1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 // <0,+,nonnegative><nw> is also nuw 2394 // TODO: Add corresponding nsw case 2395 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2396 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2397 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 2400 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2401 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2402 Ops.size() == 2) { 2403 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2404 if (UDiv->getOperand(1) == Ops[1]) 2405 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2406 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2407 if (UDiv->getOperand(1) == Ops[0]) 2408 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2409 } 2410 2411 return Flags; 2412 } 2413 2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2415 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2416 } 2417 2418 /// Get a canonical add expression, or something simpler if possible. 2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2420 SCEV::NoWrapFlags OrigFlags, 2421 unsigned Depth) { 2422 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2423 "only nuw or nsw allowed"); 2424 assert(!Ops.empty() && "Cannot get empty add!"); 2425 if (Ops.size() == 1) return Ops[0]; 2426 #ifndef NDEBUG 2427 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2428 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2429 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2430 "SCEVAddExpr operand types don't match!"); 2431 unsigned NumPtrs = count_if( 2432 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2433 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2434 #endif 2435 2436 // Sort by complexity, this groups all similar expression types together. 2437 GroupByComplexity(Ops, &LI, DT); 2438 2439 // If there are any constants, fold them together. 2440 unsigned Idx = 0; 2441 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2442 ++Idx; 2443 assert(Idx < Ops.size()); 2444 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2445 // We found two constants, fold them together! 2446 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2447 if (Ops.size() == 2) return Ops[0]; 2448 Ops.erase(Ops.begin()+1); // Erase the folded element 2449 LHSC = cast<SCEVConstant>(Ops[0]); 2450 } 2451 2452 // If we are left with a constant zero being added, strip it off. 2453 if (LHSC->getValue()->isZero()) { 2454 Ops.erase(Ops.begin()); 2455 --Idx; 2456 } 2457 2458 if (Ops.size() == 1) return Ops[0]; 2459 } 2460 2461 // Delay expensive flag strengthening until necessary. 2462 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2463 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2464 }; 2465 2466 // Limit recursion calls depth. 2467 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2468 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2469 2470 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2471 // Don't strengthen flags if we have no new information. 2472 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2473 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2474 Add->setNoWrapFlags(ComputeFlags(Ops)); 2475 return S; 2476 } 2477 2478 // Okay, check to see if the same value occurs in the operand list more than 2479 // once. If so, merge them together into an multiply expression. Since we 2480 // sorted the list, these values are required to be adjacent. 2481 Type *Ty = Ops[0]->getType(); 2482 bool FoundMatch = false; 2483 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2484 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2485 // Scan ahead to count how many equal operands there are. 2486 unsigned Count = 2; 2487 while (i+Count != e && Ops[i+Count] == Ops[i]) 2488 ++Count; 2489 // Merge the values into a multiply. 2490 const SCEV *Scale = getConstant(Ty, Count); 2491 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2492 if (Ops.size() == Count) 2493 return Mul; 2494 Ops[i] = Mul; 2495 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2496 --i; e -= Count - 1; 2497 FoundMatch = true; 2498 } 2499 if (FoundMatch) 2500 return getAddExpr(Ops, OrigFlags, Depth + 1); 2501 2502 // Check for truncates. If all the operands are truncated from the same 2503 // type, see if factoring out the truncate would permit the result to be 2504 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2505 // if the contents of the resulting outer trunc fold to something simple. 2506 auto FindTruncSrcType = [&]() -> Type * { 2507 // We're ultimately looking to fold an addrec of truncs and muls of only 2508 // constants and truncs, so if we find any other types of SCEV 2509 // as operands of the addrec then we bail and return nullptr here. 2510 // Otherwise, we return the type of the operand of a trunc that we find. 2511 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2512 return T->getOperand()->getType(); 2513 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2514 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2515 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2516 return T->getOperand()->getType(); 2517 } 2518 return nullptr; 2519 }; 2520 if (auto *SrcType = FindTruncSrcType()) { 2521 SmallVector<const SCEV *, 8> LargeOps; 2522 bool Ok = true; 2523 // Check all the operands to see if they can be represented in the 2524 // source type of the truncate. 2525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2526 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2527 if (T->getOperand()->getType() != SrcType) { 2528 Ok = false; 2529 break; 2530 } 2531 LargeOps.push_back(T->getOperand()); 2532 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2533 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2534 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2535 SmallVector<const SCEV *, 8> LargeMulOps; 2536 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2537 if (const SCEVTruncateExpr *T = 2538 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2539 if (T->getOperand()->getType() != SrcType) { 2540 Ok = false; 2541 break; 2542 } 2543 LargeMulOps.push_back(T->getOperand()); 2544 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2546 } else { 2547 Ok = false; 2548 break; 2549 } 2550 } 2551 if (Ok) 2552 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2553 } else { 2554 Ok = false; 2555 break; 2556 } 2557 } 2558 if (Ok) { 2559 // Evaluate the expression in the larger type. 2560 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2561 // If it folds to something simple, use it. Otherwise, don't. 2562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2563 return getTruncateExpr(Fold, Ty); 2564 } 2565 } 2566 2567 if (Ops.size() == 2) { 2568 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2569 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2570 // C1). 2571 const SCEV *A = Ops[0]; 2572 const SCEV *B = Ops[1]; 2573 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2574 auto *C = dyn_cast<SCEVConstant>(A); 2575 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2576 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2577 auto C2 = C->getAPInt(); 2578 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2579 2580 APInt ConstAdd = C1 + C2; 2581 auto AddFlags = AddExpr->getNoWrapFlags(); 2582 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2583 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2584 ConstAdd.ule(C1)) { 2585 PreservedFlags = 2586 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2587 } 2588 2589 // Adding a constant with the same sign and small magnitude is NSW, if the 2590 // original AddExpr was NSW. 2591 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2592 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2593 ConstAdd.abs().ule(C1.abs())) { 2594 PreservedFlags = 2595 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2596 } 2597 2598 if (PreservedFlags != SCEV::FlagAnyWrap) { 2599 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2600 NewOps[0] = getConstant(ConstAdd); 2601 return getAddExpr(NewOps, PreservedFlags); 2602 } 2603 } 2604 } 2605 2606 // Skip past any other cast SCEVs. 2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2608 ++Idx; 2609 2610 // If there are add operands they would be next. 2611 if (Idx < Ops.size()) { 2612 bool DeletedAdd = false; 2613 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2614 // common NUW flag for expression after inlining. Other flags cannot be 2615 // preserved, because they may depend on the original order of operations. 2616 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2617 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2618 if (Ops.size() > AddOpsInlineThreshold || 2619 Add->getNumOperands() > AddOpsInlineThreshold) 2620 break; 2621 // If we have an add, expand the add operands onto the end of the operands 2622 // list. 2623 Ops.erase(Ops.begin()+Idx); 2624 Ops.append(Add->op_begin(), Add->op_end()); 2625 DeletedAdd = true; 2626 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2627 } 2628 2629 // If we deleted at least one add, we added operands to the end of the list, 2630 // and they are not necessarily sorted. Recurse to resort and resimplify 2631 // any operands we just acquired. 2632 if (DeletedAdd) 2633 return getAddExpr(Ops, CommonFlags, Depth + 1); 2634 } 2635 2636 // Skip over the add expression until we get to a multiply. 2637 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2638 ++Idx; 2639 2640 // Check to see if there are any folding opportunities present with 2641 // operands multiplied by constant values. 2642 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2643 uint64_t BitWidth = getTypeSizeInBits(Ty); 2644 DenseMap<const SCEV *, APInt> M; 2645 SmallVector<const SCEV *, 8> NewOps; 2646 APInt AccumulatedConstant(BitWidth, 0); 2647 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2648 Ops.data(), Ops.size(), 2649 APInt(BitWidth, 1), *this)) { 2650 struct APIntCompare { 2651 bool operator()(const APInt &LHS, const APInt &RHS) const { 2652 return LHS.ult(RHS); 2653 } 2654 }; 2655 2656 // Some interesting folding opportunity is present, so its worthwhile to 2657 // re-generate the operands list. Group the operands by constant scale, 2658 // to avoid multiplying by the same constant scale multiple times. 2659 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2660 for (const SCEV *NewOp : NewOps) 2661 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2662 // Re-generate the operands list. 2663 Ops.clear(); 2664 if (AccumulatedConstant != 0) 2665 Ops.push_back(getConstant(AccumulatedConstant)); 2666 for (auto &MulOp : MulOpLists) { 2667 if (MulOp.first == 1) { 2668 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2669 } else if (MulOp.first != 0) { 2670 Ops.push_back(getMulExpr( 2671 getConstant(MulOp.first), 2672 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2673 SCEV::FlagAnyWrap, Depth + 1)); 2674 } 2675 } 2676 if (Ops.empty()) 2677 return getZero(Ty); 2678 if (Ops.size() == 1) 2679 return Ops[0]; 2680 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2681 } 2682 } 2683 2684 // If we are adding something to a multiply expression, make sure the 2685 // something is not already an operand of the multiply. If so, merge it into 2686 // the multiply. 2687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2691 if (isa<SCEVConstant>(MulOpSCEV)) 2692 continue; 2693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2694 if (MulOpSCEV == Ops[AddOp]) { 2695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2697 if (Mul->getNumOperands() != 2) { 2698 // If the multiply has more than two operands, we must get the 2699 // Y*Z term. 2700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2701 Mul->op_begin()+MulOp); 2702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2703 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2704 } 2705 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2706 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2708 SCEV::FlagAnyWrap, Depth + 1); 2709 if (Ops.size() == 2) return OuterMul; 2710 if (AddOp < Idx) { 2711 Ops.erase(Ops.begin()+AddOp); 2712 Ops.erase(Ops.begin()+Idx-1); 2713 } else { 2714 Ops.erase(Ops.begin()+Idx); 2715 Ops.erase(Ops.begin()+AddOp-1); 2716 } 2717 Ops.push_back(OuterMul); 2718 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2719 } 2720 2721 // Check this multiply against other multiplies being added together. 2722 for (unsigned OtherMulIdx = Idx+1; 2723 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2724 ++OtherMulIdx) { 2725 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2726 // If MulOp occurs in OtherMul, we can fold the two multiplies 2727 // together. 2728 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2729 OMulOp != e; ++OMulOp) 2730 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2731 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2732 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2733 if (Mul->getNumOperands() != 2) { 2734 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2735 Mul->op_begin()+MulOp); 2736 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2737 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2738 } 2739 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2740 if (OtherMul->getNumOperands() != 2) { 2741 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2742 OtherMul->op_begin()+OMulOp); 2743 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2744 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } 2746 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2747 const SCEV *InnerMulSum = 2748 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2749 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2750 SCEV::FlagAnyWrap, Depth + 1); 2751 if (Ops.size() == 2) return OuterMul; 2752 Ops.erase(Ops.begin()+Idx); 2753 Ops.erase(Ops.begin()+OtherMulIdx-1); 2754 Ops.push_back(OuterMul); 2755 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 } 2758 } 2759 } 2760 2761 // If there are any add recurrences in the operands list, see if any other 2762 // added values are loop invariant. If so, we can fold them into the 2763 // recurrence. 2764 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2765 ++Idx; 2766 2767 // Scan over all recurrences, trying to fold loop invariants into them. 2768 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2769 // Scan all of the other operands to this add and add them to the vector if 2770 // they are loop invariant w.r.t. the recurrence. 2771 SmallVector<const SCEV *, 8> LIOps; 2772 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2773 const Loop *AddRecLoop = AddRec->getLoop(); 2774 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2775 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2776 LIOps.push_back(Ops[i]); 2777 Ops.erase(Ops.begin()+i); 2778 --i; --e; 2779 } 2780 2781 // If we found some loop invariants, fold them into the recurrence. 2782 if (!LIOps.empty()) { 2783 // Compute nowrap flags for the addition of the loop-invariant ops and 2784 // the addrec. Temporarily push it as an operand for that purpose. 2785 LIOps.push_back(AddRec); 2786 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2787 LIOps.pop_back(); 2788 2789 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2790 LIOps.push_back(AddRec->getStart()); 2791 2792 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2793 // This follows from the fact that the no-wrap flags on the outer add 2794 // expression are applicable on the 0th iteration, when the add recurrence 2795 // will be equal to its start value. 2796 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2797 2798 // Build the new addrec. Propagate the NUW and NSW flags if both the 2799 // outer add and the inner addrec are guaranteed to have no overflow. 2800 // Always propagate NW. 2801 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2802 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2803 2804 // If all of the other operands were loop invariant, we are done. 2805 if (Ops.size() == 1) return NewRec; 2806 2807 // Otherwise, add the folded AddRec by the non-invariant parts. 2808 for (unsigned i = 0;; ++i) 2809 if (Ops[i] == AddRec) { 2810 Ops[i] = NewRec; 2811 break; 2812 } 2813 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2814 } 2815 2816 // Okay, if there weren't any loop invariants to be folded, check to see if 2817 // there are multiple AddRec's with the same loop induction variable being 2818 // added together. If so, we can fold them. 2819 for (unsigned OtherIdx = Idx+1; 2820 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2821 ++OtherIdx) { 2822 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2823 // so that the 1st found AddRecExpr is dominated by all others. 2824 assert(DT.dominates( 2825 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2826 AddRec->getLoop()->getHeader()) && 2827 "AddRecExprs are not sorted in reverse dominance order?"); 2828 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2829 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2830 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2831 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2832 ++OtherIdx) { 2833 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2834 if (OtherAddRec->getLoop() == AddRecLoop) { 2835 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2836 i != e; ++i) { 2837 if (i >= AddRecOps.size()) { 2838 AddRecOps.append(OtherAddRec->op_begin()+i, 2839 OtherAddRec->op_end()); 2840 break; 2841 } 2842 SmallVector<const SCEV *, 2> TwoOps = { 2843 AddRecOps[i], OtherAddRec->getOperand(i)}; 2844 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2845 } 2846 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2847 } 2848 } 2849 // Step size has changed, so we cannot guarantee no self-wraparound. 2850 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2851 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2852 } 2853 } 2854 2855 // Otherwise couldn't fold anything into this recurrence. Move onto the 2856 // next one. 2857 } 2858 2859 // Okay, it looks like we really DO need an add expr. Check to see if we 2860 // already have one, otherwise create a new one. 2861 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2862 } 2863 2864 const SCEV * 2865 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2866 SCEV::NoWrapFlags Flags) { 2867 FoldingSetNodeID ID; 2868 ID.AddInteger(scAddExpr); 2869 for (const SCEV *Op : Ops) 2870 ID.AddPointer(Op); 2871 void *IP = nullptr; 2872 SCEVAddExpr *S = 2873 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2874 if (!S) { 2875 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2876 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2877 S = new (SCEVAllocator) 2878 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2879 UniqueSCEVs.InsertNode(S, IP); 2880 addToLoopUseLists(S); 2881 } 2882 S->setNoWrapFlags(Flags); 2883 return S; 2884 } 2885 2886 const SCEV * 2887 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2888 const Loop *L, SCEV::NoWrapFlags Flags) { 2889 FoldingSetNodeID ID; 2890 ID.AddInteger(scAddRecExpr); 2891 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2892 ID.AddPointer(Ops[i]); 2893 ID.AddPointer(L); 2894 void *IP = nullptr; 2895 SCEVAddRecExpr *S = 2896 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2897 if (!S) { 2898 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2899 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2900 S = new (SCEVAllocator) 2901 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2902 UniqueSCEVs.InsertNode(S, IP); 2903 addToLoopUseLists(S); 2904 } 2905 setNoWrapFlags(S, Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2911 SCEV::NoWrapFlags Flags) { 2912 FoldingSetNodeID ID; 2913 ID.AddInteger(scMulExpr); 2914 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2915 ID.AddPointer(Ops[i]); 2916 void *IP = nullptr; 2917 SCEVMulExpr *S = 2918 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2919 if (!S) { 2920 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2921 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2922 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2923 O, Ops.size()); 2924 UniqueSCEVs.InsertNode(S, IP); 2925 addToLoopUseLists(S); 2926 } 2927 S->setNoWrapFlags(Flags); 2928 return S; 2929 } 2930 2931 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2932 uint64_t k = i*j; 2933 if (j > 1 && k / j != i) Overflow = true; 2934 return k; 2935 } 2936 2937 /// Compute the result of "n choose k", the binomial coefficient. If an 2938 /// intermediate computation overflows, Overflow will be set and the return will 2939 /// be garbage. Overflow is not cleared on absence of overflow. 2940 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2941 // We use the multiplicative formula: 2942 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2943 // At each iteration, we take the n-th term of the numeral and divide by the 2944 // (k-n)th term of the denominator. This division will always produce an 2945 // integral result, and helps reduce the chance of overflow in the 2946 // intermediate computations. However, we can still overflow even when the 2947 // final result would fit. 2948 2949 if (n == 0 || n == k) return 1; 2950 if (k > n) return 0; 2951 2952 if (k > n/2) 2953 k = n-k; 2954 2955 uint64_t r = 1; 2956 for (uint64_t i = 1; i <= k; ++i) { 2957 r = umul_ov(r, n-(i-1), Overflow); 2958 r /= i; 2959 } 2960 return r; 2961 } 2962 2963 /// Determine if any of the operands in this SCEV are a constant or if 2964 /// any of the add or multiply expressions in this SCEV contain a constant. 2965 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2966 struct FindConstantInAddMulChain { 2967 bool FoundConstant = false; 2968 2969 bool follow(const SCEV *S) { 2970 FoundConstant |= isa<SCEVConstant>(S); 2971 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2972 } 2973 2974 bool isDone() const { 2975 return FoundConstant; 2976 } 2977 }; 2978 2979 FindConstantInAddMulChain F; 2980 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2981 ST.visitAll(StartExpr); 2982 return F.FoundConstant; 2983 } 2984 2985 /// Get a canonical multiply expression, or something simpler if possible. 2986 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2987 SCEV::NoWrapFlags OrigFlags, 2988 unsigned Depth) { 2989 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2990 "only nuw or nsw allowed"); 2991 assert(!Ops.empty() && "Cannot get empty mul!"); 2992 if (Ops.size() == 1) return Ops[0]; 2993 #ifndef NDEBUG 2994 Type *ETy = Ops[0]->getType(); 2995 assert(!ETy->isPointerTy()); 2996 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2997 assert(Ops[i]->getType() == ETy && 2998 "SCEVMulExpr operand types don't match!"); 2999 #endif 3000 3001 // Sort by complexity, this groups all similar expression types together. 3002 GroupByComplexity(Ops, &LI, DT); 3003 3004 // If there are any constants, fold them together. 3005 unsigned Idx = 0; 3006 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3007 ++Idx; 3008 assert(Idx < Ops.size()); 3009 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3010 // We found two constants, fold them together! 3011 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3012 if (Ops.size() == 2) return Ops[0]; 3013 Ops.erase(Ops.begin()+1); // Erase the folded element 3014 LHSC = cast<SCEVConstant>(Ops[0]); 3015 } 3016 3017 // If we have a multiply of zero, it will always be zero. 3018 if (LHSC->getValue()->isZero()) 3019 return LHSC; 3020 3021 // If we are left with a constant one being multiplied, strip it off. 3022 if (LHSC->getValue()->isOne()) { 3023 Ops.erase(Ops.begin()); 3024 --Idx; 3025 } 3026 3027 if (Ops.size() == 1) 3028 return Ops[0]; 3029 } 3030 3031 // Delay expensive flag strengthening until necessary. 3032 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3033 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3034 }; 3035 3036 // Limit recursion calls depth. 3037 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3038 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3039 3040 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3041 // Don't strengthen flags if we have no new information. 3042 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3043 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3044 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3045 return S; 3046 } 3047 3048 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3049 if (Ops.size() == 2) { 3050 // C1*(C2+V) -> C1*C2 + C1*V 3051 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3052 // If any of Add's ops are Adds or Muls with a constant, apply this 3053 // transformation as well. 3054 // 3055 // TODO: There are some cases where this transformation is not 3056 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3057 // this transformation should be narrowed down. 3058 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3059 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3060 SCEV::FlagAnyWrap, Depth + 1), 3061 getMulExpr(LHSC, Add->getOperand(1), 3062 SCEV::FlagAnyWrap, Depth + 1), 3063 SCEV::FlagAnyWrap, Depth + 1); 3064 3065 if (Ops[0]->isAllOnesValue()) { 3066 // If we have a mul by -1 of an add, try distributing the -1 among the 3067 // add operands. 3068 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3069 SmallVector<const SCEV *, 4> NewOps; 3070 bool AnyFolded = false; 3071 for (const SCEV *AddOp : Add->operands()) { 3072 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3073 Depth + 1); 3074 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3075 NewOps.push_back(Mul); 3076 } 3077 if (AnyFolded) 3078 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3079 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3080 // Negation preserves a recurrence's no self-wrap property. 3081 SmallVector<const SCEV *, 4> Operands; 3082 for (const SCEV *AddRecOp : AddRec->operands()) 3083 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3084 Depth + 1)); 3085 3086 return getAddRecExpr(Operands, AddRec->getLoop(), 3087 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3088 } 3089 } 3090 } 3091 } 3092 3093 // Skip over the add expression until we get to a multiply. 3094 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3095 ++Idx; 3096 3097 // If there are mul operands inline them all into this expression. 3098 if (Idx < Ops.size()) { 3099 bool DeletedMul = false; 3100 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3101 if (Ops.size() > MulOpsInlineThreshold) 3102 break; 3103 // If we have an mul, expand the mul operands onto the end of the 3104 // operands list. 3105 Ops.erase(Ops.begin()+Idx); 3106 Ops.append(Mul->op_begin(), Mul->op_end()); 3107 DeletedMul = true; 3108 } 3109 3110 // If we deleted at least one mul, we added operands to the end of the 3111 // list, and they are not necessarily sorted. Recurse to resort and 3112 // resimplify any operands we just acquired. 3113 if (DeletedMul) 3114 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3115 } 3116 3117 // If there are any add recurrences in the operands list, see if any other 3118 // added values are loop invariant. If so, we can fold them into the 3119 // recurrence. 3120 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3121 ++Idx; 3122 3123 // Scan over all recurrences, trying to fold loop invariants into them. 3124 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3125 // Scan all of the other operands to this mul and add them to the vector 3126 // if they are loop invariant w.r.t. the recurrence. 3127 SmallVector<const SCEV *, 8> LIOps; 3128 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3129 const Loop *AddRecLoop = AddRec->getLoop(); 3130 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3131 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3132 LIOps.push_back(Ops[i]); 3133 Ops.erase(Ops.begin()+i); 3134 --i; --e; 3135 } 3136 3137 // If we found some loop invariants, fold them into the recurrence. 3138 if (!LIOps.empty()) { 3139 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3140 SmallVector<const SCEV *, 4> NewOps; 3141 NewOps.reserve(AddRec->getNumOperands()); 3142 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3143 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3144 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3145 SCEV::FlagAnyWrap, Depth + 1)); 3146 3147 // Build the new addrec. Propagate the NUW and NSW flags if both the 3148 // outer mul and the inner addrec are guaranteed to have no overflow. 3149 // 3150 // No self-wrap cannot be guaranteed after changing the step size, but 3151 // will be inferred if either NUW or NSW is true. 3152 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3153 const SCEV *NewRec = getAddRecExpr( 3154 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3155 3156 // If all of the other operands were loop invariant, we are done. 3157 if (Ops.size() == 1) return NewRec; 3158 3159 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3160 for (unsigned i = 0;; ++i) 3161 if (Ops[i] == AddRec) { 3162 Ops[i] = NewRec; 3163 break; 3164 } 3165 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3166 } 3167 3168 // Okay, if there weren't any loop invariants to be folded, check to see 3169 // if there are multiple AddRec's with the same loop induction variable 3170 // being multiplied together. If so, we can fold them. 3171 3172 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3173 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3174 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3175 // ]]],+,...up to x=2n}. 3176 // Note that the arguments to choose() are always integers with values 3177 // known at compile time, never SCEV objects. 3178 // 3179 // The implementation avoids pointless extra computations when the two 3180 // addrec's are of different length (mathematically, it's equivalent to 3181 // an infinite stream of zeros on the right). 3182 bool OpsModified = false; 3183 for (unsigned OtherIdx = Idx+1; 3184 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3185 ++OtherIdx) { 3186 const SCEVAddRecExpr *OtherAddRec = 3187 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3188 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3189 continue; 3190 3191 // Limit max number of arguments to avoid creation of unreasonably big 3192 // SCEVAddRecs with very complex operands. 3193 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3194 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3195 continue; 3196 3197 bool Overflow = false; 3198 Type *Ty = AddRec->getType(); 3199 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3200 SmallVector<const SCEV*, 7> AddRecOps; 3201 for (int x = 0, xe = AddRec->getNumOperands() + 3202 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3203 SmallVector <const SCEV *, 7> SumOps; 3204 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3205 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3206 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3207 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3208 z < ze && !Overflow; ++z) { 3209 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3210 uint64_t Coeff; 3211 if (LargerThan64Bits) 3212 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3213 else 3214 Coeff = Coeff1*Coeff2; 3215 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3216 const SCEV *Term1 = AddRec->getOperand(y-z); 3217 const SCEV *Term2 = OtherAddRec->getOperand(z); 3218 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3219 SCEV::FlagAnyWrap, Depth + 1)); 3220 } 3221 } 3222 if (SumOps.empty()) 3223 SumOps.push_back(getZero(Ty)); 3224 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3225 } 3226 if (!Overflow) { 3227 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3228 SCEV::FlagAnyWrap); 3229 if (Ops.size() == 2) return NewAddRec; 3230 Ops[Idx] = NewAddRec; 3231 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3232 OpsModified = true; 3233 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3234 if (!AddRec) 3235 break; 3236 } 3237 } 3238 if (OpsModified) 3239 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3240 3241 // Otherwise couldn't fold anything into this recurrence. Move onto the 3242 // next one. 3243 } 3244 3245 // Okay, it looks like we really DO need an mul expr. Check to see if we 3246 // already have one, otherwise create a new one. 3247 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3248 } 3249 3250 /// Represents an unsigned remainder expression based on unsigned division. 3251 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3252 const SCEV *RHS) { 3253 assert(getEffectiveSCEVType(LHS->getType()) == 3254 getEffectiveSCEVType(RHS->getType()) && 3255 "SCEVURemExpr operand types don't match!"); 3256 3257 // Short-circuit easy cases 3258 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3259 // If constant is one, the result is trivial 3260 if (RHSC->getValue()->isOne()) 3261 return getZero(LHS->getType()); // X urem 1 --> 0 3262 3263 // If constant is a power of two, fold into a zext(trunc(LHS)). 3264 if (RHSC->getAPInt().isPowerOf2()) { 3265 Type *FullTy = LHS->getType(); 3266 Type *TruncTy = 3267 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3268 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3269 } 3270 } 3271 3272 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3273 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3274 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3275 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3276 } 3277 3278 /// Get a canonical unsigned division expression, or something simpler if 3279 /// possible. 3280 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3281 const SCEV *RHS) { 3282 assert(!LHS->getType()->isPointerTy() && 3283 "SCEVUDivExpr operand can't be pointer!"); 3284 assert(LHS->getType() == RHS->getType() && 3285 "SCEVUDivExpr operand types don't match!"); 3286 3287 FoldingSetNodeID ID; 3288 ID.AddInteger(scUDivExpr); 3289 ID.AddPointer(LHS); 3290 ID.AddPointer(RHS); 3291 void *IP = nullptr; 3292 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3293 return S; 3294 3295 // 0 udiv Y == 0 3296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3297 if (LHSC->getValue()->isZero()) 3298 return LHS; 3299 3300 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3301 if (RHSC->getValue()->isOne()) 3302 return LHS; // X udiv 1 --> x 3303 // If the denominator is zero, the result of the udiv is undefined. Don't 3304 // try to analyze it, because the resolution chosen here may differ from 3305 // the resolution chosen in other parts of the compiler. 3306 if (!RHSC->getValue()->isZero()) { 3307 // Determine if the division can be folded into the operands of 3308 // its operands. 3309 // TODO: Generalize this to non-constants by using known-bits information. 3310 Type *Ty = LHS->getType(); 3311 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3312 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3313 // For non-power-of-two values, effectively round the value up to the 3314 // nearest power of two. 3315 if (!RHSC->getAPInt().isPowerOf2()) 3316 ++MaxShiftAmt; 3317 IntegerType *ExtTy = 3318 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3319 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3320 if (const SCEVConstant *Step = 3321 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3322 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3323 const APInt &StepInt = Step->getAPInt(); 3324 const APInt &DivInt = RHSC->getAPInt(); 3325 if (!StepInt.urem(DivInt) && 3326 getZeroExtendExpr(AR, ExtTy) == 3327 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3328 getZeroExtendExpr(Step, ExtTy), 3329 AR->getLoop(), SCEV::FlagAnyWrap)) { 3330 SmallVector<const SCEV *, 4> Operands; 3331 for (const SCEV *Op : AR->operands()) 3332 Operands.push_back(getUDivExpr(Op, RHS)); 3333 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3334 } 3335 /// Get a canonical UDivExpr for a recurrence. 3336 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3337 // We can currently only fold X%N if X is constant. 3338 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3339 if (StartC && !DivInt.urem(StepInt) && 3340 getZeroExtendExpr(AR, ExtTy) == 3341 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3342 getZeroExtendExpr(Step, ExtTy), 3343 AR->getLoop(), SCEV::FlagAnyWrap)) { 3344 const APInt &StartInt = StartC->getAPInt(); 3345 const APInt &StartRem = StartInt.urem(StepInt); 3346 if (StartRem != 0) { 3347 const SCEV *NewLHS = 3348 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3349 AR->getLoop(), SCEV::FlagNW); 3350 if (LHS != NewLHS) { 3351 LHS = NewLHS; 3352 3353 // Reset the ID to include the new LHS, and check if it is 3354 // already cached. 3355 ID.clear(); 3356 ID.AddInteger(scUDivExpr); 3357 ID.AddPointer(LHS); 3358 ID.AddPointer(RHS); 3359 IP = nullptr; 3360 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3361 return S; 3362 } 3363 } 3364 } 3365 } 3366 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3367 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3368 SmallVector<const SCEV *, 4> Operands; 3369 for (const SCEV *Op : M->operands()) 3370 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3371 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3372 // Find an operand that's safely divisible. 3373 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3374 const SCEV *Op = M->getOperand(i); 3375 const SCEV *Div = getUDivExpr(Op, RHSC); 3376 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3377 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3378 Operands[i] = Div; 3379 return getMulExpr(Operands); 3380 } 3381 } 3382 } 3383 3384 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3385 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3386 if (auto *DivisorConstant = 3387 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3388 bool Overflow = false; 3389 APInt NewRHS = 3390 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3391 if (Overflow) { 3392 return getConstant(RHSC->getType(), 0, false); 3393 } 3394 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3395 } 3396 } 3397 3398 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3399 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3400 SmallVector<const SCEV *, 4> Operands; 3401 for (const SCEV *Op : A->operands()) 3402 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3403 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3404 Operands.clear(); 3405 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3406 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3407 if (isa<SCEVUDivExpr>(Op) || 3408 getMulExpr(Op, RHS) != A->getOperand(i)) 3409 break; 3410 Operands.push_back(Op); 3411 } 3412 if (Operands.size() == A->getNumOperands()) 3413 return getAddExpr(Operands); 3414 } 3415 } 3416 3417 // Fold if both operands are constant. 3418 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3419 Constant *LHSCV = LHSC->getValue(); 3420 Constant *RHSCV = RHSC->getValue(); 3421 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3422 RHSCV))); 3423 } 3424 } 3425 } 3426 3427 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3428 // changes). Make sure we get a new one. 3429 IP = nullptr; 3430 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3431 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3432 LHS, RHS); 3433 UniqueSCEVs.InsertNode(S, IP); 3434 addToLoopUseLists(S); 3435 return S; 3436 } 3437 3438 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3439 APInt A = C1->getAPInt().abs(); 3440 APInt B = C2->getAPInt().abs(); 3441 uint32_t ABW = A.getBitWidth(); 3442 uint32_t BBW = B.getBitWidth(); 3443 3444 if (ABW > BBW) 3445 B = B.zext(ABW); 3446 else if (ABW < BBW) 3447 A = A.zext(BBW); 3448 3449 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3450 } 3451 3452 /// Get a canonical unsigned division expression, or something simpler if 3453 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3454 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3455 /// it's not exact because the udiv may be clearing bits. 3456 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3457 const SCEV *RHS) { 3458 // TODO: we could try to find factors in all sorts of things, but for now we 3459 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3460 // end of this file for inspiration. 3461 3462 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3463 if (!Mul || !Mul->hasNoUnsignedWrap()) 3464 return getUDivExpr(LHS, RHS); 3465 3466 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3467 // If the mulexpr multiplies by a constant, then that constant must be the 3468 // first element of the mulexpr. 3469 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3470 if (LHSCst == RHSCst) { 3471 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3472 return getMulExpr(Operands); 3473 } 3474 3475 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3476 // that there's a factor provided by one of the other terms. We need to 3477 // check. 3478 APInt Factor = gcd(LHSCst, RHSCst); 3479 if (!Factor.isIntN(1)) { 3480 LHSCst = 3481 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3482 RHSCst = 3483 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3484 SmallVector<const SCEV *, 2> Operands; 3485 Operands.push_back(LHSCst); 3486 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3487 LHS = getMulExpr(Operands); 3488 RHS = RHSCst; 3489 Mul = dyn_cast<SCEVMulExpr>(LHS); 3490 if (!Mul) 3491 return getUDivExactExpr(LHS, RHS); 3492 } 3493 } 3494 } 3495 3496 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3497 if (Mul->getOperand(i) == RHS) { 3498 SmallVector<const SCEV *, 2> Operands; 3499 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3500 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3501 return getMulExpr(Operands); 3502 } 3503 } 3504 3505 return getUDivExpr(LHS, RHS); 3506 } 3507 3508 /// Get an add recurrence expression for the specified loop. Simplify the 3509 /// expression as much as possible. 3510 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3511 const Loop *L, 3512 SCEV::NoWrapFlags Flags) { 3513 SmallVector<const SCEV *, 4> Operands; 3514 Operands.push_back(Start); 3515 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3516 if (StepChrec->getLoop() == L) { 3517 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3518 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3519 } 3520 3521 Operands.push_back(Step); 3522 return getAddRecExpr(Operands, L, Flags); 3523 } 3524 3525 /// Get an add recurrence expression for the specified loop. Simplify the 3526 /// expression as much as possible. 3527 const SCEV * 3528 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3529 const Loop *L, SCEV::NoWrapFlags Flags) { 3530 if (Operands.size() == 1) return Operands[0]; 3531 #ifndef NDEBUG 3532 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3533 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3534 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3535 "SCEVAddRecExpr operand types don't match!"); 3536 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3537 } 3538 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3539 assert(isLoopInvariant(Operands[i], L) && 3540 "SCEVAddRecExpr operand is not loop-invariant!"); 3541 #endif 3542 3543 if (Operands.back()->isZero()) { 3544 Operands.pop_back(); 3545 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3546 } 3547 3548 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3549 // use that information to infer NUW and NSW flags. However, computing a 3550 // BE count requires calling getAddRecExpr, so we may not yet have a 3551 // meaningful BE count at this point (and if we don't, we'd be stuck 3552 // with a SCEVCouldNotCompute as the cached BE count). 3553 3554 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3555 3556 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3557 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3558 const Loop *NestedLoop = NestedAR->getLoop(); 3559 if (L->contains(NestedLoop) 3560 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3561 : (!NestedLoop->contains(L) && 3562 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3563 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3564 Operands[0] = NestedAR->getStart(); 3565 // AddRecs require their operands be loop-invariant with respect to their 3566 // loops. Don't perform this transformation if it would break this 3567 // requirement. 3568 bool AllInvariant = all_of( 3569 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3570 3571 if (AllInvariant) { 3572 // Create a recurrence for the outer loop with the same step size. 3573 // 3574 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3575 // inner recurrence has the same property. 3576 SCEV::NoWrapFlags OuterFlags = 3577 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3578 3579 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3580 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3581 return isLoopInvariant(Op, NestedLoop); 3582 }); 3583 3584 if (AllInvariant) { 3585 // Ok, both add recurrences are valid after the transformation. 3586 // 3587 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3588 // the outer recurrence has the same property. 3589 SCEV::NoWrapFlags InnerFlags = 3590 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3591 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3592 } 3593 } 3594 // Reset Operands to its original state. 3595 Operands[0] = NestedAR; 3596 } 3597 } 3598 3599 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3600 // already have one, otherwise create a new one. 3601 return getOrCreateAddRecExpr(Operands, L, Flags); 3602 } 3603 3604 const SCEV * 3605 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3606 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3607 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3608 // getSCEV(Base)->getType() has the same address space as Base->getType() 3609 // because SCEV::getType() preserves the address space. 3610 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3611 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3612 // instruction to its SCEV, because the Instruction may be guarded by control 3613 // flow and the no-overflow bits may not be valid for the expression in any 3614 // context. This can be fixed similarly to how these flags are handled for 3615 // adds. 3616 SCEV::NoWrapFlags OffsetWrap = 3617 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3618 3619 Type *CurTy = GEP->getType(); 3620 bool FirstIter = true; 3621 SmallVector<const SCEV *, 4> Offsets; 3622 for (const SCEV *IndexExpr : IndexExprs) { 3623 // Compute the (potentially symbolic) offset in bytes for this index. 3624 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3625 // For a struct, add the member offset. 3626 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3627 unsigned FieldNo = Index->getZExtValue(); 3628 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3629 Offsets.push_back(FieldOffset); 3630 3631 // Update CurTy to the type of the field at Index. 3632 CurTy = STy->getTypeAtIndex(Index); 3633 } else { 3634 // Update CurTy to its element type. 3635 if (FirstIter) { 3636 assert(isa<PointerType>(CurTy) && 3637 "The first index of a GEP indexes a pointer"); 3638 CurTy = GEP->getSourceElementType(); 3639 FirstIter = false; 3640 } else { 3641 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3642 } 3643 // For an array, add the element offset, explicitly scaled. 3644 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3645 // Getelementptr indices are signed. 3646 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3647 3648 // Multiply the index by the element size to compute the element offset. 3649 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3650 Offsets.push_back(LocalOffset); 3651 } 3652 } 3653 3654 // Handle degenerate case of GEP without offsets. 3655 if (Offsets.empty()) 3656 return BaseExpr; 3657 3658 // Add the offsets together, assuming nsw if inbounds. 3659 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3660 // Add the base address and the offset. We cannot use the nsw flag, as the 3661 // base address is unsigned. However, if we know that the offset is 3662 // non-negative, we can use nuw. 3663 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3664 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3665 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3666 assert(BaseExpr->getType() == GEPExpr->getType() && 3667 "GEP should not change type mid-flight."); 3668 return GEPExpr; 3669 } 3670 3671 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3672 ArrayRef<const SCEV *> Ops) { 3673 FoldingSetNodeID ID; 3674 ID.AddInteger(SCEVType); 3675 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3676 ID.AddPointer(Ops[i]); 3677 void *IP = nullptr; 3678 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3679 } 3680 3681 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3682 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3683 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3684 } 3685 3686 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3687 SmallVectorImpl<const SCEV *> &Ops) { 3688 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3689 if (Ops.size() == 1) return Ops[0]; 3690 #ifndef NDEBUG 3691 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3692 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3693 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3694 "Operand types don't match!"); 3695 assert(Ops[0]->getType()->isPointerTy() == 3696 Ops[i]->getType()->isPointerTy() && 3697 "min/max should be consistently pointerish"); 3698 } 3699 #endif 3700 3701 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3702 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3703 3704 // Sort by complexity, this groups all similar expression types together. 3705 GroupByComplexity(Ops, &LI, DT); 3706 3707 // Check if we have created the same expression before. 3708 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3709 return S; 3710 } 3711 3712 // If there are any constants, fold them together. 3713 unsigned Idx = 0; 3714 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3715 ++Idx; 3716 assert(Idx < Ops.size()); 3717 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3718 if (Kind == scSMaxExpr) 3719 return APIntOps::smax(LHS, RHS); 3720 else if (Kind == scSMinExpr) 3721 return APIntOps::smin(LHS, RHS); 3722 else if (Kind == scUMaxExpr) 3723 return APIntOps::umax(LHS, RHS); 3724 else if (Kind == scUMinExpr) 3725 return APIntOps::umin(LHS, RHS); 3726 llvm_unreachable("Unknown SCEV min/max opcode"); 3727 }; 3728 3729 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3730 // We found two constants, fold them together! 3731 ConstantInt *Fold = ConstantInt::get( 3732 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3733 Ops[0] = getConstant(Fold); 3734 Ops.erase(Ops.begin()+1); // Erase the folded element 3735 if (Ops.size() == 1) return Ops[0]; 3736 LHSC = cast<SCEVConstant>(Ops[0]); 3737 } 3738 3739 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3740 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3741 3742 if (IsMax ? IsMinV : IsMaxV) { 3743 // If we are left with a constant minimum(/maximum)-int, strip it off. 3744 Ops.erase(Ops.begin()); 3745 --Idx; 3746 } else if (IsMax ? IsMaxV : IsMinV) { 3747 // If we have a max(/min) with a constant maximum(/minimum)-int, 3748 // it will always be the extremum. 3749 return LHSC; 3750 } 3751 3752 if (Ops.size() == 1) return Ops[0]; 3753 } 3754 3755 // Find the first operation of the same kind 3756 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3757 ++Idx; 3758 3759 // Check to see if one of the operands is of the same kind. If so, expand its 3760 // operands onto our operand list, and recurse to simplify. 3761 if (Idx < Ops.size()) { 3762 bool DeletedAny = false; 3763 while (Ops[Idx]->getSCEVType() == Kind) { 3764 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3765 Ops.erase(Ops.begin()+Idx); 3766 Ops.append(SMME->op_begin(), SMME->op_end()); 3767 DeletedAny = true; 3768 } 3769 3770 if (DeletedAny) 3771 return getMinMaxExpr(Kind, Ops); 3772 } 3773 3774 // Okay, check to see if the same value occurs in the operand list twice. If 3775 // so, delete one. Since we sorted the list, these values are required to 3776 // be adjacent. 