1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file contains the implementation of the scalar evolution analysis 11 // engine, which is used primarily to analyze expressions involving induction 12 // variables in loops. 13 // 14 // There are several aspects to this library. First is the representation of 15 // scalar expressions, which are represented as subclasses of the SCEV class. 16 // These classes are used to represent certain types of subexpressions that we 17 // can handle. We only create one SCEV of a particular shape, so 18 // pointer-comparisons for equality are legal. 19 // 20 // One important aspect of the SCEV objects is that they are never cyclic, even 21 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 23 // recurrence) then we represent it directly as a recurrence node, otherwise we 24 // represent it as a SCEVUnknown node. 25 // 26 // In addition to being able to represent expressions of various types, we also 27 // have folders that are used to build the *canonical* representation for a 28 // particular expression. These folders are capable of using a variety of 29 // rewrite rules to simplify the expressions. 30 // 31 // Once the folders are defined, we can implement the more interesting 32 // higher-level code, such as the code that recognizes PHI nodes of various 33 // types, computes the execution count of a loop, etc. 34 // 35 // TODO: We should use these routines and value representations to implement 36 // dependence analysis! 37 // 38 //===----------------------------------------------------------------------===// 39 // 40 // There are several good references for the techniques used in this analysis. 41 // 42 // Chains of recurrences -- a method to expedite the evaluation 43 // of closed-form functions 44 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 45 // 46 // On computational properties of chains of recurrences 47 // Eugene V. Zima 48 // 49 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 50 // Robert A. van Engelen 51 // 52 // Efficient Symbolic Analysis for Optimizing Compilers 53 // Robert A. van Engelen 54 // 55 // Using the chains of recurrences algebra for data dependence testing and 56 // induction variable substitution 57 // MS Thesis, Johnie Birch 58 // 59 //===----------------------------------------------------------------------===// 60 61 #include "llvm/Analysis/ScalarEvolution.h" 62 #include "llvm/ADT/Optional.h" 63 #include "llvm/ADT/STLExtras.h" 64 #include "llvm/ADT/SmallPtrSet.h" 65 #include "llvm/ADT/Statistic.h" 66 #include "llvm/Analysis/AssumptionCache.h" 67 #include "llvm/Analysis/ConstantFolding.h" 68 #include "llvm/Analysis/InstructionSimplify.h" 69 #include "llvm/Analysis/LoopInfo.h" 70 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 71 #include "llvm/Analysis/TargetLibraryInfo.h" 72 #include "llvm/Analysis/ValueTracking.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DerivedTypes.h" 77 #include "llvm/IR/Dominators.h" 78 #include "llvm/IR/GetElementPtrTypeIterator.h" 79 #include "llvm/IR/GlobalAlias.h" 80 #include "llvm/IR/GlobalVariable.h" 81 #include "llvm/IR/InstIterator.h" 82 #include "llvm/IR/Instructions.h" 83 #include "llvm/IR/LLVMContext.h" 84 #include "llvm/IR/Metadata.h" 85 #include "llvm/IR/Operator.h" 86 #include "llvm/Support/CommandLine.h" 87 #include "llvm/Support/Debug.h" 88 #include "llvm/Support/ErrorHandling.h" 89 #include "llvm/Support/MathExtras.h" 90 #include "llvm/Support/raw_ostream.h" 91 #include "llvm/Support/SaveAndRestore.h" 92 #include <algorithm> 93 using namespace llvm; 94 95 #define DEBUG_TYPE "scalar-evolution" 96 97 STATISTIC(NumArrayLenItCounts, 98 "Number of trip counts computed with array length"); 99 STATISTIC(NumTripCountsComputed, 100 "Number of loops with predictable loop counts"); 101 STATISTIC(NumTripCountsNotComputed, 102 "Number of loops without predictable loop counts"); 103 STATISTIC(NumBruteForceTripCountsComputed, 104 "Number of loops with trip counts computed by force"); 105 106 static cl::opt<unsigned> 107 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 108 cl::desc("Maximum number of iterations SCEV will " 109 "symbolically execute a constant " 110 "derived loop"), 111 cl::init(100)); 112 113 // FIXME: Enable this with XDEBUG when the test suite is clean. 114 static cl::opt<bool> 115 VerifySCEV("verify-scev", 116 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 117 118 //===----------------------------------------------------------------------===// 119 // SCEV class definitions 120 //===----------------------------------------------------------------------===// 121 122 //===----------------------------------------------------------------------===// 123 // Implementation of the SCEV class. 124 // 125 126 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 127 void SCEV::dump() const { 128 print(dbgs()); 129 dbgs() << '\n'; 130 } 131 #endif 132 133 void SCEV::print(raw_ostream &OS) const { 134 switch (static_cast<SCEVTypes>(getSCEVType())) { 135 case scConstant: 136 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 137 return; 138 case scTruncate: { 139 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 140 const SCEV *Op = Trunc->getOperand(); 141 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 142 << *Trunc->getType() << ")"; 143 return; 144 } 145 case scZeroExtend: { 146 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 147 const SCEV *Op = ZExt->getOperand(); 148 OS << "(zext " << *Op->getType() << " " << *Op << " to " 149 << *ZExt->getType() << ")"; 150 return; 151 } 152 case scSignExtend: { 153 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 154 const SCEV *Op = SExt->getOperand(); 155 OS << "(sext " << *Op->getType() << " " << *Op << " to " 156 << *SExt->getType() << ")"; 157 return; 158 } 159 case scAddRecExpr: { 160 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 161 OS << "{" << *AR->getOperand(0); 162 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 163 OS << ",+," << *AR->getOperand(i); 164 OS << "}<"; 165 if (AR->getNoWrapFlags(FlagNUW)) 166 OS << "nuw><"; 167 if (AR->getNoWrapFlags(FlagNSW)) 168 OS << "nsw><"; 169 if (AR->getNoWrapFlags(FlagNW) && 170 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 171 OS << "nw><"; 172 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 173 OS << ">"; 174 return; 175 } 176 case scAddExpr: 177 case scMulExpr: 178 case scUMaxExpr: 179 case scSMaxExpr: { 180 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 181 const char *OpStr = nullptr; 182 switch (NAry->getSCEVType()) { 183 case scAddExpr: OpStr = " + "; break; 184 case scMulExpr: OpStr = " * "; break; 185 case scUMaxExpr: OpStr = " umax "; break; 186 case scSMaxExpr: OpStr = " smax "; break; 187 } 188 OS << "("; 189 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 190 I != E; ++I) { 191 OS << **I; 192 if (std::next(I) != E) 193 OS << OpStr; 194 } 195 OS << ")"; 196 switch (NAry->getSCEVType()) { 197 case scAddExpr: 198 case scMulExpr: 199 if (NAry->getNoWrapFlags(FlagNUW)) 200 OS << "<nuw>"; 201 if (NAry->getNoWrapFlags(FlagNSW)) 202 OS << "<nsw>"; 203 } 204 return; 205 } 206 case scUDivExpr: { 207 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 208 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 209 return; 210 } 211 case scUnknown: { 212 const SCEVUnknown *U = cast<SCEVUnknown>(this); 213 Type *AllocTy; 214 if (U->isSizeOf(AllocTy)) { 215 OS << "sizeof(" << *AllocTy << ")"; 216 return; 217 } 218 if (U->isAlignOf(AllocTy)) { 219 OS << "alignof(" << *AllocTy << ")"; 220 return; 221 } 222 223 Type *CTy; 224 Constant *FieldNo; 225 if (U->isOffsetOf(CTy, FieldNo)) { 226 OS << "offsetof(" << *CTy << ", "; 227 FieldNo->printAsOperand(OS, false); 228 OS << ")"; 229 return; 230 } 231 232 // Otherwise just print it normally. 233 U->getValue()->printAsOperand(OS, false); 234 return; 235 } 236 case scCouldNotCompute: 237 OS << "***COULDNOTCOMPUTE***"; 238 return; 239 } 240 llvm_unreachable("Unknown SCEV kind!"); 241 } 242 243 Type *SCEV::getType() const { 244 switch (static_cast<SCEVTypes>(getSCEVType())) { 245 case scConstant: 246 return cast<SCEVConstant>(this)->getType(); 247 case scTruncate: 248 case scZeroExtend: 249 case scSignExtend: 250 return cast<SCEVCastExpr>(this)->getType(); 251 case scAddRecExpr: 252 case scMulExpr: 253 case scUMaxExpr: 254 case scSMaxExpr: 255 return cast<SCEVNAryExpr>(this)->getType(); 256 case scAddExpr: 257 return cast<SCEVAddExpr>(this)->getType(); 258 case scUDivExpr: 259 return cast<SCEVUDivExpr>(this)->getType(); 260 case scUnknown: 261 return cast<SCEVUnknown>(this)->getType(); 262 case scCouldNotCompute: 263 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 264 } 265 llvm_unreachable("Unknown SCEV kind!"); 266 } 267 268 bool SCEV::isZero() const { 269 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 270 return SC->getValue()->isZero(); 271 return false; 272 } 273 274 bool SCEV::isOne() const { 275 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 276 return SC->getValue()->isOne(); 277 return false; 278 } 279 280 bool SCEV::isAllOnesValue() const { 281 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 282 return SC->getValue()->isAllOnesValue(); 283 return false; 284 } 285 286 /// isNonConstantNegative - Return true if the specified scev is negated, but 287 /// not a constant. 288 bool SCEV::isNonConstantNegative() const { 289 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 290 if (!Mul) return false; 291 292 // If there is a constant factor, it will be first. 293 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 294 if (!SC) return false; 295 296 // Return true if the value is negative, this matches things like (-42 * V). 297 return SC->getValue()->getValue().isNegative(); 298 } 299 300 SCEVCouldNotCompute::SCEVCouldNotCompute() : 301 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {} 302 303 bool SCEVCouldNotCompute::classof(const SCEV *S) { 304 return S->getSCEVType() == scCouldNotCompute; 305 } 306 307 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 308 FoldingSetNodeID ID; 309 ID.AddInteger(scConstant); 310 ID.AddPointer(V); 311 void *IP = nullptr; 312 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 313 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 314 UniqueSCEVs.InsertNode(S, IP); 315 return S; 316 } 317 318 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 319 return getConstant(ConstantInt::get(getContext(), Val)); 320 } 321 322 const SCEV * 323 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 324 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 325 return getConstant(ConstantInt::get(ITy, V, isSigned)); 326 } 327 328 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 329 unsigned SCEVTy, const SCEV *op, Type *ty) 330 : SCEV(ID, SCEVTy), Op(op), Ty(ty) {} 331 332 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 333 const SCEV *op, Type *ty) 334 : SCEVCastExpr(ID, scTruncate, op, ty) { 335 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 336 (Ty->isIntegerTy() || Ty->isPointerTy()) && 337 "Cannot truncate non-integer value!"); 338 } 339 340 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 341 const SCEV *op, Type *ty) 342 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 343 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 344 (Ty->isIntegerTy() || Ty->isPointerTy()) && 345 "Cannot zero extend non-integer value!"); 346 } 347 348 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 349 const SCEV *op, Type *ty) 350 : SCEVCastExpr(ID, scSignExtend, op, ty) { 351 assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) && 352 (Ty->isIntegerTy() || Ty->isPointerTy()) && 353 "Cannot sign extend non-integer value!"); 354 } 355 356 void SCEVUnknown::deleted() { 357 // Clear this SCEVUnknown from various maps. 358 SE->forgetMemoizedResults(this); 359 360 // Remove this SCEVUnknown from the uniquing map. 361 SE->UniqueSCEVs.RemoveNode(this); 362 363 // Release the value. 364 setValPtr(nullptr); 365 } 366 367 void SCEVUnknown::allUsesReplacedWith(Value *New) { 368 // Clear this SCEVUnknown from various maps. 369 SE->forgetMemoizedResults(this); 370 371 // Remove this SCEVUnknown from the uniquing map. 372 SE->UniqueSCEVs.RemoveNode(this); 373 374 // Update this SCEVUnknown to point to the new value. This is needed 375 // because there may still be outstanding SCEVs which still point to 376 // this SCEVUnknown. 377 setValPtr(New); 378 } 379 380 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 381 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 382 if (VCE->getOpcode() == Instruction::PtrToInt) 383 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 384 if (CE->getOpcode() == Instruction::GetElementPtr && 385 CE->getOperand(0)->isNullValue() && 386 CE->getNumOperands() == 2) 387 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 388 if (CI->isOne()) { 389 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 390 ->getElementType(); 391 return true; 392 } 393 394 return false; 395 } 396 397 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 398 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 399 if (VCE->getOpcode() == Instruction::PtrToInt) 400 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 401 if (CE->getOpcode() == Instruction::GetElementPtr && 402 CE->getOperand(0)->isNullValue()) { 403 Type *Ty = 404 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 405 if (StructType *STy = dyn_cast<StructType>(Ty)) 406 if (!STy->isPacked() && 407 CE->getNumOperands() == 3 && 408 CE->getOperand(1)->isNullValue()) { 409 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 410 if (CI->isOne() && 411 STy->getNumElements() == 2 && 412 STy->getElementType(0)->isIntegerTy(1)) { 413 AllocTy = STy->getElementType(1); 414 return true; 415 } 416 } 417 } 418 419 return false; 420 } 421 422 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 423 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 424 if (VCE->getOpcode() == Instruction::PtrToInt) 425 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 426 if (CE->getOpcode() == Instruction::GetElementPtr && 427 CE->getNumOperands() == 3 && 428 CE->getOperand(0)->isNullValue() && 429 CE->getOperand(1)->isNullValue()) { 430 Type *Ty = 431 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 432 // Ignore vector types here so that ScalarEvolutionExpander doesn't 433 // emit getelementptrs that index into vectors. 434 if (Ty->isStructTy() || Ty->isArrayTy()) { 435 CTy = Ty; 436 FieldNo = CE->getOperand(2); 437 return true; 438 } 439 } 440 441 return false; 442 } 443 444 //===----------------------------------------------------------------------===// 445 // SCEV Utilities 446 //===----------------------------------------------------------------------===// 447 448 namespace { 449 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less 450 /// than the complexity of the RHS. This comparator is used to canonicalize 451 /// expressions. 452 class SCEVComplexityCompare { 453 const LoopInfo *const LI; 454 public: 455 explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {} 456 457 // Return true or false if LHS is less than, or at least RHS, respectively. 458 bool operator()(const SCEV *LHS, const SCEV *RHS) const { 459 return compare(LHS, RHS) < 0; 460 } 461 462 // Return negative, zero, or positive, if LHS is less than, equal to, or 463 // greater than RHS, respectively. A three-way result allows recursive 464 // comparisons to be more efficient. 465 int compare(const SCEV *LHS, const SCEV *RHS) const { 466 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 467 if (LHS == RHS) 468 return 0; 469 470 // Primarily, sort the SCEVs by their getSCEVType(). 471 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 472 if (LType != RType) 473 return (int)LType - (int)RType; 474 475 // Aside from the getSCEVType() ordering, the particular ordering 476 // isn't very important except that it's beneficial to be consistent, 477 // so that (a + b) and (b + a) don't end up as different expressions. 478 switch (static_cast<SCEVTypes>(LType)) { 479 case scUnknown: { 480 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 481 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 482 483 // Sort SCEVUnknown values with some loose heuristics. TODO: This is 484 // not as complete as it could be. 485 const Value *LV = LU->getValue(), *RV = RU->getValue(); 486 487 // Order pointer values after integer values. This helps SCEVExpander 488 // form GEPs. 489 bool LIsPointer = LV->getType()->isPointerTy(), 490 RIsPointer = RV->getType()->isPointerTy(); 491 if (LIsPointer != RIsPointer) 492 return (int)LIsPointer - (int)RIsPointer; 493 494 // Compare getValueID values. 495 unsigned LID = LV->getValueID(), 496 RID = RV->getValueID(); 497 if (LID != RID) 498 return (int)LID - (int)RID; 499 500 // Sort arguments by their position. 501 if (const Argument *LA = dyn_cast<Argument>(LV)) { 502 const Argument *RA = cast<Argument>(RV); 503 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 504 return (int)LArgNo - (int)RArgNo; 505 } 506 507 // For instructions, compare their loop depth, and their operand 508 // count. This is pretty loose. 509 if (const Instruction *LInst = dyn_cast<Instruction>(LV)) { 510 const Instruction *RInst = cast<Instruction>(RV); 511 512 // Compare loop depths. 513 const BasicBlock *LParent = LInst->getParent(), 514 *RParent = RInst->getParent(); 515 if (LParent != RParent) { 516 unsigned LDepth = LI->getLoopDepth(LParent), 517 RDepth = LI->getLoopDepth(RParent); 518 if (LDepth != RDepth) 519 return (int)LDepth - (int)RDepth; 520 } 521 522 // Compare the number of operands. 523 unsigned LNumOps = LInst->getNumOperands(), 524 RNumOps = RInst->getNumOperands(); 525 return (int)LNumOps - (int)RNumOps; 526 } 527 528 return 0; 529 } 530 531 case scConstant: { 532 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 533 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 534 535 // Compare constant values. 536 const APInt &LA = LC->getValue()->getValue(); 537 const APInt &RA = RC->getValue()->getValue(); 538 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 539 if (LBitWidth != RBitWidth) 540 return (int)LBitWidth - (int)RBitWidth; 541 return LA.ult(RA) ? -1 : 1; 542 } 543 544 case scAddRecExpr: { 545 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 546 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 547 548 // Compare addrec loop depths. 549 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 550 if (LLoop != RLoop) { 551 unsigned LDepth = LLoop->getLoopDepth(), 552 RDepth = RLoop->getLoopDepth(); 553 if (LDepth != RDepth) 554 return (int)LDepth - (int)RDepth; 555 } 556 557 // Addrec complexity grows with operand count. 558 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 559 if (LNumOps != RNumOps) 560 return (int)LNumOps - (int)RNumOps; 561 562 // Lexicographically compare. 563 for (unsigned i = 0; i != LNumOps; ++i) { 564 long X = compare(LA->getOperand(i), RA->getOperand(i)); 565 if (X != 0) 566 return X; 567 } 568 569 return 0; 570 } 571 572 case scAddExpr: 573 case scMulExpr: 574 case scSMaxExpr: 575 case scUMaxExpr: { 576 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 577 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 578 579 // Lexicographically compare n-ary expressions. 580 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 581 if (LNumOps != RNumOps) 582 return (int)LNumOps - (int)RNumOps; 583 584 for (unsigned i = 0; i != LNumOps; ++i) { 585 if (i >= RNumOps) 586 return 1; 587 long X = compare(LC->getOperand(i), RC->getOperand(i)); 588 if (X != 0) 589 return X; 590 } 591 return (int)LNumOps - (int)RNumOps; 592 } 593 594 case scUDivExpr: { 595 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 596 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 597 598 // Lexicographically compare udiv expressions. 599 long X = compare(LC->getLHS(), RC->getLHS()); 600 if (X != 0) 601 return X; 602 return compare(LC->getRHS(), RC->getRHS()); 603 } 604 605 case scTruncate: 606 case scZeroExtend: 607 case scSignExtend: { 608 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 609 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 610 611 // Compare cast expressions by operand. 612 return compare(LC->getOperand(), RC->getOperand()); 613 } 614 615 case scCouldNotCompute: 616 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 617 } 618 llvm_unreachable("Unknown SCEV kind!"); 619 } 620 }; 621 } 622 623 /// GroupByComplexity - Given a list of SCEV objects, order them by their 624 /// complexity, and group objects of the same complexity together by value. 625 /// When this routine is finished, we know that any duplicates in the vector are 626 /// consecutive and that complexity is monotonically increasing. 627 /// 628 /// Note that we go take special precautions to ensure that we get deterministic 629 /// results from this routine. In other words, we don't want the results of 630 /// this to depend on where the addresses of various SCEV objects happened to 631 /// land in memory. 632 /// 633 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 634 LoopInfo *LI) { 635 if (Ops.size() < 2) return; // Noop 636 if (Ops.size() == 2) { 637 // This is the common case, which also happens to be trivially simple. 638 // Special case it. 639 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 640 if (SCEVComplexityCompare(LI)(RHS, LHS)) 641 std::swap(LHS, RHS); 642 return; 643 } 644 645 // Do the rough sort by complexity. 646 std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI)); 647 648 // Now that we are sorted by complexity, group elements of the same 649 // complexity. Note that this is, at worst, N^2, but the vector is likely to 650 // be extremely short in practice. Note that we take this approach because we 651 // do not want to depend on the addresses of the objects we are grouping. 652 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 653 const SCEV *S = Ops[i]; 654 unsigned Complexity = S->getSCEVType(); 655 656 // If there are any objects of the same complexity and same value as this 657 // one, group them. 658 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 659 if (Ops[j] == S) { // Found a duplicate. 660 // Move it to immediately after i'th element. 661 std::swap(Ops[i+1], Ops[j]); 662 ++i; // no need to rescan it. 663 if (i == e-2) return; // Done! 664 } 665 } 666 } 667 } 668 669 namespace { 670 struct FindSCEVSize { 671 int Size; 672 FindSCEVSize() : Size(0) {} 673 674 bool follow(const SCEV *S) { 675 ++Size; 676 // Keep looking at all operands of S. 677 return true; 678 } 679 bool isDone() const { 680 return false; 681 } 682 }; 683 } 684 685 // Returns the size of the SCEV S. 686 static inline int sizeOfSCEV(const SCEV *S) { 687 FindSCEVSize F; 688 SCEVTraversal<FindSCEVSize> ST(F); 689 ST.visitAll(S); 690 return F.Size; 691 } 692 693 namespace { 694 695 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> { 696 public: 697 // Computes the Quotient and Remainder of the division of Numerator by 698 // Denominator. 699 static void divide(ScalarEvolution &SE, const SCEV *Numerator, 700 const SCEV *Denominator, const SCEV **Quotient, 701 const SCEV **Remainder) { 702 assert(Numerator && Denominator && "Uninitialized SCEV"); 703 704 SCEVDivision D(SE, Numerator, Denominator); 705 706 // Check for the trivial case here to avoid having to check for it in the 707 // rest of the code. 708 if (Numerator == Denominator) { 709 *Quotient = D.One; 710 *Remainder = D.Zero; 711 return; 712 } 713 714 if (Numerator->isZero()) { 715 *Quotient = D.Zero; 716 *Remainder = D.Zero; 717 return; 718 } 719 720 // A simple case when N/1. The quotient is N. 721 if (Denominator->isOne()) { 722 *Quotient = Numerator; 723 *Remainder = D.Zero; 724 return; 725 } 726 727 // Split the Denominator when it is a product. 728 if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) { 729 const SCEV *Q, *R; 730 *Quotient = Numerator; 731 for (const SCEV *Op : T->operands()) { 732 divide(SE, *Quotient, Op, &Q, &R); 733 *Quotient = Q; 734 735 // Bail out when the Numerator is not divisible by one of the terms of 736 // the Denominator. 737 if (!R->isZero()) { 738 *Quotient = D.Zero; 739 *Remainder = Numerator; 740 return; 741 } 742 } 743 *Remainder = D.Zero; 744 return; 745 } 746 747 D.visit(Numerator); 748 *Quotient = D.Quotient; 749 *Remainder = D.Remainder; 750 } 751 752 // Except in the trivial case described above, we do not know how to divide 753 // Expr by Denominator for the following functions with empty implementation. 754 void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {} 755 void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {} 756 void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {} 757 void visitUDivExpr(const SCEVUDivExpr *Numerator) {} 758 void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {} 759 void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {} 760 void visitUnknown(const SCEVUnknown *Numerator) {} 761 void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {} 762 763 void visitConstant(const SCEVConstant *Numerator) { 764 if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) { 765 APInt NumeratorVal = Numerator->getValue()->getValue(); 766 APInt DenominatorVal = D->getValue()->getValue(); 767 uint32_t NumeratorBW = NumeratorVal.getBitWidth(); 768 uint32_t DenominatorBW = DenominatorVal.getBitWidth(); 769 770 if (NumeratorBW > DenominatorBW) 771 DenominatorVal = DenominatorVal.sext(NumeratorBW); 772 else if (NumeratorBW < DenominatorBW) 773 NumeratorVal = NumeratorVal.sext(DenominatorBW); 774 775 APInt QuotientVal(NumeratorVal.getBitWidth(), 0); 776 APInt RemainderVal(NumeratorVal.getBitWidth(), 0); 777 APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal); 778 Quotient = SE.getConstant(QuotientVal); 779 Remainder = SE.getConstant(RemainderVal); 780 return; 781 } 782 } 783 784 void visitAddRecExpr(const SCEVAddRecExpr *Numerator) { 785 const SCEV *StartQ, *StartR, *StepQ, *StepR; 786 if (!Numerator->isAffine()) 787 return cannotDivide(Numerator); 788 divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR); 789 divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR); 790 // Bail out if the types do not match. 791 Type *Ty = Denominator->getType(); 792 if (Ty != StartQ->getType() || Ty != StartR->getType() || 793 Ty != StepQ->getType() || Ty != StepR->getType()) 794 return cannotDivide(Numerator); 795 Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(), 796 Numerator->getNoWrapFlags()); 797 Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(), 798 Numerator->getNoWrapFlags()); 799 } 800 801 void visitAddExpr(const SCEVAddExpr *Numerator) { 802 SmallVector<const SCEV *, 2> Qs, Rs; 803 Type *Ty = Denominator->getType(); 804 805 for (const SCEV *Op : Numerator->operands()) { 806 const SCEV *Q, *R; 807 divide(SE, Op, Denominator, &Q, &R); 808 809 // Bail out if types do not match. 810 if (Ty != Q->getType() || Ty != R->getType()) 811 return cannotDivide(Numerator); 812 813 Qs.push_back(Q); 814 Rs.push_back(R); 815 } 816 817 if (Qs.size() == 1) { 818 Quotient = Qs[0]; 819 Remainder = Rs[0]; 820 return; 821 } 822 823 Quotient = SE.getAddExpr(Qs); 824 Remainder = SE.getAddExpr(Rs); 825 } 826 827 void visitMulExpr(const SCEVMulExpr *Numerator) { 828 SmallVector<const SCEV *, 2> Qs; 829 Type *Ty = Denominator->getType(); 830 831 bool FoundDenominatorTerm = false; 832 for (const SCEV *Op : Numerator->operands()) { 833 // Bail out if types do not match. 834 if (Ty != Op->getType()) 835 return cannotDivide(Numerator); 836 837 if (FoundDenominatorTerm) { 838 Qs.push_back(Op); 839 continue; 840 } 841 842 // Check whether Denominator divides one of the product operands. 843 const SCEV *Q, *R; 844 divide(SE, Op, Denominator, &Q, &R); 845 if (!R->isZero()) { 846 Qs.push_back(Op); 847 continue; 848 } 849 850 // Bail out if types do not match. 851 if (Ty != Q->getType()) 852 return cannotDivide(Numerator); 853 854 FoundDenominatorTerm = true; 855 Qs.push_back(Q); 856 } 857 858 if (FoundDenominatorTerm) { 859 Remainder = Zero; 860 if (Qs.size() == 1) 861 Quotient = Qs[0]; 862 else 863 Quotient = SE.getMulExpr(Qs); 864 return; 865 } 866 867 if (!isa<SCEVUnknown>(Denominator)) 868 return cannotDivide(Numerator); 869 870 // The Remainder is obtained by replacing Denominator by 0 in Numerator. 871 ValueToValueMap RewriteMap; 872 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 873 cast<SCEVConstant>(Zero)->getValue(); 874 Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 875 876 if (Remainder->isZero()) { 877 // The Quotient is obtained by replacing Denominator by 1 in Numerator. 878 RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] = 879 cast<SCEVConstant>(One)->getValue(); 880 Quotient = 881 SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true); 882 return; 883 } 884 885 // Quotient is (Numerator - Remainder) divided by Denominator. 886 const SCEV *Q, *R; 887 const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder); 888 // This SCEV does not seem to simplify: fail the division here. 889 if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator)) 890 return cannotDivide(Numerator); 891 divide(SE, Diff, Denominator, &Q, &R); 892 if (R != Zero) 893 return cannotDivide(Numerator); 894 Quotient = Q; 895 } 896 897 private: 898 SCEVDivision(ScalarEvolution &S, const SCEV *Numerator, 899 const SCEV *Denominator) 900 : SE(S), Denominator(Denominator) { 901 Zero = SE.getZero(Denominator->getType()); 902 One = SE.getOne(Denominator->getType()); 903 904 // We generally do not know how to divide Expr by Denominator. We 905 // initialize the division to a "cannot divide" state to simplify the rest 906 // of the code. 907 cannotDivide(Numerator); 908 } 909 910 // Convenience function for giving up on the division. We set the quotient to 911 // be equal to zero and the remainder to be equal to the numerator. 912 void cannotDivide(const SCEV *Numerator) { 913 Quotient = Zero; 914 Remainder = Numerator; 915 } 916 917 ScalarEvolution &SE; 918 const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One; 919 }; 920 921 } 922 923 //===----------------------------------------------------------------------===// 924 // Simple SCEV method implementations 925 //===----------------------------------------------------------------------===// 926 927 /// BinomialCoefficient - Compute BC(It, K). The result has width W. 928 /// Assume, K > 0. 929 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 930 ScalarEvolution &SE, 931 Type *ResultTy) { 932 // Handle the simplest case efficiently. 933 if (K == 1) 934 return SE.getTruncateOrZeroExtend(It, ResultTy); 935 936 // We are using the following formula for BC(It, K): 937 // 938 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 939 // 940 // Suppose, W is the bitwidth of the return value. We must be prepared for 941 // overflow. Hence, we must assure that the result of our computation is 942 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 943 // safe in modular arithmetic. 944 // 945 // However, this code doesn't use exactly that formula; the formula it uses 946 // is something like the following, where T is the number of factors of 2 in 947 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 948 // exponentiation: 949 // 950 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 951 // 952 // This formula is trivially equivalent to the previous formula. However, 953 // this formula can be implemented much more efficiently. The trick is that 954 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 955 // arithmetic. To do exact division in modular arithmetic, all we have 956 // to do is multiply by the inverse. Therefore, this step can be done at 957 // width W. 958 // 959 // The next issue is how to safely do the division by 2^T. The way this 960 // is done is by doing the multiplication step at a width of at least W + T 961 // bits. This way, the bottom W+T bits of the product are accurate. Then, 962 // when we perform the division by 2^T (which is equivalent to a right shift 963 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 964 // truncated out after the division by 2^T. 965 // 966 // In comparison to just directly using the first formula, this technique 967 // is much more efficient; using the first formula requires W * K bits, 968 // but this formula less than W + K bits. Also, the first formula requires 969 // a division step, whereas this formula only requires multiplies and shifts. 970 // 971 // It doesn't matter whether the subtraction step is done in the calculation 972 // width or the input iteration count's width; if the subtraction overflows, 973 // the result must be zero anyway. We prefer here to do it in the width of 974 // the induction variable because it helps a lot for certain cases; CodeGen 975 // isn't smart enough to ignore the overflow, which leads to much less 976 // efficient code if the width of the subtraction is wider than the native 977 // register width. 978 // 979 // (It's possible to not widen at all by pulling out factors of 2 before 980 // the multiplication; for example, K=2 can be calculated as 981 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 982 // extra arithmetic, so it's not an obvious win, and it gets 983 // much more complicated for K > 3.) 984 985 // Protection from insane SCEVs; this bound is conservative, 986 // but it probably doesn't matter. 987 if (K > 1000) 988 return SE.getCouldNotCompute(); 989 990 unsigned W = SE.getTypeSizeInBits(ResultTy); 991 992 // Calculate K! / 2^T and T; we divide out the factors of two before 993 // multiplying for calculating K! / 2^T to avoid overflow. 994 // Other overflow doesn't matter because we only care about the bottom 995 // W bits of the result. 996 APInt OddFactorial(W, 1); 997 unsigned T = 1; 998 for (unsigned i = 3; i <= K; ++i) { 999 APInt Mult(W, i); 1000 unsigned TwoFactors = Mult.countTrailingZeros(); 1001 T += TwoFactors; 1002 Mult = Mult.lshr(TwoFactors); 1003 OddFactorial *= Mult; 1004 } 1005 1006 // We need at least W + T bits for the multiplication step 1007 unsigned CalculationBits = W + T; 1008 1009 // Calculate 2^T, at width T+W. 1010 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1011 1012 // Calculate the multiplicative inverse of K! / 2^T; 1013 // this multiplication factor will perform the exact division by 1014 // K! / 2^T. 1015 APInt Mod = APInt::getSignedMinValue(W+1); 1016 APInt MultiplyFactor = OddFactorial.zext(W+1); 1017 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1018 MultiplyFactor = MultiplyFactor.trunc(W); 1019 1020 // Calculate the product, at width T+W 1021 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1022 CalculationBits); 1023 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1024 for (unsigned i = 1; i != K; ++i) { 1025 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1026 Dividend = SE.getMulExpr(Dividend, 1027 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1028 } 1029 1030 // Divide by 2^T 1031 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1032 1033 // Truncate the result, and divide by K! / 2^T. 1034 1035 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1036 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1037 } 1038 1039 /// evaluateAtIteration - Return the value of this chain of recurrences at 1040 /// the specified iteration number. We can evaluate this recurrence by 1041 /// multiplying each element in the chain by the binomial coefficient 1042 /// corresponding to it. In other words, we can evaluate {A,+,B,+,C,+,D} as: 1043 /// 1044 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1045 /// 1046 /// where BC(It, k) stands for binomial coefficient. 1047 /// 1048 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1049 ScalarEvolution &SE) const { 1050 const SCEV *Result = getStart(); 1051 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1052 // The computation is correct in the face of overflow provided that the 1053 // multiplication is performed _after_ the evaluation of the binomial 1054 // coefficient. 1055 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1056 if (isa<SCEVCouldNotCompute>(Coeff)) 1057 return Coeff; 1058 1059 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1060 } 1061 return Result; 1062 } 1063 1064 //===----------------------------------------------------------------------===// 1065 // SCEV Expression folder implementations 1066 //===----------------------------------------------------------------------===// 1067 1068 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, 1069 Type *Ty) { 1070 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1071 "This is not a truncating conversion!"); 1072 assert(isSCEVable(Ty) && 1073 "This is not a conversion to a SCEVable type!"); 1074 Ty = getEffectiveSCEVType(Ty); 1075 1076 FoldingSetNodeID ID; 1077 ID.AddInteger(scTruncate); 1078 ID.AddPointer(Op); 1079 ID.AddPointer(Ty); 1080 void *IP = nullptr; 1081 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1082 1083 // Fold if the operand is constant. 1084 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1085 return getConstant( 1086 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1087 1088 // trunc(trunc(x)) --> trunc(x) 1089 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1090 return getTruncateExpr(ST->getOperand(), Ty); 1091 1092 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1093 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1094 return getTruncateOrSignExtend(SS->getOperand(), Ty); 1095 1096 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1097 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1098 return getTruncateOrZeroExtend(SZ->getOperand(), Ty); 1099 1100 // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can 1101 // eliminate all the truncates, or we replace other casts with truncates. 1102 if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) { 1103 SmallVector<const SCEV *, 4> Operands; 1104 bool hasTrunc = false; 1105 for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) { 1106 const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty); 1107 if (!isa<SCEVCastExpr>(SA->getOperand(i))) 1108 hasTrunc = isa<SCEVTruncateExpr>(S); 1109 Operands.push_back(S); 1110 } 1111 if (!hasTrunc) 1112 return getAddExpr(Operands); 1113 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1114 } 1115 1116 // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can 1117 // eliminate all the truncates, or we replace other casts with truncates. 1118 if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) { 1119 SmallVector<const SCEV *, 4> Operands; 1120 bool hasTrunc = false; 1121 for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) { 1122 const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty); 1123 if (!isa<SCEVCastExpr>(SM->getOperand(i))) 1124 hasTrunc = isa<SCEVTruncateExpr>(S); 1125 Operands.push_back(S); 1126 } 1127 if (!hasTrunc) 1128 return getMulExpr(Operands); 1129 UniqueSCEVs.FindNodeOrInsertPos(ID, IP); // Mutates IP, returns NULL. 1130 } 1131 1132 // If the input value is a chrec scev, truncate the chrec's operands. 1133 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1134 SmallVector<const SCEV *, 4> Operands; 1135 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 1136 Operands.push_back(getTruncateExpr(AddRec->getOperand(i), Ty)); 1137 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1138 } 1139 1140 // The cast wasn't folded; create an explicit cast node. We can reuse 1141 // the existing insert position since if we get here, we won't have 1142 // made any changes which would invalidate it. 1143 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1144 Op, Ty); 1145 UniqueSCEVs.InsertNode(S, IP); 1146 return S; 1147 } 1148 1149 // Get the limit of a recurrence such that incrementing by Step cannot cause 1150 // signed overflow as long as the value of the recurrence within the 1151 // loop does not exceed this limit before incrementing. 1152 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1153 ICmpInst::Predicate *Pred, 1154 ScalarEvolution *SE) { 1155 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1156 if (SE->isKnownPositive(Step)) { 1157 *Pred = ICmpInst::ICMP_SLT; 1158 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1159 SE->getSignedRange(Step).getSignedMax()); 1160 } 1161 if (SE->isKnownNegative(Step)) { 1162 *Pred = ICmpInst::ICMP_SGT; 1163 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1164 SE->getSignedRange(Step).getSignedMin()); 1165 } 1166 return nullptr; 1167 } 1168 1169 // Get the limit of a recurrence such that incrementing by Step cannot cause 1170 // unsigned overflow as long as the value of the recurrence within the loop does 1171 // not exceed this limit before incrementing. 1172 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1173 ICmpInst::Predicate *Pred, 1174 ScalarEvolution *SE) { 1175 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1176 *Pred = ICmpInst::ICMP_ULT; 1177 1178 return SE->getConstant(APInt::getMinValue(BitWidth) - 1179 SE->getUnsignedRange(Step).getUnsignedMax()); 1180 } 1181 1182 namespace { 1183 1184 struct ExtendOpTraitsBase { 1185 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *); 1186 }; 1187 1188 // Used to make code generic over signed and unsigned overflow. 