV *LHS = getSCEV(BO->LHS);
6854           const SCEV *ShiftedLHS = nullptr;
6855           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6856             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6857               // For an expression like (x * 8) & 8, simplify the multiply.
6858               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6859               unsigned GCD = std::min(MulZeros, TZ);
6860               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6861               SmallVector<const SCEV*, 4> MulOps;
6862               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6863               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6864               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6865               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6866             }
6867           }
6868           if (!ShiftedLHS)
6869             ShiftedLHS = getUDivExpr(LHS, MulCount);
6870           return getMulExpr(
6871               getZeroExtendExpr(
6872                   getTruncateExpr(ShiftedLHS,
6873                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6874                   BO->LHS->getType()),
6875               MulCount);
6876         }
6877       }
6878       break;
6879 
6880     case Instruction::Or:
6881       // If the RHS of the Or is a constant, we may have something like:
6882       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6883       // optimizations will transparently handle this case.
6884       //
6885       // In order for this transformation to be safe, the LHS must be of the
6886       // form X*(2^n) and the Or constant must be less than 2^n.
6887       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6888         const SCEV *LHS = getSCEV(BO->LHS);
6889         const APInt &CIVal = CI->getValue();
6890         if (GetMinTrailingZeros(LHS) >=
6891             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6892           // Build a plain add SCEV.
6893           return getAddExpr(LHS, getSCEV(CI),
6894                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6895         }
6896       }
6897       break;
6898 
6899     case Instruction::Xor:
6900       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6901         // If the RHS of xor is -1, then this is a not operation.
6902         if (CI->isMinusOne())
6903           return getNotSCEV(getSCEV(BO->LHS));
6904 
6905         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6906         // This is a variant of the check for xor with -1, and it handles
6907         // the case where instcombine has trimmed non-demanded bits out
6908         // of an xor with -1.
6909         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6910           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6911             if (LBO->getOpcode() == Instruction::And &&
6912                 LCI->getValue() == CI->getValue())
6913               if (const SCEVZeroExtendExpr *Z =
6914                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6915                 Type *UTy = BO->LHS->getType();
6916                 const SCEV *Z0 = Z->getOperand();
6917                 Type *Z0Ty = Z0->getType();
6918                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6919 
6920                 // If C is a low-bits mask, the zero extend is serving to
6921                 // mask off the high bits. Complement the operand and
6922                 // re-apply the zext.
6923                 if (CI->getValue().isMask(Z0TySize))
6924                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6925 
6926                 // If C is a single bit, it may be in the sign-bit position
6927                 // before the zero-extend. In this case, represent the xor
6928                 // using an add, which is equivalent, and re-apply the zext.
6929                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6930                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6931                     Trunc.isSignMask())
6932                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6933                                            UTy);
6934               }
6935       }
6936       break;
6937 
6938     case Instruction::Shl:
6939       // Turn shift left of a constant amount into a multiply.
6940       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6941         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6942 
6943         // If the shift count is not less than the bitwidth, the result of
6944         // the shift is undefined. Don't try to analyze it, because the
6945         // resolution chosen here may differ from the resolution chosen in
6946         // other parts of the compiler.
6947         if (SA->getValue().uge(BitWidth))
6948           break;
6949 
6950         // We can safely preserve the nuw flag in all cases. It's also safe to
6951         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6952         // requires special handling. It can be preserved as long as we're not
6953         // left shifting by bitwidth - 1.
6954         auto Flags = SCEV::FlagAnyWrap;
6955         if (BO->Op) {
6956           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6957           if ((MulFlags & SCEV::FlagNSW) &&
6958               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6959             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6960           if (MulFlags & SCEV::FlagNUW)
6961             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6962         }
6963 
6964         Constant *X = ConstantInt::get(
6965             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6966         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6967       }
6968       break;
6969 
6970     case Instruction::AShr: {
6971       // AShr X, C, where C is a constant.
6972       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6973       if (!CI)
6974         break;
6975 
6976       Type *OuterTy = BO->LHS->getType();
6977       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6978       // If the shift count is not less than the bitwidth, the result of
6979       // the shift is undefined. Don't try to analyze it, because the
6980       // resolution chosen here may differ from the resolution chosen in
6981       // other parts of the compiler.
6982       if (CI->getValue().uge(BitWidth))
6983         break;
6984 
6985       if (CI->isZero())
6986         return getSCEV(BO->LHS); // shift by zero --> noop
6987 
6988       uint64_t AShrAmt = CI->getZExtValue();
6989       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6990 
6991       Operator *L = dyn_cast<Operator>(BO->LHS);
6992       if (L && L->getOpcode() == Instruction::Shl) {
6993         // X = Shl A, n
6994         // Y = AShr X, m
6995         // Both n and m are constant.
6996 
6997         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6998         if (L->getOperand(1) == BO->RHS)
6999           // For a two-shift sext-inreg, i.e. n = m,
7000           // use sext(trunc(x)) as the SCEV expression.
7001           return getSignExtendExpr(
7002               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7003 
7004         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7005         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7006           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7007           if (ShlAmt > AShrAmt) {
7008             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7009             // expression. We already checked that ShlAmt < BitWidth, so
7010             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7011             // ShlAmt - AShrAmt < Amt.
7012             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7013                                             ShlAmt - AShrAmt);
7014             return getSignExtendExpr(
7015                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7016                 getConstant(Mul)), OuterTy);
7017           }
7018         }
7019       }
7020       break;
7021     }
7022     }
7023   }
7024 
7025   switch (U->getOpcode()) {
7026   case Instruction::Trunc:
7027     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7028 
7029   case Instruction::ZExt:
7030     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7031 
7032   case Instruction::SExt:
7033     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7034       // The NSW flag of a subtract does not always survive the conversion to
7035       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7036       // more likely to preserve NSW and allow later AddRec optimisations.
7037       //
7038       // NOTE: This is effectively duplicating this logic from getSignExtend:
7039       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7040       // but by that point the NSW information has potentially been lost.
7041       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7042         Type *Ty = U->getType();
7043         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7044         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7045         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7046       }
7047     }
7048     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7049 
7050   case Instruction::BitCast:
7051     // BitCasts are no-op casts so we just eliminate the cast.
7052     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7053       return getSCEV(U->getOperand(0));
7054     break;
7055 
7056   case Instruction::PtrToInt: {
7057     // Pointer to integer cast is straight-forward, so do model it.
7058     const SCEV *Op = getSCEV(U->getOperand(0));
7059     Type *DstIntTy = U->getType();
7060     // But only if effective SCEV (integer) type is wide enough to represent
7061     // all possible pointer values.
7062     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7063     if (isa<SCEVCouldNotCompute>(IntOp))
7064       return getUnknown(V);
7065     return IntOp;
7066   }
7067   case Instruction::IntToPtr:
7068     // Just don't deal with inttoptr casts.
7069     return getUnknown(V);
7070 
7071   case Instruction::SDiv:
7072     // If both operands are non-negative, this is just an udiv.
7073     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7074         isKnownNonNegative(getSCEV(U->getOperand(1))))
7075       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7076     break;
7077 
7078   case Instruction::SRem:
7079     // If both operands are non-negative, this is just an urem.
7080     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7081         isKnownNonNegative(getSCEV(U->getOperand(1))))
7082       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7083     break;
7084 
7085   case Instruction::GetElementPtr:
7086     return createNodeForGEP(cast<GEPOperator>(U));
7087 
7088   case Instruction::PHI:
7089     return createNodeForPHI(cast<PHINode>(U));
7090 
7091   case Instruction::Select:
7092     // U can also be a select constant expr, which let fall through.  Since
7093     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7094     // constant expressions cannot have instructions as operands, we'd have
7095     // returned getUnknown for a select constant expressions anyway.
7096     if (isa<Instruction>(U))
7097       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7098                                       U->getOperand(1), U->getOperand(2));
7099     break;
7100 
7101   case Instruction::Call:
7102   case Instruction::Invoke:
7103     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7104       return getSCEV(RV);
7105 
7106     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7107       switch (II->getIntrinsicID()) {
7108       case Intrinsic::abs:
7109         return getAbsExpr(
7110             getSCEV(II->getArgOperand(0)),
7111             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7112       case Intrinsic::umax:
7113         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7114                            getSCEV(II->getArgOperand(1)));
7115       case Intrinsic::umin:
7116         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7117                            getSCEV(II->getArgOperand(1)));
7118       case Intrinsic::smax:
7119         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7120                            getSCEV(II->getArgOperand(1)));
7121       case Intrinsic::smin:
7122         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7123                            getSCEV(II->getArgOperand(1)));
7124       case Intrinsic::usub_sat: {
7125         const SCEV *X = getSCEV(II->getArgOperand(0));
7126         const SCEV *Y = getSCEV(II->getArgOperand(1));
7127         const SCEV *ClampedY = getUMinExpr(X, Y);
7128         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7129       }
7130       case Intrinsic::uadd_sat: {
7131         const SCEV *X = getSCEV(II->getArgOperand(0));
7132         const SCEV *Y = getSCEV(II->getArgOperand(1));
7133         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7134         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7135       }
7136       case Intrinsic::start_loop_iterations:
7137         // A start_loop_iterations is just equivalent to the first operand for
7138         // SCEV purposes.
7139         return getSCEV(II->getArgOperand(0));
7140       default:
7141         break;
7142       }
7143     }
7144     break;
7145   }
7146 
7147   return getUnknown(V);
7148 }
7149 
7150 //===----------------------------------------------------------------------===//
7151 //                   Iteration Count Computation Code
7152 //
7153 
7154 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7155   // Get the trip count from the BE count by adding 1.  Overflow, results
7156   // in zero which means "unknown".
7157   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7158 }
7159 
7160 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7161   if (!ExitCount)
7162     return 0;
7163 
7164   ConstantInt *ExitConst = ExitCount->getValue();
7165 
7166   // Guard against huge trip counts.
7167   if (ExitConst->getValue().getActiveBits() > 32)
7168     return 0;
7169 
7170   // In case of integer overflow, this returns 0, which is correct.
7171   return ((unsigned)ExitConst->getZExtValue()) + 1;
7172 }
7173 
7174 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7175   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7176   return getConstantTripCount(ExitCount);
7177 }
7178 
7179 unsigned
7180 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7181                                            const BasicBlock *ExitingBlock) {
7182   assert(ExitingBlock && "Must pass a non-null exiting block!");
7183   assert(L->isLoopExiting(ExitingBlock) &&
7184          "Exiting block must actually branch out of the loop!");
7185   const SCEVConstant *ExitCount =
7186       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7187   return getConstantTripCount(ExitCount);
7188 }
7189 
7190 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7191   const auto *MaxExitCount =
7192       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7193   return getConstantTripCount(MaxExitCount);
7194 }
7195 
7196 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7197   SmallVector<BasicBlock *, 8> ExitingBlocks;
7198   L->getExitingBlocks(ExitingBlocks);
7199 
7200   Optional<unsigned> Res = None;
7201   for (auto *ExitingBB : ExitingBlocks) {
7202     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7203     if (!Res)
7204       Res = Multiple;
7205     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7206   }
7207   return Res.getValueOr(1);
7208 }
7209 
7210 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7211                                                        const SCEV *ExitCount) {
7212   if (ExitCount == getCouldNotCompute())
7213     return 1;
7214 
7215   // Get the trip count
7216   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7217 
7218   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7219   if (!TC)
7220     // Attempt to factor more general cases. Returns the greatest power of
7221     // two divisor. If overflow happens, the trip count expression is still
7222     // divisible by the greatest power of 2 divisor returned.
7223     return 1U << std::min((uint32_t)31,
7224                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7225 
7226   ConstantInt *Result = TC->getValue();
7227 
7228   // Guard against huge trip counts (this requires checking
7229   // for zero to handle the case where the trip count == -1 and the
7230   // addition wraps).
7231   if (!Result || Result->getValue().getActiveBits() > 32 ||
7232       Result->getValue().getActiveBits() == 0)
7233     return 1;
7234 
7235   return (unsigned)Result->getZExtValue();
7236 }
7237 
7238 /// Returns the largest constant divisor of the trip count of this loop as a
7239 /// normal unsigned value, if possible. This means that the actual trip count is
7240 /// always a multiple of the returned value (don't forget the trip count could
7241 /// very well be zero as well!).
7242 ///
7243 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7244 /// multiple of a constant (which is also the case if the trip count is simply
7245 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7246 /// if the trip count is very large (>= 2^32).
7247 ///
7248 /// As explained in the comments for getSmallConstantTripCount, this assumes
7249 /// that control exits the loop via ExitingBlock.
7250 unsigned
7251 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7252                                               const BasicBlock *ExitingBlock) {
7253   assert(ExitingBlock && "Must pass a non-null exiting block!");
7254   assert(L->isLoopExiting(ExitingBlock) &&
7255          "Exiting block must actually branch out of the loop!");
7256   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7257   return getSmallConstantTripMultiple(L, ExitCount);
7258 }
7259 
7260 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7261                                           const BasicBlock *ExitingBlock,
7262                                           ExitCountKind Kind) {
7263   switch (Kind) {
7264   case Exact:
7265   case SymbolicMaximum:
7266     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7267   case ConstantMaximum:
7268     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7269   };
7270   llvm_unreachable("Invalid ExitCountKind!");
7271 }
7272 
7273 const SCEV *
7274 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7275                                                  SCEVUnionPredicate &Preds) {
7276   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7277 }
7278 
7279 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7280                                                    ExitCountKind Kind) {
7281   switch (Kind) {
7282   case Exact:
7283     return getBackedgeTakenInfo(L).getExact(L, this);
7284   case ConstantMaximum:
7285     return getBackedgeTakenInfo(L).getConstantMax(this);
7286   case SymbolicMaximum:
7287     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7288   };
7289   llvm_unreachable("Invalid ExitCountKind!");
7290 }
7291 
7292 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7293   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7294 }
7295 
7296 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7297 static void
7298 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7299   BasicBlock *Header = L->getHeader();
7300 
7301   // Push all Loop-header PHIs onto the Worklist stack.
7302   for (PHINode &PN : Header->phis())
7303     Worklist.push_back(&PN);
7304 }
7305 
7306 const ScalarEvolution::BackedgeTakenInfo &
7307 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7308   auto &BTI = getBackedgeTakenInfo(L);
7309   if (BTI.hasFullInfo())
7310     return BTI;
7311 
7312   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7313 
7314   if (!Pair.second)
7315     return Pair.first->second;
7316 
7317   BackedgeTakenInfo Result =
7318       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7319 
7320   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7321 }
7322 
7323 ScalarEvolution::BackedgeTakenInfo &
7324 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7325   // Initially insert an invalid entry for this loop. If the insertion
7326   // succeeds, proceed to actually compute a backedge-taken count and
7327   // update the value. The temporary CouldNotCompute value tells SCEV
7328   // code elsewhere that it shouldn't attempt to request a new
7329   // backedge-taken count, which could result in infinite recursion.
7330   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7331       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7332   if (!Pair.second)
7333     return Pair.first->second;
7334 
7335   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7336   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7337   // must be cleared in this scope.
7338   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7339 
7340   // In product build, there are no usage of statistic.
7341   (void)NumTripCountsComputed;
7342   (void)NumTripCountsNotComputed;
7343 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7344   const SCEV *BEExact = Result.getExact(L, this);
7345   if (BEExact != getCouldNotCompute()) {
7346     assert(isLoopInvariant(BEExact, L) &&
7347            isLoopInvariant(Result.getConstantMax(this), L) &&
7348            "Computed backedge-taken count isn't loop invariant for loop!");
7349     ++NumTripCountsComputed;
7350   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7351              isa<PHINode>(L->getHeader()->begin())) {
7352     // Only count loops that have phi nodes as not being computable.
7353     ++NumTripCountsNotComputed;
7354   }
7355 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7356 
7357   // Now that we know more about the trip count for this loop, forget any
7358   // existing SCEV values for PHI nodes in this loop since they are only
7359   // conservative estimates made without the benefit of trip count
7360   // information. This is similar to the code in forgetLoop, except that
7361   // it handles SCEVUnknown PHI nodes specially.
7362   if (Result.hasAnyInfo()) {
7363     SmallVector<Instruction *, 16> Worklist;
7364     PushLoopPHIs(L, Worklist);
7365 
7366     SmallPtrSet<Instruction *, 8> Discovered;
7367     while (!Worklist.empty()) {
7368       Instruction *I = Worklist.pop_back_val();
7369 
7370       ValueExprMapType::iterator It =
7371         ValueExprMap.find_as(static_cast<Value *>(I));
7372       if (It != ValueExprMap.end()) {
7373         const SCEV *Old = It->second;
7374 
7375         // SCEVUnknown for a PHI either means that it has an unrecognized
7376         // structure, or it's a PHI that's in the progress of being computed
7377         // by createNodeForPHI.  In the former case, additional loop trip
7378         // count information isn't going to change anything. In the later
7379         // case, createNodeForPHI will perform the necessary updates on its
7380         // own when it gets to that point.
7381         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7382           eraseValueFromMap(It->first);
7383           forgetMemoizedResults(Old);
7384         }
7385         if (PHINode *PN = dyn_cast<PHINode>(I))
7386           ConstantEvolutionLoopExitValue.erase(PN);
7387       }
7388 
7389       // Since we don't need to invalidate anything for correctness and we're
7390       // only invalidating to make SCEV's results more precise, we get to stop
7391       // early to avoid invalidating too much.  This is especially important in
7392       // cases like:
7393       //
7394       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7395       // loop0:
7396       //   %pn0 = phi
7397       //   ...
7398       // loop1:
7399       //   %pn1 = phi
7400       //   ...
7401       //
7402       // where both loop0 and loop1's backedge taken count uses the SCEV
7403       // expression for %v.  If we don't have the early stop below then in cases
7404       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7405       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7406       // count for loop1, effectively nullifying SCEV's trip count cache.
7407       for (auto *U : I->users())
7408         if (auto *I = dyn_cast<Instruction>(U)) {
7409           auto *LoopForUser = LI.getLoopFor(I->getParent());
7410           if (LoopForUser && L->contains(LoopForUser) &&
7411               Discovered.insert(I).second)
7412             Worklist.push_back(I);
7413         }
7414     }
7415   }
7416 
7417   // Re-lookup the insert position, since the call to
7418   // computeBackedgeTakenCount above could result in a
7419   // recusive call to getBackedgeTakenInfo (on a different
7420   // loop), which would invalidate the iterator computed
7421   // earlier.
7422   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7423 }
7424 
7425 void ScalarEvolution::forgetAllLoops() {
7426   // This method is intended to forget all info about loops. It should
7427   // invalidate caches as if the following happened:
7428   // - The trip counts of all loops have changed arbitrarily
7429   // - Every llvm::Value has been updated in place to produce a different
7430   // result.
7431   BackedgeTakenCounts.clear();
7432   PredicatedBackedgeTakenCounts.clear();
7433   LoopPropertiesCache.clear();
7434   ConstantEvolutionLoopExitValue.clear();
7435   ValueExprMap.clear();
7436   ValuesAtScopes.clear();
7437   LoopDispositions.clear();
7438   BlockDispositions.clear();
7439   UnsignedRanges.clear();
7440   SignedRanges.clear();
7441   ExprValueMap.clear();
7442   HasRecMap.clear();
7443   MinTrailingZerosCache.clear();
7444   PredicatedSCEVRewrites.clear();
7445 }
7446 
7447 void ScalarEvolution::forgetLoop(const Loop *L) {
7448   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7449   SmallVector<Instruction *, 32> Worklist;
7450   SmallPtrSet<Instruction *, 16> Visited;
7451 
7452   // Iterate over all the loops and sub-loops to drop SCEV information.
7453   while (!LoopWorklist.empty()) {
7454     auto *CurrL = LoopWorklist.pop_back_val();
7455 
7456     // Drop any stored trip count value.
7457     BackedgeTakenCounts.erase(CurrL);
7458     PredicatedBackedgeTakenCounts.erase(CurrL);
7459 
7460     // Drop information about predicated SCEV rewrites for this loop.
7461     for (auto I = PredicatedSCEVRewrites.begin();
7462          I != PredicatedSCEVRewrites.end();) {
7463       std::pair<const SCEV *, const Loop *> Entry = I->first;
7464       if (Entry.second == CurrL)
7465         PredicatedSCEVRewrites.erase(I++);
7466       else
7467         ++I;
7468     }
7469 
7470     auto LoopUsersItr = LoopUsers.find(CurrL);
7471     if (LoopUsersItr != LoopUsers.end()) {
7472       for (auto *S : LoopUsersItr->second)
7473         forgetMemoizedResults(S);
7474       LoopUsers.erase(LoopUsersItr);
7475     }
7476 
7477     // Drop information about expressions based on loop-header PHIs.
7478     PushLoopPHIs(CurrL, Worklist);
7479 
7480     while (!Worklist.empty()) {
7481       Instruction *I = Worklist.pop_back_val();
7482       if (!Visited.insert(I).second)
7483         continue;
7484 
7485       ValueExprMapType::iterator It =
7486           ValueExprMap.find_as(static_cast<Value *>(I));
7487       if (It != ValueExprMap.end()) {
7488         eraseValueFromMap(It->first);
7489         forgetMemoizedResults(It->second);
7490         if (PHINode *PN = dyn_cast<PHINode>(I))
7491           ConstantEvolutionLoopExitValue.erase(PN);
7492       }
7493 
7494       PushDefUseChildren(I, Worklist);
7495     }
7496 
7497     LoopPropertiesCache.erase(CurrL);
7498     // Forget all contained loops too, to avoid dangling entries in the
7499     // ValuesAtScopes map.
7500     LoopWorklist.append(CurrL->begin(), CurrL->end());
7501   }
7502 }
7503 
7504 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7505   while (Loop *Parent = L->getParentLoop())
7506     L = Parent;
7507   forgetLoop(L);
7508 }
7509 
7510 void ScalarEvolution::forgetValue(Value *V) {
7511   Instruction *I = dyn_cast<Instruction>(V);
7512   if (!I) return;
7513 
7514   // Drop information about expressions based on loop-header PHIs.
7515   SmallVector<Instruction *, 16> Worklist;
7516   Worklist.push_back(I);
7517 
7518   SmallPtrSet<Instruction *, 8> Visited;
7519   while (!Worklist.empty()) {
7520     I = Worklist.pop_back_val();
7521     if (!Visited.insert(I).second)
7522       continue;
7523 
7524     ValueExprMapType::iterator It =
7525       ValueExprMap.find_as(static_cast<Value *>(I));
7526     if (It != ValueExprMap.end()) {
7527       eraseValueFromMap(It->first);
7528       forgetMemoizedResults(It->second);
7529       if (PHINode *PN = dyn_cast<PHINode>(I))
7530         ConstantEvolutionLoopExitValue.erase(PN);
7531     }
7532 
7533     PushDefUseChildren(I, Worklist);
7534   }
7535 }
7536 
7537 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7538   LoopDispositions.clear();
7539 }
7540 
7541 /// Get the exact loop backedge taken count considering all loop exits. A
7542 /// computable result can only be returned for loops with all exiting blocks
7543 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7544 /// is never skipped. This is a valid assumption as long as the loop exits via
7545 /// that test. For precise results, it is the caller's responsibility to specify
7546 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7547 const SCEV *
7548 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7549                                              SCEVUnionPredicate *Preds) const {
7550   // If any exits were not computable, the loop is not computable.
7551   if (!isComplete() || ExitNotTaken.empty())
7552     return SE->getCouldNotCompute();
7553 
7554   const BasicBlock *Latch = L->getLoopLatch();
7555   // All exiting blocks we have collected must dominate the only backedge.
7556   if (!Latch)
7557     return SE->getCouldNotCompute();
7558 
7559   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7560   // count is simply a minimum out of all these calculated exit counts.
7561   SmallVector<const SCEV *, 2> Ops;
7562   for (auto &ENT : ExitNotTaken) {
7563     const SCEV *BECount = ENT.ExactNotTaken;
7564     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7565     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7566            "We should only have known counts for exiting blocks that dominate "
7567            "latch!");
7568 
7569     Ops.push_back(BECount);
7570 
7571     if (Preds && !ENT.hasAlwaysTruePredicate())
7572       Preds->add(ENT.Predicate.get());
7573 
7574     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7575            "Predicate should be always true!");
7576   }
7577 
7578   return SE->getUMinFromMismatchedTypes(Ops);
7579 }
7580 
7581 /// Get the exact not taken count for this loop exit.
7582 const SCEV *
7583 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7584                                              ScalarEvolution *SE) const {
7585   for (auto &ENT : ExitNotTaken)
7586     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7587       return ENT.ExactNotTaken;
7588 
7589   return SE->getCouldNotCompute();
7590 }
7591 
7592 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7593     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7594   for (auto &ENT : ExitNotTaken)
7595     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7596       return ENT.MaxNotTaken;
7597 
7598   return SE->getCouldNotCompute();
7599 }
7600 
7601 /// getConstantMax - Get the constant max backedge taken count for the loop.
7602 const SCEV *
7603 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7604   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7605     return !ENT.hasAlwaysTruePredicate();
7606   };
7607 
7608   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7609     return SE->getCouldNotCompute();
7610 
7611   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7612           isa<SCEVConstant>(getConstantMax())) &&
7613          "No point in having a non-constant max backedge taken count!");
7614   return getConstantMax();
7615 }
7616 
7617 const SCEV *
7618 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7619                                                    ScalarEvolution *SE) {
7620   if (!SymbolicMax)
7621     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7622   return SymbolicMax;
7623 }
7624 
7625 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7626     ScalarEvolution *SE) const {
7627   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7628     return !ENT.hasAlwaysTruePredicate();
7629   };
7630   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7631 }
7632 
7633 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7634   return Operands.contains(S);
7635 }
7636 
7637 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7638     : ExitLimit(E, E, false, None) {
7639 }
7640 
7641 ScalarEvolution::ExitLimit::ExitLimit(
7642     const SCEV *E, const SCEV *M, bool MaxOrZero,
7643     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7644     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7645   // If we prove the max count is zero, so is the symbolic bound.  This happens
7646   // in practice due to differences in a) how context sensitive we've chosen
7647   // to be and b) how we reason about bounds impied by UB.