3777 llvm::CmpInst::Predicate GEPred = 3778 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3779 llvm::CmpInst::Predicate LEPred = 3780 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3781 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3782 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3783 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3784 if (Ops[i] == Ops[i + 1] || 3785 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3786 // X op Y op Y --> X op Y 3787 // X op Y --> X, if we know X, Y are ordered appropriately 3788 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3789 --i; 3790 --e; 3791 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3792 Ops[i + 1])) { 3793 // X op Y --> Y, if we know X, Y are ordered appropriately 3794 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3795 --i; 3796 --e; 3797 } 3798 } 3799 3800 if (Ops.size() == 1) return Ops[0]; 3801 3802 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3803 3804 // Okay, it looks like we really DO need an expr. Check to see if we 3805 // already have one, otherwise create a new one. 3806 FoldingSetNodeID ID; 3807 ID.AddInteger(Kind); 3808 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3809 ID.AddPointer(Ops[i]); 3810 void *IP = nullptr; 3811 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3812 if (ExistingSCEV) 3813 return ExistingSCEV; 3814 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3815 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3816 SCEV *S = new (SCEVAllocator) 3817 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3818 3819 UniqueSCEVs.InsertNode(S, IP); 3820 addToLoopUseLists(S); 3821 return S; 3822 } 3823 3824 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3825 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3826 return getSMaxExpr(Ops); 3827 } 3828 3829 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3830 return getMinMaxExpr(scSMaxExpr, Ops); 3831 } 3832 3833 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3834 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3835 return getUMaxExpr(Ops); 3836 } 3837 3838 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3839 return getMinMaxExpr(scUMaxExpr, Ops); 3840 } 3841 3842 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3843 const SCEV *RHS) { 3844 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3845 return getSMinExpr(Ops); 3846 } 3847 3848 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3849 return getMinMaxExpr(scSMinExpr, Ops); 3850 } 3851 3852 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3853 const SCEV *RHS) { 3854 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3855 return getUMinExpr(Ops); 3856 } 3857 3858 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3859 return getMinMaxExpr(scUMinExpr, Ops); 3860 } 3861 3862 const SCEV * 3863 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3864 ScalableVectorType *ScalableTy) { 3865 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3866 Constant *One = ConstantInt::get(IntTy, 1); 3867 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3868 // Note that the expression we created is the final expression, we don't 3869 // want to simplify it any further Also, if we call a normal getSCEV(), 3870 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3871 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3872 } 3873 3874 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3875 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3876 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3877 // We can bypass creating a target-independent constant expression and then 3878 // folding it back into a ConstantInt. This is just a compile-time 3879 // optimization. 3880 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3881 } 3882 3883 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3884 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3885 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3886 // We can bypass creating a target-independent constant expression and then 3887 // folding it back into a ConstantInt. This is just a compile-time 3888 // optimization. 3889 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3890 } 3891 3892 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3893 StructType *STy, 3894 unsigned FieldNo) { 3895 // We can bypass creating a target-independent constant expression and then 3896 // folding it back into a ConstantInt. This is just a compile-time 3897 // optimization. 3898 return getConstant( 3899 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3900 } 3901 3902 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3903 // Don't attempt to do anything other than create a SCEVUnknown object 3904 // here. createSCEV only calls getUnknown after checking for all other 3905 // interesting possibilities, and any other code that calls getUnknown 3906 // is doing so in order to hide a value from SCEV canonicalization. 3907 3908 FoldingSetNodeID ID; 3909 ID.AddInteger(scUnknown); 3910 ID.AddPointer(V); 3911 void *IP = nullptr; 3912 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3913 assert(cast<SCEVUnknown>(S)->getValue() == V && 3914 "Stale SCEVUnknown in uniquing map!"); 3915 return S; 3916 } 3917 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3918 FirstUnknown); 3919 FirstUnknown = cast<SCEVUnknown>(S); 3920 UniqueSCEVs.InsertNode(S, IP); 3921 return S; 3922 } 3923 3924 //===----------------------------------------------------------------------===// 3925 // Basic SCEV Analysis and PHI Idiom Recognition Code 3926 // 3927 3928 /// Test if values of the given type are analyzable within the SCEV 3929 /// framework. This primarily includes integer types, and it can optionally 3930 /// include pointer types if the ScalarEvolution class has access to 3931 /// target-specific information. 3932 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3933 // Integers and pointers are always SCEVable. 3934 return Ty->isIntOrPtrTy(); 3935 } 3936 3937 /// Return the size in bits of the specified type, for which isSCEVable must 3938 /// return true. 3939 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3940 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3941 if (Ty->isPointerTy()) 3942 return getDataLayout().getIndexTypeSizeInBits(Ty); 3943 return getDataLayout().getTypeSizeInBits(Ty); 3944 } 3945 3946 /// Return a type with the same bitwidth as the given type and which represents 3947 /// how SCEV will treat the given type, for which isSCEVable must return 3948 /// true. For pointer types, this is the pointer index sized integer type. 3949 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3950 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3951 3952 if (Ty->isIntegerTy()) 3953 return Ty; 3954 3955 // The only other support type is pointer. 3956 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3957 return getDataLayout().getIndexType(Ty); 3958 } 3959 3960 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3961 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3962 } 3963 3964 const SCEV *ScalarEvolution::getCouldNotCompute() { 3965 return CouldNotCompute.get(); 3966 } 3967 3968 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3969 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3970 auto *SU = dyn_cast<SCEVUnknown>(S); 3971 return SU && SU->getValue() == nullptr; 3972 }); 3973 3974 return !ContainsNulls; 3975 } 3976 3977 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3978 HasRecMapType::iterator I = HasRecMap.find(S); 3979 if (I != HasRecMap.end()) 3980 return I->second; 3981 3982 bool FoundAddRec = 3983 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3984 HasRecMap.insert({S, FoundAddRec}); 3985 return FoundAddRec; 3986 } 3987 3988 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3989 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3990 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3991 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3992 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3993 if (!Add) 3994 return {S, nullptr}; 3995 3996 if (Add->getNumOperands() != 2) 3997 return {S, nullptr}; 3998 3999 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4000 if (!ConstOp) 4001 return {S, nullptr}; 4002 4003 return {Add->getOperand(1), ConstOp->getValue()}; 4004 } 4005 4006 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4007 /// by the value and offset from any ValueOffsetPair in the set. 4008 ScalarEvolution::ValueOffsetPairSetVector * 4009 ScalarEvolution::getSCEVValues(const SCEV *S) { 4010 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4011 if (SI == ExprValueMap.end()) 4012 return nullptr; 4013 #ifndef NDEBUG 4014 if (VerifySCEVMap) { 4015 // Check there is no dangling Value in the set returned. 4016 for (const auto &VE : SI->second) 4017 assert(ValueExprMap.count(VE.first)); 4018 } 4019 #endif 4020 return &SI->second; 4021 } 4022 4023 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4024 /// cannot be used separately. eraseValueFromMap should be used to remove 4025 /// V from ValueExprMap and ExprValueMap at the same time. 4026 void ScalarEvolution::eraseValueFromMap(Value *V) { 4027 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4028 if (I != ValueExprMap.end()) { 4029 const SCEV *S = I->second; 4030 // Remove {V, 0} from the set of ExprValueMap[S] 4031 if (auto *SV = getSCEVValues(S)) 4032 SV->remove({V, nullptr}); 4033 4034 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4035 const SCEV *Stripped; 4036 ConstantInt *Offset; 4037 std::tie(Stripped, Offset) = splitAddExpr(S); 4038 if (Offset != nullptr) { 4039 if (auto *SV = getSCEVValues(Stripped)) 4040 SV->remove({V, Offset}); 4041 } 4042 ValueExprMap.erase(V); 4043 } 4044 } 4045 4046 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4047 /// TODO: In reality it is better to check the poison recursively 4048 /// but this is better than nothing. 4049 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4050 if (auto *I = dyn_cast<Instruction>(V)) { 4051 if (isa<OverflowingBinaryOperator>(I)) { 4052 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4053 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4054 return true; 4055 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4056 return true; 4057 } 4058 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4059 return true; 4060 } 4061 return false; 4062 } 4063 4064 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4065 /// create a new one. 4066 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4067 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4068 4069 const SCEV *S = getExistingSCEV(V); 4070 if (S == nullptr) { 4071 S = createSCEV(V); 4072 // During PHI resolution, it is possible to create two SCEVs for the same 4073 // V, so it is needed to double check whether V->S is inserted into 4074 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4075 std::pair<ValueExprMapType::iterator, bool> Pair = 4076 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4077 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4078 ExprValueMap[S].insert({V, nullptr}); 4079 4080 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4081 // ExprValueMap. 4082 const SCEV *Stripped = S; 4083 ConstantInt *Offset = nullptr; 4084 std::tie(Stripped, Offset) = splitAddExpr(S); 4085 // If stripped is SCEVUnknown, don't bother to save 4086 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4087 // increase the complexity of the expansion code. 4088 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4089 // because it may generate add/sub instead of GEP in SCEV expansion. 4090 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4091 !isa<GetElementPtrInst>(V)) 4092 ExprValueMap[Stripped].insert({V, Offset}); 4093 } 4094 } 4095 return S; 4096 } 4097 4098 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4099 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4100 4101 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4102 if (I != ValueExprMap.end()) { 4103 const SCEV *S = I->second; 4104 if (checkValidity(S)) 4105 return S; 4106 eraseValueFromMap(V); 4107 forgetMemoizedResults(S); 4108 } 4109 return nullptr; 4110 } 4111 4112 /// Return a SCEV corresponding to -V = -1*V 4113 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4114 SCEV::NoWrapFlags Flags) { 4115 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4116 return getConstant( 4117 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4118 4119 Type *Ty = V->getType(); 4120 Ty = getEffectiveSCEVType(Ty); 4121 return getMulExpr(V, getMinusOne(Ty), Flags); 4122 } 4123 4124 /// If Expr computes ~A, return A else return nullptr 4125 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4126 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4127 if (!Add || Add->getNumOperands() != 2 || 4128 !Add->getOperand(0)->isAllOnesValue()) 4129 return nullptr; 4130 4131 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4132 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4133 !AddRHS->getOperand(0)->isAllOnesValue()) 4134 return nullptr; 4135 4136 return AddRHS->getOperand(1); 4137 } 4138 4139 /// Return a SCEV corresponding to ~V = -1-V 4140 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4141 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4142 4143 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4144 return getConstant( 4145 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4146 4147 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4148 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4149 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4150 SmallVector<const SCEV *, 2> MatchedOperands; 4151 for (const SCEV *Operand : MME->operands()) { 4152 const SCEV *Matched = MatchNotExpr(Operand); 4153 if (!Matched) 4154 return (const SCEV *)nullptr; 4155 MatchedOperands.push_back(Matched); 4156 } 4157 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4158 MatchedOperands); 4159 }; 4160 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4161 return Replaced; 4162 } 4163 4164 Type *Ty = V->getType(); 4165 Ty = getEffectiveSCEVType(Ty); 4166 return getMinusSCEV(getMinusOne(Ty), V); 4167 } 4168 4169 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4170 assert(P->getType()->isPointerTy()); 4171 4172 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4173 // The base of an AddRec is the first operand. 4174 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4175 Ops[0] = removePointerBase(Ops[0]); 4176 // Don't try to transfer nowrap flags for now. We could in some cases 4177 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4178 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4179 } 4180 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4181 // The base of an Add is the pointer operand. 4182 SmallVector<const SCEV *> Ops{Add->operands()}; 4183 const SCEV **PtrOp = nullptr; 4184 for (const SCEV *&AddOp : Ops) { 4185 if (AddOp->getType()->isPointerTy()) { 4186 assert(!PtrOp && "Cannot have multiple pointer ops"); 4187 PtrOp = &AddOp; 4188 } 4189 } 4190 *PtrOp = removePointerBase(*PtrOp); 4191 // Don't try to transfer nowrap flags for now. We could in some cases 4192 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4193 return getAddExpr(Ops); 4194 } 4195 // Any other expression must be a pointer base. 4196 return getZero(P->getType()); 4197 } 4198 4199 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4200 SCEV::NoWrapFlags Flags, 4201 unsigned Depth) { 4202 // Fast path: X - X --> 0. 4203 if (LHS == RHS) 4204 return getZero(LHS->getType()); 4205 4206 // If we subtract two pointers with different pointer bases, bail. 4207 // Eventually, we're going to add an assertion to getMulExpr that we 4208 // can't multiply by a pointer. 4209 if (RHS->getType()->isPointerTy()) { 4210 if (!LHS->getType()->isPointerTy() || 4211 getPointerBase(LHS) != getPointerBase(RHS)) 4212 return getCouldNotCompute(); 4213 LHS = removePointerBase(LHS); 4214 RHS = removePointerBase(RHS); 4215 } 4216 4217 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4218 // makes it so that we cannot make much use of NUW. 4219 auto AddFlags = SCEV::FlagAnyWrap; 4220 const bool RHSIsNotMinSigned = 4221 !getSignedRangeMin(RHS).isMinSignedValue(); 4222 if (hasFlags(Flags, SCEV::FlagNSW)) { 4223 // Let M be the minimum representable signed value. Then (-1)*RHS 4224 // signed-wraps if and only if RHS is M. That can happen even for 4225 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4226 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4227 // (-1)*RHS, we need to prove that RHS != M. 4228 // 4229 // If LHS is non-negative and we know that LHS - RHS does not 4230 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4231 // either by proving that RHS > M or that LHS >= 0. 4232 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4233 AddFlags = SCEV::FlagNSW; 4234 } 4235 } 4236 4237 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4238 // RHS is NSW and LHS >= 0. 4239 // 4240 // The difficulty here is that the NSW flag may have been proven 4241 // relative to a loop that is to be found in a recurrence in LHS and 4242 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4243 // larger scope than intended. 4244 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4245 4246 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4247 } 4248 4249 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4250 unsigned Depth) { 4251 Type *SrcTy = V->getType(); 4252 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4253 "Cannot truncate or zero extend with non-integer arguments!"); 4254 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4255 return V; // No conversion 4256 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4257 return getTruncateExpr(V, Ty, Depth); 4258 return getZeroExtendExpr(V, Ty, Depth); 4259 } 4260 4261 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4262 unsigned Depth) { 4263 Type *SrcTy = V->getType(); 4264 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4265 "Cannot truncate or zero extend with non-integer arguments!"); 4266 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4267 return V; // No conversion 4268 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4269 return getTruncateExpr(V, Ty, Depth); 4270 return getSignExtendExpr(V, Ty, Depth); 4271 } 4272 4273 const SCEV * 4274 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4275 Type *SrcTy = V->getType(); 4276 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4277 "Cannot noop or zero extend with non-integer arguments!"); 4278 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4279 "getNoopOrZeroExtend cannot truncate!"); 4280 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4281 return V; // No conversion 4282 return getZeroExtendExpr(V, Ty); 4283 } 4284 4285 const SCEV * 4286 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4287 Type *SrcTy = V->getType(); 4288 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4289 "Cannot noop or sign extend with non-integer arguments!"); 4290 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4291 "getNoopOrSignExtend cannot truncate!"); 4292 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4293 return V; // No conversion 4294 return getSignExtendExpr(V, Ty); 4295 } 4296 4297 const SCEV * 4298 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4299 Type *SrcTy = V->getType(); 4300 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4301 "Cannot noop or any extend with non-integer arguments!"); 4302 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4303 "getNoopOrAnyExtend cannot truncate!"); 4304 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4305 return V; // No conversion 4306 return getAnyExtendExpr(V, Ty); 4307 } 4308 4309 const SCEV * 4310 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4311 Type *SrcTy = V->getType(); 4312 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4313 "Cannot truncate or noop with non-integer arguments!"); 4314 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4315 "getTruncateOrNoop cannot extend!"); 4316 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4317 return V; // No conversion 4318 return getTruncateExpr(V, Ty); 4319 } 4320 4321 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4322 const SCEV *RHS) { 4323 const SCEV *PromotedLHS = LHS; 4324 const SCEV *PromotedRHS = RHS; 4325 4326 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4327 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4328 else 4329 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4330 4331 return getUMaxExpr(PromotedLHS, PromotedRHS); 4332 } 4333 4334 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4335 const SCEV *RHS) { 4336 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4337 return getUMinFromMismatchedTypes(Ops); 4338 } 4339 4340 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4341 SmallVectorImpl<const SCEV *> &Ops) { 4342 assert(!Ops.empty() && "At least one operand must be!"); 4343 // Trivial case. 4344 if (Ops.size() == 1) 4345 return Ops[0]; 4346 4347 // Find the max type first. 4348 Type *MaxType = nullptr; 4349 for (auto *S : Ops) 4350 if (MaxType) 4351 MaxType = getWiderType(MaxType, S->getType()); 4352 else 4353 MaxType = S->getType(); 4354 assert(MaxType && "Failed to find maximum type!"); 4355 4356 // Extend all ops to max type. 4357 SmallVector<const SCEV *, 2> PromotedOps; 4358 for (auto *S : Ops) 4359 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4360 4361 // Generate umin. 4362 return getUMinExpr(PromotedOps); 4363 } 4364 4365 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4366 // A pointer operand may evaluate to a nonpointer expression, such as null. 4367 if (!V->getType()->isPointerTy()) 4368 return V; 4369 4370 while (true) { 4371 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4372 V = AddRec->getStart(); 4373 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4374 const SCEV *PtrOp = nullptr; 4375 for (const SCEV *AddOp : Add->operands()) { 4376 if (AddOp->getType()->isPointerTy()) { 4377 assert(!PtrOp && "Cannot have multiple pointer ops"); 4378 PtrOp = AddOp; 4379 } 4380 } 4381 assert(PtrOp && "Must have pointer op"); 4382 V = PtrOp; 4383 } else // Not something we can look further into. 4384 return V; 4385 } 4386 } 4387 4388 /// Push users of the given Instruction onto the given Worklist. 4389 static void 4390 PushDefUseChildren(Instruction *I, 4391 SmallVectorImpl<Instruction *> &Worklist) { 4392 // Push the def-use children onto the Worklist stack. 4393 for (User *U : I->users()) 4394 Worklist.push_back(cast<Instruction>(U)); 4395 } 4396 4397 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4398 SmallVector<Instruction *, 16> Worklist; 4399 PushDefUseChildren(PN, Worklist); 4400 4401 SmallPtrSet<Instruction *, 8> Visited; 4402 Visited.insert(PN); 4403 while (!Worklist.empty()) { 4404 Instruction *I = Worklist.pop_back_val(); 4405 if (!Visited.insert(I).second) 4406 continue; 4407 4408 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4409 if (It != ValueExprMap.end()) { 4410 const SCEV *Old = It->second; 4411 4412 // Short-circuit the def-use traversal if the symbolic name 4413 // ceases to appear in expressions. 4414 if (Old != SymName && !hasOperand(Old, SymName)) 4415 continue; 4416 4417 // SCEVUnknown for a PHI either means that it has an unrecognized 4418 // structure, it's a PHI that's in the progress of being computed 4419 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4420 // additional loop trip count information isn't going to change anything. 4421 // In the second case, createNodeForPHI will perform the necessary 4422 // updates on its own when it gets to that point. In the third, we do 4423 // want to forget the SCEVUnknown. 4424 if (!isa<PHINode>(I) || 4425 !isa<SCEVUnknown>(Old) || 4426 (I != PN && Old == SymName)) { 4427 eraseValueFromMap(It->first); 4428 forgetMemoizedResults(Old); 4429 } 4430 } 4431 4432 PushDefUseChildren(I, Worklist); 4433 } 4434 } 4435 4436 namespace { 4437 4438 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4439 /// expression in case its Loop is L. If it is not L then 4440 /// if IgnoreOtherLoops is true then use AddRec itself 4441 /// otherwise rewrite cannot be done. 4442 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4443 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4444 public: 4445 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4446 bool IgnoreOtherLoops = true) { 4447 SCEVInitRewriter Rewriter(L, SE); 4448 const SCEV *Result = Rewriter.visit(S); 4449 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4450 return SE.getCouldNotCompute(); 4451 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4452 ? SE.getCouldNotCompute() 4453 : Result; 4454 } 4455 4456 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4457 if (!SE.isLoopInvariant(Expr, L)) 4458 SeenLoopVariantSCEVUnknown = true; 4459 return Expr; 4460 } 4461 4462 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4463 // Only re-write AddRecExprs for this loop. 4464 if (Expr->getLoop() == L) 4465 return Expr->getStart(); 4466 SeenOtherLoops = true; 4467 return Expr; 4468 } 4469 4470 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4471 4472 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4473 4474 private: 4475 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4476 : SCEVRewriteVisitor(SE), L(L) {} 4477 4478 const Loop *L; 4479 bool SeenLoopVariantSCEVUnknown = false; 4480 bool SeenOtherLoops = false; 4481 }; 4482 4483 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4484 /// increment expression in case its Loop is L. If it is not L then 4485 /// use AddRec itself. 4486 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4487 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4488 public: 4489 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4490 SCEVPostIncRewriter Rewriter(L, SE); 4491 const SCEV *Result = Rewriter.visit(S); 4492 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4493 ? SE.getCouldNotCompute() 4494 : Result; 4495 } 4496 4497 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4498 if (!SE.isLoopInvariant(Expr, L)) 4499 SeenLoopVariantSCEVUnknown = true; 4500 return Expr; 4501 } 4502 4503 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4504 // Only re-write AddRecExprs for this loop. 4505 if (Expr->getLoop() == L) 4506 return Expr->getPostIncExpr(SE); 4507 SeenOtherLoops = true; 4508 return Expr; 4509 } 4510 4511 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4512 4513 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4514 4515 private: 4516 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4517 : SCEVRewriteVisitor(SE), L(L) {} 4518 4519 const Loop *L; 4520 bool SeenLoopVariantSCEVUnknown = false; 4521 bool SeenOtherLoops = false; 4522 }; 4523 4524 /// This class evaluates the compare condition by matching it against the 4525 /// condition of loop latch. If there is a match we assume a true value 4526 /// for the condition while building SCEV nodes. 4527 class SCEVBackedgeConditionFolder 4528 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4529 public: 4530 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4531 ScalarEvolution &SE) { 4532 bool IsPosBECond = false; 4533 Value *BECond = nullptr; 4534 if (BasicBlock *Latch = L->getLoopLatch()) { 4535 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4536 if (BI && BI->isConditional()) { 4537 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4538 "Both outgoing branches should not target same header!"); 4539 BECond = BI->getCondition(); 4540 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4541 } else { 4542 return S; 4543 } 4544 } 4545 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4546 return Rewriter.visit(S); 4547 } 4548 4549 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4550 const SCEV *Result = Expr; 4551 bool InvariantF = SE.isLoopInvariant(Expr, L); 4552 4553 if (!InvariantF) { 4554 Instruction *I = cast<Instruction>(Expr->getValue()); 4555 switch (I->getOpcode()) { 4556 case Instruction::Select: { 4557 SelectInst *SI = cast<SelectInst>(I); 4558 Optional<const SCEV *> Res = 4559 compareWithBackedgeCondition(SI->getCondition()); 4560 if (Res.hasValue()) { 4561 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4562 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4563 } 4564 break; 4565 } 4566 default: { 4567 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4568 if (Res.hasValue()) 4569 Result = Res.getValue(); 4570 break; 4571 } 4572 } 4573 } 4574 return Result; 4575 } 4576 4577 private: 4578 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4579 bool IsPosBECond, ScalarEvolution &SE) 4580 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4581 IsPositiveBECond(IsPosBECond) {} 4582 4583 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4584 4585 const Loop *L; 4586 /// Loop back condition. 4587 Value *BackedgeCond = nullptr; 4588 /// Set to true if loop back is on positive branch condition. 4589 bool IsPositiveBECond; 4590 }; 4591 4592 Optional<const SCEV *> 4593 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4594 4595 // If value matches the backedge condition for loop latch, 4596 // then return a constant evolution node based on loopback 4597 // branch taken. 4598 if (BackedgeCond == IC) 4599 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4600 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4601 return None; 4602 } 4603 4604 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4605 public: 4606 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4607 ScalarEvolution &SE) { 4608 SCEVShiftRewriter Rewriter(L, SE); 4609 const SCEV *Result = Rewriter.visit(S); 4610 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4611 } 4612 4613 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4614 // Only allow AddRecExprs for this loop. 4615 if (!SE.isLoopInvariant(Expr, L)) 4616 Valid = false; 4617 return Expr; 4618 } 4619 4620 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4621 if (Expr->getLoop() == L && Expr->isAffine()) 4622 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4623 Valid = false; 4624 return Expr; 4625 } 4626 4627 bool isValid() { return Valid; } 4628 4629 private: 4630 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4631 : SCEVRewriteVisitor(SE), L(L) {} 4632 4633 const Loop *L; 4634 bool Valid = true; 4635 }; 4636 4637 } // end anonymous namespace 4638 4639 SCEV::NoWrapFlags 4640 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4641 if (!AR->isAffine()) 4642 return SCEV::FlagAnyWrap; 4643 4644 using OBO = OverflowingBinaryOperator; 4645 4646 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4647 4648 if (!AR->hasNoSignedWrap()) { 4649 ConstantRange AddRecRange = getSignedRange(AR); 4650 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4651 4652 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4653 Instruction::Add, IncRange, OBO::NoSignedWrap); 4654 if (NSWRegion.contains(AddRecRange)) 4655 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4656 } 4657 4658 if (!AR->hasNoUnsignedWrap()) { 4659 ConstantRange AddRecRange = getUnsignedRange(AR); 4660 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4661 4662 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4663 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4664 if (NUWRegion.contains(AddRecRange)) 4665 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4666 } 4667 4668 return Result; 4669 } 4670 4671 SCEV::NoWrapFlags 4672 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4673 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4674 4675 if (AR->hasNoSignedWrap()) 4676 return Result; 4677 4678 if (!AR->isAffine()) 4679 return Result; 4680 4681 const SCEV *Step = AR->getStepRecurrence(*this); 4682 const Loop *L = AR->getLoop(); 4683 4684 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4685 // Note that this serves two purposes: It filters out loops that are 4686 // simply not analyzable, and it covers the case where this code is 4687 // being called from within backedge-taken count analysis, such that 4688 // attempting to ask for the backedge-taken count would likely result 4689 // in infinite recursion. In the later case, the analysis code will 4690 // cope with a conservative value, and it will take care to purge 4691 // that value once it has finished. 4692 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4693 4694 // Normally, in the cases we can prove no-overflow via a 4695 // backedge guarding condition, we can also compute a backedge 4696 // taken count for the loop. The exceptions are assumptions and 4697 // guards present in the loop -- SCEV is not great at exploiting 4698 // these to compute max backedge taken counts, but can still use 4699 // these to prove lack of overflow. Use this fact to avoid 4700 // doing extra work that may not pay off. 4701 4702 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4703 AC.assumptions().empty()) 4704 return Result; 4705 4706 // If the backedge is guarded by a comparison with the pre-inc value the 4707 // addrec is safe. Also, if the entry is guarded by a comparison with the 4708 // start value and the backedge is guarded by a comparison with the post-inc 4709 // value, the addrec is safe. 4710 ICmpInst::Predicate Pred; 4711 const SCEV *OverflowLimit = 4712 getSignedOverflowLimitForStep(Step, &Pred, this); 4713 if (OverflowLimit && 4714 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4715 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4716 Result = setFlags(Result, SCEV::FlagNSW); 4717 } 4718 return Result; 4719 } 4720 SCEV::NoWrapFlags 4721 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4722 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4723 4724 if (AR->hasNoUnsignedWrap()) 4725 return Result; 4726 4727 if (!AR->isAffine()) 4728 return Result; 4729 4730 const SCEV *Step = AR->getStepRecurrence(*this); 4731 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4732 const Loop *L = AR->getLoop(); 4733 4734 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4735 // Note that this serves two purposes: It filters out loops that are 4736 // simply not analyzable, and it covers the case where this code is 4737 // being called from within backedge-taken count analysis, such that 4738 // attempting to ask for the backedge-taken count would likely result 4739 // in infinite recursion. In the later case, the analysis code will 4740 // cope with a conservative value, and it will take care to purge 4741 // that value once it has finished. 4742 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4743 4744 // Normally, in the cases we can prove no-overflow via a 4745 // backedge guarding condition, we can also compute a backedge 4746 // taken count for the loop. The exceptions are assumptions and 4747 // guards present in the loop -- SCEV is not great at exploiting 4748 // these to compute max backedge taken counts, but can still use 4749 // these to prove lack of overflow. Use this fact to avoid 4750 // doing extra work that may not pay off. 4751 4752 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4753 AC.assumptions().empty()) 4754 return Result; 4755 4756 // If the backedge is guarded by a comparison with the pre-inc value the 4757 // addrec is safe. Also, if the entry is guarded by a comparison with the 4758 // start value and the backedge is guarded by a comparison with the post-inc 4759 // value, the addrec is safe. 4760 if (isKnownPositive(Step)) { 4761 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4762 getUnsignedRangeMax(Step)); 4763 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4764 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4765 Result = setFlags(Result, SCEV::FlagNUW); 4766 } 4767 } 4768 4769 return Result; 4770 } 4771 4772 namespace { 4773 4774 /// Represents an abstract binary operation. This may exist as a 4775 /// normal instruction or constant expression, or may have been 4776 /// derived from an expression tree. 4777 struct BinaryOp { 4778 unsigned Opcode; 4779 Value *LHS; 4780 Value *RHS; 4781 bool IsNSW = false; 4782 bool IsNUW = false; 4783 4784 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4785 /// constant expression. 4786 Operator *Op = nullptr; 4787 4788 explicit BinaryOp(Operator *Op) 4789 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4790 Op(Op) { 4791 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4792 IsNSW = OBO->hasNoSignedWrap(); 4793 IsNUW = OBO->hasNoUnsignedWrap(); 4794 } 4795 } 4796 4797 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4798 bool IsNUW = false) 4799 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4800 }; 4801 4802 } // end anonymous namespace 4803 4804 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4805 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4806 auto *Op = dyn_cast<Operator>(V); 4807 if (!Op) 4808 return None; 4809 4810 // Implementation detail: all the cleverness here should happen without 4811 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4812 // SCEV expressions when possible, and we should not break that. 4813 4814 switch (Op->getOpcode()) { 4815 case Instruction::Add: 4816 case Instruction::Sub: 4817 case Instruction::Mul: 4818 case Instruction::UDiv: 4819 case Instruction::URem: 4820 case Instruction::And: 4821 case Instruction::Or: 4822 case Instruction::AShr: 4823 case Instruction::Shl: 4824 return BinaryOp(Op); 4825 4826 case Instruction::Xor: 4827 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4828 // If the RHS of the xor is a signmask, then this is just an add. 4829 // Instcombine turns add of signmask into xor as a strength reduction step. 4830 if (RHSC->getValue().isSignMask()) 4831 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4832 return BinaryOp(Op); 4833 4834 case Instruction::LShr: 4835 // Turn logical shift right of a constant into a unsigned divide. 4836 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4837 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4838 4839 // If the shift count is not less than the bitwidth, the result of 4840 // the shift is undefined. Don't try to analyze it, because the 4841 // resolution chosen here may differ from the resolution chosen in 4842 // other parts of the compiler. 4843 if (SA->getValue().ult(BitWidth)) { 4844 Constant *X = 4845 ConstantInt::get(SA->getContext(), 4846 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4847 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4848 } 4849 } 4850 return BinaryOp(Op); 4851 4852 case Instruction::ExtractValue: { 4853 auto *EVI = cast<ExtractValueInst>(Op); 4854 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4855 break; 4856 4857 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4858 if (!WO) 4859 break; 4860 4861 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4862 bool Signed = WO->isSigned(); 4863 // TODO: Should add nuw/nsw flags for mul as well. 4864 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4865 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4866 4867 // Now that we know that all uses of the arithmetic-result component of 4868 // CI are guarded by the overflow check, we can go ahead and pretend 4869 // that the arithmetic is non-overflowing. 4870 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4871 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4872 } 4873 4874 default: 4875 break; 4876 } 4877 4878 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4879 // semantics as a Sub, return a binary sub expression. 4880 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4881 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4882 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4883 4884 return None; 4885 } 4886 4887 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4888 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4889 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4890 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4891 /// follows one of the following patterns: 4892 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4893 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4894 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4895 /// we return the type of the truncation operation, and indicate whether the 4896 /// truncated type should be treated as signed/unsigned by setting 4897 /// \p Signed to true/false, respectively. 4898 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4899 bool &Signed, ScalarEvolution &SE) { 4900 // The case where Op == SymbolicPHI (that is, with no type conversions on 4901 // the way) is handled by the regular add recurrence creating logic and 4902 // would have already been triggered in createAddRecForPHI. Reaching it here 4903 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4904 // because one of the other operands of the SCEVAddExpr updating this PHI is 4905 // not invariant). 4906 // 4907 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4908 // this case predicates that allow us to prove that Op == SymbolicPHI will 4909 // be added. 4910 if (Op == SymbolicPHI) 4911 return nullptr; 4912 4913 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4914 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4915 if (SourceBits != NewBits) 4916 return nullptr; 4917 4918 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4919 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4920 if (!SExt && !ZExt) 4921 return nullptr; 4922 const SCEVTruncateExpr *Trunc = 4923 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4924 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4925 if (!Trunc) 4926 return nullptr; 4927 const SCEV *X = Trunc->getOperand(); 4928 if (X != SymbolicPHI) 4929 return nullptr; 4930 Signed = SExt != nullptr; 4931 return Trunc->getType(); 4932 } 4933 4934 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4935 if (!PN->getType()->isIntegerTy()) 4936 return nullptr; 4937 const Loop *L = LI.getLoopFor(PN->getParent()); 4938 if (!L || L->getHeader() != PN->getParent()) 4939 return nullptr; 4940 return L; 4941 } 4942 4943 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4944 // computation that updates the phi follows the following pattern: 4945 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4946 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4947 // If so, try to see if it can be rewritten as an AddRecExpr under some 4948 // Predicates. If successful, return them as a pair. Also cache the results 4949 // of the analysis. 4950 // 4951 // Example usage scenario: 4952 // Say the Rewriter is called for the following SCEV: 4953 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4954 // where: 4955 // %X = phi i64 (%Start, %BEValue) 4956 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4957 // and call this function with %SymbolicPHI = %X. 4958 // 4959 // The analysis will find that the value coming around the backedge has 4960 // the following SCEV: 4961 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4962 // Upon concluding that this matches the desired pattern, the function 4963 // will return the pair {NewAddRec, SmallPredsVec} where: 4964 // NewAddRec = {%Start,+,%Step} 4965 // SmallPredsVec = {P1, P2, P3} as follows: 4966 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4967 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4968 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4969 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4970 // under the predicates {P1,P2,P3}. 4971 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4972 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4973 // 4974 // TODO's: 4975 // 4976 // 1) Extend the Induction descriptor to also support inductions that involve 4977 // casts: When needed (namely, when we are called in the context of the 4978 // vectorizer induction analysis), a Set of cast instructions will be 4979 // populated by this method, and provided back to isInductionPHI. This is 4980 // needed to allow the vectorizer to properly record them to be ignored by 4981 // the cost model and to avoid vectorizing them (otherwise these casts, 4982 // which are redundant under the runtime overflow checks, will be 4983 // vectorized, which can be costly). 4984 // 4985 // 2) Support additional induction/PHISCEV patterns: We also want to support 4986 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4987 // after the induction update operation (the induction increment): 4988 // 4989 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4990 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4991 // 4992 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4993 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4994 // 4995 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4996 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4997 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4998 SmallVector<const SCEVPredicate *, 3> Predicates; 4999 5000 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5001 // return an AddRec expression under some predicate. 5002 5003 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5004 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5005 assert(L && "Expecting an integer loop header phi"); 5006 5007 // The loop may have multiple entrances or multiple exits; we can analyze 5008 // this phi as an addrec if it has a unique entry value and a unique 5009 // backedge value. 5010 Value *BEValueV = nullptr, *StartValueV = nullptr; 5011 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5012 Value *V = PN->getIncomingValue(i); 5013 if (L->contains(PN->getIncomingBlock(i))) { 5014 if (!BEValueV) { 5015 BEValueV = V; 5016 } else if (BEValueV != V) { 5017 BEValueV = nullptr; 5018 break; 5019 } 5020 } else if (!StartValueV) { 5021 StartValueV = V; 5022 } else if (StartValueV != V) { 5023 StartValueV = nullptr; 5024 break; 5025 } 5026 } 5027 if (!BEValueV || !StartValueV) 5028 return None; 5029 5030 const SCEV *BEValue = getSCEV(BEValueV); 5031 5032 // If the value coming around the backedge is an add with the symbolic 5033 // value we just inserted, possibly with casts that we can ignore under 5034 // an appropriate runtime guard, then we found a simple induction variable! 5035 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5036 if (!Add) 5037 return None; 5038 5039 // If there is a single occurrence of the symbolic value, possibly 5040 // casted, replace it with a recurrence. 5041 unsigned FoundIndex = Add->getNumOperands(); 5042 Type *TruncTy = nullptr; 5043 bool Signed; 5044 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5045 if ((TruncTy = 5046 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5047 if (FoundIndex == e) { 5048 FoundIndex = i; 5049 break; 5050 } 5051 5052 if (FoundIndex == Add->getNumOperands()) 5053 return None; 5054 5055 // Create an add with everything but the specified operand. 5056 SmallVector<const SCEV *, 8> Ops; 5057 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5058 if (i != FoundIndex) 5059 Ops.push_back(Add->getOperand(i)); 5060 const SCEV *Accum = getAddExpr(Ops); 5061 5062 // The runtime checks will not be valid if the step amount is 5063 // varying inside the loop. 5064 if (!isLoopInvariant(Accum, L)) 5065 return None; 5066 5067 // *** Part2: Create the predicates 5068 5069 // Analysis was successful: we have a phi-with-cast pattern for which we 5070 // can return an AddRec expression under the following predicates: 5071 // 5072 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5073 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5074 // P2: An Equal predicate that guarantees that 5075 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5076 // P3: An Equal predicate that guarantees that 5077 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5078 // 5079 // As we next prove, the above predicates guarantee that: 5080 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5081 // 5082 // 5083 // More formally, we want to prove that: 5084 // Expr(i+1) = Start + (i+1) * Accum 5085 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5086 // 5087 // Given that: 5088 // 1) Expr(0) = Start 5089 // 2) Expr(1) = Start + Accum 5090 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5091 // 3) Induction hypothesis (step i): 5092 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5093 // 5094 // Proof: 5095 // Expr(i+1) = 5096 // = Start + (i+1)*Accum 5097 // = (Start + i*Accum) + Accum 5098 // = Expr(i) + Accum 5099 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5100 // :: from step i 5101 // 5102 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5103 // 5104 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5105 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5106 // + Accum :: from P3 5107 // 5108 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5109 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5110 // 5111 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5112 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5113 // 5114 // By induction, the same applies to all iterations 1<=i<n: 5115 // 5116 5117 // Create a truncated addrec for which we will add a no overflow check (P1). 5118 const SCEV *StartVal = getSCEV(StartValueV); 5119 const SCEV *PHISCEV = 5120 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5121 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5122 5123 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5124 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5125 // will be constant. 5126 // 5127 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5128 // add P1. 5129 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5130 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5131 Signed ? SCEVWrapPredicate::IncrementNSSW 5132 : SCEVWrapPredicate::IncrementNUSW; 5133 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5134 Predicates.push_back(AddRecPred); 5135 } 5136 5137 // Create the Equal Predicates P2,P3: 5138 5139 // It is possible that the predicates P2 and/or P3 are computable at 5140 // compile time due to StartVal and/or Accum being constants. 5141 // If either one is, then we can check that now and escape if either P2 5142 // or P3 is false. 5143 5144 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5145 // for each of StartVal and Accum 5146 auto getExtendedExpr = [&](const SCEV *Expr, 5147 bool CreateSignExtend) -> const SCEV * { 5148 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5149 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5150 const SCEV *ExtendedExpr = 5151 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5152 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5153 return ExtendedExpr; 5154 }; 5155 5156 // Given: 5157 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5158 // = getExtendedExpr(Expr) 5159 // Determine whether the predicate P: Expr == ExtendedExpr 5160 // is known to be false at compile time 5161 auto PredIsKnownFalse = [&](const SCEV *Expr, 5162 const SCEV *ExtendedExpr) -> bool { 5163 return Expr != ExtendedExpr && 5164 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5165 }; 5166 5167 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5168 if (PredIsKnownFalse(StartVal, StartExtended)) { 5169 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5170 return None; 5171 } 5172 5173 // The Step is always Signed (because the overflow checks are either 5174 // NSSW or NUSW) 5175 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5176 if (PredIsKnownFalse(Accum, AccumExtended)) { 5177 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5178 return None; 5179 } 5180 5181 auto AppendPredicate = [&](const SCEV *Expr, 5182 const SCEV *ExtendedExpr) -> void { 5183 if (Expr != ExtendedExpr && 5184 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5185 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5186 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5187 Predicates.push_back(Pred); 5188 } 5189 }; 5190 5191 AppendPredicate(StartVal, StartExtended); 5192 AppendPredicate(Accum, AccumExtended); 5193 5194 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5195 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5196 // into NewAR if it will also add the runtime overflow checks specified in 5197 // Predicates. 5198 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5199 5200 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5201 std::make_pair(NewAR, Predicates); 5202 // Remember the result of the analysis for this SCEV at this locayyytion. 5203 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5204 return PredRewrite; 5205 } 5206 5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5208 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5209 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5210 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5211 if (!L) 5212 return None; 5213 5214 // Check to see if we already analyzed this PHI. 5215 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5216 if (I != PredicatedSCEVRewrites.end()) { 5217 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5218 I->second; 5219 // Analysis was done before and failed to create an AddRec: 5220 if (Rewrite.first == SymbolicPHI) 5221 return None; 5222 // Analysis was done before and succeeded to create an AddRec under 5223 // a predicate: 5224 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5225 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5226 return Rewrite; 5227 } 5228 5229 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5230 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5231 5232 // Record in the cache that the analysis failed 5233 if (!Rewrite) { 5234 SmallVector<const SCEVPredicate *, 3> Predicates; 5235 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5236 return None; 5237 } 5238 5239 return Rewrite; 5240 } 5241 5242 // FIXME: This utility is currently required because the Rewriter currently 5243 // does not rewrite this expression: 5244 // {0, +, (sext ix (trunc iy to ix) to iy)} 5245 // into {0, +, %step}, 5246 // even when the following Equal predicate exists: 5247 // "%step == (sext ix (trunc iy to ix) to iy)". 