1189 template <typename ExtendOp> struct ExtendOpTraits { 1190 // Members present: 1191 // 1192 // static const SCEV::NoWrapFlags WrapType; 1193 // 1194 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1195 // 1196 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1197 // ICmpInst::Predicate *Pred, 1198 // ScalarEvolution *SE); 1199 }; 1200 1201 template <> 1202 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1203 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1204 1205 static const GetExtendExprTy GetExtendExpr; 1206 1207 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1208 ICmpInst::Predicate *Pred, 1209 ScalarEvolution *SE) { 1210 return getSignedOverflowLimitForStep(Step, Pred, SE); 1211 } 1212 }; 1213 1214 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1215 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1216 1217 template <> 1218 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1219 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1220 1221 static const GetExtendExprTy GetExtendExpr; 1222 1223 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1224 ICmpInst::Predicate *Pred, 1225 ScalarEvolution *SE) { 1226 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1227 } 1228 }; 1229 1230 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1231 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1232 } 1233 1234 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1235 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1236 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1237 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1238 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1239 // expression "Step + sext/zext(PreIncAR)" is congruent with 1240 // "sext/zext(PostIncAR)" 1241 template <typename ExtendOpTy> 1242 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1243 ScalarEvolution *SE) { 1244 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1245 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1246 1247 const Loop *L = AR->getLoop(); 1248 const SCEV *Start = AR->getStart(); 1249 const SCEV *Step = AR->getStepRecurrence(*SE); 1250 1251 // Check for a simple looking step prior to loop entry. 1252 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1253 if (!SA) 1254 return nullptr; 1255 1256 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1257 // subtraction is expensive. For this purpose, perform a quick and dirty 1258 // difference, by checking for Step in the operand list. 1259 SmallVector<const SCEV *, 4> DiffOps; 1260 for (const SCEV *Op : SA->operands()) 1261 if (Op != Step) 1262 DiffOps.push_back(Op); 1263 1264 if (DiffOps.size() == SA->getNumOperands()) 1265 return nullptr; 1266 1267 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1268 // `Step`: 1269 1270 // 1. NSW/NUW flags on the step increment. 1271 const SCEV *PreStart = SE->getAddExpr(DiffOps, SA->getNoWrapFlags()); 1272 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1273 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1274 1275 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1276 // "S+X does not sign/unsign-overflow". 1277 // 1278 1279 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1280 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1281 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1282 return PreStart; 1283 1284 // 2. Direct overflow check on the step operation's expression. 1285 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1286 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1287 const SCEV *OperandExtendedStart = 1288 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy), 1289 (SE->*GetExtendExpr)(Step, WideTy)); 1290 if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) { 1291 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1292 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1293 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1294 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1295 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1296 } 1297 return PreStart; 1298 } 1299 1300 // 3. Loop precondition. 1301 ICmpInst::Predicate Pred; 1302 const SCEV *OverflowLimit = 1303 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1304 1305 if (OverflowLimit && 1306 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) { 1307 return PreStart; 1308 } 1309 return nullptr; 1310 } 1311 1312 // Get the normalized zero or sign extended expression for this AddRec's Start. 1313 template <typename ExtendOpTy> 1314 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1315 ScalarEvolution *SE) { 1316 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1317 1318 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE); 1319 if (!PreStart) 1320 return (SE->*GetExtendExpr)(AR->getStart(), Ty); 1321 1322 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty), 1323 (SE->*GetExtendExpr)(PreStart, Ty)); 1324 } 1325 1326 // Try to prove away overflow by looking at "nearby" add recurrences. A 1327 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1328 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1329 // 1330 // Formally: 1331 // 1332 // {S,+,X} == {S-T,+,X} + T 1333 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1334 // 1335 // If ({S-T,+,X} + T) does not overflow ... (1) 1336 // 1337 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1338 // 1339 // If {S-T,+,X} does not overflow ... (2) 1340 // 1341 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1342 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1343 // 1344 // If (S-T)+T does not overflow ... (3) 1345 // 1346 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1347 // == {Ext(S),+,Ext(X)} == LHS 1348 // 1349 // Thus, if (1), (2) and (3) are true for some T, then 1350 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1351 // 1352 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1353 // does not overflow" restricted to the 0th iteration. Therefore we only need 1354 // to check for (1) and (2). 1355 // 1356 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1357 // is `Delta` (defined below). 1358 // 1359 template <typename ExtendOpTy> 1360 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1361 const SCEV *Step, 1362 const Loop *L) { 1363 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1364 1365 // We restrict `Start` to a constant to prevent SCEV from spending too much 1366 // time here. It is correct (but more expensive) to continue with a 1367 // non-constant `Start` and do a general SCEV subtraction to compute 1368 // `PreStart` below. 1369 // 1370 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1371 if (!StartC) 1372 return false; 1373 1374 APInt StartAI = StartC->getValue()->getValue(); 1375 1376 for (unsigned Delta : {-2, -1, 1, 2}) { 1377 const SCEV *PreStart = getConstant(StartAI - Delta); 1378 1379 // Give up if we don't already have the add recurrence we need because 1380 // actually constructing an add recurrence is relatively expensive. 1381 const SCEVAddRecExpr *PreAR = [&]() { 1382 FoldingSetNodeID ID; 1383 ID.AddInteger(scAddRecExpr); 1384 ID.AddPointer(PreStart); 1385 ID.AddPointer(Step); 1386 ID.AddPointer(L); 1387 void *IP = nullptr; 1388 return static_cast<SCEVAddRecExpr *>( 1389 this->UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1390 }(); 1391 1392 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1393 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1394 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1395 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1396 DeltaS, &Pred, this); 1397 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1398 return true; 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op, 1406 Type *Ty) { 1407 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1408 "This is not an extending conversion!"); 1409 assert(isSCEVable(Ty) && 1410 "This is not a conversion to a SCEVable type!"); 1411 Ty = getEffectiveSCEVType(Ty); 1412 1413 // Fold if the operand is constant. 1414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1415 return getConstant( 1416 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1417 1418 // zext(zext(x)) --> zext(x) 1419 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1420 return getZeroExtendExpr(SZ->getOperand(), Ty); 1421 1422 // Before doing any expensive analysis, check to see if we've already 1423 // computed a SCEV for this Op and Ty. 1424 FoldingSetNodeID ID; 1425 ID.AddInteger(scZeroExtend); 1426 ID.AddPointer(Op); 1427 ID.AddPointer(Ty); 1428 void *IP = nullptr; 1429 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1430 1431 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1432 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1433 // It's possible the bits taken off by the truncate were all zero bits. If 1434 // so, we should be able to simplify this further. 1435 const SCEV *X = ST->getOperand(); 1436 ConstantRange CR = getUnsignedRange(X); 1437 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1438 unsigned NewBits = getTypeSizeInBits(Ty); 1439 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1440 CR.zextOrTrunc(NewBits))) 1441 return getTruncateOrZeroExtend(X, Ty); 1442 } 1443 1444 // If the input value is a chrec scev, and we can prove that the value 1445 // did not overflow the old, smaller, value, we can zero extend all of the 1446 // operands (often constants). This allows analysis of something like 1447 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1448 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1449 if (AR->isAffine()) { 1450 const SCEV *Start = AR->getStart(); 1451 const SCEV *Step = AR->getStepRecurrence(*this); 1452 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1453 const Loop *L = AR->getLoop(); 1454 1455 // If we have special knowledge that this addrec won't overflow, 1456 // we don't need to do any further analysis. 1457 if (AR->getNoWrapFlags(SCEV::FlagNUW)) 1458 return getAddRecExpr( 1459 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1460 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1461 1462 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1463 // Note that this serves two purposes: It filters out loops that are 1464 // simply not analyzable, and it covers the case where this code is 1465 // being called from within backedge-taken count analysis, such that 1466 // attempting to ask for the backedge-taken count would likely result 1467 // in infinite recursion. In the later case, the analysis code will 1468 // cope with a conservative value, and it will take care to purge 1469 // that value once it has finished. 1470 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1471 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1472 // Manually compute the final value for AR, checking for 1473 // overflow. 1474 1475 // Check whether the backedge-taken count can be losslessly casted to 1476 // the addrec's type. The count is always unsigned. 1477 const SCEV *CastedMaxBECount = 1478 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1479 const SCEV *RecastedMaxBECount = 1480 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1481 if (MaxBECount == RecastedMaxBECount) { 1482 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1483 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1484 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step); 1485 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy); 1486 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy); 1487 const SCEV *WideMaxBECount = 1488 getZeroExtendExpr(CastedMaxBECount, WideTy); 1489 const SCEV *OperandExtendedAdd = 1490 getAddExpr(WideStart, 1491 getMulExpr(WideMaxBECount, 1492 getZeroExtendExpr(Step, WideTy))); 1493 if (ZAdd == OperandExtendedAdd) { 1494 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1495 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1496 // Return the expression with the addrec on the outside. 1497 return getAddRecExpr( 1498 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1499 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy))); 1507 if (ZAdd == OperandExtendedAdd) { 1508 // Cache knowledge of AR NW, which is propagated to this AddRec. 1509 // Negative step causes unsigned wrap, but it still can't self-wrap. 1510 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1511 // Return the expression with the addrec on the outside. 1512 return getAddRecExpr( 1513 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1514 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1515 } 1516 } 1517 1518 // If the backedge is guarded by a comparison with the pre-inc value 1519 // the addrec is safe. Also, if the entry is guarded by a comparison 1520 // with the start value and the backedge is guarded by a comparison 1521 // with the post-inc value, the addrec is safe. 1522 if (isKnownPositive(Step)) { 1523 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1524 getUnsignedRange(Step).getUnsignedMax()); 1525 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1526 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) && 1527 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, 1528 AR->getPostIncExpr(*this), N))) { 1529 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1530 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1531 // Return the expression with the addrec on the outside. 1532 return getAddRecExpr( 1533 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1534 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1535 } 1536 } else if (isKnownNegative(Step)) { 1537 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1538 getSignedRange(Step).getSignedMin()); 1539 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1540 (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) && 1541 isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, 1542 AR->getPostIncExpr(*this), N))) { 1543 // Cache knowledge of AR NW, which is propagated to this AddRec. 1544 // Negative step causes unsigned wrap, but it still can't self-wrap. 1545 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1546 // Return the expression with the addrec on the outside. 1547 return getAddRecExpr( 1548 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1549 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1550 } 1551 } 1552 } 1553 1554 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1555 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1556 return getAddRecExpr( 1557 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this), 1558 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1559 } 1560 } 1561 1562 // The cast wasn't folded; create an explicit cast node. 1563 // Recompute the insert position, as it may have been invalidated. 1564 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1565 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1566 Op, Ty); 1567 UniqueSCEVs.InsertNode(S, IP); 1568 return S; 1569 } 1570 1571 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op, 1572 Type *Ty) { 1573 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1574 "This is not an extending conversion!"); 1575 assert(isSCEVable(Ty) && 1576 "This is not a conversion to a SCEVable type!"); 1577 Ty = getEffectiveSCEVType(Ty); 1578 1579 // Fold if the operand is constant. 1580 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1581 return getConstant( 1582 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1583 1584 // sext(sext(x)) --> sext(x) 1585 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1586 return getSignExtendExpr(SS->getOperand(), Ty); 1587 1588 // sext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scSignExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 1601 // If the input value is provably positive, build a zext instead. 1602 if (isKnownNonNegative(Op)) 1603 return getZeroExtendExpr(Op, Ty); 1604 1605 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1606 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1607 // It's possible the bits taken off by the truncate were all sign bits. If 1608 // so, we should be able to simplify this further. 1609 const SCEV *X = ST->getOperand(); 1610 ConstantRange CR = getSignedRange(X); 1611 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1612 unsigned NewBits = getTypeSizeInBits(Ty); 1613 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1614 CR.sextOrTrunc(NewBits))) 1615 return getTruncateOrSignExtend(X, Ty); 1616 } 1617 1618 // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2 1619 if (auto SA = dyn_cast<SCEVAddExpr>(Op)) { 1620 if (SA->getNumOperands() == 2) { 1621 auto SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0)); 1622 auto SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1)); 1623 if (SMul && SC1) { 1624 if (auto SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) { 1625 const APInt &C1 = SC1->getValue()->getValue(); 1626 const APInt &C2 = SC2->getValue()->getValue(); 1627 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && 1628 C2.ugt(C1) && C2.isPowerOf2()) 1629 return getAddExpr(getSignExtendExpr(SC1, Ty), 1630 getSignExtendExpr(SMul, Ty)); 1631 } 1632 } 1633 } 1634 } 1635 // If the input value is a chrec scev, and we can prove that the value 1636 // did not overflow the old, smaller, value, we can sign extend all of the 1637 // operands (often constants). This allows analysis of something like 1638 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1639 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1640 if (AR->isAffine()) { 1641 const SCEV *Start = AR->getStart(); 1642 const SCEV *Step = AR->getStepRecurrence(*this); 1643 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1644 const Loop *L = AR->getLoop(); 1645 1646 // If we have special knowledge that this addrec won't overflow, 1647 // we don't need to do any further analysis. 1648 if (AR->getNoWrapFlags(SCEV::FlagNSW)) 1649 return getAddRecExpr( 1650 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1651 getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW); 1652 1653 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1654 // Note that this serves two purposes: It filters out loops that are 1655 // simply not analyzable, and it covers the case where this code is 1656 // being called from within backedge-taken count analysis, such that 1657 // attempting to ask for the backedge-taken count would likely result 1658 // in infinite recursion. In the later case, the analysis code will 1659 // cope with a conservative value, and it will take care to purge 1660 // that value once it has finished. 1661 const SCEV *MaxBECount = getMaxBackedgeTakenCount(L); 1662 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1663 // Manually compute the final value for AR, checking for 1664 // overflow. 1665 1666 // Check whether the backedge-taken count can be losslessly casted to 1667 // the addrec's type. The count is always unsigned. 1668 const SCEV *CastedMaxBECount = 1669 getTruncateOrZeroExtend(MaxBECount, Start->getType()); 1670 const SCEV *RecastedMaxBECount = 1671 getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType()); 1672 if (MaxBECount == RecastedMaxBECount) { 1673 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1674 // Check whether Start+Step*MaxBECount has no signed overflow. 1675 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step); 1676 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy); 1677 const SCEV *WideStart = getSignExtendExpr(Start, WideTy); 1678 const SCEV *WideMaxBECount = 1679 getZeroExtendExpr(CastedMaxBECount, WideTy); 1680 const SCEV *OperandExtendedAdd = 1681 getAddExpr(WideStart, 1682 getMulExpr(WideMaxBECount, 1683 getSignExtendExpr(Step, WideTy))); 1684 if (SAdd == OperandExtendedAdd) { 1685 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1686 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1687 // Return the expression with the addrec on the outside. 1688 return getAddRecExpr( 1689 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1690 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as unsigned. 1693 // This covers loops that count up with an unsigned step. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getZeroExtendExpr(Step, WideTy))); 1698 if (SAdd == OperandExtendedAdd) { 1699 // If AR wraps around then 1700 // 1701 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1702 // => SAdd != OperandExtendedAdd 1703 // 1704 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1705 // (SAdd == OperandExtendedAdd => AR is NW) 1706 1707 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1708 1709 // Return the expression with the addrec on the outside. 1710 return getAddRecExpr( 1711 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1712 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1713 } 1714 } 1715 1716 // If the backedge is guarded by a comparison with the pre-inc value 1717 // the addrec is safe. Also, if the entry is guarded by a comparison 1718 // with the start value and the backedge is guarded by a comparison 1719 // with the post-inc value, the addrec is safe. 1720 ICmpInst::Predicate Pred; 1721 const SCEV *OverflowLimit = 1722 getSignedOverflowLimitForStep(Step, &Pred, this); 1723 if (OverflowLimit && 1724 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1725 (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) && 1726 isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this), 1727 OverflowLimit)))) { 1728 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1729 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1730 return getAddRecExpr( 1731 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1732 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1733 } 1734 } 1735 // If Start and Step are constants, check if we can apply this 1736 // transformation: 1737 // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2 1738 auto SC1 = dyn_cast<SCEVConstant>(Start); 1739 auto SC2 = dyn_cast<SCEVConstant>(Step); 1740 if (SC1 && SC2) { 1741 const APInt &C1 = SC1->getValue()->getValue(); 1742 const APInt &C2 = SC2->getValue()->getValue(); 1743 if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) && 1744 C2.isPowerOf2()) { 1745 Start = getSignExtendExpr(Start, Ty); 1746 const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L, 1747 AR->getNoWrapFlags()); 1748 return getAddExpr(Start, getSignExtendExpr(NewAR, Ty)); 1749 } 1750 } 1751 1752 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1753 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1754 return getAddRecExpr( 1755 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this), 1756 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags()); 1757 } 1758 } 1759 1760 // The cast wasn't folded; create an explicit cast node. 1761 // Recompute the insert position, as it may have been invalidated. 1762 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1763 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1764 Op, Ty); 1765 UniqueSCEVs.InsertNode(S, IP); 1766 return S; 1767 } 1768 1769 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1770 /// unspecified bits out to the given type. 1771 /// 1772 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1773 Type *Ty) { 1774 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1775 "This is not an extending conversion!"); 1776 assert(isSCEVable(Ty) && 1777 "This is not a conversion to a SCEVable type!"); 1778 Ty = getEffectiveSCEVType(Ty); 1779 1780 // Sign-extend negative constants. 1781 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1782 if (SC->getValue()->getValue().isNegative()) 1783 return getSignExtendExpr(Op, Ty); 1784 1785 // Peel off a truncate cast. 1786 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1787 const SCEV *NewOp = T->getOperand(); 1788 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1789 return getAnyExtendExpr(NewOp, Ty); 1790 return getTruncateOrNoop(NewOp, Ty); 1791 } 1792 1793 // Next try a zext cast. If the cast is folded, use it. 1794 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1795 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1796 return ZExt; 1797 1798 // Next try a sext cast. If the cast is folded, use it. 1799 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1800 if (!isa<SCEVSignExtendExpr>(SExt)) 1801 return SExt; 1802 1803 // Force the cast to be folded into the operands of an addrec. 1804 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1805 SmallVector<const SCEV *, 4> Ops; 1806 for (const SCEV *Op : AR->operands()) 1807 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1808 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1809 } 1810 1811 // If the expression is obviously signed, use the sext cast value. 1812 if (isa<SCEVSMaxExpr>(Op)) 1813 return SExt; 1814 1815 // Absent any other information, use the zext cast value. 1816 return ZExt; 1817 } 1818 1819 /// CollectAddOperandsWithScales - Process the given Ops list, which is 1820 /// a list of operands to be added under the given scale, update the given 1821 /// map. This is a helper function for getAddRecExpr. As an example of 1822 /// what it does, given a sequence of operands that would form an add 1823 /// expression like this: 1824 /// 1825 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1826 /// 1827 /// where A and B are constants, update the map with these values: 1828 /// 1829 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 1830 /// 1831 /// and add 13 + A*B*29 to AccumulatedConstant. 1832 /// This will allow getAddRecExpr to produce this: 1833 /// 1834 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 1835 /// 1836 /// This form often exposes folding opportunities that are hidden in 1837 /// the original operand list. 1838 /// 1839 /// Return true iff it appears that any interesting folding opportunities 1840 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 1841 /// the common case where no interesting opportunities are present, and 1842 /// is also used as a check to avoid infinite recursion. 1843 /// 1844 static bool 1845 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 1846 SmallVectorImpl<const SCEV *> &NewOps, 1847 APInt &AccumulatedConstant, 1848 const SCEV *const *Ops, size_t NumOperands, 1849 const APInt &Scale, 1850 ScalarEvolution &SE) { 1851 bool Interesting = false; 1852 1853 // Iterate over the add operands. They are sorted, with constants first. 1854 unsigned i = 0; 1855 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 1856 ++i; 1857 // Pull a buried constant out to the outside. 1858 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 1859 Interesting = true; 1860 AccumulatedConstant += Scale * C->getValue()->getValue(); 1861 } 1862 1863 // Next comes everything else. We're especially interested in multiplies 1864 // here, but they're in the middle, so just visit the rest with one loop. 1865 for (; i != NumOperands; ++i) { 1866 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 1867 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 1868 APInt NewScale = 1869 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getValue()->getValue(); 1870 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 1871 // A multiplication of a constant with another add; recurse. 1872 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 1873 Interesting |= 1874 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 1875 Add->op_begin(), Add->getNumOperands(), 1876 NewScale, SE); 1877 } else { 1878 // A multiplication of a constant with some other value. Update 1879 // the map. 1880 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 1881 const SCEV *Key = SE.getMulExpr(MulOps); 1882 auto Pair = M.insert(std::make_pair(Key, NewScale)); 1883 if (Pair.second) { 1884 NewOps.push_back(Pair.first->first); 1885 } else { 1886 Pair.first->second += NewScale; 1887 // The map already had an entry for this value, which may indicate 1888 // a folding opportunity. 1889 Interesting = true; 1890 } 1891 } 1892 } else { 1893 // An ordinary operand. Update the map. 1894 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 1895 M.insert(std::make_pair(Ops[i], Scale)); 1896 if (Pair.second) { 1897 NewOps.push_back(Pair.first->first); 1898 } else { 1899 Pair.first->second += Scale; 1900 // The map already had an entry for this value, which may indicate 1901 // a folding opportunity. 1902 Interesting = true; 1903 } 1904 } 1905 } 1906 1907 return Interesting; 1908 } 1909 1910 namespace { 1911 struct APIntCompare { 1912 bool operator()(const APInt &LHS, const APInt &RHS) const { 1913 return LHS.ult(RHS); 1914 } 1915 }; 1916 } 1917 1918 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 1919 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 1920 // can't-overflow flags for the operation if possible. 1921 static SCEV::NoWrapFlags 1922 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 1923 const SmallVectorImpl<const SCEV *> &Ops, 1924 SCEV::NoWrapFlags OldFlags) { 1925 using namespace std::placeholders; 1926 1927 bool CanAnalyze = 1928 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 1929 (void)CanAnalyze; 1930 assert(CanAnalyze && "don't call from other places!"); 1931 1932 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 1933 SCEV::NoWrapFlags SignOrUnsignWrap = 1934 ScalarEvolution::maskFlags(OldFlags, SignOrUnsignMask); 1935 1936 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 1937 auto IsKnownNonNegative = 1938 std::bind(std::mem_fn(&ScalarEvolution::isKnownNonNegative), SE, _1); 1939 1940 if (SignOrUnsignWrap == SCEV::FlagNSW && 1941 std::all_of(Ops.begin(), Ops.end(), IsKnownNonNegative)) 1942 return ScalarEvolution::setFlags(OldFlags, 1943 (SCEV::NoWrapFlags)SignOrUnsignMask); 1944 1945 return OldFlags; 1946 } 1947 1948 /// getAddExpr - Get a canonical add expression, or something simpler if 1949 /// possible. 1950 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 1951 SCEV::NoWrapFlags Flags) { 1952 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 1953 "only nuw or nsw allowed"); 1954 assert(!Ops.empty() && "Cannot get empty add!"); 1955 if (Ops.size() == 1) return Ops[0]; 1956 #ifndef NDEBUG 1957 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 1958 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 1959 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 1960 "SCEVAddExpr operand types don't match!"); 1961 #endif 1962 1963 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 1964 1965 // Sort by complexity, this groups all similar expression types together. 1966 GroupByComplexity(Ops, &LI); 1967 1968 // If there are any constants, fold them together. 1969 unsigned Idx = 0; 1970 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 1971 ++Idx; 1972 assert(Idx < Ops.size()); 1973 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 1974 // We found two constants, fold them together! 1975 Ops[0] = getConstant(LHSC->getValue()->getValue() + 1976 RHSC->getValue()->getValue()); 1977 if (Ops.size() == 2) return Ops[0]; 1978 Ops.erase(Ops.begin()+1); // Erase the folded element 1979 LHSC = cast<SCEVConstant>(Ops[0]); 1980 } 1981 1982 // If we are left with a constant zero being added, strip it off. 1983 if (LHSC->getValue()->isZero()) { 1984 Ops.erase(Ops.begin()); 1985 --Idx; 1986 } 1987 1988 if (Ops.size() == 1) return Ops[0]; 1989 } 1990 1991 // Okay, check to see if the same value occurs in the operand list more than 1992 // once. If so, merge them together into an multiply expression. Since we 1993 // sorted the list, these values are required to be adjacent. 1994 Type *Ty = Ops[0]->getType(); 1995 bool FoundMatch = false; 1996 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 1997 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 1998 // Scan ahead to count how many equal operands there are. 1999 unsigned Count = 2; 2000 while (i+Count != e && Ops[i+Count] == Ops[i]) 2001 ++Count; 2002 // Merge the values into a multiply. 2003 const SCEV *Scale = getConstant(Ty, Count); 2004 const SCEV *Mul = getMulExpr(Scale, Ops[i]); 2005 if (Ops.size() == Count) 2006 return Mul; 2007 Ops[i] = Mul; 2008 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2009 --i; e -= Count - 1; 2010 FoundMatch = true; 2011 } 2012 if (FoundMatch) 2013 return getAddExpr(Ops, Flags); 2014 2015 // Check for truncates. If all the operands are truncated from the same 2016 // type, see if factoring out the truncate would permit the result to be 2017 // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n) 2018 // if the contents of the resulting outer trunc fold to something simple. 2019 for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) { 2020 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]); 2021 Type *DstType = Trunc->getType(); 2022 Type *SrcType = Trunc->getOperand()->getType(); 2023 SmallVector<const SCEV *, 8> LargeOps; 2024 bool Ok = true; 2025 // Check all the operands to see if they can be represented in the 2026 // source type of the truncate. 2027 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2028 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2029 if (T->getOperand()->getType() != SrcType) { 2030 Ok = false; 2031 break; 2032 } 2033 LargeOps.push_back(T->getOperand()); 2034 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2035 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2036 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2037 SmallVector<const SCEV *, 8> LargeMulOps; 2038 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2039 if (const SCEVTruncateExpr *T = 2040 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2041 if (T->getOperand()->getType() != SrcType) { 2042 Ok = false; 2043 break; 2044 } 2045 LargeMulOps.push_back(T->getOperand()); 2046 } else if (const SCEVConstant *C = 2047 dyn_cast<SCEVConstant>(M->getOperand(j))) { 2048 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2049 } else { 2050 Ok = false; 2051 break; 2052 } 2053 } 2054 if (Ok) 2055 LargeOps.push_back(getMulExpr(LargeMulOps)); 2056 } else { 2057 Ok = false; 2058 break; 2059 } 2060 } 2061 if (Ok) { 2062 // Evaluate the expression in the larger type. 2063 const SCEV *Fold = getAddExpr(LargeOps, Flags); 2064 // If it folds to something simple, use it. Otherwise, don't. 2065 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2066 return getTruncateExpr(Fold, DstType); 2067 } 2068 } 2069 2070 // Skip past any other cast SCEVs. 2071 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2072 ++Idx; 2073 2074 // If there are add operands they would be next. 2075 if (Idx < Ops.size()) { 2076 bool DeletedAdd = false; 2077 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2078 // If we have an add, expand the add operands onto the end of the operands 2079 // list. 2080 Ops.erase(Ops.begin()+Idx); 2081 Ops.append(Add->op_begin(), Add->op_end()); 2082 DeletedAdd = true; 2083 } 2084 2085 // If we deleted at least one add, we added operands to the end of the list, 2086 // and they are not necessarily sorted. Recurse to resort and resimplify 2087 // any operands we just acquired. 2088 if (DeletedAdd) 2089 return getAddExpr(Ops); 2090 } 2091 2092 // Skip over the add expression until we get to a multiply. 2093 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2094 ++Idx; 2095 2096 // Check to see if there are any folding opportunities present with 2097 // operands multiplied by constant values. 2098 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2099 uint64_t BitWidth = getTypeSizeInBits(Ty); 2100 DenseMap<const SCEV *, APInt> M; 2101 SmallVector<const SCEV *, 8> NewOps; 2102 APInt AccumulatedConstant(BitWidth, 0); 2103 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2104 Ops.data(), Ops.size(), 2105 APInt(BitWidth, 1), *this)) { 2106 // Some interesting folding opportunity is present, so its worthwhile to 2107 // re-generate the operands list. Group the operands by constant scale, 2108 // to avoid multiplying by the same constant scale multiple times. 2109 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2110 for (SmallVectorImpl<const SCEV *>::const_iterator I = NewOps.begin(), 2111 E = NewOps.end(); I != E; ++I) 2112 MulOpLists[M.find(*I)->second].push_back(*I); 2113 // Re-generate the operands list. 2114 Ops.clear(); 2115 if (AccumulatedConstant != 0) 2116 Ops.push_back(getConstant(AccumulatedConstant)); 2117 for (std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare>::iterator 2118 I = MulOpLists.begin(), E = MulOpLists.end(); I != E; ++I) 2119 if (I->first != 0) 2120 Ops.push_back(getMulExpr(getConstant(I->first), 2121 getAddExpr(I->second))); 2122 if (Ops.empty()) 2123 return getZero(Ty); 2124 if (Ops.size() == 1) 2125 return Ops[0]; 2126 return getAddExpr(Ops); 2127 } 2128 } 2129 2130 // If we are adding something to a multiply expression, make sure the 2131 // something is not already an operand of the multiply. If so, merge it into 2132 // the multiply. 2133 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2134 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2135 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2136 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2137 if (isa<SCEVConstant>(MulOpSCEV)) 2138 continue; 2139 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2140 if (MulOpSCEV == Ops[AddOp]) { 2141 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2142 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2143 if (Mul->getNumOperands() != 2) { 2144 // If the multiply has more than two operands, we must get the 2145 // Y*Z term. 2146 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2147 Mul->op_begin()+MulOp); 2148 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2149 InnerMul = getMulExpr(MulOps); 2150 } 2151 const SCEV *One = getOne(Ty); 2152 const SCEV *AddOne = getAddExpr(One, InnerMul); 2153 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV); 2154 if (Ops.size() == 2) return OuterMul; 2155 if (AddOp < Idx) { 2156 Ops.erase(Ops.begin()+AddOp); 2157 Ops.erase(Ops.begin()+Idx-1); 2158 } else { 2159 Ops.erase(Ops.begin()+Idx); 2160 Ops.erase(Ops.begin()+AddOp-1); 2161 } 2162 Ops.push_back(OuterMul); 2163 return getAddExpr(Ops); 2164 } 2165 2166 // Check this multiply against other multiplies being added together. 2167 for (unsigned OtherMulIdx = Idx+1; 2168 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2169 ++OtherMulIdx) { 2170 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2171 // If MulOp occurs in OtherMul, we can fold the two multiplies 2172 // together. 2173 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2174 OMulOp != e; ++OMulOp) 2175 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2176 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2177 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2178 if (Mul->getNumOperands() != 2) { 2179 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2180 Mul->op_begin()+MulOp); 2181 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2182 InnerMul1 = getMulExpr(MulOps); 2183 } 2184 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2185 if (OtherMul->getNumOperands() != 2) { 2186 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2187 OtherMul->op_begin()+OMulOp); 2188 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2189 InnerMul2 = getMulExpr(MulOps); 2190 } 2191 const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2); 2192 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum); 2193 if (Ops.size() == 2) return OuterMul; 2194 Ops.erase(Ops.begin()+Idx); 2195 Ops.erase(Ops.begin()+OtherMulIdx-1); 2196 Ops.push_back(OuterMul); 2197 return getAddExpr(Ops); 2198 } 2199 } 2200 } 2201 } 2202 2203 // If there are any add recurrences in the operands list, see if any other 2204 // added values are loop invariant. If so, we can fold them into the 2205 // recurrence. 2206 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2207 ++Idx; 2208 2209 // Scan over all recurrences, trying to fold loop invariants into them. 2210 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2211 // Scan all of the other operands to this add and add them to the vector if 2212 // they are loop invariant w.r.t. the recurrence. 2213 SmallVector<const SCEV *, 8> LIOps; 2214 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2215 const Loop *AddRecLoop = AddRec->getLoop(); 2216 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2217 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2218 LIOps.push_back(Ops[i]); 2219 Ops.erase(Ops.begin()+i); 2220 --i; --e; 2221 } 2222 2223 // If we found some loop invariants, fold them into the recurrence. 2224 if (!LIOps.empty()) { 2225 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2226 LIOps.push_back(AddRec->getStart()); 2227 2228 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2229 AddRec->op_end()); 2230 AddRecOps[0] = getAddExpr(LIOps); 2231 2232 // Build the new addrec. Propagate the NUW and NSW flags if both the 2233 // outer add and the inner addrec are guaranteed to have no overflow. 