7648   if (MaxNotTaken->isZero())
7649     ExactNotTaken = MaxNotTaken;
7650 
7651   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7652           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7653          "Exact is not allowed to be less precise than Max");
7654   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7655           isa<SCEVConstant>(MaxNotTaken)) &&
7656          "No point in having a non-constant max backedge taken count!");
7657   for (auto *PredSet : PredSetList)
7658     for (auto *P : *PredSet)
7659       addPredicate(P);
7660   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7661          "Backedge count should be int");
7662   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7663          "Max backedge count should be int");
7664 }
7665 
7666 ScalarEvolution::ExitLimit::ExitLimit(
7667     const SCEV *E, const SCEV *M, bool MaxOrZero,
7668     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7669     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7670 }
7671 
7672 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7673                                       bool MaxOrZero)
7674     : ExitLimit(E, M, MaxOrZero, None) {
7675 }
7676 
7677 class SCEVRecordOperands {
7678   SmallPtrSetImpl<const SCEV *> &Operands;
7679 
7680 public:
7681   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7682     : Operands(Operands) {}
7683   bool follow(const SCEV *S) {
7684     Operands.insert(S);
7685     return true;
7686   }
7687   bool isDone() { return false; }
7688 };
7689 
7690 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7691 /// computable exit into a persistent ExitNotTakenInfo array.
7692 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7693     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7694     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7695     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7696   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7697 
7698   ExitNotTaken.reserve(ExitCounts.size());
7699   std::transform(
7700       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7701       [&](const EdgeExitInfo &EEI) {
7702         BasicBlock *ExitBB = EEI.first;
7703         const ExitLimit &EL = EEI.second;
7704         if (EL.Predicates.empty())
7705           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7706                                   nullptr);
7707 
7708         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7709         for (auto *Pred : EL.Predicates)
7710           Predicate->add(Pred);
7711 
7712         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7713                                 std::move(Predicate));
7714       });
7715   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7716           isa<SCEVConstant>(ConstantMax)) &&
7717          "No point in having a non-constant max backedge taken count!");
7718 
7719   SCEVRecordOperands RecordOperands(Operands);
7720   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7721   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7722     ST.visitAll(ConstantMax);
7723   for (auto &ENT : ExitNotTaken)
7724     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7725       ST.visitAll(ENT.ExactNotTaken);
7726 }
7727 
7728 /// Compute the number of times the backedge of the specified loop will execute.
7729 ScalarEvolution::BackedgeTakenInfo
7730 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7731                                            bool AllowPredicates) {
7732   SmallVector<BasicBlock *, 8> ExitingBlocks;
7733   L->getExitingBlocks(ExitingBlocks);
7734 
7735   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7736 
7737   SmallVector<EdgeExitInfo, 4> ExitCounts;
7738   bool CouldComputeBECount = true;
7739   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7740   const SCEV *MustExitMaxBECount = nullptr;
7741   const SCEV *MayExitMaxBECount = nullptr;
7742   bool MustExitMaxOrZero = false;
7743 
7744   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7745   // and compute maxBECount.
7746   // Do a union of all the predicates here.
7747   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7748     BasicBlock *ExitBB = ExitingBlocks[i];
7749 
7750     // We canonicalize untaken exits to br (constant), ignore them so that
7751     // proving an exit untaken doesn't negatively impact our ability to reason
7752     // about the loop as whole.
7753     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7754       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7755         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7756         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7757           continue;
7758       }
7759 
7760     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7761 
7762     assert((AllowPredicates || EL.Predicates.empty()) &&
7763            "Predicated exit limit when predicates are not allowed!");
7764 
7765     // 1. For each exit that can be computed, add an entry to ExitCounts.
7766     // CouldComputeBECount is true only if all exits can be computed.
7767     if (EL.ExactNotTaken == getCouldNotCompute())
7768       // We couldn't compute an exact value for this exit, so
7769       // we won't be able to compute an exact value for the loop.
7770       CouldComputeBECount = false;
7771     else
7772       ExitCounts.emplace_back(ExitBB, EL);
7773 
7774     // 2. Derive the loop's MaxBECount from each exit's max number of
7775     // non-exiting iterations. Partition the loop exits into two kinds:
7776     // LoopMustExits and LoopMayExits.
7777     //
7778     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7779     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7780     // MaxBECount is the minimum EL.MaxNotTaken of computable
7781     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7782     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7783     // computable EL.MaxNotTaken.
7784     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7785         DT.dominates(ExitBB, Latch)) {
7786       if (!MustExitMaxBECount) {
7787         MustExitMaxBECount = EL.MaxNotTaken;
7788         MustExitMaxOrZero = EL.MaxOrZero;
7789       } else {
7790         MustExitMaxBECount =
7791             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7792       }
7793     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7794       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7795         MayExitMaxBECount = EL.MaxNotTaken;
7796       else {
7797         MayExitMaxBECount =
7798             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7799       }
7800     }
7801   }
7802   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7803     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7804   // The loop backedge will be taken the maximum or zero times if there's
7805   // a single exit that must be taken the maximum or zero times.
7806   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7807   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7808                            MaxBECount, MaxOrZero);
7809 }
7810 
7811 ScalarEvolution::ExitLimit
7812 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7813                                       bool AllowPredicates) {
7814   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7815   // If our exiting block does not dominate the latch, then its connection with
7816   // loop's exit limit may be far from trivial.
7817   const BasicBlock *Latch = L->getLoopLatch();
7818   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7819     return getCouldNotCompute();
7820 
7821   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7822   Instruction *Term = ExitingBlock->getTerminator();
7823   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7824     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7825     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7826     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7827            "It should have one successor in loop and one exit block!");
7828     // Proceed to the next level to examine the exit condition expression.
7829     return computeExitLimitFromCond(
7830         L, BI->getCondition(), ExitIfTrue,
7831         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7832   }
7833 
7834   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7835     // For switch, make sure that there is a single exit from the loop.
7836     BasicBlock *Exit = nullptr;
7837     for (auto *SBB : successors(ExitingBlock))
7838       if (!L->contains(SBB)) {
7839         if (Exit) // Multiple exit successors.
7840           return getCouldNotCompute();
7841         Exit = SBB;
7842       }
7843     assert(Exit && "Exiting block must have at least one exit");
7844     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7845                                                 /*ControlsExit=*/IsOnlyExit);
7846   }
7847 
7848   return getCouldNotCompute();
7849 }
7850 
7851 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7852     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7853     bool ControlsExit, bool AllowPredicates) {
7854   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7855   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7856                                         ControlsExit, AllowPredicates);
7857 }
7858 
7859 Optional<ScalarEvolution::ExitLimit>
7860 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7861                                       bool ExitIfTrue, bool ControlsExit,
7862                                       bool AllowPredicates) {
7863   (void)this->L;
7864   (void)this->ExitIfTrue;
7865   (void)this->AllowPredicates;
7866 
7867   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7868          this->AllowPredicates == AllowPredicates &&
7869          "Variance in assumed invariant key components!");
7870   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7871   if (Itr == TripCountMap.end())
7872     return None;
7873   return Itr->second;
7874 }
7875 
7876 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7877                                              bool ExitIfTrue,
7878                                              bool ControlsExit,
7879                                              bool AllowPredicates,
7880                                              const ExitLimit &EL) {
7881   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7882          this->AllowPredicates == AllowPredicates &&
7883          "Variance in assumed invariant key components!");
7884 
7885   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7886   assert(InsertResult.second && "Expected successful insertion!");
7887   (void)InsertResult;
7888   (void)ExitIfTrue;
7889 }
7890 
7891 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7892     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7893     bool ControlsExit, bool AllowPredicates) {
7894 
7895   if (auto MaybeEL =
7896           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7897     return *MaybeEL;
7898 
7899   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7900                                               ControlsExit, AllowPredicates);
7901   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7902   return EL;
7903 }
7904 
7905 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7906     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7907     bool ControlsExit, bool AllowPredicates) {
7908   // Handle BinOp conditions (And, Or).
7909   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7910           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7911     return *LimitFromBinOp;
7912 
7913   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7914   // Proceed to the next level to examine the icmp.
7915   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7916     ExitLimit EL =
7917         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7918     if (EL.hasFullInfo() || !AllowPredicates)
7919       return EL;
7920 
7921     // Try again, but use SCEV predicates this time.
7922     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7923                                     /*AllowPredicates=*/true);
7924   }
7925 
7926   // Check for a constant condition. These are normally stripped out by
7927   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7928   // preserve the CFG and is temporarily leaving constant conditions
7929   // in place.
7930   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7931     if (ExitIfTrue == !CI->getZExtValue())
7932       // The backedge is always taken.
7933       return getCouldNotCompute();
7934     else
7935       // The backedge is never taken.
7936       return getZero(CI->getType());
7937   }
7938 
7939   // If it's not an integer or pointer comparison then compute it the hard way.
7940   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7941 }
7942 
7943 Optional<ScalarEvolution::ExitLimit>
7944 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7945     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7946     bool ControlsExit, bool AllowPredicates) {
7947   // Check if the controlling expression for this loop is an And or Or.
7948   Value *Op0, *Op1;
7949   bool IsAnd = false;
7950   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7951     IsAnd = true;
7952   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7953     IsAnd = false;
7954   else
7955     return None;
7956 
7957   // EitherMayExit is true in these two cases:
7958   //   br (and Op0 Op1), loop, exit
7959   //   br (or  Op0 Op1), exit, loop
7960   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7961   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7962                                                  ControlsExit && !EitherMayExit,
7963                                                  AllowPredicates);
7964   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7965                                                  ControlsExit && !EitherMayExit,
7966                                                  AllowPredicates);
7967 
7968   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7969   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7970   if (isa<ConstantInt>(Op1))
7971     return Op1 == NeutralElement ? EL0 : EL1;
7972   if (isa<ConstantInt>(Op0))
7973     return Op0 == NeutralElement ? EL1 : EL0;
7974 
7975   const SCEV *BECount = getCouldNotCompute();
7976   const SCEV *MaxBECount = getCouldNotCompute();
7977   if (EitherMayExit) {
7978     // Both conditions must be same for the loop to continue executing.
7979     // Choose the less conservative count.
7980     // If ExitCond is a short-circuit form (select), using
7981     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7982     // To see the detailed examples, please see
7983     // test/Analysis/ScalarEvolution/exit-count-select.ll
7984     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7985     if (!PoisonSafe)
7986       // Even if ExitCond is select, we can safely derive BECount using both
7987       // EL0 and EL1 in these cases:
7988       // (1) EL0.ExactNotTaken is non-zero
7989       // (2) EL1.ExactNotTaken is non-poison
7990       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7991       //     it cannot be umin(0, ..))
7992       // The PoisonSafe assignment below is simplified and the assertion after
7993       // BECount calculation fully guarantees the condition (3).
7994       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
7995                    isa<SCEVConstant>(EL1.ExactNotTaken);
7996     if (EL0.ExactNotTaken != getCouldNotCompute() &&
7997         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
7998       BECount =
7999           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8000 
8001       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8002       // it should have been simplified to zero (see the condition (3) above)
8003       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8004              BECount->isZero());
8005     }
8006     if (EL0.MaxNotTaken == getCouldNotCompute())
8007       MaxBECount = EL1.MaxNotTaken;
8008     else if (EL1.MaxNotTaken == getCouldNotCompute())
8009       MaxBECount = EL0.MaxNotTaken;
8010     else
8011       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8012   } else {
8013     // Both conditions must be same at the same time for the loop to exit.
8014     // For now, be conservative.
8015     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8016       BECount = EL0.ExactNotTaken;
8017   }
8018 
8019   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8020   // to be more aggressive when computing BECount than when computing
8021   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8022   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8023   // to not.
8024   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8025       !isa<SCEVCouldNotCompute>(BECount))
8026     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8027 
8028   return ExitLimit(BECount, MaxBECount, false,
8029                    { &EL0.Predicates, &EL1.Predicates });
8030 }
8031 
8032 ScalarEvolution::ExitLimit
8033 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8034                                           ICmpInst *ExitCond,
8035                                           bool ExitIfTrue,
8036                                           bool ControlsExit,
8037                                           bool AllowPredicates) {
8038   // If the condition was exit on true, convert the condition to exit on false
8039   ICmpInst::Predicate Pred;
8040   if (!ExitIfTrue)
8041     Pred = ExitCond->getPredicate();
8042   else
8043     Pred = ExitCond->getInversePredicate();
8044   const ICmpInst::Predicate OriginalPred = Pred;
8045 
8046   // Handle common loops like: for (X = "string"; *X; ++X)
8047   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8048     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8049       ExitLimit ItCnt =
8050         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8051       if (ItCnt.hasAnyInfo())
8052         return ItCnt;
8053     }
8054 
8055   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8056   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8057 
8058   // Try to evaluate any dependencies out of the loop.
8059   LHS = getSCEVAtScope(LHS, L);
8060   RHS = getSCEVAtScope(RHS, L);
8061 
8062   // At this point, we would like to compute how many iterations of the
8063   // loop the predicate will return true for these inputs.
8064   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8065     // If there is a loop-invariant, force it into the RHS.
8066     std::swap(LHS, RHS);
8067     Pred = ICmpInst::getSwappedPredicate(Pred);
8068   }
8069 
8070   // Simplify the operands before analyzing them.
8071   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8072 
8073   // If we have a comparison of a chrec against a constant, try to use value
8074   // ranges to answer this query.
8075   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8076     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8077       if (AddRec->getLoop() == L) {
8078         // Form the constant range.
8079         ConstantRange CompRange =
8080             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8081 
8082         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8083         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8084       }
8085 
8086   switch (Pred) {
8087   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8088     // Convert to: while (X-Y != 0)
8089     if (LHS->getType()->isPointerTy()) {
8090       LHS = getLosslessPtrToIntExpr(LHS);
8091       if (isa<SCEVCouldNotCompute>(LHS))
8092         return LHS;
8093     }
8094     if (RHS->getType()->isPointerTy()) {
8095       RHS = getLosslessPtrToIntExpr(RHS);
8096       if (isa<SCEVCouldNotCompute>(RHS))
8097         return RHS;
8098     }
8099     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8100                                 AllowPredicates);
8101     if (EL.hasAnyInfo()) return EL;
8102     break;
8103   }
8104   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8105     // Convert to: while (X-Y == 0)
8106     if (LHS->getType()->isPointerTy()) {
8107       LHS = getLosslessPtrToIntExpr(LHS);
8108       if (isa<SCEVCouldNotCompute>(LHS))
8109         return LHS;
8110     }
8111     if (RHS->getType()->isPointerTy()) {
8112       RHS = getLosslessPtrToIntExpr(RHS);
8113       if (isa<SCEVCouldNotCompute>(RHS))
8114         return RHS;
8115     }
8116     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8117     if (EL.hasAnyInfo()) return EL;
8118     break;
8119   }
8120   case ICmpInst::ICMP_SLT:
8121   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8122     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8123     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8124                                     AllowPredicates);
8125     if (EL.hasAnyInfo()) return EL;
8126     break;
8127   }
8128   case ICmpInst::ICMP_SGT:
8129   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8130     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8131     ExitLimit EL =
8132         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8133                             AllowPredicates);
8134     if (EL.hasAnyInfo()) return EL;
8135     break;
8136   }
8137   default:
8138     break;
8139   }
8140 
8141   auto *ExhaustiveCount =
8142       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8143 
8144   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8145     return ExhaustiveCount;
8146 
8147   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8148                                       ExitCond->getOperand(1), L, OriginalPred);
8149 }
8150 
8151 ScalarEvolution::ExitLimit
8152 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8153                                                       SwitchInst *Switch,
8154                                                       BasicBlock *ExitingBlock,
8155                                                       bool ControlsExit) {
8156   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8157 
8158   // Give up if the exit is the default dest of a switch.
8159   if (Switch->getDefaultDest() == ExitingBlock)
8160     return getCouldNotCompute();
8161 
8162   assert(L->contains(Switch->getDefaultDest()) &&
8163          "Default case must not exit the loop!");
8164   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8165   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8166 
8167   // while (X != Y) --> while (X-Y != 0)
8168   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8169   if (EL.hasAnyInfo())
8170     return EL;
8171 
8172   return getCouldNotCompute();
8173 }
8174 
8175 static ConstantInt *
8176 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8177                                 ScalarEvolution &SE) {
8178   const SCEV *InVal = SE.getConstant(C);
8179   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8180   assert(isa<SCEVConstant>(Val) &&
8181          "Evaluation of SCEV at constant didn't fold correctly?");
8182   return cast<SCEVConstant>(Val)->getValue();
8183 }
8184 
8185 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8186 /// compute the backedge execution count.
8187 ScalarEvolution::ExitLimit
8188 ScalarEvolution::computeLoadConstantCompareExitLimit(
8189   LoadInst *LI,
8190   Constant *RHS,
8191   const Loop *L,
8192   ICmpInst::Predicate predicate) {
8193   if (LI->isVolatile()) return getCouldNotCompute();
8194 
8195   // Check to see if the loaded pointer is a getelementptr of a global.
8196   // TODO: Use SCEV instead of manually grubbing with GEPs.
8197   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8198   if (!GEP) return getCouldNotCompute();
8199 
8200   // Make sure that it is really a constant global we are gepping, with an
8201   // initializer, and make sure the first IDX is really 0.
8202   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8203   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8204       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8205       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8206     return getCouldNotCompute();
8207 
8208   // Okay, we allow one non-constant index into the GEP instruction.
8209   Value *VarIdx = nullptr;
8210   std::vector<Constant*> Indexes;
8211   unsigned VarIdxNum = 0;
8212   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8213     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8214       Indexes.push_back(CI);
8215     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8216       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8217       VarIdx = GEP->getOperand(i);
8218       VarIdxNum = i-2;
8219       Indexes.push_back(nullptr);
8220     }
8221 
8222   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8223   if (!VarIdx)
8224     return getCouldNotCompute();
8225 
8226   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8227   // Check to see if X is a loop variant variable value now.
8228   const SCEV *Idx = getSCEV(VarIdx);
8229   Idx = getSCEVAtScope(Idx, L);
8230 
8231   // We can only recognize very limited forms of loop index expressions, in
8232   // particular, only affine AddRec's like {C1,+,C2}<L>.
8233   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8234   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8235       isLoopInvariant(IdxExpr, L) ||
8236       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8237       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8238     return getCouldNotCompute();
8239 
8240   unsigned MaxSteps = MaxBruteForceIterations;
8241   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8242     ConstantInt *ItCst = ConstantInt::get(
8243                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8244     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8245 
8246     // Form the GEP offset.
8247     Indexes[VarIdxNum] = Val;
8248 
8249     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8250                                                          Indexes);
8251     if (!Result) break;  // Cannot compute!
8252 
8253     // Evaluate the condition for this iteration.
8254     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8255     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8256     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8257       ++NumArrayLenItCounts;
8258       return getConstant(ItCst);   // Found terminating iteration!
8259     }
8260   }
8261   return getCouldNotCompute();
8262 }
8263 
8264 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8265     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8266   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8267   if (!RHS)
8268     return getCouldNotCompute();
8269 
8270   const BasicBlock *Latch = L->getLoopLatch();
8271   if (!Latch)
8272     return getCouldNotCompute();
8273 
8274   const BasicBlock *Predecessor = L->getLoopPredecessor();
8275   if (!Predecessor)
8276     return getCouldNotCompute();
8277 
8278   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8279   // Return LHS in OutLHS and shift_opt in OutOpCode.
8280   auto MatchPositiveShift =
8281       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8282 
8283     using namespace PatternMatch;
8284 
8285     ConstantInt *ShiftAmt;
8286     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8287       OutOpCode = Instruction::LShr;
8288     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8289       OutOpCode = Instruction::AShr;
8290     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8291       OutOpCode = Instruction::Shl;
8292     else
8293       return false;
8294 
8295     return ShiftAmt->getValue().isStrictlyPositive();
8296   };
8297 
8298   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8299   //
8300   // loop:
8301   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8302   //   %iv.shifted = lshr i32 %iv, <positive constant>
8303   //
8304   // Return true on a successful match.  Return the corresponding PHI node (%iv
8305   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8306   auto MatchShiftRecurrence =
8307       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8308     Optional<Instruction::BinaryOps> PostShiftOpCode;
8309 
8310     {
8311       Instruction::BinaryOps OpC;
8312       Value *V;
8313 
8314       // If we encounter a shift instruction, "peel off" the shift operation,
8315       // and remember that we did so.  Later when we inspect %iv's backedge
8316       // value, we will make sure that the backedge value uses the same
8317       // operation.
8318       //
8319       // Note: the peeled shift operation does not have to be the same
8320       // instruction as the one feeding into the PHI's backedge value.  We only
8321       // really care about it being the same *kind* of shift instruction --
8322       // that's all that is required for our later inferences to hold.
8323       if (MatchPositiveShift(LHS, V, OpC)) {
8324         PostShiftOpCode = OpC;
8325         LHS = V;
8326       }
8327     }
8328 
8329     PNOut = dyn_cast<PHINode>(LHS);
8330     if (!PNOut || PNOut->getParent() != L->getHeader())
8331       return false;
8332 
8333     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8334     Value *OpLHS;
8335 
8336     return
8337         // The backedge value for the PHI node must be a shift by a positive
8338         // amount
8339         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8340 
8341         // of the PHI node itself
8342         OpLHS == PNOut &&
8343 
8344         // and the kind of shift should be match the kind of shift we peeled
8345         // off, if any.
8346         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8347   };
8348 
8349   PHINode *PN;
8350   Instruction::BinaryOps OpCode;
8351   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8352     return getCouldNotCompute();
8353 
8354   const DataLayout &DL = getDataLayout();
8355 
8356   // The key rationale for this optimization is that for some kinds of shift
8357   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8358   // within a finite number of iterations.  If the condition guarding the
8359   // backedge (in the sense that the backedge is taken if the condition is true)
8360   // is false for the value the shift recurrence stabilizes to, then we know
8361   // that the backedge is taken only a finite number of times.
8362 
8363   ConstantInt *StableValue = nullptr;
8364   switch (OpCode) {
8365   default:
8366     llvm_unreachable("Impossible case!");
8367 
8368   case Instruction::AShr: {
8369     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8370     // bitwidth(K) iterations.
8371     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8372     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8373                                        Predecessor->getTerminator(), &DT);
8374     auto *Ty = cast<IntegerType>(RHS->getType());
8375     if (Known.isNonNegative())
8376       StableValue = ConstantInt::get(Ty, 0);
8377     else if (Known.isNegative())
8378       StableValue = ConstantInt::get(Ty, -1, true);
8379     else
8380       return getCouldNotCompute();
8381 
8382     break;
8383   }
8384   case Instruction::LShr:
8385   case Instruction::Shl:
8386     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8387     // stabilize to 0 in at most bitwidth(K) iterations.
8388     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8389     break;
8390   }
8391 
8392   auto *Result =
8393       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8394   assert(Result->getType()->isIntegerTy(1) &&
8395          "Otherwise cannot be an operand to a branch instruction");
8396 
8397   if (Result->isZeroValue()) {
8398     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8399     const SCEV *UpperBound =
8400         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8401     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8402   }
8403 
8404   return getCouldNotCompute();
8405 }
8406 
8407 /// Return true if we can constant fold an instruction of the specified type,
8408 /// assuming that all operands were constants.
8409 static bool CanConstantFold(const Instruction *I) {
8410   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8411       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8412       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8413     return true;
8414 
8415   if (const CallInst *CI = dyn_cast<CallInst>(I))
8416     if (const Function *F = CI->getCalledFunction())
8417       return canConstantFoldCallTo(CI, F);
8418   return false;
8419 }
8420 
8421 /// Determine whether this instruction can constant evolve within this loop
8422 /// assuming its operands can all constant evolve.
8423 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8424   // An instruction outside of the loop can't be derived from a loop PHI.
8425   if (!L->contains(I)) return false;
8426 
8427   if (isa<PHINode>(I)) {
8428     // We don't currently keep track of the control flow needed to evaluate
8429     // PHIs, so we cannot handle PHIs inside of loops.
8430     return L->getHeader() == I->getParent();
8431   }
8432 
8433   // If we won't be able to constant fold this expression even if the operands
8434   // are constants, bail early.
8435   return CanConstantFold(I);
8436 }
8437 
8438 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8439 /// recursing through each instruction operand until reaching a loop header phi.
8440 static PHINode *
8441 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8442                                DenseMap<Instruction *, PHINode *> &PHIMap,
8443                                unsigned Depth) {
8444   if (Depth > MaxConstantEvolvingDepth)
8445     return nullptr;
8446 
8447   // Otherwise, we can evaluate this instruction if all of its operands are
8448   // constant or derived from a PHI node themselves.
8449   PHINode *PHI = nullptr;
8450   for (Value *Op : UseInst->operands()) {
8451     if (isa<Constant>(Op)) continue;
8452 
8453     Instruction *OpInst = dyn_cast<Instruction>(Op);
8454     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8455 
8456     PHINode *P = dyn_cast<PHINode>(OpInst);
8457     if (!P)
8458       // If this operand is already visited, reuse the prior result.
8459       // We may have P != PHI if this is the deepest point at which the
8460       // inconsistent paths meet.
8461       P = PHIMap.lookup(OpInst);
8462     if (!P) {
8463       // Recurse and memoize the results, whether a phi is found or not.
8464       // This recursive call invalidates pointers into PHIMap.
8465       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8466       PHIMap[OpInst] = P;
8467     }
8468     if (!P)
8469       return nullptr;  // Not evolving from PHI
8470     if (PHI && PHI != P)
8471       return nullptr;  // Evolving from multiple different PHIs.
8472     PHI = P;
8473   }
8474   // This is a expression evolving from a constant PHI!
8475   return PHI;
8476 }
8477 
8478 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8479 /// in the loop that V is derived from.  We allow arbitrary operations along the
8480 /// way, but the operands of an operation must either be constants or a value
8481 /// derived from a constant PHI.  If this expression does not fit with these
8482 /// constraints, return null.