5248 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5249 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5250 if (AR1 == AR2) 5251 return true; 5252 5253 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5254 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5255 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5256 return false; 5257 return true; 5258 }; 5259 5260 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5261 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5262 return false; 5263 return true; 5264 } 5265 5266 /// A helper function for createAddRecFromPHI to handle simple cases. 5267 /// 5268 /// This function tries to find an AddRec expression for the simplest (yet most 5269 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5270 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5271 /// technique for finding the AddRec expression. 5272 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5273 Value *BEValueV, 5274 Value *StartValueV) { 5275 const Loop *L = LI.getLoopFor(PN->getParent()); 5276 assert(L && L->getHeader() == PN->getParent()); 5277 assert(BEValueV && StartValueV); 5278 5279 auto BO = MatchBinaryOp(BEValueV, DT); 5280 if (!BO) 5281 return nullptr; 5282 5283 if (BO->Opcode != Instruction::Add) 5284 return nullptr; 5285 5286 const SCEV *Accum = nullptr; 5287 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5288 Accum = getSCEV(BO->RHS); 5289 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5290 Accum = getSCEV(BO->LHS); 5291 5292 if (!Accum) 5293 return nullptr; 5294 5295 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5296 if (BO->IsNUW) 5297 Flags = setFlags(Flags, SCEV::FlagNUW); 5298 if (BO->IsNSW) 5299 Flags = setFlags(Flags, SCEV::FlagNSW); 5300 5301 const SCEV *StartVal = getSCEV(StartValueV); 5302 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5303 5304 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5305 5306 // We can add Flags to the post-inc expression only if we 5307 // know that it is *undefined behavior* for BEValueV to 5308 // overflow. 5309 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5310 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5311 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5312 5313 return PHISCEV; 5314 } 5315 5316 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5317 const Loop *L = LI.getLoopFor(PN->getParent()); 5318 if (!L || L->getHeader() != PN->getParent()) 5319 return nullptr; 5320 5321 // The loop may have multiple entrances or multiple exits; we can analyze 5322 // this phi as an addrec if it has a unique entry value and a unique 5323 // backedge value. 5324 Value *BEValueV = nullptr, *StartValueV = nullptr; 5325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5326 Value *V = PN->getIncomingValue(i); 5327 if (L->contains(PN->getIncomingBlock(i))) { 5328 if (!BEValueV) { 5329 BEValueV = V; 5330 } else if (BEValueV != V) { 5331 BEValueV = nullptr; 5332 break; 5333 } 5334 } else if (!StartValueV) { 5335 StartValueV = V; 5336 } else if (StartValueV != V) { 5337 StartValueV = nullptr; 5338 break; 5339 } 5340 } 5341 if (!BEValueV || !StartValueV) 5342 return nullptr; 5343 5344 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5345 "PHI node already processed?"); 5346 5347 // First, try to find AddRec expression without creating a fictituos symbolic 5348 // value for PN. 5349 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5350 return S; 5351 5352 // Handle PHI node value symbolically. 5353 const SCEV *SymbolicName = getUnknown(PN); 5354 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5355 5356 // Using this symbolic name for the PHI, analyze the value coming around 5357 // the back-edge. 5358 const SCEV *BEValue = getSCEV(BEValueV); 5359 5360 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5361 // has a special value for the first iteration of the loop. 5362 5363 // If the value coming around the backedge is an add with the symbolic 5364 // value we just inserted, then we found a simple induction variable! 5365 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5366 // If there is a single occurrence of the symbolic value, replace it 5367 // with a recurrence. 5368 unsigned FoundIndex = Add->getNumOperands(); 5369 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5370 if (Add->getOperand(i) == SymbolicName) 5371 if (FoundIndex == e) { 5372 FoundIndex = i; 5373 break; 5374 } 5375 5376 if (FoundIndex != Add->getNumOperands()) { 5377 // Create an add with everything but the specified operand. 5378 SmallVector<const SCEV *, 8> Ops; 5379 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5380 if (i != FoundIndex) 5381 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5382 L, *this)); 5383 const SCEV *Accum = getAddExpr(Ops); 5384 5385 // This is not a valid addrec if the step amount is varying each 5386 // loop iteration, but is not itself an addrec in this loop. 5387 if (isLoopInvariant(Accum, L) || 5388 (isa<SCEVAddRecExpr>(Accum) && 5389 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5390 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5391 5392 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5393 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5394 if (BO->IsNUW) 5395 Flags = setFlags(Flags, SCEV::FlagNUW); 5396 if (BO->IsNSW) 5397 Flags = setFlags(Flags, SCEV::FlagNSW); 5398 } 5399 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5400 // If the increment is an inbounds GEP, then we know the address 5401 // space cannot be wrapped around. We cannot make any guarantee 5402 // about signed or unsigned overflow because pointers are 5403 // unsigned but we may have a negative index from the base 5404 // pointer. We can guarantee that no unsigned wrap occurs if the 5405 // indices form a positive value. 5406 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5407 Flags = setFlags(Flags, SCEV::FlagNW); 5408 5409 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5410 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5411 Flags = setFlags(Flags, SCEV::FlagNUW); 5412 } 5413 5414 // We cannot transfer nuw and nsw flags from subtraction 5415 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5416 // for instance. 5417 } 5418 5419 const SCEV *StartVal = getSCEV(StartValueV); 5420 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5421 5422 // Okay, for the entire analysis of this edge we assumed the PHI 5423 // to be symbolic. We now need to go back and purge all of the 5424 // entries for the scalars that use the symbolic expression. 5425 forgetSymbolicName(PN, SymbolicName); 5426 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5427 5428 // We can add Flags to the post-inc expression only if we 5429 // know that it is *undefined behavior* for BEValueV to 5430 // overflow. 5431 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5432 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5433 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5434 5435 return PHISCEV; 5436 } 5437 } 5438 } else { 5439 // Otherwise, this could be a loop like this: 5440 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5441 // In this case, j = {1,+,1} and BEValue is j. 5442 // Because the other in-value of i (0) fits the evolution of BEValue 5443 // i really is an addrec evolution. 5444 // 5445 // We can generalize this saying that i is the shifted value of BEValue 5446 // by one iteration: 5447 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5448 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5449 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5450 if (Shifted != getCouldNotCompute() && 5451 Start != getCouldNotCompute()) { 5452 const SCEV *StartVal = getSCEV(StartValueV); 5453 if (Start == StartVal) { 5454 // Okay, for the entire analysis of this edge we assumed the PHI 5455 // to be symbolic. We now need to go back and purge all of the 5456 // entries for the scalars that use the symbolic expression. 5457 forgetSymbolicName(PN, SymbolicName); 5458 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5459 return Shifted; 5460 } 5461 } 5462 } 5463 5464 // Remove the temporary PHI node SCEV that has been inserted while intending 5465 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5466 // as it will prevent later (possibly simpler) SCEV expressions to be added 5467 // to the ValueExprMap. 5468 eraseValueFromMap(PN); 5469 5470 return nullptr; 5471 } 5472 5473 // Checks if the SCEV S is available at BB. S is considered available at BB 5474 // if S can be materialized at BB without introducing a fault. 5475 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5476 BasicBlock *BB) { 5477 struct CheckAvailable { 5478 bool TraversalDone = false; 5479 bool Available = true; 5480 5481 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5482 BasicBlock *BB = nullptr; 5483 DominatorTree &DT; 5484 5485 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5486 : L(L), BB(BB), DT(DT) {} 5487 5488 bool setUnavailable() { 5489 TraversalDone = true; 5490 Available = false; 5491 return false; 5492 } 5493 5494 bool follow(const SCEV *S) { 5495 switch (S->getSCEVType()) { 5496 case scConstant: 5497 case scPtrToInt: 5498 case scTruncate: 5499 case scZeroExtend: 5500 case scSignExtend: 5501 case scAddExpr: 5502 case scMulExpr: 5503 case scUMaxExpr: 5504 case scSMaxExpr: 5505 case scUMinExpr: 5506 case scSMinExpr: 5507 // These expressions are available if their operand(s) is/are. 5508 return true; 5509 5510 case scAddRecExpr: { 5511 // We allow add recurrences that are on the loop BB is in, or some 5512 // outer loop. This guarantees availability because the value of the 5513 // add recurrence at BB is simply the "current" value of the induction 5514 // variable. We can relax this in the future; for instance an add 5515 // recurrence on a sibling dominating loop is also available at BB. 5516 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5517 if (L && (ARLoop == L || ARLoop->contains(L))) 5518 return true; 5519 5520 return setUnavailable(); 5521 } 5522 5523 case scUnknown: { 5524 // For SCEVUnknown, we check for simple dominance. 5525 const auto *SU = cast<SCEVUnknown>(S); 5526 Value *V = SU->getValue(); 5527 5528 if (isa<Argument>(V)) 5529 return false; 5530 5531 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5532 return false; 5533 5534 return setUnavailable(); 5535 } 5536 5537 case scUDivExpr: 5538 case scCouldNotCompute: 5539 // We do not try to smart about these at all. 5540 return setUnavailable(); 5541 } 5542 llvm_unreachable("Unknown SCEV kind!"); 5543 } 5544 5545 bool isDone() { return TraversalDone; } 5546 }; 5547 5548 CheckAvailable CA(L, BB, DT); 5549 SCEVTraversal<CheckAvailable> ST(CA); 5550 5551 ST.visitAll(S); 5552 return CA.Available; 5553 } 5554 5555 // Try to match a control flow sequence that branches out at BI and merges back 5556 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5557 // match. 5558 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5559 Value *&C, Value *&LHS, Value *&RHS) { 5560 C = BI->getCondition(); 5561 5562 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5563 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5564 5565 if (!LeftEdge.isSingleEdge()) 5566 return false; 5567 5568 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5569 5570 Use &LeftUse = Merge->getOperandUse(0); 5571 Use &RightUse = Merge->getOperandUse(1); 5572 5573 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5574 LHS = LeftUse; 5575 RHS = RightUse; 5576 return true; 5577 } 5578 5579 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5580 LHS = RightUse; 5581 RHS = LeftUse; 5582 return true; 5583 } 5584 5585 return false; 5586 } 5587 5588 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5589 auto IsReachable = 5590 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5591 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5592 const Loop *L = LI.getLoopFor(PN->getParent()); 5593 5594 // We don't want to break LCSSA, even in a SCEV expression tree. 5595 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5596 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5597 return nullptr; 5598 5599 // Try to match 5600 // 5601 // br %cond, label %left, label %right 5602 // left: 5603 // br label %merge 5604 // right: 5605 // br label %merge 5606 // merge: 5607 // V = phi [ %x, %left ], [ %y, %right ] 5608 // 5609 // as "select %cond, %x, %y" 5610 5611 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5612 assert(IDom && "At least the entry block should dominate PN"); 5613 5614 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5615 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5616 5617 if (BI && BI->isConditional() && 5618 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5619 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5620 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5621 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5622 } 5623 5624 return nullptr; 5625 } 5626 5627 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5628 if (const SCEV *S = createAddRecFromPHI(PN)) 5629 return S; 5630 5631 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5632 return S; 5633 5634 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5635 return getSCEV(V); 5636 5637 // If it's not a loop phi, we can't handle it yet. 5638 return getUnknown(PN); 5639 } 5640 5641 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5642 Value *Cond, 5643 Value *TrueVal, 5644 Value *FalseVal) { 5645 // Handle "constant" branch or select. This can occur for instance when a 5646 // loop pass transforms an inner loop and moves on to process the outer loop. 5647 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5648 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5649 5650 // Try to match some simple smax or umax patterns. 5651 auto *ICI = dyn_cast<ICmpInst>(Cond); 5652 if (!ICI) 5653 return getUnknown(I); 5654 5655 Value *LHS = ICI->getOperand(0); 5656 Value *RHS = ICI->getOperand(1); 5657 5658 switch (ICI->getPredicate()) { 5659 case ICmpInst::ICMP_SLT: 5660 case ICmpInst::ICMP_SLE: 5661 case ICmpInst::ICMP_ULT: 5662 case ICmpInst::ICMP_ULE: 5663 std::swap(LHS, RHS); 5664 LLVM_FALLTHROUGH; 5665 case ICmpInst::ICMP_SGT: 5666 case ICmpInst::ICMP_SGE: 5667 case ICmpInst::ICMP_UGT: 5668 case ICmpInst::ICMP_UGE: 5669 // a > b ? a+x : b+x -> max(a, b)+x 5670 // a > b ? b+x : a+x -> min(a, b)+x 5671 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5672 bool Signed = ICI->isSigned(); 5673 const SCEV *LA = getSCEV(TrueVal); 5674 const SCEV *RA = getSCEV(FalseVal); 5675 const SCEV *LS = getSCEV(LHS); 5676 const SCEV *RS = getSCEV(RHS); 5677 if (LA->getType()->isPointerTy()) { 5678 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5679 // Need to make sure we can't produce weird expressions involving 5680 // negated pointers. 5681 if (LA == LS && RA == RS) 5682 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5683 if (LA == RS && RA == LS) 5684 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5685 } 5686 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5687 if (Op->getType()->isPointerTy()) { 5688 Op = getLosslessPtrToIntExpr(Op); 5689 if (isa<SCEVCouldNotCompute>(Op)) 5690 return Op; 5691 } 5692 if (Signed) 5693 Op = getNoopOrSignExtend(Op, I->getType()); 5694 else 5695 Op = getNoopOrZeroExtend(Op, I->getType()); 5696 return Op; 5697 }; 5698 LS = CoerceOperand(LS); 5699 RS = CoerceOperand(RS); 5700 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5701 break; 5702 const SCEV *LDiff = getMinusSCEV(LA, LS); 5703 const SCEV *RDiff = getMinusSCEV(RA, RS); 5704 if (LDiff == RDiff) 5705 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5706 LDiff); 5707 LDiff = getMinusSCEV(LA, RS); 5708 RDiff = getMinusSCEV(RA, LS); 5709 if (LDiff == RDiff) 5710 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5711 LDiff); 5712 } 5713 break; 5714 case ICmpInst::ICMP_NE: 5715 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5716 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5717 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5718 const SCEV *One = getOne(I->getType()); 5719 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5720 const SCEV *LA = getSCEV(TrueVal); 5721 const SCEV *RA = getSCEV(FalseVal); 5722 const SCEV *LDiff = getMinusSCEV(LA, LS); 5723 const SCEV *RDiff = getMinusSCEV(RA, One); 5724 if (LDiff == RDiff) 5725 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5726 } 5727 break; 5728 case ICmpInst::ICMP_EQ: 5729 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5730 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5731 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5732 const SCEV *One = getOne(I->getType()); 5733 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5734 const SCEV *LA = getSCEV(TrueVal); 5735 const SCEV *RA = getSCEV(FalseVal); 5736 const SCEV *LDiff = getMinusSCEV(LA, One); 5737 const SCEV *RDiff = getMinusSCEV(RA, LS); 5738 if (LDiff == RDiff) 5739 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5740 } 5741 break; 5742 default: 5743 break; 5744 } 5745 5746 return getUnknown(I); 5747 } 5748 5749 /// Expand GEP instructions into add and multiply operations. This allows them 5750 /// to be analyzed by regular SCEV code. 5751 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5752 // Don't attempt to analyze GEPs over unsized objects. 5753 if (!GEP->getSourceElementType()->isSized()) 5754 return getUnknown(GEP); 5755 5756 SmallVector<const SCEV *, 4> IndexExprs; 5757 for (Value *Index : GEP->indices()) 5758 IndexExprs.push_back(getSCEV(Index)); 5759 return getGEPExpr(GEP, IndexExprs); 5760 } 5761 5762 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5763 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5764 return C->getAPInt().countTrailingZeros(); 5765 5766 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5767 return GetMinTrailingZeros(I->getOperand()); 5768 5769 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5770 return std::min(GetMinTrailingZeros(T->getOperand()), 5771 (uint32_t)getTypeSizeInBits(T->getType())); 5772 5773 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5774 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5775 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5776 ? getTypeSizeInBits(E->getType()) 5777 : OpRes; 5778 } 5779 5780 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5781 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5782 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5783 ? getTypeSizeInBits(E->getType()) 5784 : OpRes; 5785 } 5786 5787 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5788 // The result is the min of all operands results. 5789 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5790 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5791 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5792 return MinOpRes; 5793 } 5794 5795 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5796 // The result is the sum of all operands results. 5797 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5798 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5799 for (unsigned i = 1, e = M->getNumOperands(); 5800 SumOpRes != BitWidth && i != e; ++i) 5801 SumOpRes = 5802 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5803 return SumOpRes; 5804 } 5805 5806 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5807 // The result is the min of all operands results. 5808 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5809 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5810 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5811 return MinOpRes; 5812 } 5813 5814 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5815 // The result is the min of all operands results. 5816 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5817 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5818 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5819 return MinOpRes; 5820 } 5821 5822 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5823 // The result is the min of all operands results. 5824 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5825 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5826 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5827 return MinOpRes; 5828 } 5829 5830 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5831 // For a SCEVUnknown, ask ValueTracking. 5832 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5833 return Known.countMinTrailingZeros(); 5834 } 5835 5836 // SCEVUDivExpr 5837 return 0; 5838 } 5839 5840 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5841 auto I = MinTrailingZerosCache.find(S); 5842 if (I != MinTrailingZerosCache.end()) 5843 return I->second; 5844 5845 uint32_t Result = GetMinTrailingZerosImpl(S); 5846 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5847 assert(InsertPair.second && "Should insert a new key"); 5848 return InsertPair.first->second; 5849 } 5850 5851 /// Helper method to assign a range to V from metadata present in the IR. 5852 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5853 if (Instruction *I = dyn_cast<Instruction>(V)) 5854 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5855 return getConstantRangeFromMetadata(*MD); 5856 5857 return None; 5858 } 5859 5860 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5861 SCEV::NoWrapFlags Flags) { 5862 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5863 AddRec->setNoWrapFlags(Flags); 5864 UnsignedRanges.erase(AddRec); 5865 SignedRanges.erase(AddRec); 5866 } 5867 } 5868 5869 ConstantRange ScalarEvolution:: 5870 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5871 const DataLayout &DL = getDataLayout(); 5872 5873 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5874 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5875 5876 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5877 // use information about the trip count to improve our available range. Note 5878 // that the trip count independent cases are already handled by known bits. 5879 // WARNING: The definition of recurrence used here is subtly different than 5880 // the one used by AddRec (and thus most of this file). Step is allowed to 5881 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5882 // and other addrecs in the same loop (for non-affine addrecs). The code 5883 // below intentionally handles the case where step is not loop invariant. 5884 auto *P = dyn_cast<PHINode>(U->getValue()); 5885 if (!P) 5886 return FullSet; 5887 5888 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5889 // even the values that are not available in these blocks may come from them, 5890 // and this leads to false-positive recurrence test. 5891 for (auto *Pred : predecessors(P->getParent())) 5892 if (!DT.isReachableFromEntry(Pred)) 5893 return FullSet; 5894 5895 BinaryOperator *BO; 5896 Value *Start, *Step; 5897 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5898 return FullSet; 5899 5900 // If we found a recurrence in reachable code, we must be in a loop. Note 5901 // that BO might be in some subloop of L, and that's completely okay. 5902 auto *L = LI.getLoopFor(P->getParent()); 5903 assert(L && L->getHeader() == P->getParent()); 5904 if (!L->contains(BO->getParent())) 5905 // NOTE: This bailout should be an assert instead. However, asserting 5906 // the condition here exposes a case where LoopFusion is querying SCEV 5907 // with malformed loop information during the midst of the transform. 5908 // There doesn't appear to be an obvious fix, so for the moment bailout 5909 // until the caller issue can be fixed. PR49566 tracks the bug. 5910 return FullSet; 5911 5912 // TODO: Extend to other opcodes such as mul, and div 5913 switch (BO->getOpcode()) { 5914 default: 5915 return FullSet; 5916 case Instruction::AShr: 5917 case Instruction::LShr: 5918 case Instruction::Shl: 5919 break; 5920 }; 5921 5922 if (BO->getOperand(0) != P) 5923 // TODO: Handle the power function forms some day. 5924 return FullSet; 5925 5926 unsigned TC = getSmallConstantMaxTripCount(L); 5927 if (!TC || TC >= BitWidth) 5928 return FullSet; 5929 5930 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5931 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5932 assert(KnownStart.getBitWidth() == BitWidth && 5933 KnownStep.getBitWidth() == BitWidth); 5934 5935 // Compute total shift amount, being careful of overflow and bitwidths. 5936 auto MaxShiftAmt = KnownStep.getMaxValue(); 5937 APInt TCAP(BitWidth, TC-1); 5938 bool Overflow = false; 5939 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5940 if (Overflow) 5941 return FullSet; 5942 5943 switch (BO->getOpcode()) { 5944 default: 5945 llvm_unreachable("filtered out above"); 5946 case Instruction::AShr: { 5947 // For each ashr, three cases: 5948 // shift = 0 => unchanged value 5949 // saturation => 0 or -1 5950 // other => a value closer to zero (of the same sign) 5951 // Thus, the end value is closer to zero than the start. 5952 auto KnownEnd = KnownBits::ashr(KnownStart, 5953 KnownBits::makeConstant(TotalShift)); 5954 if (KnownStart.isNonNegative()) 5955 // Analogous to lshr (simply not yet canonicalized) 5956 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5957 KnownStart.getMaxValue() + 1); 5958 if (KnownStart.isNegative()) 5959 // End >=u Start && End <=s Start 5960 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5961 KnownEnd.getMaxValue() + 1); 5962 break; 5963 } 5964 case Instruction::LShr: { 5965 // For each lshr, three cases: 5966 // shift = 0 => unchanged value 5967 // saturation => 0 5968 // other => a smaller positive number 5969 // Thus, the low end of the unsigned range is the last value produced. 5970 auto KnownEnd = KnownBits::lshr(KnownStart, 5971 KnownBits::makeConstant(TotalShift)); 5972 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5973 KnownStart.getMaxValue() + 1); 5974 } 5975 case Instruction::Shl: { 5976 // Iff no bits are shifted out, value increases on every shift. 5977 auto KnownEnd = KnownBits::shl(KnownStart, 5978 KnownBits::makeConstant(TotalShift)); 5979 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5980 return ConstantRange(KnownStart.getMinValue(), 5981 KnownEnd.getMaxValue() + 1); 5982 break; 5983 } 5984 }; 5985 return FullSet; 5986 } 5987 5988 /// Determine the range for a particular SCEV. If SignHint is 5989 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5990 /// with a "cleaner" unsigned (resp. signed) representation. 5991 const ConstantRange & 5992 ScalarEvolution::getRangeRef(const SCEV *S, 5993 ScalarEvolution::RangeSignHint SignHint) { 5994 DenseMap<const SCEV *, ConstantRange> &Cache = 5995 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5996 : SignedRanges; 5997 ConstantRange::PreferredRangeType RangeType = 5998 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5999 ? ConstantRange::Unsigned : ConstantRange::Signed; 6000 6001 // See if we've computed this range already. 6002 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6003 if (I != Cache.end()) 6004 return I->second; 6005 6006 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6007 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6008 6009 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6010 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6011 using OBO = OverflowingBinaryOperator; 6012 6013 // If the value has known zeros, the maximum value will have those known zeros 6014 // as well. 6015 uint32_t TZ = GetMinTrailingZeros(S); 6016 if (TZ != 0) { 6017 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6018 ConservativeResult = 6019 ConstantRange(APInt::getMinValue(BitWidth), 6020 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6021 else 6022 ConservativeResult = ConstantRange( 6023 APInt::getSignedMinValue(BitWidth), 6024 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6025 } 6026 6027 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6028 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6029 unsigned WrapType = OBO::AnyWrap; 6030 if (Add->hasNoSignedWrap()) 6031 WrapType |= OBO::NoSignedWrap; 6032 if (Add->hasNoUnsignedWrap()) 6033 WrapType |= OBO::NoUnsignedWrap; 6034 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6035 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6036 WrapType, RangeType); 6037 return setRange(Add, SignHint, 6038 ConservativeResult.intersectWith(X, RangeType)); 6039 } 6040 6041 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6042 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6043 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6044 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6045 return setRange(Mul, SignHint, 6046 ConservativeResult.intersectWith(X, RangeType)); 6047 } 6048 6049 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6050 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6051 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6052 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6053 return setRange(SMax, SignHint, 6054 ConservativeResult.intersectWith(X, RangeType)); 6055 } 6056 6057 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6058 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6059 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6060 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6061 return setRange(UMax, SignHint, 6062 ConservativeResult.intersectWith(X, RangeType)); 6063 } 6064 6065 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6066 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6067 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6068 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6069 return setRange(SMin, SignHint, 6070 ConservativeResult.intersectWith(X, RangeType)); 6071 } 6072 6073 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6074 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6075 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6076 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6077 return setRange(UMin, SignHint, 6078 ConservativeResult.intersectWith(X, RangeType)); 6079 } 6080 6081 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6082 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6083 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6084 return setRange(UDiv, SignHint, 6085 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6086 } 6087 6088 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6089 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6090 return setRange(ZExt, SignHint, 6091 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6092 RangeType)); 6093 } 6094 6095 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6096 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6097 return setRange(SExt, SignHint, 6098 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6099 RangeType)); 6100 } 6101 6102 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6103 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6104 return setRange(PtrToInt, SignHint, X); 6105 } 6106 6107 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6108 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6109 return setRange(Trunc, SignHint, 6110 ConservativeResult.intersectWith(X.truncate(BitWidth), 6111 RangeType)); 6112 } 6113 6114 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6115 // If there's no unsigned wrap, the value will never be less than its 6116 // initial value. 6117 if (AddRec->hasNoUnsignedWrap()) { 6118 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6119 if (!UnsignedMinValue.isNullValue()) 6120 ConservativeResult = ConservativeResult.intersectWith( 6121 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6122 } 6123 6124 // If there's no signed wrap, and all the operands except initial value have 6125 // the same sign or zero, the value won't ever be: 6126 // 1: smaller than initial value if operands are non negative, 6127 // 2: bigger than initial value if operands are non positive. 6128 // For both cases, value can not cross signed min/max boundary. 6129 if (AddRec->hasNoSignedWrap()) { 6130 bool AllNonNeg = true; 6131 bool AllNonPos = true; 6132 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6133 if (!isKnownNonNegative(AddRec->getOperand(i))) 6134 AllNonNeg = false; 6135 if (!isKnownNonPositive(AddRec->getOperand(i))) 6136 AllNonPos = false; 6137 } 6138 if (AllNonNeg) 6139 ConservativeResult = ConservativeResult.intersectWith( 6140 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6141 APInt::getSignedMinValue(BitWidth)), 6142 RangeType); 6143 else if (AllNonPos) 6144 ConservativeResult = ConservativeResult.intersectWith( 6145 ConstantRange::getNonEmpty( 6146 APInt::getSignedMinValue(BitWidth), 6147 getSignedRangeMax(AddRec->getStart()) + 1), 6148 RangeType); 6149 } 6150 6151 // TODO: non-affine addrec 6152 if (AddRec->isAffine()) { 6153 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6154 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6155 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6156 auto RangeFromAffine = getRangeForAffineAR( 6157 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6158 BitWidth); 6159 ConservativeResult = 6160 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6161 6162 auto RangeFromFactoring = getRangeViaFactoring( 6163 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6164 BitWidth); 6165 ConservativeResult = 6166 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6167 } 6168 6169 // Now try symbolic BE count and more powerful methods. 6170 if (UseExpensiveRangeSharpening) { 6171 const SCEV *SymbolicMaxBECount = 6172 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6173 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6174 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6175 AddRec->hasNoSelfWrap()) { 6176 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6177 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6178 ConservativeResult = 6179 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6180 } 6181 } 6182 } 6183 6184 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6185 } 6186 6187 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6188 6189 // Check if the IR explicitly contains !range metadata. 6190 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6191 if (MDRange.hasValue()) 6192 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6193 RangeType); 6194 6195 // Use facts about recurrences in the underlying IR. Note that add 6196 // recurrences are AddRecExprs and thus don't hit this path. This 6197 // primarily handles shift recurrences. 6198 auto CR = getRangeForUnknownRecurrence(U); 6199 ConservativeResult = ConservativeResult.intersectWith(CR); 6200 6201 // See if ValueTracking can give us a useful range. 6202 const DataLayout &DL = getDataLayout(); 6203 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6204 if (Known.getBitWidth() != BitWidth) 6205 Known = Known.zextOrTrunc(BitWidth); 6206 6207 // ValueTracking may be able to compute a tighter result for the number of 6208 // sign bits than for the value of those sign bits. 6209 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6210 if (U->getType()->isPointerTy()) { 6211 // If the pointer size is larger than the index size type, this can cause 6212 // NS to be larger than BitWidth. So compensate for this. 6213 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6214 int ptrIdxDiff = ptrSize - BitWidth; 6215 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6216 NS -= ptrIdxDiff; 6217 } 6218 6219 if (NS > 1) { 6220 // If we know any of the sign bits, we know all of the sign bits. 6221 if (!Known.Zero.getHiBits(NS).isNullValue()) 6222 Known.Zero.setHighBits(NS); 6223 if (!Known.One.getHiBits(NS).isNullValue()) 6224 Known.One.setHighBits(NS); 6225 } 6226 6227 if (Known.getMinValue() != Known.getMaxValue() + 1) 6228 ConservativeResult = ConservativeResult.intersectWith( 6229 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6230 RangeType); 6231 if (NS > 1) 6232 ConservativeResult = ConservativeResult.intersectWith( 6233 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6234 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6235 RangeType); 6236 6237 // A range of Phi is a subset of union of all ranges of its input. 6238 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6239 // Make sure that we do not run over cycled Phis. 6240 if (PendingPhiRanges.insert(Phi).second) { 6241 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6242 for (auto &Op : Phi->operands()) { 6243 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6244 RangeFromOps = RangeFromOps.unionWith(OpRange); 6245 // No point to continue if we already have a full set. 6246 if (RangeFromOps.isFullSet()) 6247 break; 6248 } 6249 ConservativeResult = 6250 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6251 bool Erased = PendingPhiRanges.erase(Phi); 6252 assert(Erased && "Failed to erase Phi properly?"); 6253 (void) Erased; 6254 } 6255 } 6256 6257 return setRange(U, SignHint, std::move(ConservativeResult)); 6258 } 6259 6260 return setRange(S, SignHint, std::move(ConservativeResult)); 6261 } 6262 6263 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6264 // values that the expression can take. Initially, the expression has a value 6265 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6266 // argument defines if we treat Step as signed or unsigned. 6267 static ConstantRange getRangeForAffineARHelper(APInt Step, 6268 const ConstantRange &StartRange, 6269 const APInt &MaxBECount, 6270 unsigned BitWidth, bool Signed) { 6271 // If either Step or MaxBECount is 0, then the expression won't change, and we 6272 // just need to return the initial range. 6273 if (Step == 0 || MaxBECount == 0) 6274 return StartRange; 6275 6276 // If we don't know anything about the initial value (i.e. StartRange is 6277 // FullRange), then we don't know anything about the final range either. 6278 // Return FullRange. 6279 if (StartRange.isFullSet()) 6280 return ConstantRange::getFull(BitWidth); 6281 6282 // If Step is signed and negative, then we use its absolute value, but we also 6283 // note that we're moving in the opposite direction. 6284 bool Descending = Signed && Step.isNegative(); 6285 6286 if (Signed) 6287 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6288 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6289 // This equations hold true due to the well-defined wrap-around behavior of 6290 // APInt. 6291 Step = Step.abs(); 6292 6293 // Check if Offset is more than full span of BitWidth. If it is, the 6294 // expression is guaranteed to overflow. 6295 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6296 return ConstantRange::getFull(BitWidth); 6297 6298 // Offset is by how much the expression can change. Checks above guarantee no 6299 // overflow here. 6300 APInt Offset = Step * MaxBECount; 6301 6302 // Minimum value of the final range will match the minimal value of StartRange 6303 // if the expression is increasing and will be decreased by Offset otherwise. 6304 // Maximum value of the final range will match the maximal value of StartRange 6305 // if the expression is decreasing and will be increased by Offset otherwise. 6306 APInt StartLower = StartRange.getLower(); 6307 APInt StartUpper = StartRange.getUpper() - 1; 6308 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6309 : (StartUpper + std::move(Offset)); 6310 6311 // It's possible that the new minimum/maximum value will fall into the initial 6312 // range (due to wrap around). This means that the expression can take any 6313 // value in this bitwidth, and we have to return full range. 6314 if (StartRange.contains(MovedBoundary)) 6315 return ConstantRange::getFull(BitWidth); 6316 6317 APInt NewLower = 6318 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6319 APInt NewUpper = 6320 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6321 NewUpper += 1; 6322 6323 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6324 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6325 } 6326 6327 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6328 const SCEV *Step, 6329 const SCEV *MaxBECount, 6330 unsigned BitWidth) { 6331 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6332 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6333 "Precondition!"); 6334 6335 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6336 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6337 6338 // First, consider step signed. 6339 ConstantRange StartSRange = getSignedRange(Start); 6340 ConstantRange StepSRange = getSignedRange(Step); 6341 6342 // If Step can be both positive and negative, we need to find ranges for the 6343 // maximum absolute step values in both directions and union them. 6344 ConstantRange SR = 6345 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6346 MaxBECountValue, BitWidth, /* Signed = */ true); 6347 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6348 StartSRange, MaxBECountValue, 6349 BitWidth, /* Signed = */ true)); 6350 6351 // Next, consider step unsigned. 6352 ConstantRange UR = getRangeForAffineARHelper( 6353 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6354 MaxBECountValue, BitWidth, /* Signed = */ false); 6355 6356 // Finally, intersect signed and unsigned ranges. 6357 return SR.intersectWith(UR, ConstantRange::Smallest); 6358 } 6359 6360 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6361 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6362 ScalarEvolution::RangeSignHint SignHint) { 6363 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6364 assert(AddRec->hasNoSelfWrap() && 6365 "This only works for non-self-wrapping AddRecs!"); 6366 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6367 const SCEV *Step = AddRec->getStepRecurrence(*this); 6368 // Only deal with constant step to save compile time. 6369 if (!isa<SCEVConstant>(Step)) 6370 return ConstantRange::getFull(BitWidth); 6371 // Let's make sure that we can prove that we do not self-wrap during 6372 // MaxBECount iterations. We need this because MaxBECount is a maximum 6373 // iteration count estimate, and we might infer nw from some exit for which we 6374 // do not know max exit count (or any other side reasoning). 6375 // TODO: Turn into assert at some point. 6376 if (getTypeSizeInBits(MaxBECount->getType()) > 6377 getTypeSizeInBits(AddRec->getType())) 6378 return ConstantRange::getFull(BitWidth); 6379 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6380 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6381 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6382 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6383 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6384 MaxItersWithoutWrap)) 6385 return ConstantRange::getFull(BitWidth); 6386 6387 ICmpInst::Predicate LEPred = 6388 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6389 ICmpInst::Predicate GEPred = 6390 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6391 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6392 6393 // We know that there is no self-wrap. Let's take Start and End values and 6394 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6395 // the iteration. They either lie inside the range [Min(Start, End), 6396 // Max(Start, End)] or outside it: 6397 // 6398 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6399 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6400 // 6401 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6402 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6403 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6404 // Start <= End and step is positive, or Start >= End and step is negative. 6405 const SCEV *Start = AddRec->getStart(); 6406 ConstantRange StartRange = getRangeRef(Start, SignHint); 6407 ConstantRange EndRange = getRangeRef(End, SignHint); 6408 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6409 // If they already cover full iteration space, we will know nothing useful 6410 // even if we prove what we want to prove. 6411 if (RangeBetween.isFullSet()) 6412 return RangeBetween; 6413 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6414 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6415 : RangeBetween.isWrappedSet(); 6416 if (IsWrappedSet) 6417 return ConstantRange::getFull(BitWidth); 6418 6419 if (isKnownPositive(Step) && 6420 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6421 return RangeBetween; 6422 else if (isKnownNegative(Step) && 6423 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6424 return RangeBetween; 6425 return ConstantRange::getFull(BitWidth); 6426 } 6427 6428 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6429 const SCEV *Step, 6430 const SCEV *MaxBECount, 6431 unsigned BitWidth) { 6432 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6433 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6434 6435 struct SelectPattern { 6436 Value *Condition = nullptr; 6437 APInt TrueValue; 6438 APInt FalseValue; 6439 6440 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6441 const SCEV *S) { 6442 Optional<unsigned> CastOp; 6443 APInt Offset(BitWidth, 0); 6444 6445 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6446 "Should be!"); 6447 6448 // Peel off a constant offset: 6449 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6450 // In the future we could consider being smarter here and handle 6451 // {Start+Step,+,Step} too. 6452 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6453 return; 6454 6455 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6456 S = SA->getOperand(1); 6457 } 6458 6459 // Peel off a cast operation 6460 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6461 CastOp = SCast->getSCEVType(); 6462 S = SCast->getOperand(); 6463 } 6464 6465 using namespace llvm::PatternMatch; 6466 6467 auto *SU = dyn_cast<SCEVUnknown>(S); 6468 const APInt *TrueVal, *FalseVal; 6469 if (!SU || 6470 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6471 m_APInt(FalseVal)))) { 6472 Condition = nullptr; 6473 return; 6474 } 6475 6476 TrueValue = *TrueVal; 6477 FalseValue = *FalseVal; 6478 6479 // Re-apply the cast we peeled off earlier 6480 if (CastOp.hasValue()) 6481 switch (*CastOp) { 6482 default: 6483 llvm_unreachable("Unknown SCEV cast type!"); 6484 6485 case scTruncate: 6486 TrueValue = TrueValue.trunc(BitWidth); 6487 FalseValue = FalseValue.trunc(BitWidth); 6488 break; 6489 case scZeroExtend: 6490 TrueValue = TrueValue.zext(BitWidth); 6491 FalseValue = FalseValue.zext(BitWidth); 6492 break; 6493 case scSignExtend: 6494 TrueValue = TrueValue.sext(BitWidth); 6495 FalseValue = FalseValue.sext(BitWidth); 6496 break; 6497 } 6498 6499 // Re-apply the constant offset we peeled off earlier 6500 TrueValue += Offset; 6501 FalseValue += Offset; 6502 } 6503 6504 bool isRecognized() { return Condition != nullptr; } 6505 }; 6506 6507 SelectPattern StartPattern(*this, BitWidth, Start); 6508 if (!StartPattern.isRecognized()) 6509 return ConstantRange::getFull(BitWidth); 6510 6511 SelectPattern StepPattern(*this, BitWidth, Step); 6512 if (!StepPattern.isRecognized()) 6513 return ConstantRange::getFull(BitWidth); 6514 6515 if (StartPattern.Condition != StepPattern.Condition) { 6516 // We don't handle this case today; but we could, by considering four 6517 // possibilities below instead of two. I'm not sure if there are cases where 6518 // that will help over what getRange already does, though. 6519 return ConstantRange::getFull(BitWidth); 6520 } 6521 6522 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6523 // construct arbitrary general SCEV expressions here. This function is called 6524 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6525 // say) can end up caching a suboptimal value. 6526 6527 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6528 // C2352 and C2512 (otherwise it isn't needed). 6529 6530 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6531 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6532 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6533 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6534 6535 ConstantRange TrueRange = 6536 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6537 ConstantRange FalseRange = 6538 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6539 6540 return TrueRange.unionWith(FalseRange); 6541 } 6542 6543 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6544 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6545 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6546 6547 // Return early if there are no flags to propagate to the SCEV. 6548 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6549 if (BinOp->hasNoUnsignedWrap()) 6550 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6551 if (BinOp->hasNoSignedWrap()) 6552 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6553 if (Flags == SCEV::FlagAnyWrap) 6554 return SCEV::FlagAnyWrap; 6555 6556 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6557 } 6558 6559 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6560 // Here we check that I is in the header of the innermost loop containing I, 6561 // since we only deal with instructions in the loop header. The actual loop we 6562 // need to check later will come from an add recurrence, but getting that 6563 // requires computing the SCEV of the operands, which can be expensive. This 6564 // check we can do cheaply to rule out some cases early. 6565 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6566 if (InnermostContainingLoop == nullptr || 6567 InnermostContainingLoop->getHeader() != I->getParent()) 6568 return false; 6569 6570 // Only proceed if we can prove that I does not yield poison. 6571 if (!programUndefinedIfPoison(I)) 6572 return false; 6573 6574 // At this point we know that if I is executed, then it does not wrap 6575 // according to at least one of NSW or NUW. If I is not executed, then we do 6576 // not know if the calculation that I represents would wrap. Multiple 6577 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6578 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6579 // derived from other instructions that map to the same SCEV. We cannot make 6580 // that guarantee for cases where I is not executed. So we need to find the 6581 // loop that I is considered in relation to and prove that I is executed for 6582 // every iteration of that loop. That implies that the value that I 6583 // calculates does not wrap anywhere in the loop, so then we can apply the 6584 // flags to the SCEV. 6585 // 6586 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6587 // from different loops, so that we know which loop to prove that I is 6588 // executed in. 6589 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6590 // I could be an extractvalue from a call to an overflow intrinsic. 6591 // TODO: We can do better here in some cases. 6592 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6593 return false; 6594 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6595 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6596 bool AllOtherOpsLoopInvariant = true; 6597 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6598 ++OtherOpIndex) { 6599 if (OtherOpIndex != OpIndex) { 6600 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6601 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6602 AllOtherOpsLoopInvariant = false; 6603 break; 6604 } 6605 } 6606 } 6607 if (AllOtherOpsLoopInvariant && 6608 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6609 return true; 6610 } 6611 } 6612 return false; 6613 } 6614 6615 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6616 // If we know that \c I can never be poison period, then that's enough. 6617 if (isSCEVExprNeverPoison(I)) 6618 return true; 6619 6620 // For an add recurrence specifically, we assume that infinite loops without 6621 // side effects are undefined behavior, and then reason as follows: 6622 // 6623 // If the add recurrence is poison in any iteration, it is poison on all 6624 // future iterations (since incrementing poison yields poison). If the result 6625 // of the add recurrence is fed into the loop latch condition and the loop 6626 // does not contain any throws or exiting blocks other than the latch, we now 6627 // have the ability to "choose" whether the backedge is taken or not (by 6628 // choosing a sufficiently evil value for the poison feeding into the branch) 6629 // for every iteration including and after the one in which \p I first became 6630 // poison. There are two possibilities (let's call the iteration in which \p 6631 // I first became poison as K): 6632 // 6633 // 1. In the set of iterations including and after K, the loop body executes 6634 // no side effects. In this case executing the backege an infinte number 6635 // of times will yield undefined behavior. 