2234 // Always propagate NW. 2235 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2236 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2237 2238 // If all of the other operands were loop invariant, we are done. 2239 if (Ops.size() == 1) return NewRec; 2240 2241 // Otherwise, add the folded AddRec by the non-invariant parts. 2242 for (unsigned i = 0;; ++i) 2243 if (Ops[i] == AddRec) { 2244 Ops[i] = NewRec; 2245 break; 2246 } 2247 return getAddExpr(Ops); 2248 } 2249 2250 // Okay, if there weren't any loop invariants to be folded, check to see if 2251 // there are multiple AddRec's with the same loop induction variable being 2252 // added together. If so, we can fold them. 2253 for (unsigned OtherIdx = Idx+1; 2254 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2255 ++OtherIdx) 2256 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2257 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2258 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2259 AddRec->op_end()); 2260 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2261 ++OtherIdx) 2262 if (const SCEVAddRecExpr *OtherAddRec = 2263 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx])) 2264 if (OtherAddRec->getLoop() == AddRecLoop) { 2265 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2266 i != e; ++i) { 2267 if (i >= AddRecOps.size()) { 2268 AddRecOps.append(OtherAddRec->op_begin()+i, 2269 OtherAddRec->op_end()); 2270 break; 2271 } 2272 AddRecOps[i] = getAddExpr(AddRecOps[i], 2273 OtherAddRec->getOperand(i)); 2274 } 2275 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2276 } 2277 // Step size has changed, so we cannot guarantee no self-wraparound. 2278 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2279 return getAddExpr(Ops); 2280 } 2281 2282 // Otherwise couldn't fold anything into this recurrence. Move onto the 2283 // next one. 2284 } 2285 2286 // Okay, it looks like we really DO need an add expr. Check to see if we 2287 // already have one, otherwise create a new one. 2288 FoldingSetNodeID ID; 2289 ID.AddInteger(scAddExpr); 2290 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2291 ID.AddPointer(Ops[i]); 2292 void *IP = nullptr; 2293 SCEVAddExpr *S = 2294 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2295 if (!S) { 2296 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2297 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2298 S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator), 2299 O, Ops.size()); 2300 UniqueSCEVs.InsertNode(S, IP); 2301 } 2302 S->setNoWrapFlags(Flags); 2303 return S; 2304 } 2305 2306 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2307 uint64_t k = i*j; 2308 if (j > 1 && k / j != i) Overflow = true; 2309 return k; 2310 } 2311 2312 /// Compute the result of "n choose k", the binomial coefficient. If an 2313 /// intermediate computation overflows, Overflow will be set and the return will 2314 /// be garbage. Overflow is not cleared on absence of overflow. 2315 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2316 // We use the multiplicative formula: 2317 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2318 // At each iteration, we take the n-th term of the numeral and divide by the 2319 // (k-n)th term of the denominator. This division will always produce an 2320 // integral result, and helps reduce the chance of overflow in the 2321 // intermediate computations. However, we can still overflow even when the 2322 // final result would fit. 2323 2324 if (n == 0 || n == k) return 1; 2325 if (k > n) return 0; 2326 2327 if (k > n/2) 2328 k = n-k; 2329 2330 uint64_t r = 1; 2331 for (uint64_t i = 1; i <= k; ++i) { 2332 r = umul_ov(r, n-(i-1), Overflow); 2333 r /= i; 2334 } 2335 return r; 2336 } 2337 2338 /// Determine if any of the operands in this SCEV are a constant or if 2339 /// any of the add or multiply expressions in this SCEV contain a constant. 2340 static bool containsConstantSomewhere(const SCEV *StartExpr) { 2341 SmallVector<const SCEV *, 4> Ops; 2342 Ops.push_back(StartExpr); 2343 while (!Ops.empty()) { 2344 const SCEV *CurrentExpr = Ops.pop_back_val(); 2345 if (isa<SCEVConstant>(*CurrentExpr)) 2346 return true; 2347 2348 if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) { 2349 const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr); 2350 Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end()); 2351 } 2352 } 2353 return false; 2354 } 2355 2356 /// getMulExpr - Get a canonical multiply expression, or something simpler if 2357 /// possible. 2358 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2359 SCEV::NoWrapFlags Flags) { 2360 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2361 "only nuw or nsw allowed"); 2362 assert(!Ops.empty() && "Cannot get empty mul!"); 2363 if (Ops.size() == 1) return Ops[0]; 2364 #ifndef NDEBUG 2365 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2366 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2367 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2368 "SCEVMulExpr operand types don't match!"); 2369 #endif 2370 2371 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2372 2373 // Sort by complexity, this groups all similar expression types together. 2374 GroupByComplexity(Ops, &LI); 2375 2376 // If there are any constants, fold them together. 2377 unsigned Idx = 0; 2378 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2379 2380 // C1*(C2+V) -> C1*C2 + C1*V 2381 if (Ops.size() == 2) 2382 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2383 // If any of Add's ops are Adds or Muls with a constant, 2384 // apply this transformation as well. 2385 if (Add->getNumOperands() == 2) 2386 if (containsConstantSomewhere(Add)) 2387 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)), 2388 getMulExpr(LHSC, Add->getOperand(1))); 2389 2390 ++Idx; 2391 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2392 // We found two constants, fold them together! 2393 ConstantInt *Fold = ConstantInt::get(getContext(), 2394 LHSC->getValue()->getValue() * 2395 RHSC->getValue()->getValue()); 2396 Ops[0] = getConstant(Fold); 2397 Ops.erase(Ops.begin()+1); // Erase the folded element 2398 if (Ops.size() == 1) return Ops[0]; 2399 LHSC = cast<SCEVConstant>(Ops[0]); 2400 } 2401 2402 // If we are left with a constant one being multiplied, strip it off. 2403 if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) { 2404 Ops.erase(Ops.begin()); 2405 --Idx; 2406 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2407 // If we have a multiply of zero, it will always be zero. 2408 return Ops[0]; 2409 } else if (Ops[0]->isAllOnesValue()) { 2410 // If we have a mul by -1 of an add, try distributing the -1 among the 2411 // add operands. 2412 if (Ops.size() == 2) { 2413 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2414 SmallVector<const SCEV *, 4> NewOps; 2415 bool AnyFolded = false; 2416 for (SCEVAddRecExpr::op_iterator I = Add->op_begin(), 2417 E = Add->op_end(); I != E; ++I) { 2418 const SCEV *Mul = getMulExpr(Ops[0], *I); 2419 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2420 NewOps.push_back(Mul); 2421 } 2422 if (AnyFolded) 2423 return getAddExpr(NewOps); 2424 } 2425 else if (const SCEVAddRecExpr * 2426 AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2427 // Negation preserves a recurrence's no self-wrap property. 2428 SmallVector<const SCEV *, 4> Operands; 2429 for (SCEVAddRecExpr::op_iterator I = AddRec->op_begin(), 2430 E = AddRec->op_end(); I != E; ++I) { 2431 Operands.push_back(getMulExpr(Ops[0], *I)); 2432 } 2433 return getAddRecExpr(Operands, AddRec->getLoop(), 2434 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2435 } 2436 } 2437 } 2438 2439 if (Ops.size() == 1) 2440 return Ops[0]; 2441 } 2442 2443 // Skip over the add expression until we get to a multiply. 2444 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2445 ++Idx; 2446 2447 // If there are mul operands inline them all into this expression. 2448 if (Idx < Ops.size()) { 2449 bool DeletedMul = false; 2450 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2451 // If we have an mul, expand the mul operands onto the end of the operands 2452 // list. 2453 Ops.erase(Ops.begin()+Idx); 2454 Ops.append(Mul->op_begin(), Mul->op_end()); 2455 DeletedMul = true; 2456 } 2457 2458 // If we deleted at least one mul, we added operands to the end of the list, 2459 // and they are not necessarily sorted. Recurse to resort and resimplify 2460 // any operands we just acquired. 2461 if (DeletedMul) 2462 return getMulExpr(Ops); 2463 } 2464 2465 // If there are any add recurrences in the operands list, see if any other 2466 // added values are loop invariant. If so, we can fold them into the 2467 // recurrence. 2468 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2469 ++Idx; 2470 2471 // Scan over all recurrences, trying to fold loop invariants into them. 2472 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2473 // Scan all of the other operands to this mul and add them to the vector if 2474 // they are loop invariant w.r.t. the recurrence. 2475 SmallVector<const SCEV *, 8> LIOps; 2476 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2477 const Loop *AddRecLoop = AddRec->getLoop(); 2478 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2479 if (isLoopInvariant(Ops[i], AddRecLoop)) { 2480 LIOps.push_back(Ops[i]); 2481 Ops.erase(Ops.begin()+i); 2482 --i; --e; 2483 } 2484 2485 // If we found some loop invariants, fold them into the recurrence. 2486 if (!LIOps.empty()) { 2487 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2488 SmallVector<const SCEV *, 4> NewOps; 2489 NewOps.reserve(AddRec->getNumOperands()); 2490 const SCEV *Scale = getMulExpr(LIOps); 2491 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2492 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i))); 2493 2494 // Build the new addrec. Propagate the NUW and NSW flags if both the 2495 // outer mul and the inner addrec are guaranteed to have no overflow. 2496 // 2497 // No self-wrap cannot be guaranteed after changing the step size, but 2498 // will be inferred if either NUW or NSW is true. 2499 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2500 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2501 2502 // If all of the other operands were loop invariant, we are done. 2503 if (Ops.size() == 1) return NewRec; 2504 2505 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2506 for (unsigned i = 0;; ++i) 2507 if (Ops[i] == AddRec) { 2508 Ops[i] = NewRec; 2509 break; 2510 } 2511 return getMulExpr(Ops); 2512 } 2513 2514 // Okay, if there weren't any loop invariants to be folded, check to see if 2515 // there are multiple AddRec's with the same loop induction variable being 2516 // multiplied together. If so, we can fold them. 2517 2518 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2519 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2520 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2521 // ]]],+,...up to x=2n}. 2522 // Note that the arguments to choose() are always integers with values 2523 // known at compile time, never SCEV objects. 2524 // 2525 // The implementation avoids pointless extra computations when the two 2526 // addrec's are of different length (mathematically, it's equivalent to 2527 // an infinite stream of zeros on the right). 2528 bool OpsModified = false; 2529 for (unsigned OtherIdx = Idx+1; 2530 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2531 ++OtherIdx) { 2532 const SCEVAddRecExpr *OtherAddRec = 2533 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2534 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2535 continue; 2536 2537 bool Overflow = false; 2538 Type *Ty = AddRec->getType(); 2539 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2540 SmallVector<const SCEV*, 7> AddRecOps; 2541 for (int x = 0, xe = AddRec->getNumOperands() + 2542 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2543 const SCEV *Term = getZero(Ty); 2544 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2545 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2546 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2547 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2548 z < ze && !Overflow; ++z) { 2549 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2550 uint64_t Coeff; 2551 if (LargerThan64Bits) 2552 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2553 else 2554 Coeff = Coeff1*Coeff2; 2555 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2556 const SCEV *Term1 = AddRec->getOperand(y-z); 2557 const SCEV *Term2 = OtherAddRec->getOperand(z); 2558 Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2)); 2559 } 2560 } 2561 AddRecOps.push_back(Term); 2562 } 2563 if (!Overflow) { 2564 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(), 2565 SCEV::FlagAnyWrap); 2566 if (Ops.size() == 2) return NewAddRec; 2567 Ops[Idx] = NewAddRec; 2568 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2569 OpsModified = true; 2570 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2571 if (!AddRec) 2572 break; 2573 } 2574 } 2575 if (OpsModified) 2576 return getMulExpr(Ops); 2577 2578 // Otherwise couldn't fold anything into this recurrence. Move onto the 2579 // next one. 2580 } 2581 2582 // Okay, it looks like we really DO need an mul expr. Check to see if we 2583 // already have one, otherwise create a new one. 2584 FoldingSetNodeID ID; 2585 ID.AddInteger(scMulExpr); 2586 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2587 ID.AddPointer(Ops[i]); 2588 void *IP = nullptr; 2589 SCEVMulExpr *S = 2590 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2591 if (!S) { 2592 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2593 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2594 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2595 O, Ops.size()); 2596 UniqueSCEVs.InsertNode(S, IP); 2597 } 2598 S->setNoWrapFlags(Flags); 2599 return S; 2600 } 2601 2602 /// getUDivExpr - Get a canonical unsigned division expression, or something 2603 /// simpler if possible. 2604 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2605 const SCEV *RHS) { 2606 assert(getEffectiveSCEVType(LHS->getType()) == 2607 getEffectiveSCEVType(RHS->getType()) && 2608 "SCEVUDivExpr operand types don't match!"); 2609 2610 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2611 if (RHSC->getValue()->equalsInt(1)) 2612 return LHS; // X udiv 1 --> x 2613 // If the denominator is zero, the result of the udiv is undefined. Don't 2614 // try to analyze it, because the resolution chosen here may differ from 2615 // the resolution chosen in other parts of the compiler. 2616 if (!RHSC->getValue()->isZero()) { 2617 // Determine if the division can be folded into the operands of 2618 // its operands. 2619 // TODO: Generalize this to non-constants by using known-bits information. 2620 Type *Ty = LHS->getType(); 2621 unsigned LZ = RHSC->getValue()->getValue().countLeadingZeros(); 2622 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2623 // For non-power-of-two values, effectively round the value up to the 2624 // nearest power of two. 2625 if (!RHSC->getValue()->getValue().isPowerOf2()) 2626 ++MaxShiftAmt; 2627 IntegerType *ExtTy = 2628 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2629 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2630 if (const SCEVConstant *Step = 2631 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2632 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2633 const APInt &StepInt = Step->getValue()->getValue(); 2634 const APInt &DivInt = RHSC->getValue()->getValue(); 2635 if (!StepInt.urem(DivInt) && 2636 getZeroExtendExpr(AR, ExtTy) == 2637 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2638 getZeroExtendExpr(Step, ExtTy), 2639 AR->getLoop(), SCEV::FlagAnyWrap)) { 2640 SmallVector<const SCEV *, 4> Operands; 2641 for (unsigned i = 0, e = AR->getNumOperands(); i != e; ++i) 2642 Operands.push_back(getUDivExpr(AR->getOperand(i), RHS)); 2643 return getAddRecExpr(Operands, AR->getLoop(), 2644 SCEV::FlagNW); 2645 } 2646 /// Get a canonical UDivExpr for a recurrence. 2647 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2648 // We can currently only fold X%N if X is constant. 2649 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2650 if (StartC && !DivInt.urem(StepInt) && 2651 getZeroExtendExpr(AR, ExtTy) == 2652 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2653 getZeroExtendExpr(Step, ExtTy), 2654 AR->getLoop(), SCEV::FlagAnyWrap)) { 2655 const APInt &StartInt = StartC->getValue()->getValue(); 2656 const APInt &StartRem = StartInt.urem(StepInt); 2657 if (StartRem != 0) 2658 LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step, 2659 AR->getLoop(), SCEV::FlagNW); 2660 } 2661 } 2662 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 2663 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 2664 SmallVector<const SCEV *, 4> Operands; 2665 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) 2666 Operands.push_back(getZeroExtendExpr(M->getOperand(i), ExtTy)); 2667 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 2668 // Find an operand that's safely divisible. 2669 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 2670 const SCEV *Op = M->getOperand(i); 2671 const SCEV *Div = getUDivExpr(Op, RHSC); 2672 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 2673 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 2674 M->op_end()); 2675 Operands[i] = Div; 2676 return getMulExpr(Operands); 2677 } 2678 } 2679 } 2680 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 2681 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 2682 SmallVector<const SCEV *, 4> Operands; 2683 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) 2684 Operands.push_back(getZeroExtendExpr(A->getOperand(i), ExtTy)); 2685 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 2686 Operands.clear(); 2687 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 2688 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 2689 if (isa<SCEVUDivExpr>(Op) || 2690 getMulExpr(Op, RHS) != A->getOperand(i)) 2691 break; 2692 Operands.push_back(Op); 2693 } 2694 if (Operands.size() == A->getNumOperands()) 2695 return getAddExpr(Operands); 2696 } 2697 } 2698 2699 // Fold if both operands are constant. 2700 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 2701 Constant *LHSCV = LHSC->getValue(); 2702 Constant *RHSCV = RHSC->getValue(); 2703 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 2704 RHSCV))); 2705 } 2706 } 2707 } 2708 2709 FoldingSetNodeID ID; 2710 ID.AddInteger(scUDivExpr); 2711 ID.AddPointer(LHS); 2712 ID.AddPointer(RHS); 2713 void *IP = nullptr; 2714 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2715 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 2716 LHS, RHS); 2717 UniqueSCEVs.InsertNode(S, IP); 2718 return S; 2719 } 2720 2721 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 2722 APInt A = C1->getValue()->getValue().abs(); 2723 APInt B = C2->getValue()->getValue().abs(); 2724 uint32_t ABW = A.getBitWidth(); 2725 uint32_t BBW = B.getBitWidth(); 2726 2727 if (ABW > BBW) 2728 B = B.zext(ABW); 2729 else if (ABW < BBW) 2730 A = A.zext(BBW); 2731 2732 return APIntOps::GreatestCommonDivisor(A, B); 2733 } 2734 2735 /// getUDivExactExpr - Get a canonical unsigned division expression, or 2736 /// something simpler if possible. There is no representation for an exact udiv 2737 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS. 2738 /// We can't do this when it's not exact because the udiv may be clearing bits. 2739 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 2740 const SCEV *RHS) { 2741 // TODO: we could try to find factors in all sorts of things, but for now we 2742 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 2743 // end of this file for inspiration. 2744 2745 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 2746 if (!Mul) 2747 return getUDivExpr(LHS, RHS); 2748 2749 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 2750 // If the mulexpr multiplies by a constant, then that constant must be the 2751 // first element of the mulexpr. 2752 if (const SCEVConstant *LHSCst = 2753 dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 2754 if (LHSCst == RHSCst) { 2755 SmallVector<const SCEV *, 2> Operands; 2756 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2757 return getMulExpr(Operands); 2758 } 2759 2760 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 2761 // that there's a factor provided by one of the other terms. We need to 2762 // check. 2763 APInt Factor = gcd(LHSCst, RHSCst); 2764 if (!Factor.isIntN(1)) { 2765 LHSCst = cast<SCEVConstant>( 2766 getConstant(LHSCst->getValue()->getValue().udiv(Factor))); 2767 RHSCst = cast<SCEVConstant>( 2768 getConstant(RHSCst->getValue()->getValue().udiv(Factor))); 2769 SmallVector<const SCEV *, 2> Operands; 2770 Operands.push_back(LHSCst); 2771 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 2772 LHS = getMulExpr(Operands); 2773 RHS = RHSCst; 2774 Mul = dyn_cast<SCEVMulExpr>(LHS); 2775 if (!Mul) 2776 return getUDivExactExpr(LHS, RHS); 2777 } 2778 } 2779 } 2780 2781 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 2782 if (Mul->getOperand(i) == RHS) { 2783 SmallVector<const SCEV *, 2> Operands; 2784 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 2785 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 2786 return getMulExpr(Operands); 2787 } 2788 } 2789 2790 return getUDivExpr(LHS, RHS); 2791 } 2792 2793 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2794 /// Simplify the expression as much as possible. 2795 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 2796 const Loop *L, 2797 SCEV::NoWrapFlags Flags) { 2798 SmallVector<const SCEV *, 4> Operands; 2799 Operands.push_back(Start); 2800 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 2801 if (StepChrec->getLoop() == L) { 2802 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 2803 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 2804 } 2805 2806 Operands.push_back(Step); 2807 return getAddRecExpr(Operands, L, Flags); 2808 } 2809 2810 /// getAddRecExpr - Get an add recurrence expression for the specified loop. 2811 /// Simplify the expression as much as possible. 2812 const SCEV * 2813 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 2814 const Loop *L, SCEV::NoWrapFlags Flags) { 2815 if (Operands.size() == 1) return Operands[0]; 2816 #ifndef NDEBUG 2817 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 2818 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 2819 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 2820 "SCEVAddRecExpr operand types don't match!"); 2821 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2822 assert(isLoopInvariant(Operands[i], L) && 2823 "SCEVAddRecExpr operand is not loop-invariant!"); 2824 #endif 2825 2826 if (Operands.back()->isZero()) { 2827 Operands.pop_back(); 2828 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 2829 } 2830 2831 // It's tempting to want to call getMaxBackedgeTakenCount count here and 2832 // use that information to infer NUW and NSW flags. However, computing a 2833 // BE count requires calling getAddRecExpr, so we may not yet have a 2834 // meaningful BE count at this point (and if we don't, we'd be stuck 2835 // with a SCEVCouldNotCompute as the cached BE count). 2836 2837 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 2838 2839 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 2840 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 2841 const Loop *NestedLoop = NestedAR->getLoop(); 2842 if (L->contains(NestedLoop) 2843 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 2844 : (!NestedLoop->contains(L) && 2845 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 2846 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 2847 NestedAR->op_end()); 2848 Operands[0] = NestedAR->getStart(); 2849 // AddRecs require their operands be loop-invariant with respect to their 2850 // loops. Don't perform this transformation if it would break this 2851 // requirement. 2852 bool AllInvariant = true; 2853 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2854 if (!isLoopInvariant(Operands[i], L)) { 2855 AllInvariant = false; 2856 break; 2857 } 2858 if (AllInvariant) { 2859 // Create a recurrence for the outer loop with the same step size. 2860 // 2861 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 2862 // inner recurrence has the same property. 2863 SCEV::NoWrapFlags OuterFlags = 2864 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 2865 2866 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 2867 AllInvariant = true; 2868 for (unsigned i = 0, e = NestedOperands.size(); i != e; ++i) 2869 if (!isLoopInvariant(NestedOperands[i], NestedLoop)) { 2870 AllInvariant = false; 2871 break; 2872 } 2873 if (AllInvariant) { 2874 // Ok, both add recurrences are valid after the transformation. 2875 // 2876 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 2877 // the outer recurrence has the same property. 2878 SCEV::NoWrapFlags InnerFlags = 2879 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 2880 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 2881 } 2882 } 2883 // Reset Operands to its original state. 2884 Operands[0] = NestedAR; 2885 } 2886 } 2887 2888 // Okay, it looks like we really DO need an addrec expr. Check to see if we 2889 // already have one, otherwise create a new one. 2890 FoldingSetNodeID ID; 2891 ID.AddInteger(scAddRecExpr); 2892 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 2893 ID.AddPointer(Operands[i]); 2894 ID.AddPointer(L); 2895 void *IP = nullptr; 2896 SCEVAddRecExpr *S = 2897 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2898 if (!S) { 2899 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size()); 2900 std::uninitialized_copy(Operands.begin(), Operands.end(), O); 2901 S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator), 2902 O, Operands.size(), L); 2903 UniqueSCEVs.InsertNode(S, IP); 2904 } 2905 S->setNoWrapFlags(Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr, 2911 const SmallVectorImpl<const SCEV *> &IndexExprs, 2912 bool InBounds) { 2913 // getSCEV(Base)->getType() has the same address space as Base->getType() 2914 // because SCEV::getType() preserves the address space. 2915 Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType()); 2916 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 2917 // instruction to its SCEV, because the Instruction may be guarded by control 2918 // flow and the no-overflow bits may not be valid for the expression in any 2919 // context. This can be fixed similarly to how these flags are handled for 2920 // adds. 2921 SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 2922 2923 const SCEV *TotalOffset = getZero(IntPtrTy); 2924 // The address space is unimportant. The first thing we do on CurTy is getting 2925 // its element type. 2926 Type *CurTy = PointerType::getUnqual(PointeeType); 2927 for (const SCEV *IndexExpr : IndexExprs) { 2928 // Compute the (potentially symbolic) offset in bytes for this index. 2929 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2930 // For a struct, add the member offset. 2931 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 2932 unsigned FieldNo = Index->getZExtValue(); 2933 const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo); 2934 2935 // Add the field offset to the running total offset. 2936 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 2937 2938 // Update CurTy to the type of the field at Index. 2939 CurTy = STy->getTypeAtIndex(Index); 2940 } else { 2941 // Update CurTy to its element type. 2942 CurTy = cast<SequentialType>(CurTy)->getElementType(); 2943 // For an array, add the element offset, explicitly scaled. 2944 const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy); 2945 // Getelementptr indices are signed. 2946 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy); 2947 2948 // Multiply the index by the element size to compute the element offset. 2949 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 2950 2951 // Add the element offset to the running total offset. 2952 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 2953 } 2954 } 2955 2956 // Add the total offset from all the GEP indices to the base. 2957 return getAddExpr(BaseExpr, TotalOffset, Wrap); 2958 } 2959 2960 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, 2961 const SCEV *RHS) { 2962 SmallVector<const SCEV *, 2> Ops; 2963 Ops.push_back(LHS); 2964 Ops.push_back(RHS); 2965 return getSMaxExpr(Ops); 2966 } 2967 2968 const SCEV * 2969 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 2970 assert(!Ops.empty() && "Cannot get empty smax!"); 2971 if (Ops.size() == 1) return Ops[0]; 2972 #ifndef NDEBUG 2973 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2974 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2975 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2976 "SCEVSMaxExpr operand types don't match!"); 2977 #endif 2978 2979 // Sort by complexity, this groups all similar expression types together. 2980 GroupByComplexity(Ops, &LI); 2981 2982 // If there are any constants, fold them together. 2983 unsigned Idx = 0; 2984 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2985 ++Idx; 2986 assert(Idx < Ops.size()); 2987 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2988 // We found two constants, fold them together! 2989 ConstantInt *Fold = ConstantInt::get(getContext(), 2990 APIntOps::smax(LHSC->getValue()->getValue(), 2991 RHSC->getValue()->getValue())); 2992 Ops[0] = getConstant(Fold); 2993 Ops.erase(Ops.begin()+1); // Erase the folded element 2994 if (Ops.size() == 1) return Ops[0]; 2995 LHSC = cast<SCEVConstant>(Ops[0]); 2996 } 2997 2998 // If we are left with a constant minimum-int, strip it off. 2999 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) { 3000 Ops.erase(Ops.begin()); 3001 --Idx; 3002 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) { 3003 // If we have an smax with a constant maximum-int, it will always be 3004 // maximum-int. 3005 return Ops[0]; 3006 } 3007 3008 if (Ops.size() == 1) return Ops[0]; 3009 } 3010 3011 // Find the first SMax 3012 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr) 3013 ++Idx; 3014 3015 // Check to see if one of the operands is an SMax. If so, expand its operands 3016 // onto our operand list, and recurse to simplify. 3017 if (Idx < Ops.size()) { 3018 bool DeletedSMax = false; 3019 while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) { 3020 Ops.erase(Ops.begin()+Idx); 3021 Ops.append(SMax->op_begin(), SMax->op_end()); 3022 DeletedSMax = true; 3023 } 3024 3025 if (DeletedSMax) 3026 return getSMaxExpr(Ops); 3027 } 3028 3029 // Okay, check to see if the same value occurs in the operand list twice. If 3030 // so, delete one. Since we sorted the list, these values are required to 3031 // be adjacent. 3032 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3033 // X smax Y smax Y --> X smax Y 3034 // X smax Y --> X, if X is always greater than Y 3035 if (Ops[i] == Ops[i+1] || 3036 isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) { 3037 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3038 --i; --e; 3039 } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) { 3040 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3041 --i; --e; 3042 } 3043 3044 if (Ops.size() == 1) return Ops[0]; 3045 3046 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3047 3048 // Okay, it looks like we really DO need an smax expr. Check to see if we 3049 // already have one, otherwise create a new one. 3050 FoldingSetNodeID ID; 3051 ID.AddInteger(scSMaxExpr); 3052 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3053 ID.AddPointer(Ops[i]); 3054 void *IP = nullptr; 3055 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3056 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3057 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3058 SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator), 3059 O, Ops.size()); 3060 UniqueSCEVs.InsertNode(S, IP); 3061 return S; 3062 } 3063 3064 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, 3065 const SCEV *RHS) { 3066 SmallVector<const SCEV *, 2> Ops; 3067 Ops.push_back(LHS); 3068 Ops.push_back(RHS); 3069 return getUMaxExpr(Ops); 3070 } 3071 3072 const SCEV * 3073 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3074 assert(!Ops.empty() && "Cannot get empty umax!"); 3075 if (Ops.size() == 1) return Ops[0]; 3076 #ifndef NDEBUG 3077 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3078 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3079 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3080 "SCEVUMaxExpr operand types don't match!"); 3081 #endif 3082 3083 // Sort by complexity, this groups all similar expression types together. 3084 GroupByComplexity(Ops, &LI); 3085 3086 // If there are any constants, fold them together. 3087 unsigned Idx = 0; 3088 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3089 ++Idx; 3090 assert(Idx < Ops.size()); 3091 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3092 // We found two constants, fold them together! 3093 ConstantInt *Fold = ConstantInt::get(getContext(), 3094 APIntOps::umax(LHSC->getValue()->getValue(), 3095 RHSC->getValue()->getValue())); 3096 Ops[0] = getConstant(Fold); 3097 Ops.erase(Ops.begin()+1); // Erase the folded element 3098 if (Ops.size() == 1) return Ops[0]; 3099 LHSC = cast<SCEVConstant>(Ops[0]); 3100 } 3101 3102 // If we are left with a constant minimum-int, strip it off. 3103 if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) { 3104 Ops.erase(Ops.begin()); 3105 --Idx; 3106 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) { 3107 // If we have an umax with a constant maximum-int, it will always be 3108 // maximum-int. 3109 return Ops[0]; 3110 } 3111 3112 if (Ops.size() == 1) return Ops[0]; 3113 } 3114 3115 // Find the first UMax 3116 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr) 3117 ++Idx; 3118 3119 // Check to see if one of the operands is a UMax. If so, expand its operands 3120 // onto our operand list, and recurse to simplify. 3121 if (Idx < Ops.size()) { 3122 bool DeletedUMax = false; 3123 while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) { 3124 Ops.erase(Ops.begin()+Idx); 3125 Ops.append(UMax->op_begin(), UMax->op_end()); 3126 DeletedUMax = true; 3127 } 3128 3129 if (DeletedUMax) 3130 return getUMaxExpr(Ops); 3131 } 3132 3133 // Okay, check to see if the same value occurs in the operand list twice. If 3134 // so, delete one. Since we sorted the list, these values are required to 3135 // be adjacent. 3136 for (unsigned i = 0, e = Ops.size()-1; i != e; ++i) 3137 // X umax Y umax Y --> X umax Y 3138 // X umax Y --> X, if X is always greater than Y 3139 if (Ops[i] == Ops[i+1] || 3140 isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) { 3141 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2); 3142 --i; --e; 3143 } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) { 3144 Ops.erase(Ops.begin()+i, Ops.begin()+i+1); 3145 --i; --e; 3146 } 3147 3148 if (Ops.size() == 1) return Ops[0]; 3149 3150 assert(!Ops.empty() && "Reduced umax down to nothing!"); 3151 3152 // Okay, it looks like we really DO need a umax expr. Check to see if we 3153 // already have one, otherwise create a new one. 3154 FoldingSetNodeID ID; 3155 ID.AddInteger(scUMaxExpr); 3156 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3157 ID.AddPointer(Ops[i]); 3158 void *IP = nullptr; 3159 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3160 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3161 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3162 SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator), 3163 O, Ops.size()); 3164 UniqueSCEVs.InsertNode(S, IP); 3165 return S; 3166 } 3167 3168 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3169 const SCEV *RHS) { 3170 // ~smax(~x, ~y) == smin(x, y). 3171 return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3172 } 3173 3174 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3175 const SCEV *RHS) { 3176 // ~umax(~x, ~y) == umin(x, y) 3177 return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS))); 3178 } 3179 3180 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3181 // We can bypass creating a target-independent 3182 // constant expression and then folding it back into a ConstantInt. 3183 // This is just a compile-time optimization. 3184 return getConstant(IntTy, 3185 F.getParent()->getDataLayout().getTypeAllocSize(AllocTy)); 3186 } 3187 3188 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3189 StructType *STy, 3190 unsigned FieldNo) { 3191 // We can bypass creating a target-independent 3192 // constant expression and then folding it back into a ConstantInt. 3193 // This is just a compile-time optimization. 3194 return getConstant( 3195 IntTy, 3196 F.getParent()->getDataLayout().getStructLayout(STy)->getElementOffset( 3197 FieldNo)); 3198 } 3199 3200 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3201 // Don't attempt to do anything other than create a SCEVUnknown object 3202 // here. createSCEV only calls getUnknown after checking for all other 3203 // interesting possibilities, and any other code that calls getUnknown 3204 // is doing so in order to hide a value from SCEV canonicalization. 3205 3206 FoldingSetNodeID ID; 3207 ID.AddInteger(scUnknown); 3208 ID.AddPointer(V); 3209 void *IP = nullptr; 3210 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3211 assert(cast<SCEVUnknown>(S)->getValue() == V && 3212 "Stale SCEVUnknown in uniquing map!"); 3213 return S; 3214 } 3215 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3216 FirstUnknown); 3217 FirstUnknown = cast<SCEVUnknown>(S); 3218 UniqueSCEVs.InsertNode(S, IP); 3219 return S; 3220 } 3221 3222 //===----------------------------------------------------------------------===// 3223 // Basic SCEV Analysis and PHI Idiom Recognition Code 3224 // 3225 3226 /// isSCEVable - Test if values of the given type are analyzable within 3227 /// the SCEV framework. This primarily includes integer types, and it 3228 /// can optionally include pointer types if the ScalarEvolution class 3229 /// has access to target-specific information. 3230 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3231 // Integers and pointers are always SCEVable. 3232 return Ty->isIntegerTy() || Ty->isPointerTy(); 3233 } 3234 3235 /// getTypeSizeInBits - Return the size in bits of the specified type, 3236 /// for which isSCEVable must return true. 3237 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3238 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3239 return F.getParent()->getDataLayout().getTypeSizeInBits(Ty); 3240 } 3241 3242 /// getEffectiveSCEVType - Return a type with the same bitwidth as 3243 /// the given type and which represents how SCEV will treat the given 3244 /// type, for which isSCEVable must return true. For pointer types, 3245 /// this is the pointer-sized integer type. 3246 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3247 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3248 3249 if (Ty->isIntegerTy()) { 3250 return Ty; 3251 } 3252 3253 // The only other support type is pointer. 3254 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3255 return F.getParent()->getDataLayout().getIntPtrType(Ty); 3256 } 3257 3258 const SCEV *ScalarEvolution::getCouldNotCompute() { 3259 return CouldNotCompute.get(); 3260 } 3261 3262 namespace { 3263 // Helper class working with SCEVTraversal to figure out if a SCEV contains 3264 // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne 3265 // is set iff if find such SCEVUnknown. 3266 // 3267 struct FindInvalidSCEVUnknown { 3268 bool FindOne; 3269 FindInvalidSCEVUnknown() { FindOne = false; } 3270 bool follow(const SCEV *S) { 3271 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 3272 case scConstant: 3273 return false; 3274 case scUnknown: 3275 if (!cast<SCEVUnknown>(S)->getValue()) 3276 FindOne = true; 3277 return false; 3278 default: 3279 return true; 3280 } 3281 } 3282 bool isDone() const { return FindOne; } 3283 }; 3284 } 3285 3286 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3287 FindInvalidSCEVUnknown F; 3288 SCEVTraversal<FindInvalidSCEVUnknown> ST(F); 3289 ST.visitAll(S); 3290 3291 return !F.FindOne; 3292 } 3293 3294 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the 3295 /// expression and create a new one. 3296 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3297 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3298 3299 const SCEV *S = getExistingSCEV(V); 3300 if (S == nullptr) { 3301 S = createSCEV(V); 3302 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(V, this), S)); 3303 } 3304 return S; 3305 } 3306 3307 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3308 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3309 3310 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3311 if (I != ValueExprMap.end()) { 3312 const SCEV *S = I->second; 3313 if (checkValidity(S)) 3314 return S; 3315 ValueExprMap.erase(I); 3316 } 3317 return nullptr; 3318 } 3319 3320 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V 3321 /// 3322 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3323 SCEV::NoWrapFlags Flags) { 3324 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3325 return getConstant( 3326 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3327 3328 Type *Ty = V->getType(); 3329 Ty = getEffectiveSCEVType(Ty); 3330 return getMulExpr( 3331 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3332 } 3333 3334 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V 3335 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3336 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3337 return getConstant( 3338 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3339 3340 Type *Ty = V->getType(); 3341 Ty = getEffectiveSCEVType(Ty); 3342 const SCEV *AllOnes = 3343 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3344 return getMinusSCEV(AllOnes, V); 3345 } 3346 3347 /// getMinusSCEV - Return LHS-RHS. Minus is represented in SCEV as A+B*-1. 