8483 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8484   Instruction *I = dyn_cast<Instruction>(V);
8485   if (!I || !canConstantEvolve(I, L)) return nullptr;
8486 
8487   if (PHINode *PN = dyn_cast<PHINode>(I))
8488     return PN;
8489 
8490   // Record non-constant instructions contained by the loop.
8491   DenseMap<Instruction *, PHINode *> PHIMap;
8492   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8493 }
8494 
8495 /// EvaluateExpression - Given an expression that passes the
8496 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8497 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8498 /// reason, return null.
8499 static Constant *EvaluateExpression(Value *V, const Loop *L,
8500                                     DenseMap<Instruction *, Constant *> &Vals,
8501                                     const DataLayout &DL,
8502                                     const TargetLibraryInfo *TLI) {
8503   // Convenient constant check, but redundant for recursive calls.
8504   if (Constant *C = dyn_cast<Constant>(V)) return C;
8505   Instruction *I = dyn_cast<Instruction>(V);
8506   if (!I) return nullptr;
8507 
8508   if (Constant *C = Vals.lookup(I)) return C;
8509 
8510   // An instruction inside the loop depends on a value outside the loop that we
8511   // weren't given a mapping for, or a value such as a call inside the loop.
8512   if (!canConstantEvolve(I, L)) return nullptr;
8513 
8514   // An unmapped PHI can be due to a branch or another loop inside this loop,
8515   // or due to this not being the initial iteration through a loop where we
8516   // couldn't compute the evolution of this particular PHI last time.
8517   if (isa<PHINode>(I)) return nullptr;
8518 
8519   std::vector<Constant*> Operands(I->getNumOperands());
8520 
8521   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8522     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8523     if (!Operand) {
8524       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8525       if (!Operands[i]) return nullptr;
8526       continue;
8527     }
8528     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8529     Vals[Operand] = C;
8530     if (!C) return nullptr;
8531     Operands[i] = C;
8532   }
8533 
8534   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8535     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8536                                            Operands[1], DL, TLI);
8537   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8538     if (!LI->isVolatile())
8539       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8540   }
8541   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8542 }
8543 
8544 
8545 // If every incoming value to PN except the one for BB is a specific Constant,
8546 // return that, else return nullptr.
8547 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8548   Constant *IncomingVal = nullptr;
8549 
8550   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8551     if (PN->getIncomingBlock(i) == BB)
8552       continue;
8553 
8554     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8555     if (!CurrentVal)
8556       return nullptr;
8557 
8558     if (IncomingVal != CurrentVal) {
8559       if (IncomingVal)
8560         return nullptr;
8561       IncomingVal = CurrentVal;
8562     }
8563   }
8564 
8565   return IncomingVal;
8566 }
8567 
8568 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8569 /// in the header of its containing loop, we know the loop executes a
8570 /// constant number of times, and the PHI node is just a recurrence
8571 /// involving constants, fold it.
8572 Constant *
8573 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8574                                                    const APInt &BEs,
8575                                                    const Loop *L) {
8576   auto I = ConstantEvolutionLoopExitValue.find(PN);
8577   if (I != ConstantEvolutionLoopExitValue.end())
8578     return I->second;
8579 
8580   if (BEs.ugt(MaxBruteForceIterations))
8581     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8582 
8583   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8584 
8585   DenseMap<Instruction *, Constant *> CurrentIterVals;
8586   BasicBlock *Header = L->getHeader();
8587   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8588 
8589   BasicBlock *Latch = L->getLoopLatch();
8590   if (!Latch)
8591     return nullptr;
8592 
8593   for (PHINode &PHI : Header->phis()) {
8594     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8595       CurrentIterVals[&PHI] = StartCST;
8596   }
8597   if (!CurrentIterVals.count(PN))
8598     return RetVal = nullptr;
8599 
8600   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8601 
8602   // Execute the loop symbolically to determine the exit value.
8603   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8604          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8605 
8606   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8607   unsigned IterationNum = 0;
8608   const DataLayout &DL = getDataLayout();
8609   for (; ; ++IterationNum) {
8610     if (IterationNum == NumIterations)
8611       return RetVal = CurrentIterVals[PN];  // Got exit value!
8612 
8613     // Compute the value of the PHIs for the next iteration.
8614     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8615     DenseMap<Instruction *, Constant *> NextIterVals;
8616     Constant *NextPHI =
8617         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8618     if (!NextPHI)
8619       return nullptr;        // Couldn't evaluate!
8620     NextIterVals[PN] = NextPHI;
8621 
8622     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8623 
8624     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8625     // cease to be able to evaluate one of them or if they stop evolving,
8626     // because that doesn't necessarily prevent us from computing PN.
8627     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8628     for (const auto &I : CurrentIterVals) {
8629       PHINode *PHI = dyn_cast<PHINode>(I.first);
8630       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8631       PHIsToCompute.emplace_back(PHI, I.second);
8632     }
8633     // We use two distinct loops because EvaluateExpression may invalidate any
8634     // iterators into CurrentIterVals.
8635     for (const auto &I : PHIsToCompute) {
8636       PHINode *PHI = I.first;
8637       Constant *&NextPHI = NextIterVals[PHI];
8638       if (!NextPHI) {   // Not already computed.
8639         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8640         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8641       }
8642       if (NextPHI != I.second)
8643         StoppedEvolving = false;
8644     }
8645 
8646     // If all entries in CurrentIterVals == NextIterVals then we can stop
8647     // iterating, the loop can't continue to change.
8648     if (StoppedEvolving)
8649       return RetVal = CurrentIterVals[PN];
8650 
8651     CurrentIterVals.swap(NextIterVals);
8652   }
8653 }
8654 
8655 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8656                                                           Value *Cond,
8657                                                           bool ExitWhen) {
8658   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8659   if (!PN) return getCouldNotCompute();
8660 
8661   // If the loop is canonicalized, the PHI will have exactly two entries.
8662   // That's the only form we support here.
8663   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8664 
8665   DenseMap<Instruction *, Constant *> CurrentIterVals;
8666   BasicBlock *Header = L->getHeader();
8667   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8668 
8669   BasicBlock *Latch = L->getLoopLatch();
8670   assert(Latch && "Should follow from NumIncomingValues == 2!");
8671 
8672   for (PHINode &PHI : Header->phis()) {
8673     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8674       CurrentIterVals[&PHI] = StartCST;
8675   }
8676   if (!CurrentIterVals.count(PN))
8677     return getCouldNotCompute();
8678 
8679   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8680   // the loop symbolically to determine when the condition gets a value of
8681   // "ExitWhen".
8682   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8683   const DataLayout &DL = getDataLayout();
8684   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8685     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8686         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8687 
8688     // Couldn't symbolically evaluate.
8689     if (!CondVal) return getCouldNotCompute();
8690 
8691     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8692       ++NumBruteForceTripCountsComputed;
8693       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8694     }
8695 
8696     // Update all the PHI nodes for the next iteration.
8697     DenseMap<Instruction *, Constant *> NextIterVals;
8698 
8699     // Create a list of which PHIs we need to compute. We want to do this before
8700     // calling EvaluateExpression on them because that may invalidate iterators
8701     // into CurrentIterVals.
8702     SmallVector<PHINode *, 8> PHIsToCompute;
8703     for (const auto &I : CurrentIterVals) {
8704       PHINode *PHI = dyn_cast<PHINode>(I.first);
8705       if (!PHI || PHI->getParent() != Header) continue;
8706       PHIsToCompute.push_back(PHI);
8707     }
8708     for (PHINode *PHI : PHIsToCompute) {
8709       Constant *&NextPHI = NextIterVals[PHI];
8710       if (NextPHI) continue;    // Already computed!
8711 
8712       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8713       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8714     }
8715     CurrentIterVals.swap(NextIterVals);
8716   }
8717 
8718   // Too many iterations were needed to evaluate.
8719   return getCouldNotCompute();
8720 }
8721 
8722 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8723   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8724       ValuesAtScopes[V];
8725   // Check to see if we've folded this expression at this loop before.
8726   for (auto &LS : Values)
8727     if (LS.first == L)
8728       return LS.second ? LS.second : V;
8729 
8730   Values.emplace_back(L, nullptr);
8731 
8732   // Otherwise compute it.
8733   const SCEV *C = computeSCEVAtScope(V, L);
8734   for (auto &LS : reverse(ValuesAtScopes[V]))
8735     if (LS.first == L) {
8736       LS.second = C;
8737       break;
8738     }
8739   return C;
8740 }
8741 
8742 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8743 /// will return Constants for objects which aren't represented by a
8744 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8745 /// Returns NULL if the SCEV isn't representable as a Constant.
8746 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8747   switch (V->getSCEVType()) {
8748   case scCouldNotCompute:
8749   case scAddRecExpr:
8750     return nullptr;
8751   case scConstant:
8752     return cast<SCEVConstant>(V)->getValue();
8753   case scUnknown:
8754     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8755   case scSignExtend: {
8756     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8757     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8758       return ConstantExpr::getSExt(CastOp, SS->getType());
8759     return nullptr;
8760   }
8761   case scZeroExtend: {
8762     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8763     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8764       return ConstantExpr::getZExt(CastOp, SZ->getType());
8765     return nullptr;
8766   }
8767   case scPtrToInt: {
8768     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8769     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8770       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8771 
8772     return nullptr;
8773   }
8774   case scTruncate: {
8775     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8776     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8777       return ConstantExpr::getTrunc(CastOp, ST->getType());
8778     return nullptr;
8779   }
8780   case scAddExpr: {
8781     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8782     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8783       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8784         unsigned AS = PTy->getAddressSpace();
8785         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8786         C = ConstantExpr::getBitCast(C, DestPtrTy);
8787       }
8788       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8789         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8790         if (!C2)
8791           return nullptr;
8792 
8793         // First pointer!
8794         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8795           unsigned AS = C2->getType()->getPointerAddressSpace();
8796           std::swap(C, C2);
8797           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8798           // The offsets have been converted to bytes.  We can add bytes to an
8799           // i8* by GEP with the byte count in the first index.
8800           C = ConstantExpr::getBitCast(C, DestPtrTy);
8801         }
8802 
8803         // Don't bother trying to sum two pointers. We probably can't
8804         // statically compute a load that results from it anyway.
8805         if (C2->getType()->isPointerTy())
8806           return nullptr;
8807 
8808         if (C->getType()->isPointerTy()) {
8809           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8810                                              C, C2);
8811         } else {
8812           C = ConstantExpr::getAdd(C, C2);
8813         }
8814       }
8815       return C;
8816     }
8817     return nullptr;
8818   }
8819   case scMulExpr: {
8820     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8821     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8822       // Don't bother with pointers at all.
8823       if (C->getType()->isPointerTy())
8824         return nullptr;
8825       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8826         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8827         if (!C2 || C2->getType()->isPointerTy())
8828           return nullptr;
8829         C = ConstantExpr::getMul(C, C2);
8830       }
8831       return C;
8832     }
8833     return nullptr;
8834   }
8835   case scUDivExpr: {
8836     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8837     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8838       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8839         if (LHS->getType() == RHS->getType())
8840           return ConstantExpr::getUDiv(LHS, RHS);
8841     return nullptr;
8842   }
8843   case scSMaxExpr:
8844   case scUMaxExpr:
8845   case scSMinExpr:
8846   case scUMinExpr:
8847     return nullptr; // TODO: smax, umax, smin, umax.
8848   }
8849   llvm_unreachable("Unknown SCEV kind!");
8850 }
8851 
8852 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8853   if (isa<SCEVConstant>(V)) return V;
8854 
8855   // If this instruction is evolved from a constant-evolving PHI, compute the
8856   // exit value from the loop without using SCEVs.
8857   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8858     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8859       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8860         const Loop *CurrLoop = this->LI[I->getParent()];
8861         // Looking for loop exit value.
8862         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8863             PN->getParent() == CurrLoop->getHeader()) {
8864           // Okay, there is no closed form solution for the PHI node.  Check
8865           // to see if the loop that contains it has a known backedge-taken
8866           // count.  If so, we may be able to force computation of the exit
8867           // value.
8868           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8869           // This trivial case can show up in some degenerate cases where
8870           // the incoming IR has not yet been fully simplified.
8871           if (BackedgeTakenCount->isZero()) {
8872             Value *InitValue = nullptr;
8873             bool MultipleInitValues = false;
8874             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8875               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8876                 if (!InitValue)
8877                   InitValue = PN->getIncomingValue(i);
8878                 else if (InitValue != PN->getIncomingValue(i)) {
8879                   MultipleInitValues = true;
8880                   break;
8881                 }
8882               }
8883             }
8884             if (!MultipleInitValues && InitValue)
8885               return getSCEV(InitValue);
8886           }
8887           // Do we have a loop invariant value flowing around the backedge
8888           // for a loop which must execute the backedge?
8889           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8890               isKnownPositive(BackedgeTakenCount) &&
8891               PN->getNumIncomingValues() == 2) {
8892 
8893             unsigned InLoopPred =
8894                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8895             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8896             if (CurrLoop->isLoopInvariant(BackedgeVal))
8897               return getSCEV(BackedgeVal);
8898           }
8899           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8900             // Okay, we know how many times the containing loop executes.  If
8901             // this is a constant evolving PHI node, get the final value at
8902             // the specified iteration number.
8903             Constant *RV = getConstantEvolutionLoopExitValue(
8904                 PN, BTCC->getAPInt(), CurrLoop);
8905             if (RV) return getSCEV(RV);
8906           }
8907         }
8908 
8909         // If there is a single-input Phi, evaluate it at our scope. If we can
8910         // prove that this replacement does not break LCSSA form, use new value.
8911         if (PN->getNumOperands() == 1) {
8912           const SCEV *Input = getSCEV(PN->getOperand(0));
8913           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8914           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8915           // for the simplest case just support constants.
8916           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8917         }
8918       }
8919 
8920       // Okay, this is an expression that we cannot symbolically evaluate
8921       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8922       // the arguments into constants, and if so, try to constant propagate the
8923       // result.  This is particularly useful for computing loop exit values.
8924       if (CanConstantFold(I)) {
8925         SmallVector<Constant *, 4> Operands;
8926         bool MadeImprovement = false;
8927         for (Value *Op : I->operands()) {
8928           if (Constant *C = dyn_cast<Constant>(Op)) {
8929             Operands.push_back(C);
8930             continue;
8931           }
8932 
8933           // If any of the operands is non-constant and if they are
8934           // non-integer and non-pointer, don't even try to analyze them
8935           // with scev techniques.
8936           if (!isSCEVable(Op->getType()))
8937             return V;
8938 
8939           const SCEV *OrigV = getSCEV(Op);
8940           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8941           MadeImprovement |= OrigV != OpV;
8942 
8943           Constant *C = BuildConstantFromSCEV(OpV);
8944           if (!C) return V;
8945           if (C->getType() != Op->getType())
8946             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8947                                                               Op->getType(),
8948                                                               false),
8949                                       C, Op->getType());
8950           Operands.push_back(C);
8951         }
8952 
8953         // Check to see if getSCEVAtScope actually made an improvement.
8954         if (MadeImprovement) {
8955           Constant *C = nullptr;
8956           const DataLayout &DL = getDataLayout();
8957           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8958             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8959                                                 Operands[1], DL, &TLI);
8960           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8961             if (!Load->isVolatile())
8962               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8963                                                DL);
8964           } else
8965             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8966           if (!C) return V;
8967           return getSCEV(C);
8968         }
8969       }
8970     }
8971 
8972     // This is some other type of SCEVUnknown, just return it.
8973     return V;
8974   }
8975 
8976   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8977     // Avoid performing the look-up in the common case where the specified
8978     // expression has no loop-variant portions.
8979     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8980       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8981       if (OpAtScope != Comm->getOperand(i)) {
8982         // Okay, at least one of these operands is loop variant but might be
8983         // foldable.  Build a new instance of the folded commutative expression.
8984         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8985                                             Comm->op_begin()+i);
8986         NewOps.push_back(OpAtScope);
8987 
8988         for (++i; i != e; ++i) {
8989           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8990           NewOps.push_back(OpAtScope);
8991         }
8992         if (isa<SCEVAddExpr>(Comm))
8993           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8994         if (isa<SCEVMulExpr>(Comm))
8995           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8996         if (isa<SCEVMinMaxExpr>(Comm))
8997           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8998         llvm_unreachable("Unknown commutative SCEV type!");
8999       }
9000     }
9001     // If we got here, all operands are loop invariant.
9002     return Comm;
9003   }
9004 
9005   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9006     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9007     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9008     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9009       return Div;   // must be loop invariant
9010     return getUDivExpr(LHS, RHS);
9011   }
9012 
9013   // If this is a loop recurrence for a loop that does not contain L, then we
9014   // are dealing with the final value computed by the loop.
9015   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9016     // First, attempt to evaluate each operand.
9017     // Avoid performing the look-up in the common case where the specified
9018     // expression has no loop-variant portions.
9019     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9020       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9021       if (OpAtScope == AddRec->getOperand(i))
9022         continue;
9023 
9024       // Okay, at least one of these operands is loop variant but might be
9025       // foldable.  Build a new instance of the folded commutative expression.
9026       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9027                                           AddRec->op_begin()+i);
9028       NewOps.push_back(OpAtScope);
9029       for (++i; i != e; ++i)
9030         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9031 
9032       const SCEV *FoldedRec =
9033         getAddRecExpr(NewOps, AddRec->getLoop(),
9034                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9035       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9036       // The addrec may be folded to a nonrecurrence, for example, if the
9037       // induction variable is multiplied by zero after constant folding. Go
9038       // ahead and return the folded value.
9039       if (!AddRec)
9040         return FoldedRec;
9041       break;
9042     }
9043 
9044     // If the scope is outside the addrec's loop, evaluate it by using the
9045     // loop exit value of the addrec.
9046     if (!AddRec->getLoop()->contains(L)) {
9047       // To evaluate this recurrence, we need to know how many times the AddRec
9048       // loop iterates.  Compute this now.
9049       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9050       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9051 
9052       // Then, evaluate the AddRec.
9053       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9054     }
9055 
9056     return AddRec;
9057   }
9058 
9059   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9060     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9061     if (Op == Cast->getOperand())
9062       return Cast;  // must be loop invariant
9063     return getZeroExtendExpr(Op, Cast->getType());
9064   }
9065 
9066   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9067     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9068     if (Op == Cast->getOperand())
9069       return Cast;  // must be loop invariant
9070     return getSignExtendExpr(Op, Cast->getType());
9071   }
9072 
9073   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9074     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9075     if (Op == Cast->getOperand())
9076       return Cast;  // must be loop invariant
9077     return getTruncateExpr(Op, Cast->getType());
9078   }
9079 
9080   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9081     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9082     if (Op == Cast->getOperand())
9083       return Cast; // must be loop invariant
9084     return getPtrToIntExpr(Op, Cast->getType());
9085   }
9086 
9087   llvm_unreachable("Unknown SCEV type!");
9088 }
9089 
9090 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9091   return getSCEVAtScope(getSCEV(V), L);
9092 }
9093 
9094 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9095   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9096     return stripInjectiveFunctions(ZExt->getOperand());
9097   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9098     return stripInjectiveFunctions(SExt->getOperand());
9099   return S;
9100 }
9101 
9102 /// Finds the minimum unsigned root of the following equation:
9103 ///
9104 ///     A * X = B (mod N)
9105 ///
9106 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9107 /// A and B isn't important.
9108 ///
9109 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9110 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9111                                                ScalarEvolution &SE) {
9112   uint32_t BW = A.getBitWidth();
9113   assert(BW == SE.getTypeSizeInBits(B->getType()));
9114   assert(A != 0 && "A must be non-zero.");
9115 
9116   // 1. D = gcd(A, N)
9117   //
9118   // The gcd of A and N may have only one prime factor: 2. The number of
9119   // trailing zeros in A is its multiplicity
9120   uint32_t Mult2 = A.countTrailingZeros();
9121   // D = 2^Mult2
9122 
9123   // 2. Check if B is divisible by D.
9124   //
9125   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9126   // is not less than multiplicity of this prime factor for D.
9127   if (SE.GetMinTrailingZeros(B) < Mult2)
9128     return SE.getCouldNotCompute();
9129 
9130   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9131   // modulo (N / D).
9132   //
9133   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9134   // (N / D) in general. The inverse itself always fits into BW bits, though,
9135   // so we immediately truncate it.
9136   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9137   APInt Mod(BW + 1, 0);
9138   Mod.setBit(BW - Mult2);  // Mod = N / D
9139   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9140 
9141   // 4. Compute the minimum unsigned root of the equation:
9142   // I * (B / D) mod (N / D)
9143   // To simplify the computation, we factor out the divide by D:
9144   // (I * B mod N) / D
9145   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9146   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9147 }
9148 
9149 /// For a given quadratic addrec, generate coefficients of the corresponding
9150 /// quadratic equation, multiplied by a common value to ensure that they are
9151 /// integers.
9152 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9153 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9154 /// were multiplied by, and BitWidth is the bit width of the original addrec
9155 /// coefficients.
9156 /// This function returns None if the addrec coefficients are not compile-
9157 /// time constants.
9158 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9159 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9160   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9161   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9162   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9163   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9164   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9165                     << *AddRec << '\n');
9166 
9167   // We currently can only solve this if the coefficients are constants.
9168   if (!LC || !MC || !NC) {
9169     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9170     return None;
9171   }
9172 
9173   APInt L = LC->getAPInt();
9174   APInt M = MC->getAPInt();
9175   APInt N = NC->getAPInt();
9176   assert(!N.isNullValue() && "This is not a quadratic addrec");
9177 
9178   unsigned BitWidth = LC->getAPInt().getBitWidth();
9179   unsigned NewWidth = BitWidth + 1;
9180   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9181                     << BitWidth << '\n');
9182   // The sign-extension (as opposed to a zero-extension) here matches the
9183   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9184   N = N.sext(NewWidth);
9185   M = M.sext(NewWidth);
9186   L = L.sext(NewWidth);
9187 
9188   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9189   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9190   //   L+M, L+2M+N, L+3M+3N, ...
9191   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9192   //
9193   // The equation Acc = 0 is then
9194   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9195   // In a quadratic form it becomes:
9196   //   N n^2 + (2M-N) n + 2L = 0.
9197 
9198   APInt A = N;
9199   APInt B = 2 * M - A;
9200   APInt C = 2 * L;
9201   APInt T = APInt(NewWidth, 2);
9202   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9203                     << "x + " << C << ", coeff bw: " << NewWidth
9204                     << ", multiplied by " << T << '\n');
9205   return std::make_tuple(A, B, C, T, BitWidth);
9206 }
9207 
9208 /// Helper function to compare optional APInts:
9209 /// (a) if X and Y both exist, return min(X, Y),
9210 /// (b) if neither X nor Y exist, return None,
9211 /// (c) if exactly one of X and Y exists, return that value.
9212 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9213   if (X.hasValue() && Y.hasValue()) {
9214     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9215     APInt XW = X->sextOrSelf(W);
9216     APInt YW = Y->sextOrSelf(W);
9217     return XW.slt(YW) ? *X : *Y;
9218   }
9219   if (!X.hasValue() && !Y.hasValue())
9220     return None;
9221   return X.hasValue() ? *X : *Y;
9222 }
9223 
9224 /// Helper function to truncate an optional APInt to a given BitWidth.
9225 /// When solving addrec-related equations, it is preferable to return a value
9226 /// that has the same bit width as the original addrec's coefficients. If the
9227 /// solution fits in the original bit width, truncate it (except for i1).
9228 /// Returning a value of a different bit width may inhibit some optimizations.
9229 ///
9230 /// In general, a solution to a quadratic equation generated from an addrec
9231 /// may require BW+1 bits, where BW is the bit width of the addrec's
9232 /// coefficients. The reason is that the coefficients of the quadratic
9233 /// equation are BW+1 bits wide (to avoid truncation when converting from
9234 /// the addrec to the equation).
9235 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9236   if (!X.hasValue())
9237     return None;
9238   unsigned W = X->getBitWidth();
9239   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9240     return X->trunc(BitWidth);
9241   return X;
9242 }
9243 
9244 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9245 /// iterations. The values L, M, N are assumed to be signed, and they
9246 /// should all have the same bit widths.
9247 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9248 /// where BW is the bit width of the addrec's coefficients.
9249 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9250 /// returned as such, otherwise the bit width of the returned value may
9251 /// be greater than BW.
9252 ///
9253 /// This function returns None if
9254 /// (a) the addrec coefficients are not constant, or
9255 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9256 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9257 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9258 static Optional<APInt>
9259 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9260   APInt A, B, C, M;
9261   unsigned BitWidth;
9262   auto T = GetQuadraticEquation(AddRec);
9263   if (!T.hasValue())
9264     return None;
9265 
9266   std::tie(A, B, C, M, BitWidth) = *T;
9267   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9268   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9269   if (!X.hasValue())
9270     return None;
9271 
9272   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9273   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9274   if (!V->isZero())
9275     return None;
9276 
9277   return TruncIfPossible(X, BitWidth);
9278 }
9279 
9280 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9281 /// iterations. The values M, N are assumed to be signed, and they
9282 /// should all have the same bit widths.
9283 /// Find the least n such that c(n) does not belong to the given range,
9284 /// while c(n-1) does.
9285 ///
9286 /// This function returns None if
9287 /// (a) the addrec coefficients are not constant, or
9288 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9289 ///     bounds of the range.
9290 static Optional<APInt>
9291 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9292                           const ConstantRange &Range, ScalarEvolution &SE) {
9293   assert(AddRec->getOperand(0)->isZero() &&
9294          "Starting value of addrec should be 0");
9295   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9296                     << Range << ", addrec " << *AddRec << '\n');
9297   // This case is handled in getNumIterationsInRange. Here we can assume that
9298   // we start in the range.
9299   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9300          "Addrec's initial value should be in range");
9301 
9302   APInt A, B, C, M;
9303   unsigned BitWidth;
9304   auto T = GetQuadraticEquation(AddRec);
9305   if (!T.hasValue())
9306     return None;
9307 
9308   // Be careful about the return value: there can be two reasons for not
9309   // returning an actual number. First, if no solutions to the equations
9310   // were found, and second, if the solutions don't leave the given range.