6636 // 6637 // 2. In the set of iterations including and after K, the loop body executes 6638 // at least one side effect. In this case, that specific instance of side 6639 // effect is control dependent on poison, which also yields undefined 6640 // behavior. 6641 6642 auto *ExitingBB = L->getExitingBlock(); 6643 auto *LatchBB = L->getLoopLatch(); 6644 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6645 return false; 6646 6647 SmallPtrSet<const Instruction *, 16> Pushed; 6648 SmallVector<const Instruction *, 8> PoisonStack; 6649 6650 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6651 // things that are known to be poison under that assumption go on the 6652 // PoisonStack. 6653 Pushed.insert(I); 6654 PoisonStack.push_back(I); 6655 6656 bool LatchControlDependentOnPoison = false; 6657 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6658 const Instruction *Poison = PoisonStack.pop_back_val(); 6659 6660 for (auto *PoisonUser : Poison->users()) { 6661 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6662 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6663 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6664 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6665 assert(BI->isConditional() && "Only possibility!"); 6666 if (BI->getParent() == LatchBB) { 6667 LatchControlDependentOnPoison = true; 6668 break; 6669 } 6670 } 6671 } 6672 } 6673 6674 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6675 } 6676 6677 ScalarEvolution::LoopProperties 6678 ScalarEvolution::getLoopProperties(const Loop *L) { 6679 using LoopProperties = ScalarEvolution::LoopProperties; 6680 6681 auto Itr = LoopPropertiesCache.find(L); 6682 if (Itr == LoopPropertiesCache.end()) { 6683 auto HasSideEffects = [](Instruction *I) { 6684 if (auto *SI = dyn_cast<StoreInst>(I)) 6685 return !SI->isSimple(); 6686 6687 return I->mayThrow() || I->mayWriteToMemory(); 6688 }; 6689 6690 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6691 /*HasNoSideEffects*/ true}; 6692 6693 for (auto *BB : L->getBlocks()) 6694 for (auto &I : *BB) { 6695 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6696 LP.HasNoAbnormalExits = false; 6697 if (HasSideEffects(&I)) 6698 LP.HasNoSideEffects = false; 6699 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6700 break; // We're already as pessimistic as we can get. 6701 } 6702 6703 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6704 assert(InsertPair.second && "We just checked!"); 6705 Itr = InsertPair.first; 6706 } 6707 6708 return Itr->second; 6709 } 6710 6711 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6712 // A mustprogress loop without side effects must be finite. 6713 // TODO: The check used here is very conservative. It's only *specific* 6714 // side effects which are well defined in infinite loops. 6715 return isMustProgress(L) && loopHasNoSideEffects(L); 6716 } 6717 6718 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6719 if (!isSCEVable(V->getType())) 6720 return getUnknown(V); 6721 6722 if (Instruction *I = dyn_cast<Instruction>(V)) { 6723 // Don't attempt to analyze instructions in blocks that aren't 6724 // reachable. Such instructions don't matter, and they aren't required 6725 // to obey basic rules for definitions dominating uses which this 6726 // analysis depends on. 6727 if (!DT.isReachableFromEntry(I->getParent())) 6728 return getUnknown(UndefValue::get(V->getType())); 6729 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6730 return getConstant(CI); 6731 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6732 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6733 else if (!isa<ConstantExpr>(V)) 6734 return getUnknown(V); 6735 6736 Operator *U = cast<Operator>(V); 6737 if (auto BO = MatchBinaryOp(U, DT)) { 6738 switch (BO->Opcode) { 6739 case Instruction::Add: { 6740 // The simple thing to do would be to just call getSCEV on both operands 6741 // and call getAddExpr with the result. However if we're looking at a 6742 // bunch of things all added together, this can be quite inefficient, 6743 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6744 // Instead, gather up all the operands and make a single getAddExpr call. 6745 // LLVM IR canonical form means we need only traverse the left operands. 6746 SmallVector<const SCEV *, 4> AddOps; 6747 do { 6748 if (BO->Op) { 6749 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6750 AddOps.push_back(OpSCEV); 6751 break; 6752 } 6753 6754 // If a NUW or NSW flag can be applied to the SCEV for this 6755 // addition, then compute the SCEV for this addition by itself 6756 // with a separate call to getAddExpr. We need to do that 6757 // instead of pushing the operands of the addition onto AddOps, 6758 // since the flags are only known to apply to this particular 6759 // addition - they may not apply to other additions that can be 6760 // formed with operands from AddOps. 6761 const SCEV *RHS = getSCEV(BO->RHS); 6762 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6763 if (Flags != SCEV::FlagAnyWrap) { 6764 const SCEV *LHS = getSCEV(BO->LHS); 6765 if (BO->Opcode == Instruction::Sub) 6766 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6767 else 6768 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6769 break; 6770 } 6771 } 6772 6773 if (BO->Opcode == Instruction::Sub) 6774 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6775 else 6776 AddOps.push_back(getSCEV(BO->RHS)); 6777 6778 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6779 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6780 NewBO->Opcode != Instruction::Sub)) { 6781 AddOps.push_back(getSCEV(BO->LHS)); 6782 break; 6783 } 6784 BO = NewBO; 6785 } while (true); 6786 6787 return getAddExpr(AddOps); 6788 } 6789 6790 case Instruction::Mul: { 6791 SmallVector<const SCEV *, 4> MulOps; 6792 do { 6793 if (BO->Op) { 6794 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6795 MulOps.push_back(OpSCEV); 6796 break; 6797 } 6798 6799 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6800 if (Flags != SCEV::FlagAnyWrap) { 6801 MulOps.push_back( 6802 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6803 break; 6804 } 6805 } 6806 6807 MulOps.push_back(getSCEV(BO->RHS)); 6808 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6809 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6810 MulOps.push_back(getSCEV(BO->LHS)); 6811 break; 6812 } 6813 BO = NewBO; 6814 } while (true); 6815 6816 return getMulExpr(MulOps); 6817 } 6818 case Instruction::UDiv: 6819 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6820 case Instruction::URem: 6821 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6822 case Instruction::Sub: { 6823 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6824 if (BO->Op) 6825 Flags = getNoWrapFlagsFromUB(BO->Op); 6826 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6827 } 6828 case Instruction::And: 6829 // For an expression like x&255 that merely masks off the high bits, 6830 // use zext(trunc(x)) as the SCEV expression. 6831 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6832 if (CI->isZero()) 6833 return getSCEV(BO->RHS); 6834 if (CI->isMinusOne()) 6835 return getSCEV(BO->LHS); 6836 const APInt &A = CI->getValue(); 6837 6838 // Instcombine's ShrinkDemandedConstant may strip bits out of 6839 // constants, obscuring what would otherwise be a low-bits mask. 6840 // Use computeKnownBits to compute what ShrinkDemandedConstant 6841 // knew about to reconstruct a low-bits mask value. 6842 unsigned LZ = A.countLeadingZeros(); 6843 unsigned TZ = A.countTrailingZeros(); 6844 unsigned BitWidth = A.getBitWidth(); 6845 KnownBits Known(BitWidth); 6846 computeKnownBits(BO->LHS, Known, getDataLayout(), 6847 0, &AC, nullptr, &DT); 6848 6849 APInt EffectiveMask = 6850 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6851 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6852 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6853 const SCEV *LHS = getSCEV(BO->LHS); 6854 const SCEV *ShiftedLHS = nullptr; 6855 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6856 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6857 // For an expression like (x * 8) & 8, simplify the multiply. 6858 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6859 unsigned GCD = std::min(MulZeros, TZ); 6860 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6861 SmallVector<const SCEV*, 4> MulOps; 6862 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6863 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6864 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6865 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6866 } 6867 } 6868 if (!ShiftedLHS) 6869 ShiftedLHS = getUDivExpr(LHS, MulCount); 6870 return getMulExpr( 6871 getZeroExtendExpr( 6872 getTruncateExpr(ShiftedLHS, 6873 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6874 BO->LHS->getType()), 6875 MulCount); 6876 } 6877 } 6878 break; 6879 6880 case Instruction::Or: 6881 // If the RHS of the Or is a constant, we may have something like: 6882 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6883 // optimizations will transparently handle this case. 6884 // 6885 // In order for this transformation to be safe, the LHS must be of the 6886 // form X*(2^n) and the Or constant must be less than 2^n. 6887 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6888 const SCEV *LHS = getSCEV(BO->LHS); 6889 const APInt &CIVal = CI->getValue(); 6890 if (GetMinTrailingZeros(LHS) >= 6891 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6892 // Build a plain add SCEV. 6893 return getAddExpr(LHS, getSCEV(CI), 6894 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6895 } 6896 } 6897 break; 6898 6899 case Instruction::Xor: 6900 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6901 // If the RHS of xor is -1, then this is a not operation. 6902 if (CI->isMinusOne()) 6903 return getNotSCEV(getSCEV(BO->LHS)); 6904 6905 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6906 // This is a variant of the check for xor with -1, and it handles 6907 // the case where instcombine has trimmed non-demanded bits out 6908 // of an xor with -1. 6909 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6910 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6911 if (LBO->getOpcode() == Instruction::And && 6912 LCI->getValue() == CI->getValue()) 6913 if (const SCEVZeroExtendExpr *Z = 6914 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6915 Type *UTy = BO->LHS->getType(); 6916 const SCEV *Z0 = Z->getOperand(); 6917 Type *Z0Ty = Z0->getType(); 6918 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6919 6920 // If C is a low-bits mask, the zero extend is serving to 6921 // mask off the high bits. Complement the operand and 6922 // re-apply the zext. 6923 if (CI->getValue().isMask(Z0TySize)) 6924 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6925 6926 // If C is a single bit, it may be in the sign-bit position 6927 // before the zero-extend. In this case, represent the xor 6928 // using an add, which is equivalent, and re-apply the zext. 6929 APInt Trunc = CI->getValue().trunc(Z0TySize); 6930 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6931 Trunc.isSignMask()) 6932 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6933 UTy); 6934 } 6935 } 6936 break; 6937 6938 case Instruction::Shl: 6939 // Turn shift left of a constant amount into a multiply. 6940 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6941 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6942 6943 // If the shift count is not less than the bitwidth, the result of 6944 // the shift is undefined. Don't try to analyze it, because the 6945 // resolution chosen here may differ from the resolution chosen in 6946 // other parts of the compiler. 6947 if (SA->getValue().uge(BitWidth)) 6948 break; 6949 6950 // We can safely preserve the nuw flag in all cases. It's also safe to 6951 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6952 // requires special handling. It can be preserved as long as we're not 6953 // left shifting by bitwidth - 1. 6954 auto Flags = SCEV::FlagAnyWrap; 6955 if (BO->Op) { 6956 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6957 if ((MulFlags & SCEV::FlagNSW) && 6958 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6959 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6960 if (MulFlags & SCEV::FlagNUW) 6961 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6962 } 6963 6964 Constant *X = ConstantInt::get( 6965 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6966 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6967 } 6968 break; 6969 6970 case Instruction::AShr: { 6971 // AShr X, C, where C is a constant. 6972 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6973 if (!CI) 6974 break; 6975 6976 Type *OuterTy = BO->LHS->getType(); 6977 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6978 // If the shift count is not less than the bitwidth, the result of 6979 // the shift is undefined. Don't try to analyze it, because the 6980 // resolution chosen here may differ from the resolution chosen in 6981 // other parts of the compiler. 6982 if (CI->getValue().uge(BitWidth)) 6983 break; 6984 6985 if (CI->isZero()) 6986 return getSCEV(BO->LHS); // shift by zero --> noop 6987 6988 uint64_t AShrAmt = CI->getZExtValue(); 6989 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6990 6991 Operator *L = dyn_cast<Operator>(BO->LHS); 6992 if (L && L->getOpcode() == Instruction::Shl) { 6993 // X = Shl A, n 6994 // Y = AShr X, m 6995 // Both n and m are constant. 6996 6997 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6998 if (L->getOperand(1) == BO->RHS) 6999 // For a two-shift sext-inreg, i.e. n = m, 7000 // use sext(trunc(x)) as the SCEV expression. 7001 return getSignExtendExpr( 7002 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7003 7004 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7005 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7006 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7007 if (ShlAmt > AShrAmt) { 7008 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7009 // expression. We already checked that ShlAmt < BitWidth, so 7010 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7011 // ShlAmt - AShrAmt < Amt. 7012 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7013 ShlAmt - AShrAmt); 7014 return getSignExtendExpr( 7015 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7016 getConstant(Mul)), OuterTy); 7017 } 7018 } 7019 } 7020 break; 7021 } 7022 } 7023 } 7024 7025 switch (U->getOpcode()) { 7026 case Instruction::Trunc: 7027 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7028 7029 case Instruction::ZExt: 7030 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7031 7032 case Instruction::SExt: 7033 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7034 // The NSW flag of a subtract does not always survive the conversion to 7035 // A + (-1)*B. By pushing sign extension onto its operands we are much 7036 // more likely to preserve NSW and allow later AddRec optimisations. 7037 // 7038 // NOTE: This is effectively duplicating this logic from getSignExtend: 7039 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7040 // but by that point the NSW information has potentially been lost. 7041 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7042 Type *Ty = U->getType(); 7043 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7044 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7045 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7046 } 7047 } 7048 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7049 7050 case Instruction::BitCast: 7051 // BitCasts are no-op casts so we just eliminate the cast. 7052 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7053 return getSCEV(U->getOperand(0)); 7054 break; 7055 7056 case Instruction::PtrToInt: { 7057 // Pointer to integer cast is straight-forward, so do model it. 7058 const SCEV *Op = getSCEV(U->getOperand(0)); 7059 Type *DstIntTy = U->getType(); 7060 // But only if effective SCEV (integer) type is wide enough to represent 7061 // all possible pointer values. 7062 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7063 if (isa<SCEVCouldNotCompute>(IntOp)) 7064 return getUnknown(V); 7065 return IntOp; 7066 } 7067 case Instruction::IntToPtr: 7068 // Just don't deal with inttoptr casts. 7069 return getUnknown(V); 7070 7071 case Instruction::SDiv: 7072 // If both operands are non-negative, this is just an udiv. 7073 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7074 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7075 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7076 break; 7077 7078 case Instruction::SRem: 7079 // If both operands are non-negative, this is just an urem. 7080 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7081 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7082 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7083 break; 7084 7085 case Instruction::GetElementPtr: 7086 return createNodeForGEP(cast<GEPOperator>(U)); 7087 7088 case Instruction::PHI: 7089 return createNodeForPHI(cast<PHINode>(U)); 7090 7091 case Instruction::Select: 7092 // U can also be a select constant expr, which let fall through. Since 7093 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7094 // constant expressions cannot have instructions as operands, we'd have 7095 // returned getUnknown for a select constant expressions anyway. 7096 if (isa<Instruction>(U)) 7097 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7098 U->getOperand(1), U->getOperand(2)); 7099 break; 7100 7101 case Instruction::Call: 7102 case Instruction::Invoke: 7103 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7104 return getSCEV(RV); 7105 7106 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7107 switch (II->getIntrinsicID()) { 7108 case Intrinsic::abs: 7109 return getAbsExpr( 7110 getSCEV(II->getArgOperand(0)), 7111 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7112 case Intrinsic::umax: 7113 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7114 getSCEV(II->getArgOperand(1))); 7115 case Intrinsic::umin: 7116 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7117 getSCEV(II->getArgOperand(1))); 7118 case Intrinsic::smax: 7119 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7120 getSCEV(II->getArgOperand(1))); 7121 case Intrinsic::smin: 7122 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7123 getSCEV(II->getArgOperand(1))); 7124 case Intrinsic::usub_sat: { 7125 const SCEV *X = getSCEV(II->getArgOperand(0)); 7126 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7127 const SCEV *ClampedY = getUMinExpr(X, Y); 7128 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7129 } 7130 case Intrinsic::uadd_sat: { 7131 const SCEV *X = getSCEV(II->getArgOperand(0)); 7132 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7133 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7134 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7135 } 7136 case Intrinsic::start_loop_iterations: 7137 // A start_loop_iterations is just equivalent to the first operand for 7138 // SCEV purposes. 7139 return getSCEV(II->getArgOperand(0)); 7140 default: 7141 break; 7142 } 7143 } 7144 break; 7145 } 7146 7147 return getUnknown(V); 7148 } 7149 7150 //===----------------------------------------------------------------------===// 7151 // Iteration Count Computation Code 7152 // 7153 7154 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7155 // Get the trip count from the BE count by adding 1. Overflow, results 7156 // in zero which means "unknown". 7157 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7158 } 7159 7160 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7161 if (!ExitCount) 7162 return 0; 7163 7164 ConstantInt *ExitConst = ExitCount->getValue(); 7165 7166 // Guard against huge trip counts. 7167 if (ExitConst->getValue().getActiveBits() > 32) 7168 return 0; 7169 7170 // In case of integer overflow, this returns 0, which is correct. 7171 return ((unsigned)ExitConst->getZExtValue()) + 1; 7172 } 7173 7174 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7175 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7176 return getConstantTripCount(ExitCount); 7177 } 7178 7179 unsigned 7180 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7181 const BasicBlock *ExitingBlock) { 7182 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7183 assert(L->isLoopExiting(ExitingBlock) && 7184 "Exiting block must actually branch out of the loop!"); 7185 const SCEVConstant *ExitCount = 7186 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7187 return getConstantTripCount(ExitCount); 7188 } 7189 7190 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7191 const auto *MaxExitCount = 7192 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7193 return getConstantTripCount(MaxExitCount); 7194 } 7195 7196 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7197 SmallVector<BasicBlock *, 8> ExitingBlocks; 7198 L->getExitingBlocks(ExitingBlocks); 7199 7200 Optional<unsigned> Res = None; 7201 for (auto *ExitingBB : ExitingBlocks) { 7202 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7203 if (!Res) 7204 Res = Multiple; 7205 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7206 } 7207 return Res.getValueOr(1); 7208 } 7209 7210 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7211 const SCEV *ExitCount) { 7212 if (ExitCount == getCouldNotCompute()) 7213 return 1; 7214 7215 // Get the trip count 7216 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7217 7218 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7219 if (!TC) 7220 // Attempt to factor more general cases. Returns the greatest power of 7221 // two divisor. If overflow happens, the trip count expression is still 7222 // divisible by the greatest power of 2 divisor returned. 7223 return 1U << std::min((uint32_t)31, 7224 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7225 7226 ConstantInt *Result = TC->getValue(); 7227 7228 // Guard against huge trip counts (this requires checking 7229 // for zero to handle the case where the trip count == -1 and the 7230 // addition wraps). 7231 if (!Result || Result->getValue().getActiveBits() > 32 || 7232 Result->getValue().getActiveBits() == 0) 7233 return 1; 7234 7235 return (unsigned)Result->getZExtValue(); 7236 } 7237 7238 /// Returns the largest constant divisor of the trip count of this loop as a 7239 /// normal unsigned value, if possible. This means that the actual trip count is 7240 /// always a multiple of the returned value (don't forget the trip count could 7241 /// very well be zero as well!). 7242 /// 7243 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7244 /// multiple of a constant (which is also the case if the trip count is simply 7245 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7246 /// if the trip count is very large (>= 2^32). 7247 /// 7248 /// As explained in the comments for getSmallConstantTripCount, this assumes 7249 /// that control exits the loop via ExitingBlock. 7250 unsigned 7251 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7252 const BasicBlock *ExitingBlock) { 7253 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7254 assert(L->isLoopExiting(ExitingBlock) && 7255 "Exiting block must actually branch out of the loop!"); 7256 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7257 return getSmallConstantTripMultiple(L, ExitCount); 7258 } 7259 7260 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7261 const BasicBlock *ExitingBlock, 7262 ExitCountKind Kind) { 7263 switch (Kind) { 7264 case Exact: 7265 case SymbolicMaximum: 7266 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7267 case ConstantMaximum: 7268 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7269 }; 7270 llvm_unreachable("Invalid ExitCountKind!"); 7271 } 7272 7273 const SCEV * 7274 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7275 SCEVUnionPredicate &Preds) { 7276 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7277 } 7278 7279 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7280 ExitCountKind Kind) { 7281 switch (Kind) { 7282 case Exact: 7283 return getBackedgeTakenInfo(L).getExact(L, this); 7284 case ConstantMaximum: 7285 return getBackedgeTakenInfo(L).getConstantMax(this); 7286 case SymbolicMaximum: 7287 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7288 }; 7289 llvm_unreachable("Invalid ExitCountKind!"); 7290 } 7291 7292 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7293 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7294 } 7295 7296 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7297 static void 7298 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7299 BasicBlock *Header = L->getHeader(); 7300 7301 // Push all Loop-header PHIs onto the Worklist stack. 7302 for (PHINode &PN : Header->phis()) 7303 Worklist.push_back(&PN); 7304 } 7305 7306 const ScalarEvolution::BackedgeTakenInfo & 7307 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7308 auto &BTI = getBackedgeTakenInfo(L); 7309 if (BTI.hasFullInfo()) 7310 return BTI; 7311 7312 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7313 7314 if (!Pair.second) 7315 return Pair.first->second; 7316 7317 BackedgeTakenInfo Result = 7318 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7319 7320 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7321 } 7322 7323 ScalarEvolution::BackedgeTakenInfo & 7324 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7325 // Initially insert an invalid entry for this loop. If the insertion 7326 // succeeds, proceed to actually compute a backedge-taken count and 7327 // update the value. The temporary CouldNotCompute value tells SCEV 7328 // code elsewhere that it shouldn't attempt to request a new 7329 // backedge-taken count, which could result in infinite recursion. 7330 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7331 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7332 if (!Pair.second) 7333 return Pair.first->second; 7334 7335 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7336 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7337 // must be cleared in this scope. 7338 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7339 7340 // In product build, there are no usage of statistic. 7341 (void)NumTripCountsComputed; 7342 (void)NumTripCountsNotComputed; 7343 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7344 const SCEV *BEExact = Result.getExact(L, this); 7345 if (BEExact != getCouldNotCompute()) { 7346 assert(isLoopInvariant(BEExact, L) && 7347 isLoopInvariant(Result.getConstantMax(this), L) && 7348 "Computed backedge-taken count isn't loop invariant for loop!"); 7349 ++NumTripCountsComputed; 7350 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7351 isa<PHINode>(L->getHeader()->begin())) { 7352 // Only count loops that have phi nodes as not being computable. 7353 ++NumTripCountsNotComputed; 7354 } 7355 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7356 7357 // Now that we know more about the trip count for this loop, forget any 7358 // existing SCEV values for PHI nodes in this loop since they are only 7359 // conservative estimates made without the benefit of trip count 7360 // information. This is similar to the code in forgetLoop, except that 7361 // it handles SCEVUnknown PHI nodes specially. 7362 if (Result.hasAnyInfo()) { 7363 SmallVector<Instruction *, 16> Worklist; 7364 PushLoopPHIs(L, Worklist); 7365 7366 SmallPtrSet<Instruction *, 8> Discovered; 7367 while (!Worklist.empty()) { 7368 Instruction *I = Worklist.pop_back_val(); 7369 7370 ValueExprMapType::iterator It = 7371 ValueExprMap.find_as(static_cast<Value *>(I)); 7372 if (It != ValueExprMap.end()) { 7373 const SCEV *Old = It->second; 7374 7375 // SCEVUnknown for a PHI either means that it has an unrecognized 7376 // structure, or it's a PHI that's in the progress of being computed 7377 // by createNodeForPHI. In the former case, additional loop trip 7378 // count information isn't going to change anything. In the later 7379 // case, createNodeForPHI will perform the necessary updates on its 7380 // own when it gets to that point. 7381 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7382 eraseValueFromMap(It->first); 7383 forgetMemoizedResults(Old); 7384 } 7385 if (PHINode *PN = dyn_cast<PHINode>(I)) 7386 ConstantEvolutionLoopExitValue.erase(PN); 7387 } 7388 7389 // Since we don't need to invalidate anything for correctness and we're 7390 // only invalidating to make SCEV's results more precise, we get to stop 7391 // early to avoid invalidating too much. This is especially important in 7392 // cases like: 7393 // 7394 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7395 // loop0: 7396 // %pn0 = phi 7397 // ... 7398 // loop1: 7399 // %pn1 = phi 7400 // ... 7401 // 7402 // where both loop0 and loop1's backedge taken count uses the SCEV 7403 // expression for %v. If we don't have the early stop below then in cases 7404 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7405 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7406 // count for loop1, effectively nullifying SCEV's trip count cache. 7407 for (auto *U : I->users()) 7408 if (auto *I = dyn_cast<Instruction>(U)) { 7409 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7410 if (LoopForUser && L->contains(LoopForUser) && 7411 Discovered.insert(I).second) 7412 Worklist.push_back(I); 7413 } 7414 } 7415 } 7416 7417 // Re-lookup the insert position, since the call to 7418 // computeBackedgeTakenCount above could result in a 7419 // recusive call to getBackedgeTakenInfo (on a different 7420 // loop), which would invalidate the iterator computed 7421 // earlier. 7422 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7423 } 7424 7425 void ScalarEvolution::forgetAllLoops() { 7426 // This method is intended to forget all info about loops. It should 7427 // invalidate caches as if the following happened: 7428 // - The trip counts of all loops have changed arbitrarily 7429 // - Every llvm::Value has been updated in place to produce a different 7430 // result. 7431 BackedgeTakenCounts.clear(); 7432 PredicatedBackedgeTakenCounts.clear(); 7433 LoopPropertiesCache.clear(); 7434 ConstantEvolutionLoopExitValue.clear(); 7435 ValueExprMap.clear(); 7436 ValuesAtScopes.clear(); 7437 LoopDispositions.clear(); 7438 BlockDispositions.clear(); 7439 UnsignedRanges.clear(); 7440 SignedRanges.clear(); 7441 ExprValueMap.clear(); 7442 HasRecMap.clear(); 7443 MinTrailingZerosCache.clear(); 7444 PredicatedSCEVRewrites.clear(); 7445 } 7446 7447 void ScalarEvolution::forgetLoop(const Loop *L) { 7448 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7449 SmallVector<Instruction *, 32> Worklist; 7450 SmallPtrSet<Instruction *, 16> Visited; 7451 7452 // Iterate over all the loops and sub-loops to drop SCEV information. 7453 while (!LoopWorklist.empty()) { 7454 auto *CurrL = LoopWorklist.pop_back_val(); 7455 7456 // Drop any stored trip count value. 7457 BackedgeTakenCounts.erase(CurrL); 7458 PredicatedBackedgeTakenCounts.erase(CurrL); 7459 7460 // Drop information about predicated SCEV rewrites for this loop. 7461 for (auto I = PredicatedSCEVRewrites.begin(); 7462 I != PredicatedSCEVRewrites.end();) { 7463 std::pair<const SCEV *, const Loop *> Entry = I->first; 7464 if (Entry.second == CurrL) 7465 PredicatedSCEVRewrites.erase(I++); 7466 else 7467 ++I; 7468 } 7469 7470 auto LoopUsersItr = LoopUsers.find(CurrL); 7471 if (LoopUsersItr != LoopUsers.end()) { 7472 for (auto *S : LoopUsersItr->second) 7473 forgetMemoizedResults(S); 7474 LoopUsers.erase(LoopUsersItr); 7475 } 7476 7477 // Drop information about expressions based on loop-header PHIs. 7478 PushLoopPHIs(CurrL, Worklist); 7479 7480 while (!Worklist.empty()) { 7481 Instruction *I = Worklist.pop_back_val(); 7482 if (!Visited.insert(I).second) 7483 continue; 7484 7485 ValueExprMapType::iterator It = 7486 ValueExprMap.find_as(static_cast<Value *>(I)); 7487 if (It != ValueExprMap.end()) { 7488 eraseValueFromMap(It->first); 7489 forgetMemoizedResults(It->second); 7490 if (PHINode *PN = dyn_cast<PHINode>(I)) 7491 ConstantEvolutionLoopExitValue.erase(PN); 7492 } 7493 7494 PushDefUseChildren(I, Worklist); 7495 } 7496 7497 LoopPropertiesCache.erase(CurrL); 7498 // Forget all contained loops too, to avoid dangling entries in the 7499 // ValuesAtScopes map. 7500 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7501 } 7502 } 7503 7504 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7505 while (Loop *Parent = L->getParentLoop()) 7506 L = Parent; 7507 forgetLoop(L); 7508 } 7509 7510 void ScalarEvolution::forgetValue(Value *V) { 7511 Instruction *I = dyn_cast<Instruction>(V); 7512 if (!I) return; 7513 7514 // Drop information about expressions based on loop-header PHIs. 7515 SmallVector<Instruction *, 16> Worklist; 7516 Worklist.push_back(I); 7517 7518 SmallPtrSet<Instruction *, 8> Visited; 7519 while (!Worklist.empty()) { 7520 I = Worklist.pop_back_val(); 7521 if (!Visited.insert(I).second) 7522 continue; 7523 7524 ValueExprMapType::iterator It = 7525 ValueExprMap.find_as(static_cast<Value *>(I)); 7526 if (It != ValueExprMap.end()) { 7527 eraseValueFromMap(It->first); 7528 forgetMemoizedResults(It->second); 7529 if (PHINode *PN = dyn_cast<PHINode>(I)) 7530 ConstantEvolutionLoopExitValue.erase(PN); 7531 } 7532 7533 PushDefUseChildren(I, Worklist); 7534 } 7535 } 7536 7537 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7538 LoopDispositions.clear(); 7539 } 7540 7541 /// Get the exact loop backedge taken count considering all loop exits. A 7542 /// computable result can only be returned for loops with all exiting blocks 7543 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7544 /// is never skipped. This is a valid assumption as long as the loop exits via 7545 /// that test. For precise results, it is the caller's responsibility to specify 7546 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7547 const SCEV * 7548 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7549 SCEVUnionPredicate *Preds) const { 7550 // If any exits were not computable, the loop is not computable. 7551 if (!isComplete() || ExitNotTaken.empty()) 7552 return SE->getCouldNotCompute(); 7553 7554 const BasicBlock *Latch = L->getLoopLatch(); 7555 // All exiting blocks we have collected must dominate the only backedge. 7556 if (!Latch) 7557 return SE->getCouldNotCompute(); 7558 7559 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7560 // count is simply a minimum out of all these calculated exit counts. 7561 SmallVector<const SCEV *, 2> Ops; 7562 for (auto &ENT : ExitNotTaken) { 7563 const SCEV *BECount = ENT.ExactNotTaken; 7564 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7565 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7566 "We should only have known counts for exiting blocks that dominate " 7567 "latch!"); 7568 7569 Ops.push_back(BECount); 7570 7571 if (Preds && !ENT.hasAlwaysTruePredicate()) 7572 Preds->add(ENT.Predicate.get()); 7573 7574 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7575 "Predicate should be always true!"); 7576 } 7577 7578 return SE->getUMinFromMismatchedTypes(Ops); 7579 } 7580 7581 /// Get the exact not taken count for this loop exit. 7582 const SCEV * 7583 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7584 ScalarEvolution *SE) const { 7585 for (auto &ENT : ExitNotTaken) 7586 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7587 return ENT.ExactNotTaken; 7588 7589 return SE->getCouldNotCompute(); 7590 } 7591 7592 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7593 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7594 for (auto &ENT : ExitNotTaken) 7595 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7596 return ENT.MaxNotTaken; 7597 7598 return SE->getCouldNotCompute(); 7599 } 7600 7601 /// getConstantMax - Get the constant max backedge taken count for the loop. 7602 const SCEV * 7603 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7604 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7605 return !ENT.hasAlwaysTruePredicate(); 7606 }; 7607 7608 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7609 return SE->getCouldNotCompute(); 7610 7611 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7612 isa<SCEVConstant>(getConstantMax())) && 7613 "No point in having a non-constant max backedge taken count!"); 7614 return getConstantMax(); 7615 } 7616 7617 const SCEV * 7618 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7619 ScalarEvolution *SE) { 7620 if (!SymbolicMax) 7621 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7622 return SymbolicMax; 7623 } 7624 7625 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7626 ScalarEvolution *SE) const { 7627 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7628 return !ENT.hasAlwaysTruePredicate(); 7629 }; 7630 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7631 } 7632 7633 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7634 return Operands.contains(S); 7635 } 7636 7637 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7638 : ExitLimit(E, E, false, None) { 7639 } 7640 7641 ScalarEvolution::ExitLimit::ExitLimit( 7642 const SCEV *E, const SCEV *M, bool MaxOrZero, 7643 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7644 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7645 // If we prove the max count is zero, so is the symbolic bound. This happens 7646 // in practice due to differences in a) how context sensitive we've chosen 7647 // to be and b) how we reason about bounds impied by UB. 7648 if (MaxNotTaken->isZero()) 7649 ExactNotTaken = MaxNotTaken; 7650 7651 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7652 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7653 "Exact is not allowed to be less precise than Max"); 7654 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7655 isa<SCEVConstant>(MaxNotTaken)) && 7656 "No point in having a non-constant max backedge taken count!"); 7657 for (auto *PredSet : PredSetList) 7658 for (auto *P : *PredSet) 7659 addPredicate(P); 7660 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7661 "Backedge count should be int"); 7662 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7663 "Max backedge count should be int"); 7664 } 7665 7666 ScalarEvolution::ExitLimit::ExitLimit( 7667 const SCEV *E, const SCEV *M, bool MaxOrZero, 7668 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7669 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7670 } 7671 7672 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7673 bool MaxOrZero) 7674 : ExitLimit(E, M, MaxOrZero, None) { 7675 } 7676 7677 class SCEVRecordOperands { 7678 SmallPtrSetImpl<const SCEV *> &Operands; 7679 7680 public: 7681 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7682 : Operands(Operands) {} 7683 bool follow(const SCEV *S) { 7684 Operands.insert(S); 7685 return true; 7686 } 7687 bool isDone() { return false; } 7688 }; 7689 7690 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7691 /// computable exit into a persistent ExitNotTakenInfo array. 7692 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7693 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7694 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7695 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7696 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7697 7698 ExitNotTaken.reserve(ExitCounts.size()); 7699 std::transform( 7700 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7701 [&](const EdgeExitInfo &EEI) { 7702 BasicBlock *ExitBB = EEI.first; 7703 const ExitLimit &EL = EEI.second; 7704 if (EL.Predicates.empty()) 7705 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7706 nullptr); 7707 7708 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7709 for (auto *Pred : EL.Predicates) 7710 Predicate->add(Pred); 7711 7712 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7713 std::move(Predicate)); 7714 }); 7715 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7716 isa<SCEVConstant>(ConstantMax)) && 7717 "No point in having a non-constant max backedge taken count!"); 7718 7719 SCEVRecordOperands RecordOperands(Operands); 7720 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7721 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7722 ST.visitAll(ConstantMax); 7723 for (auto &ENT : ExitNotTaken) 7724 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7725 ST.visitAll(ENT.ExactNotTaken); 7726 } 7727 7728 /// Compute the number of times the backedge of the specified loop will execute. 7729 ScalarEvolution::BackedgeTakenInfo 7730 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7731 bool AllowPredicates) { 7732 SmallVector<BasicBlock *, 8> ExitingBlocks; 7733 L->getExitingBlocks(ExitingBlocks); 7734 7735 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7736 7737 SmallVector<EdgeExitInfo, 4> ExitCounts; 7738 bool CouldComputeBECount = true; 7739 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7740 const SCEV *MustExitMaxBECount = nullptr; 7741 const SCEV *MayExitMaxBECount = nullptr; 7742 bool MustExitMaxOrZero = false; 7743 7744 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7745 // and compute maxBECount. 7746 // Do a union of all the predicates here. 7747 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7748 BasicBlock *ExitBB = ExitingBlocks[i]; 7749 7750 // We canonicalize untaken exits to br (constant), ignore them so that 7751 // proving an exit untaken doesn't negatively impact our ability to reason 7752 // about the loop as whole. 7753 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7754 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7755 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7756 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7757 continue; 7758 } 7759 7760 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7761 7762 assert((AllowPredicates || EL.Predicates.empty()) && 7763 "Predicated exit limit when predicates are not allowed!"); 7764 7765 // 1. For each exit that can be computed, add an entry to ExitCounts. 7766 // CouldComputeBECount is true only if all exits can be computed. 7767 if (EL.ExactNotTaken == getCouldNotCompute()) 7768 // We couldn't compute an exact value for this exit, so 7769 // we won't be able to compute an exact value for the loop. 7770 CouldComputeBECount = false; 7771 else 7772 ExitCounts.emplace_back(ExitBB, EL); 7773 7774 // 2. Derive the loop's MaxBECount from each exit's max number of 7775 // non-exiting iterations. Partition the loop exits into two kinds: 7776 // LoopMustExits and LoopMayExits. 7777 // 7778 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7779 // is a LoopMayExit. If any computable LoopMustExit is found, then 7780 // MaxBECount is the minimum EL.MaxNotTaken of computable 7781 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7782 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7783 // computable EL.MaxNotTaken. 7784 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7785 DT.dominates(ExitBB, Latch)) { 7786 if (!MustExitMaxBECount) { 7787 MustExitMaxBECount = EL.MaxNotTaken; 7788 MustExitMaxOrZero = EL.MaxOrZero; 7789 } else { 7790 MustExitMaxBECount = 7791 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7792 } 7793 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7794 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7795 MayExitMaxBECount = EL.MaxNotTaken; 7796 else { 7797 MayExitMaxBECount = 7798 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7799 } 7800 } 7801 } 7802 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7803 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7804 // The loop backedge will be taken the maximum or zero times if there's 7805 // a single exit that must be taken the maximum or zero times. 7806 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7807 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7808 MaxBECount, MaxOrZero); 7809 } 7810 7811 ScalarEvolution::ExitLimit 7812 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7813 bool AllowPredicates) { 7814 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7815 // If our exiting block does not dominate the latch, then its connection with 7816 // loop's exit limit may be far from trivial. 7817 const BasicBlock *Latch = L->getLoopLatch(); 7818 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7819 return getCouldNotCompute(); 7820 7821 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7822 Instruction *Term = ExitingBlock->getTerminator(); 7823 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7824 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7825 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7826 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7827 "It should have one successor in loop and one exit block!"); 7828 // Proceed to the next level to examine the exit condition expression. 7829 return computeExitLimitFromCond( 7830 L, BI->getCondition(), ExitIfTrue, 7831 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7832 } 7833 7834 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7835 // For switch, make sure that there is a single exit from the loop. 7836 BasicBlock *Exit = nullptr; 7837 for (auto *SBB : successors(ExitingBlock)) 7838 if (!L->contains(SBB)) { 7839 if (Exit) // Multiple exit successors. 7840 return getCouldNotCompute(); 7841 Exit = SBB; 7842 } 7843 assert(Exit && "Exiting block must have at least one exit"); 7844 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7845 /*ControlsExit=*/IsOnlyExit); 7846 } 7847 7848 return getCouldNotCompute(); 7849 } 7850 7851 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7852 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7853 bool ControlsExit, bool AllowPredicates) { 7854 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7855 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7856 ControlsExit, AllowPredicates); 7857 } 7858 7859 Optional<ScalarEvolution::ExitLimit> 7860 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7861 bool ExitIfTrue, bool ControlsExit, 7862 bool AllowPredicates) { 7863 (void)this->L; 7864 (void)this->ExitIfTrue; 7865 (void)this->AllowPredicates; 7866 7867 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7868 this->AllowPredicates == AllowPredicates && 7869 "Variance in assumed invariant key components!"); 7870 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7871 if (Itr == TripCountMap.end()) 7872 return None; 7873 return Itr->second; 7874 } 7875 7876 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7877 bool ExitIfTrue, 7878 bool ControlsExit, 7879 bool AllowPredicates, 7880 const ExitLimit &EL) { 7881 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7882 this->AllowPredicates == AllowPredicates && 7883 "Variance in assumed invariant key components!"); 7884 7885 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7886 assert(InsertResult.second && "Expected successful insertion!"); 7887 (void)InsertResult; 7888 (void)ExitIfTrue; 7889 } 7890 7891 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7892 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7893 bool ControlsExit, bool AllowPredicates) { 7894 7895 if (auto MaybeEL = 7896 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7897 return *MaybeEL; 7898 7899 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7900 ControlsExit, AllowPredicates); 7901 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7902 return EL; 7903 } 7904 7905 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7906 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7907 bool ControlsExit, bool AllowPredicates) { 7908 // Handle BinOp conditions (And, Or). 7909 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7910 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7911 return *LimitFromBinOp; 7912 7913 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7914 // Proceed to the next level to examine the icmp. 7915 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7916 ExitLimit EL = 7917 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7918 if (EL.hasFullInfo() || !AllowPredicates) 7919 return EL; 7920 7921 // Try again, but use SCEV predicates this time. 7922 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7923 /*AllowPredicates=*/true); 7924 } 7925 7926 // Check for a constant condition. These are normally stripped out by 7927 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7928 // preserve the CFG and is temporarily leaving constant conditions 7929 // in place. 7930 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7931 if (ExitIfTrue == !CI->getZExtValue()) 7932 // The backedge is always taken. 7933 return getCouldNotCompute(); 7934 else 7935 // The backedge is never taken. 7936 return getZero(CI->getType()); 7937 } 7938 7939 // If it's not an integer or pointer comparison then compute it the hard way. 7940 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7941 } 7942 7943 Optional<ScalarEvolution::ExitLimit> 7944 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7945 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7946 bool ControlsExit, bool AllowPredicates) { 7947 // Check if the controlling expression for this loop is an And or Or. 7948 Value *Op0, *Op1; 7949 bool IsAnd = false; 7950 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7951 IsAnd = true; 7952 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7953 IsAnd = false; 7954 else 7955 return None; 7956 7957 // EitherMayExit is true in these two cases: 7958 // br (and Op0 Op1), loop, exit 7959 // br (or Op0 Op1), exit, loop 7960 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7961 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7962 ControlsExit && !EitherMayExit, 7963 AllowPredicates); 7964 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7965 ControlsExit && !EitherMayExit, 7966 AllowPredicates); 7967 7968 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7969 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7970 if (isa<ConstantInt>(Op1)) 7971 return Op1 == NeutralElement ? EL0 : EL1; 7972 if (isa<ConstantInt>(Op0)) 7973 return Op0 == NeutralElement ? EL1 : EL0; 7974 7975 const SCEV *BECount = getCouldNotCompute(); 7976 const SCEV *MaxBECount = getCouldNotCompute(); 7977 if (EitherMayExit) { 7978 // Both conditions must be same for the loop to continue executing. 7979 // Choose the less conservative count. 7980 // If ExitCond is a short-circuit form (select), using 7981 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7982 // To see the detailed examples, please see 7983 // test/Analysis/ScalarEvolution/exit-count-select.ll 7984 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7985 if (!PoisonSafe) 7986 // Even if ExitCond is select, we can safely derive BECount using both 7987 // EL0 and EL1 in these cases: 7988 // (1) EL0.ExactNotTaken is non-zero 7989 // (2) EL1.ExactNotTaken is non-poison 7990 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7991 // it cannot be umin(0, ..)) 7992 // The PoisonSafe assignment below is simplified and the assertion after 7993 // BECount calculation fully guarantees the condition (3). 7994 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7995 isa<SCEVConstant>(EL1.ExactNotTaken); 7996 if (EL0.ExactNotTaken != getCouldNotCompute() && 7997 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7998 BECount = 7999 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8000 8001 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8002 // it should have been simplified to zero (see the condition (3) above) 8003 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8004 BECount->isZero()); 8005 } 8006 if (EL0.MaxNotTaken == getCouldNotCompute()) 8007 MaxBECount = EL1.MaxNotTaken; 8008 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8009 MaxBECount = EL0.MaxNotTaken; 8010 else 8011 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8012 } else { 8013 // Both conditions must be same at the same time for the loop to exit. 8014 // For now, be conservative. 