3348 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3349 SCEV::NoWrapFlags Flags) { 3350 // Fast path: X - X --> 0. 3351 if (LHS == RHS) 3352 return getZero(LHS->getType()); 3353 3354 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3355 // makes it so that we cannot make much use of NUW. 3356 auto AddFlags = SCEV::FlagAnyWrap; 3357 const bool RHSIsNotMinSigned = 3358 !getSignedRange(RHS).getSignedMin().isMinSignedValue(); 3359 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3360 // Let M be the minimum representable signed value. Then (-1)*RHS 3361 // signed-wraps if and only if RHS is M. That can happen even for 3362 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3363 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3364 // (-1)*RHS, we need to prove that RHS != M. 3365 // 3366 // If LHS is non-negative and we know that LHS - RHS does not 3367 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3368 // either by proving that RHS > M or that LHS >= 0. 3369 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3370 AddFlags = SCEV::FlagNSW; 3371 } 3372 } 3373 3374 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3375 // RHS is NSW and LHS >= 0. 3376 // 3377 // The difficulty here is that the NSW flag may have been proven 3378 // relative to a loop that is to be found in a recurrence in LHS and 3379 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3380 // larger scope than intended. 3381 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3382 3383 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags); 3384 } 3385 3386 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the 3387 /// input value to the specified type. If the type must be extended, it is zero 3388 /// extended. 3389 const SCEV * 3390 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) { 3391 Type *SrcTy = V->getType(); 3392 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3393 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3394 "Cannot truncate or zero extend with non-integer arguments!"); 3395 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3396 return V; // No conversion 3397 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3398 return getTruncateExpr(V, Ty); 3399 return getZeroExtendExpr(V, Ty); 3400 } 3401 3402 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the 3403 /// input value to the specified type. If the type must be extended, it is sign 3404 /// extended. 3405 const SCEV * 3406 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, 3407 Type *Ty) { 3408 Type *SrcTy = V->getType(); 3409 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3410 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3411 "Cannot truncate or zero extend with non-integer arguments!"); 3412 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3413 return V; // No conversion 3414 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3415 return getTruncateExpr(V, Ty); 3416 return getSignExtendExpr(V, Ty); 3417 } 3418 3419 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the 3420 /// input value to the specified type. If the type must be extended, it is zero 3421 /// extended. The conversion must not be narrowing. 3422 const SCEV * 3423 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3424 Type *SrcTy = V->getType(); 3425 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3426 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3427 "Cannot noop or zero extend with non-integer arguments!"); 3428 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3429 "getNoopOrZeroExtend cannot truncate!"); 3430 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3431 return V; // No conversion 3432 return getZeroExtendExpr(V, Ty); 3433 } 3434 3435 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the 3436 /// input value to the specified type. If the type must be extended, it is sign 3437 /// extended. The conversion must not be narrowing. 3438 const SCEV * 3439 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3440 Type *SrcTy = V->getType(); 3441 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3442 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3443 "Cannot noop or sign extend with non-integer arguments!"); 3444 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3445 "getNoopOrSignExtend cannot truncate!"); 3446 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3447 return V; // No conversion 3448 return getSignExtendExpr(V, Ty); 3449 } 3450 3451 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of 3452 /// the input value to the specified type. If the type must be extended, 3453 /// it is extended with unspecified bits. The conversion must not be 3454 /// narrowing. 3455 const SCEV * 3456 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3457 Type *SrcTy = V->getType(); 3458 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3459 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3460 "Cannot noop or any extend with non-integer arguments!"); 3461 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3462 "getNoopOrAnyExtend cannot truncate!"); 3463 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3464 return V; // No conversion 3465 return getAnyExtendExpr(V, Ty); 3466 } 3467 3468 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the 3469 /// input value to the specified type. The conversion must not be widening. 3470 const SCEV * 3471 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3472 Type *SrcTy = V->getType(); 3473 assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) && 3474 (Ty->isIntegerTy() || Ty->isPointerTy()) && 3475 "Cannot truncate or noop with non-integer arguments!"); 3476 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3477 "getTruncateOrNoop cannot extend!"); 3478 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3479 return V; // No conversion 3480 return getTruncateExpr(V, Ty); 3481 } 3482 3483 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of 3484 /// the types using zero-extension, and then perform a umax operation 3485 /// with them. 3486 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3487 const SCEV *RHS) { 3488 const SCEV *PromotedLHS = LHS; 3489 const SCEV *PromotedRHS = RHS; 3490 3491 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3492 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3493 else 3494 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3495 3496 return getUMaxExpr(PromotedLHS, PromotedRHS); 3497 } 3498 3499 /// getUMinFromMismatchedTypes - Promote the operands to the wider of 3500 /// the types using zero-extension, and then perform a umin operation 3501 /// with them. 3502 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3503 const SCEV *RHS) { 3504 const SCEV *PromotedLHS = LHS; 3505 const SCEV *PromotedRHS = RHS; 3506 3507 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3508 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3509 else 3510 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3511 3512 return getUMinExpr(PromotedLHS, PromotedRHS); 3513 } 3514 3515 /// getPointerBase - Transitively follow the chain of pointer-type operands 3516 /// until reaching a SCEV that does not have a single pointer operand. This 3517 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions, 3518 /// but corner cases do exist. 3519 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3520 // A pointer operand may evaluate to a nonpointer expression, such as null. 3521 if (!V->getType()->isPointerTy()) 3522 return V; 3523 3524 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3525 return getPointerBase(Cast->getOperand()); 3526 } 3527 else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3528 const SCEV *PtrOp = nullptr; 3529 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 3530 I != E; ++I) { 3531 if ((*I)->getType()->isPointerTy()) { 3532 // Cannot find the base of an expression with multiple pointer operands. 3533 if (PtrOp) 3534 return V; 3535 PtrOp = *I; 3536 } 3537 } 3538 if (!PtrOp) 3539 return V; 3540 return getPointerBase(PtrOp); 3541 } 3542 return V; 3543 } 3544 3545 /// PushDefUseChildren - Push users of the given Instruction 3546 /// onto the given Worklist. 3547 static void 3548 PushDefUseChildren(Instruction *I, 3549 SmallVectorImpl<Instruction *> &Worklist) { 3550 // Push the def-use children onto the Worklist stack. 3551 for (User *U : I->users()) 3552 Worklist.push_back(cast<Instruction>(U)); 3553 } 3554 3555 /// ForgetSymbolicValue - This looks up computed SCEV values for all 3556 /// instructions that depend on the given instruction and removes them from 3557 /// the ValueExprMapType map if they reference SymName. This is used during PHI 3558 /// resolution. 3559 void 3560 ScalarEvolution::ForgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3561 SmallVector<Instruction *, 16> Worklist; 3562 PushDefUseChildren(PN, Worklist); 3563 3564 SmallPtrSet<Instruction *, 8> Visited; 3565 Visited.insert(PN); 3566 while (!Worklist.empty()) { 3567 Instruction *I = Worklist.pop_back_val(); 3568 if (!Visited.insert(I).second) 3569 continue; 3570 3571 ValueExprMapType::iterator It = 3572 ValueExprMap.find_as(static_cast<Value *>(I)); 3573 if (It != ValueExprMap.end()) { 3574 const SCEV *Old = It->second; 3575 3576 // Short-circuit the def-use traversal if the symbolic name 3577 // ceases to appear in expressions. 3578 if (Old != SymName && !hasOperand(Old, SymName)) 3579 continue; 3580 3581 // SCEVUnknown for a PHI either means that it has an unrecognized 3582 // structure, it's a PHI that's in the progress of being computed 3583 // by createNodeForPHI, or it's a single-value PHI. In the first case, 3584 // additional loop trip count information isn't going to change anything. 3585 // In the second case, createNodeForPHI will perform the necessary 3586 // updates on its own when it gets to that point. In the third, we do 3587 // want to forget the SCEVUnknown. 3588 if (!isa<PHINode>(I) || 3589 !isa<SCEVUnknown>(Old) || 3590 (I != PN && Old == SymName)) { 3591 forgetMemoizedResults(Old); 3592 ValueExprMap.erase(It); 3593 } 3594 } 3595 3596 PushDefUseChildren(I, Worklist); 3597 } 3598 } 3599 3600 /// createNodeForPHI - PHI nodes have two cases. Either the PHI node exists in 3601 /// a loop header, making it a potential recurrence, or it doesn't. 3602 /// 3603 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 3604 if (const Loop *L = LI.getLoopFor(PN->getParent())) 3605 if (L->getHeader() == PN->getParent()) { 3606 // The loop may have multiple entrances or multiple exits; we can analyze 3607 // this phi as an addrec if it has a unique entry value and a unique 3608 // backedge value. 3609 Value *BEValueV = nullptr, *StartValueV = nullptr; 3610 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 3611 Value *V = PN->getIncomingValue(i); 3612 if (L->contains(PN->getIncomingBlock(i))) { 3613 if (!BEValueV) { 3614 BEValueV = V; 3615 } else if (BEValueV != V) { 3616 BEValueV = nullptr; 3617 break; 3618 } 3619 } else if (!StartValueV) { 3620 StartValueV = V; 3621 } else if (StartValueV != V) { 3622 StartValueV = nullptr; 3623 break; 3624 } 3625 } 3626 if (BEValueV && StartValueV) { 3627 // While we are analyzing this PHI node, handle its value symbolically. 3628 const SCEV *SymbolicName = getUnknown(PN); 3629 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 3630 "PHI node already processed?"); 3631 ValueExprMap.insert(std::make_pair(SCEVCallbackVH(PN, this), SymbolicName)); 3632 3633 // Using this symbolic name for the PHI, analyze the value coming around 3634 // the back-edge. 3635 const SCEV *BEValue = getSCEV(BEValueV); 3636 3637 // NOTE: If BEValue is loop invariant, we know that the PHI node just 3638 // has a special value for the first iteration of the loop. 3639 3640 // If the value coming around the backedge is an add with the symbolic 3641 // value we just inserted, then we found a simple induction variable! 3642 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 3643 // If there is a single occurrence of the symbolic value, replace it 3644 // with a recurrence. 3645 unsigned FoundIndex = Add->getNumOperands(); 3646 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3647 if (Add->getOperand(i) == SymbolicName) 3648 if (FoundIndex == e) { 3649 FoundIndex = i; 3650 break; 3651 } 3652 3653 if (FoundIndex != Add->getNumOperands()) { 3654 // Create an add with everything but the specified operand. 3655 SmallVector<const SCEV *, 8> Ops; 3656 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 3657 if (i != FoundIndex) 3658 Ops.push_back(Add->getOperand(i)); 3659 const SCEV *Accum = getAddExpr(Ops); 3660 3661 // This is not a valid addrec if the step amount is varying each 3662 // loop iteration, but is not itself an addrec in this loop. 3663 if (isLoopInvariant(Accum, L) || 3664 (isa<SCEVAddRecExpr>(Accum) && 3665 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 3666 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 3667 3668 // If the increment doesn't overflow, then neither the addrec nor 3669 // the post-increment will overflow. 3670 if (const AddOperator *OBO = dyn_cast<AddOperator>(BEValueV)) { 3671 if (OBO->getOperand(0) == PN) { 3672 if (OBO->hasNoUnsignedWrap()) 3673 Flags = setFlags(Flags, SCEV::FlagNUW); 3674 if (OBO->hasNoSignedWrap()) 3675 Flags = setFlags(Flags, SCEV::FlagNSW); 3676 } 3677 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 3678 // If the increment is an inbounds GEP, then we know the address 3679 // space cannot be wrapped around. We cannot make any guarantee 3680 // about signed or unsigned overflow because pointers are 3681 // unsigned but we may have a negative index from the base 3682 // pointer. We can guarantee that no unsigned wrap occurs if the 3683 // indices form a positive value. 3684 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 3685 Flags = setFlags(Flags, SCEV::FlagNW); 3686 3687 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 3688 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 3689 Flags = setFlags(Flags, SCEV::FlagNUW); 3690 } 3691 3692 // We cannot transfer nuw and nsw flags from subtraction 3693 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 3694 // for instance. 3695 } 3696 3697 const SCEV *StartVal = getSCEV(StartValueV); 3698 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 3699 3700 // Since the no-wrap flags are on the increment, they apply to the 3701 // post-incremented value as well. 3702 if (isLoopInvariant(Accum, L)) 3703 (void)getAddRecExpr(getAddExpr(StartVal, Accum), 3704 Accum, L, Flags); 3705 3706 // Okay, for the entire analysis of this edge we assumed the PHI 3707 // to be symbolic. We now need to go back and purge all of the 3708 // entries for the scalars that use the symbolic expression. 3709 ForgetSymbolicName(PN, SymbolicName); 3710 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3711 return PHISCEV; 3712 } 3713 } 3714 } else if (const SCEVAddRecExpr *AddRec = 3715 dyn_cast<SCEVAddRecExpr>(BEValue)) { 3716 // Otherwise, this could be a loop like this: 3717 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 3718 // In this case, j = {1,+,1} and BEValue is j. 3719 // Because the other in-value of i (0) fits the evolution of BEValue 3720 // i really is an addrec evolution. 3721 if (AddRec->getLoop() == L && AddRec->isAffine()) { 3722 const SCEV *StartVal = getSCEV(StartValueV); 3723 3724 // If StartVal = j.start - j.stride, we can use StartVal as the 3725 // initial step of the addrec evolution. 3726 if (StartVal == getMinusSCEV(AddRec->getOperand(0), 3727 AddRec->getOperand(1))) { 3728 // FIXME: For constant StartVal, we should be able to infer 3729 // no-wrap flags. 3730 const SCEV *PHISCEV = 3731 getAddRecExpr(StartVal, AddRec->getOperand(1), L, 3732 SCEV::FlagAnyWrap); 3733 3734 // Okay, for the entire analysis of this edge we assumed the PHI 3735 // to be symbolic. We now need to go back and purge all of the 3736 // entries for the scalars that use the symbolic expression. 3737 ForgetSymbolicName(PN, SymbolicName); 3738 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 3739 return PHISCEV; 3740 } 3741 } 3742 } 3743 } 3744 } 3745 3746 // If the PHI has a single incoming value, follow that value, unless the 3747 // PHI's incoming blocks are in a different loop, in which case doing so 3748 // risks breaking LCSSA form. Instcombine would normally zap these, but 3749 // it doesn't have DominatorTree information, so it may miss cases. 3750 if (Value *V = SimplifyInstruction(PN, F.getParent()->getDataLayout(), &TLI, 3751 &DT, &AC)) 3752 if (LI.replacementPreservesLCSSAForm(PN, V)) 3753 return getSCEV(V); 3754 3755 // If it's not a loop phi, we can't handle it yet. 3756 return getUnknown(PN); 3757 } 3758 3759 /// createNodeForGEP - Expand GEP instructions into add and multiply 3760 /// operations. This allows them to be analyzed by regular SCEV code. 3761 /// 3762 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 3763 Value *Base = GEP->getOperand(0); 3764 // Don't attempt to analyze GEPs over unsized objects. 3765 if (!Base->getType()->getPointerElementType()->isSized()) 3766 return getUnknown(GEP); 3767 3768 SmallVector<const SCEV *, 4> IndexExprs; 3769 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 3770 IndexExprs.push_back(getSCEV(*Index)); 3771 return getGEPExpr(GEP->getSourceElementType(), getSCEV(Base), IndexExprs, 3772 GEP->isInBounds()); 3773 } 3774 3775 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is 3776 /// guaranteed to end in (at every loop iteration). It is, at the same time, 3777 /// the minimum number of times S is divisible by 2. For example, given {4,+,8} 3778 /// it returns 2. If S is guaranteed to be 0, it returns the bitwidth of S. 3779 uint32_t 3780 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 3781 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3782 return C->getValue()->getValue().countTrailingZeros(); 3783 3784 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 3785 return std::min(GetMinTrailingZeros(T->getOperand()), 3786 (uint32_t)getTypeSizeInBits(T->getType())); 3787 3788 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 3789 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3790 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3791 getTypeSizeInBits(E->getType()) : OpRes; 3792 } 3793 3794 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 3795 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 3796 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ? 3797 getTypeSizeInBits(E->getType()) : OpRes; 3798 } 3799 3800 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 3801 // The result is the min of all operands results. 3802 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3803 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3804 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3805 return MinOpRes; 3806 } 3807 3808 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 3809 // The result is the sum of all operands results. 3810 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 3811 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 3812 for (unsigned i = 1, e = M->getNumOperands(); 3813 SumOpRes != BitWidth && i != e; ++i) 3814 SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), 3815 BitWidth); 3816 return SumOpRes; 3817 } 3818 3819 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 3820 // The result is the min of all operands results. 3821 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 3822 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 3823 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 3824 return MinOpRes; 3825 } 3826 3827 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 3828 // The result is the min of all operands results. 3829 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3830 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3832 return MinOpRes; 3833 } 3834 3835 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 3836 // The result is the min of all operands results. 3837 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 3838 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 3839 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 3840 return MinOpRes; 3841 } 3842 3843 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 3844 // For a SCEVUnknown, ask ValueTracking. 3845 unsigned BitWidth = getTypeSizeInBits(U->getType()); 3846 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 3847 computeKnownBits(U->getValue(), Zeros, Ones, F.getParent()->getDataLayout(), 3848 0, &AC, nullptr, &DT); 3849 return Zeros.countTrailingOnes(); 3850 } 3851 3852 // SCEVUDivExpr 3853 return 0; 3854 } 3855 3856 /// GetRangeFromMetadata - Helper method to assign a range to V from 3857 /// metadata present in the IR. 3858 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 3859 if (Instruction *I = dyn_cast<Instruction>(V)) { 3860 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) { 3861 ConstantRange TotalRange( 3862 cast<IntegerType>(I->getType())->getBitWidth(), false); 3863 3864 unsigned NumRanges = MD->getNumOperands() / 2; 3865 assert(NumRanges >= 1); 3866 3867 for (unsigned i = 0; i < NumRanges; ++i) { 3868 ConstantInt *Lower = 3869 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 0)); 3870 ConstantInt *Upper = 3871 mdconst::extract<ConstantInt>(MD->getOperand(2 * i + 1)); 3872 ConstantRange Range(Lower->getValue(), Upper->getValue()); 3873 TotalRange = TotalRange.unionWith(Range); 3874 } 3875 3876 return TotalRange; 3877 } 3878 } 3879 3880 return None; 3881 } 3882 3883 /// getRange - Determine the range for a particular SCEV. If SignHint is 3884 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 3885 /// with a "cleaner" unsigned (resp. signed) representation. 3886 /// 3887 ConstantRange 3888 ScalarEvolution::getRange(const SCEV *S, 3889 ScalarEvolution::RangeSignHint SignHint) { 3890 DenseMap<const SCEV *, ConstantRange> &Cache = 3891 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 3892 : SignedRanges; 3893 3894 // See if we've computed this range already. 3895 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 3896 if (I != Cache.end()) 3897 return I->second; 3898 3899 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 3900 return setRange(C, SignHint, ConstantRange(C->getValue()->getValue())); 3901 3902 unsigned BitWidth = getTypeSizeInBits(S->getType()); 3903 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 3904 3905 // If the value has known zeros, the maximum value will have those known zeros 3906 // as well. 3907 uint32_t TZ = GetMinTrailingZeros(S); 3908 if (TZ != 0) { 3909 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 3910 ConservativeResult = 3911 ConstantRange(APInt::getMinValue(BitWidth), 3912 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 3913 else 3914 ConservativeResult = ConstantRange( 3915 APInt::getSignedMinValue(BitWidth), 3916 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 3917 } 3918 3919 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 3920 ConstantRange X = getRange(Add->getOperand(0), SignHint); 3921 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 3922 X = X.add(getRange(Add->getOperand(i), SignHint)); 3923 return setRange(Add, SignHint, ConservativeResult.intersectWith(X)); 3924 } 3925 3926 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 3927 ConstantRange X = getRange(Mul->getOperand(0), SignHint); 3928 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 3929 X = X.multiply(getRange(Mul->getOperand(i), SignHint)); 3930 return setRange(Mul, SignHint, ConservativeResult.intersectWith(X)); 3931 } 3932 3933 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 3934 ConstantRange X = getRange(SMax->getOperand(0), SignHint); 3935 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 3936 X = X.smax(getRange(SMax->getOperand(i), SignHint)); 3937 return setRange(SMax, SignHint, ConservativeResult.intersectWith(X)); 3938 } 3939 3940 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 3941 ConstantRange X = getRange(UMax->getOperand(0), SignHint); 3942 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 3943 X = X.umax(getRange(UMax->getOperand(i), SignHint)); 3944 return setRange(UMax, SignHint, ConservativeResult.intersectWith(X)); 3945 } 3946 3947 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 3948 ConstantRange X = getRange(UDiv->getLHS(), SignHint); 3949 ConstantRange Y = getRange(UDiv->getRHS(), SignHint); 3950 return setRange(UDiv, SignHint, 3951 ConservativeResult.intersectWith(X.udiv(Y))); 3952 } 3953 3954 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 3955 ConstantRange X = getRange(ZExt->getOperand(), SignHint); 3956 return setRange(ZExt, SignHint, 3957 ConservativeResult.intersectWith(X.zeroExtend(BitWidth))); 3958 } 3959 3960 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 3961 ConstantRange X = getRange(SExt->getOperand(), SignHint); 3962 return setRange(SExt, SignHint, 3963 ConservativeResult.intersectWith(X.signExtend(BitWidth))); 3964 } 3965 3966 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 3967 ConstantRange X = getRange(Trunc->getOperand(), SignHint); 3968 return setRange(Trunc, SignHint, 3969 ConservativeResult.intersectWith(X.truncate(BitWidth))); 3970 } 3971 3972 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 3973 // If there's no unsigned wrap, the value will never be less than its 3974 // initial value. 3975 if (AddRec->getNoWrapFlags(SCEV::FlagNUW)) 3976 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart())) 3977 if (!C->getValue()->isZero()) 3978 ConservativeResult = 3979 ConservativeResult.intersectWith( 3980 ConstantRange(C->getValue()->getValue(), APInt(BitWidth, 0))); 3981 3982 // If there's no signed wrap, and all the operands have the same sign or 3983 // zero, the value won't ever change sign. 3984 if (AddRec->getNoWrapFlags(SCEV::FlagNSW)) { 3985 bool AllNonNeg = true; 3986 bool AllNonPos = true; 3987 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 3988 if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false; 3989 if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false; 3990 } 3991 if (AllNonNeg) 3992 ConservativeResult = ConservativeResult.intersectWith( 3993 ConstantRange(APInt(BitWidth, 0), 3994 APInt::getSignedMinValue(BitWidth))); 3995 else if (AllNonPos) 3996 ConservativeResult = ConservativeResult.intersectWith( 3997 ConstantRange(APInt::getSignedMinValue(BitWidth), 3998 APInt(BitWidth, 1))); 3999 } 4000 4001 // TODO: non-affine addrec 4002 if (AddRec->isAffine()) { 4003 Type *Ty = AddRec->getType(); 4004 const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop()); 4005 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 4006 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 4007 4008 // Check for overflow. This must be done with ConstantRange arithmetic 4009 // because we could be called from within the ScalarEvolution overflow 4010 // checking code. 4011 4012 MaxBECount = getNoopOrZeroExtend(MaxBECount, Ty); 4013 ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount); 4014 ConstantRange ZExtMaxBECountRange = 4015 MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1); 4016 4017 const SCEV *Start = AddRec->getStart(); 4018 const SCEV *Step = AddRec->getStepRecurrence(*this); 4019 ConstantRange StepSRange = getSignedRange(Step); 4020 ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1); 4021 4022 ConstantRange StartURange = getUnsignedRange(Start); 4023 ConstantRange EndURange = 4024 StartURange.add(MaxBECountRange.multiply(StepSRange)); 4025 4026 // Check for unsigned overflow. 4027 ConstantRange ZExtStartURange = 4028 StartURange.zextOrTrunc(BitWidth * 2 + 1); 4029 ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1); 4030 if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4031 ZExtEndURange) { 4032 APInt Min = APIntOps::umin(StartURange.getUnsignedMin(), 4033 EndURange.getUnsignedMin()); 4034 APInt Max = APIntOps::umax(StartURange.getUnsignedMax(), 4035 EndURange.getUnsignedMax()); 4036 bool IsFullRange = Min.isMinValue() && Max.isMaxValue(); 4037 if (!IsFullRange) 4038 ConservativeResult = 4039 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4040 } 4041 4042 ConstantRange StartSRange = getSignedRange(Start); 4043 ConstantRange EndSRange = 4044 StartSRange.add(MaxBECountRange.multiply(StepSRange)); 4045 4046 // Check for signed overflow. This must be done with ConstantRange 4047 // arithmetic because we could be called from within the ScalarEvolution 4048 // overflow checking code. 4049 ConstantRange SExtStartSRange = 4050 StartSRange.sextOrTrunc(BitWidth * 2 + 1); 4051 ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1); 4052 if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) == 4053 SExtEndSRange) { 4054 APInt Min = APIntOps::smin(StartSRange.getSignedMin(), 4055 EndSRange.getSignedMin()); 4056 APInt Max = APIntOps::smax(StartSRange.getSignedMax(), 4057 EndSRange.getSignedMax()); 4058 bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue(); 4059 if (!IsFullRange) 4060 ConservativeResult = 4061 ConservativeResult.intersectWith(ConstantRange(Min, Max + 1)); 4062 } 4063 } 4064 } 4065 4066 return setRange(AddRec, SignHint, ConservativeResult); 4067 } 4068 4069 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 4070 // Check if the IR explicitly contains !range metadata. 4071 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 4072 if (MDRange.hasValue()) 4073 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue()); 4074 4075 // Split here to avoid paying the compile-time cost of calling both 4076 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 4077 // if needed. 4078 const DataLayout &DL = F.getParent()->getDataLayout(); 4079 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 4080 // For a SCEVUnknown, ask ValueTracking. 4081 APInt Zeros(BitWidth, 0), Ones(BitWidth, 0); 4082 computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT); 4083 if (Ones != ~Zeros + 1) 4084 ConservativeResult = 4085 ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1)); 4086 } else { 4087 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 4088 "generalize as needed!"); 4089 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 4090 if (NS > 1) 4091 ConservativeResult = ConservativeResult.intersectWith( 4092 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 4093 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1)); 4094 } 4095 4096 return setRange(U, SignHint, ConservativeResult); 4097 } 4098 4099 return setRange(S, SignHint, ConservativeResult); 4100 } 4101 4102 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 4103 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 4104 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 4105 4106 // Return early if there are no flags to propagate to the SCEV. 4107 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4108 if (BinOp->hasNoUnsignedWrap()) 4109 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 4110 if (BinOp->hasNoSignedWrap()) 4111 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 4112 if (Flags == SCEV::FlagAnyWrap) { 4113 return SCEV::FlagAnyWrap; 4114 } 4115 4116 // Here we check that BinOp is in the header of the innermost loop 4117 // containing BinOp, since we only deal with instructions in the loop 4118 // header. The actual loop we need to check later will come from an add 4119 // recurrence, but getting that requires computing the SCEV of the operands, 4120 // which can be expensive. This check we can do cheaply to rule out some 4121 // cases early. 4122 Loop *innermostContainingLoop = LI.getLoopFor(BinOp->getParent()); 4123 if (innermostContainingLoop == nullptr || 4124 innermostContainingLoop->getHeader() != BinOp->getParent()) 4125 return SCEV::FlagAnyWrap; 4126 4127 // Only proceed if we can prove that BinOp does not yield poison. 4128 if (!isKnownNotFullPoison(BinOp)) return SCEV::FlagAnyWrap; 4129 4130 // At this point we know that if V is executed, then it does not wrap 4131 // according to at least one of NSW or NUW. If V is not executed, then we do 4132 // not know if the calculation that V represents would wrap. Multiple 4133 // instructions can map to the same SCEV. If we apply NSW or NUW from V to 4134 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 4135 // derived from other instructions that map to the same SCEV. We cannot make 4136 // that guarantee for cases where V is not executed. So we need to find the 4137 // loop that V is considered in relation to and prove that V is executed for 4138 // every iteration of that loop. That implies that the value that V 4139 // calculates does not wrap anywhere in the loop, so then we can apply the 4140 // flags to the SCEV. 4141 // 4142 // We check isLoopInvariant to disambiguate in case we are adding two 4143 // recurrences from different loops, so that we know which loop to prove 4144 // that V is executed in. 4145 for (int OpIndex = 0; OpIndex < 2; ++OpIndex) { 4146 const SCEV *Op = getSCEV(BinOp->getOperand(OpIndex)); 4147 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 4148 const int OtherOpIndex = 1 - OpIndex; 4149 const SCEV *OtherOp = getSCEV(BinOp->getOperand(OtherOpIndex)); 4150 if (isLoopInvariant(OtherOp, AddRec->getLoop()) && 4151 isGuaranteedToExecuteForEveryIteration(BinOp, AddRec->getLoop())) 4152 return Flags; 4153 } 4154 } 4155 return SCEV::FlagAnyWrap; 4156 } 4157 4158 /// createSCEV - We know that there is no SCEV for the specified value. Analyze 4159 /// the expression. 4160 /// 4161 const SCEV *ScalarEvolution::createSCEV(Value *V) { 4162 if (!isSCEVable(V->getType())) 4163 return getUnknown(V); 4164 4165 unsigned Opcode = Instruction::UserOp1; 4166 if (Instruction *I = dyn_cast<Instruction>(V)) { 4167 Opcode = I->getOpcode(); 4168 4169 // Don't attempt to analyze instructions in blocks that aren't 4170 // reachable. Such instructions don't matter, and they aren't required 4171 // to obey basic rules for definitions dominating uses which this 4172 // analysis depends on. 4173 if (!DT.isReachableFromEntry(I->getParent())) 4174 return getUnknown(V); 4175 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) 4176 Opcode = CE->getOpcode(); 4177 else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 4178 return getConstant(CI); 4179 else if (isa<ConstantPointerNull>(V)) 4180 return getZero(V->getType()); 4181 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 4182 return GA->mayBeOverridden() ? getUnknown(V) : getSCEV(GA->getAliasee()); 4183 else 4184 return getUnknown(V); 4185 4186 Operator *U = cast<Operator>(V); 4187 switch (Opcode) { 4188 case Instruction::Add: { 4189 // The simple thing to do would be to just call getSCEV on both operands 4190 // and call getAddExpr with the result. However if we're looking at a 4191 // bunch of things all added together, this can be quite inefficient, 4192 // because it leads to N-1 getAddExpr calls for N ultimate operands. 4193 // Instead, gather up all the operands and make a single getAddExpr call. 4194 // LLVM IR canonical form means we need only traverse the left operands. 4195 SmallVector<const SCEV *, 4> AddOps; 4196 for (Value *Op = U;; Op = U->getOperand(0)) { 4197 U = dyn_cast<Operator>(Op); 4198 unsigned Opcode = U ? U->getOpcode() : 0; 4199 if (!U || (Opcode != Instruction::Add && Opcode != Instruction::Sub)) { 4200 assert(Op != V && "V should be an add"); 4201 AddOps.push_back(getSCEV(Op)); 4202 break; 4203 } 4204 4205 if (auto *OpSCEV = getExistingSCEV(U)) { 4206 AddOps.push_back(OpSCEV); 4207 break; 4208 } 4209 4210 // If a NUW or NSW flag can be applied to the SCEV for this 4211 // addition, then compute the SCEV for this addition by itself 4212 // with a separate call to getAddExpr. We need to do that 4213 // instead of pushing the operands of the addition onto AddOps, 4214 // since the flags are only known to apply to this particular 4215 // addition - they may not apply to other additions that can be 4216 // formed with operands from AddOps. 4217 const SCEV *RHS = getSCEV(U->getOperand(1)); 4218 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4219 if (Flags != SCEV::FlagAnyWrap) { 4220 const SCEV *LHS = getSCEV(U->getOperand(0)); 4221 if (Opcode == Instruction::Sub) 4222 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 4223 else 4224 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 4225 break; 4226 } 4227 4228 if (Opcode == Instruction::Sub) 4229 AddOps.push_back(getNegativeSCEV(RHS)); 4230 else 4231 AddOps.push_back(RHS); 4232 } 4233 return getAddExpr(AddOps); 4234 } 4235 4236 case Instruction::Mul: { 4237 SmallVector<const SCEV *, 4> MulOps; 4238 for (Value *Op = U;; Op = U->getOperand(0)) { 4239 U = dyn_cast<Operator>(Op); 4240 if (!U || U->getOpcode() != Instruction::Mul) { 4241 assert(Op != V && "V should be a mul"); 4242 MulOps.push_back(getSCEV(Op)); 4243 break; 4244 } 4245 4246 if (auto *OpSCEV = getExistingSCEV(U)) { 4247 MulOps.push_back(OpSCEV); 4248 break; 4249 } 4250 4251 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(U); 4252 if (Flags != SCEV::FlagAnyWrap) { 4253 MulOps.push_back(getMulExpr(getSCEV(U->getOperand(0)), 4254 getSCEV(U->getOperand(1)), Flags)); 4255 break; 4256 } 4257 4258 MulOps.push_back(getSCEV(U->getOperand(1))); 4259 } 4260 return getMulExpr(MulOps); 4261 } 4262 case Instruction::UDiv: 4263 return getUDivExpr(getSCEV(U->getOperand(0)), 4264 getSCEV(U->getOperand(1))); 4265 case Instruction::Sub: 4266 return getMinusSCEV(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)), 4267 getNoWrapFlagsFromUB(U)); 4268 case Instruction::And: 4269 // For an expression like x&255 that merely masks off the high bits, 4270 // use zext(trunc(x)) as the SCEV expression. 4271 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4272 if (CI->isNullValue()) 4273 return getSCEV(U->getOperand(1)); 4274 if (CI->isAllOnesValue()) 4275 return getSCEV(U->getOperand(0)); 4276 const APInt &A = CI->getValue(); 4277 4278 // Instcombine's ShrinkDemandedConstant may strip bits out of 4279 // constants, obscuring what would otherwise be a low-bits mask. 4280 // Use computeKnownBits to compute what ShrinkDemandedConstant 4281 // knew about to reconstruct a low-bits mask value. 4282 unsigned LZ = A.countLeadingZeros(); 4283 unsigned TZ = A.countTrailingZeros(); 4284 unsigned BitWidth = A.getBitWidth(); 4285 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); 4286 computeKnownBits(U->getOperand(0), KnownZero, KnownOne, 4287 F.getParent()->getDataLayout(), 0, &AC, nullptr, &DT); 4288 4289 APInt EffectiveMask = 4290 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 4291 if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) { 4292 const SCEV *MulCount = getConstant( 4293 ConstantInt::get(getContext(), APInt::getOneBitSet(BitWidth, TZ))); 4294 return getMulExpr( 4295 getZeroExtendExpr( 4296 getTruncateExpr( 4297 getUDivExactExpr(getSCEV(U->getOperand(0)), MulCount), 4298 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 4299 U->getType()), 4300 MulCount); 4301 } 4302 } 4303 break; 4304 4305 case Instruction::Or: 4306 // If the RHS of the Or is a constant, we may have something like: 4307 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 4308 // optimizations will transparently handle this case. 4309 // 4310 // In order for this transformation to be safe, the LHS must be of the 4311 // form X*(2^n) and the Or constant must be less than 2^n. 4312 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4313 const SCEV *LHS = getSCEV(U->getOperand(0)); 4314 const APInt &CIVal = CI->getValue(); 4315 if (GetMinTrailingZeros(LHS) >= 4316 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 4317 // Build a plain add SCEV. 4318 const SCEV *S = getAddExpr(LHS, getSCEV(CI)); 4319 // If the LHS of the add was an addrec and it has no-wrap flags, 4320 // transfer the no-wrap flags, since an or won't introduce a wrap. 4321 if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) { 4322 const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS); 4323 const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags( 4324 OldAR->getNoWrapFlags()); 4325 } 4326 return S; 4327 } 4328 } 4329 break; 4330 case Instruction::Xor: 4331 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { 4332 // If the RHS of the xor is a signbit, then this is just an add. 4333 // Instcombine turns add of signbit into xor as a strength reduction step. 4334 if (CI->getValue().isSignBit()) 4335 return getAddExpr(getSCEV(U->getOperand(0)), 4336 getSCEV(U->getOperand(1))); 4337 4338 // If the RHS of xor is -1, then this is a not operation. 