9311   // The first case means that the actual solution is "unknown", the second
9312   // means that it's known, but not valid. If the solution is unknown, we
9313   // cannot make any conclusions.
9314   // Return a pair: the optional solution and a flag indicating if the
9315   // solution was found.
9316   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9317     // Solve for signed overflow and unsigned overflow, pick the lower
9318     // solution.
9319     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9320                       << Bound << " (before multiplying by " << M << ")\n");
9321     Bound *= M; // The quadratic equation multiplier.
9322 
9323     Optional<APInt> SO = None;
9324     if (BitWidth > 1) {
9325       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9326                            "signed overflow\n");
9327       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9328     }
9329     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9330                          "unsigned overflow\n");
9331     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9332                                                               BitWidth+1);
9333 
9334     auto LeavesRange = [&] (const APInt &X) {
9335       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9336       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9337       if (Range.contains(V0->getValue()))
9338         return false;
9339       // X should be at least 1, so X-1 is non-negative.
9340       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9341       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9342       if (Range.contains(V1->getValue()))
9343         return true;
9344       return false;
9345     };
9346 
9347     // If SolveQuadraticEquationWrap returns None, it means that there can
9348     // be a solution, but the function failed to find it. We cannot treat it
9349     // as "no solution".
9350     if (!SO.hasValue() || !UO.hasValue())
9351       return { None, false };
9352 
9353     // Check the smaller value first to see if it leaves the range.
9354     // At this point, both SO and UO must have values.
9355     Optional<APInt> Min = MinOptional(SO, UO);
9356     if (LeavesRange(*Min))
9357       return { Min, true };
9358     Optional<APInt> Max = Min == SO ? UO : SO;
9359     if (LeavesRange(*Max))
9360       return { Max, true };
9361 
9362     // Solutions were found, but were eliminated, hence the "true".
9363     return { None, true };
9364   };
9365 
9366   std::tie(A, B, C, M, BitWidth) = *T;
9367   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9368   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9369   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9370   auto SL = SolveForBoundary(Lower);
9371   auto SU = SolveForBoundary(Upper);
9372   // If any of the solutions was unknown, no meaninigful conclusions can
9373   // be made.
9374   if (!SL.second || !SU.second)
9375     return None;
9376 
9377   // Claim: The correct solution is not some value between Min and Max.
9378   //
9379   // Justification: Assuming that Min and Max are different values, one of
9380   // them is when the first signed overflow happens, the other is when the
9381   // first unsigned overflow happens. Crossing the range boundary is only
9382   // possible via an overflow (treating 0 as a special case of it, modeling
9383   // an overflow as crossing k*2^W for some k).
9384   //
9385   // The interesting case here is when Min was eliminated as an invalid
9386   // solution, but Max was not. The argument is that if there was another
9387   // overflow between Min and Max, it would also have been eliminated if
9388   // it was considered.
9389   //
9390   // For a given boundary, it is possible to have two overflows of the same
9391   // type (signed/unsigned) without having the other type in between: this
9392   // can happen when the vertex of the parabola is between the iterations
9393   // corresponding to the overflows. This is only possible when the two
9394   // overflows cross k*2^W for the same k. In such case, if the second one
9395   // left the range (and was the first one to do so), the first overflow
9396   // would have to enter the range, which would mean that either we had left
9397   // the range before or that we started outside of it. Both of these cases
9398   // are contradictions.
9399   //
9400   // Claim: In the case where SolveForBoundary returns None, the correct
9401   // solution is not some value between the Max for this boundary and the
9402   // Min of the other boundary.
9403   //
9404   // Justification: Assume that we had such Max_A and Min_B corresponding
9405   // to range boundaries A and B and such that Max_A < Min_B. If there was
9406   // a solution between Max_A and Min_B, it would have to be caused by an
9407   // overflow corresponding to either A or B. It cannot correspond to B,
9408   // since Min_B is the first occurrence of such an overflow. If it
9409   // corresponded to A, it would have to be either a signed or an unsigned
9410   // overflow that is larger than both eliminated overflows for A. But
9411   // between the eliminated overflows and this overflow, the values would
9412   // cover the entire value space, thus crossing the other boundary, which
9413   // is a contradiction.
9414 
9415   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9416 }
9417 
9418 ScalarEvolution::ExitLimit
9419 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9420                               bool AllowPredicates) {
9421 
9422   // This is only used for loops with a "x != y" exit test. The exit condition
9423   // is now expressed as a single expression, V = x-y. So the exit test is
9424   // effectively V != 0.  We know and take advantage of the fact that this
9425   // expression only being used in a comparison by zero context.
9426 
9427   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9428   // If the value is a constant
9429   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9430     // If the value is already zero, the branch will execute zero times.
9431     if (C->getValue()->isZero()) return C;
9432     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9433   }
9434 
9435   const SCEVAddRecExpr *AddRec =
9436       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9437 
9438   if (!AddRec && AllowPredicates)
9439     // Try to make this an AddRec using runtime tests, in the first X
9440     // iterations of this loop, where X is the SCEV expression found by the
9441     // algorithm below.
9442     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9443 
9444   if (!AddRec || AddRec->getLoop() != L)
9445     return getCouldNotCompute();
9446 
9447   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9448   // the quadratic equation to solve it.
9449   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9450     // We can only use this value if the chrec ends up with an exact zero
9451     // value at this index.  When solving for "X*X != 5", for example, we
9452     // should not accept a root of 2.
9453     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9454       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9455       return ExitLimit(R, R, false, Predicates);
9456     }
9457     return getCouldNotCompute();
9458   }
9459 
9460   // Otherwise we can only handle this if it is affine.
9461   if (!AddRec->isAffine())
9462     return getCouldNotCompute();
9463 
9464   // If this is an affine expression, the execution count of this branch is
9465   // the minimum unsigned root of the following equation:
9466   //
9467   //     Start + Step*N = 0 (mod 2^BW)
9468   //
9469   // equivalent to:
9470   //
9471   //             Step*N = -Start (mod 2^BW)
9472   //
9473   // where BW is the common bit width of Start and Step.
9474 
9475   // Get the initial value for the loop.
9476   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9477   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9478 
9479   // For now we handle only constant steps.
9480   //
9481   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9482   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9483   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9484   // We have not yet seen any such cases.
9485   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9486   if (!StepC || StepC->getValue()->isZero())
9487     return getCouldNotCompute();
9488 
9489   // For positive steps (counting up until unsigned overflow):
9490   //   N = -Start/Step (as unsigned)
9491   // For negative steps (counting down to zero):
9492   //   N = Start/-Step
9493   // First compute the unsigned distance from zero in the direction of Step.
9494   bool CountDown = StepC->getAPInt().isNegative();
9495   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9496 
9497   // Handle unitary steps, which cannot wraparound.
9498   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9499   //   N = Distance (as unsigned)
9500   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9501     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9502     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9503     if (MaxBECountBase.ult(MaxBECount))
9504       MaxBECount = MaxBECountBase;
9505 
9506     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9507     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9508     // case, and see if we can improve the bound.
9509     //
9510     // Explicitly handling this here is necessary because getUnsignedRange
9511     // isn't context-sensitive; it doesn't know that we only care about the
9512     // range inside the loop.
9513     const SCEV *Zero = getZero(Distance->getType());
9514     const SCEV *One = getOne(Distance->getType());
9515     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9516     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9517       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9518       // as "unsigned_max(Distance + 1) - 1".
9519       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9520       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9521     }
9522     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9523   }
9524 
9525   // If the condition controls loop exit (the loop exits only if the expression
9526   // is true) and the addition is no-wrap we can use unsigned divide to
9527   // compute the backedge count.  In this case, the step may not divide the
9528   // distance, but we don't care because if the condition is "missed" the loop
9529   // will have undefined behavior due to wrapping.
9530   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9531       loopHasNoAbnormalExits(AddRec->getLoop())) {
9532     const SCEV *Exact =
9533         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9534     const SCEV *Max = getCouldNotCompute();
9535     if (Exact != getCouldNotCompute()) {
9536       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9537       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9538       if (BaseMaxInt.ult(MaxInt))
9539         Max = getConstant(BaseMaxInt);
9540       else
9541         Max = getConstant(MaxInt);
9542     }
9543     return ExitLimit(Exact, Max, false, Predicates);
9544   }
9545 
9546   // Solve the general equation.
9547   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9548                                                getNegativeSCEV(Start), *this);
9549   const SCEV *M = E == getCouldNotCompute()
9550                       ? E
9551                       : getConstant(getUnsignedRangeMax(E));
9552   return ExitLimit(E, M, false, Predicates);
9553 }
9554 
9555 ScalarEvolution::ExitLimit
9556 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9557   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9558   // handle them yet except for the trivial case.  This could be expanded in the
9559   // future as needed.
9560 
9561   // If the value is a constant, check to see if it is known to be non-zero
9562   // already.  If so, the backedge will execute zero times.
9563   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9564     if (!C->getValue()->isZero())
9565       return getZero(C->getType());
9566     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9567   }
9568 
9569   // We could implement others, but I really doubt anyone writes loops like
9570   // this, and if they did, they would already be constant folded.
9571   return getCouldNotCompute();
9572 }
9573 
9574 std::pair<const BasicBlock *, const BasicBlock *>
9575 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9576     const {
9577   // If the block has a unique predecessor, then there is no path from the
9578   // predecessor to the block that does not go through the direct edge
9579   // from the predecessor to the block.
9580   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9581     return {Pred, BB};
9582 
9583   // A loop's header is defined to be a block that dominates the loop.
9584   // If the header has a unique predecessor outside the loop, it must be
9585   // a block that has exactly one successor that can reach the loop.
9586   if (const Loop *L = LI.getLoopFor(BB))
9587     return {L->getLoopPredecessor(), L->getHeader()};
9588 
9589   return {nullptr, nullptr};
9590 }
9591 
9592 /// SCEV structural equivalence is usually sufficient for testing whether two
9593 /// expressions are equal, however for the purposes of looking for a condition
9594 /// guarding a loop, it can be useful to be a little more general, since a
9595 /// front-end may have replicated the controlling expression.
9596 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9597   // Quick check to see if they are the same SCEV.
9598   if (A == B) return true;
9599 
9600   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9601     // Not all instructions that are "identical" compute the same value.  For
9602     // instance, two distinct alloca instructions allocating the same type are
9603     // identical and do not read memory; but compute distinct values.
9604     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9605   };
9606 
9607   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9608   // two different instructions with the same value. Check for this case.
9609   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9610     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9611       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9612         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9613           if (ComputesEqualValues(AI, BI))
9614             return true;
9615 
9616   // Otherwise assume they may have a different value.
9617   return false;
9618 }
9619 
9620 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9621                                            const SCEV *&LHS, const SCEV *&RHS,
9622                                            unsigned Depth) {
9623   bool Changed = false;
9624   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9625   // '0 != 0'.
9626   auto TrivialCase = [&](bool TriviallyTrue) {
9627     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9628     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9629     return true;
9630   };
9631   // If we hit the max recursion limit bail out.
9632   if (Depth >= 3)
9633     return false;
9634 
9635   // Canonicalize a constant to the right side.
9636   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9637     // Check for both operands constant.
9638     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9639       if (ConstantExpr::getICmp(Pred,
9640                                 LHSC->getValue(),
9641                                 RHSC->getValue())->isNullValue())
9642         return TrivialCase(false);
9643       else
9644         return TrivialCase(true);
9645     }
9646     // Otherwise swap the operands to put the constant on the right.
9647     std::swap(LHS, RHS);
9648     Pred = ICmpInst::getSwappedPredicate(Pred);
9649     Changed = true;
9650   }
9651 
9652   // If we're comparing an addrec with a value which is loop-invariant in the
9653   // addrec's loop, put the addrec on the left. Also make a dominance check,
9654   // as both operands could be addrecs loop-invariant in each other's loop.
9655   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9656     const Loop *L = AR->getLoop();
9657     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9658       std::swap(LHS, RHS);
9659       Pred = ICmpInst::getSwappedPredicate(Pred);
9660       Changed = true;
9661     }
9662   }
9663 
9664   // If there's a constant operand, canonicalize comparisons with boundary
9665   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9666   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9667     const APInt &RA = RC->getAPInt();
9668 
9669     bool SimplifiedByConstantRange = false;
9670 
9671     if (!ICmpInst::isEquality(Pred)) {
9672       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9673       if (ExactCR.isFullSet())
9674         return TrivialCase(true);
9675       else if (ExactCR.isEmptySet())
9676         return TrivialCase(false);
9677 
9678       APInt NewRHS;
9679       CmpInst::Predicate NewPred;
9680       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9681           ICmpInst::isEquality(NewPred)) {
9682         // We were able to convert an inequality to an equality.
9683         Pred = NewPred;
9684         RHS = getConstant(NewRHS);
9685         Changed = SimplifiedByConstantRange = true;
9686       }
9687     }
9688 
9689     if (!SimplifiedByConstantRange) {
9690       switch (Pred) {
9691       default:
9692         break;
9693       case ICmpInst::ICMP_EQ:
9694       case ICmpInst::ICMP_NE:
9695         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9696         if (!RA)
9697           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9698             if (const SCEVMulExpr *ME =
9699                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9700               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9701                   ME->getOperand(0)->isAllOnesValue()) {
9702                 RHS = AE->getOperand(1);
9703                 LHS = ME->getOperand(1);
9704                 Changed = true;
9705               }
9706         break;
9707 
9708 
9709         // The "Should have been caught earlier!" messages refer to the fact
9710         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9711         // should have fired on the corresponding cases, and canonicalized the
9712         // check to trivial case.
9713 
9714       case ICmpInst::ICMP_UGE:
9715         assert(!RA.isMinValue() && "Should have been caught earlier!");
9716         Pred = ICmpInst::ICMP_UGT;
9717         RHS = getConstant(RA - 1);
9718         Changed = true;
9719         break;
9720       case ICmpInst::ICMP_ULE:
9721         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9722         Pred = ICmpInst::ICMP_ULT;
9723         RHS = getConstant(RA + 1);
9724         Changed = true;
9725         break;
9726       case ICmpInst::ICMP_SGE:
9727         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9728         Pred = ICmpInst::ICMP_SGT;
9729         RHS = getConstant(RA - 1);
9730         Changed = true;
9731         break;
9732       case ICmpInst::ICMP_SLE:
9733         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9734         Pred = ICmpInst::ICMP_SLT;
9735         RHS = getConstant(RA + 1);
9736         Changed = true;
9737         break;
9738       }
9739     }
9740   }
9741 
9742   // Check for obvious equality.
9743   if (HasSameValue(LHS, RHS)) {
9744     if (ICmpInst::isTrueWhenEqual(Pred))
9745       return TrivialCase(true);
9746     if (ICmpInst::isFalseWhenEqual(Pred))
9747       return TrivialCase(false);
9748   }
9749 
9750   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9751   // adding or subtracting 1 from one of the operands.
9752   switch (Pred) {
9753   case ICmpInst::ICMP_SLE:
9754     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9755       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9756                        SCEV::FlagNSW);
9757       Pred = ICmpInst::ICMP_SLT;
9758       Changed = true;
9759     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9760       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9761                        SCEV::FlagNSW);
9762       Pred = ICmpInst::ICMP_SLT;
9763       Changed = true;
9764     }
9765     break;
9766   case ICmpInst::ICMP_SGE:
9767     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9768       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9769                        SCEV::FlagNSW);
9770       Pred = ICmpInst::ICMP_SGT;
9771       Changed = true;
9772     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9773       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9774                        SCEV::FlagNSW);
9775       Pred = ICmpInst::ICMP_SGT;
9776       Changed = true;
9777     }
9778     break;
9779   case ICmpInst::ICMP_ULE:
9780     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9781       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9782                        SCEV::FlagNUW);
9783       Pred = ICmpInst::ICMP_ULT;
9784       Changed = true;
9785     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9786       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9787       Pred = ICmpInst::ICMP_ULT;
9788       Changed = true;
9789     }
9790     break;
9791   case ICmpInst::ICMP_UGE:
9792     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9793       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9794       Pred = ICmpInst::ICMP_UGT;
9795       Changed = true;
9796     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9797       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9798                        SCEV::FlagNUW);
9799       Pred = ICmpInst::ICMP_UGT;
9800       Changed = true;
9801     }
9802     break;
9803   default:
9804     break;
9805   }
9806 
9807   // TODO: More simplifications are possible here.
9808 
9809   // Recursively simplify until we either hit a recursion limit or nothing
9810   // changes.
9811   if (Changed)
9812     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9813 
9814   return Changed;
9815 }
9816 
9817 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9818   return getSignedRangeMax(S).isNegative();
9819 }
9820 
9821 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9822   return getSignedRangeMin(S).isStrictlyPositive();
9823 }
9824 
9825 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9826   return !getSignedRangeMin(S).isNegative();
9827 }
9828 
9829 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9830   return !getSignedRangeMax(S).isStrictlyPositive();
9831 }
9832 
9833 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9834   return getUnsignedRangeMin(S) != 0;
9835 }
9836 
9837 std::pair<const SCEV *, const SCEV *>
9838 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9839   // Compute SCEV on entry of loop L.
9840   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9841   if (Start == getCouldNotCompute())
9842     return { Start, Start };
9843   // Compute post increment SCEV for loop L.
9844   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9845   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9846   return { Start, PostInc };
9847 }
9848 
9849 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9850                                           const SCEV *LHS, const SCEV *RHS) {
9851   // First collect all loops.
9852   SmallPtrSet<const Loop *, 8> LoopsUsed;
9853   getUsedLoops(LHS, LoopsUsed);
9854   getUsedLoops(RHS, LoopsUsed);
9855 
9856   if (LoopsUsed.empty())
9857     return false;
9858 
9859   // Domination relationship must be a linear order on collected loops.
9860 #ifndef NDEBUG
9861   for (auto *L1 : LoopsUsed)
9862     for (auto *L2 : LoopsUsed)
9863       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9864               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9865              "Domination relationship is not a linear order");
9866 #endif
9867 
9868   const Loop *MDL =
9869       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9870                         [&](const Loop *L1, const Loop *L2) {
9871          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9872        });
9873 
9874   // Get init and post increment value for LHS.
9875   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9876   // if LHS contains unknown non-invariant SCEV then bail out.
9877   if (SplitLHS.first == getCouldNotCompute())
9878     return false;
9879   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9880   // Get init and post increment value for RHS.
9881   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9882   // if RHS contains unknown non-invariant SCEV then bail out.
9883   if (SplitRHS.first == getCouldNotCompute())
9884     return false;
9885   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9886   // It is possible that init SCEV contains an invariant load but it does
9887   // not dominate MDL and is not available at MDL loop entry, so we should
9888   // check it here.
9889   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9890       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9891     return false;
9892 
9893   // It seems backedge guard check is faster than entry one so in some cases
9894   // it can speed up whole estimation by short circuit
9895   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9896                                      SplitRHS.second) &&
9897          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9898 }
9899 
9900 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9901                                        const SCEV *LHS, const SCEV *RHS) {
9902   // Canonicalize the inputs first.
9903   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9904 
9905   if (isKnownViaInduction(Pred, LHS, RHS))
9906     return true;
9907 
9908   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9909     return true;
9910 
9911   // Otherwise see what can be done with some simple reasoning.
9912   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9913 }
9914 
9915 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9916                                                   const SCEV *LHS,
9917                                                   const SCEV *RHS) {
9918   if (isKnownPredicate(Pred, LHS, RHS))
9919     return true;
9920   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9921     return false;
9922   return None;
9923 }
9924 
9925 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9926                                          const SCEV *LHS, const SCEV *RHS,
9927                                          const Instruction *CtxI) {
9928   // TODO: Analyze guards and assumes from Context's block.
9929   return isKnownPredicate(Pred, LHS, RHS) ||
9930          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
9931 }
9932 
9933 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
9934                                                     const SCEV *LHS,
9935                                                     const SCEV *RHS,
9936                                                     const Instruction *CtxI) {
9937   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9938   if (KnownWithoutContext)
9939     return KnownWithoutContext;
9940 
9941   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
9942     return true;
9943   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
9944                                           ICmpInst::getInversePredicate(Pred),
9945                                           LHS, RHS))
9946     return false;
9947   return None;
9948 }
9949 
9950 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9951                                               const SCEVAddRecExpr *LHS,
9952                                               const SCEV *RHS) {
9953   const Loop *L = LHS->getLoop();
9954   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9955          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9956 }
9957 
9958 Optional<ScalarEvolution::MonotonicPredicateType>
9959 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9960                                            ICmpInst::Predicate Pred) {
9961   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9962 
9963 #ifndef NDEBUG
9964   // Verify an invariant: inverting the predicate should turn a monotonically
9965   // increasing change to a monotonically decreasing one, and vice versa.
9966   if (Result) {
9967     auto ResultSwapped =
9968         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9969 
9970     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9971     assert(ResultSwapped.getValue() != Result.getValue() &&
9972            "monotonicity should flip as we flip the predicate");
9973   }
9974 #endif
9975 
9976   return Result;
9977 }
9978 
9979 Optional<ScalarEvolution::MonotonicPredicateType>
9980 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9981                                                ICmpInst::Predicate Pred) {
9982   // A zero step value for LHS means the induction variable is essentially a
9983   // loop invariant value. We don't really depend on the predicate actually
9984   // flipping from false to true (for increasing predicates, and the other way
9985   // around for decreasing predicates), all we care about is that *if* the
9986   // predicate changes then it only changes from false to true.
9987   //
9988   // A zero step value in itself is not very useful, but there may be places
9989   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9990   // as general as possible.
9991 
9992   // Only handle LE/LT/GE/GT predicates.
9993   if (!ICmpInst::isRelational(Pred))
9994     return None;
9995 
9996   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
9997   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
9998          "Should be greater or less!");
9999 
10000   // Check that AR does not wrap.
10001   if (ICmpInst::isUnsigned(Pred)) {
10002     if (!LHS->hasNoUnsignedWrap())
10003       return None;
10004     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10005   } else {
10006     assert(ICmpInst::isSigned(Pred) &&
10007            "Relational predicate is either signed or unsigned!");
10008     if (!LHS->hasNoSignedWrap())
10009       return None;
10010 
10011     const SCEV *Step = LHS->getStepRecurrence(*this);
10012 
10013     if (isKnownNonNegative(Step))
10014       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10015 
10016     if (isKnownNonPositive(Step))
10017       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10018 
10019     return None;
10020   }
10021 }
10022 
10023 Optional<ScalarEvolution::LoopInvariantPredicate>
10024 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10025                                            const SCEV *LHS, const SCEV *RHS,
10026                                            const Loop *L) {
10027 
10028   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10029   if (!isLoopInvariant(RHS, L)) {
10030     if (!isLoopInvariant(LHS, L))
10031       return None;
10032 
10033     std::swap(LHS, RHS);
10034     Pred = ICmpInst::getSwappedPredicate(Pred);
10035   }
10036 
10037   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10038   if (!ArLHS || ArLHS->getLoop() != L)
10039     return None;
10040 
10041   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10042   if (!MonotonicType)
10043     return None;
10044   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10045   // true as the loop iterates, and the backedge is control dependent on
10046   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10047   //
10048   //   * if the predicate was false in the first iteration then the predicate
10049   //     is never evaluated again, since the loop exits without taking the
10050   //     backedge.
10051   //   * if the predicate was true in the first iteration then it will
10052   //     continue to be true for all future iterations since it is
10053   //     monotonically increasing.
10054   //
10055   // For both the above possibilities, we can replace the loop varying
10056   // predicate with its value on the first iteration of the loop (which is
10057   // loop invariant).
10058   //
10059   // A similar reasoning applies for a monotonically decreasing predicate, by
10060   // replacing true with false and false with true in the above two bullets.
10061   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10062   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10063 
10064   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10065     return None;
10066 
10067   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10068 }
10069 
10070 Optional<ScalarEvolution::LoopInvariantPredicate>
10071 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10072     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10073     const Instruction *CtxI, const SCEV *MaxIter) {
10074   // Try to prove the following set of facts:
10075   // - The predicate is monotonic in the iteration space.
10076   // - If the check does not fail on the 1st iteration:
10077   //   - No overflow will happen during first MaxIter iterations;
10078   //   - It will not fail on the MaxIter'th iteration.
10079   // If the check does fail on the 1st iteration, we leave the loop and no
10080   // other checks matter.
10081 
10082   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10083   if (!isLoopInvariant(RHS, L)) {
10084     if (!isLoopInvariant(LHS, L))
10085       return None;
10086 
10087     std::swap(LHS, RHS);
10088     Pred = ICmpInst::getSwappedPredicate(Pred);
10089   }
10090 
10091   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10092   if (!AR || AR->getLoop() != L)
10093     return None;
10094 
10095   // The predicate must be relational (i.e. <, <=, >=, >).
10096   if (!ICmpInst::isRelational(Pred))
10097     return None;
10098 
10099   // TODO: Support steps other than +/- 1.
10100   const SCEV *Step = AR->getStepRecurrence(*this);
10101   auto *One = getOne(Step->getType());
10102   auto *MinusOne = getNegativeSCEV(One);
10103   if (Step != One && Step != MinusOne)
10104     return None;
10105 
10106   // Type mismatch here means that MaxIter is potentially larger than max
10107   // unsigned value in start type, which mean we cannot prove no wrap for the
10108   // indvar.
10109   if (AR->getType() != MaxIter->getType())
10110     return None;
10111 
10112   // Value of IV on suggested last iteration.
10113   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10114   // Does it still meet the requirement?
10115   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10116     return None;
10117   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10118   // not exceed max unsigned value of this type), this effectively proves
10119   // that there is no wrap during the iteration. To prove that there is no
10120   // signed/unsigned wrap, we need to check that
10121   // Start <= Last for step = 1 or Start >= Last for step = -1.
10122   ICmpInst::Predicate NoOverflowPred =
10123       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10124   if (Step == MinusOne)
10125     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10126   const SCEV *Start = AR->getStart();
10127   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10128     return None;
10129 
10130   // Everything is fine.