8015 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8016 BECount = EL0.ExactNotTaken; 8017 } 8018 8019 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8020 // to be more aggressive when computing BECount than when computing 8021 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8022 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8023 // to not. 8024 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8025 !isa<SCEVCouldNotCompute>(BECount)) 8026 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8027 8028 return ExitLimit(BECount, MaxBECount, false, 8029 { &EL0.Predicates, &EL1.Predicates }); 8030 } 8031 8032 ScalarEvolution::ExitLimit 8033 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8034 ICmpInst *ExitCond, 8035 bool ExitIfTrue, 8036 bool ControlsExit, 8037 bool AllowPredicates) { 8038 // If the condition was exit on true, convert the condition to exit on false 8039 ICmpInst::Predicate Pred; 8040 if (!ExitIfTrue) 8041 Pred = ExitCond->getPredicate(); 8042 else 8043 Pred = ExitCond->getInversePredicate(); 8044 const ICmpInst::Predicate OriginalPred = Pred; 8045 8046 // Handle common loops like: for (X = "string"; *X; ++X) 8047 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8048 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8049 ExitLimit ItCnt = 8050 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8051 if (ItCnt.hasAnyInfo()) 8052 return ItCnt; 8053 } 8054 8055 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8056 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8057 8058 // Try to evaluate any dependencies out of the loop. 8059 LHS = getSCEVAtScope(LHS, L); 8060 RHS = getSCEVAtScope(RHS, L); 8061 8062 // At this point, we would like to compute how many iterations of the 8063 // loop the predicate will return true for these inputs. 8064 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8065 // If there is a loop-invariant, force it into the RHS. 8066 std::swap(LHS, RHS); 8067 Pred = ICmpInst::getSwappedPredicate(Pred); 8068 } 8069 8070 // Simplify the operands before analyzing them. 8071 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8072 8073 // If we have a comparison of a chrec against a constant, try to use value 8074 // ranges to answer this query. 8075 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8076 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8077 if (AddRec->getLoop() == L) { 8078 // Form the constant range. 8079 ConstantRange CompRange = 8080 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8081 8082 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8083 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8084 } 8085 8086 switch (Pred) { 8087 case ICmpInst::ICMP_NE: { // while (X != Y) 8088 // Convert to: while (X-Y != 0) 8089 if (LHS->getType()->isPointerTy()) { 8090 LHS = getLosslessPtrToIntExpr(LHS); 8091 if (isa<SCEVCouldNotCompute>(LHS)) 8092 return LHS; 8093 } 8094 if (RHS->getType()->isPointerTy()) { 8095 RHS = getLosslessPtrToIntExpr(RHS); 8096 if (isa<SCEVCouldNotCompute>(RHS)) 8097 return RHS; 8098 } 8099 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8100 AllowPredicates); 8101 if (EL.hasAnyInfo()) return EL; 8102 break; 8103 } 8104 case ICmpInst::ICMP_EQ: { // while (X == Y) 8105 // Convert to: while (X-Y == 0) 8106 if (LHS->getType()->isPointerTy()) { 8107 LHS = getLosslessPtrToIntExpr(LHS); 8108 if (isa<SCEVCouldNotCompute>(LHS)) 8109 return LHS; 8110 } 8111 if (RHS->getType()->isPointerTy()) { 8112 RHS = getLosslessPtrToIntExpr(RHS); 8113 if (isa<SCEVCouldNotCompute>(RHS)) 8114 return RHS; 8115 } 8116 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8117 if (EL.hasAnyInfo()) return EL; 8118 break; 8119 } 8120 case ICmpInst::ICMP_SLT: 8121 case ICmpInst::ICMP_ULT: { // while (X < Y) 8122 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8123 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8124 AllowPredicates); 8125 if (EL.hasAnyInfo()) return EL; 8126 break; 8127 } 8128 case ICmpInst::ICMP_SGT: 8129 case ICmpInst::ICMP_UGT: { // while (X > Y) 8130 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8131 ExitLimit EL = 8132 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8133 AllowPredicates); 8134 if (EL.hasAnyInfo()) return EL; 8135 break; 8136 } 8137 default: 8138 break; 8139 } 8140 8141 auto *ExhaustiveCount = 8142 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8143 8144 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8145 return ExhaustiveCount; 8146 8147 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8148 ExitCond->getOperand(1), L, OriginalPred); 8149 } 8150 8151 ScalarEvolution::ExitLimit 8152 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8153 SwitchInst *Switch, 8154 BasicBlock *ExitingBlock, 8155 bool ControlsExit) { 8156 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8157 8158 // Give up if the exit is the default dest of a switch. 8159 if (Switch->getDefaultDest() == ExitingBlock) 8160 return getCouldNotCompute(); 8161 8162 assert(L->contains(Switch->getDefaultDest()) && 8163 "Default case must not exit the loop!"); 8164 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8165 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8166 8167 // while (X != Y) --> while (X-Y != 0) 8168 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8169 if (EL.hasAnyInfo()) 8170 return EL; 8171 8172 return getCouldNotCompute(); 8173 } 8174 8175 static ConstantInt * 8176 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8177 ScalarEvolution &SE) { 8178 const SCEV *InVal = SE.getConstant(C); 8179 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8180 assert(isa<SCEVConstant>(Val) && 8181 "Evaluation of SCEV at constant didn't fold correctly?"); 8182 return cast<SCEVConstant>(Val)->getValue(); 8183 } 8184 8185 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8186 /// compute the backedge execution count. 8187 ScalarEvolution::ExitLimit 8188 ScalarEvolution::computeLoadConstantCompareExitLimit( 8189 LoadInst *LI, 8190 Constant *RHS, 8191 const Loop *L, 8192 ICmpInst::Predicate predicate) { 8193 if (LI->isVolatile()) return getCouldNotCompute(); 8194 8195 // Check to see if the loaded pointer is a getelementptr of a global. 8196 // TODO: Use SCEV instead of manually grubbing with GEPs. 8197 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8198 if (!GEP) return getCouldNotCompute(); 8199 8200 // Make sure that it is really a constant global we are gepping, with an 8201 // initializer, and make sure the first IDX is really 0. 8202 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8203 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8204 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8205 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8206 return getCouldNotCompute(); 8207 8208 // Okay, we allow one non-constant index into the GEP instruction. 8209 Value *VarIdx = nullptr; 8210 std::vector<Constant*> Indexes; 8211 unsigned VarIdxNum = 0; 8212 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8213 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8214 Indexes.push_back(CI); 8215 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8216 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8217 VarIdx = GEP->getOperand(i); 8218 VarIdxNum = i-2; 8219 Indexes.push_back(nullptr); 8220 } 8221 8222 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8223 if (!VarIdx) 8224 return getCouldNotCompute(); 8225 8226 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8227 // Check to see if X is a loop variant variable value now. 8228 const SCEV *Idx = getSCEV(VarIdx); 8229 Idx = getSCEVAtScope(Idx, L); 8230 8231 // We can only recognize very limited forms of loop index expressions, in 8232 // particular, only affine AddRec's like {C1,+,C2}<L>. 8233 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8234 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8235 isLoopInvariant(IdxExpr, L) || 8236 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8237 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8238 return getCouldNotCompute(); 8239 8240 unsigned MaxSteps = MaxBruteForceIterations; 8241 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8242 ConstantInt *ItCst = ConstantInt::get( 8243 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8244 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8245 8246 // Form the GEP offset. 8247 Indexes[VarIdxNum] = Val; 8248 8249 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8250 Indexes); 8251 if (!Result) break; // Cannot compute! 8252 8253 // Evaluate the condition for this iteration. 8254 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8255 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8256 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8257 ++NumArrayLenItCounts; 8258 return getConstant(ItCst); // Found terminating iteration! 8259 } 8260 } 8261 return getCouldNotCompute(); 8262 } 8263 8264 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8265 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8266 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8267 if (!RHS) 8268 return getCouldNotCompute(); 8269 8270 const BasicBlock *Latch = L->getLoopLatch(); 8271 if (!Latch) 8272 return getCouldNotCompute(); 8273 8274 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8275 if (!Predecessor) 8276 return getCouldNotCompute(); 8277 8278 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8279 // Return LHS in OutLHS and shift_opt in OutOpCode. 8280 auto MatchPositiveShift = 8281 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8282 8283 using namespace PatternMatch; 8284 8285 ConstantInt *ShiftAmt; 8286 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8287 OutOpCode = Instruction::LShr; 8288 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8289 OutOpCode = Instruction::AShr; 8290 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8291 OutOpCode = Instruction::Shl; 8292 else 8293 return false; 8294 8295 return ShiftAmt->getValue().isStrictlyPositive(); 8296 }; 8297 8298 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8299 // 8300 // loop: 8301 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8302 // %iv.shifted = lshr i32 %iv, <positive constant> 8303 // 8304 // Return true on a successful match. Return the corresponding PHI node (%iv 8305 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8306 auto MatchShiftRecurrence = 8307 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8308 Optional<Instruction::BinaryOps> PostShiftOpCode; 8309 8310 { 8311 Instruction::BinaryOps OpC; 8312 Value *V; 8313 8314 // If we encounter a shift instruction, "peel off" the shift operation, 8315 // and remember that we did so. Later when we inspect %iv's backedge 8316 // value, we will make sure that the backedge value uses the same 8317 // operation. 8318 // 8319 // Note: the peeled shift operation does not have to be the same 8320 // instruction as the one feeding into the PHI's backedge value. We only 8321 // really care about it being the same *kind* of shift instruction -- 8322 // that's all that is required for our later inferences to hold. 8323 if (MatchPositiveShift(LHS, V, OpC)) { 8324 PostShiftOpCode = OpC; 8325 LHS = V; 8326 } 8327 } 8328 8329 PNOut = dyn_cast<PHINode>(LHS); 8330 if (!PNOut || PNOut->getParent() != L->getHeader()) 8331 return false; 8332 8333 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8334 Value *OpLHS; 8335 8336 return 8337 // The backedge value for the PHI node must be a shift by a positive 8338 // amount 8339 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8340 8341 // of the PHI node itself 8342 OpLHS == PNOut && 8343 8344 // and the kind of shift should be match the kind of shift we peeled 8345 // off, if any. 8346 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8347 }; 8348 8349 PHINode *PN; 8350 Instruction::BinaryOps OpCode; 8351 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8352 return getCouldNotCompute(); 8353 8354 const DataLayout &DL = getDataLayout(); 8355 8356 // The key rationale for this optimization is that for some kinds of shift 8357 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8358 // within a finite number of iterations. If the condition guarding the 8359 // backedge (in the sense that the backedge is taken if the condition is true) 8360 // is false for the value the shift recurrence stabilizes to, then we know 8361 // that the backedge is taken only a finite number of times. 8362 8363 ConstantInt *StableValue = nullptr; 8364 switch (OpCode) { 8365 default: 8366 llvm_unreachable("Impossible case!"); 8367 8368 case Instruction::AShr: { 8369 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8370 // bitwidth(K) iterations. 8371 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8372 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8373 Predecessor->getTerminator(), &DT); 8374 auto *Ty = cast<IntegerType>(RHS->getType()); 8375 if (Known.isNonNegative()) 8376 StableValue = ConstantInt::get(Ty, 0); 8377 else if (Known.isNegative()) 8378 StableValue = ConstantInt::get(Ty, -1, true); 8379 else 8380 return getCouldNotCompute(); 8381 8382 break; 8383 } 8384 case Instruction::LShr: 8385 case Instruction::Shl: 8386 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8387 // stabilize to 0 in at most bitwidth(K) iterations. 8388 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8389 break; 8390 } 8391 8392 auto *Result = 8393 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8394 assert(Result->getType()->isIntegerTy(1) && 8395 "Otherwise cannot be an operand to a branch instruction"); 8396 8397 if (Result->isZeroValue()) { 8398 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8399 const SCEV *UpperBound = 8400 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8401 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8402 } 8403 8404 return getCouldNotCompute(); 8405 } 8406 8407 /// Return true if we can constant fold an instruction of the specified type, 8408 /// assuming that all operands were constants. 8409 static bool CanConstantFold(const Instruction *I) { 8410 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8411 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8412 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8413 return true; 8414 8415 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8416 if (const Function *F = CI->getCalledFunction()) 8417 return canConstantFoldCallTo(CI, F); 8418 return false; 8419 } 8420 8421 /// Determine whether this instruction can constant evolve within this loop 8422 /// assuming its operands can all constant evolve. 8423 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8424 // An instruction outside of the loop can't be derived from a loop PHI. 8425 if (!L->contains(I)) return false; 8426 8427 if (isa<PHINode>(I)) { 8428 // We don't currently keep track of the control flow needed to evaluate 8429 // PHIs, so we cannot handle PHIs inside of loops. 8430 return L->getHeader() == I->getParent(); 8431 } 8432 8433 // If we won't be able to constant fold this expression even if the operands 8434 // are constants, bail early. 8435 return CanConstantFold(I); 8436 } 8437 8438 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8439 /// recursing through each instruction operand until reaching a loop header phi. 8440 static PHINode * 8441 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8442 DenseMap<Instruction *, PHINode *> &PHIMap, 8443 unsigned Depth) { 8444 if (Depth > MaxConstantEvolvingDepth) 8445 return nullptr; 8446 8447 // Otherwise, we can evaluate this instruction if all of its operands are 8448 // constant or derived from a PHI node themselves. 8449 PHINode *PHI = nullptr; 8450 for (Value *Op : UseInst->operands()) { 8451 if (isa<Constant>(Op)) continue; 8452 8453 Instruction *OpInst = dyn_cast<Instruction>(Op); 8454 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8455 8456 PHINode *P = dyn_cast<PHINode>(OpInst); 8457 if (!P) 8458 // If this operand is already visited, reuse the prior result. 8459 // We may have P != PHI if this is the deepest point at which the 8460 // inconsistent paths meet. 8461 P = PHIMap.lookup(OpInst); 8462 if (!P) { 8463 // Recurse and memoize the results, whether a phi is found or not. 8464 // This recursive call invalidates pointers into PHIMap. 8465 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8466 PHIMap[OpInst] = P; 8467 } 8468 if (!P) 8469 return nullptr; // Not evolving from PHI 8470 if (PHI && PHI != P) 8471 return nullptr; // Evolving from multiple different PHIs. 8472 PHI = P; 8473 } 8474 // This is a expression evolving from a constant PHI! 8475 return PHI; 8476 } 8477 8478 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8479 /// in the loop that V is derived from. We allow arbitrary operations along the 8480 /// way, but the operands of an operation must either be constants or a value 8481 /// derived from a constant PHI. If this expression does not fit with these 8482 /// constraints, return null. 8483 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8484 Instruction *I = dyn_cast<Instruction>(V); 8485 if (!I || !canConstantEvolve(I, L)) return nullptr; 8486 8487 if (PHINode *PN = dyn_cast<PHINode>(I)) 8488 return PN; 8489 8490 // Record non-constant instructions contained by the loop. 8491 DenseMap<Instruction *, PHINode *> PHIMap; 8492 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8493 } 8494 8495 /// EvaluateExpression - Given an expression that passes the 8496 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8497 /// in the loop has the value PHIVal. If we can't fold this expression for some 8498 /// reason, return null. 8499 static Constant *EvaluateExpression(Value *V, const Loop *L, 8500 DenseMap<Instruction *, Constant *> &Vals, 8501 const DataLayout &DL, 8502 const TargetLibraryInfo *TLI) { 8503 // Convenient constant check, but redundant for recursive calls. 8504 if (Constant *C = dyn_cast<Constant>(V)) return C; 8505 Instruction *I = dyn_cast<Instruction>(V); 8506 if (!I) return nullptr; 8507 8508 if (Constant *C = Vals.lookup(I)) return C; 8509 8510 // An instruction inside the loop depends on a value outside the loop that we 8511 // weren't given a mapping for, or a value such as a call inside the loop. 8512 if (!canConstantEvolve(I, L)) return nullptr; 8513 8514 // An unmapped PHI can be due to a branch or another loop inside this loop, 8515 // or due to this not being the initial iteration through a loop where we 8516 // couldn't compute the evolution of this particular PHI last time. 8517 if (isa<PHINode>(I)) return nullptr; 8518 8519 std::vector<Constant*> Operands(I->getNumOperands()); 8520 8521 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8522 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8523 if (!Operand) { 8524 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8525 if (!Operands[i]) return nullptr; 8526 continue; 8527 } 8528 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8529 Vals[Operand] = C; 8530 if (!C) return nullptr; 8531 Operands[i] = C; 8532 } 8533 8534 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8535 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8536 Operands[1], DL, TLI); 8537 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8538 if (!LI->isVolatile()) 8539 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8540 } 8541 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8542 } 8543 8544 8545 // If every incoming value to PN except the one for BB is a specific Constant, 8546 // return that, else return nullptr. 8547 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8548 Constant *IncomingVal = nullptr; 8549 8550 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8551 if (PN->getIncomingBlock(i) == BB) 8552 continue; 8553 8554 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8555 if (!CurrentVal) 8556 return nullptr; 8557 8558 if (IncomingVal != CurrentVal) { 8559 if (IncomingVal) 8560 return nullptr; 8561 IncomingVal = CurrentVal; 8562 } 8563 } 8564 8565 return IncomingVal; 8566 } 8567 8568 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8569 /// in the header of its containing loop, we know the loop executes a 8570 /// constant number of times, and the PHI node is just a recurrence 8571 /// involving constants, fold it. 8572 Constant * 8573 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8574 const APInt &BEs, 8575 const Loop *L) { 8576 auto I = ConstantEvolutionLoopExitValue.find(PN); 8577 if (I != ConstantEvolutionLoopExitValue.end()) 8578 return I->second; 8579 8580 if (BEs.ugt(MaxBruteForceIterations)) 8581 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8582 8583 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8584 8585 DenseMap<Instruction *, Constant *> CurrentIterVals; 8586 BasicBlock *Header = L->getHeader(); 8587 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8588 8589 BasicBlock *Latch = L->getLoopLatch(); 8590 if (!Latch) 8591 return nullptr; 8592 8593 for (PHINode &PHI : Header->phis()) { 8594 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8595 CurrentIterVals[&PHI] = StartCST; 8596 } 8597 if (!CurrentIterVals.count(PN)) 8598 return RetVal = nullptr; 8599 8600 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8601 8602 // Execute the loop symbolically to determine the exit value. 8603 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8604 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8605 8606 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8607 unsigned IterationNum = 0; 8608 const DataLayout &DL = getDataLayout(); 8609 for (; ; ++IterationNum) { 8610 if (IterationNum == NumIterations) 8611 return RetVal = CurrentIterVals[PN]; // Got exit value! 8612 8613 // Compute the value of the PHIs for the next iteration. 8614 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8615 DenseMap<Instruction *, Constant *> NextIterVals; 8616 Constant *NextPHI = 8617 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8618 if (!NextPHI) 8619 return nullptr; // Couldn't evaluate! 8620 NextIterVals[PN] = NextPHI; 8621 8622 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8623 8624 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8625 // cease to be able to evaluate one of them or if they stop evolving, 8626 // because that doesn't necessarily prevent us from computing PN. 8627 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8628 for (const auto &I : CurrentIterVals) { 8629 PHINode *PHI = dyn_cast<PHINode>(I.first); 8630 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8631 PHIsToCompute.emplace_back(PHI, I.second); 8632 } 8633 // We use two distinct loops because EvaluateExpression may invalidate any 8634 // iterators into CurrentIterVals. 8635 for (const auto &I : PHIsToCompute) { 8636 PHINode *PHI = I.first; 8637 Constant *&NextPHI = NextIterVals[PHI]; 8638 if (!NextPHI) { // Not already computed. 8639 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8640 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8641 } 8642 if (NextPHI != I.second) 8643 StoppedEvolving = false; 8644 } 8645 8646 // If all entries in CurrentIterVals == NextIterVals then we can stop 8647 // iterating, the loop can't continue to change. 8648 if (StoppedEvolving) 8649 return RetVal = CurrentIterVals[PN]; 8650 8651 CurrentIterVals.swap(NextIterVals); 8652 } 8653 } 8654 8655 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8656 Value *Cond, 8657 bool ExitWhen) { 8658 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8659 if (!PN) return getCouldNotCompute(); 8660 8661 // If the loop is canonicalized, the PHI will have exactly two entries. 8662 // That's the only form we support here. 8663 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8664 8665 DenseMap<Instruction *, Constant *> CurrentIterVals; 8666 BasicBlock *Header = L->getHeader(); 8667 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8668 8669 BasicBlock *Latch = L->getLoopLatch(); 8670 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8671 8672 for (PHINode &PHI : Header->phis()) { 8673 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8674 CurrentIterVals[&PHI] = StartCST; 8675 } 8676 if (!CurrentIterVals.count(PN)) 8677 return getCouldNotCompute(); 8678 8679 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8680 // the loop symbolically to determine when the condition gets a value of 8681 // "ExitWhen". 8682 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8683 const DataLayout &DL = getDataLayout(); 8684 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8685 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8686 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8687 8688 // Couldn't symbolically evaluate. 8689 if (!CondVal) return getCouldNotCompute(); 8690 8691 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8692 ++NumBruteForceTripCountsComputed; 8693 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8694 } 8695 8696 // Update all the PHI nodes for the next iteration. 8697 DenseMap<Instruction *, Constant *> NextIterVals; 8698 8699 // Create a list of which PHIs we need to compute. We want to do this before 8700 // calling EvaluateExpression on them because that may invalidate iterators 8701 // into CurrentIterVals. 8702 SmallVector<PHINode *, 8> PHIsToCompute; 8703 for (const auto &I : CurrentIterVals) { 8704 PHINode *PHI = dyn_cast<PHINode>(I.first); 8705 if (!PHI || PHI->getParent() != Header) continue; 8706 PHIsToCompute.push_back(PHI); 8707 } 8708 for (PHINode *PHI : PHIsToCompute) { 8709 Constant *&NextPHI = NextIterVals[PHI]; 8710 if (NextPHI) continue; // Already computed! 8711 8712 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8713 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8714 } 8715 CurrentIterVals.swap(NextIterVals); 8716 } 8717 8718 // Too many iterations were needed to evaluate. 8719 return getCouldNotCompute(); 8720 } 8721 8722 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8723 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8724 ValuesAtScopes[V]; 8725 // Check to see if we've folded this expression at this loop before. 8726 for (auto &LS : Values) 8727 if (LS.first == L) 8728 return LS.second ? LS.second : V; 8729 8730 Values.emplace_back(L, nullptr); 8731 8732 // Otherwise compute it. 8733 const SCEV *C = computeSCEVAtScope(V, L); 8734 for (auto &LS : reverse(ValuesAtScopes[V])) 8735 if (LS.first == L) { 8736 LS.second = C; 8737 break; 8738 } 8739 return C; 8740 } 8741 8742 /// This builds up a Constant using the ConstantExpr interface. That way, we 8743 /// will return Constants for objects which aren't represented by a 8744 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8745 /// Returns NULL if the SCEV isn't representable as a Constant. 8746 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8747 switch (V->getSCEVType()) { 8748 case scCouldNotCompute: 8749 case scAddRecExpr: 8750 return nullptr; 8751 case scConstant: 8752 return cast<SCEVConstant>(V)->getValue(); 8753 case scUnknown: 8754 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8755 case scSignExtend: { 8756 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8757 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8758 return ConstantExpr::getSExt(CastOp, SS->getType()); 8759 return nullptr; 8760 } 8761 case scZeroExtend: { 8762 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8763 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8764 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8765 return nullptr; 8766 } 8767 case scPtrToInt: { 8768 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8769 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8770 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8771 8772 return nullptr; 8773 } 8774 case scTruncate: { 8775 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8776 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8777 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8778 return nullptr; 8779 } 8780 case scAddExpr: { 8781 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8782 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8783 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8784 unsigned AS = PTy->getAddressSpace(); 8785 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8786 C = ConstantExpr::getBitCast(C, DestPtrTy); 8787 } 8788 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8789 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8790 if (!C2) 8791 return nullptr; 8792 8793 // First pointer! 8794 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8795 unsigned AS = C2->getType()->getPointerAddressSpace(); 8796 std::swap(C, C2); 8797 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8798 // The offsets have been converted to bytes. We can add bytes to an 8799 // i8* by GEP with the byte count in the first index. 8800 C = ConstantExpr::getBitCast(C, DestPtrTy); 8801 } 8802 8803 // Don't bother trying to sum two pointers. We probably can't 8804 // statically compute a load that results from it anyway. 8805 if (C2->getType()->isPointerTy()) 8806 return nullptr; 8807 8808 if (C->getType()->isPointerTy()) { 8809 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8810 C, C2); 8811 } else { 8812 C = ConstantExpr::getAdd(C, C2); 8813 } 8814 } 8815 return C; 8816 } 8817 return nullptr; 8818 } 8819 case scMulExpr: { 8820 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8821 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8822 // Don't bother with pointers at all. 8823 if (C->getType()->isPointerTy()) 8824 return nullptr; 8825 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8826 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8827 if (!C2 || C2->getType()->isPointerTy()) 8828 return nullptr; 8829 C = ConstantExpr::getMul(C, C2); 8830 } 8831 return C; 8832 } 8833 return nullptr; 8834 } 8835 case scUDivExpr: { 8836 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8837 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8838 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8839 if (LHS->getType() == RHS->getType()) 8840 return ConstantExpr::getUDiv(LHS, RHS); 8841 return nullptr; 8842 } 8843 case scSMaxExpr: 8844 case scUMaxExpr: 8845 case scSMinExpr: 8846 case scUMinExpr: 8847 return nullptr; // TODO: smax, umax, smin, umax. 8848 } 8849 llvm_unreachable("Unknown SCEV kind!"); 8850 } 8851 8852 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8853 if (isa<SCEVConstant>(V)) return V; 8854 8855 // If this instruction is evolved from a constant-evolving PHI, compute the 8856 // exit value from the loop without using SCEVs. 8857 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8858 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8859 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8860 const Loop *CurrLoop = this->LI[I->getParent()]; 8861 // Looking for loop exit value. 8862 if (CurrLoop && CurrLoop->getParentLoop() == L && 8863 PN->getParent() == CurrLoop->getHeader()) { 8864 // Okay, there is no closed form solution for the PHI node. Check 8865 // to see if the loop that contains it has a known backedge-taken 8866 // count. If so, we may be able to force computation of the exit 8867 // value. 8868 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8869 // This trivial case can show up in some degenerate cases where 8870 // the incoming IR has not yet been fully simplified. 8871 if (BackedgeTakenCount->isZero()) { 8872 Value *InitValue = nullptr; 8873 bool MultipleInitValues = false; 8874 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8875 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8876 if (!InitValue) 8877 InitValue = PN->getIncomingValue(i); 8878 else if (InitValue != PN->getIncomingValue(i)) { 8879 MultipleInitValues = true; 8880 break; 8881 } 8882 } 8883 } 8884 if (!MultipleInitValues && InitValue) 8885 return getSCEV(InitValue); 8886 } 8887 // Do we have a loop invariant value flowing around the backedge 8888 // for a loop which must execute the backedge? 8889 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8890 isKnownPositive(BackedgeTakenCount) && 8891 PN->getNumIncomingValues() == 2) { 8892 8893 unsigned InLoopPred = 8894 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8895 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8896 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8897 return getSCEV(BackedgeVal); 8898 } 8899 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8900 // Okay, we know how many times the containing loop executes. If 8901 // this is a constant evolving PHI node, get the final value at 8902 // the specified iteration number. 8903 Constant *RV = getConstantEvolutionLoopExitValue( 8904 PN, BTCC->getAPInt(), CurrLoop); 8905 if (RV) return getSCEV(RV); 8906 } 8907 } 8908 8909 // If there is a single-input Phi, evaluate it at our scope. If we can 8910 // prove that this replacement does not break LCSSA form, use new value. 8911 if (PN->getNumOperands() == 1) { 8912 const SCEV *Input = getSCEV(PN->getOperand(0)); 8913 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8914 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8915 // for the simplest case just support constants. 8916 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8917 } 8918 } 8919 8920 // Okay, this is an expression that we cannot symbolically evaluate 8921 // into a SCEV. Check to see if it's possible to symbolically evaluate 8922 // the arguments into constants, and if so, try to constant propagate the 8923 // result. This is particularly useful for computing loop exit values. 8924 if (CanConstantFold(I)) { 8925 SmallVector<Constant *, 4> Operands; 8926 bool MadeImprovement = false; 8927 for (Value *Op : I->operands()) { 8928 if (Constant *C = dyn_cast<Constant>(Op)) { 8929 Operands.push_back(C); 8930 continue; 8931 } 8932 8933 // If any of the operands is non-constant and if they are 8934 // non-integer and non-pointer, don't even try to analyze them 8935 // with scev techniques. 8936 if (!isSCEVable(Op->getType())) 8937 return V; 8938 8939 const SCEV *OrigV = getSCEV(Op); 8940 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8941 MadeImprovement |= OrigV != OpV; 8942 8943 Constant *C = BuildConstantFromSCEV(OpV); 8944 if (!C) return V; 8945 if (C->getType() != Op->getType()) 8946 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8947 Op->getType(), 8948 false), 8949 C, Op->getType()); 8950 Operands.push_back(C); 8951 } 8952 8953 // Check to see if getSCEVAtScope actually made an improvement. 8954 if (MadeImprovement) { 8955 Constant *C = nullptr; 8956 const DataLayout &DL = getDataLayout(); 8957 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8958 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8959 Operands[1], DL, &TLI); 8960 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8961 if (!Load->isVolatile()) 8962 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8963 DL); 8964 } else 8965 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8966 if (!C) return V; 8967 return getSCEV(C); 8968 } 8969 } 8970 } 8971 8972 // This is some other type of SCEVUnknown, just return it. 8973 return V; 8974 } 8975 8976 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8977 // Avoid performing the look-up in the common case where the specified 8978 // expression has no loop-variant portions. 8979 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8980 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8981 if (OpAtScope != Comm->getOperand(i)) { 8982 // Okay, at least one of these operands is loop variant but might be 8983 // foldable. Build a new instance of the folded commutative expression. 8984 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8985 Comm->op_begin()+i); 8986 NewOps.push_back(OpAtScope); 8987 8988 for (++i; i != e; ++i) { 8989 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8990 NewOps.push_back(OpAtScope); 8991 } 8992 if (isa<SCEVAddExpr>(Comm)) 8993 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8994 if (isa<SCEVMulExpr>(Comm)) 8995 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8996 if (isa<SCEVMinMaxExpr>(Comm)) 8997 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8998 llvm_unreachable("Unknown commutative SCEV type!"); 8999 } 9000 } 9001 // If we got here, all operands are loop invariant. 9002 return Comm; 9003 } 9004 9005 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9006 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9007 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9008 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9009 return Div; // must be loop invariant 9010 return getUDivExpr(LHS, RHS); 9011 } 9012 9013 // If this is a loop recurrence for a loop that does not contain L, then we 9014 // are dealing with the final value computed by the loop. 9015 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9016 // First, attempt to evaluate each operand. 9017 // Avoid performing the look-up in the common case where the specified 9018 // expression has no loop-variant portions. 9019 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9020 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9021 if (OpAtScope == AddRec->getOperand(i)) 9022 continue; 9023 9024 // Okay, at least one of these operands is loop variant but might be 9025 // foldable. Build a new instance of the folded commutative expression. 9026 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9027 AddRec->op_begin()+i); 9028 NewOps.push_back(OpAtScope); 9029 for (++i; i != e; ++i) 9030 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9031 9032 const SCEV *FoldedRec = 9033 getAddRecExpr(NewOps, AddRec->getLoop(), 9034 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9035 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9036 // The addrec may be folded to a nonrecurrence, for example, if the 9037 // induction variable is multiplied by zero after constant folding. Go 9038 // ahead and return the folded value. 9039 if (!AddRec) 9040 return FoldedRec; 9041 break; 9042 } 9043 9044 // If the scope is outside the addrec's loop, evaluate it by using the 9045 // loop exit value of the addrec. 9046 if (!AddRec->getLoop()->contains(L)) { 9047 // To evaluate this recurrence, we need to know how many times the AddRec 9048 // loop iterates. Compute this now. 9049 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9050 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9051 9052 // Then, evaluate the AddRec. 9053 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9054 } 9055 9056 return AddRec; 9057 } 9058 9059 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9060 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9061 if (Op == Cast->getOperand()) 9062 return Cast; // must be loop invariant 9063 return getZeroExtendExpr(Op, Cast->getType()); 9064 } 9065 9066 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9067 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9068 if (Op == Cast->getOperand()) 9069 return Cast; // must be loop invariant 9070 return getSignExtendExpr(Op, Cast->getType()); 9071 } 9072 9073 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9074 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9075 if (Op == Cast->getOperand()) 9076 return Cast; // must be loop invariant 9077 return getTruncateExpr(Op, Cast->getType()); 9078 } 9079 9080 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9081 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9082 if (Op == Cast->getOperand()) 9083 return Cast; // must be loop invariant 9084 return getPtrToIntExpr(Op, Cast->getType()); 9085 } 9086 9087 llvm_unreachable("Unknown SCEV type!"); 9088 } 9089 9090 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9091 return getSCEVAtScope(getSCEV(V), L); 9092 } 9093 9094 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9095 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9096 return stripInjectiveFunctions(ZExt->getOperand()); 9097 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9098 return stripInjectiveFunctions(SExt->getOperand()); 9099 return S; 9100 } 9101 9102 /// Finds the minimum unsigned root of the following equation: 9103 /// 9104 /// A * X = B (mod N) 9105 /// 9106 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9107 /// A and B isn't important. 9108 /// 9109 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9110 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9111 ScalarEvolution &SE) { 9112 uint32_t BW = A.getBitWidth(); 9113 assert(BW == SE.getTypeSizeInBits(B->getType())); 9114 assert(A != 0 && "A must be non-zero."); 9115 9116 // 1. D = gcd(A, N) 9117 // 9118 // The gcd of A and N may have only one prime factor: 2. The number of 9119 // trailing zeros in A is its multiplicity 9120 uint32_t Mult2 = A.countTrailingZeros(); 9121 // D = 2^Mult2 9122 9123 // 2. Check if B is divisible by D. 9124 // 9125 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9126 // is not less than multiplicity of this prime factor for D. 9127 if (SE.GetMinTrailingZeros(B) < Mult2) 9128 return SE.getCouldNotCompute(); 9129 9130 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9131 // modulo (N / D). 9132 // 9133 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9134 // (N / D) in general. The inverse itself always fits into BW bits, though, 9135 // so we immediately truncate it. 9136 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9137 APInt Mod(BW + 1, 0); 9138 Mod.setBit(BW - Mult2); // Mod = N / D 9139 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9140 9141 // 4. Compute the minimum unsigned root of the equation: 9142 // I * (B / D) mod (N / D) 9143 // To simplify the computation, we factor out the divide by D: 9144 // (I * B mod N) / D 9145 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9146 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9147 } 9148 9149 /// For a given quadratic addrec, generate coefficients of the corresponding 9150 /// quadratic equation, multiplied by a common value to ensure that they are 9151 /// integers. 9152 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9153 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9154 /// were multiplied by, and BitWidth is the bit width of the original addrec 9155 /// coefficients. 9156 /// This function returns None if the addrec coefficients are not compile- 9157 /// time constants. 9158 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9159 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9160 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9161 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9162 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9163 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9164 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9165 << *AddRec << '\n'); 9166 9167 // We currently can only solve this if the coefficients are constants. 9168 if (!LC || !MC || !NC) { 9169 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9170 return None; 9171 } 9172 9173 APInt L = LC->getAPInt(); 9174 APInt M = MC->getAPInt(); 9175 APInt N = NC->getAPInt(); 9176 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9177 9178 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9179 unsigned NewWidth = BitWidth + 1; 9180 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9181 << BitWidth << '\n'); 9182 // The sign-extension (as opposed to a zero-extension) here matches the 9183 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9184 N = N.sext(NewWidth); 9185 M = M.sext(NewWidth); 9186 L = L.sext(NewWidth); 9187 9188 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9189 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9190 // L+M, L+2M+N, L+3M+3N, ... 9191 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9192 // 9193 // The equation Acc = 0 is then 9194 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9195 // In a quadratic form it becomes: 9196 // N n^2 + (2M-N) n + 2L = 0. 9197 9198 APInt A = N; 9199 APInt B = 2 * M - A; 9200 APInt C = 2 * L; 9201 APInt T = APInt(NewWidth, 2); 9202 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9203 << "x + " << C << ", coeff bw: " << NewWidth 9204 << ", multiplied by " << T << '\n'); 9205 return std::make_tuple(A, B, C, T, BitWidth); 9206 } 9207 9208 /// Helper function to compare optional APInts: 9209 /// (a) if X and Y both exist, return min(X, Y), 9210 /// (b) if neither X nor Y exist, return None, 9211 /// (c) if exactly one of X and Y exists, return that value. 9212 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9213 if (X.hasValue() && Y.hasValue()) { 9214 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9215 APInt XW = X->sextOrSelf(W); 9216 APInt YW = Y->sextOrSelf(W); 9217 return XW.slt(YW) ? *X : *Y; 9218 } 9219 if (!X.hasValue() && !Y.hasValue()) 9220 return None; 9221 return X.hasValue() ? *X : *Y; 9222 } 9223 9224 /// Helper function to truncate an optional APInt to a given BitWidth. 9225 /// When solving addrec-related equations, it is preferable to return a value 9226 /// that has the same bit width as the original addrec's coefficients. If the 9227 /// solution fits in the original bit width, truncate it (except for i1). 9228 /// Returning a value of a different bit width may inhibit some optimizations. 9229 /// 9230 /// In general, a solution to a quadratic equation generated from an addrec 9231 /// may require BW+1 bits, where BW is the bit width of the addrec's 9232 /// coefficients. The reason is that the coefficients of the quadratic 9233 /// equation are BW+1 bits wide (to avoid truncation when converting from 9234 /// the addrec to the equation). 9235 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9236 if (!X.hasValue()) 9237 return None; 9238 unsigned W = X->getBitWidth(); 9239 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9240 return X->trunc(BitWidth); 9241 return X; 9242 } 9243 9244 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9245 /// iterations. The values L, M, N are assumed to be signed, and they 9246 /// should all have the same bit widths. 9247 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9248 /// where BW is the bit width of the addrec's coefficients. 9249 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9250 /// returned as such, otherwise the bit width of the returned value may 9251 /// be greater than BW. 9252 /// 9253 /// This function returns None if 9254 /// (a) the addrec coefficients are not constant, or 9255 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9256 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9257 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9258 static Optional<APInt> 9259 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9260 APInt A, B, C, M; 9261 unsigned BitWidth; 9262 auto T = GetQuadraticEquation(AddRec); 9263 if (!T.hasValue()) 9264 return None; 9265 9266 std::tie(A, B, C, M, BitWidth) = *T; 9267 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9268 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9269 if (!X.hasValue()) 9270 return None; 9271 9272 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9273 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9274 if (!V->isZero()) 9275 return None; 9276 9277 return TruncIfPossible(X, BitWidth); 9278 } 9279 9280 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9281 /// iterations. The values M, N are assumed to be signed, and they 9282 /// should all have the same bit widths. 9283 /// Find the least n such that c(n) does not belong to the given range, 9284 /// while c(n-1) does. 9285 /// 9286 /// This function returns None if 9287 /// (a) the addrec coefficients are not constant, or 9288 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9289 /// bounds of the range. 9290 static Optional<APInt> 9291 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9292 const ConstantRange &Range, ScalarEvolution &SE) { 9293 assert(AddRec->getOperand(0)->isZero() && 9294 "Starting value of addrec should be 0"); 9295 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9296 << Range << ", addrec " << *AddRec << '\n'); 9297 // This case is handled in getNumIterationsInRange. Here we can assume that 9298 // we start in the range. 9299 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9300 "Addrec's initial value should be in range"); 9301 9302 APInt A, B, C, M; 9303 unsigned BitWidth; 9304 auto T = GetQuadraticEquation(AddRec); 9305 if (!T.hasValue()) 9306 return None; 9307 9308 // Be careful about the return value: there can be two reasons for not 9309 // returning an actual number. First, if no solutions to the equations 9310 // were found, and second, if the solutions don't leave the given range. 9311 // The first case means that the actual solution is "unknown", the second 9312 // means that it's known, but not valid. If the solution is unknown, we 9313 // cannot make any conclusions. 9314 // Return a pair: the optional solution and a flag indicating if the 9315 // solution was found. 9316 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9317 // Solve for signed overflow and unsigned overflow, pick the lower 9318 // solution. 9319 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9320 << Bound << " (before multiplying by " << M << ")\n"); 9321 Bound *= M; // The quadratic equation multiplier. 9322 9323 Optional<APInt> SO = None; 9324 if (BitWidth > 1) { 9325 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9326 "signed overflow\n"); 9327 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9328 } 9329 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9330 "unsigned overflow\n"); 9331 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9332 BitWidth+1); 9333 9334 auto LeavesRange = [&] (const APInt &X) { 9335 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9336 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9337 if (Range.contains(V0->getValue())) 9338 return false; 9339 // X should be at least 1, so X-1 is non-negative. 9340 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9341 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9342 if (Range.contains(V1->getValue())) 9343 return true; 9344 return false; 9345 }; 9346 9347 // If SolveQuadraticEquationWrap returns None, it means that there can 9348 // be a solution, but the function failed to find it. We cannot treat it 9349 // as "no solution". 9350 if (!SO.hasValue() || !UO.hasValue()) 9351 return { None, false }; 9352 9353 // Check the smaller value first to see if it leaves the range. 9354 // At this point, both SO and UO must have values. 9355 Optional<APInt> Min = MinOptional(SO, UO); 9356 if (LeavesRange(*Min)) 9357 return { Min, true }; 9358 Optional<APInt> Max = Min == SO ? UO : SO; 9359 if (LeavesRange(*Max)) 9360 return { Max, true }; 9361 9362 // Solutions were found, but were eliminated, hence the "true". 9363 return { None, true }; 9364 }; 9365 9366 std::tie(A, B, C, M, BitWidth) = *T; 9367 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9368 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9369 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9370 auto SL = SolveForBoundary(Lower); 9371 auto SU = SolveForBoundary(Upper); 9372 // If any of the solutions was unknown, no meaninigful conclusions can 9373 // be made. 9374 if (!SL.second || !SU.second) 9375 return None; 9376 9377 // Claim: The correct solution is not some value between Min and Max. 9378 // 9379 // Justification: Assuming that Min and Max are different values, one of 9380 // them is when the first signed overflow happens, the other is when the 9381 // first unsigned overflow happens. Crossing the range boundary is only 9382 // possible via an overflow (treating 0 as a special case of it, modeling 9383 // an overflow as crossing k*2^W for some k). 9384 // 9385 // The interesting case here is when Min was eliminated as an invalid 9386 // solution, but Max was not. The argument is that if there was another 9387 // overflow between Min and Max, it would also have been eliminated if 9388 // it was considered. 9389 // 9390 // For a given boundary, it is possible to have two overflows of the same 9391 // type (signed/unsigned) without having the other type in between: this 9392 // can happen when the vertex of the parabola is between the iterations 9393 // corresponding to the overflows. This is only possible when the two 9394 // overflows cross k*2^W for the same k. In such case, if the second one 9395 // left the range (and was the first one to do so), the first overflow 9396 // would have to enter the range, which would mean that either we had left 9397 // the range before or that we started outside of it. Both of these cases 9398 // are contradictions. 9399 // 9400 // Claim: In the case where SolveForBoundary returns None, the correct 9401 // solution is not some value between the Max for this boundary and the 9402 // Min of the other boundary. 9403 // 9404 // Justification: Assume that we had such Max_A and Min_B corresponding 9405 // to range boundaries A and B and such that Max_A < Min_B. If there was 9406 // a solution between Max_A and Min_B, it would have to be caused by an 9407 // overflow corresponding to either A or B. It cannot correspond to B, 9408 // since Min_B is the first occurrence of such an overflow. If it 9409 // corresponded to A, it would have to be either a signed or an unsigned 9410 // overflow that is larger than both eliminated overflows for A. But 9411 // between the eliminated overflows and this overflow, the values would 9412 // cover the entire value space, thus crossing the other boundary, which 9413 // is a contradiction. 