4339 if (CI->isAllOnesValue()) 4340 return getNotSCEV(getSCEV(U->getOperand(0))); 4341 4342 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 4343 // This is a variant of the check for xor with -1, and it handles 4344 // the case where instcombine has trimmed non-demanded bits out 4345 // of an xor with -1. 4346 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U->getOperand(0))) 4347 if (ConstantInt *LCI = dyn_cast<ConstantInt>(BO->getOperand(1))) 4348 if (BO->getOpcode() == Instruction::And && 4349 LCI->getValue() == CI->getValue()) 4350 if (const SCEVZeroExtendExpr *Z = 4351 dyn_cast<SCEVZeroExtendExpr>(getSCEV(U->getOperand(0)))) { 4352 Type *UTy = U->getType(); 4353 const SCEV *Z0 = Z->getOperand(); 4354 Type *Z0Ty = Z0->getType(); 4355 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 4356 4357 // If C is a low-bits mask, the zero extend is serving to 4358 // mask off the high bits. Complement the operand and 4359 // re-apply the zext. 4360 if (APIntOps::isMask(Z0TySize, CI->getValue())) 4361 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 4362 4363 // If C is a single bit, it may be in the sign-bit position 4364 // before the zero-extend. In this case, represent the xor 4365 // using an add, which is equivalent, and re-apply the zext. 4366 APInt Trunc = CI->getValue().trunc(Z0TySize); 4367 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 4368 Trunc.isSignBit()) 4369 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 4370 UTy); 4371 } 4372 } 4373 break; 4374 4375 case Instruction::Shl: 4376 // Turn shift left of a constant amount into a multiply. 4377 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4378 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4379 4380 // If the shift count is not less than the bitwidth, the result of 4381 // the shift is undefined. Don't try to analyze it, because the 4382 // resolution chosen here may differ from the resolution chosen in 4383 // other parts of the compiler. 4384 if (SA->getValue().uge(BitWidth)) 4385 break; 4386 4387 // It is currently not resolved how to interpret NSW for left 4388 // shift by BitWidth - 1, so we avoid applying flags in that 4389 // case. Remove this check (or this comment) once the situation 4390 // is resolved. See 4391 // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html 4392 // and http://reviews.llvm.org/D8890 . 4393 auto Flags = SCEV::FlagAnyWrap; 4394 if (SA->getValue().ult(BitWidth - 1)) Flags = getNoWrapFlagsFromUB(U); 4395 4396 Constant *X = ConstantInt::get(getContext(), 4397 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4398 return getMulExpr(getSCEV(U->getOperand(0)), getSCEV(X), Flags); 4399 } 4400 break; 4401 4402 case Instruction::LShr: 4403 // Turn logical shift right of a constant into a unsigned divide. 4404 if (ConstantInt *SA = dyn_cast<ConstantInt>(U->getOperand(1))) { 4405 uint32_t BitWidth = cast<IntegerType>(U->getType())->getBitWidth(); 4406 4407 // If the shift count is not less than the bitwidth, the result of 4408 // the shift is undefined. Don't try to analyze it, because the 4409 // resolution chosen here may differ from the resolution chosen in 4410 // other parts of the compiler. 4411 if (SA->getValue().uge(BitWidth)) 4412 break; 4413 4414 Constant *X = ConstantInt::get(getContext(), 4415 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4416 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(X)); 4417 } 4418 break; 4419 4420 case Instruction::AShr: 4421 // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression. 4422 if (ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) 4423 if (Operator *L = dyn_cast<Operator>(U->getOperand(0))) 4424 if (L->getOpcode() == Instruction::Shl && 4425 L->getOperand(1) == U->getOperand(1)) { 4426 uint64_t BitWidth = getTypeSizeInBits(U->getType()); 4427 4428 // If the shift count is not less than the bitwidth, the result of 4429 // the shift is undefined. Don't try to analyze it, because the 4430 // resolution chosen here may differ from the resolution chosen in 4431 // other parts of the compiler. 4432 if (CI->getValue().uge(BitWidth)) 4433 break; 4434 4435 uint64_t Amt = BitWidth - CI->getZExtValue(); 4436 if (Amt == BitWidth) 4437 return getSCEV(L->getOperand(0)); // shift by zero --> noop 4438 return 4439 getSignExtendExpr(getTruncateExpr(getSCEV(L->getOperand(0)), 4440 IntegerType::get(getContext(), 4441 Amt)), 4442 U->getType()); 4443 } 4444 break; 4445 4446 case Instruction::Trunc: 4447 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 4448 4449 case Instruction::ZExt: 4450 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4451 4452 case Instruction::SExt: 4453 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 4454 4455 case Instruction::BitCast: 4456 // BitCasts are no-op casts so we just eliminate the cast. 4457 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 4458 return getSCEV(U->getOperand(0)); 4459 break; 4460 4461 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 4462 // lead to pointer expressions which cannot safely be expanded to GEPs, 4463 // because ScalarEvolution doesn't respect the GEP aliasing rules when 4464 // simplifying integer expressions. 4465 4466 case Instruction::GetElementPtr: 4467 return createNodeForGEP(cast<GEPOperator>(U)); 4468 4469 case Instruction::PHI: 4470 return createNodeForPHI(cast<PHINode>(U)); 4471 4472 case Instruction::Select: 4473 // This could be a smax or umax that was lowered earlier. 4474 // Try to recover it. 4475 if (ICmpInst *ICI = dyn_cast<ICmpInst>(U->getOperand(0))) { 4476 Value *LHS = ICI->getOperand(0); 4477 Value *RHS = ICI->getOperand(1); 4478 switch (ICI->getPredicate()) { 4479 case ICmpInst::ICMP_SLT: 4480 case ICmpInst::ICMP_SLE: 4481 std::swap(LHS, RHS); 4482 // fall through 4483 case ICmpInst::ICMP_SGT: 4484 case ICmpInst::ICMP_SGE: 4485 // a >s b ? a+x : b+x -> smax(a, b)+x 4486 // a >s b ? b+x : a+x -> smin(a, b)+x 4487 if (getTypeSizeInBits(LHS->getType()) <= 4488 getTypeSizeInBits(U->getType())) { 4489 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), U->getType()); 4490 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), U->getType()); 4491 const SCEV *LA = getSCEV(U->getOperand(1)); 4492 const SCEV *RA = getSCEV(U->getOperand(2)); 4493 const SCEV *LDiff = getMinusSCEV(LA, LS); 4494 const SCEV *RDiff = getMinusSCEV(RA, RS); 4495 if (LDiff == RDiff) 4496 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 4497 LDiff = getMinusSCEV(LA, RS); 4498 RDiff = getMinusSCEV(RA, LS); 4499 if (LDiff == RDiff) 4500 return getAddExpr(getSMinExpr(LS, RS), LDiff); 4501 } 4502 break; 4503 case ICmpInst::ICMP_ULT: 4504 case ICmpInst::ICMP_ULE: 4505 std::swap(LHS, RHS); 4506 // fall through 4507 case ICmpInst::ICMP_UGT: 4508 case ICmpInst::ICMP_UGE: 4509 // a >u b ? a+x : b+x -> umax(a, b)+x 4510 // a >u b ? b+x : a+x -> umin(a, b)+x 4511 if (getTypeSizeInBits(LHS->getType()) <= 4512 getTypeSizeInBits(U->getType())) { 4513 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4514 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), U->getType()); 4515 const SCEV *LA = getSCEV(U->getOperand(1)); 4516 const SCEV *RA = getSCEV(U->getOperand(2)); 4517 const SCEV *LDiff = getMinusSCEV(LA, LS); 4518 const SCEV *RDiff = getMinusSCEV(RA, RS); 4519 if (LDiff == RDiff) 4520 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 4521 LDiff = getMinusSCEV(LA, RS); 4522 RDiff = getMinusSCEV(RA, LS); 4523 if (LDiff == RDiff) 4524 return getAddExpr(getUMinExpr(LS, RS), LDiff); 4525 } 4526 break; 4527 case ICmpInst::ICMP_NE: 4528 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 4529 if (getTypeSizeInBits(LHS->getType()) <= 4530 getTypeSizeInBits(U->getType()) && 4531 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4532 const SCEV *One = getOne(U->getType()); 4533 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4534 const SCEV *LA = getSCEV(U->getOperand(1)); 4535 const SCEV *RA = getSCEV(U->getOperand(2)); 4536 const SCEV *LDiff = getMinusSCEV(LA, LS); 4537 const SCEV *RDiff = getMinusSCEV(RA, One); 4538 if (LDiff == RDiff) 4539 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4540 } 4541 break; 4542 case ICmpInst::ICMP_EQ: 4543 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 4544 if (getTypeSizeInBits(LHS->getType()) <= 4545 getTypeSizeInBits(U->getType()) && 4546 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 4547 const SCEV *One = getOne(U->getType()); 4548 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), U->getType()); 4549 const SCEV *LA = getSCEV(U->getOperand(1)); 4550 const SCEV *RA = getSCEV(U->getOperand(2)); 4551 const SCEV *LDiff = getMinusSCEV(LA, One); 4552 const SCEV *RDiff = getMinusSCEV(RA, LS); 4553 if (LDiff == RDiff) 4554 return getAddExpr(getUMaxExpr(One, LS), LDiff); 4555 } 4556 break; 4557 default: 4558 break; 4559 } 4560 } 4561 4562 default: // We cannot analyze this expression. 4563 break; 4564 } 4565 4566 return getUnknown(V); 4567 } 4568 4569 4570 4571 //===----------------------------------------------------------------------===// 4572 // Iteration Count Computation Code 4573 // 4574 4575 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) { 4576 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4577 return getSmallConstantTripCount(L, ExitingBB); 4578 4579 // No trip count information for multiple exits. 4580 return 0; 4581 } 4582 4583 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a 4584 /// normal unsigned value. Returns 0 if the trip count is unknown or not 4585 /// constant. Will also return 0 if the maximum trip count is very large (>= 4586 /// 2^32). 4587 /// 4588 /// This "trip count" assumes that control exits via ExitingBlock. More 4589 /// precisely, it is the number of times that control may reach ExitingBlock 4590 /// before taking the branch. For loops with multiple exits, it may not be the 4591 /// number times that the loop header executes because the loop may exit 4592 /// prematurely via another branch. 4593 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L, 4594 BasicBlock *ExitingBlock) { 4595 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4596 assert(L->isLoopExiting(ExitingBlock) && 4597 "Exiting block must actually branch out of the loop!"); 4598 const SCEVConstant *ExitCount = 4599 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 4600 if (!ExitCount) 4601 return 0; 4602 4603 ConstantInt *ExitConst = ExitCount->getValue(); 4604 4605 // Guard against huge trip counts. 4606 if (ExitConst->getValue().getActiveBits() > 32) 4607 return 0; 4608 4609 // In case of integer overflow, this returns 0, which is correct. 4610 return ((unsigned)ExitConst->getZExtValue()) + 1; 4611 } 4612 4613 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) { 4614 if (BasicBlock *ExitingBB = L->getExitingBlock()) 4615 return getSmallConstantTripMultiple(L, ExitingBB); 4616 4617 // No trip multiple information for multiple exits. 4618 return 0; 4619 } 4620 4621 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the 4622 /// trip count of this loop as a normal unsigned value, if possible. This 4623 /// means that the actual trip count is always a multiple of the returned 4624 /// value (don't forget the trip count could very well be zero as well!). 4625 /// 4626 /// Returns 1 if the trip count is unknown or not guaranteed to be the 4627 /// multiple of a constant (which is also the case if the trip count is simply 4628 /// constant, use getSmallConstantTripCount for that case), Will also return 1 4629 /// if the trip count is very large (>= 2^32). 4630 /// 4631 /// As explained in the comments for getSmallConstantTripCount, this assumes 4632 /// that control exits the loop via ExitingBlock. 4633 unsigned 4634 ScalarEvolution::getSmallConstantTripMultiple(Loop *L, 4635 BasicBlock *ExitingBlock) { 4636 assert(ExitingBlock && "Must pass a non-null exiting block!"); 4637 assert(L->isLoopExiting(ExitingBlock) && 4638 "Exiting block must actually branch out of the loop!"); 4639 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 4640 if (ExitCount == getCouldNotCompute()) 4641 return 1; 4642 4643 // Get the trip count from the BE count by adding 1. 4644 const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType())); 4645 // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt 4646 // to factor simple cases. 4647 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul)) 4648 TCMul = Mul->getOperand(0); 4649 4650 const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul); 4651 if (!MulC) 4652 return 1; 4653 4654 ConstantInt *Result = MulC->getValue(); 4655 4656 // Guard against huge trip counts (this requires checking 4657 // for zero to handle the case where the trip count == -1 and the 4658 // addition wraps). 4659 if (!Result || Result->getValue().getActiveBits() > 32 || 4660 Result->getValue().getActiveBits() == 0) 4661 return 1; 4662 4663 return (unsigned)Result->getZExtValue(); 4664 } 4665 4666 // getExitCount - Get the expression for the number of loop iterations for which 4667 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return 4668 // SCEVCouldNotCompute. 4669 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) { 4670 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 4671 } 4672 4673 /// getBackedgeTakenCount - If the specified loop has a predictable 4674 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute 4675 /// object. The backedge-taken count is the number of times the loop header 4676 /// will be branched to from within the loop. This is one less than the 4677 /// trip count of the loop, since it doesn't count the first iteration, 4678 /// when the header is branched to from outside the loop. 4679 /// 4680 /// Note that it is not valid to call this method on a loop without a 4681 /// loop-invariant backedge-taken count (see 4682 /// hasLoopInvariantBackedgeTakenCount). 4683 /// 4684 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) { 4685 return getBackedgeTakenInfo(L).getExact(this); 4686 } 4687 4688 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except 4689 /// return the least SCEV value that is known never to be less than the 4690 /// actual backedge taken count. 4691 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) { 4692 return getBackedgeTakenInfo(L).getMax(this); 4693 } 4694 4695 /// PushLoopPHIs - Push PHI nodes in the header of the given loop 4696 /// onto the given Worklist. 4697 static void 4698 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 4699 BasicBlock *Header = L->getHeader(); 4700 4701 // Push all Loop-header PHIs onto the Worklist stack. 4702 for (BasicBlock::iterator I = Header->begin(); 4703 PHINode *PN = dyn_cast<PHINode>(I); ++I) 4704 Worklist.push_back(PN); 4705 } 4706 4707 const ScalarEvolution::BackedgeTakenInfo & 4708 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 4709 // Initially insert an invalid entry for this loop. If the insertion 4710 // succeeds, proceed to actually compute a backedge-taken count and 4711 // update the value. The temporary CouldNotCompute value tells SCEV 4712 // code elsewhere that it shouldn't attempt to request a new 4713 // backedge-taken count, which could result in infinite recursion. 4714 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 4715 BackedgeTakenCounts.insert(std::make_pair(L, BackedgeTakenInfo())); 4716 if (!Pair.second) 4717 return Pair.first->second; 4718 4719 // ComputeBackedgeTakenCount may allocate memory for its result. Inserting it 4720 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 4721 // must be cleared in this scope. 4722 BackedgeTakenInfo Result = ComputeBackedgeTakenCount(L); 4723 4724 if (Result.getExact(this) != getCouldNotCompute()) { 4725 assert(isLoopInvariant(Result.getExact(this), L) && 4726 isLoopInvariant(Result.getMax(this), L) && 4727 "Computed backedge-taken count isn't loop invariant for loop!"); 4728 ++NumTripCountsComputed; 4729 } 4730 else if (Result.getMax(this) == getCouldNotCompute() && 4731 isa<PHINode>(L->getHeader()->begin())) { 4732 // Only count loops that have phi nodes as not being computable. 4733 ++NumTripCountsNotComputed; 4734 } 4735 4736 // Now that we know more about the trip count for this loop, forget any 4737 // existing SCEV values for PHI nodes in this loop since they are only 4738 // conservative estimates made without the benefit of trip count 4739 // information. This is similar to the code in forgetLoop, except that 4740 // it handles SCEVUnknown PHI nodes specially. 4741 if (Result.hasAnyInfo()) { 4742 SmallVector<Instruction *, 16> Worklist; 4743 PushLoopPHIs(L, Worklist); 4744 4745 SmallPtrSet<Instruction *, 8> Visited; 4746 while (!Worklist.empty()) { 4747 Instruction *I = Worklist.pop_back_val(); 4748 if (!Visited.insert(I).second) 4749 continue; 4750 4751 ValueExprMapType::iterator It = 4752 ValueExprMap.find_as(static_cast<Value *>(I)); 4753 if (It != ValueExprMap.end()) { 4754 const SCEV *Old = It->second; 4755 4756 // SCEVUnknown for a PHI either means that it has an unrecognized 4757 // structure, or it's a PHI that's in the progress of being computed 4758 // by createNodeForPHI. In the former case, additional loop trip 4759 // count information isn't going to change anything. In the later 4760 // case, createNodeForPHI will perform the necessary updates on its 4761 // own when it gets to that point. 4762 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 4763 forgetMemoizedResults(Old); 4764 ValueExprMap.erase(It); 4765 } 4766 if (PHINode *PN = dyn_cast<PHINode>(I)) 4767 ConstantEvolutionLoopExitValue.erase(PN); 4768 } 4769 4770 PushDefUseChildren(I, Worklist); 4771 } 4772 } 4773 4774 // Re-lookup the insert position, since the call to 4775 // ComputeBackedgeTakenCount above could result in a 4776 // recusive call to getBackedgeTakenInfo (on a different 4777 // loop), which would invalidate the iterator computed 4778 // earlier. 4779 return BackedgeTakenCounts.find(L)->second = Result; 4780 } 4781 4782 /// forgetLoop - This method should be called by the client when it has 4783 /// changed a loop in a way that may effect ScalarEvolution's ability to 4784 /// compute a trip count, or if the loop is deleted. 4785 void ScalarEvolution::forgetLoop(const Loop *L) { 4786 // Drop any stored trip count value. 4787 DenseMap<const Loop*, BackedgeTakenInfo>::iterator BTCPos = 4788 BackedgeTakenCounts.find(L); 4789 if (BTCPos != BackedgeTakenCounts.end()) { 4790 BTCPos->second.clear(); 4791 BackedgeTakenCounts.erase(BTCPos); 4792 } 4793 4794 // Drop information about expressions based on loop-header PHIs. 4795 SmallVector<Instruction *, 16> Worklist; 4796 PushLoopPHIs(L, Worklist); 4797 4798 SmallPtrSet<Instruction *, 8> Visited; 4799 while (!Worklist.empty()) { 4800 Instruction *I = Worklist.pop_back_val(); 4801 if (!Visited.insert(I).second) 4802 continue; 4803 4804 ValueExprMapType::iterator It = 4805 ValueExprMap.find_as(static_cast<Value *>(I)); 4806 if (It != ValueExprMap.end()) { 4807 forgetMemoizedResults(It->second); 4808 ValueExprMap.erase(It); 4809 if (PHINode *PN = dyn_cast<PHINode>(I)) 4810 ConstantEvolutionLoopExitValue.erase(PN); 4811 } 4812 4813 PushDefUseChildren(I, Worklist); 4814 } 4815 4816 // Forget all contained loops too, to avoid dangling entries in the 4817 // ValuesAtScopes map. 4818 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 4819 forgetLoop(*I); 4820 } 4821 4822 /// forgetValue - This method should be called by the client when it has 4823 /// changed a value in a way that may effect its value, or which may 4824 /// disconnect it from a def-use chain linking it to a loop. 4825 void ScalarEvolution::forgetValue(Value *V) { 4826 Instruction *I = dyn_cast<Instruction>(V); 4827 if (!I) return; 4828 4829 // Drop information about expressions based on loop-header PHIs. 4830 SmallVector<Instruction *, 16> Worklist; 4831 Worklist.push_back(I); 4832 4833 SmallPtrSet<Instruction *, 8> Visited; 4834 while (!Worklist.empty()) { 4835 I = Worklist.pop_back_val(); 4836 if (!Visited.insert(I).second) 4837 continue; 4838 4839 ValueExprMapType::iterator It = 4840 ValueExprMap.find_as(static_cast<Value *>(I)); 4841 if (It != ValueExprMap.end()) { 4842 forgetMemoizedResults(It->second); 4843 ValueExprMap.erase(It); 4844 if (PHINode *PN = dyn_cast<PHINode>(I)) 4845 ConstantEvolutionLoopExitValue.erase(PN); 4846 } 4847 4848 PushDefUseChildren(I, Worklist); 4849 } 4850 } 4851 4852 /// getExact - Get the exact loop backedge taken count considering all loop 4853 /// exits. A computable result can only be returned for loops with a single 4854 /// exit. Returning the minimum taken count among all exits is incorrect 4855 /// because one of the loop's exit limit's may have been skipped. HowFarToZero 4856 /// assumes that the limit of each loop test is never skipped. This is a valid 4857 /// assumption as long as the loop exits via that test. For precise results, it 4858 /// is the caller's responsibility to specify the relevant loop exit using 4859 /// getExact(ExitingBlock, SE). 4860 const SCEV * 4861 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE) const { 4862 // If any exits were not computable, the loop is not computable. 4863 if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute(); 4864 4865 // We need exactly one computable exit. 4866 if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute(); 4867 assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info"); 4868 4869 const SCEV *BECount = nullptr; 4870 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4871 ENT != nullptr; ENT = ENT->getNextExit()) { 4872 4873 assert(ENT->ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV"); 4874 4875 if (!BECount) 4876 BECount = ENT->ExactNotTaken; 4877 else if (BECount != ENT->ExactNotTaken) 4878 return SE->getCouldNotCompute(); 4879 } 4880 assert(BECount && "Invalid not taken count for loop exit"); 4881 return BECount; 4882 } 4883 4884 /// getExact - Get the exact not taken count for this loop exit. 4885 const SCEV * 4886 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 4887 ScalarEvolution *SE) const { 4888 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4889 ENT != nullptr; ENT = ENT->getNextExit()) { 4890 4891 if (ENT->ExitingBlock == ExitingBlock) 4892 return ENT->ExactNotTaken; 4893 } 4894 return SE->getCouldNotCompute(); 4895 } 4896 4897 /// getMax - Get the max backedge taken count for the loop. 4898 const SCEV * 4899 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 4900 return Max ? Max : SE->getCouldNotCompute(); 4901 } 4902 4903 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 4904 ScalarEvolution *SE) const { 4905 if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S)) 4906 return true; 4907 4908 if (!ExitNotTaken.ExitingBlock) 4909 return false; 4910 4911 for (const ExitNotTakenInfo *ENT = &ExitNotTaken; 4912 ENT != nullptr; ENT = ENT->getNextExit()) { 4913 4914 if (ENT->ExactNotTaken != SE->getCouldNotCompute() 4915 && SE->hasOperand(ENT->ExactNotTaken, S)) { 4916 return true; 4917 } 4918 } 4919 return false; 4920 } 4921 4922 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 4923 /// computable exit into a persistent ExitNotTakenInfo array. 4924 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 4925 SmallVectorImpl< std::pair<BasicBlock *, const SCEV *> > &ExitCounts, 4926 bool Complete, const SCEV *MaxCount) : Max(MaxCount) { 4927 4928 if (!Complete) 4929 ExitNotTaken.setIncomplete(); 4930 4931 unsigned NumExits = ExitCounts.size(); 4932 if (NumExits == 0) return; 4933 4934 ExitNotTaken.ExitingBlock = ExitCounts[0].first; 4935 ExitNotTaken.ExactNotTaken = ExitCounts[0].second; 4936 if (NumExits == 1) return; 4937 4938 // Handle the rare case of multiple computable exits. 4939 ExitNotTakenInfo *ENT = new ExitNotTakenInfo[NumExits-1]; 4940 4941 ExitNotTakenInfo *PrevENT = &ExitNotTaken; 4942 for (unsigned i = 1; i < NumExits; ++i, PrevENT = ENT, ++ENT) { 4943 PrevENT->setNextExit(ENT); 4944 ENT->ExitingBlock = ExitCounts[i].first; 4945 ENT->ExactNotTaken = ExitCounts[i].second; 4946 } 4947 } 4948 4949 /// clear - Invalidate this result and free the ExitNotTakenInfo array. 4950 void ScalarEvolution::BackedgeTakenInfo::clear() { 4951 ExitNotTaken.ExitingBlock = nullptr; 4952 ExitNotTaken.ExactNotTaken = nullptr; 4953 delete[] ExitNotTaken.getNextExit(); 4954 } 4955 4956 /// ComputeBackedgeTakenCount - Compute the number of times the backedge 4957 /// of the specified loop will execute. 4958 ScalarEvolution::BackedgeTakenInfo 4959 ScalarEvolution::ComputeBackedgeTakenCount(const Loop *L) { 4960 SmallVector<BasicBlock *, 8> ExitingBlocks; 4961 L->getExitingBlocks(ExitingBlocks); 4962 4963 SmallVector<std::pair<BasicBlock *, const SCEV *>, 4> ExitCounts; 4964 bool CouldComputeBECount = true; 4965 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 4966 const SCEV *MustExitMaxBECount = nullptr; 4967 const SCEV *MayExitMaxBECount = nullptr; 4968 4969 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 4970 // and compute maxBECount. 4971 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 4972 BasicBlock *ExitBB = ExitingBlocks[i]; 4973 ExitLimit EL = ComputeExitLimit(L, ExitBB); 4974 4975 // 1. For each exit that can be computed, add an entry to ExitCounts. 4976 // CouldComputeBECount is true only if all exits can be computed. 4977 if (EL.Exact == getCouldNotCompute()) 4978 // We couldn't compute an exact value for this exit, so 4979 // we won't be able to compute an exact value for the loop. 4980 CouldComputeBECount = false; 4981 else 4982 ExitCounts.push_back(std::make_pair(ExitBB, EL.Exact)); 4983 4984 // 2. Derive the loop's MaxBECount from each exit's max number of 4985 // non-exiting iterations. Partition the loop exits into two kinds: 4986 // LoopMustExits and LoopMayExits. 4987 // 4988 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 4989 // is a LoopMayExit. If any computable LoopMustExit is found, then 4990 // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise, 4991 // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is 4992 // considered greater than any computable EL.Max. 4993 if (EL.Max != getCouldNotCompute() && Latch && 4994 DT.dominates(ExitBB, Latch)) { 4995 if (!MustExitMaxBECount) 4996 MustExitMaxBECount = EL.Max; 4997 else { 4998 MustExitMaxBECount = 4999 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max); 5000 } 5001 } else if (MayExitMaxBECount != getCouldNotCompute()) { 5002 if (!MayExitMaxBECount || EL.Max == getCouldNotCompute()) 5003 MayExitMaxBECount = EL.Max; 5004 else { 5005 MayExitMaxBECount = 5006 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max); 5007 } 5008 } 5009 } 5010 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 5011 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 5012 return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount); 5013 } 5014 5015 /// ComputeExitLimit - Compute the number of times the backedge of the specified 5016 /// loop will execute if it exits via the specified block. 5017 ScalarEvolution::ExitLimit 5018 ScalarEvolution::ComputeExitLimit(const Loop *L, BasicBlock *ExitingBlock) { 5019 5020 // Okay, we've chosen an exiting block. See what condition causes us to 5021 // exit at this block and remember the exit block and whether all other targets 5022 // lead to the loop header. 5023 bool MustExecuteLoopHeader = true; 5024 BasicBlock *Exit = nullptr; 5025 for (succ_iterator SI = succ_begin(ExitingBlock), SE = succ_end(ExitingBlock); 5026 SI != SE; ++SI) 5027 if (!L->contains(*SI)) { 5028 if (Exit) // Multiple exit successors. 5029 return getCouldNotCompute(); 5030 Exit = *SI; 5031 } else if (*SI != L->getHeader()) { 5032 MustExecuteLoopHeader = false; 5033 } 5034 5035 // At this point, we know we have a conditional branch that determines whether 5036 // the loop is exited. However, we don't know if the branch is executed each 5037 // time through the loop. If not, then the execution count of the branch will 5038 // not be equal to the trip count of the loop. 5039 // 5040 // Currently we check for this by checking to see if the Exit branch goes to 5041 // the loop header. If so, we know it will always execute the same number of 5042 // times as the loop. We also handle the case where the exit block *is* the 5043 // loop header. This is common for un-rotated loops. 5044 // 5045 // If both of those tests fail, walk up the unique predecessor chain to the 5046 // header, stopping if there is an edge that doesn't exit the loop. If the 5047 // header is reached, the execution count of the branch will be equal to the 5048 // trip count of the loop. 5049 // 5050 // More extensive analysis could be done to handle more cases here. 5051 // 5052 if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) { 5053 // The simple checks failed, try climbing the unique predecessor chain 5054 // up to the header. 5055 bool Ok = false; 5056 for (BasicBlock *BB = ExitingBlock; BB; ) { 5057 BasicBlock *Pred = BB->getUniquePredecessor(); 5058 if (!Pred) 5059 return getCouldNotCompute(); 5060 TerminatorInst *PredTerm = Pred->getTerminator(); 5061 for (const BasicBlock *PredSucc : PredTerm->successors()) { 5062 if (PredSucc == BB) 5063 continue; 5064 // If the predecessor has a successor that isn't BB and isn't 5065 // outside the loop, assume the worst. 5066 if (L->contains(PredSucc)) 5067 return getCouldNotCompute(); 5068 } 5069 if (Pred == L->getHeader()) { 5070 Ok = true; 5071 break; 5072 } 5073 BB = Pred; 5074 } 5075 if (!Ok) 5076 return getCouldNotCompute(); 5077 } 5078 5079 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 5080 TerminatorInst *Term = ExitingBlock->getTerminator(); 5081 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 5082 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 5083 // Proceed to the next level to examine the exit condition expression. 5084 return ComputeExitLimitFromCond(L, BI->getCondition(), BI->getSuccessor(0), 5085 BI->getSuccessor(1), 5086 /*ControlsExit=*/IsOnlyExit); 5087 } 5088 5089 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) 5090 return ComputeExitLimitFromSingleExitSwitch(L, SI, Exit, 5091 /*ControlsExit=*/IsOnlyExit); 5092 5093 return getCouldNotCompute(); 5094 } 5095 5096 /// ComputeExitLimitFromCond - Compute the number of times the 5097 /// backedge of the specified loop will execute if its exit condition 5098 /// were a conditional branch of ExitCond, TBB, and FBB. 5099 /// 5100 /// @param ControlsExit is true if ExitCond directly controls the exit 5101 /// branch. In this case, we can assume that the loop exits only if the 5102 /// condition is true and can infer that failing to meet the condition prior to 5103 /// integer wraparound results in undefined behavior. 5104 ScalarEvolution::ExitLimit 5105 ScalarEvolution::ComputeExitLimitFromCond(const Loop *L, 5106 Value *ExitCond, 5107 BasicBlock *TBB, 5108 BasicBlock *FBB, 5109 bool ControlsExit) { 5110 // Check if the controlling expression for this loop is an And or Or. 5111 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 5112 if (BO->getOpcode() == Instruction::And) { 5113 // Recurse on the operands of the and. 5114 bool EitherMayExit = L->contains(TBB); 5115 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5116 ControlsExit && !EitherMayExit); 5117 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5118 ControlsExit && !EitherMayExit); 5119 const SCEV *BECount = getCouldNotCompute(); 5120 const SCEV *MaxBECount = getCouldNotCompute(); 5121 if (EitherMayExit) { 5122 // Both conditions must be true for the loop to continue executing. 5123 // Choose the less conservative count. 5124 if (EL0.Exact == getCouldNotCompute() || 5125 EL1.Exact == getCouldNotCompute()) 5126 BECount = getCouldNotCompute(); 5127 else 5128 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5129 if (EL0.Max == getCouldNotCompute()) 5130 MaxBECount = EL1.Max; 5131 else if (EL1.Max == getCouldNotCompute()) 5132 MaxBECount = EL0.Max; 5133 else 5134 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5135 } else { 5136 // Both conditions must be true at the same time for the loop to exit. 5137 // For now, be conservative. 5138 assert(L->contains(FBB) && "Loop block has no successor in loop!"); 5139 if (EL0.Max == EL1.Max) 5140 MaxBECount = EL0.Max; 5141 if (EL0.Exact == EL1.Exact) 5142 BECount = EL0.Exact; 5143 } 5144 5145 return ExitLimit(BECount, MaxBECount); 5146 } 5147 if (BO->getOpcode() == Instruction::Or) { 5148 // Recurse on the operands of the or. 5149 bool EitherMayExit = L->contains(FBB); 5150 ExitLimit EL0 = ComputeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB, 5151 ControlsExit && !EitherMayExit); 5152 ExitLimit EL1 = ComputeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB, 5153 ControlsExit && !EitherMayExit); 5154 const SCEV *BECount = getCouldNotCompute(); 5155 const SCEV *MaxBECount = getCouldNotCompute(); 5156 if (EitherMayExit) { 5157 // Both conditions must be false for the loop to continue executing. 5158 // Choose the less conservative count. 5159 if (EL0.Exact == getCouldNotCompute() || 5160 EL1.Exact == getCouldNotCompute()) 5161 BECount = getCouldNotCompute(); 5162 else 5163 BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact); 5164 if (EL0.Max == getCouldNotCompute()) 5165 MaxBECount = EL1.Max; 5166 else if (EL1.Max == getCouldNotCompute()) 5167 MaxBECount = EL0.Max; 5168 else 5169 MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max); 5170 } else { 5171 // Both conditions must be false at the same time for the loop to exit. 5172 // For now, be conservative. 5173 assert(L->contains(TBB) && "Loop block has no successor in loop!"); 5174 if (EL0.Max == EL1.Max) 5175 MaxBECount = EL0.Max; 5176 if (EL0.Exact == EL1.Exact) 5177 BECount = EL0.Exact; 5178 } 5179 5180 return ExitLimit(BECount, MaxBECount); 5181 } 5182 } 5183 5184 // With an icmp, it may be feasible to compute an exact backedge-taken count. 5185 // Proceed to the next level to examine the icmp. 5186 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) 5187 return ComputeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit); 5188 5189 // Check for a constant condition. These are normally stripped out by 5190 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 5191 // preserve the CFG and is temporarily leaving constant conditions 5192 // in place. 5193 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 5194 if (L->contains(FBB) == !CI->getZExtValue()) 5195 // The backedge is always taken. 5196 return getCouldNotCompute(); 5197 else 5198 // The backedge is never taken. 5199 return getZero(CI->getType()); 5200 } 5201 5202 // If it's not an integer or pointer comparison then compute it the hard way. 5203 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5204 } 5205 5206 /// ComputeExitLimitFromICmp - Compute the number of times the 5207 /// backedge of the specified loop will execute if its exit condition 5208 /// were a conditional branch of the ICmpInst ExitCond, TBB, and FBB. 5209 ScalarEvolution::ExitLimit 5210 ScalarEvolution::ComputeExitLimitFromICmp(const Loop *L, 5211 ICmpInst *ExitCond, 5212 BasicBlock *TBB, 5213 BasicBlock *FBB, 5214 bool ControlsExit) { 5215 5216 // If the condition was exit on true, convert the condition to exit on false 5217 ICmpInst::Predicate Cond; 5218 if (!L->contains(FBB)) 5219 Cond = ExitCond->getPredicate(); 5220 else 5221 Cond = ExitCond->getInversePredicate(); 5222 5223 // Handle common loops like: for (X = "string"; *X; ++X) 5224 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 5225 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 5226 ExitLimit ItCnt = 5227 ComputeLoadConstantCompareExitLimit(LI, RHS, L, Cond); 5228 if (ItCnt.hasAnyInfo()) 5229 return ItCnt; 5230 } 5231 5232 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 5233 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 5234 5235 // Try to evaluate any dependencies out of the loop. 5236 LHS = getSCEVAtScope(LHS, L); 5237 RHS = getSCEVAtScope(RHS, L); 5238 5239 // At this point, we would like to compute how many iterations of the 5240 // loop the predicate will return true for these inputs. 5241 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 5242 // If there is a loop-invariant, force it into the RHS. 5243 std::swap(LHS, RHS); 5244 Cond = ICmpInst::getSwappedPredicate(Cond); 5245 } 5246 5247 // Simplify the operands before analyzing them. 5248 (void)SimplifyICmpOperands(Cond, LHS, RHS); 5249 5250 // If we have a comparison of a chrec against a constant, try to use value 5251 // ranges to answer this query. 5252 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 5253 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 5254 if (AddRec->getLoop() == L) { 5255 // Form the constant range. 5256 ConstantRange CompRange( 5257 ICmpInst::makeConstantRange(Cond, RHSC->getValue()->getValue())); 5258 5259 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 5260 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 5261 } 5262 5263 switch (Cond) { 5264 case ICmpInst::ICMP_NE: { // while (X != Y) 5265 // Convert to: while (X-Y != 0) 5266 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5267 if (EL.hasAnyInfo()) return EL; 5268 break; 5269 } 5270 case ICmpInst::ICMP_EQ: { // while (X == Y) 5271 // Convert to: while (X-Y == 0) 5272 ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L); 5273 if (EL.hasAnyInfo()) return EL; 5274 break; 5275 } 5276 case ICmpInst::ICMP_SLT: 5277 case ICmpInst::ICMP_ULT: { // while (X < Y) 5278 bool IsSigned = Cond == ICmpInst::ICMP_SLT; 5279 ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit); 5280 if (EL.hasAnyInfo()) return EL; 5281 break; 5282 } 5283 case ICmpInst::ICMP_SGT: 5284 case ICmpInst::ICMP_UGT: { // while (X > Y) 5285 bool IsSigned = Cond == ICmpInst::ICMP_SGT; 5286 ExitLimit EL = HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit); 5287 if (EL.hasAnyInfo()) return EL; 5288 break; 5289 } 5290 default: 5291 #if 0 5292 dbgs() << "ComputeBackedgeTakenCount "; 5293 if (ExitCond->getOperand(0)->getType()->isUnsigned()) 5294 dbgs() << "[unsigned] "; 5295 dbgs() << *LHS << " " 5296 << Instruction::getOpcodeName(Instruction::ICmp) 5297 << " " << *RHS << "\n"; 5298 #endif 5299 break; 5300 } 5301 return ComputeExitCountExhaustively(L, ExitCond, !L->contains(TBB)); 5302 } 5303 5304 ScalarEvolution::ExitLimit 5305 ScalarEvolution::ComputeExitLimitFromSingleExitSwitch(const Loop *L, 5306 SwitchInst *Switch, 5307 BasicBlock *ExitingBlock, 5308 bool ControlsExit) { 5309 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 5310 5311 // Give up if the exit is the default dest of a switch. 5312 if (Switch->getDefaultDest() == ExitingBlock) 5313 return getCouldNotCompute(); 5314 5315 assert(L->contains(Switch->getDefaultDest()) && 5316 "Default case must not exit the loop!"); 5317 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 5318 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 5319 5320 // while (X != Y) --> while (X-Y != 0) 5321 ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 5322 if (EL.hasAnyInfo()) 5323 return EL; 5324 5325 return getCouldNotCompute(); 5326 } 5327 5328 static ConstantInt * 5329 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 5330 ScalarEvolution &SE) { 5331 const SCEV *InVal = SE.getConstant(C); 5332 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 5333 assert(isa<SCEVConstant>(Val) && 5334 "Evaluation of SCEV at constant didn't fold correctly?"); 5335 return cast<SCEVConstant>(Val)->getValue(); 5336 } 5337 5338 /// ComputeLoadConstantCompareExitLimit - Given an exit condition of 5339 /// 'icmp op load X, cst', try to see if we can compute the backedge 5340 /// execution count. 5341 ScalarEvolution::ExitLimit 5342 ScalarEvolution::ComputeLoadConstantCompareExitLimit( 5343 LoadInst *LI, 5344 Constant *RHS, 5345 const Loop *L, 5346 ICmpInst::Predicate predicate) { 5347 5348 if (LI->isVolatile()) return getCouldNotCompute(); 5349 5350 // Check to see if the loaded pointer is a getelementptr of a global. 5351 // TODO: Use SCEV instead of manually grubbing with GEPs. 5352 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 5353 if (!GEP) return getCouldNotCompute(); 5354 5355 // Make sure that it is really a constant global we are gepping, with an 5356 // initializer, and make sure the first IDX is really 0. 5357 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 5358 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 5359 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 5360 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 5361 return getCouldNotCompute(); 5362 5363 // Okay, we allow one non-constant index into the GEP instruction. 