10131   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10132 }
10133 
10134 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10135     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10136   if (HasSameValue(LHS, RHS))
10137     return ICmpInst::isTrueWhenEqual(Pred);
10138 
10139   // This code is split out from isKnownPredicate because it is called from
10140   // within isLoopEntryGuardedByCond.
10141 
10142   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10143                          const ConstantRange &RangeRHS) {
10144     return RangeLHS.icmp(Pred, RangeRHS);
10145   };
10146 
10147   // The check at the top of the function catches the case where the values are
10148   // known to be equal.
10149   if (Pred == CmpInst::ICMP_EQ)
10150     return false;
10151 
10152   if (Pred == CmpInst::ICMP_NE) {
10153     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10154         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10155       return true;
10156     auto *Diff = getMinusSCEV(LHS, RHS);
10157     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10158   }
10159 
10160   if (CmpInst::isSigned(Pred))
10161     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10162 
10163   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10164 }
10165 
10166 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10167                                                     const SCEV *LHS,
10168                                                     const SCEV *RHS) {
10169   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10170   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10171   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10172   // OutC1 and OutC2.
10173   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10174                                       APInt &OutC1, APInt &OutC2,
10175                                       SCEV::NoWrapFlags ExpectedFlags) {
10176     const SCEV *XNonConstOp, *XConstOp;
10177     const SCEV *YNonConstOp, *YConstOp;
10178     SCEV::NoWrapFlags XFlagsPresent;
10179     SCEV::NoWrapFlags YFlagsPresent;
10180 
10181     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10182       XConstOp = getZero(X->getType());
10183       XNonConstOp = X;
10184       XFlagsPresent = ExpectedFlags;
10185     }
10186     if (!isa<SCEVConstant>(XConstOp) ||
10187         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10188       return false;
10189 
10190     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10191       YConstOp = getZero(Y->getType());
10192       YNonConstOp = Y;
10193       YFlagsPresent = ExpectedFlags;
10194     }
10195 
10196     if (!isa<SCEVConstant>(YConstOp) ||
10197         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10198       return false;
10199 
10200     if (YNonConstOp != XNonConstOp)
10201       return false;
10202 
10203     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10204     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10205 
10206     return true;
10207   };
10208 
10209   APInt C1;
10210   APInt C2;
10211 
10212   switch (Pred) {
10213   default:
10214     break;
10215 
10216   case ICmpInst::ICMP_SGE:
10217     std::swap(LHS, RHS);
10218     LLVM_FALLTHROUGH;
10219   case ICmpInst::ICMP_SLE:
10220     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10221     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10222       return true;
10223 
10224     break;
10225 
10226   case ICmpInst::ICMP_SGT:
10227     std::swap(LHS, RHS);
10228     LLVM_FALLTHROUGH;
10229   case ICmpInst::ICMP_SLT:
10230     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10231     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10232       return true;
10233 
10234     break;
10235 
10236   case ICmpInst::ICMP_UGE:
10237     std::swap(LHS, RHS);
10238     LLVM_FALLTHROUGH;
10239   case ICmpInst::ICMP_ULE:
10240     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10241     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10242       return true;
10243 
10244     break;
10245 
10246   case ICmpInst::ICMP_UGT:
10247     std::swap(LHS, RHS);
10248     LLVM_FALLTHROUGH;
10249   case ICmpInst::ICMP_ULT:
10250     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10251     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10252       return true;
10253     break;
10254   }
10255 
10256   return false;
10257 }
10258 
10259 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10260                                                    const SCEV *LHS,
10261                                                    const SCEV *RHS) {
10262   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10263     return false;
10264 
10265   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10266   // the stack can result in exponential time complexity.
10267   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10268 
10269   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10270   //
10271   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10272   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10273   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10274   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10275   // use isKnownPredicate later if needed.
10276   return isKnownNonNegative(RHS) &&
10277          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10278          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10279 }
10280 
10281 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10282                                         ICmpInst::Predicate Pred,
10283                                         const SCEV *LHS, const SCEV *RHS) {
10284   // No need to even try if we know the module has no guards.
10285   if (!HasGuards)
10286     return false;
10287 
10288   return any_of(*BB, [&](const Instruction &I) {
10289     using namespace llvm::PatternMatch;
10290 
10291     Value *Condition;
10292     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10293                          m_Value(Condition))) &&
10294            isImpliedCond(Pred, LHS, RHS, Condition, false);
10295   });
10296 }
10297 
10298 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10299 /// protected by a conditional between LHS and RHS.  This is used to
10300 /// to eliminate casts.
10301 bool
10302 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10303                                              ICmpInst::Predicate Pred,
10304                                              const SCEV *LHS, const SCEV *RHS) {
10305   // Interpret a null as meaning no loop, where there is obviously no guard
10306   // (interprocedural conditions notwithstanding).
10307   if (!L) return true;
10308 
10309   if (VerifyIR)
10310     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10311            "This cannot be done on broken IR!");
10312 
10313 
10314   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10315     return true;
10316 
10317   BasicBlock *Latch = L->getLoopLatch();
10318   if (!Latch)
10319     return false;
10320 
10321   BranchInst *LoopContinuePredicate =
10322     dyn_cast<BranchInst>(Latch->getTerminator());
10323   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10324       isImpliedCond(Pred, LHS, RHS,
10325                     LoopContinuePredicate->getCondition(),
10326                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10327     return true;
10328 
10329   // We don't want more than one activation of the following loops on the stack
10330   // -- that can lead to O(n!) time complexity.
10331   if (WalkingBEDominatingConds)
10332     return false;
10333 
10334   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10335 
10336   // See if we can exploit a trip count to prove the predicate.
10337   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10338   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10339   if (LatchBECount != getCouldNotCompute()) {
10340     // We know that Latch branches back to the loop header exactly
10341     // LatchBECount times.  This means the backdege condition at Latch is
10342     // equivalent to  "{0,+,1} u< LatchBECount".
10343     Type *Ty = LatchBECount->getType();
10344     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10345     const SCEV *LoopCounter =
10346       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10347     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10348                       LatchBECount))
10349       return true;
10350   }
10351 
10352   // Check conditions due to any @llvm.assume intrinsics.
10353   for (auto &AssumeVH : AC.assumptions()) {
10354     if (!AssumeVH)
10355       continue;
10356     auto *CI = cast<CallInst>(AssumeVH);
10357     if (!DT.dominates(CI, Latch->getTerminator()))
10358       continue;
10359 
10360     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10361       return true;
10362   }
10363 
10364   // If the loop is not reachable from the entry block, we risk running into an
10365   // infinite loop as we walk up into the dom tree.  These loops do not matter
10366   // anyway, so we just return a conservative answer when we see them.
10367   if (!DT.isReachableFromEntry(L->getHeader()))
10368     return false;
10369 
10370   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10371     return true;
10372 
10373   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10374        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10375     assert(DTN && "should reach the loop header before reaching the root!");
10376 
10377     BasicBlock *BB = DTN->getBlock();
10378     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10379       return true;
10380 
10381     BasicBlock *PBB = BB->getSinglePredecessor();
10382     if (!PBB)
10383       continue;
10384 
10385     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10386     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10387       continue;
10388 
10389     Value *Condition = ContinuePredicate->getCondition();
10390 
10391     // If we have an edge `E` within the loop body that dominates the only
10392     // latch, the condition guarding `E` also guards the backedge.  This
10393     // reasoning works only for loops with a single latch.
10394 
10395     BasicBlockEdge DominatingEdge(PBB, BB);
10396     if (DominatingEdge.isSingleEdge()) {
10397       // We're constructively (and conservatively) enumerating edges within the
10398       // loop body that dominate the latch.  The dominator tree better agree
10399       // with us on this:
10400       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10401 
10402       if (isImpliedCond(Pred, LHS, RHS, Condition,
10403                         BB != ContinuePredicate->getSuccessor(0)))
10404         return true;
10405     }
10406   }
10407 
10408   return false;
10409 }
10410 
10411 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10412                                                      ICmpInst::Predicate Pred,
10413                                                      const SCEV *LHS,
10414                                                      const SCEV *RHS) {
10415   if (VerifyIR)
10416     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10417            "This cannot be done on broken IR!");
10418 
10419   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10420   // the facts (a >= b && a != b) separately. A typical situation is when the
10421   // non-strict comparison is known from ranges and non-equality is known from
10422   // dominating predicates. If we are proving strict comparison, we always try
10423   // to prove non-equality and non-strict comparison separately.
10424   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10425   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10426   bool ProvedNonStrictComparison = false;
10427   bool ProvedNonEquality = false;
10428 
10429   auto SplitAndProve =
10430     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10431     if (!ProvedNonStrictComparison)
10432       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10433     if (!ProvedNonEquality)
10434       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10435     if (ProvedNonStrictComparison && ProvedNonEquality)
10436       return true;
10437     return false;
10438   };
10439 
10440   if (ProvingStrictComparison) {
10441     auto ProofFn = [&](ICmpInst::Predicate P) {
10442       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10443     };
10444     if (SplitAndProve(ProofFn))
10445       return true;
10446   }
10447 
10448   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10449   auto ProveViaGuard = [&](const BasicBlock *Block) {
10450     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10451       return true;
10452     if (ProvingStrictComparison) {
10453       auto ProofFn = [&](ICmpInst::Predicate P) {
10454         return isImpliedViaGuard(Block, P, LHS, RHS);
10455       };
10456       if (SplitAndProve(ProofFn))
10457         return true;
10458     }
10459     return false;
10460   };
10461 
10462   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10463   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10464     const Instruction *CtxI = &BB->front();
10465     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10466       return true;
10467     if (ProvingStrictComparison) {
10468       auto ProofFn = [&](ICmpInst::Predicate P) {
10469         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10470       };
10471       if (SplitAndProve(ProofFn))
10472         return true;
10473     }
10474     return false;
10475   };
10476 
10477   // Starting at the block's predecessor, climb up the predecessor chain, as long
10478   // as there are predecessors that can be found that have unique successors
10479   // leading to the original block.
10480   const Loop *ContainingLoop = LI.getLoopFor(BB);
10481   const BasicBlock *PredBB;
10482   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10483     PredBB = ContainingLoop->getLoopPredecessor();
10484   else
10485     PredBB = BB->getSinglePredecessor();
10486   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10487        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10488     if (ProveViaGuard(Pair.first))
10489       return true;
10490 
10491     const BranchInst *LoopEntryPredicate =
10492         dyn_cast<BranchInst>(Pair.first->getTerminator());
10493     if (!LoopEntryPredicate ||
10494         LoopEntryPredicate->isUnconditional())
10495       continue;
10496 
10497     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10498                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10499       return true;
10500   }
10501 
10502   // Check conditions due to any @llvm.assume intrinsics.
10503   for (auto &AssumeVH : AC.assumptions()) {
10504     if (!AssumeVH)
10505       continue;
10506     auto *CI = cast<CallInst>(AssumeVH);
10507     if (!DT.dominates(CI, BB))
10508       continue;
10509 
10510     if (ProveViaCond(CI->getArgOperand(0), false))
10511       return true;
10512   }
10513 
10514   return false;
10515 }
10516 
10517 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10518                                                ICmpInst::Predicate Pred,
10519                                                const SCEV *LHS,
10520                                                const SCEV *RHS) {
10521   // Interpret a null as meaning no loop, where there is obviously no guard
10522   // (interprocedural conditions notwithstanding).
10523   if (!L)
10524     return false;
10525 
10526   // Both LHS and RHS must be available at loop entry.
10527   assert(isAvailableAtLoopEntry(LHS, L) &&
10528          "LHS is not available at Loop Entry");
10529   assert(isAvailableAtLoopEntry(RHS, L) &&
10530          "RHS is not available at Loop Entry");
10531 
10532   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10533     return true;
10534 
10535   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10536 }
10537 
10538 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10539                                     const SCEV *RHS,
10540                                     const Value *FoundCondValue, bool Inverse,
10541                                     const Instruction *CtxI) {
10542   // False conditions implies anything. Do not bother analyzing it further.
10543   if (FoundCondValue ==
10544       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10545     return true;
10546 
10547   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10548     return false;
10549 
10550   auto ClearOnExit =
10551       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10552 
10553   // Recursively handle And and Or conditions.
10554   const Value *Op0, *Op1;
10555   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10556     if (!Inverse)
10557       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10558              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10559   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10560     if (Inverse)
10561       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10562              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10563   }
10564 
10565   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10566   if (!ICI) return false;
10567 
10568   // Now that we found a conditional branch that dominates the loop or controls
10569   // the loop latch. Check to see if it is the comparison we are looking for.
10570   ICmpInst::Predicate FoundPred;
10571   if (Inverse)
10572     FoundPred = ICI->getInversePredicate();
10573   else
10574     FoundPred = ICI->getPredicate();
10575 
10576   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10577   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10578 
10579   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10580 }
10581 
10582 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10583                                     const SCEV *RHS,
10584                                     ICmpInst::Predicate FoundPred,
10585                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10586                                     const Instruction *CtxI) {
10587   // Balance the types.
10588   if (getTypeSizeInBits(LHS->getType()) <
10589       getTypeSizeInBits(FoundLHS->getType())) {
10590     // For unsigned and equality predicates, try to prove that both found
10591     // operands fit into narrow unsigned range. If so, try to prove facts in
10592     // narrow types.
10593     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10594       auto *NarrowType = LHS->getType();
10595       auto *WideType = FoundLHS->getType();
10596       auto BitWidth = getTypeSizeInBits(NarrowType);
10597       const SCEV *MaxValue = getZeroExtendExpr(
10598           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10599       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10600           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10601         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10602         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10603         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10604                                        TruncFoundRHS, CtxI))
10605           return true;
10606       }
10607     }
10608 
10609     if (LHS->getType()->isPointerTy())
10610       return false;
10611     if (CmpInst::isSigned(Pred)) {
10612       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10613       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10614     } else {
10615       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10616       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10617     }
10618   } else if (getTypeSizeInBits(LHS->getType()) >
10619       getTypeSizeInBits(FoundLHS->getType())) {
10620     if (FoundLHS->getType()->isPointerTy())
10621       return false;
10622     if (CmpInst::isSigned(FoundPred)) {
10623       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10624       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10625     } else {
10626       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10627       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10628     }
10629   }
10630   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10631                                     FoundRHS, CtxI);
10632 }
10633 
10634 bool ScalarEvolution::isImpliedCondBalancedTypes(
10635     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10636     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10637     const Instruction *CtxI) {
10638   assert(getTypeSizeInBits(LHS->getType()) ==
10639              getTypeSizeInBits(FoundLHS->getType()) &&
10640          "Types should be balanced!");
10641   // Canonicalize the query to match the way instcombine will have
10642   // canonicalized the comparison.
10643   if (SimplifyICmpOperands(Pred, LHS, RHS))
10644     if (LHS == RHS)
10645       return CmpInst::isTrueWhenEqual(Pred);
10646   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10647     if (FoundLHS == FoundRHS)
10648       return CmpInst::isFalseWhenEqual(FoundPred);
10649 
10650   // Check to see if we can make the LHS or RHS match.
10651   if (LHS == FoundRHS || RHS == FoundLHS) {
10652     if (isa<SCEVConstant>(RHS)) {
10653       std::swap(FoundLHS, FoundRHS);
10654       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10655     } else {
10656       std::swap(LHS, RHS);
10657       Pred = ICmpInst::getSwappedPredicate(Pred);
10658     }
10659   }
10660 
10661   // Check whether the found predicate is the same as the desired predicate.
10662   if (FoundPred == Pred)
10663     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10664 
10665   // Check whether swapping the found predicate makes it the same as the
10666   // desired predicate.
10667   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10668     // We can write the implication
10669     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10670     // using one of the following ways:
10671     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10672     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10673     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10674     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10675     // Forms 1. and 2. require swapping the operands of one condition. Don't
10676     // do this if it would break canonical constant/addrec ordering.
10677     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10678       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10679                                    CtxI);
10680     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10681       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10682 
10683     // There's no clear preference between forms 3. and 4., try both.  Avoid
10684     // forming getNotSCEV of pointer values as the resulting subtract is
10685     // not legal.
10686     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10687         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10688                               FoundLHS, FoundRHS, CtxI))
10689       return true;
10690 
10691     if (!FoundLHS->getType()->isPointerTy() &&
10692         !FoundRHS->getType()->isPointerTy() &&
10693         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10694                               getNotSCEV(FoundRHS), CtxI))
10695       return true;
10696 
10697     return false;
10698   }
10699 
10700   // Unsigned comparison is the same as signed comparison when both the operands
10701   // are non-negative or negative.
10702   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10703                                    CmpInst::Predicate P2) {
10704     assert(P1 != P2 && "Handled earlier!");
10705     return CmpInst::isRelational(P2) &&
10706            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10707   };
10708   if (IsSignFlippedPredicate(Pred, FoundPred) &&
10709       ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10710        (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))))
10711     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10712 
10713   // Check if we can make progress by sharpening ranges.
10714   if (FoundPred == ICmpInst::ICMP_NE &&
10715       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10716 
10717     const SCEVConstant *C = nullptr;
10718     const SCEV *V = nullptr;
10719 
10720     if (isa<SCEVConstant>(FoundLHS)) {
10721       C = cast<SCEVConstant>(FoundLHS);
10722       V = FoundRHS;
10723     } else {
10724       C = cast<SCEVConstant>(FoundRHS);
10725       V = FoundLHS;
10726     }
10727 
10728     // The guarding predicate tells us that C != V. If the known range
10729     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10730     // range we consider has to correspond to same signedness as the
10731     // predicate we're interested in folding.
10732 
10733     APInt Min = ICmpInst::isSigned(Pred) ?
10734         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10735 
10736     if (Min == C->getAPInt()) {
10737       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10738       // This is true even if (Min + 1) wraps around -- in case of
10739       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10740 
10741       APInt SharperMin = Min + 1;
10742 
10743       switch (Pred) {
10744         case ICmpInst::ICMP_SGE:
10745         case ICmpInst::ICMP_UGE:
10746           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10747           // RHS, we're done.
10748           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10749                                     CtxI))
10750             return true;
10751           LLVM_FALLTHROUGH;
10752 
10753         case ICmpInst::ICMP_SGT:
10754         case ICmpInst::ICMP_UGT:
10755           // We know from the range information that (V `Pred` Min ||
10756           // V == Min).  We know from the guarding condition that !(V
10757           // == Min).  This gives us
10758           //
10759           //       V `Pred` Min || V == Min && !(V == Min)
10760           //   =>  V `Pred` Min
10761           //
10762           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10763 
10764           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10765             return true;
10766           break;
10767 
10768         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10769         case ICmpInst::ICMP_SLE:
10770         case ICmpInst::ICMP_ULE:
10771           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10772                                     LHS, V, getConstant(SharperMin), CtxI))
10773             return true;
10774           LLVM_FALLTHROUGH;
10775 
10776         case ICmpInst::ICMP_SLT:
10777         case ICmpInst::ICMP_ULT:
10778           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10779                                     LHS, V, getConstant(Min), CtxI))
10780             return true;
10781           break;
10782 
10783         default:
10784           // No change
10785           break;
10786       }
10787     }
10788   }
10789 
10790   // Check whether the actual condition is beyond sufficient.
10791   if (FoundPred == ICmpInst::ICMP_EQ)
10792     if (ICmpInst::isTrueWhenEqual(Pred))
10793       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10794         return true;
10795   if (Pred == ICmpInst::ICMP_NE)
10796     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10797       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10798         return true;
10799 
10800   // Otherwise assume the worst.
10801   return false;
10802 }
10803 
10804 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10805                                      const SCEV *&L, const SCEV *&R,
10806                                      SCEV::NoWrapFlags &Flags) {
10807   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10808   if (!AE || AE->getNumOperands() != 2)
10809     return false;
10810 
10811   L = AE->getOperand(0);
10812   R = AE->getOperand(1);
10813   Flags = AE->getNoWrapFlags();
10814   return true;
10815 }
10816 
10817 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10818                                                            const SCEV *Less) {
10819   // We avoid subtracting expressions here because this function is usually
10820   // fairly deep in the call stack (i.e. is called many times).
10821 
10822   // X - X = 0.
10823   if (More == Less)
10824     return APInt(getTypeSizeInBits(More->getType()), 0);
10825 
10826   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10827     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10828     const auto *MAR = cast<SCEVAddRecExpr>(More);
10829 
10830     if (LAR->getLoop() != MAR->getLoop())
10831       return None;
10832 
10833     // We look at affine expressions only; not for correctness but to keep
10834     // getStepRecurrence cheap.
10835     if (!LAR->isAffine() || !MAR->isAffine())
10836       return None;
10837 
10838     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10839       return None;
10840 
10841     Less = LAR->getStart();
10842     More = MAR->getStart();
10843 
10844     // fall through
10845   }
10846 
10847   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10848     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10849     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10850     return M - L;
10851   }
10852 
10853   SCEV::NoWrapFlags Flags;
10854   const SCEV *LLess = nullptr, *RLess = nullptr;
10855   const SCEV *LMore = nullptr, *RMore = nullptr;
10856   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10857   // Compare (X + C1) vs X.
10858   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10859     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10860       if (RLess == More)
10861         return -(C1->getAPInt());
10862 
10863   // Compare X vs (X + C2).
10864   if (splitBinaryAdd(More, LMore, RMore, Flags))
10865     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10866       if (RMore == Less)
10867         return C2->getAPInt();
10868 
10869   // Compare (X + C1) vs (X + C2).
10870   if (C1 && C2 && RLess == RMore)
10871     return C2->getAPInt() - C1->getAPInt();
10872 
10873   return None;
10874 }
10875 
10876 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10877     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10878     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
10879   // Try to recognize the following pattern:
10880   //
10881   //   FoundRHS = ...
10882   // ...
10883   // loop:
10884   //   FoundLHS = {Start,+,W}
10885   // context_bb: // Basic block from the same loop
10886   //   known(Pred, FoundLHS, FoundRHS)
10887   //
10888   // If some predicate is known in the context of a loop, it is also known on
10889   // each iteration of this loop, including the first iteration. Therefore, in
10890   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10891   // prove the original pred using this fact.
10892   if (!CtxI)
10893     return false;
10894   const BasicBlock *ContextBB = CtxI->getParent();
10895   // Make sure AR varies in the context block.
10896   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10897     const Loop *L = AR->getLoop();
10898     // Make sure that context belongs to the loop and executes on 1st iteration
10899     // (if it ever executes at all).
10900     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10901       return false;
10902     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10903       return false;
10904     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10905   }
10906 
10907   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10908     const Loop *L = AR->getLoop();
10909     // Make sure that context belongs to the loop and executes on 1st iteration
10910     // (if it ever executes at all).
10911     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10912       return false;
10913     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10914       return false;
10915     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10916   }
10917 
10918   return false;
10919 }
10920 
10921 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10922     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10923     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10924   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10925     return false;
10926 
10927   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10928   if (!AddRecLHS)
10929     return false;
10930 
10931   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10932   if (!AddRecFoundLHS)
10933     return false;
10934 
10935   // We'd like to let SCEV reason about control dependencies, so we constrain
10936   // both the inequalities to be about add recurrences on the same loop.  This
10937   // way we can use isLoopEntryGuardedByCond later.
10938 
10939   const Loop *L = AddRecFoundLHS->getLoop();
10940   if (L != AddRecLHS->getLoop())
10941     return false;
10942 
10943   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10944   //
10945   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10946   //                                                                  ... (2)
10947   //
10948   // Informal proof for (2), assuming (1) [*]:
10949   //
10950   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10951   //
10952   // Then
10953   //
10954   //       FoundLHS s< FoundRHS s< INT_MIN - C
10955   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10956   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10957   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10958   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10959   // <=>  FoundLHS + C s< FoundRHS + C
10960   //
10961   // [*]: (1) can be proved by ruling out overflow.
10962   //
10963   // [**]: This can be proved by analyzing all the four possibilities:
10964   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10965   //    (A s>= 0, B s>= 0).
10966   //
10967   // Note:
10968   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10969   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10970   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10971   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10972   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10973   // C)".
10974 
10975   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10976   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10977   if (!LDiff || !RDiff || *LDiff != *RDiff)
10978     return false;
10979 
10980   if (LDiff->isMinValue())
10981     return true;
10982 
10983   APInt FoundRHSLimit;
10984 
10985   if (Pred == CmpInst::ICMP_ULT) {
10986     FoundRHSLimit = -(*RDiff);
10987   } else {
10988     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10989     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10990   }
10991 
10992   // Try to prove (1) or (2), as needed.
10993   return isAvailableAtLoopEntry(FoundRHS, L) &&
10994          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10995                                   getConstant(FoundRHSLimit));
10996 }
10997 
10998 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10999                                         const SCEV *LHS, const SCEV *RHS,
11000                                         const SCEV *FoundLHS,
11001                                         const SCEV *FoundRHS, unsigned Depth) {
11002   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11003 
11004   auto ClearOnExit = make_scope_exit([&]() {
11005     if (LPhi) {
11006       bool Erased = PendingMerges.erase(LPhi);
11007       assert(Erased && "Failed to erase LPhi!");
11008       (void)Erased;
11009     }
11010     if (RPhi) {
11011       bool Erased = PendingMerges.erase(RPhi);
11012       assert(Erased && "Failed to erase RPhi!");
11013       (void)Erased;
11014     }
11015   });
11016 
11017   // Find respective Phis and check that they are not being pending.
11018   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11019     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11020       if (!PendingMerges.insert(Phi).second)
11021         return false;
11022       LPhi = Phi;
11023     }
11024   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11025     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11026       // If we detect a loop of Phi nodes being processed by this method, for
11027       // example:
11028       //
11029       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11030       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11031       //
11032       // we don't want to deal with a case that complex, so return conservative
11033       // answer false.
11034       if (!PendingMerges.insert(Phi).second)
11035         return false;
11036       RPhi = Phi;
11037     }
11038 
11039   // If none of LHS, RHS is a Phi, nothing to do here.
11040   if (!LPhi && !RPhi)
11041     return false;
11042 
11043   // If there is a SCEVUnknown Phi we are interested in, make it left.