9414 9415 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9416 } 9417 9418 ScalarEvolution::ExitLimit 9419 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9420 bool AllowPredicates) { 9421 9422 // This is only used for loops with a "x != y" exit test. The exit condition 9423 // is now expressed as a single expression, V = x-y. So the exit test is 9424 // effectively V != 0. We know and take advantage of the fact that this 9425 // expression only being used in a comparison by zero context. 9426 9427 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9428 // If the value is a constant 9429 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9430 // If the value is already zero, the branch will execute zero times. 9431 if (C->getValue()->isZero()) return C; 9432 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9433 } 9434 9435 const SCEVAddRecExpr *AddRec = 9436 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9437 9438 if (!AddRec && AllowPredicates) 9439 // Try to make this an AddRec using runtime tests, in the first X 9440 // iterations of this loop, where X is the SCEV expression found by the 9441 // algorithm below. 9442 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9443 9444 if (!AddRec || AddRec->getLoop() != L) 9445 return getCouldNotCompute(); 9446 9447 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9448 // the quadratic equation to solve it. 9449 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9450 // We can only use this value if the chrec ends up with an exact zero 9451 // value at this index. When solving for "X*X != 5", for example, we 9452 // should not accept a root of 2. 9453 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9454 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9455 return ExitLimit(R, R, false, Predicates); 9456 } 9457 return getCouldNotCompute(); 9458 } 9459 9460 // Otherwise we can only handle this if it is affine. 9461 if (!AddRec->isAffine()) 9462 return getCouldNotCompute(); 9463 9464 // If this is an affine expression, the execution count of this branch is 9465 // the minimum unsigned root of the following equation: 9466 // 9467 // Start + Step*N = 0 (mod 2^BW) 9468 // 9469 // equivalent to: 9470 // 9471 // Step*N = -Start (mod 2^BW) 9472 // 9473 // where BW is the common bit width of Start and Step. 9474 9475 // Get the initial value for the loop. 9476 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9477 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9478 9479 // For now we handle only constant steps. 9480 // 9481 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9482 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9483 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9484 // We have not yet seen any such cases. 9485 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9486 if (!StepC || StepC->getValue()->isZero()) 9487 return getCouldNotCompute(); 9488 9489 // For positive steps (counting up until unsigned overflow): 9490 // N = -Start/Step (as unsigned) 9491 // For negative steps (counting down to zero): 9492 // N = Start/-Step 9493 // First compute the unsigned distance from zero in the direction of Step. 9494 bool CountDown = StepC->getAPInt().isNegative(); 9495 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9496 9497 // Handle unitary steps, which cannot wraparound. 9498 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9499 // N = Distance (as unsigned) 9500 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9501 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9502 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9503 if (MaxBECountBase.ult(MaxBECount)) 9504 MaxBECount = MaxBECountBase; 9505 9506 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9507 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9508 // case, and see if we can improve the bound. 9509 // 9510 // Explicitly handling this here is necessary because getUnsignedRange 9511 // isn't context-sensitive; it doesn't know that we only care about the 9512 // range inside the loop. 9513 const SCEV *Zero = getZero(Distance->getType()); 9514 const SCEV *One = getOne(Distance->getType()); 9515 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9516 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9517 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9518 // as "unsigned_max(Distance + 1) - 1". 9519 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9520 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9521 } 9522 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9523 } 9524 9525 // If the condition controls loop exit (the loop exits only if the expression 9526 // is true) and the addition is no-wrap we can use unsigned divide to 9527 // compute the backedge count. In this case, the step may not divide the 9528 // distance, but we don't care because if the condition is "missed" the loop 9529 // will have undefined behavior due to wrapping. 9530 if (ControlsExit && AddRec->hasNoSelfWrap() && 9531 loopHasNoAbnormalExits(AddRec->getLoop())) { 9532 const SCEV *Exact = 9533 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9534 const SCEV *Max = getCouldNotCompute(); 9535 if (Exact != getCouldNotCompute()) { 9536 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9537 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9538 if (BaseMaxInt.ult(MaxInt)) 9539 Max = getConstant(BaseMaxInt); 9540 else 9541 Max = getConstant(MaxInt); 9542 } 9543 return ExitLimit(Exact, Max, false, Predicates); 9544 } 9545 9546 // Solve the general equation. 9547 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9548 getNegativeSCEV(Start), *this); 9549 const SCEV *M = E == getCouldNotCompute() 9550 ? E 9551 : getConstant(getUnsignedRangeMax(E)); 9552 return ExitLimit(E, M, false, Predicates); 9553 } 9554 9555 ScalarEvolution::ExitLimit 9556 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9557 // Loops that look like: while (X == 0) are very strange indeed. We don't 9558 // handle them yet except for the trivial case. This could be expanded in the 9559 // future as needed. 9560 9561 // If the value is a constant, check to see if it is known to be non-zero 9562 // already. If so, the backedge will execute zero times. 9563 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9564 if (!C->getValue()->isZero()) 9565 return getZero(C->getType()); 9566 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9567 } 9568 9569 // We could implement others, but I really doubt anyone writes loops like 9570 // this, and if they did, they would already be constant folded. 9571 return getCouldNotCompute(); 9572 } 9573 9574 std::pair<const BasicBlock *, const BasicBlock *> 9575 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9576 const { 9577 // If the block has a unique predecessor, then there is no path from the 9578 // predecessor to the block that does not go through the direct edge 9579 // from the predecessor to the block. 9580 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9581 return {Pred, BB}; 9582 9583 // A loop's header is defined to be a block that dominates the loop. 9584 // If the header has a unique predecessor outside the loop, it must be 9585 // a block that has exactly one successor that can reach the loop. 9586 if (const Loop *L = LI.getLoopFor(BB)) 9587 return {L->getLoopPredecessor(), L->getHeader()}; 9588 9589 return {nullptr, nullptr}; 9590 } 9591 9592 /// SCEV structural equivalence is usually sufficient for testing whether two 9593 /// expressions are equal, however for the purposes of looking for a condition 9594 /// guarding a loop, it can be useful to be a little more general, since a 9595 /// front-end may have replicated the controlling expression. 9596 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9597 // Quick check to see if they are the same SCEV. 9598 if (A == B) return true; 9599 9600 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9601 // Not all instructions that are "identical" compute the same value. For 9602 // instance, two distinct alloca instructions allocating the same type are 9603 // identical and do not read memory; but compute distinct values. 9604 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9605 }; 9606 9607 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9608 // two different instructions with the same value. Check for this case. 9609 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9610 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9611 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9612 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9613 if (ComputesEqualValues(AI, BI)) 9614 return true; 9615 9616 // Otherwise assume they may have a different value. 9617 return false; 9618 } 9619 9620 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9621 const SCEV *&LHS, const SCEV *&RHS, 9622 unsigned Depth) { 9623 bool Changed = false; 9624 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9625 // '0 != 0'. 9626 auto TrivialCase = [&](bool TriviallyTrue) { 9627 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9628 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9629 return true; 9630 }; 9631 // If we hit the max recursion limit bail out. 9632 if (Depth >= 3) 9633 return false; 9634 9635 // Canonicalize a constant to the right side. 9636 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9637 // Check for both operands constant. 9638 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9639 if (ConstantExpr::getICmp(Pred, 9640 LHSC->getValue(), 9641 RHSC->getValue())->isNullValue()) 9642 return TrivialCase(false); 9643 else 9644 return TrivialCase(true); 9645 } 9646 // Otherwise swap the operands to put the constant on the right. 9647 std::swap(LHS, RHS); 9648 Pred = ICmpInst::getSwappedPredicate(Pred); 9649 Changed = true; 9650 } 9651 9652 // If we're comparing an addrec with a value which is loop-invariant in the 9653 // addrec's loop, put the addrec on the left. Also make a dominance check, 9654 // as both operands could be addrecs loop-invariant in each other's loop. 9655 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9656 const Loop *L = AR->getLoop(); 9657 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9658 std::swap(LHS, RHS); 9659 Pred = ICmpInst::getSwappedPredicate(Pred); 9660 Changed = true; 9661 } 9662 } 9663 9664 // If there's a constant operand, canonicalize comparisons with boundary 9665 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9666 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9667 const APInt &RA = RC->getAPInt(); 9668 9669 bool SimplifiedByConstantRange = false; 9670 9671 if (!ICmpInst::isEquality(Pred)) { 9672 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9673 if (ExactCR.isFullSet()) 9674 return TrivialCase(true); 9675 else if (ExactCR.isEmptySet()) 9676 return TrivialCase(false); 9677 9678 APInt NewRHS; 9679 CmpInst::Predicate NewPred; 9680 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9681 ICmpInst::isEquality(NewPred)) { 9682 // We were able to convert an inequality to an equality. 9683 Pred = NewPred; 9684 RHS = getConstant(NewRHS); 9685 Changed = SimplifiedByConstantRange = true; 9686 } 9687 } 9688 9689 if (!SimplifiedByConstantRange) { 9690 switch (Pred) { 9691 default: 9692 break; 9693 case ICmpInst::ICMP_EQ: 9694 case ICmpInst::ICMP_NE: 9695 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9696 if (!RA) 9697 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9698 if (const SCEVMulExpr *ME = 9699 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9700 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9701 ME->getOperand(0)->isAllOnesValue()) { 9702 RHS = AE->getOperand(1); 9703 LHS = ME->getOperand(1); 9704 Changed = true; 9705 } 9706 break; 9707 9708 9709 // The "Should have been caught earlier!" messages refer to the fact 9710 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9711 // should have fired on the corresponding cases, and canonicalized the 9712 // check to trivial case. 9713 9714 case ICmpInst::ICMP_UGE: 9715 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9716 Pred = ICmpInst::ICMP_UGT; 9717 RHS = getConstant(RA - 1); 9718 Changed = true; 9719 break; 9720 case ICmpInst::ICMP_ULE: 9721 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9722 Pred = ICmpInst::ICMP_ULT; 9723 RHS = getConstant(RA + 1); 9724 Changed = true; 9725 break; 9726 case ICmpInst::ICMP_SGE: 9727 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9728 Pred = ICmpInst::ICMP_SGT; 9729 RHS = getConstant(RA - 1); 9730 Changed = true; 9731 break; 9732 case ICmpInst::ICMP_SLE: 9733 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9734 Pred = ICmpInst::ICMP_SLT; 9735 RHS = getConstant(RA + 1); 9736 Changed = true; 9737 break; 9738 } 9739 } 9740 } 9741 9742 // Check for obvious equality. 9743 if (HasSameValue(LHS, RHS)) { 9744 if (ICmpInst::isTrueWhenEqual(Pred)) 9745 return TrivialCase(true); 9746 if (ICmpInst::isFalseWhenEqual(Pred)) 9747 return TrivialCase(false); 9748 } 9749 9750 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9751 // adding or subtracting 1 from one of the operands. 9752 switch (Pred) { 9753 case ICmpInst::ICMP_SLE: 9754 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9755 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9756 SCEV::FlagNSW); 9757 Pred = ICmpInst::ICMP_SLT; 9758 Changed = true; 9759 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9760 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9761 SCEV::FlagNSW); 9762 Pred = ICmpInst::ICMP_SLT; 9763 Changed = true; 9764 } 9765 break; 9766 case ICmpInst::ICMP_SGE: 9767 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9768 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9769 SCEV::FlagNSW); 9770 Pred = ICmpInst::ICMP_SGT; 9771 Changed = true; 9772 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9773 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9774 SCEV::FlagNSW); 9775 Pred = ICmpInst::ICMP_SGT; 9776 Changed = true; 9777 } 9778 break; 9779 case ICmpInst::ICMP_ULE: 9780 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9781 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9782 SCEV::FlagNUW); 9783 Pred = ICmpInst::ICMP_ULT; 9784 Changed = true; 9785 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9786 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9787 Pred = ICmpInst::ICMP_ULT; 9788 Changed = true; 9789 } 9790 break; 9791 case ICmpInst::ICMP_UGE: 9792 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9793 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9794 Pred = ICmpInst::ICMP_UGT; 9795 Changed = true; 9796 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9797 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9798 SCEV::FlagNUW); 9799 Pred = ICmpInst::ICMP_UGT; 9800 Changed = true; 9801 } 9802 break; 9803 default: 9804 break; 9805 } 9806 9807 // TODO: More simplifications are possible here. 9808 9809 // Recursively simplify until we either hit a recursion limit or nothing 9810 // changes. 9811 if (Changed) 9812 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9813 9814 return Changed; 9815 } 9816 9817 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9818 return getSignedRangeMax(S).isNegative(); 9819 } 9820 9821 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9822 return getSignedRangeMin(S).isStrictlyPositive(); 9823 } 9824 9825 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9826 return !getSignedRangeMin(S).isNegative(); 9827 } 9828 9829 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9830 return !getSignedRangeMax(S).isStrictlyPositive(); 9831 } 9832 9833 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9834 return getUnsignedRangeMin(S) != 0; 9835 } 9836 9837 std::pair<const SCEV *, const SCEV *> 9838 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9839 // Compute SCEV on entry of loop L. 9840 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9841 if (Start == getCouldNotCompute()) 9842 return { Start, Start }; 9843 // Compute post increment SCEV for loop L. 9844 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9845 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9846 return { Start, PostInc }; 9847 } 9848 9849 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9850 const SCEV *LHS, const SCEV *RHS) { 9851 // First collect all loops. 9852 SmallPtrSet<const Loop *, 8> LoopsUsed; 9853 getUsedLoops(LHS, LoopsUsed); 9854 getUsedLoops(RHS, LoopsUsed); 9855 9856 if (LoopsUsed.empty()) 9857 return false; 9858 9859 // Domination relationship must be a linear order on collected loops. 9860 #ifndef NDEBUG 9861 for (auto *L1 : LoopsUsed) 9862 for (auto *L2 : LoopsUsed) 9863 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9864 DT.dominates(L2->getHeader(), L1->getHeader())) && 9865 "Domination relationship is not a linear order"); 9866 #endif 9867 9868 const Loop *MDL = 9869 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9870 [&](const Loop *L1, const Loop *L2) { 9871 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9872 }); 9873 9874 // Get init and post increment value for LHS. 9875 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9876 // if LHS contains unknown non-invariant SCEV then bail out. 9877 if (SplitLHS.first == getCouldNotCompute()) 9878 return false; 9879 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9880 // Get init and post increment value for RHS. 9881 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9882 // if RHS contains unknown non-invariant SCEV then bail out. 9883 if (SplitRHS.first == getCouldNotCompute()) 9884 return false; 9885 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9886 // It is possible that init SCEV contains an invariant load but it does 9887 // not dominate MDL and is not available at MDL loop entry, so we should 9888 // check it here. 9889 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9890 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9891 return false; 9892 9893 // It seems backedge guard check is faster than entry one so in some cases 9894 // it can speed up whole estimation by short circuit 9895 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9896 SplitRHS.second) && 9897 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9898 } 9899 9900 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9901 const SCEV *LHS, const SCEV *RHS) { 9902 // Canonicalize the inputs first. 9903 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9904 9905 if (isKnownViaInduction(Pred, LHS, RHS)) 9906 return true; 9907 9908 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9909 return true; 9910 9911 // Otherwise see what can be done with some simple reasoning. 9912 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9913 } 9914 9915 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9916 const SCEV *LHS, 9917 const SCEV *RHS) { 9918 if (isKnownPredicate(Pred, LHS, RHS)) 9919 return true; 9920 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9921 return false; 9922 return None; 9923 } 9924 9925 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9926 const SCEV *LHS, const SCEV *RHS, 9927 const Instruction *CtxI) { 9928 // TODO: Analyze guards and assumes from Context's block. 9929 return isKnownPredicate(Pred, LHS, RHS) || 9930 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 9931 } 9932 9933 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 9934 const SCEV *LHS, 9935 const SCEV *RHS, 9936 const Instruction *CtxI) { 9937 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9938 if (KnownWithoutContext) 9939 return KnownWithoutContext; 9940 9941 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 9942 return true; 9943 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 9944 ICmpInst::getInversePredicate(Pred), 9945 LHS, RHS)) 9946 return false; 9947 return None; 9948 } 9949 9950 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9951 const SCEVAddRecExpr *LHS, 9952 const SCEV *RHS) { 9953 const Loop *L = LHS->getLoop(); 9954 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9955 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9956 } 9957 9958 Optional<ScalarEvolution::MonotonicPredicateType> 9959 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9960 ICmpInst::Predicate Pred) { 9961 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9962 9963 #ifndef NDEBUG 9964 // Verify an invariant: inverting the predicate should turn a monotonically 9965 // increasing change to a monotonically decreasing one, and vice versa. 9966 if (Result) { 9967 auto ResultSwapped = 9968 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9969 9970 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9971 assert(ResultSwapped.getValue() != Result.getValue() && 9972 "monotonicity should flip as we flip the predicate"); 9973 } 9974 #endif 9975 9976 return Result; 9977 } 9978 9979 Optional<ScalarEvolution::MonotonicPredicateType> 9980 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9981 ICmpInst::Predicate Pred) { 9982 // A zero step value for LHS means the induction variable is essentially a 9983 // loop invariant value. We don't really depend on the predicate actually 9984 // flipping from false to true (for increasing predicates, and the other way 9985 // around for decreasing predicates), all we care about is that *if* the 9986 // predicate changes then it only changes from false to true. 9987 // 9988 // A zero step value in itself is not very useful, but there may be places 9989 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9990 // as general as possible. 9991 9992 // Only handle LE/LT/GE/GT predicates. 9993 if (!ICmpInst::isRelational(Pred)) 9994 return None; 9995 9996 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9997 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9998 "Should be greater or less!"); 9999 10000 // Check that AR does not wrap. 10001 if (ICmpInst::isUnsigned(Pred)) { 10002 if (!LHS->hasNoUnsignedWrap()) 10003 return None; 10004 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10005 } else { 10006 assert(ICmpInst::isSigned(Pred) && 10007 "Relational predicate is either signed or unsigned!"); 10008 if (!LHS->hasNoSignedWrap()) 10009 return None; 10010 10011 const SCEV *Step = LHS->getStepRecurrence(*this); 10012 10013 if (isKnownNonNegative(Step)) 10014 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10015 10016 if (isKnownNonPositive(Step)) 10017 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10018 10019 return None; 10020 } 10021 } 10022 10023 Optional<ScalarEvolution::LoopInvariantPredicate> 10024 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10025 const SCEV *LHS, const SCEV *RHS, 10026 const Loop *L) { 10027 10028 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10029 if (!isLoopInvariant(RHS, L)) { 10030 if (!isLoopInvariant(LHS, L)) 10031 return None; 10032 10033 std::swap(LHS, RHS); 10034 Pred = ICmpInst::getSwappedPredicate(Pred); 10035 } 10036 10037 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10038 if (!ArLHS || ArLHS->getLoop() != L) 10039 return None; 10040 10041 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10042 if (!MonotonicType) 10043 return None; 10044 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10045 // true as the loop iterates, and the backedge is control dependent on 10046 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10047 // 10048 // * if the predicate was false in the first iteration then the predicate 10049 // is never evaluated again, since the loop exits without taking the 10050 // backedge. 10051 // * if the predicate was true in the first iteration then it will 10052 // continue to be true for all future iterations since it is 10053 // monotonically increasing. 10054 // 10055 // For both the above possibilities, we can replace the loop varying 10056 // predicate with its value on the first iteration of the loop (which is 10057 // loop invariant). 10058 // 10059 // A similar reasoning applies for a monotonically decreasing predicate, by 10060 // replacing true with false and false with true in the above two bullets. 10061 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10062 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10063 10064 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10065 return None; 10066 10067 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10068 } 10069 10070 Optional<ScalarEvolution::LoopInvariantPredicate> 10071 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10072 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10073 const Instruction *CtxI, const SCEV *MaxIter) { 10074 // Try to prove the following set of facts: 10075 // - The predicate is monotonic in the iteration space. 10076 // - If the check does not fail on the 1st iteration: 10077 // - No overflow will happen during first MaxIter iterations; 10078 // - It will not fail on the MaxIter'th iteration. 10079 // If the check does fail on the 1st iteration, we leave the loop and no 10080 // other checks matter. 10081 10082 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10083 if (!isLoopInvariant(RHS, L)) { 10084 if (!isLoopInvariant(LHS, L)) 10085 return None; 10086 10087 std::swap(LHS, RHS); 10088 Pred = ICmpInst::getSwappedPredicate(Pred); 10089 } 10090 10091 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10092 if (!AR || AR->getLoop() != L) 10093 return None; 10094 10095 // The predicate must be relational (i.e. <, <=, >=, >). 10096 if (!ICmpInst::isRelational(Pred)) 10097 return None; 10098 10099 // TODO: Support steps other than +/- 1. 10100 const SCEV *Step = AR->getStepRecurrence(*this); 10101 auto *One = getOne(Step->getType()); 10102 auto *MinusOne = getNegativeSCEV(One); 10103 if (Step != One && Step != MinusOne) 10104 return None; 10105 10106 // Type mismatch here means that MaxIter is potentially larger than max 10107 // unsigned value in start type, which mean we cannot prove no wrap for the 10108 // indvar. 10109 if (AR->getType() != MaxIter->getType()) 10110 return None; 10111 10112 // Value of IV on suggested last iteration. 10113 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10114 // Does it still meet the requirement? 10115 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10116 return None; 10117 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10118 // not exceed max unsigned value of this type), this effectively proves 10119 // that there is no wrap during the iteration. To prove that there is no 10120 // signed/unsigned wrap, we need to check that 10121 // Start <= Last for step = 1 or Start >= Last for step = -1. 10122 ICmpInst::Predicate NoOverflowPred = 10123 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10124 if (Step == MinusOne) 10125 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10126 const SCEV *Start = AR->getStart(); 10127 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10128 return None; 10129 10130 // Everything is fine. 10131 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10132 } 10133 10134 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10135 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10136 if (HasSameValue(LHS, RHS)) 10137 return ICmpInst::isTrueWhenEqual(Pred); 10138 10139 // This code is split out from isKnownPredicate because it is called from 10140 // within isLoopEntryGuardedByCond. 10141 10142 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10143 const ConstantRange &RangeRHS) { 10144 return RangeLHS.icmp(Pred, RangeRHS); 10145 }; 10146 10147 // The check at the top of the function catches the case where the values are 10148 // known to be equal. 10149 if (Pred == CmpInst::ICMP_EQ) 10150 return false; 10151 10152 if (Pred == CmpInst::ICMP_NE) { 10153 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10154 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10155 return true; 10156 auto *Diff = getMinusSCEV(LHS, RHS); 10157 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10158 } 10159 10160 if (CmpInst::isSigned(Pred)) 10161 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10162 10163 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10164 } 10165 10166 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10167 const SCEV *LHS, 10168 const SCEV *RHS) { 10169 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10170 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10171 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10172 // OutC1 and OutC2. 10173 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10174 APInt &OutC1, APInt &OutC2, 10175 SCEV::NoWrapFlags ExpectedFlags) { 10176 const SCEV *XNonConstOp, *XConstOp; 10177 const SCEV *YNonConstOp, *YConstOp; 10178 SCEV::NoWrapFlags XFlagsPresent; 10179 SCEV::NoWrapFlags YFlagsPresent; 10180 10181 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10182 XConstOp = getZero(X->getType()); 10183 XNonConstOp = X; 10184 XFlagsPresent = ExpectedFlags; 10185 } 10186 if (!isa<SCEVConstant>(XConstOp) || 10187 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10188 return false; 10189 10190 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10191 YConstOp = getZero(Y->getType()); 10192 YNonConstOp = Y; 10193 YFlagsPresent = ExpectedFlags; 10194 } 10195 10196 if (!isa<SCEVConstant>(YConstOp) || 10197 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10198 return false; 10199 10200 if (YNonConstOp != XNonConstOp) 10201 return false; 10202 10203 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10204 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10205 10206 return true; 10207 }; 10208 10209 APInt C1; 10210 APInt C2; 10211 10212 switch (Pred) { 10213 default: 10214 break; 10215 10216 case ICmpInst::ICMP_SGE: 10217 std::swap(LHS, RHS); 10218 LLVM_FALLTHROUGH; 10219 case ICmpInst::ICMP_SLE: 10220 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10221 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10222 return true; 10223 10224 break; 10225 10226 case ICmpInst::ICMP_SGT: 10227 std::swap(LHS, RHS); 10228 LLVM_FALLTHROUGH; 10229 case ICmpInst::ICMP_SLT: 10230 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10231 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10232 return true; 10233 10234 break; 10235 10236 case ICmpInst::ICMP_UGE: 10237 std::swap(LHS, RHS); 10238 LLVM_FALLTHROUGH; 10239 case ICmpInst::ICMP_ULE: 10240 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10241 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10242 return true; 10243 10244 break; 10245 10246 case ICmpInst::ICMP_UGT: 10247 std::swap(LHS, RHS); 10248 LLVM_FALLTHROUGH; 10249 case ICmpInst::ICMP_ULT: 10250 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10251 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10252 return true; 10253 break; 10254 } 10255 10256 return false; 10257 } 10258 10259 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10260 const SCEV *LHS, 10261 const SCEV *RHS) { 10262 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10263 return false; 10264 10265 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10266 // the stack can result in exponential time complexity. 10267 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10268 10269 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10270 // 10271 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10272 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10273 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10274 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10275 // use isKnownPredicate later if needed. 10276 return isKnownNonNegative(RHS) && 10277 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10278 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10279 } 10280 10281 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10282 ICmpInst::Predicate Pred, 10283 const SCEV *LHS, const SCEV *RHS) { 10284 // No need to even try if we know the module has no guards. 10285 if (!HasGuards) 10286 return false; 10287 10288 return any_of(*BB, [&](const Instruction &I) { 10289 using namespace llvm::PatternMatch; 10290 10291 Value *Condition; 10292 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10293 m_Value(Condition))) && 10294 isImpliedCond(Pred, LHS, RHS, Condition, false); 10295 }); 10296 } 10297 10298 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10299 /// protected by a conditional between LHS and RHS. This is used to 10300 /// to eliminate casts. 10301 bool 10302 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10303 ICmpInst::Predicate Pred, 10304 const SCEV *LHS, const SCEV *RHS) { 10305 // Interpret a null as meaning no loop, where there is obviously no guard 10306 // (interprocedural conditions notwithstanding). 10307 if (!L) return true; 10308 10309 if (VerifyIR) 10310 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10311 "This cannot be done on broken IR!"); 10312 10313 10314 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10315 return true; 10316 10317 BasicBlock *Latch = L->getLoopLatch(); 10318 if (!Latch) 10319 return false; 10320 10321 BranchInst *LoopContinuePredicate = 10322 dyn_cast<BranchInst>(Latch->getTerminator()); 10323 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10324 isImpliedCond(Pred, LHS, RHS, 10325 LoopContinuePredicate->getCondition(), 10326 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10327 return true; 10328 10329 // We don't want more than one activation of the following loops on the stack 10330 // -- that can lead to O(n!) time complexity. 10331 if (WalkingBEDominatingConds) 10332 return false; 10333 10334 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10335 10336 // See if we can exploit a trip count to prove the predicate. 10337 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10338 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10339 if (LatchBECount != getCouldNotCompute()) { 10340 // We know that Latch branches back to the loop header exactly 10341 // LatchBECount times. This means the backdege condition at Latch is 10342 // equivalent to "{0,+,1} u< LatchBECount". 10343 Type *Ty = LatchBECount->getType(); 10344 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10345 const SCEV *LoopCounter = 10346 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10347 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10348 LatchBECount)) 10349 return true; 10350 } 10351 10352 // Check conditions due to any @llvm.assume intrinsics. 10353 for (auto &AssumeVH : AC.assumptions()) { 10354 if (!AssumeVH) 10355 continue; 10356 auto *CI = cast<CallInst>(AssumeVH); 10357 if (!DT.dominates(CI, Latch->getTerminator())) 10358 continue; 10359 10360 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10361 return true; 10362 } 10363 10364 // If the loop is not reachable from the entry block, we risk running into an 10365 // infinite loop as we walk up into the dom tree. These loops do not matter 10366 // anyway, so we just return a conservative answer when we see them. 10367 if (!DT.isReachableFromEntry(L->getHeader())) 10368 return false; 10369 10370 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10371 return true; 10372 10373 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10374 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10375 assert(DTN && "should reach the loop header before reaching the root!"); 10376 10377 BasicBlock *BB = DTN->getBlock(); 10378 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10379 return true; 10380 10381 BasicBlock *PBB = BB->getSinglePredecessor(); 10382 if (!PBB) 10383 continue; 10384 10385 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10386 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10387 continue; 10388 10389 Value *Condition = ContinuePredicate->getCondition(); 10390 10391 // If we have an edge `E` within the loop body that dominates the only 10392 // latch, the condition guarding `E` also guards the backedge. This 10393 // reasoning works only for loops with a single latch. 10394 10395 BasicBlockEdge DominatingEdge(PBB, BB); 10396 if (DominatingEdge.isSingleEdge()) { 10397 // We're constructively (and conservatively) enumerating edges within the 10398 // loop body that dominate the latch. The dominator tree better agree 10399 // with us on this: 10400 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10401 10402 if (isImpliedCond(Pred, LHS, RHS, Condition, 10403 BB != ContinuePredicate->getSuccessor(0))) 10404 return true; 10405 } 10406 } 10407 10408 return false; 10409 } 10410 10411 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10412 ICmpInst::Predicate Pred, 10413 const SCEV *LHS, 10414 const SCEV *RHS) { 10415 if (VerifyIR) 10416 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10417 "This cannot be done on broken IR!"); 10418 10419 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10420 // the facts (a >= b && a != b) separately. A typical situation is when the 10421 // non-strict comparison is known from ranges and non-equality is known from 10422 // dominating predicates. If we are proving strict comparison, we always try 10423 // to prove non-equality and non-strict comparison separately. 10424 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10425 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10426 bool ProvedNonStrictComparison = false; 10427 bool ProvedNonEquality = false; 10428 10429 auto SplitAndProve = 10430 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10431 if (!ProvedNonStrictComparison) 10432 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10433 if (!ProvedNonEquality) 10434 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10435 if (ProvedNonStrictComparison && ProvedNonEquality) 10436 return true; 10437 return false; 10438 }; 10439 10440 if (ProvingStrictComparison) { 10441 auto ProofFn = [&](ICmpInst::Predicate P) { 10442 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10443 }; 10444 if (SplitAndProve(ProofFn)) 10445 return true; 10446 } 10447 10448 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10449 auto ProveViaGuard = [&](const BasicBlock *Block) { 10450 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10451 return true; 10452 if (ProvingStrictComparison) { 10453 auto ProofFn = [&](ICmpInst::Predicate P) { 10454 return isImpliedViaGuard(Block, P, LHS, RHS); 10455 }; 10456 if (SplitAndProve(ProofFn)) 10457 return true; 10458 } 10459 return false; 10460 }; 10461 10462 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10463 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10464 const Instruction *CtxI = &BB->front(); 10465 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10466 return true; 10467 if (ProvingStrictComparison) { 10468 auto ProofFn = [&](ICmpInst::Predicate P) { 10469 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10470 }; 10471 if (SplitAndProve(ProofFn)) 10472 return true; 10473 } 10474 return false; 10475 }; 10476 10477 // Starting at the block's predecessor, climb up the predecessor chain, as long 10478 // as there are predecessors that can be found that have unique successors 10479 // leading to the original block. 10480 const Loop *ContainingLoop = LI.getLoopFor(BB); 10481 const BasicBlock *PredBB; 10482 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10483 PredBB = ContainingLoop->getLoopPredecessor(); 10484 else 10485 PredBB = BB->getSinglePredecessor(); 10486 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10487 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10488 if (ProveViaGuard(Pair.first)) 10489 return true; 10490 10491 const BranchInst *LoopEntryPredicate = 10492 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10493 if (!LoopEntryPredicate || 10494 LoopEntryPredicate->isUnconditional()) 10495 continue; 10496 10497 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10498 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10499 return true; 10500 } 10501 10502 // Check conditions due to any @llvm.assume intrinsics. 10503 for (auto &AssumeVH : AC.assumptions()) { 10504 if (!AssumeVH) 10505 continue; 10506 auto *CI = cast<CallInst>(AssumeVH); 10507 if (!DT.dominates(CI, BB)) 10508 continue; 10509 10510 if (ProveViaCond(CI->getArgOperand(0), false)) 10511 return true; 10512 } 10513 10514 return false; 10515 } 10516 10517 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10518 ICmpInst::Predicate Pred, 10519 const SCEV *LHS, 10520 const SCEV *RHS) { 10521 // Interpret a null as meaning no loop, where there is obviously no guard 10522 // (interprocedural conditions notwithstanding). 10523 if (!L) 10524 return false; 10525 10526 // Both LHS and RHS must be available at loop entry. 10527 assert(isAvailableAtLoopEntry(LHS, L) && 10528 "LHS is not available at Loop Entry"); 10529 assert(isAvailableAtLoopEntry(RHS, L) && 10530 "RHS is not available at Loop Entry"); 10531 10532 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10533 return true; 10534 10535 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10536 } 10537 10538 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10539 const SCEV *RHS, 10540 const Value *FoundCondValue, bool Inverse, 10541 const Instruction *CtxI) { 10542 // False conditions implies anything. Do not bother analyzing it further. 10543 if (FoundCondValue == 10544 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10545 return true; 10546 10547 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10548 return false; 10549 10550 auto ClearOnExit = 10551 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10552 10553 // Recursively handle And and Or conditions. 10554 const Value *Op0, *Op1; 10555 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10556 if (!Inverse) 10557 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10558 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10559 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10560 if (Inverse) 10561 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10562 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10563 } 10564 10565 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10566 if (!ICI) return false; 10567 10568 // Now that we found a conditional branch that dominates the loop or controls 10569 // the loop latch. Check to see if it is the comparison we are looking for. 10570 ICmpInst::Predicate FoundPred; 10571 if (Inverse) 10572 FoundPred = ICI->getInversePredicate(); 10573 else 10574 FoundPred = ICI->getPredicate(); 10575 10576 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10577 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10578 10579 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10580 } 10581 10582 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10583 const SCEV *RHS, 10584 ICmpInst::Predicate FoundPred, 10585 const SCEV *FoundLHS, const SCEV *FoundRHS, 10586 const Instruction *CtxI) { 10587 // Balance the types. 10588 if (getTypeSizeInBits(LHS->getType()) < 10589 getTypeSizeInBits(FoundLHS->getType())) { 10590 // For unsigned and equality predicates, try to prove that both found 10591 // operands fit into narrow unsigned range. If so, try to prove facts in 10592 // narrow types. 10593 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10594 auto *NarrowType = LHS->getType(); 10595 auto *WideType = FoundLHS->getType(); 10596 auto BitWidth = getTypeSizeInBits(NarrowType); 10597 const SCEV *MaxValue = getZeroExtendExpr( 10598 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10599 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10600 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10601 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10602 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10603 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10604 TruncFoundRHS, CtxI)) 10605 return true; 10606 } 10607 } 10608 10609 if (LHS->getType()->isPointerTy()) 10610 return false; 10611 if (CmpInst::isSigned(Pred)) { 10612 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10613 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10614 } else { 10615 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10616 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10617 } 10618 } else if (getTypeSizeInBits(LHS->getType()) > 10619 getTypeSizeInBits(FoundLHS->getType())) { 10620 if (FoundLHS->getType()->isPointerTy()) 10621 return false; 10622 if (CmpInst::isSigned(FoundPred)) { 10623 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10624 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10625 } else { 10626 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10627 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10628 } 10629 } 10630 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10631 FoundRHS, CtxI); 10632 } 10633 10634 bool ScalarEvolution::isImpliedCondBalancedTypes( 10635 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10636 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10637 const Instruction *CtxI) { 10638 assert(getTypeSizeInBits(LHS->getType()) == 10639 getTypeSizeInBits(FoundLHS->getType()) && 10640 "Types should be balanced!"); 10641 // Canonicalize the query to match the way instcombine will have 10642 // canonicalized the comparison. 10643 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10644 if (LHS == RHS) 10645 return CmpInst::isTrueWhenEqual(Pred); 10646 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10647 if (FoundLHS == FoundRHS) 10648 return CmpInst::isFalseWhenEqual(FoundPred); 10649 10650 // Check to see if we can make the LHS or RHS match. 10651 if (LHS == FoundRHS || RHS == FoundLHS) { 10652 if (isa<SCEVConstant>(RHS)) { 10653 std::swap(FoundLHS, FoundRHS); 10654 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10655 } else { 10656 std::swap(LHS, RHS); 10657 Pred = ICmpInst::getSwappedPredicate(Pred); 10658 } 10659 } 10660 10661 // Check whether the found predicate is the same as the desired predicate. 10662 if (FoundPred == Pred) 10663 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10664 10665 // Check whether swapping the found predicate makes it the same as the 10666 // desired predicate. 10667 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10668 // We can write the implication 10669 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10670 // using one of the following ways: 10671 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10672 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10673 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10674 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10675 // Forms 1. and 2. require swapping the operands of one condition. Don't 10676 // do this if it would break canonical constant/addrec ordering. 10677 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10678 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10679 CtxI); 10680 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10681 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10682 10683 // There's no clear preference between forms 3. and 4., try both. Avoid 10684 // forming getNotSCEV of pointer values as the resulting subtract is 10685 // not legal. 10686 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10687 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10688 FoundLHS, FoundRHS, CtxI)) 10689 return true; 10690 10691 if (!FoundLHS->getType()->isPointerTy() && 10692 !FoundRHS->getType()->isPointerTy() && 10693 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10694 getNotSCEV(FoundRHS), CtxI)) 10695 return true; 10696 10697 return false; 10698 } 10699 10700 // Unsigned comparison is the same as signed comparison when both the operands 10701 // are non-negative or negative. 10702 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10703 CmpInst::Predicate P2) { 10704 assert(P1 != P2 && "Handled earlier!"); 10705 return CmpInst::isRelational(P2) && 10706 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10707 }; 10708 if (IsSignFlippedPredicate(Pred, FoundPred) && 10709 ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10710 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))) 10711 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10712 10713 // Check if we can make progress by sharpening ranges. 10714 if (FoundPred == ICmpInst::ICMP_NE && 10715 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10716 10717 const SCEVConstant *C = nullptr; 10718 const SCEV *V = nullptr; 10719 10720 if (isa<SCEVConstant>(FoundLHS)) { 10721 C = cast<SCEVConstant>(FoundLHS); 10722 V = FoundRHS; 10723 } else { 10724 C = cast<SCEVConstant>(FoundRHS); 10725 V = FoundLHS; 10726 } 10727 10728 // The guarding predicate tells us that C != V. If the known range 10729 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10730 // range we consider has to correspond to same signedness as the 10731 // predicate we're interested in folding. 10732 10733 APInt Min = ICmpInst::isSigned(Pred) ? 10734 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10735 10736 if (Min == C->getAPInt()) { 10737 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10738 // This is true even if (Min + 1) wraps around -- in case of 10739 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10740 10741 APInt SharperMin = Min + 1; 10742 10743 switch (Pred) { 10744 case ICmpInst::ICMP_SGE: 10745 case ICmpInst::ICMP_UGE: 10746 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10747 // RHS, we're done. 10748 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10749 CtxI)) 10750 return true; 10751 LLVM_FALLTHROUGH; 10752 10753 case ICmpInst::ICMP_SGT: 10754 case ICmpInst::ICMP_UGT: 10755 // We know from the range information that (V `Pred` Min || 10756 // V == Min). We know from the guarding condition that !(V 10757 // == Min). This gives us 10758 // 10759 // V `Pred` Min || V == Min && !(V == Min) 10760 // => V `Pred` Min 10761 // 10762 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10763 10764 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10765 return true; 10766 break; 10767 10768 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10769 case ICmpInst::ICMP_SLE: 10770 case ICmpInst::ICMP_ULE: 10771 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10772 LHS, V, getConstant(SharperMin), CtxI)) 10773 return true; 10774 LLVM_FALLTHROUGH; 10775 10776 case ICmpInst::ICMP_SLT: 10777 case ICmpInst::ICMP_ULT: 10778 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10779 LHS, V, getConstant(Min), CtxI)) 10780 return true; 10781 break; 10782 10783 default: 10784 // No change 10785 break; 10786 } 10787 } 10788 } 10789 10790 // Check whether the actual condition is beyond sufficient. 10791 if (FoundPred == ICmpInst::ICMP_EQ) 10792 if (ICmpInst::isTrueWhenEqual(Pred)) 10793 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10794 return true; 10795 if (Pred == ICmpInst::ICMP_NE) 10796 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10797 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10798 return true; 10799 10800 // Otherwise assume the worst. 10801 return false; 10802 } 10803 10804 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10805 const SCEV *&L, const SCEV *&R, 10806 SCEV::NoWrapFlags &Flags) { 10807 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10808 if (!AE || AE->getNumOperands() != 2) 10809 return false; 10810 10811 L = AE->getOperand(0); 10812 R = AE->getOperand(1); 10813 Flags = AE->getNoWrapFlags(); 10814 return true; 10815 } 10816 10817 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10818 const SCEV *Less) { 10819 // We avoid subtracting expressions here because this function is usually 10820 // fairly deep in the call stack (i.e. is called many times). 10821 10822 // X - X = 0. 10823 if (More == Less) 10824 return APInt(getTypeSizeInBits(More->getType()), 0); 10825 10826 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10827 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10828 const auto *MAR = cast<SCEVAddRecExpr>(More); 10829 10830 if (LAR->getLoop() != MAR->getLoop()) 10831 return None; 10832 10833 // We look at affine expressions only; not for correctness but to keep 10834 // getStepRecurrence cheap. 10835 if (!LAR->isAffine() || !MAR->isAffine()) 10836 return None; 10837 10838 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10839 return None; 10840 10841 Less = LAR->getStart(); 10842 More = MAR->getStart(); 10843 10844 // fall through 10845 } 10846 10847 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10848 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10849 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10850 return M - L; 10851 } 10852 10853 SCEV::NoWrapFlags Flags; 10854 const SCEV *LLess = nullptr, *RLess = nullptr; 10855 const SCEV *LMore = nullptr, *RMore = nullptr; 10856 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10857 // Compare (X + C1) vs X. 10858 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10859 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10860 if (RLess == More) 10861 return -(C1->getAPInt()); 10862 10863 // Compare X vs (X + C2). 10864 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10865 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10866 if (RMore == Less) 10867 return C2->getAPInt(); 10868 10869 // Compare (X + C1) vs (X + C2). 