5364 Value *VarIdx = nullptr; 5365 std::vector<Constant*> Indexes; 5366 unsigned VarIdxNum = 0; 5367 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 5368 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 5369 Indexes.push_back(CI); 5370 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 5371 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 5372 VarIdx = GEP->getOperand(i); 5373 VarIdxNum = i-2; 5374 Indexes.push_back(nullptr); 5375 } 5376 5377 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 5378 if (!VarIdx) 5379 return getCouldNotCompute(); 5380 5381 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 5382 // Check to see if X is a loop variant variable value now. 5383 const SCEV *Idx = getSCEV(VarIdx); 5384 Idx = getSCEVAtScope(Idx, L); 5385 5386 // We can only recognize very limited forms of loop index expressions, in 5387 // particular, only affine AddRec's like {C1,+,C2}. 5388 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 5389 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 5390 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 5391 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 5392 return getCouldNotCompute(); 5393 5394 unsigned MaxSteps = MaxBruteForceIterations; 5395 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 5396 ConstantInt *ItCst = ConstantInt::get( 5397 cast<IntegerType>(IdxExpr->getType()), IterationNum); 5398 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 5399 5400 // Form the GEP offset. 5401 Indexes[VarIdxNum] = Val; 5402 5403 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 5404 Indexes); 5405 if (!Result) break; // Cannot compute! 5406 5407 // Evaluate the condition for this iteration. 5408 Result = ConstantExpr::getICmp(predicate, Result, RHS); 5409 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 5410 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 5411 #if 0 5412 dbgs() << "\n***\n*** Computed loop count " << *ItCst 5413 << "\n*** From global " << *GV << "*** BB: " << *L->getHeader() 5414 << "***\n"; 5415 #endif 5416 ++NumArrayLenItCounts; 5417 return getConstant(ItCst); // Found terminating iteration! 5418 } 5419 } 5420 return getCouldNotCompute(); 5421 } 5422 5423 5424 /// CanConstantFold - Return true if we can constant fold an instruction of the 5425 /// specified type, assuming that all operands were constants. 5426 static bool CanConstantFold(const Instruction *I) { 5427 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 5428 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 5429 isa<LoadInst>(I)) 5430 return true; 5431 5432 if (const CallInst *CI = dyn_cast<CallInst>(I)) 5433 if (const Function *F = CI->getCalledFunction()) 5434 return canConstantFoldCallTo(F); 5435 return false; 5436 } 5437 5438 /// Determine whether this instruction can constant evolve within this loop 5439 /// assuming its operands can all constant evolve. 5440 static bool canConstantEvolve(Instruction *I, const Loop *L) { 5441 // An instruction outside of the loop can't be derived from a loop PHI. 5442 if (!L->contains(I)) return false; 5443 5444 if (isa<PHINode>(I)) { 5445 // We don't currently keep track of the control flow needed to evaluate 5446 // PHIs, so we cannot handle PHIs inside of loops. 5447 return L->getHeader() == I->getParent(); 5448 } 5449 5450 // If we won't be able to constant fold this expression even if the operands 5451 // are constants, bail early. 5452 return CanConstantFold(I); 5453 } 5454 5455 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 5456 /// recursing through each instruction operand until reaching a loop header phi. 5457 static PHINode * 5458 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 5459 DenseMap<Instruction *, PHINode *> &PHIMap) { 5460 5461 // Otherwise, we can evaluate this instruction if all of its operands are 5462 // constant or derived from a PHI node themselves. 5463 PHINode *PHI = nullptr; 5464 for (Instruction::op_iterator OpI = UseInst->op_begin(), 5465 OpE = UseInst->op_end(); OpI != OpE; ++OpI) { 5466 5467 if (isa<Constant>(*OpI)) continue; 5468 5469 Instruction *OpInst = dyn_cast<Instruction>(*OpI); 5470 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 5471 5472 PHINode *P = dyn_cast<PHINode>(OpInst); 5473 if (!P) 5474 // If this operand is already visited, reuse the prior result. 5475 // We may have P != PHI if this is the deepest point at which the 5476 // inconsistent paths meet. 5477 P = PHIMap.lookup(OpInst); 5478 if (!P) { 5479 // Recurse and memoize the results, whether a phi is found or not. 5480 // This recursive call invalidates pointers into PHIMap. 5481 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap); 5482 PHIMap[OpInst] = P; 5483 } 5484 if (!P) 5485 return nullptr; // Not evolving from PHI 5486 if (PHI && PHI != P) 5487 return nullptr; // Evolving from multiple different PHIs. 5488 PHI = P; 5489 } 5490 // This is a expression evolving from a constant PHI! 5491 return PHI; 5492 } 5493 5494 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 5495 /// in the loop that V is derived from. We allow arbitrary operations along the 5496 /// way, but the operands of an operation must either be constants or a value 5497 /// derived from a constant PHI. If this expression does not fit with these 5498 /// constraints, return null. 5499 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 5500 Instruction *I = dyn_cast<Instruction>(V); 5501 if (!I || !canConstantEvolve(I, L)) return nullptr; 5502 5503 if (PHINode *PN = dyn_cast<PHINode>(I)) { 5504 return PN; 5505 } 5506 5507 // Record non-constant instructions contained by the loop. 5508 DenseMap<Instruction *, PHINode *> PHIMap; 5509 return getConstantEvolvingPHIOperands(I, L, PHIMap); 5510 } 5511 5512 /// EvaluateExpression - Given an expression that passes the 5513 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 5514 /// in the loop has the value PHIVal. If we can't fold this expression for some 5515 /// reason, return null. 5516 static Constant *EvaluateExpression(Value *V, const Loop *L, 5517 DenseMap<Instruction *, Constant *> &Vals, 5518 const DataLayout &DL, 5519 const TargetLibraryInfo *TLI) { 5520 // Convenient constant check, but redundant for recursive calls. 5521 if (Constant *C = dyn_cast<Constant>(V)) return C; 5522 Instruction *I = dyn_cast<Instruction>(V); 5523 if (!I) return nullptr; 5524 5525 if (Constant *C = Vals.lookup(I)) return C; 5526 5527 // An instruction inside the loop depends on a value outside the loop that we 5528 // weren't given a mapping for, or a value such as a call inside the loop. 5529 if (!canConstantEvolve(I, L)) return nullptr; 5530 5531 // An unmapped PHI can be due to a branch or another loop inside this loop, 5532 // or due to this not being the initial iteration through a loop where we 5533 // couldn't compute the evolution of this particular PHI last time. 5534 if (isa<PHINode>(I)) return nullptr; 5535 5536 std::vector<Constant*> Operands(I->getNumOperands()); 5537 5538 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5539 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 5540 if (!Operand) { 5541 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 5542 if (!Operands[i]) return nullptr; 5543 continue; 5544 } 5545 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 5546 Vals[Operand] = C; 5547 if (!C) return nullptr; 5548 Operands[i] = C; 5549 } 5550 5551 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 5552 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5553 Operands[1], DL, TLI); 5554 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 5555 if (!LI->isVolatile()) 5556 return ConstantFoldLoadFromConstPtr(Operands[0], DL); 5557 } 5558 return ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, DL, 5559 TLI); 5560 } 5561 5562 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 5563 /// in the header of its containing loop, we know the loop executes a 5564 /// constant number of times, and the PHI node is just a recurrence 5565 /// involving constants, fold it. 5566 Constant * 5567 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 5568 const APInt &BEs, 5569 const Loop *L) { 5570 DenseMap<PHINode*, Constant*>::const_iterator I = 5571 ConstantEvolutionLoopExitValue.find(PN); 5572 if (I != ConstantEvolutionLoopExitValue.end()) 5573 return I->second; 5574 5575 if (BEs.ugt(MaxBruteForceIterations)) 5576 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 5577 5578 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 5579 5580 DenseMap<Instruction *, Constant *> CurrentIterVals; 5581 BasicBlock *Header = L->getHeader(); 5582 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5583 5584 // Since the loop is canonicalized, the PHI node must have two entries. One 5585 // entry must be a constant (coming in from outside of the loop), and the 5586 // second must be derived from the same PHI. 5587 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5588 PHINode *PHI = nullptr; 5589 for (BasicBlock::iterator I = Header->begin(); 5590 (PHI = dyn_cast<PHINode>(I)); ++I) { 5591 Constant *StartCST = 5592 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5593 if (!StartCST) continue; 5594 CurrentIterVals[PHI] = StartCST; 5595 } 5596 if (!CurrentIterVals.count(PN)) 5597 return RetVal = nullptr; 5598 5599 Value *BEValue = PN->getIncomingValue(SecondIsBackedge); 5600 5601 // Execute the loop symbolically to determine the exit value. 5602 if (BEs.getActiveBits() >= 32) 5603 return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it! 5604 5605 unsigned NumIterations = BEs.getZExtValue(); // must be in range 5606 unsigned IterationNum = 0; 5607 const DataLayout &DL = F.getParent()->getDataLayout(); 5608 for (; ; ++IterationNum) { 5609 if (IterationNum == NumIterations) 5610 return RetVal = CurrentIterVals[PN]; // Got exit value! 5611 5612 // Compute the value of the PHIs for the next iteration. 5613 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 5614 DenseMap<Instruction *, Constant *> NextIterVals; 5615 Constant *NextPHI = 5616 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5617 if (!NextPHI) 5618 return nullptr; // Couldn't evaluate! 5619 NextIterVals[PN] = NextPHI; 5620 5621 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 5622 5623 // Also evaluate the other PHI nodes. However, we don't get to stop if we 5624 // cease to be able to evaluate one of them or if they stop evolving, 5625 // because that doesn't necessarily prevent us from computing PN. 5626 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 5627 for (DenseMap<Instruction *, Constant *>::const_iterator 5628 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5629 PHINode *PHI = dyn_cast<PHINode>(I->first); 5630 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 5631 PHIsToCompute.push_back(std::make_pair(PHI, I->second)); 5632 } 5633 // We use two distinct loops because EvaluateExpression may invalidate any 5634 // iterators into CurrentIterVals. 5635 for (SmallVectorImpl<std::pair<PHINode *, Constant*> >::const_iterator 5636 I = PHIsToCompute.begin(), E = PHIsToCompute.end(); I != E; ++I) { 5637 PHINode *PHI = I->first; 5638 Constant *&NextPHI = NextIterVals[PHI]; 5639 if (!NextPHI) { // Not already computed. 5640 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5641 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5642 } 5643 if (NextPHI != I->second) 5644 StoppedEvolving = false; 5645 } 5646 5647 // If all entries in CurrentIterVals == NextIterVals then we can stop 5648 // iterating, the loop can't continue to change. 5649 if (StoppedEvolving) 5650 return RetVal = CurrentIterVals[PN]; 5651 5652 CurrentIterVals.swap(NextIterVals); 5653 } 5654 } 5655 5656 /// ComputeExitCountExhaustively - If the loop is known to execute a 5657 /// constant number of times (the condition evolves only from constants), 5658 /// try to evaluate a few iterations of the loop until we get the exit 5659 /// condition gets a value of ExitWhen (true or false). If we cannot 5660 /// evaluate the trip count of the loop, return getCouldNotCompute(). 5661 const SCEV *ScalarEvolution::ComputeExitCountExhaustively(const Loop *L, 5662 Value *Cond, 5663 bool ExitWhen) { 5664 PHINode *PN = getConstantEvolvingPHI(Cond, L); 5665 if (!PN) return getCouldNotCompute(); 5666 5667 // If the loop is canonicalized, the PHI will have exactly two entries. 5668 // That's the only form we support here. 5669 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 5670 5671 DenseMap<Instruction *, Constant *> CurrentIterVals; 5672 BasicBlock *Header = L->getHeader(); 5673 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 5674 5675 // One entry must be a constant (coming in from outside of the loop), and the 5676 // second must be derived from the same PHI. 5677 bool SecondIsBackedge = L->contains(PN->getIncomingBlock(1)); 5678 PHINode *PHI = nullptr; 5679 for (BasicBlock::iterator I = Header->begin(); 5680 (PHI = dyn_cast<PHINode>(I)); ++I) { 5681 Constant *StartCST = 5682 dyn_cast<Constant>(PHI->getIncomingValue(!SecondIsBackedge)); 5683 if (!StartCST) continue; 5684 CurrentIterVals[PHI] = StartCST; 5685 } 5686 if (!CurrentIterVals.count(PN)) 5687 return getCouldNotCompute(); 5688 5689 // Okay, we find a PHI node that defines the trip count of this loop. Execute 5690 // the loop symbolically to determine when the condition gets a value of 5691 // "ExitWhen". 5692 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 5693 const DataLayout &DL = F.getParent()->getDataLayout(); 5694 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 5695 ConstantInt *CondVal = dyn_cast_or_null<ConstantInt>( 5696 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 5697 5698 // Couldn't symbolically evaluate. 5699 if (!CondVal) return getCouldNotCompute(); 5700 5701 if (CondVal->getValue() == uint64_t(ExitWhen)) { 5702 ++NumBruteForceTripCountsComputed; 5703 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 5704 } 5705 5706 // Update all the PHI nodes for the next iteration. 5707 DenseMap<Instruction *, Constant *> NextIterVals; 5708 5709 // Create a list of which PHIs we need to compute. We want to do this before 5710 // calling EvaluateExpression on them because that may invalidate iterators 5711 // into CurrentIterVals. 5712 SmallVector<PHINode *, 8> PHIsToCompute; 5713 for (DenseMap<Instruction *, Constant *>::const_iterator 5714 I = CurrentIterVals.begin(), E = CurrentIterVals.end(); I != E; ++I){ 5715 PHINode *PHI = dyn_cast<PHINode>(I->first); 5716 if (!PHI || PHI->getParent() != Header) continue; 5717 PHIsToCompute.push_back(PHI); 5718 } 5719 for (SmallVectorImpl<PHINode *>::const_iterator I = PHIsToCompute.begin(), 5720 E = PHIsToCompute.end(); I != E; ++I) { 5721 PHINode *PHI = *I; 5722 Constant *&NextPHI = NextIterVals[PHI]; 5723 if (NextPHI) continue; // Already computed! 5724 5725 Value *BEValue = PHI->getIncomingValue(SecondIsBackedge); 5726 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 5727 } 5728 CurrentIterVals.swap(NextIterVals); 5729 } 5730 5731 // Too many iterations were needed to evaluate. 5732 return getCouldNotCompute(); 5733 } 5734 5735 /// getSCEVAtScope - Return a SCEV expression for the specified value 5736 /// at the specified scope in the program. The L value specifies a loop 5737 /// nest to evaluate the expression at, where null is the top-level or a 5738 /// specified loop is immediately inside of the loop. 5739 /// 5740 /// This method can be used to compute the exit value for a variable defined 5741 /// in a loop by querying what the value will hold in the parent loop. 5742 /// 5743 /// In the case that a relevant loop exit value cannot be computed, the 5744 /// original value V is returned. 5745 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 5746 // Check to see if we've folded this expression at this loop before. 5747 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = ValuesAtScopes[V]; 5748 for (unsigned u = 0; u < Values.size(); u++) { 5749 if (Values[u].first == L) 5750 return Values[u].second ? Values[u].second : V; 5751 } 5752 Values.push_back(std::make_pair(L, static_cast<const SCEV *>(nullptr))); 5753 // Otherwise compute it. 5754 const SCEV *C = computeSCEVAtScope(V, L); 5755 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values2 = ValuesAtScopes[V]; 5756 for (unsigned u = Values2.size(); u > 0; u--) { 5757 if (Values2[u - 1].first == L) { 5758 Values2[u - 1].second = C; 5759 break; 5760 } 5761 } 5762 return C; 5763 } 5764 5765 /// This builds up a Constant using the ConstantExpr interface. That way, we 5766 /// will return Constants for objects which aren't represented by a 5767 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 5768 /// Returns NULL if the SCEV isn't representable as a Constant. 5769 static Constant *BuildConstantFromSCEV(const SCEV *V) { 5770 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 5771 case scCouldNotCompute: 5772 case scAddRecExpr: 5773 break; 5774 case scConstant: 5775 return cast<SCEVConstant>(V)->getValue(); 5776 case scUnknown: 5777 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 5778 case scSignExtend: { 5779 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 5780 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 5781 return ConstantExpr::getSExt(CastOp, SS->getType()); 5782 break; 5783 } 5784 case scZeroExtend: { 5785 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 5786 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 5787 return ConstantExpr::getZExt(CastOp, SZ->getType()); 5788 break; 5789 } 5790 case scTruncate: { 5791 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 5792 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 5793 return ConstantExpr::getTrunc(CastOp, ST->getType()); 5794 break; 5795 } 5796 case scAddExpr: { 5797 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 5798 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 5799 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5800 unsigned AS = PTy->getAddressSpace(); 5801 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5802 C = ConstantExpr::getBitCast(C, DestPtrTy); 5803 } 5804 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 5805 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 5806 if (!C2) return nullptr; 5807 5808 // First pointer! 5809 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 5810 unsigned AS = C2->getType()->getPointerAddressSpace(); 5811 std::swap(C, C2); 5812 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 5813 // The offsets have been converted to bytes. We can add bytes to an 5814 // i8* by GEP with the byte count in the first index. 5815 C = ConstantExpr::getBitCast(C, DestPtrTy); 5816 } 5817 5818 // Don't bother trying to sum two pointers. We probably can't 5819 // statically compute a load that results from it anyway. 5820 if (C2->getType()->isPointerTy()) 5821 return nullptr; 5822 5823 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 5824 if (PTy->getElementType()->isStructTy()) 5825 C2 = ConstantExpr::getIntegerCast( 5826 C2, Type::getInt32Ty(C->getContext()), true); 5827 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 5828 } else 5829 C = ConstantExpr::getAdd(C, C2); 5830 } 5831 return C; 5832 } 5833 break; 5834 } 5835 case scMulExpr: { 5836 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 5837 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 5838 // Don't bother with pointers at all. 5839 if (C->getType()->isPointerTy()) return nullptr; 5840 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 5841 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 5842 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 5843 C = ConstantExpr::getMul(C, C2); 5844 } 5845 return C; 5846 } 5847 break; 5848 } 5849 case scUDivExpr: { 5850 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 5851 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 5852 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 5853 if (LHS->getType() == RHS->getType()) 5854 return ConstantExpr::getUDiv(LHS, RHS); 5855 break; 5856 } 5857 case scSMaxExpr: 5858 case scUMaxExpr: 5859 break; // TODO: smax, umax. 5860 } 5861 return nullptr; 5862 } 5863 5864 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 5865 if (isa<SCEVConstant>(V)) return V; 5866 5867 // If this instruction is evolved from a constant-evolving PHI, compute the 5868 // exit value from the loop without using SCEVs. 5869 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 5870 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 5871 const Loop *LI = this->LI[I->getParent()]; 5872 if (LI && LI->getParentLoop() == L) // Looking for loop exit value. 5873 if (PHINode *PN = dyn_cast<PHINode>(I)) 5874 if (PN->getParent() == LI->getHeader()) { 5875 // Okay, there is no closed form solution for the PHI node. Check 5876 // to see if the loop that contains it has a known backedge-taken 5877 // count. If so, we may be able to force computation of the exit 5878 // value. 5879 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 5880 if (const SCEVConstant *BTCC = 5881 dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 5882 // Okay, we know how many times the containing loop executes. If 5883 // this is a constant evolving PHI node, get the final value at 5884 // the specified iteration number. 5885 Constant *RV = getConstantEvolutionLoopExitValue(PN, 5886 BTCC->getValue()->getValue(), 5887 LI); 5888 if (RV) return getSCEV(RV); 5889 } 5890 } 5891 5892 // Okay, this is an expression that we cannot symbolically evaluate 5893 // into a SCEV. Check to see if it's possible to symbolically evaluate 5894 // the arguments into constants, and if so, try to constant propagate the 5895 // result. This is particularly useful for computing loop exit values. 5896 if (CanConstantFold(I)) { 5897 SmallVector<Constant *, 4> Operands; 5898 bool MadeImprovement = false; 5899 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 5900 Value *Op = I->getOperand(i); 5901 if (Constant *C = dyn_cast<Constant>(Op)) { 5902 Operands.push_back(C); 5903 continue; 5904 } 5905 5906 // If any of the operands is non-constant and if they are 5907 // non-integer and non-pointer, don't even try to analyze them 5908 // with scev techniques. 5909 if (!isSCEVable(Op->getType())) 5910 return V; 5911 5912 const SCEV *OrigV = getSCEV(Op); 5913 const SCEV *OpV = getSCEVAtScope(OrigV, L); 5914 MadeImprovement |= OrigV != OpV; 5915 5916 Constant *C = BuildConstantFromSCEV(OpV); 5917 if (!C) return V; 5918 if (C->getType() != Op->getType()) 5919 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 5920 Op->getType(), 5921 false), 5922 C, Op->getType()); 5923 Operands.push_back(C); 5924 } 5925 5926 // Check to see if getSCEVAtScope actually made an improvement. 5927 if (MadeImprovement) { 5928 Constant *C = nullptr; 5929 const DataLayout &DL = F.getParent()->getDataLayout(); 5930 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 5931 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 5932 Operands[1], DL, &TLI); 5933 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 5934 if (!LI->isVolatile()) 5935 C = ConstantFoldLoadFromConstPtr(Operands[0], DL); 5936 } else 5937 C = ConstantFoldInstOperands(I->getOpcode(), I->getType(), Operands, 5938 DL, &TLI); 5939 if (!C) return V; 5940 return getSCEV(C); 5941 } 5942 } 5943 } 5944 5945 // This is some other type of SCEVUnknown, just return it. 5946 return V; 5947 } 5948 5949 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 5950 // Avoid performing the look-up in the common case where the specified 5951 // expression has no loop-variant portions. 5952 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 5953 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5954 if (OpAtScope != Comm->getOperand(i)) { 5955 // Okay, at least one of these operands is loop variant but might be 5956 // foldable. Build a new instance of the folded commutative expression. 5957 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 5958 Comm->op_begin()+i); 5959 NewOps.push_back(OpAtScope); 5960 5961 for (++i; i != e; ++i) { 5962 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 5963 NewOps.push_back(OpAtScope); 5964 } 5965 if (isa<SCEVAddExpr>(Comm)) 5966 return getAddExpr(NewOps); 5967 if (isa<SCEVMulExpr>(Comm)) 5968 return getMulExpr(NewOps); 5969 if (isa<SCEVSMaxExpr>(Comm)) 5970 return getSMaxExpr(NewOps); 5971 if (isa<SCEVUMaxExpr>(Comm)) 5972 return getUMaxExpr(NewOps); 5973 llvm_unreachable("Unknown commutative SCEV type!"); 5974 } 5975 } 5976 // If we got here, all operands are loop invariant. 5977 return Comm; 5978 } 5979 5980 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 5981 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 5982 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 5983 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 5984 return Div; // must be loop invariant 5985 return getUDivExpr(LHS, RHS); 5986 } 5987 5988 // If this is a loop recurrence for a loop that does not contain L, then we 5989 // are dealing with the final value computed by the loop. 5990 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 5991 // First, attempt to evaluate each operand. 5992 // Avoid performing the look-up in the common case where the specified 5993 // expression has no loop-variant portions. 5994 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 5995 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 5996 if (OpAtScope == AddRec->getOperand(i)) 5997 continue; 5998 5999 // Okay, at least one of these operands is loop variant but might be 6000 // foldable. Build a new instance of the folded commutative expression. 6001 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 6002 AddRec->op_begin()+i); 6003 NewOps.push_back(OpAtScope); 6004 for (++i; i != e; ++i) 6005 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 6006 6007 const SCEV *FoldedRec = 6008 getAddRecExpr(NewOps, AddRec->getLoop(), 6009 AddRec->getNoWrapFlags(SCEV::FlagNW)); 6010 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 6011 // The addrec may be folded to a nonrecurrence, for example, if the 6012 // induction variable is multiplied by zero after constant folding. Go 6013 // ahead and return the folded value. 6014 if (!AddRec) 6015 return FoldedRec; 6016 break; 6017 } 6018 6019 // If the scope is outside the addrec's loop, evaluate it by using the 6020 // loop exit value of the addrec. 6021 if (!AddRec->getLoop()->contains(L)) { 6022 // To evaluate this recurrence, we need to know how many times the AddRec 6023 // loop iterates. Compute this now. 6024 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 6025 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 6026 6027 // Then, evaluate the AddRec. 6028 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 6029 } 6030 6031 return AddRec; 6032 } 6033 6034 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 6035 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6036 if (Op == Cast->getOperand()) 6037 return Cast; // must be loop invariant 6038 return getZeroExtendExpr(Op, Cast->getType()); 6039 } 6040 6041 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 6042 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6043 if (Op == Cast->getOperand()) 6044 return Cast; // must be loop invariant 6045 return getSignExtendExpr(Op, Cast->getType()); 6046 } 6047 6048 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 6049 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 6050 if (Op == Cast->getOperand()) 6051 return Cast; // must be loop invariant 6052 return getTruncateExpr(Op, Cast->getType()); 6053 } 6054 6055 llvm_unreachable("Unknown SCEV type!"); 6056 } 6057 6058 /// getSCEVAtScope - This is a convenience function which does 6059 /// getSCEVAtScope(getSCEV(V), L). 6060 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 6061 return getSCEVAtScope(getSCEV(V), L); 6062 } 6063 6064 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the 6065 /// following equation: 6066 /// 6067 /// A * X = B (mod N) 6068 /// 6069 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 6070 /// A and B isn't important. 6071 /// 6072 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 6073 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B, 6074 ScalarEvolution &SE) { 6075 uint32_t BW = A.getBitWidth(); 6076 assert(BW == B.getBitWidth() && "Bit widths must be the same."); 6077 assert(A != 0 && "A must be non-zero."); 6078 6079 // 1. D = gcd(A, N) 6080 // 6081 // The gcd of A and N may have only one prime factor: 2. The number of 6082 // trailing zeros in A is its multiplicity 6083 uint32_t Mult2 = A.countTrailingZeros(); 6084 // D = 2^Mult2 6085 6086 // 2. Check if B is divisible by D. 6087 // 6088 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 6089 // is not less than multiplicity of this prime factor for D. 6090 if (B.countTrailingZeros() < Mult2) 6091 return SE.getCouldNotCompute(); 6092 6093 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 6094 // modulo (N / D). 6095 // 6096 // (N / D) may need BW+1 bits in its representation. Hence, we'll use this 6097 // bit width during computations. 6098 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 6099 APInt Mod(BW + 1, 0); 6100 Mod.setBit(BW - Mult2); // Mod = N / D 6101 APInt I = AD.multiplicativeInverse(Mod); 6102 6103 // 4. Compute the minimum unsigned root of the equation: 6104 // I * (B / D) mod (N / D) 6105 APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod); 6106 6107 // The result is guaranteed to be less than 2^BW so we may truncate it to BW 6108 // bits. 6109 return SE.getConstant(Result.trunc(BW)); 6110 } 6111 6112 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the 6113 /// given quadratic chrec {L,+,M,+,N}. This returns either the two roots (which 6114 /// might be the same) or two SCEVCouldNotCompute objects. 6115 /// 6116 static std::pair<const SCEV *,const SCEV *> 6117 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 6118 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 6119 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 6120 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 6121 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 6122 6123 // We currently can only solve this if the coefficients are constants. 6124 if (!LC || !MC || !NC) { 6125 const SCEV *CNC = SE.getCouldNotCompute(); 6126 return std::make_pair(CNC, CNC); 6127 } 6128 6129 uint32_t BitWidth = LC->getValue()->getValue().getBitWidth(); 6130 const APInt &L = LC->getValue()->getValue(); 6131 const APInt &M = MC->getValue()->getValue(); 6132 const APInt &N = NC->getValue()->getValue(); 6133 APInt Two(BitWidth, 2); 6134 APInt Four(BitWidth, 4); 6135 6136 { 6137 using namespace APIntOps; 6138 const APInt& C = L; 6139 // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C 6140 // The B coefficient is M-N/2 6141 APInt B(M); 6142 B -= sdiv(N,Two); 6143 6144 // The A coefficient is N/2 6145 APInt A(N.sdiv(Two)); 6146 6147 // Compute the B^2-4ac term. 6148 APInt SqrtTerm(B); 6149 SqrtTerm *= B; 6150 SqrtTerm -= Four * (A * C); 6151 6152 if (SqrtTerm.isNegative()) { 6153 // The loop is provably infinite. 6154 const SCEV *CNC = SE.getCouldNotCompute(); 6155 return std::make_pair(CNC, CNC); 6156 } 6157 6158 // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest 6159 // integer value or else APInt::sqrt() will assert. 6160 APInt SqrtVal(SqrtTerm.sqrt()); 6161 6162 // Compute the two solutions for the quadratic formula. 6163 // The divisions must be performed as signed divisions. 6164 APInt NegB(-B); 6165 APInt TwoA(A << 1); 6166 if (TwoA.isMinValue()) { 6167 const SCEV *CNC = SE.getCouldNotCompute(); 6168 return std::make_pair(CNC, CNC); 6169 } 6170 6171 LLVMContext &Context = SE.getContext(); 6172 6173 ConstantInt *Solution1 = 6174 ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA)); 6175 ConstantInt *Solution2 = 6176 ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA)); 6177 6178 return std::make_pair(SE.getConstant(Solution1), 6179 SE.getConstant(Solution2)); 6180 } // end APIntOps namespace 6181 } 6182 6183 /// HowFarToZero - Return the number of times a backedge comparing the specified 6184 /// value to zero will execute. If not computable, return CouldNotCompute. 6185 /// 6186 /// This is only used for loops with a "x != y" exit test. The exit condition is 6187 /// now expressed as a single expression, V = x-y. So the exit test is 6188 /// effectively V != 0. We know and take advantage of the fact that this 6189 /// expression only being used in a comparison by zero context. 6190 ScalarEvolution::ExitLimit 6191 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit) { 6192 // If the value is a constant 6193 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6194 // If the value is already zero, the branch will execute zero times. 6195 if (C->getValue()->isZero()) return C; 6196 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6197 } 6198 6199 const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V); 6200 if (!AddRec || AddRec->getLoop() != L) 6201 return getCouldNotCompute(); 6202 6203 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 6204 // the quadratic equation to solve it. 6205 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 6206 std::pair<const SCEV *,const SCEV *> Roots = 6207 SolveQuadraticEquation(AddRec, *this); 6208 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 6209 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 6210 if (R1 && R2) { 6211 #if 0 6212 dbgs() << "HFTZ: " << *V << " - sol#1: " << *R1 6213 << " sol#2: " << *R2 << "\n"; 6214 #endif 6215 // Pick the smallest positive root value. 6216 if (ConstantInt *CB = 6217 dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT, 6218 R1->getValue(), 6219 R2->getValue()))) { 6220 if (!CB->getZExtValue()) 6221 std::swap(R1, R2); // R1 is the minimum root now. 6222 6223 // We can only use this value if the chrec ends up with an exact zero 6224 // value at this index. When solving for "X*X != 5", for example, we 6225 // should not accept a root of 2. 6226 const SCEV *Val = AddRec->evaluateAtIteration(R1, *this); 6227 if (Val->isZero()) 6228 return R1; // We found a quadratic root! 6229 } 6230 } 6231 return getCouldNotCompute(); 6232 } 6233 6234 // Otherwise we can only handle this if it is affine. 6235 if (!AddRec->isAffine()) 6236 return getCouldNotCompute(); 6237 6238 // If this is an affine expression, the execution count of this branch is 6239 // the minimum unsigned root of the following equation: 6240 // 6241 // Start + Step*N = 0 (mod 2^BW) 6242 // 6243 // equivalent to: 6244 // 6245 // Step*N = -Start (mod 2^BW) 6246 // 6247 // where BW is the common bit width of Start and Step. 6248 6249 // Get the initial value for the loop. 6250 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 6251 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 6252 6253 // For now we handle only constant steps. 6254 // 6255 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 6256 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 6257 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 6258 // We have not yet seen any such cases. 6259 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 6260 if (!StepC || StepC->getValue()->equalsInt(0)) 6261 return getCouldNotCompute(); 6262 6263 // For positive steps (counting up until unsigned overflow): 6264 // N = -Start/Step (as unsigned) 6265 // For negative steps (counting down to zero): 6266 // N = Start/-Step 6267 // First compute the unsigned distance from zero in the direction of Step. 6268 bool CountDown = StepC->getValue()->getValue().isNegative(); 6269 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 6270 6271 // Handle unitary steps, which cannot wraparound. 6272 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 6273 // N = Distance (as unsigned) 6274 if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) { 6275 ConstantRange CR = getUnsignedRange(Start); 6276 const SCEV *MaxBECount; 6277 if (!CountDown && CR.getUnsignedMin().isMinValue()) 6278 // When counting up, the worst starting value is 1, not 0. 6279 MaxBECount = CR.getUnsignedMax().isMinValue() 6280 ? getConstant(APInt::getMinValue(CR.getBitWidth())) 6281 : getConstant(APInt::getMaxValue(CR.getBitWidth())); 6282 else 6283 MaxBECount = getConstant(CountDown ? CR.getUnsignedMax() 6284 : -CR.getUnsignedMin()); 6285 return ExitLimit(Distance, MaxBECount); 6286 } 6287 6288 // As a special case, handle the instance where Step is a positive power of 6289 // two. In this case, determining whether Step divides Distance evenly can be 6290 // done by counting and comparing the number of trailing zeros of Step and 6291 // Distance. 6292 if (!CountDown) { 6293 const APInt &StepV = StepC->getValue()->getValue(); 6294 // StepV.isPowerOf2() returns true if StepV is an positive power of two. It 6295 // also returns true if StepV is maximally negative (eg, INT_MIN), but that 6296 // case is not handled as this code is guarded by !CountDown. 6297 if (StepV.isPowerOf2() && 6298 GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) { 6299 // Here we've constrained the equation to be of the form 6300 // 6301 // 2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W) ... (0) 6302 // 6303 // where we're operating on a W bit wide integer domain and k is 6304 // non-negative. The smallest unsigned solution for X is the trip count. 6305 // 6306 // (0) is equivalent to: 6307 // 6308 // 2^(N + k) * Distance' - 2^N * X = L * 2^W 6309 // <=> 2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N 6310 // <=> 2^k * Distance' - X = L * 2^(W - N) 6311 // <=> 2^k * Distance' = L * 2^(W - N) + X ... (1) 6312 // 6313 // The smallest X satisfying (1) is unsigned remainder of dividing the LHS 6314 // by 2^(W - N). 6315 // 6316 // <=> X = 2^k * Distance' URem 2^(W - N) ... (2) 6317 // 6318 // E.g. say we're solving 6319 // 6320 // 2 * Val = 2 * X (in i8) ... (3) 6321 // 6322 // then from (2), we get X = Val URem i8 128 (k = 0 in this case). 6323 // 6324 // Note: It is tempting to solve (3) by setting X = Val, but Val is not 6325 // necessarily the smallest unsigned value of X that satisfies (3). 6326 // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3) 6327 // is i8 1, not i8 -127 6328 6329 const auto *ModuloResult = getUDivExactExpr(Distance, Step); 6330 6331 // Since SCEV does not have a URem node, we construct one using a truncate 6332 // and a zero extend. 6333 6334 unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros(); 6335 auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth); 6336 auto *WideTy = Distance->getType(); 6337 6338 return getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy); 6339 } 6340 } 6341 6342 // If the condition controls loop exit (the loop exits only if the expression 6343 // is true) and the addition is no-wrap we can use unsigned divide to 6344 // compute the backedge count. In this case, the step may not divide the 6345 // distance, but we don't care because if the condition is "missed" the loop 6346 // will have undefined behavior due to wrapping. 6347 if (ControlsExit && AddRec->getNoWrapFlags(SCEV::FlagNW)) { 6348 const SCEV *Exact = 6349 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 6350 return ExitLimit(Exact, Exact); 6351 } 6352 6353 // Then, try to solve the above equation provided that Start is constant. 6354 if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) 6355 return SolveLinEquationWithOverflow(StepC->getValue()->getValue(), 6356 -StartC->getValue()->getValue(), 6357 *this); 6358 return getCouldNotCompute(); 6359 } 6360 6361 /// HowFarToNonZero - Return the number of times a backedge checking the 6362 /// specified value for nonzero will execute. If not computable, return 6363 /// CouldNotCompute 6364 ScalarEvolution::ExitLimit 6365 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) { 6366 // Loops that look like: while (X == 0) are very strange indeed. We don't 6367 // handle them yet except for the trivial case. This could be expanded in the 6368 // future as needed. 6369 6370 // If the value is a constant, check to see if it is known to be non-zero 6371 // already. If so, the backedge will execute zero times. 6372 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 6373 if (!C->getValue()->isNullValue()) 6374 return getZero(C->getType()); 6375 return getCouldNotCompute(); // Otherwise it will loop infinitely. 6376 } 6377 6378 // We could implement others, but I really doubt anyone writes loops like 6379 // this, and if they did, they would already be constant folded. 6380 return getCouldNotCompute(); 6381 } 6382 6383 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB 6384 /// (which may not be an immediate predecessor) which has exactly one 6385 /// successor from which BB is reachable, or null if no such block is 6386 /// found. 6387 /// 6388 std::pair<BasicBlock *, BasicBlock *> 6389 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 6390 // If the block has a unique predecessor, then there is no path from the 6391 // predecessor to the block that does not go through the direct edge 6392 // from the predecessor to the block. 