11044   if (!LPhi) {
11045     std::swap(LHS, RHS);
11046     std::swap(FoundLHS, FoundRHS);
11047     std::swap(LPhi, RPhi);
11048     Pred = ICmpInst::getSwappedPredicate(Pred);
11049   }
11050 
11051   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11052   const BasicBlock *LBB = LPhi->getParent();
11053   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11054 
11055   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11056     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11057            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11058            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11059   };
11060 
11061   if (RPhi && RPhi->getParent() == LBB) {
11062     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11063     // If we compare two Phis from the same block, and for each entry block
11064     // the predicate is true for incoming values from this block, then the
11065     // predicate is also true for the Phis.
11066     for (const BasicBlock *IncBB : predecessors(LBB)) {
11067       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11068       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11069       if (!ProvedEasily(L, R))
11070         return false;
11071     }
11072   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11073     // Case two: RHS is also a Phi from the same basic block, and it is an
11074     // AddRec. It means that there is a loop which has both AddRec and Unknown
11075     // PHIs, for it we can compare incoming values of AddRec from above the loop
11076     // and latch with their respective incoming values of LPhi.
11077     // TODO: Generalize to handle loops with many inputs in a header.
11078     if (LPhi->getNumIncomingValues() != 2) return false;
11079 
11080     auto *RLoop = RAR->getLoop();
11081     auto *Predecessor = RLoop->getLoopPredecessor();
11082     assert(Predecessor && "Loop with AddRec with no predecessor?");
11083     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11084     if (!ProvedEasily(L1, RAR->getStart()))
11085       return false;
11086     auto *Latch = RLoop->getLoopLatch();
11087     assert(Latch && "Loop with AddRec with no latch?");
11088     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11089     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11090       return false;
11091   } else {
11092     // In all other cases go over inputs of LHS and compare each of them to RHS,
11093     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11094     // At this point RHS is either a non-Phi, or it is a Phi from some block
11095     // different from LBB.
11096     for (const BasicBlock *IncBB : predecessors(LBB)) {
11097       // Check that RHS is available in this block.
11098       if (!dominates(RHS, IncBB))
11099         return false;
11100       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11101       // Make sure L does not refer to a value from a potentially previous
11102       // iteration of a loop.
11103       if (!properlyDominates(L, IncBB))
11104         return false;
11105       if (!ProvedEasily(L, RHS))
11106         return false;
11107     }
11108   }
11109   return true;
11110 }
11111 
11112 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11113                                             const SCEV *LHS, const SCEV *RHS,
11114                                             const SCEV *FoundLHS,
11115                                             const SCEV *FoundRHS,
11116                                             const Instruction *CtxI) {
11117   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11118     return true;
11119 
11120   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11121     return true;
11122 
11123   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11124                                           CtxI))
11125     return true;
11126 
11127   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11128                                      FoundLHS, FoundRHS);
11129 }
11130 
11131 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11132 template <typename MinMaxExprType>
11133 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11134                                  const SCEV *Candidate) {
11135   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11136   if (!MinMaxExpr)
11137     return false;
11138 
11139   return is_contained(MinMaxExpr->operands(), Candidate);
11140 }
11141 
11142 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11143                                            ICmpInst::Predicate Pred,
11144                                            const SCEV *LHS, const SCEV *RHS) {
11145   // If both sides are affine addrecs for the same loop, with equal
11146   // steps, and we know the recurrences don't wrap, then we only
11147   // need to check the predicate on the starting values.
11148 
11149   if (!ICmpInst::isRelational(Pred))
11150     return false;
11151 
11152   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11153   if (!LAR)
11154     return false;
11155   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11156   if (!RAR)
11157     return false;
11158   if (LAR->getLoop() != RAR->getLoop())
11159     return false;
11160   if (!LAR->isAffine() || !RAR->isAffine())
11161     return false;
11162 
11163   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11164     return false;
11165 
11166   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11167                          SCEV::FlagNSW : SCEV::FlagNUW;
11168   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11169     return false;
11170 
11171   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11172 }
11173 
11174 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11175 /// expression?
11176 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11177                                         ICmpInst::Predicate Pred,
11178                                         const SCEV *LHS, const SCEV *RHS) {
11179   switch (Pred) {
11180   default:
11181     return false;
11182 
11183   case ICmpInst::ICMP_SGE:
11184     std::swap(LHS, RHS);
11185     LLVM_FALLTHROUGH;
11186   case ICmpInst::ICMP_SLE:
11187     return
11188         // min(A, ...) <= A
11189         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11190         // A <= max(A, ...)
11191         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11192 
11193   case ICmpInst::ICMP_UGE:
11194     std::swap(LHS, RHS);
11195     LLVM_FALLTHROUGH;
11196   case ICmpInst::ICMP_ULE:
11197     return
11198         // min(A, ...) <= A
11199         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11200         // A <= max(A, ...)
11201         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11202   }
11203 
11204   llvm_unreachable("covered switch fell through?!");
11205 }
11206 
11207 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11208                                              const SCEV *LHS, const SCEV *RHS,
11209                                              const SCEV *FoundLHS,
11210                                              const SCEV *FoundRHS,
11211                                              unsigned Depth) {
11212   assert(getTypeSizeInBits(LHS->getType()) ==
11213              getTypeSizeInBits(RHS->getType()) &&
11214          "LHS and RHS have different sizes?");
11215   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11216              getTypeSizeInBits(FoundRHS->getType()) &&
11217          "FoundLHS and FoundRHS have different sizes?");
11218   // We want to avoid hurting the compile time with analysis of too big trees.
11219   if (Depth > MaxSCEVOperationsImplicationDepth)
11220     return false;
11221 
11222   // We only want to work with GT comparison so far.
11223   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11224     Pred = CmpInst::getSwappedPredicate(Pred);
11225     std::swap(LHS, RHS);
11226     std::swap(FoundLHS, FoundRHS);
11227   }
11228 
11229   // For unsigned, try to reduce it to corresponding signed comparison.
11230   if (Pred == ICmpInst::ICMP_UGT)
11231     // We can replace unsigned predicate with its signed counterpart if all
11232     // involved values are non-negative.
11233     // TODO: We could have better support for unsigned.
11234     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11235       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11236       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11237       // use this fact to prove that LHS and RHS are non-negative.
11238       const SCEV *MinusOne = getMinusOne(LHS->getType());
11239       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11240                                 FoundRHS) &&
11241           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11242                                 FoundRHS))
11243         Pred = ICmpInst::ICMP_SGT;
11244     }
11245 
11246   if (Pred != ICmpInst::ICMP_SGT)
11247     return false;
11248 
11249   auto GetOpFromSExt = [&](const SCEV *S) {
11250     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11251       return Ext->getOperand();
11252     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11253     // the constant in some cases.
11254     return S;
11255   };
11256 
11257   // Acquire values from extensions.
11258   auto *OrigLHS = LHS;
11259   auto *OrigFoundLHS = FoundLHS;
11260   LHS = GetOpFromSExt(LHS);
11261   FoundLHS = GetOpFromSExt(FoundLHS);
11262 
11263   // Is the SGT predicate can be proved trivially or using the found context.
11264   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11265     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11266            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11267                                   FoundRHS, Depth + 1);
11268   };
11269 
11270   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11271     // We want to avoid creation of any new non-constant SCEV. Since we are
11272     // going to compare the operands to RHS, we should be certain that we don't
11273     // need any size extensions for this. So let's decline all cases when the
11274     // sizes of types of LHS and RHS do not match.
11275     // TODO: Maybe try to get RHS from sext to catch more cases?
11276     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11277       return false;
11278 
11279     // Should not overflow.
11280     if (!LHSAddExpr->hasNoSignedWrap())
11281       return false;
11282 
11283     auto *LL = LHSAddExpr->getOperand(0);
11284     auto *LR = LHSAddExpr->getOperand(1);
11285     auto *MinusOne = getMinusOne(RHS->getType());
11286 
11287     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11288     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11289       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11290     };
11291     // Try to prove the following rule:
11292     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11293     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11294     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11295       return true;
11296   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11297     Value *LL, *LR;
11298     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11299 
11300     using namespace llvm::PatternMatch;
11301 
11302     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11303       // Rules for division.
11304       // We are going to perform some comparisons with Denominator and its
11305       // derivative expressions. In general case, creating a SCEV for it may
11306       // lead to a complex analysis of the entire graph, and in particular it
11307       // can request trip count recalculation for the same loop. This would
11308       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11309       // this, we only want to create SCEVs that are constants in this section.
11310       // So we bail if Denominator is not a constant.
11311       if (!isa<ConstantInt>(LR))
11312         return false;
11313 
11314       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11315 
11316       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11317       // then a SCEV for the numerator already exists and matches with FoundLHS.
11318       auto *Numerator = getExistingSCEV(LL);
11319       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11320         return false;
11321 
11322       // Make sure that the numerator matches with FoundLHS and the denominator
11323       // is positive.
11324       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11325         return false;
11326 
11327       auto *DTy = Denominator->getType();
11328       auto *FRHSTy = FoundRHS->getType();
11329       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11330         // One of types is a pointer and another one is not. We cannot extend
11331         // them properly to a wider type, so let us just reject this case.
11332         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11333         // to avoid this check.
11334         return false;
11335 
11336       // Given that:
11337       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11338       auto *WTy = getWiderType(DTy, FRHSTy);
11339       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11340       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11341 
11342       // Try to prove the following rule:
11343       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11344       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11345       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11346       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11347       if (isKnownNonPositive(RHS) &&
11348           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11349         return true;
11350 
11351       // Try to prove the following rule:
11352       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11353       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11354       // If we divide it by Denominator > 2, then:
11355       // 1. If FoundLHS is negative, then the result is 0.
11356       // 2. If FoundLHS is non-negative, then the result is non-negative.
11357       // Anyways, the result is non-negative.
11358       auto *MinusOne = getMinusOne(WTy);
11359       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11360       if (isKnownNegative(RHS) &&
11361           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11362         return true;
11363     }
11364   }
11365 
11366   // If our expression contained SCEVUnknown Phis, and we split it down and now
11367   // need to prove something for them, try to prove the predicate for every
11368   // possible incoming values of those Phis.
11369   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11370     return true;
11371 
11372   return false;
11373 }
11374 
11375 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11376                                         const SCEV *LHS, const SCEV *RHS) {
11377   // zext x u<= sext x, sext x s<= zext x
11378   switch (Pred) {
11379   case ICmpInst::ICMP_SGE:
11380     std::swap(LHS, RHS);
11381     LLVM_FALLTHROUGH;
11382   case ICmpInst::ICMP_SLE: {
11383     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11384     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11385     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11386     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11387       return true;
11388     break;
11389   }
11390   case ICmpInst::ICMP_UGE:
11391     std::swap(LHS, RHS);
11392     LLVM_FALLTHROUGH;
11393   case ICmpInst::ICMP_ULE: {
11394     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11395     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11396     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11397     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11398       return true;
11399     break;
11400   }
11401   default:
11402     break;
11403   };
11404   return false;
11405 }
11406 
11407 bool
11408 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11409                                            const SCEV *LHS, const SCEV *RHS) {
11410   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11411          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11412          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11413          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11414          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11415 }
11416 
11417 bool
11418 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11419                                              const SCEV *LHS, const SCEV *RHS,
11420                                              const SCEV *FoundLHS,
11421                                              const SCEV *FoundRHS) {
11422   switch (Pred) {
11423   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11424   case ICmpInst::ICMP_EQ:
11425   case ICmpInst::ICMP_NE:
11426     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11427       return true;
11428     break;
11429   case ICmpInst::ICMP_SLT:
11430   case ICmpInst::ICMP_SLE:
11431     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11432         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11433       return true;
11434     break;
11435   case ICmpInst::ICMP_SGT:
11436   case ICmpInst::ICMP_SGE:
11437     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11438         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11439       return true;
11440     break;
11441   case ICmpInst::ICMP_ULT:
11442   case ICmpInst::ICMP_ULE:
11443     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11444         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11445       return true;
11446     break;
11447   case ICmpInst::ICMP_UGT:
11448   case ICmpInst::ICMP_UGE:
11449     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11450         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11451       return true;
11452     break;
11453   }
11454 
11455   // Maybe it can be proved via operations?
11456   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11457     return true;
11458 
11459   return false;
11460 }
11461 
11462 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11463                                                      const SCEV *LHS,
11464                                                      const SCEV *RHS,
11465                                                      const SCEV *FoundLHS,
11466                                                      const SCEV *FoundRHS) {
11467   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11468     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11469     // reduce the compile time impact of this optimization.
11470     return false;
11471 
11472   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11473   if (!Addend)
11474     return false;
11475 
11476   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11477 
11478   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11479   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11480   ConstantRange FoundLHSRange =
11481       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11482 
11483   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11484   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11485 
11486   // We can also compute the range of values for `LHS` that satisfy the
11487   // consequent, "`LHS` `Pred` `RHS`":
11488   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11489   // The antecedent implies the consequent if every value of `LHS` that
11490   // satisfies the antecedent also satisfies the consequent.
11491   return LHSRange.icmp(Pred, ConstRHS);
11492 }
11493 
11494 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11495                                         bool IsSigned) {
11496   assert(isKnownPositive(Stride) && "Positive stride expected!");
11497 
11498   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11499   const SCEV *One = getOne(Stride->getType());
11500 
11501   if (IsSigned) {
11502     APInt MaxRHS = getSignedRangeMax(RHS);
11503     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11504     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11505 
11506     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11507     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11508   }
11509 
11510   APInt MaxRHS = getUnsignedRangeMax(RHS);
11511   APInt MaxValue = APInt::getMaxValue(BitWidth);
11512   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11513 
11514   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11515   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11516 }
11517 
11518 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11519                                         bool IsSigned) {
11520 
11521   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11522   const SCEV *One = getOne(Stride->getType());
11523 
11524   if (IsSigned) {
11525     APInt MinRHS = getSignedRangeMin(RHS);
11526     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11527     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11528 
11529     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11530     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11531   }
11532 
11533   APInt MinRHS = getUnsignedRangeMin(RHS);
11534   APInt MinValue = APInt::getMinValue(BitWidth);
11535   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11536 
11537   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11538   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11539 }
11540 
11541 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11542   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11543   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11544   // expression fixes the case of N=0.
11545   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11546   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11547   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11548 }
11549 
11550 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11551                                                     const SCEV *Stride,
11552                                                     const SCEV *End,
11553                                                     unsigned BitWidth,
11554                                                     bool IsSigned) {
11555   // The logic in this function assumes we can represent a positive stride.
11556   // If we can't, the backedge-taken count must be zero.
11557   if (IsSigned && BitWidth == 1)
11558     return getZero(Stride->getType());
11559 
11560   // This code has only been closely audited for negative strides in the
11561   // unsigned comparison case, it may be correct for signed comparison, but
11562   // that needs to be established.
11563   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11564          "Stride is expected strictly positive for signed case!");
11565 
11566   // Calculate the maximum backedge count based on the range of values
11567   // permitted by Start, End, and Stride.
11568   APInt MinStart =
11569       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11570 
11571   APInt MinStride =
11572       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11573 
11574   // We assume either the stride is positive, or the backedge-taken count
11575   // is zero. So force StrideForMaxBECount to be at least one.
11576   APInt One(BitWidth, 1);
11577   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11578                                        : APIntOps::umax(One, MinStride);
11579 
11580   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11581                             : APInt::getMaxValue(BitWidth);
11582   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11583 
11584   // Although End can be a MAX expression we estimate MaxEnd considering only
11585   // the case End = RHS of the loop termination condition. This is safe because
11586   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11587   // taken count.
11588   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11589                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11590 
11591   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11592   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11593                     : APIntOps::umax(MaxEnd, MinStart);
11594 
11595   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11596                          getConstant(StrideForMaxBECount) /* Step */);
11597 }
11598 
11599 ScalarEvolution::ExitLimit
11600 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11601                                   const Loop *L, bool IsSigned,
11602                                   bool ControlsExit, bool AllowPredicates) {
11603   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11604 
11605   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11606   bool PredicatedIV = false;
11607 
11608   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11609     // Can we prove this loop *must* be UB if overflow of IV occurs?
11610     // Reasoning goes as follows:
11611     // * Suppose the IV did self wrap.
11612     // * If Stride evenly divides the iteration space, then once wrap
11613     //   occurs, the loop must revisit the same values.
11614     // * We know that RHS is invariant, and that none of those values
11615     //   caused this exit to be taken previously.  Thus, this exit is
11616     //   dynamically dead.
11617     // * If this is the sole exit, then a dead exit implies the loop
11618     //   must be infinite if there are no abnormal exits.
11619     // * If the loop were infinite, then it must either not be mustprogress
11620     //   or have side effects. Otherwise, it must be UB.
11621     // * It can't (by assumption), be UB so we have contradicted our
11622     //   premise and can conclude the IV did not in fact self-wrap.
11623     if (!isLoopInvariant(RHS, L))
11624       return false;
11625 
11626     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11627     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11628       return false;
11629 
11630     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11631       return false;
11632 
11633     return loopIsFiniteByAssumption(L);
11634   };
11635 
11636   if (!IV) {
11637     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11638       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11639       if (AR && AR->getLoop() == L && AR->isAffine()) {
11640         auto Flags = AR->getNoWrapFlags();
11641         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11642           Flags = setFlags(Flags, SCEV::FlagNW);
11643 
11644           SmallVector<const SCEV*> Operands{AR->operands()};
11645           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11646 
11647           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11648         }
11649         if (AR->hasNoUnsignedWrap()) {
11650           // Emulate what getZeroExtendExpr would have done during construction
11651           // if we'd been able to infer the fact just above at that time.
11652           const SCEV *Step = AR->getStepRecurrence(*this);
11653           Type *Ty = ZExt->getType();
11654           auto *S = getAddRecExpr(
11655             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11656             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11657           IV = dyn_cast<SCEVAddRecExpr>(S);
11658         }
11659       }
11660     }
11661   }
11662 
11663 
11664   if (!IV && AllowPredicates) {
11665     // Try to make this an AddRec using runtime tests, in the first X
11666     // iterations of this loop, where X is the SCEV expression found by the
11667     // algorithm below.
11668     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11669     PredicatedIV = true;
11670   }
11671 
11672   // Avoid weird loops
11673   if (!IV || IV->getLoop() != L || !IV->isAffine())
11674     return getCouldNotCompute();
11675 
11676   // A precondition of this method is that the condition being analyzed
11677   // reaches an exiting branch which dominates the latch.  Given that, we can
11678   // assume that an increment which violates the nowrap specification and
11679   // produces poison must cause undefined behavior when the resulting poison
11680   // value is branched upon and thus we can conclude that the backedge is
11681   // taken no more often than would be required to produce that poison value.
11682   // Note that a well defined loop can exit on the iteration which violates
11683   // the nowrap specification if there is another exit (either explicit or
11684   // implicit/exceptional) which causes the loop to execute before the
11685   // exiting instruction we're analyzing would trigger UB.
11686   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11687   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11688   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11689 
11690   const SCEV *Stride = IV->getStepRecurrence(*this);
11691 
11692   bool PositiveStride = isKnownPositive(Stride);
11693 
11694   // Avoid negative or zero stride values.
11695   if (!PositiveStride) {
11696     // We can compute the correct backedge taken count for loops with unknown
11697     // strides if we can prove that the loop is not an infinite loop with side
11698     // effects. Here's the loop structure we are trying to handle -
11699     //
11700     // i = start
11701     // do {
11702     //   A[i] = i;
11703     //   i += s;
11704     // } while (i < end);
11705     //
11706     // The backedge taken count for such loops is evaluated as -
11707     // (max(end, start + stride) - start - 1) /u stride
11708     //
11709     // The additional preconditions that we need to check to prove correctness
11710     // of the above formula is as follows -
11711     //
11712     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11713     //    NoWrap flag).
11714     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11715     //    no side effects within the loop)
11716     // c) loop has a single static exit (with no abnormal exits)
11717     //
11718     // Precondition a) implies that if the stride is negative, this is a single
11719     // trip loop. The backedge taken count formula reduces to zero in this case.
11720     //
11721     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11722     // then a zero stride means the backedge can't be taken without executing
11723     // undefined behavior.
11724     //
11725     // The positive stride case is the same as isKnownPositive(Stride) returning
11726     // true (original behavior of the function).
11727     //
11728     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11729         !loopHasNoAbnormalExits(L))
11730       return getCouldNotCompute();
11731 
11732     // This bailout is protecting the logic in computeMaxBECountForLT which
11733     // has not yet been sufficiently auditted or tested with negative strides.
11734     // We used to filter out all known-non-positive cases here, we're in the
11735     // process of being less restrictive bit by bit.
11736     if (IsSigned && isKnownNonPositive(Stride))
11737       return getCouldNotCompute();
11738 
11739     if (!isKnownNonZero(Stride)) {
11740       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11741       // if it might eventually be greater than start and if so, on which
11742       // iteration.  We can't even produce a useful upper bound.
11743       if (!isLoopInvariant(RHS, L))
11744         return getCouldNotCompute();
11745 
11746       // We allow a potentially zero stride, but we need to divide by stride
11747       // below.  Since the loop can't be infinite and this check must control
11748       // the sole exit, we can infer the exit must be taken on the first
11749       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11750       // we know the numerator in the divides below must be zero, so we can
11751       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11752       // and produce the right result.
11753       // FIXME: Handle the case where Stride is poison?
11754       auto wouldZeroStrideBeUB = [&]() {
11755         // Proof by contradiction.  Suppose the stride were zero.  If we can
11756         // prove that the backedge *is* taken on the first iteration, then since
11757         // we know this condition controls the sole exit, we must have an
11758         // infinite loop.  We can't have a (well defined) infinite loop per
11759         // check just above.
11760         // Note: The (Start - Stride) term is used to get the start' term from
11761         // (start' + stride,+,stride). Remember that we only care about the
11762         // result of this expression when stride == 0 at runtime.
11763         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11764         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11765       };
11766       if (!wouldZeroStrideBeUB()) {
11767         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11768       }
11769     }
11770   } else if (!Stride->isOne() && !NoWrap) {
11771     auto isUBOnWrap = [&]() {
11772       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11773       // follows trivially from the fact that every (un)signed-wrapped, but
11774       // not self-wrapped value must be LT than the last value before
11775       // (un)signed wrap.  Since we know that last value didn't exit, nor
11776       // will any smaller one.
11777       return canAssumeNoSelfWrap(IV);
11778     };
11779 
11780     // Avoid proven overflow cases: this will ensure that the backedge taken
11781     // count will not generate any unsigned overflow. Relaxed no-overflow
11782     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11783     // undefined behaviors like the case of C language.
11784     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11785       return getCouldNotCompute();
11786   }
11787 
11788   // On all paths just preceeding, we established the following invariant:
11789   //   IV can be assumed not to overflow up to and including the exiting
11790   //   iteration.  We proved this in one of two ways:
11791   //   1) We can show overflow doesn't occur before the exiting iteration
11792   //      1a) canIVOverflowOnLT, and b) step of one
11793   //   2) We can show that if overflow occurs, the loop must execute UB
11794   //      before any possible exit.
11795   // Note that we have not yet proved RHS invariant (in general).
11796 
11797   const SCEV *Start = IV->getStart();
11798 
11799   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11800   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11801   // Use integer-typed versions for actual computation; we can't subtract
11802   // pointers in general.
11803   const SCEV *OrigStart = Start;
11804   const SCEV *OrigRHS = RHS;
11805   if (Start->getType()->isPointerTy()) {
11806     Start = getLosslessPtrToIntExpr(Start);
11807     if (isa<SCEVCouldNotCompute>(Start))
11808       return Start;
11809   }
11810   if (RHS->getType()->isPointerTy()) {
11811     RHS = getLosslessPtrToIntExpr(RHS);
11812     if (isa<SCEVCouldNotCompute>(RHS))
11813       return RHS;
11814   }
11815 
11816   // When the RHS is not invariant, we do not know the end bound of the loop and
11817   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11818   // calculate the MaxBECount, given the start, stride and max value for the end
11819   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11820   // checked above).
11821   if (!isLoopInvariant(RHS, L)) {
11822     const SCEV *MaxBECount = computeMaxBECountForLT(
11823         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11824     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11825                      false /*MaxOrZero*/, Predicates);
11826   }
11827 
11828   // We use the expression (max(End,Start)-Start)/Stride to describe the
11829   // backedge count, as if the backedge is taken at least once max(End,Start)
11830   // is End and so the result is as above, and if not max(End,Start) is Start
11831   // so we get a backedge count of zero.
11832   const SCEV *BECount = nullptr;
11833   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11834   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11835   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11836   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11837   // Can we prove (max(RHS,Start) > Start - Stride?
11838   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11839       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11840     // In this case, we can use a refined formula for computing backedge taken
11841     // count.  The general formula remains:
11842     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11843     // We want to use the alternate formula:
11844     //   "((End - 1) - (Start - Stride)) /u Stride"
11845     // Let's do a quick case analysis to show these are equivalent under
11846     // our precondition that max(RHS,Start) > Start - Stride.
11847     // * For RHS <= Start, the backedge-taken count must be zero.
11848     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11849     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11850     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11851     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11852     //     this to the stride of 1 case.
11853     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11854     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11855     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11856     //   "((RHS - (Start - Stride) - 1) /u Stride".
11857     //   Our preconditions trivially imply no overflow in that form.
11858     const SCEV *MinusOne = getMinusOne(Stride->getType());
11859     const SCEV *Numerator =
11860         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
11861     BECount = getUDivExpr(Numerator, Stride);
11862   }
11863 
11864   const SCEV *BECountIfBackedgeTaken = nullptr;
11865   if (!BECount) {
11866     auto canProveRHSGreaterThanEqualStart = [&]() {
11867       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11868       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11869         return true;
11870 
11871       // (RHS > Start - 1) implies RHS >= Start.
11872       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11873       //   "Start - 1" doesn't overflow.
11874       // * For signed comparison, if Start - 1 does overflow, it's equal
11875       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11876       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11877       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11878       //
11879       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11880       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11881       auto *StartMinusOne = getAddExpr(OrigStart,
11882                                        getMinusOne(OrigStart->getType()));
11883       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11884     };
11885 
11886     // If we know that RHS >= Start in the context of loop, then we know that
11887     // max(RHS, Start) = RHS at this point.