10870 if (C1 && C2 && RLess == RMore) 10871 return C2->getAPInt() - C1->getAPInt(); 10872 10873 return None; 10874 } 10875 10876 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10877 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10878 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 10879 // Try to recognize the following pattern: 10880 // 10881 // FoundRHS = ... 10882 // ... 10883 // loop: 10884 // FoundLHS = {Start,+,W} 10885 // context_bb: // Basic block from the same loop 10886 // known(Pred, FoundLHS, FoundRHS) 10887 // 10888 // If some predicate is known in the context of a loop, it is also known on 10889 // each iteration of this loop, including the first iteration. Therefore, in 10890 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10891 // prove the original pred using this fact. 10892 if (!CtxI) 10893 return false; 10894 const BasicBlock *ContextBB = CtxI->getParent(); 10895 // Make sure AR varies in the context block. 10896 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10897 const Loop *L = AR->getLoop(); 10898 // Make sure that context belongs to the loop and executes on 1st iteration 10899 // (if it ever executes at all). 10900 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10901 return false; 10902 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10903 return false; 10904 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10905 } 10906 10907 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10908 const Loop *L = AR->getLoop(); 10909 // Make sure that context belongs to the loop and executes on 1st iteration 10910 // (if it ever executes at all). 10911 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10912 return false; 10913 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10914 return false; 10915 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10916 } 10917 10918 return false; 10919 } 10920 10921 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10922 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10923 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10924 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10925 return false; 10926 10927 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10928 if (!AddRecLHS) 10929 return false; 10930 10931 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10932 if (!AddRecFoundLHS) 10933 return false; 10934 10935 // We'd like to let SCEV reason about control dependencies, so we constrain 10936 // both the inequalities to be about add recurrences on the same loop. This 10937 // way we can use isLoopEntryGuardedByCond later. 10938 10939 const Loop *L = AddRecFoundLHS->getLoop(); 10940 if (L != AddRecLHS->getLoop()) 10941 return false; 10942 10943 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10944 // 10945 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10946 // ... (2) 10947 // 10948 // Informal proof for (2), assuming (1) [*]: 10949 // 10950 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10951 // 10952 // Then 10953 // 10954 // FoundLHS s< FoundRHS s< INT_MIN - C 10955 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10956 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10957 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10958 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10959 // <=> FoundLHS + C s< FoundRHS + C 10960 // 10961 // [*]: (1) can be proved by ruling out overflow. 10962 // 10963 // [**]: This can be proved by analyzing all the four possibilities: 10964 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10965 // (A s>= 0, B s>= 0). 10966 // 10967 // Note: 10968 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10969 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10970 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10971 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10972 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10973 // C)". 10974 10975 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10976 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10977 if (!LDiff || !RDiff || *LDiff != *RDiff) 10978 return false; 10979 10980 if (LDiff->isMinValue()) 10981 return true; 10982 10983 APInt FoundRHSLimit; 10984 10985 if (Pred == CmpInst::ICMP_ULT) { 10986 FoundRHSLimit = -(*RDiff); 10987 } else { 10988 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10989 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10990 } 10991 10992 // Try to prove (1) or (2), as needed. 10993 return isAvailableAtLoopEntry(FoundRHS, L) && 10994 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10995 getConstant(FoundRHSLimit)); 10996 } 10997 10998 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10999 const SCEV *LHS, const SCEV *RHS, 11000 const SCEV *FoundLHS, 11001 const SCEV *FoundRHS, unsigned Depth) { 11002 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11003 11004 auto ClearOnExit = make_scope_exit([&]() { 11005 if (LPhi) { 11006 bool Erased = PendingMerges.erase(LPhi); 11007 assert(Erased && "Failed to erase LPhi!"); 11008 (void)Erased; 11009 } 11010 if (RPhi) { 11011 bool Erased = PendingMerges.erase(RPhi); 11012 assert(Erased && "Failed to erase RPhi!"); 11013 (void)Erased; 11014 } 11015 }); 11016 11017 // Find respective Phis and check that they are not being pending. 11018 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11019 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11020 if (!PendingMerges.insert(Phi).second) 11021 return false; 11022 LPhi = Phi; 11023 } 11024 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11025 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11026 // If we detect a loop of Phi nodes being processed by this method, for 11027 // example: 11028 // 11029 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11030 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11031 // 11032 // we don't want to deal with a case that complex, so return conservative 11033 // answer false. 11034 if (!PendingMerges.insert(Phi).second) 11035 return false; 11036 RPhi = Phi; 11037 } 11038 11039 // If none of LHS, RHS is a Phi, nothing to do here. 11040 if (!LPhi && !RPhi) 11041 return false; 11042 11043 // If there is a SCEVUnknown Phi we are interested in, make it left. 11044 if (!LPhi) { 11045 std::swap(LHS, RHS); 11046 std::swap(FoundLHS, FoundRHS); 11047 std::swap(LPhi, RPhi); 11048 Pred = ICmpInst::getSwappedPredicate(Pred); 11049 } 11050 11051 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11052 const BasicBlock *LBB = LPhi->getParent(); 11053 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11054 11055 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11056 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11057 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11058 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11059 }; 11060 11061 if (RPhi && RPhi->getParent() == LBB) { 11062 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11063 // If we compare two Phis from the same block, and for each entry block 11064 // the predicate is true for incoming values from this block, then the 11065 // predicate is also true for the Phis. 11066 for (const BasicBlock *IncBB : predecessors(LBB)) { 11067 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11068 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11069 if (!ProvedEasily(L, R)) 11070 return false; 11071 } 11072 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11073 // Case two: RHS is also a Phi from the same basic block, and it is an 11074 // AddRec. It means that there is a loop which has both AddRec and Unknown 11075 // PHIs, for it we can compare incoming values of AddRec from above the loop 11076 // and latch with their respective incoming values of LPhi. 11077 // TODO: Generalize to handle loops with many inputs in a header. 11078 if (LPhi->getNumIncomingValues() != 2) return false; 11079 11080 auto *RLoop = RAR->getLoop(); 11081 auto *Predecessor = RLoop->getLoopPredecessor(); 11082 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11083 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11084 if (!ProvedEasily(L1, RAR->getStart())) 11085 return false; 11086 auto *Latch = RLoop->getLoopLatch(); 11087 assert(Latch && "Loop with AddRec with no latch?"); 11088 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11089 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11090 return false; 11091 } else { 11092 // In all other cases go over inputs of LHS and compare each of them to RHS, 11093 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11094 // At this point RHS is either a non-Phi, or it is a Phi from some block 11095 // different from LBB. 11096 for (const BasicBlock *IncBB : predecessors(LBB)) { 11097 // Check that RHS is available in this block. 11098 if (!dominates(RHS, IncBB)) 11099 return false; 11100 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11101 // Make sure L does not refer to a value from a potentially previous 11102 // iteration of a loop. 11103 if (!properlyDominates(L, IncBB)) 11104 return false; 11105 if (!ProvedEasily(L, RHS)) 11106 return false; 11107 } 11108 } 11109 return true; 11110 } 11111 11112 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11113 const SCEV *LHS, const SCEV *RHS, 11114 const SCEV *FoundLHS, 11115 const SCEV *FoundRHS, 11116 const Instruction *CtxI) { 11117 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11118 return true; 11119 11120 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11121 return true; 11122 11123 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11124 CtxI)) 11125 return true; 11126 11127 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11128 FoundLHS, FoundRHS); 11129 } 11130 11131 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11132 template <typename MinMaxExprType> 11133 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11134 const SCEV *Candidate) { 11135 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11136 if (!MinMaxExpr) 11137 return false; 11138 11139 return is_contained(MinMaxExpr->operands(), Candidate); 11140 } 11141 11142 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11143 ICmpInst::Predicate Pred, 11144 const SCEV *LHS, const SCEV *RHS) { 11145 // If both sides are affine addrecs for the same loop, with equal 11146 // steps, and we know the recurrences don't wrap, then we only 11147 // need to check the predicate on the starting values. 11148 11149 if (!ICmpInst::isRelational(Pred)) 11150 return false; 11151 11152 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11153 if (!LAR) 11154 return false; 11155 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11156 if (!RAR) 11157 return false; 11158 if (LAR->getLoop() != RAR->getLoop()) 11159 return false; 11160 if (!LAR->isAffine() || !RAR->isAffine()) 11161 return false; 11162 11163 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11164 return false; 11165 11166 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11167 SCEV::FlagNSW : SCEV::FlagNUW; 11168 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11169 return false; 11170 11171 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11172 } 11173 11174 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11175 /// expression? 11176 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11177 ICmpInst::Predicate Pred, 11178 const SCEV *LHS, const SCEV *RHS) { 11179 switch (Pred) { 11180 default: 11181 return false; 11182 11183 case ICmpInst::ICMP_SGE: 11184 std::swap(LHS, RHS); 11185 LLVM_FALLTHROUGH; 11186 case ICmpInst::ICMP_SLE: 11187 return 11188 // min(A, ...) <= A 11189 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11190 // A <= max(A, ...) 11191 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11192 11193 case ICmpInst::ICMP_UGE: 11194 std::swap(LHS, RHS); 11195 LLVM_FALLTHROUGH; 11196 case ICmpInst::ICMP_ULE: 11197 return 11198 // min(A, ...) <= A 11199 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11200 // A <= max(A, ...) 11201 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11202 } 11203 11204 llvm_unreachable("covered switch fell through?!"); 11205 } 11206 11207 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11208 const SCEV *LHS, const SCEV *RHS, 11209 const SCEV *FoundLHS, 11210 const SCEV *FoundRHS, 11211 unsigned Depth) { 11212 assert(getTypeSizeInBits(LHS->getType()) == 11213 getTypeSizeInBits(RHS->getType()) && 11214 "LHS and RHS have different sizes?"); 11215 assert(getTypeSizeInBits(FoundLHS->getType()) == 11216 getTypeSizeInBits(FoundRHS->getType()) && 11217 "FoundLHS and FoundRHS have different sizes?"); 11218 // We want to avoid hurting the compile time with analysis of too big trees. 11219 if (Depth > MaxSCEVOperationsImplicationDepth) 11220 return false; 11221 11222 // We only want to work with GT comparison so far. 11223 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11224 Pred = CmpInst::getSwappedPredicate(Pred); 11225 std::swap(LHS, RHS); 11226 std::swap(FoundLHS, FoundRHS); 11227 } 11228 11229 // For unsigned, try to reduce it to corresponding signed comparison. 11230 if (Pred == ICmpInst::ICMP_UGT) 11231 // We can replace unsigned predicate with its signed counterpart if all 11232 // involved values are non-negative. 11233 // TODO: We could have better support for unsigned. 11234 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11235 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11236 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11237 // use this fact to prove that LHS and RHS are non-negative. 11238 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11239 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11240 FoundRHS) && 11241 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11242 FoundRHS)) 11243 Pred = ICmpInst::ICMP_SGT; 11244 } 11245 11246 if (Pred != ICmpInst::ICMP_SGT) 11247 return false; 11248 11249 auto GetOpFromSExt = [&](const SCEV *S) { 11250 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11251 return Ext->getOperand(); 11252 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11253 // the constant in some cases. 11254 return S; 11255 }; 11256 11257 // Acquire values from extensions. 11258 auto *OrigLHS = LHS; 11259 auto *OrigFoundLHS = FoundLHS; 11260 LHS = GetOpFromSExt(LHS); 11261 FoundLHS = GetOpFromSExt(FoundLHS); 11262 11263 // Is the SGT predicate can be proved trivially or using the found context. 11264 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11265 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11266 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11267 FoundRHS, Depth + 1); 11268 }; 11269 11270 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11271 // We want to avoid creation of any new non-constant SCEV. Since we are 11272 // going to compare the operands to RHS, we should be certain that we don't 11273 // need any size extensions for this. So let's decline all cases when the 11274 // sizes of types of LHS and RHS do not match. 11275 // TODO: Maybe try to get RHS from sext to catch more cases? 11276 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11277 return false; 11278 11279 // Should not overflow. 11280 if (!LHSAddExpr->hasNoSignedWrap()) 11281 return false; 11282 11283 auto *LL = LHSAddExpr->getOperand(0); 11284 auto *LR = LHSAddExpr->getOperand(1); 11285 auto *MinusOne = getMinusOne(RHS->getType()); 11286 11287 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11288 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11289 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11290 }; 11291 // Try to prove the following rule: 11292 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11293 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11294 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11295 return true; 11296 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11297 Value *LL, *LR; 11298 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11299 11300 using namespace llvm::PatternMatch; 11301 11302 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11303 // Rules for division. 11304 // We are going to perform some comparisons with Denominator and its 11305 // derivative expressions. In general case, creating a SCEV for it may 11306 // lead to a complex analysis of the entire graph, and in particular it 11307 // can request trip count recalculation for the same loop. This would 11308 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11309 // this, we only want to create SCEVs that are constants in this section. 11310 // So we bail if Denominator is not a constant. 11311 if (!isa<ConstantInt>(LR)) 11312 return false; 11313 11314 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11315 11316 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11317 // then a SCEV for the numerator already exists and matches with FoundLHS. 11318 auto *Numerator = getExistingSCEV(LL); 11319 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11320 return false; 11321 11322 // Make sure that the numerator matches with FoundLHS and the denominator 11323 // is positive. 11324 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11325 return false; 11326 11327 auto *DTy = Denominator->getType(); 11328 auto *FRHSTy = FoundRHS->getType(); 11329 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11330 // One of types is a pointer and another one is not. We cannot extend 11331 // them properly to a wider type, so let us just reject this case. 11332 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11333 // to avoid this check. 11334 return false; 11335 11336 // Given that: 11337 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11338 auto *WTy = getWiderType(DTy, FRHSTy); 11339 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11340 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11341 11342 // Try to prove the following rule: 11343 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11344 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11345 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11346 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11347 if (isKnownNonPositive(RHS) && 11348 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11349 return true; 11350 11351 // Try to prove the following rule: 11352 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11353 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11354 // If we divide it by Denominator > 2, then: 11355 // 1. If FoundLHS is negative, then the result is 0. 11356 // 2. If FoundLHS is non-negative, then the result is non-negative. 11357 // Anyways, the result is non-negative. 11358 auto *MinusOne = getMinusOne(WTy); 11359 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11360 if (isKnownNegative(RHS) && 11361 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11362 return true; 11363 } 11364 } 11365 11366 // If our expression contained SCEVUnknown Phis, and we split it down and now 11367 // need to prove something for them, try to prove the predicate for every 11368 // possible incoming values of those Phis. 11369 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11370 return true; 11371 11372 return false; 11373 } 11374 11375 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11376 const SCEV *LHS, const SCEV *RHS) { 11377 // zext x u<= sext x, sext x s<= zext x 11378 switch (Pred) { 11379 case ICmpInst::ICMP_SGE: 11380 std::swap(LHS, RHS); 11381 LLVM_FALLTHROUGH; 11382 case ICmpInst::ICMP_SLE: { 11383 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11384 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11385 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11386 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11387 return true; 11388 break; 11389 } 11390 case ICmpInst::ICMP_UGE: 11391 std::swap(LHS, RHS); 11392 LLVM_FALLTHROUGH; 11393 case ICmpInst::ICMP_ULE: { 11394 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11395 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11396 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11397 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11398 return true; 11399 break; 11400 } 11401 default: 11402 break; 11403 }; 11404 return false; 11405 } 11406 11407 bool 11408 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11409 const SCEV *LHS, const SCEV *RHS) { 11410 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11411 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11412 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11413 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11414 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11415 } 11416 11417 bool 11418 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11419 const SCEV *LHS, const SCEV *RHS, 11420 const SCEV *FoundLHS, 11421 const SCEV *FoundRHS) { 11422 switch (Pred) { 11423 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11424 case ICmpInst::ICMP_EQ: 11425 case ICmpInst::ICMP_NE: 11426 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11427 return true; 11428 break; 11429 case ICmpInst::ICMP_SLT: 11430 case ICmpInst::ICMP_SLE: 11431 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11432 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11433 return true; 11434 break; 11435 case ICmpInst::ICMP_SGT: 11436 case ICmpInst::ICMP_SGE: 11437 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11438 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11439 return true; 11440 break; 11441 case ICmpInst::ICMP_ULT: 11442 case ICmpInst::ICMP_ULE: 11443 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11444 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11445 return true; 11446 break; 11447 case ICmpInst::ICMP_UGT: 11448 case ICmpInst::ICMP_UGE: 11449 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11450 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11451 return true; 11452 break; 11453 } 11454 11455 // Maybe it can be proved via operations? 11456 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11457 return true; 11458 11459 return false; 11460 } 11461 11462 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11463 const SCEV *LHS, 11464 const SCEV *RHS, 11465 const SCEV *FoundLHS, 11466 const SCEV *FoundRHS) { 11467 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11468 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11469 // reduce the compile time impact of this optimization. 11470 return false; 11471 11472 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11473 if (!Addend) 11474 return false; 11475 11476 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11477 11478 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11479 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11480 ConstantRange FoundLHSRange = 11481 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11482 11483 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11484 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11485 11486 // We can also compute the range of values for `LHS` that satisfy the 11487 // consequent, "`LHS` `Pred` `RHS`": 11488 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11489 // The antecedent implies the consequent if every value of `LHS` that 11490 // satisfies the antecedent also satisfies the consequent. 11491 return LHSRange.icmp(Pred, ConstRHS); 11492 } 11493 11494 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11495 bool IsSigned) { 11496 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11497 11498 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11499 const SCEV *One = getOne(Stride->getType()); 11500 11501 if (IsSigned) { 11502 APInt MaxRHS = getSignedRangeMax(RHS); 11503 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11504 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11505 11506 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11507 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11508 } 11509 11510 APInt MaxRHS = getUnsignedRangeMax(RHS); 11511 APInt MaxValue = APInt::getMaxValue(BitWidth); 11512 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11513 11514 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11515 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11516 } 11517 11518 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11519 bool IsSigned) { 11520 11521 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11522 const SCEV *One = getOne(Stride->getType()); 11523 11524 if (IsSigned) { 11525 APInt MinRHS = getSignedRangeMin(RHS); 11526 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11527 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11528 11529 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11530 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11531 } 11532 11533 APInt MinRHS = getUnsignedRangeMin(RHS); 11534 APInt MinValue = APInt::getMinValue(BitWidth); 11535 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11536 11537 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11538 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11539 } 11540 11541 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11542 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11543 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11544 // expression fixes the case of N=0. 11545 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11546 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11547 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11548 } 11549 11550 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11551 const SCEV *Stride, 11552 const SCEV *End, 11553 unsigned BitWidth, 11554 bool IsSigned) { 11555 // The logic in this function assumes we can represent a positive stride. 11556 // If we can't, the backedge-taken count must be zero. 11557 if (IsSigned && BitWidth == 1) 11558 return getZero(Stride->getType()); 11559 11560 // This code has only been closely audited for negative strides in the 11561 // unsigned comparison case, it may be correct for signed comparison, but 11562 // that needs to be established. 11563 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11564 "Stride is expected strictly positive for signed case!"); 11565 11566 // Calculate the maximum backedge count based on the range of values 11567 // permitted by Start, End, and Stride. 11568 APInt MinStart = 11569 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11570 11571 APInt MinStride = 11572 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11573 11574 // We assume either the stride is positive, or the backedge-taken count 11575 // is zero. So force StrideForMaxBECount to be at least one. 11576 APInt One(BitWidth, 1); 11577 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11578 : APIntOps::umax(One, MinStride); 11579 11580 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11581 : APInt::getMaxValue(BitWidth); 11582 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11583 11584 // Although End can be a MAX expression we estimate MaxEnd considering only 11585 // the case End = RHS of the loop termination condition. This is safe because 11586 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11587 // taken count. 11588 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11589 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11590 11591 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11592 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11593 : APIntOps::umax(MaxEnd, MinStart); 11594 11595 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11596 getConstant(StrideForMaxBECount) /* Step */); 11597 } 11598 11599 ScalarEvolution::ExitLimit 11600 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11601 const Loop *L, bool IsSigned, 11602 bool ControlsExit, bool AllowPredicates) { 11603 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11604 11605 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11606 bool PredicatedIV = false; 11607 11608 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11609 // Can we prove this loop *must* be UB if overflow of IV occurs? 11610 // Reasoning goes as follows: 11611 // * Suppose the IV did self wrap. 11612 // * If Stride evenly divides the iteration space, then once wrap 11613 // occurs, the loop must revisit the same values. 11614 // * We know that RHS is invariant, and that none of those values 11615 // caused this exit to be taken previously. Thus, this exit is 11616 // dynamically dead. 11617 // * If this is the sole exit, then a dead exit implies the loop 11618 // must be infinite if there are no abnormal exits. 11619 // * If the loop were infinite, then it must either not be mustprogress 11620 // or have side effects. Otherwise, it must be UB. 11621 // * It can't (by assumption), be UB so we have contradicted our 11622 // premise and can conclude the IV did not in fact self-wrap. 11623 if (!isLoopInvariant(RHS, L)) 11624 return false; 11625 11626 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11627 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11628 return false; 11629 11630 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11631 return false; 11632 11633 return loopIsFiniteByAssumption(L); 11634 }; 11635 11636 if (!IV) { 11637 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11638 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11639 if (AR && AR->getLoop() == L && AR->isAffine()) { 11640 auto Flags = AR->getNoWrapFlags(); 11641 if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) { 11642 Flags = setFlags(Flags, SCEV::FlagNW); 11643 11644 SmallVector<const SCEV*> Operands{AR->operands()}; 11645 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 11646 11647 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11648 } 11649 if (AR->hasNoUnsignedWrap()) { 11650 // Emulate what getZeroExtendExpr would have done during construction 11651 // if we'd been able to infer the fact just above at that time. 11652 const SCEV *Step = AR->getStepRecurrence(*this); 11653 Type *Ty = ZExt->getType(); 11654 auto *S = getAddRecExpr( 11655 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11656 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11657 IV = dyn_cast<SCEVAddRecExpr>(S); 11658 } 11659 } 11660 } 11661 } 11662 11663 11664 if (!IV && AllowPredicates) { 11665 // Try to make this an AddRec using runtime tests, in the first X 11666 // iterations of this loop, where X is the SCEV expression found by the 11667 // algorithm below. 11668 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11669 PredicatedIV = true; 11670 } 11671 11672 // Avoid weird loops 11673 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11674 return getCouldNotCompute(); 11675 11676 // A precondition of this method is that the condition being analyzed 11677 // reaches an exiting branch which dominates the latch. Given that, we can 11678 // assume that an increment which violates the nowrap specification and 11679 // produces poison must cause undefined behavior when the resulting poison 11680 // value is branched upon and thus we can conclude that the backedge is 11681 // taken no more often than would be required to produce that poison value. 11682 // Note that a well defined loop can exit on the iteration which violates 11683 // the nowrap specification if there is another exit (either explicit or 11684 // implicit/exceptional) which causes the loop to execute before the 11685 // exiting instruction we're analyzing would trigger UB. 11686 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11687 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11688 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11689 11690 const SCEV *Stride = IV->getStepRecurrence(*this); 11691 11692 bool PositiveStride = isKnownPositive(Stride); 11693 11694 // Avoid negative or zero stride values. 11695 if (!PositiveStride) { 11696 // We can compute the correct backedge taken count for loops with unknown 11697 // strides if we can prove that the loop is not an infinite loop with side 11698 // effects. Here's the loop structure we are trying to handle - 11699 // 11700 // i = start 11701 // do { 11702 // A[i] = i; 11703 // i += s; 11704 // } while (i < end); 11705 // 11706 // The backedge taken count for such loops is evaluated as - 11707 // (max(end, start + stride) - start - 1) /u stride 11708 // 11709 // The additional preconditions that we need to check to prove correctness 11710 // of the above formula is as follows - 11711 // 11712 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11713 // NoWrap flag). 11714 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11715 // no side effects within the loop) 11716 // c) loop has a single static exit (with no abnormal exits) 11717 // 11718 // Precondition a) implies that if the stride is negative, this is a single 11719 // trip loop. The backedge taken count formula reduces to zero in this case. 11720 // 11721 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11722 // then a zero stride means the backedge can't be taken without executing 11723 // undefined behavior. 11724 // 11725 // The positive stride case is the same as isKnownPositive(Stride) returning 11726 // true (original behavior of the function). 11727 // 11728 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11729 !loopHasNoAbnormalExits(L)) 11730 return getCouldNotCompute(); 11731 11732 // This bailout is protecting the logic in computeMaxBECountForLT which 11733 // has not yet been sufficiently auditted or tested with negative strides. 11734 // We used to filter out all known-non-positive cases here, we're in the 11735 // process of being less restrictive bit by bit. 11736 if (IsSigned && isKnownNonPositive(Stride)) 11737 return getCouldNotCompute(); 11738 11739 if (!isKnownNonZero(Stride)) { 11740 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11741 // if it might eventually be greater than start and if so, on which 11742 // iteration. We can't even produce a useful upper bound. 11743 if (!isLoopInvariant(RHS, L)) 11744 return getCouldNotCompute(); 11745 11746 // We allow a potentially zero stride, but we need to divide by stride 11747 // below. Since the loop can't be infinite and this check must control 11748 // the sole exit, we can infer the exit must be taken on the first 11749 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11750 // we know the numerator in the divides below must be zero, so we can 11751 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11752 // and produce the right result. 11753 // FIXME: Handle the case where Stride is poison? 11754 auto wouldZeroStrideBeUB = [&]() { 11755 // Proof by contradiction. Suppose the stride were zero. If we can 11756 // prove that the backedge *is* taken on the first iteration, then since 11757 // we know this condition controls the sole exit, we must have an 11758 // infinite loop. We can't have a (well defined) infinite loop per 11759 // check just above. 11760 // Note: The (Start - Stride) term is used to get the start' term from 11761 // (start' + stride,+,stride). Remember that we only care about the 11762 // result of this expression when stride == 0 at runtime. 11763 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11764 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11765 }; 11766 if (!wouldZeroStrideBeUB()) { 11767 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11768 } 11769 } 11770 } else if (!Stride->isOne() && !NoWrap) { 11771 auto isUBOnWrap = [&]() { 11772 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11773 // follows trivially from the fact that every (un)signed-wrapped, but 11774 // not self-wrapped value must be LT than the last value before 11775 // (un)signed wrap. Since we know that last value didn't exit, nor 11776 // will any smaller one. 11777 return canAssumeNoSelfWrap(IV); 11778 }; 11779 11780 // Avoid proven overflow cases: this will ensure that the backedge taken 11781 // count will not generate any unsigned overflow. Relaxed no-overflow 11782 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11783 // undefined behaviors like the case of C language. 11784 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11785 return getCouldNotCompute(); 11786 } 11787 11788 // On all paths just preceeding, we established the following invariant: 11789 // IV can be assumed not to overflow up to and including the exiting 11790 // iteration. We proved this in one of two ways: 11791 // 1) We can show overflow doesn't occur before the exiting iteration 11792 // 1a) canIVOverflowOnLT, and b) step of one 11793 // 2) We can show that if overflow occurs, the loop must execute UB 11794 // before any possible exit. 11795 // Note that we have not yet proved RHS invariant (in general). 11796 11797 const SCEV *Start = IV->getStart(); 11798 11799 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11800 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 11801 // Use integer-typed versions for actual computation; we can't subtract 11802 // pointers in general. 11803 const SCEV *OrigStart = Start; 11804 const SCEV *OrigRHS = RHS; 11805 if (Start->getType()->isPointerTy()) { 11806 Start = getLosslessPtrToIntExpr(Start); 11807 if (isa<SCEVCouldNotCompute>(Start)) 11808 return Start; 11809 } 11810 if (RHS->getType()->isPointerTy()) { 11811 RHS = getLosslessPtrToIntExpr(RHS); 11812 if (isa<SCEVCouldNotCompute>(RHS)) 11813 return RHS; 11814 } 11815 11816 // When the RHS is not invariant, we do not know the end bound of the loop and 11817 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11818 // calculate the MaxBECount, given the start, stride and max value for the end 11819 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11820 // checked above). 11821 if (!isLoopInvariant(RHS, L)) { 11822 const SCEV *MaxBECount = computeMaxBECountForLT( 11823 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11824 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11825 false /*MaxOrZero*/, Predicates); 11826 } 11827 11828 // We use the expression (max(End,Start)-Start)/Stride to describe the 11829 // backedge count, as if the backedge is taken at least once max(End,Start) 11830 // is End and so the result is as above, and if not max(End,Start) is Start 11831 // so we get a backedge count of zero. 11832 const SCEV *BECount = nullptr; 11833 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 11834 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 11835 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 11836 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 11837 // Can we prove (max(RHS,Start) > Start - Stride? 11838 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 11839 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 11840 // In this case, we can use a refined formula for computing backedge taken 11841 // count. The general formula remains: 11842 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11843 // We want to use the alternate formula: 11844 // "((End - 1) - (Start - Stride)) /u Stride" 11845 // Let's do a quick case analysis to show these are equivalent under 11846 // our precondition that max(RHS,Start) > Start - Stride. 11847 // * For RHS <= Start, the backedge-taken count must be zero. 11848 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11849 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11850 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11851 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11852 // this to the stride of 1 case. 11853 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11854 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11855 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11856 // "((RHS - (Start - Stride) - 1) /u Stride". 11857 // Our preconditions trivially imply no overflow in that form. 11858 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11859 const SCEV *Numerator = 11860 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 11861 BECount = getUDivExpr(Numerator, Stride); 11862 } 11863 11864 const SCEV *BECountIfBackedgeTaken = nullptr; 11865 if (!BECount) { 11866 auto canProveRHSGreaterThanEqualStart = [&]() { 11867 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11868 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11869 return true; 11870 11871 // (RHS > Start - 1) implies RHS >= Start. 11872 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11873 // "Start - 1" doesn't overflow. 11874 // * For signed comparison, if Start - 1 does overflow, it's equal 11875 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11876 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11877 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11878 // 11879 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11880 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11881 auto *StartMinusOne = getAddExpr(OrigStart, 11882 getMinusOne(OrigStart->getType())); 11883 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11884 }; 11885 11886 // If we know that RHS >= Start in the context of loop, then we know that 11887 // max(RHS, Start) = RHS at this point. 11888 const SCEV *End; 11889 if (canProveRHSGreaterThanEqualStart()) { 11890 End = RHS; 11891 } else { 11892 // If RHS < Start, the backedge will be taken zero times. So in 11893 // general, we can write the backedge-taken count as: 11894 // 11895 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 11896 // 11897 // We convert it to the following to make it more convenient for SCEV: 11898 // 11899 // ceil(max(RHS, Start) - Start) / Stride 11900 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11901 11902 // See what would happen if we assume the backedge is taken. This is 11903 // used to compute MaxBECount. 11904 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 11905 } 11906 11907 // At this point, we know: 11908 // 11909 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 11910 // 2. The index variable doesn't overflow. 11911 // 11912 // Therefore, we know N exists such that 11913 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 11914 // doesn't overflow. 11915 // 11916 // Using this information, try to prove whether the addition in 11917 // "(Start - End) + (Stride - 1)" has unsigned overflow. 11918 const SCEV *One = getOne(Stride->getType()); 11919 bool MayAddOverflow = [&] { 11920 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 11921 if (StrideC->getAPInt().isPowerOf2()) { 11922 // Suppose Stride is a power of two, and Start/End are unsigned 11923 // integers. Let UMAX be the largest representable unsigned 11924 // integer. 11925 // 11926 // By the preconditions of this function, we know 11927 // "(Start + Stride * N) >= End", and this doesn't overflow. 11928 // As a formula: 11929 // 11930 // End <= (Start + Stride * N) <= UMAX 11931 // 11932 // Subtracting Start from all the terms: 11933 // 11934 // End - Start <= Stride * N <= UMAX - Start 11935 // 11936 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 11937 // 11938 // End - Start <= Stride * N <= UMAX 11939 // 11940 // Stride * N is a multiple of Stride. Therefore, 11941 // 11942 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 11943 // 11944 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 11945 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 11946 // 11947 // End - Start <= Stride * N <= UMAX - Stride - 1 11948 // 11949 // Dropping the middle term: 11950 // 11951 // End - Start <= UMAX - Stride - 1 11952 // 11953 // Adding Stride - 1 to both sides: 11954 // 11955 // (End - Start) + (Stride - 1) <= UMAX 11956 // 11957 // In other words, the addition doesn't have unsigned overflow. 11958 // 11959 // A similar proof works if we treat Start/End as signed values. 11960 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 11961 // use signed max instead of unsigned max. Note that we're trying 11962 // to prove a lack of unsigned overflow in either case. 11963 return false; 11964 } 11965 } 11966 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 11967 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 11968 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 11969 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 11970 // 11971 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 11972 return false; 11973 } 11974 return true; 11975 }(); 11976 11977 const SCEV *Delta = getMinusSCEV(End, Start); 11978 if (!MayAddOverflow) { 11979 // floor((D + (S - 1)) / S) 11980 // We prefer this formulation if it's legal because it's fewer operations. 11981 BECount = 11982 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 11983 } else { 11984 BECount = getUDivCeilSCEV(Delta, Stride); 11985 } 11986 } 11987 11988 const SCEV *MaxBECount; 11989 bool MaxOrZero = false; 11990 if (isa<SCEVConstant>(BECount)) { 11991 MaxBECount = BECount; 11992 } else if (BECountIfBackedgeTaken && 11993 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11994 // If we know exactly how many times the backedge will be taken if it's 11995 // taken at least once, then the backedge count will either be that or 11996 // zero. 11997 MaxBECount = BECountIfBackedgeTaken; 11998 MaxOrZero = true; 11999 } else { 12000 MaxBECount = computeMaxBECountForLT( 12001 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12002 } 12003 12004 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12005 !isa<SCEVCouldNotCompute>(BECount)) 12006 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12007 12008 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12009 } 12010 12011 ScalarEvolution::ExitLimit 12012 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12013 const Loop *L, bool IsSigned, 12014 bool ControlsExit, bool AllowPredicates) { 12015 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12016 // We handle only IV > Invariant 12017 if (!isLoopInvariant(RHS, L)) 12018 return getCouldNotCompute(); 12019 12020 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12021 if (!IV && AllowPredicates) 12022 // Try to make this an AddRec using runtime tests, in the first X 12023 // iterations of this loop, where X is the SCEV expression found by the 12024 // algorithm below. 12025 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12026 12027 // Avoid weird loops 12028 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12029 return getCouldNotCompute(); 12030 12031 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12032 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12033 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12034 12035 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12036 12037 // Avoid negative or zero stride values 12038 if (!isKnownPositive(Stride)) 12039 return getCouldNotCompute(); 12040 12041 // Avoid proven overflow cases: this will ensure that the backedge taken count 12042 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12043 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12044 // behaviors like the case of C language. 12045 if (!Stride->isOne() && !NoWrap) 12046 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12047 return getCouldNotCompute(); 12048 12049 const SCEV *Start = IV->getStart(); 12050 const SCEV *End = RHS; 12051 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12052 // If we know that Start >= RHS in the context of loop, then we know that 12053 // min(RHS, Start) = RHS at this point. 12054 if (isLoopEntryGuardedByCond( 12055 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12056 End = RHS; 12057 else 12058 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12059 } 12060 12061 if (Start->getType()->isPointerTy()) { 12062 Start = getLosslessPtrToIntExpr(Start); 12063 if (isa<SCEVCouldNotCompute>(Start)) 12064 return Start; 12065 } 12066 if (End->getType()->isPointerTy()) { 12067 End = getLosslessPtrToIntExpr(End); 12068 if (isa<SCEVCouldNotCompute>(End)) 12069 return End; 12070 } 12071 12072 // Compute ((Start - End) + (Stride - 1)) / Stride. 12073 // FIXME: This can overflow. Holding off on fixing this for now; 12074 // howManyGreaterThans will hopefully be gone soon. 12075 const SCEV *One = getOne(Stride->getType()); 12076 const SCEV *BECount = getUDivExpr( 12077 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12078 12079 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12080 : getUnsignedRangeMax(Start); 12081 12082 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12083 : getUnsignedRangeMin(Stride); 12084 12085 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12086 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12087 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12088 12089 // Although End can be a MIN expression we estimate MinEnd considering only 12090 // the case End = RHS. This is safe because in the other case (Start - End) 12091 // is zero, leading to a zero maximum backedge taken count. 12092 APInt MinEnd = 12093 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12094 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12095 12096 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12097 ? BECount 12098 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12099 getConstant(MinStride)); 12100 12101 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12102 MaxBECount = BECount; 12103 12104 return ExitLimit(BECount, MaxBECount, false, Predicates); 12105 } 12106 12107 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12108 ScalarEvolution &SE) const { 12109 if (Range.isFullSet()) // Infinite loop. 12110 return SE.getCouldNotCompute(); 12111 12112 // If the start is a non-zero constant, shift the range to simplify things. 12113 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12114 if (!SC->getValue()->isZero()) { 12115 SmallVector<const SCEV *, 4> Operands(operands()); 12116 Operands[0] = SE.getZero(SC->getType()); 12117 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12118 getNoWrapFlags(FlagNW)); 12119 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12120 return ShiftedAddRec->getNumIterationsInRange( 12121 Range.subtract(SC->getAPInt()), SE); 12122 // This is strange and shouldn't happen. 12123 return SE.getCouldNotCompute(); 12124 } 12125 12126 // The only time we can solve this is when we have all constant indices. 12127 // Otherwise, we cannot determine the overflow conditions. 12128 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12129 return SE.getCouldNotCompute(); 12130 12131 // Okay at this point we know that all elements of the chrec are constants and 12132 // that the start element is zero. 12133 12134 // First check to see if the range contains zero. If not, the first 12135 // iteration exits. 12136 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12137 if (!Range.contains(APInt(BitWidth, 0))) 12138 return SE.getZero(getType()); 12139 12140 if (isAffine()) { 12141 // If this is an affine expression then we have this situation: 12142 // Solve {0,+,A} in Range === Ax in Range 12143 12144 // We know that zero is in the range. If A is positive then we know that 12145 // the upper value of the range must be the first possible exit value. 12146 // If A is negative then the lower of the range is the last possible loop 12147 // value. Also note that we already checked for a full range. 12148 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12149 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12150 12151 // The exit value should be (End+A)/A. 12152 APInt ExitVal = (End + A).udiv(A); 12153 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12154 12155 // Evaluate at the exit value. If we really did fall out of the valid 12156 // range, then we computed our trip count, otherwise wrap around or other 12157 // things must have happened. 12158 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12159 if (Range.contains(Val->getValue())) 12160 return SE.getCouldNotCompute(); // Something strange happened 12161 12162 // Ensure that the previous value is in the range. This is a sanity check. 12163 assert(Range.contains( 12164 EvaluateConstantChrecAtConstant(this, 12165 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12166 "Linear scev computation is off in a bad way!"); 12167 return SE.getConstant(ExitValue); 12168 } 12169 12170 if (isQuadratic()) { 12171 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12172 return SE.getConstant(S.getValue()); 12173 } 12174 12175 return SE.getCouldNotCompute(); 12176 } 12177 12178 const SCEVAddRecExpr * 12179 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12180 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12181 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12182 // but in this case we cannot guarantee that the value returned will be an 12183 // AddRec because SCEV does not have a fixed point where it stops 12184 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12185 // may happen if we reach arithmetic depth limit while simplifying. So we 12186 // construct the returned value explicitly. 12187 SmallVector<const SCEV *, 3> Ops; 12188 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12189 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12190 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12191 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12192 // We know that the last operand is not a constant zero (otherwise it would 12193 // have been popped out earlier). This guarantees us that if the result has 12194 // the same last operand, then it will also not be popped out, meaning that 12195 // the returned value will be an AddRec. 