6393 if (BasicBlock *Pred = BB->getSinglePredecessor()) 6394 return std::make_pair(Pred, BB); 6395 6396 // A loop's header is defined to be a block that dominates the loop. 6397 // If the header has a unique predecessor outside the loop, it must be 6398 // a block that has exactly one successor that can reach the loop. 6399 if (Loop *L = LI.getLoopFor(BB)) 6400 return std::make_pair(L->getLoopPredecessor(), L->getHeader()); 6401 6402 return std::pair<BasicBlock *, BasicBlock *>(); 6403 } 6404 6405 /// HasSameValue - SCEV structural equivalence is usually sufficient for 6406 /// testing whether two expressions are equal, however for the purposes of 6407 /// looking for a condition guarding a loop, it can be useful to be a little 6408 /// more general, since a front-end may have replicated the controlling 6409 /// expression. 6410 /// 6411 static bool HasSameValue(const SCEV *A, const SCEV *B) { 6412 // Quick check to see if they are the same SCEV. 6413 if (A == B) return true; 6414 6415 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 6416 // Not all instructions that are "identical" compute the same value. For 6417 // instance, two distinct alloca instructions allocating the same type are 6418 // identical and do not read memory; but compute distinct values. 6419 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 6420 }; 6421 6422 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 6423 // two different instructions with the same value. Check for this case. 6424 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 6425 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 6426 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 6427 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 6428 if (ComputesEqualValues(AI, BI)) 6429 return true; 6430 6431 // Otherwise assume they may have a different value. 6432 return false; 6433 } 6434 6435 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with 6436 /// predicate Pred. Return true iff any changes were made. 6437 /// 6438 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 6439 const SCEV *&LHS, const SCEV *&RHS, 6440 unsigned Depth) { 6441 bool Changed = false; 6442 6443 // If we hit the max recursion limit bail out. 6444 if (Depth >= 3) 6445 return false; 6446 6447 // Canonicalize a constant to the right side. 6448 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 6449 // Check for both operands constant. 6450 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 6451 if (ConstantExpr::getICmp(Pred, 6452 LHSC->getValue(), 6453 RHSC->getValue())->isNullValue()) 6454 goto trivially_false; 6455 else 6456 goto trivially_true; 6457 } 6458 // Otherwise swap the operands to put the constant on the right. 6459 std::swap(LHS, RHS); 6460 Pred = ICmpInst::getSwappedPredicate(Pred); 6461 Changed = true; 6462 } 6463 6464 // If we're comparing an addrec with a value which is loop-invariant in the 6465 // addrec's loop, put the addrec on the left. Also make a dominance check, 6466 // as both operands could be addrecs loop-invariant in each other's loop. 6467 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 6468 const Loop *L = AR->getLoop(); 6469 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 6470 std::swap(LHS, RHS); 6471 Pred = ICmpInst::getSwappedPredicate(Pred); 6472 Changed = true; 6473 } 6474 } 6475 6476 // If there's a constant operand, canonicalize comparisons with boundary 6477 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 6478 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 6479 const APInt &RA = RC->getValue()->getValue(); 6480 switch (Pred) { 6481 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6482 case ICmpInst::ICMP_EQ: 6483 case ICmpInst::ICMP_NE: 6484 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 6485 if (!RA) 6486 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 6487 if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 6488 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 6489 ME->getOperand(0)->isAllOnesValue()) { 6490 RHS = AE->getOperand(1); 6491 LHS = ME->getOperand(1); 6492 Changed = true; 6493 } 6494 break; 6495 case ICmpInst::ICMP_UGE: 6496 if ((RA - 1).isMinValue()) { 6497 Pred = ICmpInst::ICMP_NE; 6498 RHS = getConstant(RA - 1); 6499 Changed = true; 6500 break; 6501 } 6502 if (RA.isMaxValue()) { 6503 Pred = ICmpInst::ICMP_EQ; 6504 Changed = true; 6505 break; 6506 } 6507 if (RA.isMinValue()) goto trivially_true; 6508 6509 Pred = ICmpInst::ICMP_UGT; 6510 RHS = getConstant(RA - 1); 6511 Changed = true; 6512 break; 6513 case ICmpInst::ICMP_ULE: 6514 if ((RA + 1).isMaxValue()) { 6515 Pred = ICmpInst::ICMP_NE; 6516 RHS = getConstant(RA + 1); 6517 Changed = true; 6518 break; 6519 } 6520 if (RA.isMinValue()) { 6521 Pred = ICmpInst::ICMP_EQ; 6522 Changed = true; 6523 break; 6524 } 6525 if (RA.isMaxValue()) goto trivially_true; 6526 6527 Pred = ICmpInst::ICMP_ULT; 6528 RHS = getConstant(RA + 1); 6529 Changed = true; 6530 break; 6531 case ICmpInst::ICMP_SGE: 6532 if ((RA - 1).isMinSignedValue()) { 6533 Pred = ICmpInst::ICMP_NE; 6534 RHS = getConstant(RA - 1); 6535 Changed = true; 6536 break; 6537 } 6538 if (RA.isMaxSignedValue()) { 6539 Pred = ICmpInst::ICMP_EQ; 6540 Changed = true; 6541 break; 6542 } 6543 if (RA.isMinSignedValue()) goto trivially_true; 6544 6545 Pred = ICmpInst::ICMP_SGT; 6546 RHS = getConstant(RA - 1); 6547 Changed = true; 6548 break; 6549 case ICmpInst::ICMP_SLE: 6550 if ((RA + 1).isMaxSignedValue()) { 6551 Pred = ICmpInst::ICMP_NE; 6552 RHS = getConstant(RA + 1); 6553 Changed = true; 6554 break; 6555 } 6556 if (RA.isMinSignedValue()) { 6557 Pred = ICmpInst::ICMP_EQ; 6558 Changed = true; 6559 break; 6560 } 6561 if (RA.isMaxSignedValue()) goto trivially_true; 6562 6563 Pred = ICmpInst::ICMP_SLT; 6564 RHS = getConstant(RA + 1); 6565 Changed = true; 6566 break; 6567 case ICmpInst::ICMP_UGT: 6568 if (RA.isMinValue()) { 6569 Pred = ICmpInst::ICMP_NE; 6570 Changed = true; 6571 break; 6572 } 6573 if ((RA + 1).isMaxValue()) { 6574 Pred = ICmpInst::ICMP_EQ; 6575 RHS = getConstant(RA + 1); 6576 Changed = true; 6577 break; 6578 } 6579 if (RA.isMaxValue()) goto trivially_false; 6580 break; 6581 case ICmpInst::ICMP_ULT: 6582 if (RA.isMaxValue()) { 6583 Pred = ICmpInst::ICMP_NE; 6584 Changed = true; 6585 break; 6586 } 6587 if ((RA - 1).isMinValue()) { 6588 Pred = ICmpInst::ICMP_EQ; 6589 RHS = getConstant(RA - 1); 6590 Changed = true; 6591 break; 6592 } 6593 if (RA.isMinValue()) goto trivially_false; 6594 break; 6595 case ICmpInst::ICMP_SGT: 6596 if (RA.isMinSignedValue()) { 6597 Pred = ICmpInst::ICMP_NE; 6598 Changed = true; 6599 break; 6600 } 6601 if ((RA + 1).isMaxSignedValue()) { 6602 Pred = ICmpInst::ICMP_EQ; 6603 RHS = getConstant(RA + 1); 6604 Changed = true; 6605 break; 6606 } 6607 if (RA.isMaxSignedValue()) goto trivially_false; 6608 break; 6609 case ICmpInst::ICMP_SLT: 6610 if (RA.isMaxSignedValue()) { 6611 Pred = ICmpInst::ICMP_NE; 6612 Changed = true; 6613 break; 6614 } 6615 if ((RA - 1).isMinSignedValue()) { 6616 Pred = ICmpInst::ICMP_EQ; 6617 RHS = getConstant(RA - 1); 6618 Changed = true; 6619 break; 6620 } 6621 if (RA.isMinSignedValue()) goto trivially_false; 6622 break; 6623 } 6624 } 6625 6626 // Check for obvious equality. 6627 if (HasSameValue(LHS, RHS)) { 6628 if (ICmpInst::isTrueWhenEqual(Pred)) 6629 goto trivially_true; 6630 if (ICmpInst::isFalseWhenEqual(Pred)) 6631 goto trivially_false; 6632 } 6633 6634 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 6635 // adding or subtracting 1 from one of the operands. 6636 switch (Pred) { 6637 case ICmpInst::ICMP_SLE: 6638 if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) { 6639 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6640 SCEV::FlagNSW); 6641 Pred = ICmpInst::ICMP_SLT; 6642 Changed = true; 6643 } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) { 6644 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6645 SCEV::FlagNSW); 6646 Pred = ICmpInst::ICMP_SLT; 6647 Changed = true; 6648 } 6649 break; 6650 case ICmpInst::ICMP_SGE: 6651 if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) { 6652 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6653 SCEV::FlagNSW); 6654 Pred = ICmpInst::ICMP_SGT; 6655 Changed = true; 6656 } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) { 6657 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6658 SCEV::FlagNSW); 6659 Pred = ICmpInst::ICMP_SGT; 6660 Changed = true; 6661 } 6662 break; 6663 case ICmpInst::ICMP_ULE: 6664 if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) { 6665 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 6666 SCEV::FlagNUW); 6667 Pred = ICmpInst::ICMP_ULT; 6668 Changed = true; 6669 } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) { 6670 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 6671 SCEV::FlagNUW); 6672 Pred = ICmpInst::ICMP_ULT; 6673 Changed = true; 6674 } 6675 break; 6676 case ICmpInst::ICMP_UGE: 6677 if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) { 6678 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 6679 SCEV::FlagNUW); 6680 Pred = ICmpInst::ICMP_UGT; 6681 Changed = true; 6682 } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) { 6683 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 6684 SCEV::FlagNUW); 6685 Pred = ICmpInst::ICMP_UGT; 6686 Changed = true; 6687 } 6688 break; 6689 default: 6690 break; 6691 } 6692 6693 // TODO: More simplifications are possible here. 6694 6695 // Recursively simplify until we either hit a recursion limit or nothing 6696 // changes. 6697 if (Changed) 6698 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 6699 6700 return Changed; 6701 6702 trivially_true: 6703 // Return 0 == 0. 6704 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6705 Pred = ICmpInst::ICMP_EQ; 6706 return true; 6707 6708 trivially_false: 6709 // Return 0 != 0. 6710 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 6711 Pred = ICmpInst::ICMP_NE; 6712 return true; 6713 } 6714 6715 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 6716 return getSignedRange(S).getSignedMax().isNegative(); 6717 } 6718 6719 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 6720 return getSignedRange(S).getSignedMin().isStrictlyPositive(); 6721 } 6722 6723 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 6724 return !getSignedRange(S).getSignedMin().isNegative(); 6725 } 6726 6727 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 6728 return !getSignedRange(S).getSignedMax().isStrictlyPositive(); 6729 } 6730 6731 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 6732 return isKnownNegative(S) || isKnownPositive(S); 6733 } 6734 6735 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 6736 const SCEV *LHS, const SCEV *RHS) { 6737 // Canonicalize the inputs first. 6738 (void)SimplifyICmpOperands(Pred, LHS, RHS); 6739 6740 // If LHS or RHS is an addrec, check to see if the condition is true in 6741 // every iteration of the loop. 6742 // If LHS and RHS are both addrec, both conditions must be true in 6743 // every iteration of the loop. 6744 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 6745 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 6746 bool LeftGuarded = false; 6747 bool RightGuarded = false; 6748 if (LAR) { 6749 const Loop *L = LAR->getLoop(); 6750 if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) && 6751 isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) { 6752 if (!RAR) return true; 6753 LeftGuarded = true; 6754 } 6755 } 6756 if (RAR) { 6757 const Loop *L = RAR->getLoop(); 6758 if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) && 6759 isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) { 6760 if (!LAR) return true; 6761 RightGuarded = true; 6762 } 6763 } 6764 if (LeftGuarded && RightGuarded) 6765 return true; 6766 6767 // Otherwise see what can be done with known constant ranges. 6768 return isKnownPredicateWithRanges(Pred, LHS, RHS); 6769 } 6770 6771 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 6772 ICmpInst::Predicate Pred, 6773 bool &Increasing) { 6774 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 6775 6776 #ifndef NDEBUG 6777 // Verify an invariant: inverting the predicate should turn a monotonically 6778 // increasing change to a monotonically decreasing one, and vice versa. 6779 bool IncreasingSwapped; 6780 bool ResultSwapped = isMonotonicPredicateImpl( 6781 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 6782 6783 assert(Result == ResultSwapped && "should be able to analyze both!"); 6784 if (ResultSwapped) 6785 assert(Increasing == !IncreasingSwapped && 6786 "monotonicity should flip as we flip the predicate"); 6787 #endif 6788 6789 return Result; 6790 } 6791 6792 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 6793 ICmpInst::Predicate Pred, 6794 bool &Increasing) { 6795 6796 // A zero step value for LHS means the induction variable is essentially a 6797 // loop invariant value. We don't really depend on the predicate actually 6798 // flipping from false to true (for increasing predicates, and the other way 6799 // around for decreasing predicates), all we care about is that *if* the 6800 // predicate changes then it only changes from false to true. 6801 // 6802 // A zero step value in itself is not very useful, but there may be places 6803 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 6804 // as general as possible. 6805 6806 switch (Pred) { 6807 default: 6808 return false; // Conservative answer 6809 6810 case ICmpInst::ICMP_UGT: 6811 case ICmpInst::ICMP_UGE: 6812 case ICmpInst::ICMP_ULT: 6813 case ICmpInst::ICMP_ULE: 6814 if (!LHS->getNoWrapFlags(SCEV::FlagNUW)) 6815 return false; 6816 6817 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 6818 return true; 6819 6820 case ICmpInst::ICMP_SGT: 6821 case ICmpInst::ICMP_SGE: 6822 case ICmpInst::ICMP_SLT: 6823 case ICmpInst::ICMP_SLE: { 6824 if (!LHS->getNoWrapFlags(SCEV::FlagNSW)) 6825 return false; 6826 6827 const SCEV *Step = LHS->getStepRecurrence(*this); 6828 6829 if (isKnownNonNegative(Step)) { 6830 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 6831 return true; 6832 } 6833 6834 if (isKnownNonPositive(Step)) { 6835 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 6836 return true; 6837 } 6838 6839 return false; 6840 } 6841 6842 } 6843 6844 llvm_unreachable("switch has default clause!"); 6845 } 6846 6847 bool ScalarEvolution::isLoopInvariantPredicate( 6848 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 6849 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 6850 const SCEV *&InvariantRHS) { 6851 6852 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 6853 if (!isLoopInvariant(RHS, L)) { 6854 if (!isLoopInvariant(LHS, L)) 6855 return false; 6856 6857 std::swap(LHS, RHS); 6858 Pred = ICmpInst::getSwappedPredicate(Pred); 6859 } 6860 6861 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 6862 if (!ArLHS || ArLHS->getLoop() != L) 6863 return false; 6864 6865 bool Increasing; 6866 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 6867 return false; 6868 6869 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 6870 // true as the loop iterates, and the backedge is control dependent on 6871 // "ArLHS `Pred` RHS" == true then we can reason as follows: 6872 // 6873 // * if the predicate was false in the first iteration then the predicate 6874 // is never evaluated again, since the loop exits without taking the 6875 // backedge. 6876 // * if the predicate was true in the first iteration then it will 6877 // continue to be true for all future iterations since it is 6878 // monotonically increasing. 6879 // 6880 // For both the above possibilities, we can replace the loop varying 6881 // predicate with its value on the first iteration of the loop (which is 6882 // loop invariant). 6883 // 6884 // A similar reasoning applies for a monotonically decreasing predicate, by 6885 // replacing true with false and false with true in the above two bullets. 6886 6887 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 6888 6889 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 6890 return false; 6891 6892 InvariantPred = Pred; 6893 InvariantLHS = ArLHS->getStart(); 6894 InvariantRHS = RHS; 6895 return true; 6896 } 6897 6898 bool 6899 ScalarEvolution::isKnownPredicateWithRanges(ICmpInst::Predicate Pred, 6900 const SCEV *LHS, const SCEV *RHS) { 6901 if (HasSameValue(LHS, RHS)) 6902 return ICmpInst::isTrueWhenEqual(Pred); 6903 6904 // This code is split out from isKnownPredicate because it is called from 6905 // within isLoopEntryGuardedByCond. 6906 switch (Pred) { 6907 default: 6908 llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 6909 case ICmpInst::ICMP_SGT: 6910 std::swap(LHS, RHS); 6911 case ICmpInst::ICMP_SLT: { 6912 ConstantRange LHSRange = getSignedRange(LHS); 6913 ConstantRange RHSRange = getSignedRange(RHS); 6914 if (LHSRange.getSignedMax().slt(RHSRange.getSignedMin())) 6915 return true; 6916 if (LHSRange.getSignedMin().sge(RHSRange.getSignedMax())) 6917 return false; 6918 break; 6919 } 6920 case ICmpInst::ICMP_SGE: 6921 std::swap(LHS, RHS); 6922 case ICmpInst::ICMP_SLE: { 6923 ConstantRange LHSRange = getSignedRange(LHS); 6924 ConstantRange RHSRange = getSignedRange(RHS); 6925 if (LHSRange.getSignedMax().sle(RHSRange.getSignedMin())) 6926 return true; 6927 if (LHSRange.getSignedMin().sgt(RHSRange.getSignedMax())) 6928 return false; 6929 break; 6930 } 6931 case ICmpInst::ICMP_UGT: 6932 std::swap(LHS, RHS); 6933 case ICmpInst::ICMP_ULT: { 6934 ConstantRange LHSRange = getUnsignedRange(LHS); 6935 ConstantRange RHSRange = getUnsignedRange(RHS); 6936 if (LHSRange.getUnsignedMax().ult(RHSRange.getUnsignedMin())) 6937 return true; 6938 if (LHSRange.getUnsignedMin().uge(RHSRange.getUnsignedMax())) 6939 return false; 6940 break; 6941 } 6942 case ICmpInst::ICMP_UGE: 6943 std::swap(LHS, RHS); 6944 case ICmpInst::ICMP_ULE: { 6945 ConstantRange LHSRange = getUnsignedRange(LHS); 6946 ConstantRange RHSRange = getUnsignedRange(RHS); 6947 if (LHSRange.getUnsignedMax().ule(RHSRange.getUnsignedMin())) 6948 return true; 6949 if (LHSRange.getUnsignedMin().ugt(RHSRange.getUnsignedMax())) 6950 return false; 6951 break; 6952 } 6953 case ICmpInst::ICMP_NE: { 6954 if (getUnsignedRange(LHS).intersectWith(getUnsignedRange(RHS)).isEmptySet()) 6955 return true; 6956 if (getSignedRange(LHS).intersectWith(getSignedRange(RHS)).isEmptySet()) 6957 return true; 6958 6959 const SCEV *Diff = getMinusSCEV(LHS, RHS); 6960 if (isKnownNonZero(Diff)) 6961 return true; 6962 break; 6963 } 6964 case ICmpInst::ICMP_EQ: 6965 // The check at the top of the function catches the case where 6966 // the values are known to be equal. 6967 break; 6968 } 6969 return false; 6970 } 6971 6972 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 6973 /// protected by a conditional between LHS and RHS. This is used to 6974 /// to eliminate casts. 6975 bool 6976 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 6977 ICmpInst::Predicate Pred, 6978 const SCEV *LHS, const SCEV *RHS) { 6979 // Interpret a null as meaning no loop, where there is obviously no guard 6980 // (interprocedural conditions notwithstanding). 6981 if (!L) return true; 6982 6983 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 6984 6985 BasicBlock *Latch = L->getLoopLatch(); 6986 if (!Latch) 6987 return false; 6988 6989 BranchInst *LoopContinuePredicate = 6990 dyn_cast<BranchInst>(Latch->getTerminator()); 6991 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 6992 isImpliedCond(Pred, LHS, RHS, 6993 LoopContinuePredicate->getCondition(), 6994 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 6995 return true; 6996 6997 // We don't want more than one activation of the following loops on the stack 6998 // -- that can lead to O(n!) time complexity. 6999 if (WalkingBEDominatingConds) 7000 return false; 7001 7002 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 7003 7004 // See if we can exploit a trip count to prove the predicate. 7005 const auto &BETakenInfo = getBackedgeTakenInfo(L); 7006 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 7007 if (LatchBECount != getCouldNotCompute()) { 7008 // We know that Latch branches back to the loop header exactly 7009 // LatchBECount times. This means the backdege condition at Latch is 7010 // equivalent to "{0,+,1} u< LatchBECount". 7011 Type *Ty = LatchBECount->getType(); 7012 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 7013 const SCEV *LoopCounter = 7014 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 7015 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 7016 LatchBECount)) 7017 return true; 7018 } 7019 7020 // Check conditions due to any @llvm.assume intrinsics. 7021 for (auto &AssumeVH : AC.assumptions()) { 7022 if (!AssumeVH) 7023 continue; 7024 auto *CI = cast<CallInst>(AssumeVH); 7025 if (!DT.dominates(CI, Latch->getTerminator())) 7026 continue; 7027 7028 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7029 return true; 7030 } 7031 7032 // If the loop is not reachable from the entry block, we risk running into an 7033 // infinite loop as we walk up into the dom tree. These loops do not matter 7034 // anyway, so we just return a conservative answer when we see them. 7035 if (!DT.isReachableFromEntry(L->getHeader())) 7036 return false; 7037 7038 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 7039 DTN != HeaderDTN; DTN = DTN->getIDom()) { 7040 7041 assert(DTN && "should reach the loop header before reaching the root!"); 7042 7043 BasicBlock *BB = DTN->getBlock(); 7044 BasicBlock *PBB = BB->getSinglePredecessor(); 7045 if (!PBB) 7046 continue; 7047 7048 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 7049 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 7050 continue; 7051 7052 Value *Condition = ContinuePredicate->getCondition(); 7053 7054 // If we have an edge `E` within the loop body that dominates the only 7055 // latch, the condition guarding `E` also guards the backedge. This 7056 // reasoning works only for loops with a single latch. 7057 7058 BasicBlockEdge DominatingEdge(PBB, BB); 7059 if (DominatingEdge.isSingleEdge()) { 7060 // We're constructively (and conservatively) enumerating edges within the 7061 // loop body that dominate the latch. The dominator tree better agree 7062 // with us on this: 7063 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 7064 7065 if (isImpliedCond(Pred, LHS, RHS, Condition, 7066 BB != ContinuePredicate->getSuccessor(0))) 7067 return true; 7068 } 7069 } 7070 7071 return false; 7072 } 7073 7074 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected 7075 /// by a conditional between LHS and RHS. This is used to help avoid max 7076 /// expressions in loop trip counts, and to eliminate casts. 7077 bool 7078 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 7079 ICmpInst::Predicate Pred, 7080 const SCEV *LHS, const SCEV *RHS) { 7081 // Interpret a null as meaning no loop, where there is obviously no guard 7082 // (interprocedural conditions notwithstanding). 7083 if (!L) return false; 7084 7085 if (isKnownPredicateWithRanges(Pred, LHS, RHS)) return true; 7086 7087 // Starting at the loop predecessor, climb up the predecessor chain, as long 7088 // as there are predecessors that can be found that have unique successors 7089 // leading to the original header. 7090 for (std::pair<BasicBlock *, BasicBlock *> 7091 Pair(L->getLoopPredecessor(), L->getHeader()); 7092 Pair.first; 7093 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 7094 7095 BranchInst *LoopEntryPredicate = 7096 dyn_cast<BranchInst>(Pair.first->getTerminator()); 7097 if (!LoopEntryPredicate || 7098 LoopEntryPredicate->isUnconditional()) 7099 continue; 7100 7101 if (isImpliedCond(Pred, LHS, RHS, 7102 LoopEntryPredicate->getCondition(), 7103 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 7104 return true; 7105 } 7106 7107 // Check conditions due to any @llvm.assume intrinsics. 7108 for (auto &AssumeVH : AC.assumptions()) { 7109 if (!AssumeVH) 7110 continue; 7111 auto *CI = cast<CallInst>(AssumeVH); 7112 if (!DT.dominates(CI, L->getHeader())) 7113 continue; 7114 7115 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 7116 return true; 7117 } 7118 7119 return false; 7120 } 7121 7122 /// RAII wrapper to prevent recursive application of isImpliedCond. 7123 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are 7124 /// currently evaluating isImpliedCond. 7125 struct MarkPendingLoopPredicate { 7126 Value *Cond; 7127 DenseSet<Value*> &LoopPreds; 7128 bool Pending; 7129 7130 MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP) 7131 : Cond(C), LoopPreds(LP) { 7132 Pending = !LoopPreds.insert(Cond).second; 7133 } 7134 ~MarkPendingLoopPredicate() { 7135 if (!Pending) 7136 LoopPreds.erase(Cond); 7137 } 7138 }; 7139 7140 /// isImpliedCond - Test whether the condition described by Pred, LHS, 7141 /// and RHS is true whenever the given Cond value evaluates to true. 7142 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 7143 const SCEV *LHS, const SCEV *RHS, 7144 Value *FoundCondValue, 7145 bool Inverse) { 7146 MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates); 7147 if (Mark.Pending) 7148 return false; 7149 7150 // Recursively handle And and Or conditions. 7151 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 7152 if (BO->getOpcode() == Instruction::And) { 7153 if (!Inverse) 7154 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7155 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7156 } else if (BO->getOpcode() == Instruction::Or) { 7157 if (Inverse) 7158 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 7159 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 7160 } 7161 } 7162 7163 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 7164 if (!ICI) return false; 7165 7166 // Now that we found a conditional branch that dominates the loop or controls 7167 // the loop latch. Check to see if it is the comparison we are looking for. 7168 ICmpInst::Predicate FoundPred; 7169 if (Inverse) 7170 FoundPred = ICI->getInversePredicate(); 7171 else 7172 FoundPred = ICI->getPredicate(); 7173 7174 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 7175 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 7176 7177 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 7178 } 7179 7180 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 7181 const SCEV *RHS, 7182 ICmpInst::Predicate FoundPred, 7183 const SCEV *FoundLHS, 7184 const SCEV *FoundRHS) { 7185 // Balance the types. 7186 if (getTypeSizeInBits(LHS->getType()) < 7187 getTypeSizeInBits(FoundLHS->getType())) { 7188 if (CmpInst::isSigned(Pred)) { 7189 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 7190 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 7191 } else { 7192 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 7193 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 7194 } 7195 } else if (getTypeSizeInBits(LHS->getType()) > 7196 getTypeSizeInBits(FoundLHS->getType())) { 7197 if (CmpInst::isSigned(FoundPred)) { 7198 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 7199 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 7200 } else { 7201 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 7202 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 7203 } 7204 } 7205 7206 // Canonicalize the query to match the way instcombine will have 7207 // canonicalized the comparison. 7208 if (SimplifyICmpOperands(Pred, LHS, RHS)) 7209 if (LHS == RHS) 7210 return CmpInst::isTrueWhenEqual(Pred); 7211 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 7212 if (FoundLHS == FoundRHS) 7213 return CmpInst::isFalseWhenEqual(FoundPred); 7214 7215 // Check to see if we can make the LHS or RHS match. 7216 if (LHS == FoundRHS || RHS == FoundLHS) { 7217 if (isa<SCEVConstant>(RHS)) { 7218 std::swap(FoundLHS, FoundRHS); 7219 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 7220 } else { 7221 std::swap(LHS, RHS); 7222 Pred = ICmpInst::getSwappedPredicate(Pred); 7223 } 7224 } 7225 7226 // Check whether the found predicate is the same as the desired predicate. 7227 if (FoundPred == Pred) 7228 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 7229 7230 // Check whether swapping the found predicate makes it the same as the 7231 // desired predicate. 7232 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 7233 if (isa<SCEVConstant>(RHS)) 7234 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 7235 else 7236 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 7237 RHS, LHS, FoundLHS, FoundRHS); 7238 } 7239 7240 // Check if we can make progress by sharpening ranges. 7241 if (FoundPred == ICmpInst::ICMP_NE && 7242 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 7243 7244 const SCEVConstant *C = nullptr; 7245 const SCEV *V = nullptr; 7246 7247 if (isa<SCEVConstant>(FoundLHS)) { 7248 C = cast<SCEVConstant>(FoundLHS); 7249 V = FoundRHS; 7250 } else { 7251 C = cast<SCEVConstant>(FoundRHS); 7252 V = FoundLHS; 7253 } 7254 7255 // The guarding predicate tells us that C != V. If the known range 7256 // of V is [C, t), we can sharpen the range to [C + 1, t). The 7257 // range we consider has to correspond to same signedness as the 7258 // predicate we're interested in folding. 7259 7260 APInt Min = ICmpInst::isSigned(Pred) ? 7261 getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin(); 7262 7263 if (Min == C->getValue()->getValue()) { 7264 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 7265 // This is true even if (Min + 1) wraps around -- in case of 7266 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 7267 7268 APInt SharperMin = Min + 1; 7269 7270 switch (Pred) { 7271 case ICmpInst::ICMP_SGE: 7272 case ICmpInst::ICMP_UGE: 7273 // We know V `Pred` SharperMin. If this implies LHS `Pred` 7274 // RHS, we're done. 7275 if (isImpliedCondOperands(Pred, LHS, RHS, V, 7276 getConstant(SharperMin))) 7277 return true; 7278 7279 case ICmpInst::ICMP_SGT: 7280 case ICmpInst::ICMP_UGT: 7281 // We know from the range information that (V `Pred` Min || 7282 // V == Min). We know from the guarding condition that !(V 7283 // == Min). This gives us 7284 // 7285 // V `Pred` Min || V == Min && !(V == Min) 7286 // => V `Pred` Min 7287 // 7288 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 7289 7290 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 7291 return true; 7292 7293 default: 7294 // No change 7295 break; 7296 } 7297 } 7298 } 7299 7300 // Check whether the actual condition is beyond sufficient. 7301 if (FoundPred == ICmpInst::ICMP_EQ) 7302 if (ICmpInst::isTrueWhenEqual(Pred)) 7303 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7304 return true; 7305 if (Pred == ICmpInst::ICMP_NE) 7306 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 7307 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 7308 return true; 7309 7310 // Otherwise assume the worst. 7311 return false; 7312 } 7313 7314 // Return true if More == (Less + C), where C is a constant. 7315 static bool IsConstDiff(ScalarEvolution &SE, const SCEV *Less, const SCEV *More, 7316 APInt &C) { 7317 // We avoid subtracting expressions here because this function is usually 7318 // fairly deep in the call stack (i.e. is called many times). 7319 7320 auto SplitBinaryAdd = [](const SCEV *Expr, const SCEV *&L, const SCEV *&R) { 7321 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 7322 if (!AE || AE->getNumOperands() != 2) 7323 return false; 7324 7325 L = AE->getOperand(0); 7326 R = AE->getOperand(1); 7327 return true; 7328 }; 7329 7330 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 7331 const auto *LAR = cast<SCEVAddRecExpr>(Less); 7332 const auto *MAR = cast<SCEVAddRecExpr>(More); 7333 7334 if (LAR->getLoop() != MAR->getLoop()) 7335 return false; 7336 7337 // We look at affine expressions only; not for correctness but to keep 7338 // getStepRecurrence cheap. 7339 if (!LAR->isAffine() || !MAR->isAffine()) 7340 return false; 7341 7342 if (LAR->getStepRecurrence(SE) != MAR->getStepRecurrence(SE)) 7343 return false; 7344 7345 Less = LAR->getStart(); 7346 More = MAR->getStart(); 7347 7348 // fall through 7349 } 7350 7351 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 7352 const auto &M = cast<SCEVConstant>(More)->getValue()->getValue(); 7353 const auto &L = cast<SCEVConstant>(Less)->getValue()->getValue(); 7354 C = M - L; 7355 return true; 7356 } 7357 7358 const SCEV *L, *R; 7359 if (SplitBinaryAdd(Less, L, R)) 7360 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7361 if (R == More) { 7362 C = -(LC->getValue()->getValue()); 7363 return true; 7364 } 7365 7366 if (SplitBinaryAdd(More, L, R)) 7367 if (const auto *LC = dyn_cast<SCEVConstant>(L)) 7368 if (R == Less) { 7369 C = LC->getValue()->getValue(); 7370 return true; 7371 } 7372 7373 return false; 7374 } 7375 7376 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 7377 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 7378 const SCEV *FoundLHS, const SCEV *FoundRHS) { 7379 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 7380 return false; 7381 7382 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 7383 if (!AddRecLHS) 7384 return false; 7385 7386 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 7387 if (!AddRecFoundLHS) 7388 return false; 7389 7390 // We'd like to let SCEV reason about control dependencies, so we constrain 7391 // both the inequalities to be about add recurrences on the same loop. This 7392 // way we can use isLoopEntryGuardedByCond later. 7393 7394 const Loop *L = AddRecFoundLHS->getLoop(); 7395 if (L != AddRecLHS->getLoop()) 7396 return false; 7397 7398 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 7399 // 7400 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 7401 // ... (2) 7402 // 7403 // Informal proof for (2), assuming (1) [*]: 7404 // 7405 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 7406 // 7407 // Then 7408 // 7409 // FoundLHS s< FoundRHS s< INT_MIN - C 7410 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 7411 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 7412 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 7413 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 7414 // <=> FoundLHS + C s< FoundRHS + C 7415 // 7416 // [*]: (1) can be proved by ruling out overflow. 7417 // 7418 // [**]: This can be proved by analyzing all the four possibilities: 7419 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 7420 // (A s>= 0, B s>= 0). 7421 // 7422 // Note: 7423 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 7424 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 7425 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 7426 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 7427 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 7428 // C)". 7429 7430 APInt LDiff, RDiff; 7431 if (!IsConstDiff(*this, FoundLHS, LHS, LDiff) || 7432 !IsConstDiff(*this, FoundRHS, RHS, RDiff) || 7433 LDiff != RDiff) 7434 return false; 7435 7436 if (LDiff == 0) 7437 return true; 7438 7439 APInt FoundRHSLimit; 7440 7441 if (Pred == CmpInst::ICMP_ULT) { 7442 FoundRHSLimit = -RDiff; 7443 } else { 7444 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 7445 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff; 7446 } 7447 7448 // Try to prove (1) or (2), as needed. 7449 return isLoopEntryGuardedByCond(L, Pred, FoundRHS, 7450 getConstant(FoundRHSLimit)); 7451 } 7452 7453 /// isImpliedCondOperands - Test whether the condition described by Pred, 7454 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS, 7455 /// and FoundRHS is true. 7456 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 7457 const SCEV *LHS, const SCEV *RHS, 7458 const SCEV *FoundLHS, 7459 const SCEV *FoundRHS) { 7460 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7461 return true; 7462 7463 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 7464 return true; 7465 7466 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 7467 FoundLHS, FoundRHS) || 7468 // ~x < ~y --> x > y 7469 isImpliedCondOperandsHelper(Pred, LHS, RHS, 7470 getNotSCEV(FoundRHS), 7471 getNotSCEV(FoundLHS)); 7472 } 7473 7474 7475 /// If Expr computes ~A, return A else return nullptr 7476 static const SCEV *MatchNotExpr(const SCEV *Expr) { 7477 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 7478 if (!Add || Add->getNumOperands() != 2) return nullptr; 7479 7480 const SCEVConstant *AddLHS = dyn_cast<SCEVConstant>(Add->getOperand(0)); 7481 if (!(AddLHS && AddLHS->getValue()->getValue().isAllOnesValue())) 7482 return nullptr; 7483 7484 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 7485 if (!AddRHS || AddRHS->getNumOperands() != 2) return nullptr; 7486 7487 const SCEVConstant *MulLHS = dyn_cast<SCEVConstant>(AddRHS->getOperand(0)); 7488 if (!(MulLHS && MulLHS->getValue()->getValue().isAllOnesValue())) 7489 return nullptr; 7490 7491 return AddRHS->getOperand(1); 7492 } 7493 7494 7495 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values? 7496 template<typename MaxExprType> 7497 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr, 7498 const SCEV *Candidate) { 7499 const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr); 7500 if (!MaxExpr) return false; 7501 7502 auto It = std::find(MaxExpr->op_begin(), MaxExpr->op_end(), Candidate); 7503 return It != MaxExpr->op_end(); 7504 } 7505 7506 7507 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values? 7508 template<typename MaxExprType> 7509 static bool IsMinConsistingOf(ScalarEvolution &SE, 7510 const SCEV *MaybeMinExpr, 7511 const SCEV *Candidate) { 7512 const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr); 7513 if (!MaybeMaxExpr) 7514 return false; 7515 7516 return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate)); 7517 } 7518 7519 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 7520 ICmpInst::Predicate Pred, 7521 const SCEV *LHS, const SCEV *RHS) { 7522 7523 // If both sides are affine addrecs for the same loop, with equal 7524 // steps, and we know the recurrences don't wrap, then we only 7525 // need to check the predicate on the starting values. 7526 7527 if (!ICmpInst::isRelational(Pred)) 7528 return false; 7529 7530 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 7531 if (!LAR) 7532 return false; 7533 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 7534 if (!RAR) 7535 return false; 7536 if (LAR->getLoop() != RAR->getLoop()) 7537 return false; 7538 if (!LAR->isAffine() || !RAR->isAffine()) 7539 return false; 7540 7541 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 7542 return false; 7543 7544 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 7545 SCEV::FlagNSW : SCEV::FlagNUW; 7546 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 7547 return false; 7548 7549 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 7550 } 7551 7552 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 7553 /// expression? 7554 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 7555 ICmpInst::Predicate Pred, 7556 const SCEV *LHS, const SCEV *RHS) { 7557 switch (Pred) { 7558 default: 7559 return false; 7560 7561 case ICmpInst::ICMP_SGE: 7562 std::swap(LHS, RHS); 7563 // fall through 7564 case ICmpInst::ICMP_SLE: 7565 return 7566 // min(A, ...) <= A 7567 IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) || 7568 // A <= max(A, ...) 7569 IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 7570 7571 case ICmpInst::ICMP_UGE: 7572 std::swap(LHS, RHS); 7573 // fall through 7574 case ICmpInst::ICMP_ULE: 7575 return 7576 // min(A, ...) <= A 7577 IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) || 7578 // A <= max(A, ...) 7579 IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 7580 } 7581 7582 llvm_unreachable("covered switch fell through?!"); 7583 } 7584 7585 /// isImpliedCondOperandsHelper - Test whether the condition described by 7586 /// Pred, LHS, and RHS is true whenever the condition described by Pred, 7587 /// FoundLHS, and FoundRHS is true. 7588 bool 7589 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 7590 const SCEV *LHS, const SCEV *RHS, 7591 const SCEV *FoundLHS, 7592 const SCEV *FoundRHS) { 7593 auto IsKnownPredicateFull = 7594 [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 7595 return isKnownPredicateWithRanges(Pred, LHS, RHS) || 7596 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 7597 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS); 7598 }; 7599 7600 switch (Pred) { 7601 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 7602 case ICmpInst::ICMP_EQ: 7603 case ICmpInst::ICMP_NE: 7604 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 7605 return true; 7606 break; 7607 case ICmpInst::ICMP_SLT: 7608 case ICmpInst::ICMP_SLE: 7609 if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 7610 IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 7611 return true; 7612 break; 7613 case ICmpInst::ICMP_SGT: 7614 case ICmpInst::ICMP_SGE: 7615 if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 7616 IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 7617 return true; 7618 break; 7619 case ICmpInst::ICMP_ULT: 7620 case ICmpInst::ICMP_ULE: 7621 if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 7622 IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 7623 return true; 7624 break; 7625 case ICmpInst::ICMP_UGT: 7626 case ICmpInst::ICMP_UGE: 7627 if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 7628 IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 7629 return true; 7630 break; 7631 } 7632 7633 return false; 7634 } 7635 7636 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands. 7637 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1". 