11888     const SCEV *End;
11889     if (canProveRHSGreaterThanEqualStart()) {
11890       End = RHS;
11891     } else {
11892       // If RHS < Start, the backedge will be taken zero times.  So in
11893       // general, we can write the backedge-taken count as:
11894       //
11895       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11896       //
11897       // We convert it to the following to make it more convenient for SCEV:
11898       //
11899       //     ceil(max(RHS, Start) - Start) / Stride
11900       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11901 
11902       // See what would happen if we assume the backedge is taken. This is
11903       // used to compute MaxBECount.
11904       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11905     }
11906 
11907     // At this point, we know:
11908     //
11909     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11910     // 2. The index variable doesn't overflow.
11911     //
11912     // Therefore, we know N exists such that
11913     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11914     // doesn't overflow.
11915     //
11916     // Using this information, try to prove whether the addition in
11917     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11918     const SCEV *One = getOne(Stride->getType());
11919     bool MayAddOverflow = [&] {
11920       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11921         if (StrideC->getAPInt().isPowerOf2()) {
11922           // Suppose Stride is a power of two, and Start/End are unsigned
11923           // integers.  Let UMAX be the largest representable unsigned
11924           // integer.
11925           //
11926           // By the preconditions of this function, we know
11927           // "(Start + Stride * N) >= End", and this doesn't overflow.
11928           // As a formula:
11929           //
11930           //   End <= (Start + Stride * N) <= UMAX
11931           //
11932           // Subtracting Start from all the terms:
11933           //
11934           //   End - Start <= Stride * N <= UMAX - Start
11935           //
11936           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11937           //
11938           //   End - Start <= Stride * N <= UMAX
11939           //
11940           // Stride * N is a multiple of Stride. Therefore,
11941           //
11942           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11943           //
11944           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11945           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11946           //
11947           //   End - Start <= Stride * N <= UMAX - Stride - 1
11948           //
11949           // Dropping the middle term:
11950           //
11951           //   End - Start <= UMAX - Stride - 1
11952           //
11953           // Adding Stride - 1 to both sides:
11954           //
11955           //   (End - Start) + (Stride - 1) <= UMAX
11956           //
11957           // In other words, the addition doesn't have unsigned overflow.
11958           //
11959           // A similar proof works if we treat Start/End as signed values.
11960           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11961           // use signed max instead of unsigned max. Note that we're trying
11962           // to prove a lack of unsigned overflow in either case.
11963           return false;
11964         }
11965       }
11966       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11967         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11968         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11969         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11970         //
11971         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11972         return false;
11973       }
11974       return true;
11975     }();
11976 
11977     const SCEV *Delta = getMinusSCEV(End, Start);
11978     if (!MayAddOverflow) {
11979       // floor((D + (S - 1)) / S)
11980       // We prefer this formulation if it's legal because it's fewer operations.
11981       BECount =
11982           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11983     } else {
11984       BECount = getUDivCeilSCEV(Delta, Stride);
11985     }
11986   }
11987 
11988   const SCEV *MaxBECount;
11989   bool MaxOrZero = false;
11990   if (isa<SCEVConstant>(BECount)) {
11991     MaxBECount = BECount;
11992   } else if (BECountIfBackedgeTaken &&
11993              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11994     // If we know exactly how many times the backedge will be taken if it's
11995     // taken at least once, then the backedge count will either be that or
11996     // zero.
11997     MaxBECount = BECountIfBackedgeTaken;
11998     MaxOrZero = true;
11999   } else {
12000     MaxBECount = computeMaxBECountForLT(
12001         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12002   }
12003 
12004   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12005       !isa<SCEVCouldNotCompute>(BECount))
12006     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12007 
12008   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12009 }
12010 
12011 ScalarEvolution::ExitLimit
12012 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12013                                      const Loop *L, bool IsSigned,
12014                                      bool ControlsExit, bool AllowPredicates) {
12015   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12016   // We handle only IV > Invariant
12017   if (!isLoopInvariant(RHS, L))
12018     return getCouldNotCompute();
12019 
12020   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12021   if (!IV && AllowPredicates)
12022     // Try to make this an AddRec using runtime tests, in the first X
12023     // iterations of this loop, where X is the SCEV expression found by the
12024     // algorithm below.
12025     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12026 
12027   // Avoid weird loops
12028   if (!IV || IV->getLoop() != L || !IV->isAffine())
12029     return getCouldNotCompute();
12030 
12031   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12032   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12033   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12034 
12035   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12036 
12037   // Avoid negative or zero stride values
12038   if (!isKnownPositive(Stride))
12039     return getCouldNotCompute();
12040 
12041   // Avoid proven overflow cases: this will ensure that the backedge taken count
12042   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12043   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12044   // behaviors like the case of C language.
12045   if (!Stride->isOne() && !NoWrap)
12046     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12047       return getCouldNotCompute();
12048 
12049   const SCEV *Start = IV->getStart();
12050   const SCEV *End = RHS;
12051   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12052     // If we know that Start >= RHS in the context of loop, then we know that
12053     // min(RHS, Start) = RHS at this point.
12054     if (isLoopEntryGuardedByCond(
12055             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12056       End = RHS;
12057     else
12058       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12059   }
12060 
12061   if (Start->getType()->isPointerTy()) {
12062     Start = getLosslessPtrToIntExpr(Start);
12063     if (isa<SCEVCouldNotCompute>(Start))
12064       return Start;
12065   }
12066   if (End->getType()->isPointerTy()) {
12067     End = getLosslessPtrToIntExpr(End);
12068     if (isa<SCEVCouldNotCompute>(End))
12069       return End;
12070   }
12071 
12072   // Compute ((Start - End) + (Stride - 1)) / Stride.
12073   // FIXME: This can overflow. Holding off on fixing this for now;
12074   // howManyGreaterThans will hopefully be gone soon.
12075   const SCEV *One = getOne(Stride->getType());
12076   const SCEV *BECount = getUDivExpr(
12077       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12078 
12079   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12080                             : getUnsignedRangeMax(Start);
12081 
12082   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12083                              : getUnsignedRangeMin(Stride);
12084 
12085   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12086   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12087                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12088 
12089   // Although End can be a MIN expression we estimate MinEnd considering only
12090   // the case End = RHS. This is safe because in the other case (Start - End)
12091   // is zero, leading to a zero maximum backedge taken count.
12092   APInt MinEnd =
12093     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12094              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12095 
12096   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12097                                ? BECount
12098                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12099                                                  getConstant(MinStride));
12100 
12101   if (isa<SCEVCouldNotCompute>(MaxBECount))
12102     MaxBECount = BECount;
12103 
12104   return ExitLimit(BECount, MaxBECount, false, Predicates);
12105 }
12106 
12107 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12108                                                     ScalarEvolution &SE) const {
12109   if (Range.isFullSet())  // Infinite loop.
12110     return SE.getCouldNotCompute();
12111 
12112   // If the start is a non-zero constant, shift the range to simplify things.
12113   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12114     if (!SC->getValue()->isZero()) {
12115       SmallVector<const SCEV *, 4> Operands(operands());
12116       Operands[0] = SE.getZero(SC->getType());
12117       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12118                                              getNoWrapFlags(FlagNW));
12119       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12120         return ShiftedAddRec->getNumIterationsInRange(
12121             Range.subtract(SC->getAPInt()), SE);
12122       // This is strange and shouldn't happen.
12123       return SE.getCouldNotCompute();
12124     }
12125 
12126   // The only time we can solve this is when we have all constant indices.
12127   // Otherwise, we cannot determine the overflow conditions.
12128   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12129     return SE.getCouldNotCompute();
12130 
12131   // Okay at this point we know that all elements of the chrec are constants and
12132   // that the start element is zero.
12133 
12134   // First check to see if the range contains zero.  If not, the first
12135   // iteration exits.
12136   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12137   if (!Range.contains(APInt(BitWidth, 0)))
12138     return SE.getZero(getType());
12139 
12140   if (isAffine()) {
12141     // If this is an affine expression then we have this situation:
12142     //   Solve {0,+,A} in Range  ===  Ax in Range
12143 
12144     // We know that zero is in the range.  If A is positive then we know that
12145     // the upper value of the range must be the first possible exit value.
12146     // If A is negative then the lower of the range is the last possible loop
12147     // value.  Also note that we already checked for a full range.
12148     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12149     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12150 
12151     // The exit value should be (End+A)/A.
12152     APInt ExitVal = (End + A).udiv(A);
12153     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12154 
12155     // Evaluate at the exit value.  If we really did fall out of the valid
12156     // range, then we computed our trip count, otherwise wrap around or other
12157     // things must have happened.
12158     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12159     if (Range.contains(Val->getValue()))
12160       return SE.getCouldNotCompute();  // Something strange happened
12161 
12162     // Ensure that the previous value is in the range.  This is a sanity check.
12163     assert(Range.contains(
12164            EvaluateConstantChrecAtConstant(this,
12165            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12166            "Linear scev computation is off in a bad way!");
12167     return SE.getConstant(ExitValue);
12168   }
12169 
12170   if (isQuadratic()) {
12171     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12172       return SE.getConstant(S.getValue());
12173   }
12174 
12175   return SE.getCouldNotCompute();
12176 }
12177 
12178 const SCEVAddRecExpr *
12179 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12180   assert(getNumOperands() > 1 && "AddRec with zero step?");
12181   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12182   // but in this case we cannot guarantee that the value returned will be an
12183   // AddRec because SCEV does not have a fixed point where it stops
12184   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12185   // may happen if we reach arithmetic depth limit while simplifying. So we
12186   // construct the returned value explicitly.
12187   SmallVector<const SCEV *, 3> Ops;
12188   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12189   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12190   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12191     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12192   // We know that the last operand is not a constant zero (otherwise it would
12193   // have been popped out earlier). This guarantees us that if the result has
12194   // the same last operand, then it will also not be popped out, meaning that
12195   // the returned value will be an AddRec.
12196   const SCEV *Last = getOperand(getNumOperands() - 1);
12197   assert(!Last->isZero() && "Recurrency with zero step?");
12198   Ops.push_back(Last);
12199   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12200                                                SCEV::FlagAnyWrap));
12201 }
12202 
12203 // Return true when S contains at least an undef value.
12204 static inline bool containsUndefs(const SCEV *S) {
12205   return SCEVExprContains(S, [](const SCEV *S) {
12206     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12207       return isa<UndefValue>(SU->getValue());
12208     return false;
12209   });
12210 }
12211 
12212 /// Return the size of an element read or written by Inst.
12213 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12214   Type *Ty;
12215   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12216     Ty = Store->getValueOperand()->getType();
12217   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12218     Ty = Load->getType();
12219   else
12220     return nullptr;
12221 
12222   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12223   return getSizeOfExpr(ETy, Ty);
12224 }
12225 
12226 //===----------------------------------------------------------------------===//
12227 //                   SCEVCallbackVH Class Implementation
12228 //===----------------------------------------------------------------------===//
12229 
12230 void ScalarEvolution::SCEVCallbackVH::deleted() {
12231   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12232   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12233     SE->ConstantEvolutionLoopExitValue.erase(PN);
12234   SE->eraseValueFromMap(getValPtr());
12235   // this now dangles!
12236 }
12237 
12238 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12239   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12240 
12241   // Forget all the expressions associated with users of the old value,
12242   // so that future queries will recompute the expressions using the new
12243   // value.
12244   Value *Old = getValPtr();
12245   SmallVector<User *, 16> Worklist(Old->users());
12246   SmallPtrSet<User *, 8> Visited;
12247   while (!Worklist.empty()) {
12248     User *U = Worklist.pop_back_val();
12249     // Deleting the Old value will cause this to dangle. Postpone
12250     // that until everything else is done.
12251     if (U == Old)
12252       continue;
12253     if (!Visited.insert(U).second)
12254       continue;
12255     if (PHINode *PN = dyn_cast<PHINode>(U))
12256       SE->ConstantEvolutionLoopExitValue.erase(PN);
12257     SE->eraseValueFromMap(U);
12258     llvm::append_range(Worklist, U->users());
12259   }
12260   // Delete the Old value.
12261   if (PHINode *PN = dyn_cast<PHINode>(Old))
12262     SE->ConstantEvolutionLoopExitValue.erase(PN);
12263   SE->eraseValueFromMap(Old);
12264   // this now dangles!
12265 }
12266 
12267 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12268   : CallbackVH(V), SE(se) {}
12269 
12270 //===----------------------------------------------------------------------===//
12271 //                   ScalarEvolution Class Implementation
12272 //===----------------------------------------------------------------------===//
12273 
12274 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12275                                  AssumptionCache &AC, DominatorTree &DT,
12276                                  LoopInfo &LI)
12277     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12278       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12279       LoopDispositions(64), BlockDispositions(64) {
12280   // To use guards for proving predicates, we need to scan every instruction in
12281   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12282   // time if the IR does not actually contain any calls to
12283   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12284   //
12285   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12286   // to _add_ guards to the module when there weren't any before, and wants
12287   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12288   // efficient in lieu of being smart in that rather obscure case.
12289 
12290   auto *GuardDecl = F.getParent()->getFunction(
12291       Intrinsic::getName(Intrinsic::experimental_guard));
12292   HasGuards = GuardDecl && !GuardDecl->use_empty();
12293 }
12294 
12295 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12296     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12297       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12298       ValueExprMap(std::move(Arg.ValueExprMap)),
12299       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12300       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12301       PendingMerges(std::move(Arg.PendingMerges)),
12302       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12303       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12304       PredicatedBackedgeTakenCounts(
12305           std::move(Arg.PredicatedBackedgeTakenCounts)),
12306       ConstantEvolutionLoopExitValue(
12307           std::move(Arg.ConstantEvolutionLoopExitValue)),
12308       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12309       LoopDispositions(std::move(Arg.LoopDispositions)),
12310       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12311       BlockDispositions(std::move(Arg.BlockDispositions)),
12312       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12313       SignedRanges(std::move(Arg.SignedRanges)),
12314       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12315       UniquePreds(std::move(Arg.UniquePreds)),
12316       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12317       LoopUsers(std::move(Arg.LoopUsers)),
12318       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12319       FirstUnknown(Arg.FirstUnknown) {
12320   Arg.FirstUnknown = nullptr;
12321 }
12322 
12323 ScalarEvolution::~ScalarEvolution() {
12324   // Iterate through all the SCEVUnknown instances and call their
12325   // destructors, so that they release their references to their values.
12326   for (SCEVUnknown *U = FirstUnknown; U;) {
12327     SCEVUnknown *Tmp = U;
12328     U = U->Next;
12329     Tmp->~SCEVUnknown();
12330   }
12331   FirstUnknown = nullptr;
12332 
12333   ExprValueMap.clear();
12334   ValueExprMap.clear();
12335   HasRecMap.clear();
12336   BackedgeTakenCounts.clear();
12337   PredicatedBackedgeTakenCounts.clear();
12338 
12339   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12340   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12341   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12342   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12343   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12344 }
12345 
12346 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12347   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12348 }
12349 
12350 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12351                           const Loop *L) {
12352   // Print all inner loops first
12353   for (Loop *I : *L)
12354     PrintLoopInfo(OS, SE, I);
12355 
12356   OS << "Loop ";
12357   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12358   OS << ": ";
12359 
12360   SmallVector<BasicBlock *, 8> ExitingBlocks;
12361   L->getExitingBlocks(ExitingBlocks);
12362   if (ExitingBlocks.size() != 1)
12363     OS << "<multiple exits> ";
12364 
12365   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12366     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12367   else
12368     OS << "Unpredictable backedge-taken count.\n";
12369 
12370   if (ExitingBlocks.size() > 1)
12371     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12372       OS << "  exit count for " << ExitingBlock->getName() << ": "
12373          << *SE->getExitCount(L, ExitingBlock) << "\n";
12374     }
12375 
12376   OS << "Loop ";
12377   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12378   OS << ": ";
12379 
12380   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12381     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12382     if (SE->isBackedgeTakenCountMaxOrZero(L))
12383       OS << ", actual taken count either this or zero.";
12384   } else {
12385     OS << "Unpredictable max backedge-taken count. ";
12386   }
12387 
12388   OS << "\n"
12389         "Loop ";
12390   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12391   OS << ": ";
12392 
12393   SCEVUnionPredicate Pred;
12394   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12395   if (!isa<SCEVCouldNotCompute>(PBT)) {
12396     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12397     OS << " Predicates:\n";
12398     Pred.print(OS, 4);
12399   } else {
12400     OS << "Unpredictable predicated backedge-taken count. ";
12401   }
12402   OS << "\n";
12403 
12404   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12405     OS << "Loop ";
12406     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12407     OS << ": ";
12408     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12409   }
12410 }
12411 
12412 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12413   switch (LD) {
12414   case ScalarEvolution::LoopVariant:
12415     return "Variant";
12416   case ScalarEvolution::LoopInvariant:
12417     return "Invariant";
12418   case ScalarEvolution::LoopComputable:
12419     return "Computable";
12420   }
12421   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12422 }
12423 
12424 void ScalarEvolution::print(raw_ostream &OS) const {
12425   // ScalarEvolution's implementation of the print method is to print
12426   // out SCEV values of all instructions that are interesting. Doing
12427   // this potentially causes it to create new SCEV objects though,
12428   // which technically conflicts with the const qualifier. This isn't
12429   // observable from outside the class though, so casting away the
12430   // const isn't dangerous.
12431   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12432 
12433   if (ClassifyExpressions) {
12434     OS << "Classifying expressions for: ";
12435     F.printAsOperand(OS, /*PrintType=*/false);
12436     OS << "\n";
12437     for (Instruction &I : instructions(F))
12438       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12439         OS << I << '\n';
12440         OS << "  -->  ";
12441         const SCEV *SV = SE.getSCEV(&I);
12442         SV->print(OS);
12443         if (!isa<SCEVCouldNotCompute>(SV)) {
12444           OS << " U: ";
12445           SE.getUnsignedRange(SV).print(OS);
12446           OS << " S: ";
12447           SE.getSignedRange(SV).print(OS);
12448         }
12449 
12450         const Loop *L = LI.getLoopFor(I.getParent());
12451 
12452         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12453         if (AtUse != SV) {
12454           OS << "  -->  ";
12455           AtUse->print(OS);
12456           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12457             OS << " U: ";
12458             SE.getUnsignedRange(AtUse).print(OS);
12459             OS << " S: ";
12460             SE.getSignedRange(AtUse).print(OS);
12461           }
12462         }
12463 
12464         if (L) {
12465           OS << "\t\t" "Exits: ";
12466           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12467           if (!SE.isLoopInvariant(ExitValue, L)) {
12468             OS << "<<Unknown>>";
12469           } else {
12470             OS << *ExitValue;
12471           }
12472 
12473           bool First = true;
12474           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12475             if (First) {
12476               OS << "\t\t" "LoopDispositions: { ";
12477               First = false;
12478             } else {
12479               OS << ", ";
12480             }
12481 
12482             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12483             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12484           }
12485 
12486           for (auto *InnerL : depth_first(L)) {
12487             if (InnerL == L)
12488               continue;
12489             if (First) {
12490               OS << "\t\t" "LoopDispositions: { ";
12491               First = false;
12492             } else {
12493               OS << ", ";
12494             }
12495 
12496             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12497             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12498           }
12499 
12500           OS << " }";
12501         }
12502 
12503         OS << "\n";
12504       }
12505   }
12506 
12507   OS << "Determining loop execution counts for: ";
12508   F.printAsOperand(OS, /*PrintType=*/false);
12509   OS << "\n";
12510   for (Loop *I : LI)
12511     PrintLoopInfo(OS, &SE, I);
12512 }
12513 
12514 ScalarEvolution::LoopDisposition
12515 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12516   auto &Values = LoopDispositions[S];
12517   for (auto &V : Values) {
12518     if (V.getPointer() == L)
12519       return V.getInt();
12520   }
12521   Values.emplace_back(L, LoopVariant);
12522   LoopDisposition D = computeLoopDisposition(S, L);
12523   auto &Values2 = LoopDispositions[S];
12524   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12525     if (V.getPointer() == L) {
12526       V.setInt(D);
12527       break;
12528     }
12529   }
12530   return D;
12531 }
12532 
12533 ScalarEvolution::LoopDisposition
12534 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12535   switch (S->getSCEVType()) {
12536   case scConstant:
12537     return LoopInvariant;
12538   case scPtrToInt:
12539   case scTruncate:
12540   case scZeroExtend:
12541   case scSignExtend:
12542     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12543   case scAddRecExpr: {
12544     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12545 
12546     // If L is the addrec's loop, it's computable.
12547     if (AR->getLoop() == L)
12548       return LoopComputable;
12549 
12550     // Add recurrences are never invariant in the function-body (null loop).
12551     if (!L)
12552       return LoopVariant;
12553 
12554     // Everything that is not defined at loop entry is variant.
12555     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12556       return LoopVariant;
12557     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12558            " dominate the contained loop's header?");
12559 
12560     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12561     if (AR->getLoop()->contains(L))
12562       return LoopInvariant;
12563 
12564     // This recurrence is variant w.r.t. L if any of its operands
12565     // are variant.
12566     for (auto *Op : AR->operands())
12567       if (!isLoopInvariant(Op, L))
12568         return LoopVariant;
12569 
12570     // Otherwise it's loop-invariant.
12571     return LoopInvariant;
12572   }
12573   case scAddExpr:
12574   case scMulExpr:
12575   case scUMaxExpr:
12576   case scSMaxExpr:
12577   case scUMinExpr:
12578   case scSMinExpr: {
12579     bool HasVarying = false;
12580     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12581       LoopDisposition D = getLoopDisposition(Op, L);
12582       if (D == LoopVariant)
12583         return LoopVariant;
12584       if (D == LoopComputable)
12585         HasVarying = true;
12586     }
12587     return HasVarying ? LoopComputable : LoopInvariant;
12588   }
12589   case scUDivExpr: {
12590     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12591     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12592     if (LD == LoopVariant)
12593       return LoopVariant;
12594     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12595     if (RD == LoopVariant)
12596       return LoopVariant;
12597     return (LD == LoopInvariant && RD == LoopInvariant) ?
12598            LoopInvariant : LoopComputable;
12599   }
12600   case scUnknown:
12601     // All non-instruction values are loop invariant.  All instructions are loop
12602     // invariant if they are not contained in the specified loop.
12603     // Instructions are never considered invariant in the function body
12604     // (null loop) because they are defined within the "loop".
12605     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12606       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12607     return LoopInvariant;
12608   case scCouldNotCompute:
12609     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12610   }
12611   llvm_unreachable("Unknown SCEV kind!");
12612 }
12613 
12614 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12615   return getLoopDisposition(S, L) == LoopInvariant;
12616 }
12617 
12618 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12619   return getLoopDisposition(S, L) == LoopComputable;
12620 }
12621 
12622 ScalarEvolution::BlockDisposition
12623 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12624   auto &Values = BlockDispositions[S];
12625   for (auto &V : Values) {
12626     if (V.getPointer() == BB)
12627       return V.getInt();
12628   }
12629   Values.emplace_back(BB, DoesNotDominateBlock);
12630   BlockDisposition D = computeBlockDisposition(S, BB);
12631   auto &Values2 = BlockDispositions[S];
12632   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12633     if (V.getPointer() == BB) {
12634       V.setInt(D);
12635       break;
12636     }
12637   }
12638   return D;
12639 }
12640 
12641 ScalarEvolution::BlockDisposition
12642 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12643   switch (S->getSCEVType()) {
12644   case scConstant:
12645     return ProperlyDominatesBlock;
12646   case scPtrToInt:
12647   case scTruncate:
12648   case scZeroExtend:
12649   case scSignExtend:
12650     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12651   case scAddRecExpr: {
12652     // This uses a "dominates" query instead of "properly dominates" query
12653     // to test for proper dominance too, because the instruction which
12654     // produces the addrec's value is a PHI, and a PHI effectively properly
12655     // dominates its entire containing block.
12656     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12657     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12658       return DoesNotDominateBlock;
12659 
12660     // Fall through into SCEVNAryExpr handling.