12196 const SCEV *Last = getOperand(getNumOperands() - 1); 12197 assert(!Last->isZero() && "Recurrency with zero step?"); 12198 Ops.push_back(Last); 12199 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12200 SCEV::FlagAnyWrap)); 12201 } 12202 12203 // Return true when S contains at least an undef value. 12204 static inline bool containsUndefs(const SCEV *S) { 12205 return SCEVExprContains(S, [](const SCEV *S) { 12206 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12207 return isa<UndefValue>(SU->getValue()); 12208 return false; 12209 }); 12210 } 12211 12212 /// Return the size of an element read or written by Inst. 12213 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12214 Type *Ty; 12215 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12216 Ty = Store->getValueOperand()->getType(); 12217 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12218 Ty = Load->getType(); 12219 else 12220 return nullptr; 12221 12222 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12223 return getSizeOfExpr(ETy, Ty); 12224 } 12225 12226 //===----------------------------------------------------------------------===// 12227 // SCEVCallbackVH Class Implementation 12228 //===----------------------------------------------------------------------===// 12229 12230 void ScalarEvolution::SCEVCallbackVH::deleted() { 12231 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12232 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12233 SE->ConstantEvolutionLoopExitValue.erase(PN); 12234 SE->eraseValueFromMap(getValPtr()); 12235 // this now dangles! 12236 } 12237 12238 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12239 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12240 12241 // Forget all the expressions associated with users of the old value, 12242 // so that future queries will recompute the expressions using the new 12243 // value. 12244 Value *Old = getValPtr(); 12245 SmallVector<User *, 16> Worklist(Old->users()); 12246 SmallPtrSet<User *, 8> Visited; 12247 while (!Worklist.empty()) { 12248 User *U = Worklist.pop_back_val(); 12249 // Deleting the Old value will cause this to dangle. Postpone 12250 // that until everything else is done. 12251 if (U == Old) 12252 continue; 12253 if (!Visited.insert(U).second) 12254 continue; 12255 if (PHINode *PN = dyn_cast<PHINode>(U)) 12256 SE->ConstantEvolutionLoopExitValue.erase(PN); 12257 SE->eraseValueFromMap(U); 12258 llvm::append_range(Worklist, U->users()); 12259 } 12260 // Delete the Old value. 12261 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12262 SE->ConstantEvolutionLoopExitValue.erase(PN); 12263 SE->eraseValueFromMap(Old); 12264 // this now dangles! 12265 } 12266 12267 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12268 : CallbackVH(V), SE(se) {} 12269 12270 //===----------------------------------------------------------------------===// 12271 // ScalarEvolution Class Implementation 12272 //===----------------------------------------------------------------------===// 12273 12274 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12275 AssumptionCache &AC, DominatorTree &DT, 12276 LoopInfo &LI) 12277 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12278 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12279 LoopDispositions(64), BlockDispositions(64) { 12280 // To use guards for proving predicates, we need to scan every instruction in 12281 // relevant basic blocks, and not just terminators. Doing this is a waste of 12282 // time if the IR does not actually contain any calls to 12283 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12284 // 12285 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12286 // to _add_ guards to the module when there weren't any before, and wants 12287 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12288 // efficient in lieu of being smart in that rather obscure case. 12289 12290 auto *GuardDecl = F.getParent()->getFunction( 12291 Intrinsic::getName(Intrinsic::experimental_guard)); 12292 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12293 } 12294 12295 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12296 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12297 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12298 ValueExprMap(std::move(Arg.ValueExprMap)), 12299 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12300 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12301 PendingMerges(std::move(Arg.PendingMerges)), 12302 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12303 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12304 PredicatedBackedgeTakenCounts( 12305 std::move(Arg.PredicatedBackedgeTakenCounts)), 12306 ConstantEvolutionLoopExitValue( 12307 std::move(Arg.ConstantEvolutionLoopExitValue)), 12308 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12309 LoopDispositions(std::move(Arg.LoopDispositions)), 12310 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12311 BlockDispositions(std::move(Arg.BlockDispositions)), 12312 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12313 SignedRanges(std::move(Arg.SignedRanges)), 12314 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12315 UniquePreds(std::move(Arg.UniquePreds)), 12316 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12317 LoopUsers(std::move(Arg.LoopUsers)), 12318 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12319 FirstUnknown(Arg.FirstUnknown) { 12320 Arg.FirstUnknown = nullptr; 12321 } 12322 12323 ScalarEvolution::~ScalarEvolution() { 12324 // Iterate through all the SCEVUnknown instances and call their 12325 // destructors, so that they release their references to their values. 12326 for (SCEVUnknown *U = FirstUnknown; U;) { 12327 SCEVUnknown *Tmp = U; 12328 U = U->Next; 12329 Tmp->~SCEVUnknown(); 12330 } 12331 FirstUnknown = nullptr; 12332 12333 ExprValueMap.clear(); 12334 ValueExprMap.clear(); 12335 HasRecMap.clear(); 12336 BackedgeTakenCounts.clear(); 12337 PredicatedBackedgeTakenCounts.clear(); 12338 12339 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12340 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12341 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12342 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12343 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12344 } 12345 12346 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12347 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12348 } 12349 12350 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12351 const Loop *L) { 12352 // Print all inner loops first 12353 for (Loop *I : *L) 12354 PrintLoopInfo(OS, SE, I); 12355 12356 OS << "Loop "; 12357 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12358 OS << ": "; 12359 12360 SmallVector<BasicBlock *, 8> ExitingBlocks; 12361 L->getExitingBlocks(ExitingBlocks); 12362 if (ExitingBlocks.size() != 1) 12363 OS << "<multiple exits> "; 12364 12365 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12366 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12367 else 12368 OS << "Unpredictable backedge-taken count.\n"; 12369 12370 if (ExitingBlocks.size() > 1) 12371 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12372 OS << " exit count for " << ExitingBlock->getName() << ": " 12373 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12374 } 12375 12376 OS << "Loop "; 12377 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12378 OS << ": "; 12379 12380 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12381 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12382 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12383 OS << ", actual taken count either this or zero."; 12384 } else { 12385 OS << "Unpredictable max backedge-taken count. "; 12386 } 12387 12388 OS << "\n" 12389 "Loop "; 12390 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12391 OS << ": "; 12392 12393 SCEVUnionPredicate Pred; 12394 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12395 if (!isa<SCEVCouldNotCompute>(PBT)) { 12396 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12397 OS << " Predicates:\n"; 12398 Pred.print(OS, 4); 12399 } else { 12400 OS << "Unpredictable predicated backedge-taken count. "; 12401 } 12402 OS << "\n"; 12403 12404 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12405 OS << "Loop "; 12406 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12407 OS << ": "; 12408 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12409 } 12410 } 12411 12412 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12413 switch (LD) { 12414 case ScalarEvolution::LoopVariant: 12415 return "Variant"; 12416 case ScalarEvolution::LoopInvariant: 12417 return "Invariant"; 12418 case ScalarEvolution::LoopComputable: 12419 return "Computable"; 12420 } 12421 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12422 } 12423 12424 void ScalarEvolution::print(raw_ostream &OS) const { 12425 // ScalarEvolution's implementation of the print method is to print 12426 // out SCEV values of all instructions that are interesting. Doing 12427 // this potentially causes it to create new SCEV objects though, 12428 // which technically conflicts with the const qualifier. This isn't 12429 // observable from outside the class though, so casting away the 12430 // const isn't dangerous. 12431 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12432 12433 if (ClassifyExpressions) { 12434 OS << "Classifying expressions for: "; 12435 F.printAsOperand(OS, /*PrintType=*/false); 12436 OS << "\n"; 12437 for (Instruction &I : instructions(F)) 12438 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12439 OS << I << '\n'; 12440 OS << " --> "; 12441 const SCEV *SV = SE.getSCEV(&I); 12442 SV->print(OS); 12443 if (!isa<SCEVCouldNotCompute>(SV)) { 12444 OS << " U: "; 12445 SE.getUnsignedRange(SV).print(OS); 12446 OS << " S: "; 12447 SE.getSignedRange(SV).print(OS); 12448 } 12449 12450 const Loop *L = LI.getLoopFor(I.getParent()); 12451 12452 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12453 if (AtUse != SV) { 12454 OS << " --> "; 12455 AtUse->print(OS); 12456 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12457 OS << " U: "; 12458 SE.getUnsignedRange(AtUse).print(OS); 12459 OS << " S: "; 12460 SE.getSignedRange(AtUse).print(OS); 12461 } 12462 } 12463 12464 if (L) { 12465 OS << "\t\t" "Exits: "; 12466 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12467 if (!SE.isLoopInvariant(ExitValue, L)) { 12468 OS << "<<Unknown>>"; 12469 } else { 12470 OS << *ExitValue; 12471 } 12472 12473 bool First = true; 12474 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12475 if (First) { 12476 OS << "\t\t" "LoopDispositions: { "; 12477 First = false; 12478 } else { 12479 OS << ", "; 12480 } 12481 12482 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12483 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12484 } 12485 12486 for (auto *InnerL : depth_first(L)) { 12487 if (InnerL == L) 12488 continue; 12489 if (First) { 12490 OS << "\t\t" "LoopDispositions: { "; 12491 First = false; 12492 } else { 12493 OS << ", "; 12494 } 12495 12496 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12497 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12498 } 12499 12500 OS << " }"; 12501 } 12502 12503 OS << "\n"; 12504 } 12505 } 12506 12507 OS << "Determining loop execution counts for: "; 12508 F.printAsOperand(OS, /*PrintType=*/false); 12509 OS << "\n"; 12510 for (Loop *I : LI) 12511 PrintLoopInfo(OS, &SE, I); 12512 } 12513 12514 ScalarEvolution::LoopDisposition 12515 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12516 auto &Values = LoopDispositions[S]; 12517 for (auto &V : Values) { 12518 if (V.getPointer() == L) 12519 return V.getInt(); 12520 } 12521 Values.emplace_back(L, LoopVariant); 12522 LoopDisposition D = computeLoopDisposition(S, L); 12523 auto &Values2 = LoopDispositions[S]; 12524 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12525 if (V.getPointer() == L) { 12526 V.setInt(D); 12527 break; 12528 } 12529 } 12530 return D; 12531 } 12532 12533 ScalarEvolution::LoopDisposition 12534 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12535 switch (S->getSCEVType()) { 12536 case scConstant: 12537 return LoopInvariant; 12538 case scPtrToInt: 12539 case scTruncate: 12540 case scZeroExtend: 12541 case scSignExtend: 12542 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12543 case scAddRecExpr: { 12544 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12545 12546 // If L is the addrec's loop, it's computable. 12547 if (AR->getLoop() == L) 12548 return LoopComputable; 12549 12550 // Add recurrences are never invariant in the function-body (null loop). 12551 if (!L) 12552 return LoopVariant; 12553 12554 // Everything that is not defined at loop entry is variant. 12555 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12556 return LoopVariant; 12557 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12558 " dominate the contained loop's header?"); 12559 12560 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12561 if (AR->getLoop()->contains(L)) 12562 return LoopInvariant; 12563 12564 // This recurrence is variant w.r.t. L if any of its operands 12565 // are variant. 12566 for (auto *Op : AR->operands()) 12567 if (!isLoopInvariant(Op, L)) 12568 return LoopVariant; 12569 12570 // Otherwise it's loop-invariant. 12571 return LoopInvariant; 12572 } 12573 case scAddExpr: 12574 case scMulExpr: 12575 case scUMaxExpr: 12576 case scSMaxExpr: 12577 case scUMinExpr: 12578 case scSMinExpr: { 12579 bool HasVarying = false; 12580 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12581 LoopDisposition D = getLoopDisposition(Op, L); 12582 if (D == LoopVariant) 12583 return LoopVariant; 12584 if (D == LoopComputable) 12585 HasVarying = true; 12586 } 12587 return HasVarying ? LoopComputable : LoopInvariant; 12588 } 12589 case scUDivExpr: { 12590 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12591 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12592 if (LD == LoopVariant) 12593 return LoopVariant; 12594 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12595 if (RD == LoopVariant) 12596 return LoopVariant; 12597 return (LD == LoopInvariant && RD == LoopInvariant) ? 12598 LoopInvariant : LoopComputable; 12599 } 12600 case scUnknown: 12601 // All non-instruction values are loop invariant. All instructions are loop 12602 // invariant if they are not contained in the specified loop. 12603 // Instructions are never considered invariant in the function body 12604 // (null loop) because they are defined within the "loop". 12605 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12606 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12607 return LoopInvariant; 12608 case scCouldNotCompute: 12609 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12610 } 12611 llvm_unreachable("Unknown SCEV kind!"); 12612 } 12613 12614 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12615 return getLoopDisposition(S, L) == LoopInvariant; 12616 } 12617 12618 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12619 return getLoopDisposition(S, L) == LoopComputable; 12620 } 12621 12622 ScalarEvolution::BlockDisposition 12623 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12624 auto &Values = BlockDispositions[S]; 12625 for (auto &V : Values) { 12626 if (V.getPointer() == BB) 12627 return V.getInt(); 12628 } 12629 Values.emplace_back(BB, DoesNotDominateBlock); 12630 BlockDisposition D = computeBlockDisposition(S, BB); 12631 auto &Values2 = BlockDispositions[S]; 12632 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12633 if (V.getPointer() == BB) { 12634 V.setInt(D); 12635 break; 12636 } 12637 } 12638 return D; 12639 } 12640 12641 ScalarEvolution::BlockDisposition 12642 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12643 switch (S->getSCEVType()) { 12644 case scConstant: 12645 return ProperlyDominatesBlock; 12646 case scPtrToInt: 12647 case scTruncate: 12648 case scZeroExtend: 12649 case scSignExtend: 12650 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12651 case scAddRecExpr: { 12652 // This uses a "dominates" query instead of "properly dominates" query 12653 // to test for proper dominance too, because the instruction which 12654 // produces the addrec's value is a PHI, and a PHI effectively properly 12655 // dominates its entire containing block. 12656 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12657 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12658 return DoesNotDominateBlock; 12659 12660 // Fall through into SCEVNAryExpr handling. 12661 LLVM_FALLTHROUGH; 12662 } 12663 case scAddExpr: 12664 case scMulExpr: 12665 case scUMaxExpr: 12666 case scSMaxExpr: 12667 case scUMinExpr: 12668 case scSMinExpr: { 12669 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12670 bool Proper = true; 12671 for (const SCEV *NAryOp : NAry->operands()) { 12672 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12673 if (D == DoesNotDominateBlock) 12674 return DoesNotDominateBlock; 12675 if (D == DominatesBlock) 12676 Proper = false; 12677 } 12678 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12679 } 12680 case scUDivExpr: { 12681 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12682 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12683 BlockDisposition LD = getBlockDisposition(LHS, BB); 12684 if (LD == DoesNotDominateBlock) 12685 return DoesNotDominateBlock; 12686 BlockDisposition RD = getBlockDisposition(RHS, BB); 12687 if (RD == DoesNotDominateBlock) 12688 return DoesNotDominateBlock; 12689 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12690 ProperlyDominatesBlock : DominatesBlock; 12691 } 12692 case scUnknown: 12693 if (Instruction *I = 12694 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12695 if (I->getParent() == BB) 12696 return DominatesBlock; 12697 if (DT.properlyDominates(I->getParent(), BB)) 12698 return ProperlyDominatesBlock; 12699 return DoesNotDominateBlock; 12700 } 12701 return ProperlyDominatesBlock; 12702 case scCouldNotCompute: 12703 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12704 } 12705 llvm_unreachable("Unknown SCEV kind!"); 12706 } 12707 12708 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12709 return getBlockDisposition(S, BB) >= DominatesBlock; 12710 } 12711 12712 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12713 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12714 } 12715 12716 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12717 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12718 } 12719 12720 void 12721 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12722 ValuesAtScopes.erase(S); 12723 LoopDispositions.erase(S); 12724 BlockDispositions.erase(S); 12725 UnsignedRanges.erase(S); 12726 SignedRanges.erase(S); 12727 ExprValueMap.erase(S); 12728 HasRecMap.erase(S); 12729 MinTrailingZerosCache.erase(S); 12730 12731 for (auto I = PredicatedSCEVRewrites.begin(); 12732 I != PredicatedSCEVRewrites.end();) { 12733 std::pair<const SCEV *, const Loop *> Entry = I->first; 12734 if (Entry.first == S) 12735 PredicatedSCEVRewrites.erase(I++); 12736 else 12737 ++I; 12738 } 12739 12740 auto RemoveSCEVFromBackedgeMap = 12741 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12742 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12743 BackedgeTakenInfo &BEInfo = I->second; 12744 if (BEInfo.hasOperand(S)) 12745 Map.erase(I++); 12746 else 12747 ++I; 12748 } 12749 }; 12750 12751 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12752 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12753 } 12754 12755 void 12756 ScalarEvolution::getUsedLoops(const SCEV *S, 12757 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12758 struct FindUsedLoops { 12759 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12760 : LoopsUsed(LoopsUsed) {} 12761 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12762 bool follow(const SCEV *S) { 12763 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12764 LoopsUsed.insert(AR->getLoop()); 12765 return true; 12766 } 12767 12768 bool isDone() const { return false; } 12769 }; 12770 12771 FindUsedLoops F(LoopsUsed); 12772 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12773 } 12774 12775 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12776 SmallPtrSet<const Loop *, 8> LoopsUsed; 12777 getUsedLoops(S, LoopsUsed); 12778 for (auto *L : LoopsUsed) 12779 LoopUsers[L].push_back(S); 12780 } 12781 12782 void ScalarEvolution::verify() const { 12783 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12784 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12785 12786 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12787 12788 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12789 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12790 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12791 12792 const SCEV *visitConstant(const SCEVConstant *Constant) { 12793 return SE.getConstant(Constant->getAPInt()); 12794 } 12795 12796 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12797 return SE.getUnknown(Expr->getValue()); 12798 } 12799 12800 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12801 return SE.getCouldNotCompute(); 12802 } 12803 }; 12804 12805 SCEVMapper SCM(SE2); 12806 12807 while (!LoopStack.empty()) { 12808 auto *L = LoopStack.pop_back_val(); 12809 llvm::append_range(LoopStack, *L); 12810 12811 auto *CurBECount = SCM.visit( 12812 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12813 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12814 12815 if (CurBECount == SE2.getCouldNotCompute() || 12816 NewBECount == SE2.getCouldNotCompute()) { 12817 // NB! This situation is legal, but is very suspicious -- whatever pass 12818 // change the loop to make a trip count go from could not compute to 12819 // computable or vice-versa *should have* invalidated SCEV. However, we 12820 // choose not to assert here (for now) since we don't want false 12821 // positives. 12822 continue; 12823 } 12824 12825 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12826 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12827 // not propagate undef aggressively). This means we can (and do) fail 12828 // verification in cases where a transform makes the trip count of a loop 12829 // go from "undef" to "undef+1" (say). The transform is fine, since in 12830 // both cases the loop iterates "undef" times, but SCEV thinks we 12831 // increased the trip count of the loop by 1 incorrectly. 12832 continue; 12833 } 12834 12835 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12836 SE.getTypeSizeInBits(NewBECount->getType())) 12837 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12838 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12839 SE.getTypeSizeInBits(NewBECount->getType())) 12840 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12841 12842 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12843 12844 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12845 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12846 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12847 dbgs() << "Old: " << *CurBECount << "\n"; 12848 dbgs() << "New: " << *NewBECount << "\n"; 12849 dbgs() << "Delta: " << *Delta << "\n"; 12850 std::abort(); 12851 } 12852 } 12853 12854 // Collect all valid loops currently in LoopInfo. 12855 SmallPtrSet<Loop *, 32> ValidLoops; 12856 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12857 while (!Worklist.empty()) { 12858 Loop *L = Worklist.pop_back_val(); 12859 if (ValidLoops.contains(L)) 12860 continue; 12861 ValidLoops.insert(L); 12862 Worklist.append(L->begin(), L->end()); 12863 } 12864 // Check for SCEV expressions referencing invalid/deleted loops. 12865 for (auto &KV : ValueExprMap) { 12866 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12867 if (!AR) 12868 continue; 12869 assert(ValidLoops.contains(AR->getLoop()) && 12870 "AddRec references invalid loop"); 12871 } 12872 } 12873 12874 bool ScalarEvolution::invalidate( 12875 Function &F, const PreservedAnalyses &PA, 12876 FunctionAnalysisManager::Invalidator &Inv) { 12877 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12878 // of its dependencies is invalidated. 12879 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12880 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12881 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12882 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12883 Inv.invalidate<LoopAnalysis>(F, PA); 12884 } 12885 12886 AnalysisKey ScalarEvolutionAnalysis::Key; 12887 12888 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12889 FunctionAnalysisManager &AM) { 12890 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12891 AM.getResult<AssumptionAnalysis>(F), 12892 AM.getResult<DominatorTreeAnalysis>(F), 12893 AM.getResult<LoopAnalysis>(F)); 12894 } 12895 12896 PreservedAnalyses 12897 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12898 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12899 return PreservedAnalyses::all(); 12900 } 12901 12902 PreservedAnalyses 12903 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12904 // For compatibility with opt's -analyze feature under legacy pass manager 12905 // which was not ported to NPM. This keeps tests using 12906 // update_analyze_test_checks.py working. 12907 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12908 << F.getName() << "':\n"; 12909 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12910 return PreservedAnalyses::all(); 12911 } 12912 12913 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12914 "Scalar Evolution Analysis", false, true) 12915 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12916 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12917 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12918 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12919 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12920 "Scalar Evolution Analysis", false, true) 12921 12922 char ScalarEvolutionWrapperPass::ID = 0; 12923 12924 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12925 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12926 } 12927 12928 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12929 SE.reset(new ScalarEvolution( 12930 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12931 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12932 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12933 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12934 return false; 12935 } 12936 12937 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12938 12939 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12940 SE->print(OS); 12941 } 12942 12943 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12944 if (!VerifySCEV) 12945 return; 12946 12947 SE->verify(); 12948 } 12949 12950 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12951 AU.setPreservesAll(); 12952 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12953 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12954 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12955 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12956 } 12957 12958 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12959 const SCEV *RHS) { 12960 FoldingSetNodeID ID; 12961 assert(LHS->getType() == RHS->getType() && 12962 "Type mismatch between LHS and RHS"); 12963 // Unique this node based on the arguments 12964 ID.AddInteger(SCEVPredicate::P_Equal); 12965 ID.AddPointer(LHS); 12966 ID.AddPointer(RHS); 12967 void *IP = nullptr; 12968 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12969 return S; 12970 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12971 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12972 UniquePreds.InsertNode(Eq, IP); 12973 return Eq; 12974 } 12975 12976 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12977 const SCEVAddRecExpr *AR, 12978 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12979 FoldingSetNodeID ID; 12980 // Unique this node based on the arguments 12981 ID.AddInteger(SCEVPredicate::P_Wrap); 12982 ID.AddPointer(AR); 12983 ID.AddInteger(AddedFlags); 12984 void *IP = nullptr; 12985 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12986 return S; 12987 auto *OF = new (SCEVAllocator) 12988 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12989 UniquePreds.InsertNode(OF, IP); 12990 return OF; 12991 } 12992 12993 namespace { 12994 12995 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12996 public: 12997 12998 /// Rewrites \p S in the context of a loop L and the SCEV predication 12999 /// infrastructure. 13000 /// 13001 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13002 /// equivalences present in \p Pred. 13003 /// 13004 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13005 /// \p NewPreds such that the result will be an AddRecExpr. 13006 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13007 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13008 SCEVUnionPredicate *Pred) { 13009 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13010 return Rewriter.visit(S); 13011 } 13012 13013 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13014 if (Pred) { 13015 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13016 for (auto *Pred : ExprPreds) 13017 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13018 if (IPred->getLHS() == Expr) 13019 return IPred->getRHS(); 13020 } 13021 return convertToAddRecWithPreds(Expr); 13022 } 13023 13024 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13025 const SCEV *Operand = visit(Expr->getOperand()); 13026 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13027 if (AR && AR->getLoop() == L && AR->isAffine()) { 13028 // This couldn't be folded because the operand didn't have the nuw 13029 // flag. Add the nusw flag as an assumption that we could make. 13030 const SCEV *Step = AR->getStepRecurrence(SE); 13031 Type *Ty = Expr->getType(); 13032 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13033 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13034 SE.getSignExtendExpr(Step, Ty), L, 13035 AR->getNoWrapFlags()); 13036 } 13037 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13038 } 13039 13040 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13041 const SCEV *Operand = visit(Expr->getOperand()); 13042 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13043 if (AR && AR->getLoop() == L && AR->isAffine()) { 13044 // This couldn't be folded because the operand didn't have the nsw 13045 // flag. Add the nssw flag as an assumption that we could make. 13046 const SCEV *Step = AR->getStepRecurrence(SE); 13047 Type *Ty = Expr->getType(); 13048 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13049 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13050 SE.getSignExtendExpr(Step, Ty), L, 13051 AR->getNoWrapFlags()); 13052 } 13053 return SE.getSignExtendExpr(Operand, Expr->getType()); 13054 } 13055 13056 private: 13057 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13058 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13059 SCEVUnionPredicate *Pred) 13060 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13061 13062 bool addOverflowAssumption(const SCEVPredicate *P) { 13063 if (!NewPreds) { 13064 // Check if we've already made this assumption. 13065 return Pred && Pred->implies(P); 13066 } 13067 NewPreds->insert(P); 13068 return true; 13069 } 13070 13071 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13072 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13073 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13074 return addOverflowAssumption(A); 13075 } 13076 13077 // If \p Expr represents a PHINode, we try to see if it can be represented 13078 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13079 // to add this predicate as a runtime overflow check, we return the AddRec. 13080 // If \p Expr does not meet these conditions (is not a PHI node, or we 13081 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13082 // return \p Expr. 13083 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13084 if (!isa<PHINode>(Expr->getValue())) 13085 return Expr; 13086 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13087 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13088 if (!PredicatedRewrite) 13089 return Expr; 13090 for (auto *P : PredicatedRewrite->second){ 13091 // Wrap predicates from outer loops are not supported. 13092 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13093 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13094 if (L != AR->getLoop()) 13095 return Expr; 13096 } 13097 if (!addOverflowAssumption(P)) 13098 return Expr; 13099 } 13100 return PredicatedRewrite->first; 13101 } 13102 13103 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13104 SCEVUnionPredicate *Pred; 13105 const Loop *L; 13106 }; 13107 13108 } // end anonymous namespace 13109 13110 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13111 SCEVUnionPredicate &Preds) { 13112 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13113 } 13114 13115 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13116 const SCEV *S, const Loop *L, 13117 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13118 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13119 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13120 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13121 13122 if (!AddRec) 13123 return nullptr; 13124 13125 // Since the transformation was successful, we can now transfer the SCEV 13126 // predicates. 13127 for (auto *P : TransformPreds) 13128 Preds.insert(P); 13129 13130 return AddRec; 13131 } 13132 13133 /// SCEV predicates 13134 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13135 SCEVPredicateKind Kind) 13136 : FastID(ID), Kind(Kind) {} 13137 13138 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13139 const SCEV *LHS, const SCEV *RHS) 13140 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13141 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13142 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13143 } 13144 13145 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13146 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13147 13148 if (!Op) 13149 return false; 13150 13151 return Op->LHS == LHS && Op->RHS == RHS; 13152 } 13153 13154 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13155 13156 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13157 13158 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13159 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13160 } 13161 13162 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13163 const SCEVAddRecExpr *AR, 13164 IncrementWrapFlags Flags) 13165 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13166 13167 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13168 13169 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13170 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13171 13172 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13173 } 13174 13175 bool SCEVWrapPredicate::isAlwaysTrue() const { 13176 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13177 IncrementWrapFlags IFlags = Flags; 13178 13179 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13180 IFlags = clearFlags(IFlags, IncrementNSSW); 13181 13182 return IFlags == IncrementAnyWrap; 13183 } 13184 13185 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13186 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13187 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13188 OS << "<nusw>"; 13189 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13190 OS << "<nssw>"; 13191 OS << "\n"; 13192 } 13193 13194 SCEVWrapPredicate::IncrementWrapFlags 13195 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13196 ScalarEvolution &SE) { 13197 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13198 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13199 13200 // We can safely transfer the NSW flag as NSSW. 13201 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13202 ImpliedFlags = IncrementNSSW; 13203 13204 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13205 // If the increment is positive, the SCEV NUW flag will also imply the 13206 // WrapPredicate NUSW flag. 13207 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13208 if (Step->getValue()->getValue().isNonNegative()) 13209 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13210 } 13211 13212 return ImpliedFlags; 13213 } 13214 13215 /// Union predicates don't get cached so create a dummy set ID for it. 13216 SCEVUnionPredicate::SCEVUnionPredicate() 13217 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13218 13219 bool SCEVUnionPredicate::isAlwaysTrue() const { 13220 return all_of(Preds, 13221 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13222 } 13223 13224 ArrayRef<const SCEVPredicate *> 13225 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13226 auto I = SCEVToPreds.find(Expr); 13227 if (I == SCEVToPreds.end()) 13228 return ArrayRef<const SCEVPredicate *>(); 13229 return I->second; 13230 } 13231 13232 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13233 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13234 return all_of(Set->Preds, 13235 [this](const SCEVPredicate *I) { return this->implies(I); }); 13236 13237 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13238 if (ScevPredsIt == SCEVToPreds.end()) 13239 return false; 13240 auto &SCEVPreds = ScevPredsIt->second; 13241 13242 return any_of(SCEVPreds, 13243 [N](const SCEVPredicate *I) { return I->implies(N); }); 13244 } 13245 13246 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13247 13248 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13249 for (auto Pred : Preds) 13250 Pred->print(OS, Depth); 13251 } 13252 13253 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13254 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13255 for (auto Pred : Set->Preds) 13256 add(Pred); 13257 return; 13258 } 13259 13260 if (implies(N)) 13261 return; 13262 13263 const SCEV *Key = N->getExpr(); 13264 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13265 " associated expression!"); 13266 13267 SCEVToPreds[Key].push_back(N); 13268 Preds.push_back(N); 13269 } 13270 13271 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13272 Loop &L) 13273 : SE(SE), L(L) {} 13274 13275 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13276 const SCEV *Expr = SE.getSCEV(V); 13277 RewriteEntry &Entry = RewriteMap[Expr]; 13278 13279 // If we already have an entry and the version matches, return it. 13280 if (Entry.second && Generation == Entry.first) 13281 return Entry.second; 13282 13283 // We found an entry but it's stale. Rewrite the stale entry 13284 // according to the current predicate. 13285 if (Entry.second) 13286 Expr = Entry.second; 13287 13288 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13289 Entry = {Generation, NewSCEV}; 13290 13291 return NewSCEV; 13292 } 13293 13294 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13295 if (!BackedgeCount) { 13296 SCEVUnionPredicate BackedgePred; 13297 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13298 addPredicate(BackedgePred); 13299 } 13300 return BackedgeCount; 13301 } 13302 13303 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13304 if (Preds.implies(&Pred)) 13305 return; 13306 Preds.add(&Pred); 13307 updateGeneration(); 13308 } 13309 13310 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13311 return Preds; 13312 } 13313 13314 void PredicatedScalarEvolution::updateGeneration() { 13315 // If the generation number wrapped recompute everything. 13316 if (++Generation == 0) { 13317 for (auto &II : RewriteMap) { 13318 const SCEV *Rewritten = II.second.second; 13319 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13320 } 13321 } 13322 } 13323 13324 void PredicatedScalarEvolution::setNoOverflow( 13325 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13326 const SCEV *Expr = getSCEV(V); 13327 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13328 13329 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13330 13331 // Clear the statically implied flags. 13332 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13333 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13334 13335 auto II = FlagsMap.insert({V, Flags}); 13336 if (!II.second) 13337 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13338 } 13339 13340 bool PredicatedScalarEvolution::hasNoOverflow( 13341 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13342 const SCEV *Expr = getSCEV(V); 13343 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13344 13345 Flags = SCEVWrapPredicate::clearFlags( 13346 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13347 13348 auto II = FlagsMap.find(V); 13349 13350 if (II != FlagsMap.end()) 13351 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13352 13353 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13354 } 13355 13356 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13357 const SCEV *Expr = this->getSCEV(V); 13358 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13359 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13360 13361 if (!New) 13362 return nullptr; 13363 13364 for (auto *P : NewPreds) 13365 Preds.add(P); 13366 13367 updateGeneration(); 13368 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13369 return New; 13370 } 13371 13372 PredicatedScalarEvolution::PredicatedScalarEvolution( 13373 const PredicatedScalarEvolution &Init) 13374 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13375 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13376 for (auto I : Init.FlagsMap) 13377 FlagsMap.insert(I); 13378 } 13379 13380 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13381 // For each block. 13382 for (auto *BB : L.getBlocks()) 13383 for (auto &I : *BB) { 13384 if (!SE.isSCEVable(I.getType())) 13385 continue; 13386 13387 auto *Expr = SE.getSCEV(&I); 13388 auto II = RewriteMap.find(Expr); 13389 13390 if (II == RewriteMap.end()) 13391 continue; 13392 13393 // Don't print things that are not interesting. 13394 if (II->second.second == Expr) 13395 continue; 13396 13397 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13398 OS.indent(Depth + 2) << *Expr << "\n"; 13399 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13400 } 13401 } 13402 13403 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13404 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13405 // for URem with constant power-of-2 second operands. 13406 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13407 // 4, A / B becomes X / 8). 13408 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13409 const SCEV *&RHS) { 13410 // Try to match 'zext (trunc A to iB) to iY', which is used 13411 // for URem with constant power-of-2 second operands. Make sure the size of 13412 // the operand A matches the size of the whole expressions. 13413 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13414 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13415 LHS = Trunc->getOperand(); 13416 // Bail out if the type of the LHS is larger than the type of the 13417 // expression for now. 13418 if (getTypeSizeInBits(LHS->getType()) > 13419 getTypeSizeInBits(Expr->getType())) 13420 return false; 13421 if (LHS->getType() != Expr->getType()) 13422 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13423 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13424 << getTypeSizeInBits(Trunc->getType())); 13425 return true; 13426 } 13427 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13428 if (Add == nullptr || Add->getNumOperands() != 2) 13429 return false; 13430 13431 const SCEV *A = Add->getOperand(1); 13432 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13433 13434 if (Mul == nullptr) 13435 return false; 13436 13437 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13438 // (SomeExpr + (-(SomeExpr / B) * B)). 13439 if (Expr == getURemExpr(A, B)) { 13440 LHS = A; 13441 RHS = B; 13442 return true; 13443 } 13444 return false; 13445 }; 13446 13447 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13448 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13449 return MatchURemWithDivisor(Mul->getOperand(1)) || 13450 MatchURemWithDivisor(Mul->getOperand(2)); 13451 13452 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13453 if (Mul->getNumOperands() == 2) 13454 return MatchURemWithDivisor(Mul->getOperand(1)) || 13455 MatchURemWithDivisor(Mul->getOperand(0)) || 13456 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13457 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13458 return false; 13459 } 13460 13461 const SCEV * 13462 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13463 SmallVector<BasicBlock*, 16> ExitingBlocks; 13464 L->getExitingBlocks(ExitingBlocks); 13465 13466 // Form an expression for the maximum exit count possible for this loop. We 13467 // merge the max and exact information to approximate a version of 13468 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13469 SmallVector<const SCEV*, 4> ExitCounts; 13470 for (BasicBlock *ExitingBB : ExitingBlocks) { 13471 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13472 if (isa<SCEVCouldNotCompute>(ExitCount)) 13473 ExitCount = getExitCount(L, ExitingBB, 13474 ScalarEvolution::ConstantMaximum); 13475 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13476 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13477 "We should only have known counts for exiting blocks that " 13478 "dominate latch!"); 13479 ExitCounts.push_back(ExitCount); 13480 } 13481 } 13482 if (ExitCounts.empty()) 13483 return getCouldNotCompute(); 13484 return getUMinFromMismatchedTypes(ExitCounts); 13485 } 13486 13487 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13488 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13489 /// we cannot guarantee that the replacement is loop invariant in the loop of 13490 /// the AddRec. 13491 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13492 ValueToSCEVMapTy ⤅ 13493 13494 public: 13495 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13496 : SCEVRewriteVisitor(SE), Map(M) {} 13497 13498 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13499 13500 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13501 auto I = Map.find(Expr->getValue()); 13502 if (I == Map.end()) 13503 return Expr; 13504 return I->second; 13505 } 13506 }; 13507 13508 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13509 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13510 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13511 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13512 // replacement SCEV which isn't directly implied by the structure of that 13513 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13514 // legal. See the scoping rules for flags in the header to understand why. 13515 13516 // If we have LHS == 0, check if LHS is computing a property of some unknown 13517 // SCEV %v which we can rewrite %v to express explicitly. 13518 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13519 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13520 RHSC->getValue()->isNullValue()) { 13521 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13522 // explicitly express that. 13523 const SCEV *URemLHS = nullptr; 13524 const SCEV *URemRHS = nullptr; 13525 if (matchURem(LHS, URemLHS, URemRHS)) { 13526 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13527 Value *V = LHSUnknown->getValue(); 13528 RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13529 return; 13530 } 13531 } 13532 } 13533 13534 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13535 std::swap(LHS, RHS); 13536 Predicate = CmpInst::getSwappedPredicate(Predicate); 13537 } 13538 13539 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13540 // create this form when combining two checks of the form (X u< C2 + C1) and 13541 // (X >=u C1). 13542 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13543 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13544 if (!AddExpr || AddExpr->getNumOperands() != 2) 13545 return false; 13546 13547 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13548 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13549 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13550 if (!C1 || !C2 || !LHSUnknown) 13551 return false; 13552 13553 auto ExactRegion = 13554 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13555 .sub(C1->getAPInt()); 13556 13557 // Bail out, unless we have a non-wrapping, monotonic range. 13558 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13559 return false; 13560 auto I = RewriteMap.find(LHSUnknown->getValue()); 13561 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13562 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13563 getConstant(ExactRegion.getUnsignedMin()), 13564 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13565 return true; 13566 }; 13567 if (MatchRangeCheckIdiom()) 13568 return; 13569 13570 // For now, limit to conditions that provide information about unknown 13571 // expressions. RHS also cannot contain add recurrences. 13572 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13573 if (!LHSUnknown || containsAddRecurrence(RHS)) 13574 return; 13575 13576 // Check whether LHS has already been rewritten. In that case we want to 13577 // chain further rewrites onto the already rewritten value. 13578 auto I = RewriteMap.find(LHSUnknown->getValue()); 13579 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13580 const SCEV *RewrittenRHS = nullptr; 13581 switch (Predicate) { 13582 case CmpInst::ICMP_ULT: 13583 RewrittenRHS = 13584 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13585 break; 13586 case CmpInst::ICMP_SLT: 13587 RewrittenRHS = 13588 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13589 break; 13590 case CmpInst::ICMP_ULE: 13591 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13592 break; 13593 case CmpInst::ICMP_SLE: 13594 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13595 break; 13596 case CmpInst::ICMP_UGT: 13597 RewrittenRHS = 13598 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13599 break; 13600 case CmpInst::ICMP_SGT: 13601 RewrittenRHS = 13602 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13603 break; 13604 case CmpInst::ICMP_UGE: 13605 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13606 break; 13607 case CmpInst::ICMP_SGE: 13608 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13609 break; 13610 case CmpInst::ICMP_EQ: 13611 if (isa<SCEVConstant>(RHS)) 13612 RewrittenRHS = RHS; 13613 break; 13614 case CmpInst::ICMP_NE: 13615 if (isa<SCEVConstant>(RHS) && 13616 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13617 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13618 break; 13619 default: 13620 break; 13621 } 13622 13623 if (RewrittenRHS) 13624 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 13625 }; 13626 // Starting at the loop predecessor, climb up the predecessor chain, as long 13627 // as there are predecessors that can be found that have unique successors 13628 // leading to the original header. 13629 // TODO: share this logic with isLoopEntryGuardedByCond. 13630 ValueToSCEVMapTy RewriteMap; 13631 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13632 L->getLoopPredecessor(), L->getHeader()); 13633 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13634 13635 const BranchInst *LoopEntryPredicate = 13636 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13637 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13638 continue; 13639 13640 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13641 SmallVector<Value *, 8> Worklist; 13642 SmallPtrSet<Value *, 8> Visited; 13643 Worklist.push_back(LoopEntryPredicate->getCondition()); 13644 while (!Worklist.empty()) { 13645 Value *Cond = Worklist.pop_back_val(); 13646 if (!Visited.insert(Cond).second) 13647 continue; 13648 13649 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13650 auto Predicate = 13651 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13652 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13653 getSCEV(Cmp->getOperand(1)), RewriteMap); 13654 continue; 13655 } 13656 13657 Value *L, *R; 13658 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13659 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13660 Worklist.push_back(L); 13661 Worklist.push_back(R); 13662 } 13663 } 13664 } 13665 13666 // Also collect information from assumptions dominating the loop. 13667 for (auto &AssumeVH : AC.assumptions()) { 13668 if (!AssumeVH) 13669 continue; 13670 auto *AssumeI = cast<CallInst>(AssumeVH); 13671 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13672 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13673 continue; 13674 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13675 getSCEV(Cmp->getOperand(1)), RewriteMap); 13676 } 13677 13678 if (RewriteMap.empty()) 13679 return Expr; 13680 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13681 return Rewriter.visit(Expr); 13682 } 13683