12661     LLVM_FALLTHROUGH;
12662   }
12663   case scAddExpr:
12664   case scMulExpr:
12665   case scUMaxExpr:
12666   case scSMaxExpr:
12667   case scUMinExpr:
12668   case scSMinExpr: {
12669     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12670     bool Proper = true;
12671     for (const SCEV *NAryOp : NAry->operands()) {
12672       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12673       if (D == DoesNotDominateBlock)
12674         return DoesNotDominateBlock;
12675       if (D == DominatesBlock)
12676         Proper = false;
12677     }
12678     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12679   }
12680   case scUDivExpr: {
12681     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12682     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12683     BlockDisposition LD = getBlockDisposition(LHS, BB);
12684     if (LD == DoesNotDominateBlock)
12685       return DoesNotDominateBlock;
12686     BlockDisposition RD = getBlockDisposition(RHS, BB);
12687     if (RD == DoesNotDominateBlock)
12688       return DoesNotDominateBlock;
12689     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12690       ProperlyDominatesBlock : DominatesBlock;
12691   }
12692   case scUnknown:
12693     if (Instruction *I =
12694           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12695       if (I->getParent() == BB)
12696         return DominatesBlock;
12697       if (DT.properlyDominates(I->getParent(), BB))
12698         return ProperlyDominatesBlock;
12699       return DoesNotDominateBlock;
12700     }
12701     return ProperlyDominatesBlock;
12702   case scCouldNotCompute:
12703     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12704   }
12705   llvm_unreachable("Unknown SCEV kind!");
12706 }
12707 
12708 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12709   return getBlockDisposition(S, BB) >= DominatesBlock;
12710 }
12711 
12712 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12713   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12714 }
12715 
12716 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12717   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12718 }
12719 
12720 void
12721 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12722   ValuesAtScopes.erase(S);
12723   LoopDispositions.erase(S);
12724   BlockDispositions.erase(S);
12725   UnsignedRanges.erase(S);
12726   SignedRanges.erase(S);
12727   ExprValueMap.erase(S);
12728   HasRecMap.erase(S);
12729   MinTrailingZerosCache.erase(S);
12730 
12731   for (auto I = PredicatedSCEVRewrites.begin();
12732        I != PredicatedSCEVRewrites.end();) {
12733     std::pair<const SCEV *, const Loop *> Entry = I->first;
12734     if (Entry.first == S)
12735       PredicatedSCEVRewrites.erase(I++);
12736     else
12737       ++I;
12738   }
12739 
12740   auto RemoveSCEVFromBackedgeMap =
12741       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12742         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12743           BackedgeTakenInfo &BEInfo = I->second;
12744           if (BEInfo.hasOperand(S))
12745             Map.erase(I++);
12746           else
12747             ++I;
12748         }
12749       };
12750 
12751   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12752   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12753 }
12754 
12755 void
12756 ScalarEvolution::getUsedLoops(const SCEV *S,
12757                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12758   struct FindUsedLoops {
12759     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12760         : LoopsUsed(LoopsUsed) {}
12761     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12762     bool follow(const SCEV *S) {
12763       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12764         LoopsUsed.insert(AR->getLoop());
12765       return true;
12766     }
12767 
12768     bool isDone() const { return false; }
12769   };
12770 
12771   FindUsedLoops F(LoopsUsed);
12772   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12773 }
12774 
12775 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12776   SmallPtrSet<const Loop *, 8> LoopsUsed;
12777   getUsedLoops(S, LoopsUsed);
12778   for (auto *L : LoopsUsed)
12779     LoopUsers[L].push_back(S);
12780 }
12781 
12782 void ScalarEvolution::verify() const {
12783   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12784   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12785 
12786   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12787 
12788   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12789   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12790     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12791 
12792     const SCEV *visitConstant(const SCEVConstant *Constant) {
12793       return SE.getConstant(Constant->getAPInt());
12794     }
12795 
12796     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12797       return SE.getUnknown(Expr->getValue());
12798     }
12799 
12800     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12801       return SE.getCouldNotCompute();
12802     }
12803   };
12804 
12805   SCEVMapper SCM(SE2);
12806 
12807   while (!LoopStack.empty()) {
12808     auto *L = LoopStack.pop_back_val();
12809     llvm::append_range(LoopStack, *L);
12810 
12811     auto *CurBECount = SCM.visit(
12812         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12813     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12814 
12815     if (CurBECount == SE2.getCouldNotCompute() ||
12816         NewBECount == SE2.getCouldNotCompute()) {
12817       // NB! This situation is legal, but is very suspicious -- whatever pass
12818       // change the loop to make a trip count go from could not compute to
12819       // computable or vice-versa *should have* invalidated SCEV.  However, we
12820       // choose not to assert here (for now) since we don't want false
12821       // positives.
12822       continue;
12823     }
12824 
12825     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12826       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12827       // not propagate undef aggressively).  This means we can (and do) fail
12828       // verification in cases where a transform makes the trip count of a loop
12829       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12830       // both cases the loop iterates "undef" times, but SCEV thinks we
12831       // increased the trip count of the loop by 1 incorrectly.
12832       continue;
12833     }
12834 
12835     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12836         SE.getTypeSizeInBits(NewBECount->getType()))
12837       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12838     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12839              SE.getTypeSizeInBits(NewBECount->getType()))
12840       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12841 
12842     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12843 
12844     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12845     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12846       dbgs() << "Trip Count for " << *L << " Changed!\n";
12847       dbgs() << "Old: " << *CurBECount << "\n";
12848       dbgs() << "New: " << *NewBECount << "\n";
12849       dbgs() << "Delta: " << *Delta << "\n";
12850       std::abort();
12851     }
12852   }
12853 
12854   // Collect all valid loops currently in LoopInfo.
12855   SmallPtrSet<Loop *, 32> ValidLoops;
12856   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12857   while (!Worklist.empty()) {
12858     Loop *L = Worklist.pop_back_val();
12859     if (ValidLoops.contains(L))
12860       continue;
12861     ValidLoops.insert(L);
12862     Worklist.append(L->begin(), L->end());
12863   }
12864   // Check for SCEV expressions referencing invalid/deleted loops.
12865   for (auto &KV : ValueExprMap) {
12866     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12867     if (!AR)
12868       continue;
12869     assert(ValidLoops.contains(AR->getLoop()) &&
12870            "AddRec references invalid loop");
12871   }
12872 }
12873 
12874 bool ScalarEvolution::invalidate(
12875     Function &F, const PreservedAnalyses &PA,
12876     FunctionAnalysisManager::Invalidator &Inv) {
12877   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12878   // of its dependencies is invalidated.
12879   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12880   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12881          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12882          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12883          Inv.invalidate<LoopAnalysis>(F, PA);
12884 }
12885 
12886 AnalysisKey ScalarEvolutionAnalysis::Key;
12887 
12888 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12889                                              FunctionAnalysisManager &AM) {
12890   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12891                          AM.getResult<AssumptionAnalysis>(F),
12892                          AM.getResult<DominatorTreeAnalysis>(F),
12893                          AM.getResult<LoopAnalysis>(F));
12894 }
12895 
12896 PreservedAnalyses
12897 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12898   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12899   return PreservedAnalyses::all();
12900 }
12901 
12902 PreservedAnalyses
12903 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12904   // For compatibility with opt's -analyze feature under legacy pass manager
12905   // which was not ported to NPM. This keeps tests using
12906   // update_analyze_test_checks.py working.
12907   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12908      << F.getName() << "':\n";
12909   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12910   return PreservedAnalyses::all();
12911 }
12912 
12913 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12914                       "Scalar Evolution Analysis", false, true)
12915 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12916 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12917 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12918 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12919 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12920                     "Scalar Evolution Analysis", false, true)
12921 
12922 char ScalarEvolutionWrapperPass::ID = 0;
12923 
12924 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12925   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12926 }
12927 
12928 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12929   SE.reset(new ScalarEvolution(
12930       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12931       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12932       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12933       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12934   return false;
12935 }
12936 
12937 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12938 
12939 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12940   SE->print(OS);
12941 }
12942 
12943 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12944   if (!VerifySCEV)
12945     return;
12946 
12947   SE->verify();
12948 }
12949 
12950 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12951   AU.setPreservesAll();
12952   AU.addRequiredTransitive<AssumptionCacheTracker>();
12953   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12954   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12955   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12956 }
12957 
12958 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12959                                                         const SCEV *RHS) {
12960   FoldingSetNodeID ID;
12961   assert(LHS->getType() == RHS->getType() &&
12962          "Type mismatch between LHS and RHS");
12963   // Unique this node based on the arguments
12964   ID.AddInteger(SCEVPredicate::P_Equal);
12965   ID.AddPointer(LHS);
12966   ID.AddPointer(RHS);
12967   void *IP = nullptr;
12968   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12969     return S;
12970   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12971       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12972   UniquePreds.InsertNode(Eq, IP);
12973   return Eq;
12974 }
12975 
12976 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12977     const SCEVAddRecExpr *AR,
12978     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12979   FoldingSetNodeID ID;
12980   // Unique this node based on the arguments
12981   ID.AddInteger(SCEVPredicate::P_Wrap);
12982   ID.AddPointer(AR);
12983   ID.AddInteger(AddedFlags);
12984   void *IP = nullptr;
12985   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12986     return S;
12987   auto *OF = new (SCEVAllocator)
12988       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12989   UniquePreds.InsertNode(OF, IP);
12990   return OF;
12991 }
12992 
12993 namespace {
12994 
12995 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12996 public:
12997 
12998   /// Rewrites \p S in the context of a loop L and the SCEV predication
12999   /// infrastructure.
13000   ///
13001   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13002   /// equivalences present in \p Pred.
13003   ///
13004   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13005   /// \p NewPreds such that the result will be an AddRecExpr.
13006   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13007                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13008                              SCEVUnionPredicate *Pred) {
13009     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13010     return Rewriter.visit(S);
13011   }
13012 
13013   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13014     if (Pred) {
13015       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13016       for (auto *Pred : ExprPreds)
13017         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13018           if (IPred->getLHS() == Expr)
13019             return IPred->getRHS();
13020     }
13021     return convertToAddRecWithPreds(Expr);
13022   }
13023 
13024   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13025     const SCEV *Operand = visit(Expr->getOperand());
13026     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13027     if (AR && AR->getLoop() == L && AR->isAffine()) {
13028       // This couldn't be folded because the operand didn't have the nuw
13029       // flag. Add the nusw flag as an assumption that we could make.
13030       const SCEV *Step = AR->getStepRecurrence(SE);
13031       Type *Ty = Expr->getType();
13032       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13033         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13034                                 SE.getSignExtendExpr(Step, Ty), L,
13035                                 AR->getNoWrapFlags());
13036     }
13037     return SE.getZeroExtendExpr(Operand, Expr->getType());
13038   }
13039 
13040   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13041     const SCEV *Operand = visit(Expr->getOperand());
13042     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13043     if (AR && AR->getLoop() == L && AR->isAffine()) {
13044       // This couldn't be folded because the operand didn't have the nsw
13045       // flag. Add the nssw flag as an assumption that we could make.
13046       const SCEV *Step = AR->getStepRecurrence(SE);
13047       Type *Ty = Expr->getType();
13048       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13049         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13050                                 SE.getSignExtendExpr(Step, Ty), L,
13051                                 AR->getNoWrapFlags());
13052     }
13053     return SE.getSignExtendExpr(Operand, Expr->getType());
13054   }
13055 
13056 private:
13057   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13058                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13059                         SCEVUnionPredicate *Pred)
13060       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13061 
13062   bool addOverflowAssumption(const SCEVPredicate *P) {
13063     if (!NewPreds) {
13064       // Check if we've already made this assumption.
13065       return Pred && Pred->implies(P);
13066     }
13067     NewPreds->insert(P);
13068     return true;
13069   }
13070 
13071   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13072                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13073     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13074     return addOverflowAssumption(A);
13075   }
13076 
13077   // If \p Expr represents a PHINode, we try to see if it can be represented
13078   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13079   // to add this predicate as a runtime overflow check, we return the AddRec.
13080   // If \p Expr does not meet these conditions (is not a PHI node, or we
13081   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13082   // return \p Expr.
13083   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13084     if (!isa<PHINode>(Expr->getValue()))
13085       return Expr;
13086     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13087     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13088     if (!PredicatedRewrite)
13089       return Expr;
13090     for (auto *P : PredicatedRewrite->second){
13091       // Wrap predicates from outer loops are not supported.
13092       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13093         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13094         if (L != AR->getLoop())
13095           return Expr;
13096       }
13097       if (!addOverflowAssumption(P))
13098         return Expr;
13099     }
13100     return PredicatedRewrite->first;
13101   }
13102 
13103   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13104   SCEVUnionPredicate *Pred;
13105   const Loop *L;
13106 };
13107 
13108 } // end anonymous namespace
13109 
13110 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13111                                                    SCEVUnionPredicate &Preds) {
13112   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13113 }
13114 
13115 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13116     const SCEV *S, const Loop *L,
13117     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13118   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13119   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13120   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13121 
13122   if (!AddRec)
13123     return nullptr;
13124 
13125   // Since the transformation was successful, we can now transfer the SCEV
13126   // predicates.
13127   for (auto *P : TransformPreds)
13128     Preds.insert(P);
13129 
13130   return AddRec;
13131 }
13132 
13133 /// SCEV predicates
13134 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13135                              SCEVPredicateKind Kind)
13136     : FastID(ID), Kind(Kind) {}
13137 
13138 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13139                                        const SCEV *LHS, const SCEV *RHS)
13140     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13141   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13142   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13143 }
13144 
13145 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13146   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13147 
13148   if (!Op)
13149     return false;
13150 
13151   return Op->LHS == LHS && Op->RHS == RHS;
13152 }
13153 
13154 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13155 
13156 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13157 
13158 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13159   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13160 }
13161 
13162 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13163                                      const SCEVAddRecExpr *AR,
13164                                      IncrementWrapFlags Flags)
13165     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13166 
13167 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13168 
13169 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13170   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13171 
13172   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13173 }
13174 
13175 bool SCEVWrapPredicate::isAlwaysTrue() const {
13176   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13177   IncrementWrapFlags IFlags = Flags;
13178 
13179   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13180     IFlags = clearFlags(IFlags, IncrementNSSW);
13181 
13182   return IFlags == IncrementAnyWrap;
13183 }
13184 
13185 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13186   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13187   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13188     OS << "<nusw>";
13189   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13190     OS << "<nssw>";
13191   OS << "\n";
13192 }
13193 
13194 SCEVWrapPredicate::IncrementWrapFlags
13195 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13196                                    ScalarEvolution &SE) {
13197   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13198   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13199 
13200   // We can safely transfer the NSW flag as NSSW.
13201   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13202     ImpliedFlags = IncrementNSSW;
13203 
13204   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13205     // If the increment is positive, the SCEV NUW flag will also imply the
13206     // WrapPredicate NUSW flag.
13207     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13208       if (Step->getValue()->getValue().isNonNegative())
13209         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13210   }
13211 
13212   return ImpliedFlags;
13213 }
13214 
13215 /// Union predicates don't get cached so create a dummy set ID for it.
13216 SCEVUnionPredicate::SCEVUnionPredicate()
13217     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13218 
13219 bool SCEVUnionPredicate::isAlwaysTrue() const {
13220   return all_of(Preds,
13221                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13222 }
13223 
13224 ArrayRef<const SCEVPredicate *>
13225 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13226   auto I = SCEVToPreds.find(Expr);
13227   if (I == SCEVToPreds.end())
13228     return ArrayRef<const SCEVPredicate *>();
13229   return I->second;
13230 }
13231 
13232 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13233   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13234     return all_of(Set->Preds,
13235                   [this](const SCEVPredicate *I) { return this->implies(I); });
13236 
13237   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13238   if (ScevPredsIt == SCEVToPreds.end())
13239     return false;
13240   auto &SCEVPreds = ScevPredsIt->second;
13241 
13242   return any_of(SCEVPreds,
13243                 [N](const SCEVPredicate *I) { return I->implies(N); });
13244 }
13245 
13246 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13247 
13248 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13249   for (auto Pred : Preds)
13250     Pred->print(OS, Depth);
13251 }
13252 
13253 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13254   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13255     for (auto Pred : Set->Preds)
13256       add(Pred);
13257     return;
13258   }
13259 
13260   if (implies(N))
13261     return;
13262 
13263   const SCEV *Key = N->getExpr();
13264   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13265                 " associated expression!");
13266 
13267   SCEVToPreds[Key].push_back(N);
13268   Preds.push_back(N);
13269 }
13270 
13271 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13272                                                      Loop &L)
13273     : SE(SE), L(L) {}
13274 
13275 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13276   const SCEV *Expr = SE.getSCEV(V);
13277   RewriteEntry &Entry = RewriteMap[Expr];
13278 
13279   // If we already have an entry and the version matches, return it.
13280   if (Entry.second && Generation == Entry.first)
13281     return Entry.second;
13282 
13283   // We found an entry but it's stale. Rewrite the stale entry
13284   // according to the current predicate.
13285   if (Entry.second)
13286     Expr = Entry.second;
13287 
13288   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13289   Entry = {Generation, NewSCEV};
13290 
13291   return NewSCEV;
13292 }
13293 
13294 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13295   if (!BackedgeCount) {
13296     SCEVUnionPredicate BackedgePred;
13297     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13298     addPredicate(BackedgePred);
13299   }
13300   return BackedgeCount;
13301 }
13302 
13303 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13304   if (Preds.implies(&Pred))
13305     return;
13306   Preds.add(&Pred);
13307   updateGeneration();
13308 }
13309 
13310 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13311   return Preds;
13312 }
13313 
13314 void PredicatedScalarEvolution::updateGeneration() {
13315   // If the generation number wrapped recompute everything.
13316   if (++Generation == 0) {
13317     for (auto &II : RewriteMap) {
13318       const SCEV *Rewritten = II.second.second;
13319       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13320     }
13321   }
13322 }
13323 
13324 void PredicatedScalarEvolution::setNoOverflow(
13325     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13326   const SCEV *Expr = getSCEV(V);
13327   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13328 
13329   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13330 
13331   // Clear the statically implied flags.
13332   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13333   addPredicate(*SE.getWrapPredicate(AR, Flags));
13334 
13335   auto II = FlagsMap.insert({V, Flags});
13336   if (!II.second)
13337     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13338 }
13339 
13340 bool PredicatedScalarEvolution::hasNoOverflow(
13341     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13342   const SCEV *Expr = getSCEV(V);
13343   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13344 
13345   Flags = SCEVWrapPredicate::clearFlags(
13346       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13347 
13348   auto II = FlagsMap.find(V);
13349 
13350   if (II != FlagsMap.end())
13351     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13352 
13353   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13354 }
13355 
13356 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13357   const SCEV *Expr = this->getSCEV(V);
13358   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13359   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13360 
13361   if (!New)
13362     return nullptr;
13363 
13364   for (auto *P : NewPreds)
13365     Preds.add(P);
13366 
13367   updateGeneration();
13368   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13369   return New;
13370 }
13371 
13372 PredicatedScalarEvolution::PredicatedScalarEvolution(
13373     const PredicatedScalarEvolution &Init)
13374     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13375       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13376   for (auto I : Init.FlagsMap)
13377     FlagsMap.insert(I);
13378 }
13379 
13380 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13381   // For each block.
13382   for (auto *BB : L.getBlocks())
13383     for (auto &I : *BB) {
13384       if (!SE.isSCEVable(I.getType()))
13385         continue;
13386 
13387       auto *Expr = SE.getSCEV(&I);
13388       auto II = RewriteMap.find(Expr);
13389 
13390       if (II == RewriteMap.end())
13391         continue;
13392 
13393       // Don't print things that are not interesting.
13394       if (II->second.second == Expr)
13395         continue;
13396 
13397       OS.indent(Depth) << "[PSE]" << I << ":\n";
13398       OS.indent(Depth + 2) << *Expr << "\n";
13399       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13400     }
13401 }
13402 
13403 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13404 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13405 // for URem with constant power-of-2 second operands.
13406 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13407 // 4, A / B becomes X / 8).
13408 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13409                                 const SCEV *&RHS) {
13410   // Try to match 'zext (trunc A to iB) to iY', which is used
13411   // for URem with constant power-of-2 second operands. Make sure the size of
13412   // the operand A matches the size of the whole expressions.
13413   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13414     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13415       LHS = Trunc->getOperand();
13416       // Bail out if the type of the LHS is larger than the type of the
13417       // expression for now.
13418       if (getTypeSizeInBits(LHS->getType()) >
13419           getTypeSizeInBits(Expr->getType()))
13420         return false;
13421       if (LHS->getType() != Expr->getType())
13422         LHS = getZeroExtendExpr(LHS, Expr->getType());
13423       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13424                         << getTypeSizeInBits(Trunc->getType()));
13425       return true;
13426     }
13427   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13428   if (Add == nullptr || Add->getNumOperands() != 2)
13429     return false;
13430 
13431   const SCEV *A = Add->getOperand(1);
13432   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13433 
13434   if (Mul == nullptr)
13435     return false;
13436 
13437   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13438     // (SomeExpr + (-(SomeExpr / B) * B)).
13439     if (Expr == getURemExpr(A, B)) {
13440       LHS = A;
13441       RHS = B;
13442       return true;
13443     }
13444     return false;
13445   };
13446 
13447   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13448   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13449     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13450            MatchURemWithDivisor(Mul->getOperand(2));
13451 
13452   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13453   if (Mul->getNumOperands() == 2)
13454     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13455            MatchURemWithDivisor(Mul->getOperand(0)) ||
13456            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13457            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13458   return false;
13459 }
13460 
13461 const SCEV *
13462 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13463   SmallVector<BasicBlock*, 16> ExitingBlocks;
13464   L->getExitingBlocks(ExitingBlocks);
13465 
13466   // Form an expression for the maximum exit count possible for this loop. We
13467   // merge the max and exact information to approximate a version of
13468   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13469   SmallVector<const SCEV*, 4> ExitCounts;
13470   for (BasicBlock *ExitingBB : ExitingBlocks) {
13471     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13472     if (isa<SCEVCouldNotCompute>(ExitCount))
13473       ExitCount = getExitCount(L, ExitingBB,
13474                                   ScalarEvolution::ConstantMaximum);
13475     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13476       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13477              "We should only have known counts for exiting blocks that "
13478              "dominate latch!");
13479       ExitCounts.push_back(ExitCount);
13480     }
13481   }
13482   if (ExitCounts.empty())
13483     return getCouldNotCompute();
13484   return getUMinFromMismatchedTypes(ExitCounts);
13485 }
13486 
13487 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13488 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13489 /// we cannot guarantee that the replacement is loop invariant in the loop of
13490 /// the AddRec.
13491 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13492   ValueToSCEVMapTy &Map;
13493 
13494 public:
13495   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13496       : SCEVRewriteVisitor(SE), Map(M) {}
13497 
13498   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13499 
13500   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13501     auto I = Map.find(Expr->getValue());
13502     if (I == Map.end())
13503       return Expr;
13504     return I->second;
13505   }
13506 };
13507 
13508 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13509   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13510                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13511     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13512     // replacement SCEV which isn't directly implied by the structure of that
13513     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13514     // legal.  See the scoping rules for flags in the header to understand why.
13515 
13516     // If we have LHS == 0, check if LHS is computing a property of some unknown
13517     // SCEV %v which we can rewrite %v to express explicitly.
13518     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13519     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13520         RHSC->getValue()->isNullValue()) {
13521       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13522       // explicitly express that.
13523       const SCEV *URemLHS = nullptr;
13524       const SCEV *URemRHS = nullptr;
13525       if (matchURem(LHS, URemLHS, URemRHS)) {
13526         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13527           Value *V = LHSUnknown->getValue();
13528           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13529           return;
13530         }
13531       }
13532     }
13533 
13534     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13535       std::swap(LHS, RHS);
13536       Predicate = CmpInst::getSwappedPredicate(Predicate);
13537     }
13538 
13539     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13540     // create this form when combining two checks of the form (X u< C2 + C1) and
13541     // (X >=u C1).
13542     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13543       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13544       if (!AddExpr || AddExpr->getNumOperands() != 2)
13545         return false;
13546 
13547       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13548       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13549       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13550       if (!C1 || !C2 || !LHSUnknown)
13551         return false;
13552 
13553       auto ExactRegion =
13554           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13555               .sub(C1->getAPInt());
13556 
13557       // Bail out, unless we have a non-wrapping, monotonic range.
13558       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13559         return false;
13560       auto I = RewriteMap.find(LHSUnknown->getValue());
13561       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13562       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13563           getConstant(ExactRegion.getUnsignedMin()),
13564           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13565       return true;
13566     };
13567     if (MatchRangeCheckIdiom())
13568       return;
13569 
13570     // For now, limit to conditions that provide information about unknown
13571     // expressions. RHS also cannot contain add recurrences.
13572     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13573     if (!LHSUnknown || containsAddRecurrence(RHS))
13574       return;
13575 
13576     // Check whether LHS has already been rewritten. In that case we want to
13577     // chain further rewrites onto the already rewritten value.
13578     auto I = RewriteMap.find(LHSUnknown->getValue());
13579     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13580     const SCEV *RewrittenRHS = nullptr;
13581     switch (Predicate) {
13582     case CmpInst::ICMP_ULT:
13583       RewrittenRHS =
13584           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13585       break;
13586     case CmpInst::ICMP_SLT:
13587       RewrittenRHS =
13588           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13589       break;
13590     case CmpInst::ICMP_ULE:
13591       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13592       break;
13593     case CmpInst::ICMP_SLE:
13594       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13595       break;
13596     case CmpInst::ICMP_UGT:
13597       RewrittenRHS =
13598           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13599       break;
13600     case CmpInst::ICMP_SGT:
13601       RewrittenRHS =
13602           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13603       break;
13604     case CmpInst::ICMP_UGE:
13605       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13606       break;
13607     case CmpInst::ICMP_SGE:
13608       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13609       break;
13610     case CmpInst::ICMP_EQ:
13611       if (isa<SCEVConstant>(RHS))
13612         RewrittenRHS = RHS;
13613       break;
13614     case CmpInst::ICMP_NE:
13615       if (isa<SCEVConstant>(RHS) &&
13616           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13617         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13618       break;
13619     default:
13620       break;
13621     }
13622 
13623     if (RewrittenRHS)
13624       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13625   };
13626   // Starting at the loop predecessor, climb up the predecessor chain, as long
13627   // as there are predecessors that can be found that have unique successors
13628   // leading to the original header.
13629   // TODO: share this logic with isLoopEntryGuardedByCond.
13630   ValueToSCEVMapTy RewriteMap;
13631   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13632            L->getLoopPredecessor(), L->getHeader());
13633        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13634 
13635     const BranchInst *LoopEntryPredicate =
13636         dyn_cast<BranchInst>(Pair.first->getTerminator());
13637     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13638       continue;
13639 
13640     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13641     SmallVector<Value *, 8> Worklist;
13642     SmallPtrSet<Value *, 8> Visited;
13643     Worklist.push_back(LoopEntryPredicate->getCondition());
13644     while (!Worklist.empty()) {
13645       Value *Cond = Worklist.pop_back_val();
13646       if (!Visited.insert(Cond).second)
13647         continue;
13648 
13649       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13650         auto Predicate =
13651             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13652         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13653                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13654         continue;
13655       }
13656 
13657       Value *L, *R;
13658       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13659                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13660         Worklist.push_back(L);
13661         Worklist.push_back(R);
13662       }
13663     }
13664   }
13665 
13666   // Also collect information from assumptions dominating the loop.
13667   for (auto &AssumeVH : AC.assumptions()) {
13668     if (!AssumeVH)
13669       continue;
13670     auto *AssumeI = cast<CallInst>(AssumeVH);
13671     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13672     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13673       continue;
13674     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13675                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13676   }
13677 
13678   if (RewriteMap.empty())
13679     return Expr;
13680   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13681   return Rewriter.visit(Expr);
13682 }
13683