7638 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 7639 const SCEV *LHS, 7640 const SCEV *RHS, 7641 const SCEV *FoundLHS, 7642 const SCEV *FoundRHS) { 7643 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 7644 // The restriction on `FoundRHS` be lifted easily -- it exists only to 7645 // reduce the compile time impact of this optimization. 7646 return false; 7647 7648 const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS); 7649 if (!AddLHS || AddLHS->getOperand(1) != FoundLHS || 7650 !isa<SCEVConstant>(AddLHS->getOperand(0))) 7651 return false; 7652 7653 APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getValue()->getValue(); 7654 7655 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 7656 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 7657 ConstantRange FoundLHSRange = 7658 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 7659 7660 // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range 7661 // for `LHS`: 7662 APInt Addend = 7663 cast<SCEVConstant>(AddLHS->getOperand(0))->getValue()->getValue(); 7664 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend)); 7665 7666 // We can also compute the range of values for `LHS` that satisfy the 7667 // consequent, "`LHS` `Pred` `RHS`": 7668 APInt ConstRHS = cast<SCEVConstant>(RHS)->getValue()->getValue(); 7669 ConstantRange SatisfyingLHSRange = 7670 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 7671 7672 // The antecedent implies the consequent if every value of `LHS` that 7673 // satisfies the antecedent also satisfies the consequent. 7674 return SatisfyingLHSRange.contains(LHSRange); 7675 } 7676 7677 // Verify if an linear IV with positive stride can overflow when in a 7678 // less-than comparison, knowing the invariant term of the comparison, the 7679 // stride and the knowledge of NSW/NUW flags on the recurrence. 7680 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 7681 bool IsSigned, bool NoWrap) { 7682 if (NoWrap) return false; 7683 7684 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7685 const SCEV *One = getOne(Stride->getType()); 7686 7687 if (IsSigned) { 7688 APInt MaxRHS = getSignedRange(RHS).getSignedMax(); 7689 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 7690 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7691 .getSignedMax(); 7692 7693 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 7694 return (MaxValue - MaxStrideMinusOne).slt(MaxRHS); 7695 } 7696 7697 APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax(); 7698 APInt MaxValue = APInt::getMaxValue(BitWidth); 7699 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7700 .getUnsignedMax(); 7701 7702 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 7703 return (MaxValue - MaxStrideMinusOne).ult(MaxRHS); 7704 } 7705 7706 // Verify if an linear IV with negative stride can overflow when in a 7707 // greater-than comparison, knowing the invariant term of the comparison, 7708 // the stride and the knowledge of NSW/NUW flags on the recurrence. 7709 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 7710 bool IsSigned, bool NoWrap) { 7711 if (NoWrap) return false; 7712 7713 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7714 const SCEV *One = getOne(Stride->getType()); 7715 7716 if (IsSigned) { 7717 APInt MinRHS = getSignedRange(RHS).getSignedMin(); 7718 APInt MinValue = APInt::getSignedMinValue(BitWidth); 7719 APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One)) 7720 .getSignedMax(); 7721 7722 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 7723 return (MinValue + MaxStrideMinusOne).sgt(MinRHS); 7724 } 7725 7726 APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin(); 7727 APInt MinValue = APInt::getMinValue(BitWidth); 7728 APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One)) 7729 .getUnsignedMax(); 7730 7731 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 7732 return (MinValue + MaxStrideMinusOne).ugt(MinRHS); 7733 } 7734 7735 // Compute the backedge taken count knowing the interval difference, the 7736 // stride and presence of the equality in the comparison. 7737 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 7738 bool Equality) { 7739 const SCEV *One = getOne(Step->getType()); 7740 Delta = Equality ? getAddExpr(Delta, Step) 7741 : getAddExpr(Delta, getMinusSCEV(Step, One)); 7742 return getUDivExpr(Delta, Step); 7743 } 7744 7745 /// HowManyLessThans - Return the number of times a backedge containing the 7746 /// specified less-than comparison will execute. If not computable, return 7747 /// CouldNotCompute. 7748 /// 7749 /// @param ControlsExit is true when the LHS < RHS condition directly controls 7750 /// the branch (loops exits only if condition is true). In this case, we can use 7751 /// NoWrapFlags to skip overflow checks. 7752 ScalarEvolution::ExitLimit 7753 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS, 7754 const Loop *L, bool IsSigned, 7755 bool ControlsExit) { 7756 // We handle only IV < Invariant 7757 if (!isLoopInvariant(RHS, L)) 7758 return getCouldNotCompute(); 7759 7760 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7761 7762 // Avoid weird loops 7763 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7764 return getCouldNotCompute(); 7765 7766 bool NoWrap = ControlsExit && 7767 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7768 7769 const SCEV *Stride = IV->getStepRecurrence(*this); 7770 7771 // Avoid negative or zero stride values 7772 if (!isKnownPositive(Stride)) 7773 return getCouldNotCompute(); 7774 7775 // Avoid proven overflow cases: this will ensure that the backedge taken count 7776 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7777 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7778 // behaviors like the case of C language. 7779 if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 7780 return getCouldNotCompute(); 7781 7782 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 7783 : ICmpInst::ICMP_ULT; 7784 const SCEV *Start = IV->getStart(); 7785 const SCEV *End = RHS; 7786 if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) { 7787 const SCEV *Diff = getMinusSCEV(RHS, Start); 7788 // If we have NoWrap set, then we can assume that the increment won't 7789 // overflow, in which case if RHS - Start is a constant, we don't need to 7790 // do a max operation since we can just figure it out statically 7791 if (NoWrap && isa<SCEVConstant>(Diff)) { 7792 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7793 if (D.isNegative()) 7794 End = Start; 7795 } else 7796 End = IsSigned ? getSMaxExpr(RHS, Start) 7797 : getUMaxExpr(RHS, Start); 7798 } 7799 7800 const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 7801 7802 APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin() 7803 : getUnsignedRange(Start).getUnsignedMin(); 7804 7805 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7806 : getUnsignedRange(Stride).getUnsignedMin(); 7807 7808 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7809 APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1) 7810 : APInt::getMaxValue(BitWidth) - (MinStride - 1); 7811 7812 // Although End can be a MAX expression we estimate MaxEnd considering only 7813 // the case End = RHS. This is safe because in the other case (End - Start) 7814 // is zero, leading to a zero maximum backedge taken count. 7815 APInt MaxEnd = 7816 IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit) 7817 : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit); 7818 7819 const SCEV *MaxBECount; 7820 if (isa<SCEVConstant>(BECount)) 7821 MaxBECount = BECount; 7822 else 7823 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart), 7824 getConstant(MinStride), false); 7825 7826 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7827 MaxBECount = BECount; 7828 7829 return ExitLimit(BECount, MaxBECount); 7830 } 7831 7832 ScalarEvolution::ExitLimit 7833 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 7834 const Loop *L, bool IsSigned, 7835 bool ControlsExit) { 7836 // We handle only IV > Invariant 7837 if (!isLoopInvariant(RHS, L)) 7838 return getCouldNotCompute(); 7839 7840 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 7841 7842 // Avoid weird loops 7843 if (!IV || IV->getLoop() != L || !IV->isAffine()) 7844 return getCouldNotCompute(); 7845 7846 bool NoWrap = ControlsExit && 7847 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 7848 7849 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 7850 7851 // Avoid negative or zero stride values 7852 if (!isKnownPositive(Stride)) 7853 return getCouldNotCompute(); 7854 7855 // Avoid proven overflow cases: this will ensure that the backedge taken count 7856 // will not generate any unsigned overflow. Relaxed no-overflow conditions 7857 // exploit NoWrapFlags, allowing to optimize in presence of undefined 7858 // behaviors like the case of C language. 7859 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 7860 return getCouldNotCompute(); 7861 7862 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 7863 : ICmpInst::ICMP_UGT; 7864 7865 const SCEV *Start = IV->getStart(); 7866 const SCEV *End = RHS; 7867 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 7868 const SCEV *Diff = getMinusSCEV(RHS, Start); 7869 // If we have NoWrap set, then we can assume that the increment won't 7870 // overflow, in which case if RHS - Start is a constant, we don't need to 7871 // do a max operation since we can just figure it out statically 7872 if (NoWrap && isa<SCEVConstant>(Diff)) { 7873 APInt D = dyn_cast<const SCEVConstant>(Diff)->getValue()->getValue(); 7874 if (!D.isNegative()) 7875 End = Start; 7876 } else 7877 End = IsSigned ? getSMinExpr(RHS, Start) 7878 : getUMinExpr(RHS, Start); 7879 } 7880 7881 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 7882 7883 APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax() 7884 : getUnsignedRange(Start).getUnsignedMax(); 7885 7886 APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin() 7887 : getUnsignedRange(Stride).getUnsignedMin(); 7888 7889 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 7890 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 7891 : APInt::getMinValue(BitWidth) + (MinStride - 1); 7892 7893 // Although End can be a MIN expression we estimate MinEnd considering only 7894 // the case End = RHS. This is safe because in the other case (Start - End) 7895 // is zero, leading to a zero maximum backedge taken count. 7896 APInt MinEnd = 7897 IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit) 7898 : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit); 7899 7900 7901 const SCEV *MaxBECount = getCouldNotCompute(); 7902 if (isa<SCEVConstant>(BECount)) 7903 MaxBECount = BECount; 7904 else 7905 MaxBECount = computeBECount(getConstant(MaxStart - MinEnd), 7906 getConstant(MinStride), false); 7907 7908 if (isa<SCEVCouldNotCompute>(MaxBECount)) 7909 MaxBECount = BECount; 7910 7911 return ExitLimit(BECount, MaxBECount); 7912 } 7913 7914 /// getNumIterationsInRange - Return the number of iterations of this loop that 7915 /// produce values in the specified constant range. Another way of looking at 7916 /// this is that it returns the first iteration number where the value is not in 7917 /// the condition, thus computing the exit count. If the iteration count can't 7918 /// be computed, an instance of SCEVCouldNotCompute is returned. 7919 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range, 7920 ScalarEvolution &SE) const { 7921 if (Range.isFullSet()) // Infinite loop. 7922 return SE.getCouldNotCompute(); 7923 7924 // If the start is a non-zero constant, shift the range to simplify things. 7925 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 7926 if (!SC->getValue()->isZero()) { 7927 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 7928 Operands[0] = SE.getZero(SC->getType()); 7929 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 7930 getNoWrapFlags(FlagNW)); 7931 if (const SCEVAddRecExpr *ShiftedAddRec = 7932 dyn_cast<SCEVAddRecExpr>(Shifted)) 7933 return ShiftedAddRec->getNumIterationsInRange( 7934 Range.subtract(SC->getValue()->getValue()), SE); 7935 // This is strange and shouldn't happen. 7936 return SE.getCouldNotCompute(); 7937 } 7938 7939 // The only time we can solve this is when we have all constant indices. 7940 // Otherwise, we cannot determine the overflow conditions. 7941 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 7942 if (!isa<SCEVConstant>(getOperand(i))) 7943 return SE.getCouldNotCompute(); 7944 7945 7946 // Okay at this point we know that all elements of the chrec are constants and 7947 // that the start element is zero. 7948 7949 // First check to see if the range contains zero. If not, the first 7950 // iteration exits. 7951 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 7952 if (!Range.contains(APInt(BitWidth, 0))) 7953 return SE.getZero(getType()); 7954 7955 if (isAffine()) { 7956 // If this is an affine expression then we have this situation: 7957 // Solve {0,+,A} in Range === Ax in Range 7958 7959 // We know that zero is in the range. If A is positive then we know that 7960 // the upper value of the range must be the first possible exit value. 7961 // If A is negative then the lower of the range is the last possible loop 7962 // value. Also note that we already checked for a full range. 7963 APInt One(BitWidth,1); 7964 APInt A = cast<SCEVConstant>(getOperand(1))->getValue()->getValue(); 7965 APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower(); 7966 7967 // The exit value should be (End+A)/A. 7968 APInt ExitVal = (End + A).udiv(A); 7969 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 7970 7971 // Evaluate at the exit value. If we really did fall out of the valid 7972 // range, then we computed our trip count, otherwise wrap around or other 7973 // things must have happened. 7974 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 7975 if (Range.contains(Val->getValue())) 7976 return SE.getCouldNotCompute(); // Something strange happened 7977 7978 // Ensure that the previous value is in the range. This is a sanity check. 7979 assert(Range.contains( 7980 EvaluateConstantChrecAtConstant(this, 7981 ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) && 7982 "Linear scev computation is off in a bad way!"); 7983 return SE.getConstant(ExitValue); 7984 } else if (isQuadratic()) { 7985 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the 7986 // quadratic equation to solve it. To do this, we must frame our problem in 7987 // terms of figuring out when zero is crossed, instead of when 7988 // Range.getUpper() is crossed. 7989 SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end()); 7990 NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper())); 7991 const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), 7992 // getNoWrapFlags(FlagNW) 7993 FlagAnyWrap); 7994 7995 // Next, solve the constructed addrec 7996 std::pair<const SCEV *,const SCEV *> Roots = 7997 SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE); 7998 const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first); 7999 const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second); 8000 if (R1) { 8001 // Pick the smallest positive root value. 8002 if (ConstantInt *CB = 8003 dyn_cast<ConstantInt>(ConstantExpr::getICmp(ICmpInst::ICMP_ULT, 8004 R1->getValue(), R2->getValue()))) { 8005 if (!CB->getZExtValue()) 8006 std::swap(R1, R2); // R1 is the minimum root now. 8007 8008 // Make sure the root is not off by one. The returned iteration should 8009 // not be in the range, but the previous one should be. When solving 8010 // for "X*X < 5", for example, we should not return a root of 2. 8011 ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this, 8012 R1->getValue(), 8013 SE); 8014 if (Range.contains(R1Val->getValue())) { 8015 // The next iteration must be out of the range... 8016 ConstantInt *NextVal = 8017 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()+1); 8018 8019 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8020 if (!Range.contains(R1Val->getValue())) 8021 return SE.getConstant(NextVal); 8022 return SE.getCouldNotCompute(); // Something strange happened 8023 } 8024 8025 // If R1 was not in the range, then it is a good return value. Make 8026 // sure that R1-1 WAS in the range though, just in case. 8027 ConstantInt *NextVal = 8028 ConstantInt::get(SE.getContext(), R1->getValue()->getValue()-1); 8029 R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE); 8030 if (Range.contains(R1Val->getValue())) 8031 return R1; 8032 return SE.getCouldNotCompute(); // Something strange happened 8033 } 8034 } 8035 } 8036 8037 return SE.getCouldNotCompute(); 8038 } 8039 8040 namespace { 8041 struct FindUndefs { 8042 bool Found; 8043 FindUndefs() : Found(false) {} 8044 8045 bool follow(const SCEV *S) { 8046 if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) { 8047 if (isa<UndefValue>(C->getValue())) 8048 Found = true; 8049 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) { 8050 if (isa<UndefValue>(C->getValue())) 8051 Found = true; 8052 } 8053 8054 // Keep looking if we haven't found it yet. 8055 return !Found; 8056 } 8057 bool isDone() const { 8058 // Stop recursion if we have found an undef. 8059 return Found; 8060 } 8061 }; 8062 } 8063 8064 // Return true when S contains at least an undef value. 8065 static inline bool 8066 containsUndefs(const SCEV *S) { 8067 FindUndefs F; 8068 SCEVTraversal<FindUndefs> ST(F); 8069 ST.visitAll(S); 8070 8071 return F.Found; 8072 } 8073 8074 namespace { 8075 // Collect all steps of SCEV expressions. 8076 struct SCEVCollectStrides { 8077 ScalarEvolution &SE; 8078 SmallVectorImpl<const SCEV *> &Strides; 8079 8080 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 8081 : SE(SE), Strides(S) {} 8082 8083 bool follow(const SCEV *S) { 8084 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 8085 Strides.push_back(AR->getStepRecurrence(SE)); 8086 return true; 8087 } 8088 bool isDone() const { return false; } 8089 }; 8090 8091 // Collect all SCEVUnknown and SCEVMulExpr expressions. 8092 struct SCEVCollectTerms { 8093 SmallVectorImpl<const SCEV *> &Terms; 8094 8095 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) 8096 : Terms(T) {} 8097 8098 bool follow(const SCEV *S) { 8099 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) { 8100 if (!containsUndefs(S)) 8101 Terms.push_back(S); 8102 8103 // Stop recursion: once we collected a term, do not walk its operands. 8104 return false; 8105 } 8106 8107 // Keep looking. 8108 return true; 8109 } 8110 bool isDone() const { return false; } 8111 }; 8112 } 8113 8114 /// Find parametric terms in this SCEVAddRecExpr. 8115 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 8116 SmallVectorImpl<const SCEV *> &Terms) { 8117 SmallVector<const SCEV *, 4> Strides; 8118 SCEVCollectStrides StrideCollector(*this, Strides); 8119 visitAll(Expr, StrideCollector); 8120 8121 DEBUG({ 8122 dbgs() << "Strides:\n"; 8123 for (const SCEV *S : Strides) 8124 dbgs() << *S << "\n"; 8125 }); 8126 8127 for (const SCEV *S : Strides) { 8128 SCEVCollectTerms TermCollector(Terms); 8129 visitAll(S, TermCollector); 8130 } 8131 8132 DEBUG({ 8133 dbgs() << "Terms:\n"; 8134 for (const SCEV *T : Terms) 8135 dbgs() << *T << "\n"; 8136 }); 8137 } 8138 8139 static bool findArrayDimensionsRec(ScalarEvolution &SE, 8140 SmallVectorImpl<const SCEV *> &Terms, 8141 SmallVectorImpl<const SCEV *> &Sizes) { 8142 int Last = Terms.size() - 1; 8143 const SCEV *Step = Terms[Last]; 8144 8145 // End of recursion. 8146 if (Last == 0) { 8147 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 8148 SmallVector<const SCEV *, 2> Qs; 8149 for (const SCEV *Op : M->operands()) 8150 if (!isa<SCEVConstant>(Op)) 8151 Qs.push_back(Op); 8152 8153 Step = SE.getMulExpr(Qs); 8154 } 8155 8156 Sizes.push_back(Step); 8157 return true; 8158 } 8159 8160 for (const SCEV *&Term : Terms) { 8161 // Normalize the terms before the next call to findArrayDimensionsRec. 8162 const SCEV *Q, *R; 8163 SCEVDivision::divide(SE, Term, Step, &Q, &R); 8164 8165 // Bail out when GCD does not evenly divide one of the terms. 8166 if (!R->isZero()) 8167 return false; 8168 8169 Term = Q; 8170 } 8171 8172 // Remove all SCEVConstants. 8173 Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) { 8174 return isa<SCEVConstant>(E); 8175 }), 8176 Terms.end()); 8177 8178 if (Terms.size() > 0) 8179 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 8180 return false; 8181 8182 Sizes.push_back(Step); 8183 return true; 8184 } 8185 8186 namespace { 8187 struct FindParameter { 8188 bool FoundParameter; 8189 FindParameter() : FoundParameter(false) {} 8190 8191 bool follow(const SCEV *S) { 8192 if (isa<SCEVUnknown>(S)) { 8193 FoundParameter = true; 8194 // Stop recursion: we found a parameter. 8195 return false; 8196 } 8197 // Keep looking. 8198 return true; 8199 } 8200 bool isDone() const { 8201 // Stop recursion if we have found a parameter. 8202 return FoundParameter; 8203 } 8204 }; 8205 } 8206 8207 // Returns true when S contains at least a SCEVUnknown parameter. 8208 static inline bool 8209 containsParameters(const SCEV *S) { 8210 FindParameter F; 8211 SCEVTraversal<FindParameter> ST(F); 8212 ST.visitAll(S); 8213 8214 return F.FoundParameter; 8215 } 8216 8217 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 8218 static inline bool 8219 containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 8220 for (const SCEV *T : Terms) 8221 if (containsParameters(T)) 8222 return true; 8223 return false; 8224 } 8225 8226 // Return the number of product terms in S. 8227 static inline int numberOfTerms(const SCEV *S) { 8228 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 8229 return Expr->getNumOperands(); 8230 return 1; 8231 } 8232 8233 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 8234 if (isa<SCEVConstant>(T)) 8235 return nullptr; 8236 8237 if (isa<SCEVUnknown>(T)) 8238 return T; 8239 8240 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 8241 SmallVector<const SCEV *, 2> Factors; 8242 for (const SCEV *Op : M->operands()) 8243 if (!isa<SCEVConstant>(Op)) 8244 Factors.push_back(Op); 8245 8246 return SE.getMulExpr(Factors); 8247 } 8248 8249 return T; 8250 } 8251 8252 /// Return the size of an element read or written by Inst. 8253 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 8254 Type *Ty; 8255 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 8256 Ty = Store->getValueOperand()->getType(); 8257 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 8258 Ty = Load->getType(); 8259 else 8260 return nullptr; 8261 8262 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 8263 return getSizeOfExpr(ETy, Ty); 8264 } 8265 8266 /// Second step of delinearization: compute the array dimensions Sizes from the 8267 /// set of Terms extracted from the memory access function of this SCEVAddRec. 8268 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 8269 SmallVectorImpl<const SCEV *> &Sizes, 8270 const SCEV *ElementSize) const { 8271 8272 if (Terms.size() < 1 || !ElementSize) 8273 return; 8274 8275 // Early return when Terms do not contain parameters: we do not delinearize 8276 // non parametric SCEVs. 8277 if (!containsParameters(Terms)) 8278 return; 8279 8280 DEBUG({ 8281 dbgs() << "Terms:\n"; 8282 for (const SCEV *T : Terms) 8283 dbgs() << *T << "\n"; 8284 }); 8285 8286 // Remove duplicates. 8287 std::sort(Terms.begin(), Terms.end()); 8288 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 8289 8290 // Put larger terms first. 8291 std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) { 8292 return numberOfTerms(LHS) > numberOfTerms(RHS); 8293 }); 8294 8295 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8296 8297 // Divide all terms by the element size. 8298 for (const SCEV *&Term : Terms) { 8299 const SCEV *Q, *R; 8300 SCEVDivision::divide(SE, Term, ElementSize, &Q, &R); 8301 Term = Q; 8302 } 8303 8304 SmallVector<const SCEV *, 4> NewTerms; 8305 8306 // Remove constant factors. 8307 for (const SCEV *T : Terms) 8308 if (const SCEV *NewT = removeConstantFactors(SE, T)) 8309 NewTerms.push_back(NewT); 8310 8311 DEBUG({ 8312 dbgs() << "Terms after sorting:\n"; 8313 for (const SCEV *T : NewTerms) 8314 dbgs() << *T << "\n"; 8315 }); 8316 8317 if (NewTerms.empty() || 8318 !findArrayDimensionsRec(SE, NewTerms, Sizes)) { 8319 Sizes.clear(); 8320 return; 8321 } 8322 8323 // The last element to be pushed into Sizes is the size of an element. 8324 Sizes.push_back(ElementSize); 8325 8326 DEBUG({ 8327 dbgs() << "Sizes:\n"; 8328 for (const SCEV *S : Sizes) 8329 dbgs() << *S << "\n"; 8330 }); 8331 } 8332 8333 /// Third step of delinearization: compute the access functions for the 8334 /// Subscripts based on the dimensions in Sizes. 8335 void ScalarEvolution::computeAccessFunctions( 8336 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 8337 SmallVectorImpl<const SCEV *> &Sizes) { 8338 8339 // Early exit in case this SCEV is not an affine multivariate function. 8340 if (Sizes.empty()) 8341 return; 8342 8343 if (auto AR = dyn_cast<SCEVAddRecExpr>(Expr)) 8344 if (!AR->isAffine()) 8345 return; 8346 8347 const SCEV *Res = Expr; 8348 int Last = Sizes.size() - 1; 8349 for (int i = Last; i >= 0; i--) { 8350 const SCEV *Q, *R; 8351 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 8352 8353 DEBUG({ 8354 dbgs() << "Res: " << *Res << "\n"; 8355 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 8356 dbgs() << "Res divided by Sizes[i]:\n"; 8357 dbgs() << "Quotient: " << *Q << "\n"; 8358 dbgs() << "Remainder: " << *R << "\n"; 8359 }); 8360 8361 Res = Q; 8362 8363 // Do not record the last subscript corresponding to the size of elements in 8364 // the array. 8365 if (i == Last) { 8366 8367 // Bail out if the remainder is too complex. 8368 if (isa<SCEVAddRecExpr>(R)) { 8369 Subscripts.clear(); 8370 Sizes.clear(); 8371 return; 8372 } 8373 8374 continue; 8375 } 8376 8377 // Record the access function for the current subscript. 8378 Subscripts.push_back(R); 8379 } 8380 8381 // Also push in last position the remainder of the last division: it will be 8382 // the access function of the innermost dimension. 8383 Subscripts.push_back(Res); 8384 8385 std::reverse(Subscripts.begin(), Subscripts.end()); 8386 8387 DEBUG({ 8388 dbgs() << "Subscripts:\n"; 8389 for (const SCEV *S : Subscripts) 8390 dbgs() << *S << "\n"; 8391 }); 8392 } 8393 8394 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 8395 /// sizes of an array access. Returns the remainder of the delinearization that 8396 /// is the offset start of the array. The SCEV->delinearize algorithm computes 8397 /// the multiples of SCEV coefficients: that is a pattern matching of sub 8398 /// expressions in the stride and base of a SCEV corresponding to the 8399 /// computation of a GCD (greatest common divisor) of base and stride. When 8400 /// SCEV->delinearize fails, it returns the SCEV unchanged. 8401 /// 8402 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 8403 /// 8404 /// void foo(long n, long m, long o, double A[n][m][o]) { 8405 /// 8406 /// for (long i = 0; i < n; i++) 8407 /// for (long j = 0; j < m; j++) 8408 /// for (long k = 0; k < o; k++) 8409 /// A[i][j][k] = 1.0; 8410 /// } 8411 /// 8412 /// the delinearization input is the following AddRec SCEV: 8413 /// 8414 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 8415 /// 8416 /// From this SCEV, we are able to say that the base offset of the access is %A 8417 /// because it appears as an offset that does not divide any of the strides in 8418 /// the loops: 8419 /// 8420 /// CHECK: Base offset: %A 8421 /// 8422 /// and then SCEV->delinearize determines the size of some of the dimensions of 8423 /// the array as these are the multiples by which the strides are happening: 8424 /// 8425 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 8426 /// 8427 /// Note that the outermost dimension remains of UnknownSize because there are 8428 /// no strides that would help identifying the size of the last dimension: when 8429 /// the array has been statically allocated, one could compute the size of that 8430 /// dimension by dividing the overall size of the array by the size of the known 8431 /// dimensions: %m * %o * 8. 8432 /// 8433 /// Finally delinearize provides the access functions for the array reference 8434 /// that does correspond to A[i][j][k] of the above C testcase: 8435 /// 8436 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 8437 /// 8438 /// The testcases are checking the output of a function pass: 8439 /// DelinearizationPass that walks through all loads and stores of a function 8440 /// asking for the SCEV of the memory access with respect to all enclosing 8441 /// loops, calling SCEV->delinearize on that and printing the results. 8442 8443 void ScalarEvolution::delinearize(const SCEV *Expr, 8444 SmallVectorImpl<const SCEV *> &Subscripts, 8445 SmallVectorImpl<const SCEV *> &Sizes, 8446 const SCEV *ElementSize) { 8447 // First step: collect parametric terms. 8448 SmallVector<const SCEV *, 4> Terms; 8449 collectParametricTerms(Expr, Terms); 8450 8451 if (Terms.empty()) 8452 return; 8453 8454 // Second step: find subscript sizes. 8455 findArrayDimensions(Terms, Sizes, ElementSize); 8456 8457 if (Sizes.empty()) 8458 return; 8459 8460 // Third step: compute the access functions for each subscript. 8461 computeAccessFunctions(Expr, Subscripts, Sizes); 8462 8463 if (Subscripts.empty()) 8464 return; 8465 8466 DEBUG({ 8467 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 8468 dbgs() << "ArrayDecl[UnknownSize]"; 8469 for (const SCEV *S : Sizes) 8470 dbgs() << "[" << *S << "]"; 8471 8472 dbgs() << "\nArrayRef"; 8473 for (const SCEV *S : Subscripts) 8474 dbgs() << "[" << *S << "]"; 8475 dbgs() << "\n"; 8476 }); 8477 } 8478 8479 //===----------------------------------------------------------------------===// 8480 // SCEVCallbackVH Class Implementation 8481 //===----------------------------------------------------------------------===// 8482 8483 void ScalarEvolution::SCEVCallbackVH::deleted() { 8484 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8485 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 8486 SE->ConstantEvolutionLoopExitValue.erase(PN); 8487 SE->ValueExprMap.erase(getValPtr()); 8488 // this now dangles! 8489 } 8490 8491 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 8492 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 8493 8494 // Forget all the expressions associated with users of the old value, 8495 // so that future queries will recompute the expressions using the new 8496 // value. 8497 Value *Old = getValPtr(); 8498 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 8499 SmallPtrSet<User *, 8> Visited; 8500 while (!Worklist.empty()) { 8501 User *U = Worklist.pop_back_val(); 8502 // Deleting the Old value will cause this to dangle. Postpone 8503 // that until everything else is done. 8504 if (U == Old) 8505 continue; 8506 if (!Visited.insert(U).second) 8507 continue; 8508 if (PHINode *PN = dyn_cast<PHINode>(U)) 8509 SE->ConstantEvolutionLoopExitValue.erase(PN); 8510 SE->ValueExprMap.erase(U); 8511 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 8512 } 8513 // Delete the Old value. 8514 if (PHINode *PN = dyn_cast<PHINode>(Old)) 8515 SE->ConstantEvolutionLoopExitValue.erase(PN); 8516 SE->ValueExprMap.erase(Old); 8517 // this now dangles! 8518 } 8519 8520 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 8521 : CallbackVH(V), SE(se) {} 8522 8523 //===----------------------------------------------------------------------===// 8524 // ScalarEvolution Class Implementation 8525 //===----------------------------------------------------------------------===// 8526 8527 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 8528 AssumptionCache &AC, DominatorTree &DT, 8529 LoopInfo &LI) 8530 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 8531 CouldNotCompute(new SCEVCouldNotCompute()), 8532 WalkingBEDominatingConds(false), ValuesAtScopes(64), LoopDispositions(64), 8533 BlockDispositions(64), FirstUnknown(nullptr) {} 8534 8535 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 8536 : F(Arg.F), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), LI(Arg.LI), 8537 CouldNotCompute(std::move(Arg.CouldNotCompute)), 8538 ValueExprMap(std::move(Arg.ValueExprMap)), 8539 WalkingBEDominatingConds(false), 8540 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 8541 ConstantEvolutionLoopExitValue( 8542 std::move(Arg.ConstantEvolutionLoopExitValue)), 8543 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 8544 LoopDispositions(std::move(Arg.LoopDispositions)), 8545 BlockDispositions(std::move(Arg.BlockDispositions)), 8546 UnsignedRanges(std::move(Arg.UnsignedRanges)), 8547 SignedRanges(std::move(Arg.SignedRanges)), 8548 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 8549 SCEVAllocator(std::move(Arg.SCEVAllocator)), 8550 FirstUnknown(Arg.FirstUnknown) { 8551 Arg.FirstUnknown = nullptr; 8552 } 8553 8554 ScalarEvolution::~ScalarEvolution() { 8555 // Iterate through all the SCEVUnknown instances and call their 8556 // destructors, so that they release their references to their values. 8557 for (SCEVUnknown *U = FirstUnknown; U;) { 8558 SCEVUnknown *Tmp = U; 8559 U = U->Next; 8560 Tmp->~SCEVUnknown(); 8561 } 8562 FirstUnknown = nullptr; 8563 8564 ValueExprMap.clear(); 8565 8566 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 8567 // that a loop had multiple computable exits. 8568 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8569 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); 8570 I != E; ++I) { 8571 I->second.clear(); 8572 } 8573 8574 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 8575 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 8576 } 8577 8578 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 8579 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 8580 } 8581 8582 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 8583 const Loop *L) { 8584 // Print all inner loops first 8585 for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) 8586 PrintLoopInfo(OS, SE, *I); 8587 8588 OS << "Loop "; 8589 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8590 OS << ": "; 8591 8592 SmallVector<BasicBlock *, 8> ExitBlocks; 8593 L->getExitBlocks(ExitBlocks); 8594 if (ExitBlocks.size() != 1) 8595 OS << "<multiple exits> "; 8596 8597 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 8598 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L); 8599 } else { 8600 OS << "Unpredictable backedge-taken count. "; 8601 } 8602 8603 OS << "\n" 8604 "Loop "; 8605 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 8606 OS << ": "; 8607 8608 if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) { 8609 OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L); 8610 } else { 8611 OS << "Unpredictable max backedge-taken count. "; 8612 } 8613 8614 OS << "\n"; 8615 } 8616 8617 void ScalarEvolution::print(raw_ostream &OS) const { 8618 // ScalarEvolution's implementation of the print method is to print 8619 // out SCEV values of all instructions that are interesting. Doing 8620 // this potentially causes it to create new SCEV objects though, 8621 // which technically conflicts with the const qualifier. This isn't 8622 // observable from outside the class though, so casting away the 8623 // const isn't dangerous. 8624 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8625 8626 OS << "Classifying expressions for: "; 8627 F.printAsOperand(OS, /*PrintType=*/false); 8628 OS << "\n"; 8629 for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) 8630 if (isSCEVable(I->getType()) && !isa<CmpInst>(*I)) { 8631 OS << *I << '\n'; 8632 OS << " --> "; 8633 const SCEV *SV = SE.getSCEV(&*I); 8634 SV->print(OS); 8635 if (!isa<SCEVCouldNotCompute>(SV)) { 8636 OS << " U: "; 8637 SE.getUnsignedRange(SV).print(OS); 8638 OS << " S: "; 8639 SE.getSignedRange(SV).print(OS); 8640 } 8641 8642 const Loop *L = LI.getLoopFor((*I).getParent()); 8643 8644 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 8645 if (AtUse != SV) { 8646 OS << " --> "; 8647 AtUse->print(OS); 8648 if (!isa<SCEVCouldNotCompute>(AtUse)) { 8649 OS << " U: "; 8650 SE.getUnsignedRange(AtUse).print(OS); 8651 OS << " S: "; 8652 SE.getSignedRange(AtUse).print(OS); 8653 } 8654 } 8655 8656 if (L) { 8657 OS << "\t\t" "Exits: "; 8658 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 8659 if (!SE.isLoopInvariant(ExitValue, L)) { 8660 OS << "<<Unknown>>"; 8661 } else { 8662 OS << *ExitValue; 8663 } 8664 } 8665 8666 OS << "\n"; 8667 } 8668 8669 OS << "Determining loop execution counts for: "; 8670 F.printAsOperand(OS, /*PrintType=*/false); 8671 OS << "\n"; 8672 for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I) 8673 PrintLoopInfo(OS, &SE, *I); 8674 } 8675 8676 ScalarEvolution::LoopDisposition 8677 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 8678 auto &Values = LoopDispositions[S]; 8679 for (auto &V : Values) { 8680 if (V.getPointer() == L) 8681 return V.getInt(); 8682 } 8683 Values.emplace_back(L, LoopVariant); 8684 LoopDisposition D = computeLoopDisposition(S, L); 8685 auto &Values2 = LoopDispositions[S]; 8686 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8687 if (V.getPointer() == L) { 8688 V.setInt(D); 8689 break; 8690 } 8691 } 8692 return D; 8693 } 8694 8695 ScalarEvolution::LoopDisposition 8696 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 8697 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8698 case scConstant: 8699 return LoopInvariant; 8700 case scTruncate: 8701 case scZeroExtend: 8702 case scSignExtend: 8703 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 8704 case scAddRecExpr: { 8705 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8706 8707 // If L is the addrec's loop, it's computable. 8708 if (AR->getLoop() == L) 8709 return LoopComputable; 8710 8711 // Add recurrences are never invariant in the function-body (null loop). 8712 if (!L) 8713 return LoopVariant; 8714 8715 // This recurrence is variant w.r.t. L if L contains AR's loop. 8716 if (L->contains(AR->getLoop())) 8717 return LoopVariant; 8718 8719 // This recurrence is invariant w.r.t. L if AR's loop contains L. 8720 if (AR->getLoop()->contains(L)) 8721 return LoopInvariant; 8722 8723 // This recurrence is variant w.r.t. L if any of its operands 8724 // are variant. 8725 for (SCEVAddRecExpr::op_iterator I = AR->op_begin(), E = AR->op_end(); 8726 I != E; ++I) 8727 if (!isLoopInvariant(*I, L)) 8728 return LoopVariant; 8729 8730 // Otherwise it's loop-invariant. 8731 return LoopInvariant; 8732 } 8733 case scAddExpr: 8734 case scMulExpr: 8735 case scUMaxExpr: 8736 case scSMaxExpr: { 8737 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8738 bool HasVarying = false; 8739 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8740 I != E; ++I) { 8741 LoopDisposition D = getLoopDisposition(*I, L); 8742 if (D == LoopVariant) 8743 return LoopVariant; 8744 if (D == LoopComputable) 8745 HasVarying = true; 8746 } 8747 return HasVarying ? LoopComputable : LoopInvariant; 8748 } 8749 case scUDivExpr: { 8750 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8751 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 8752 if (LD == LoopVariant) 8753 return LoopVariant; 8754 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 8755 if (RD == LoopVariant) 8756 return LoopVariant; 8757 return (LD == LoopInvariant && RD == LoopInvariant) ? 8758 LoopInvariant : LoopComputable; 8759 } 8760 case scUnknown: 8761 // All non-instruction values are loop invariant. All instructions are loop 8762 // invariant if they are not contained in the specified loop. 8763 // Instructions are never considered invariant in the function body 8764 // (null loop) because they are defined within the "loop". 8765 if (Instruction *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 8766 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 8767 return LoopInvariant; 8768 case scCouldNotCompute: 8769 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8770 } 8771 llvm_unreachable("Unknown SCEV kind!"); 8772 } 8773 8774 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 8775 return getLoopDisposition(S, L) == LoopInvariant; 8776 } 8777 8778 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 8779 return getLoopDisposition(S, L) == LoopComputable; 8780 } 8781 8782 ScalarEvolution::BlockDisposition 8783 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8784 auto &Values = BlockDispositions[S]; 8785 for (auto &V : Values) { 8786 if (V.getPointer() == BB) 8787 return V.getInt(); 8788 } 8789 Values.emplace_back(BB, DoesNotDominateBlock); 8790 BlockDisposition D = computeBlockDisposition(S, BB); 8791 auto &Values2 = BlockDispositions[S]; 8792 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 8793 if (V.getPointer() == BB) { 8794 V.setInt(D); 8795 break; 8796 } 8797 } 8798 return D; 8799 } 8800 8801 ScalarEvolution::BlockDisposition 8802 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 8803 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 8804 case scConstant: 8805 return ProperlyDominatesBlock; 8806 case scTruncate: 8807 case scZeroExtend: 8808 case scSignExtend: 8809 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 8810 case scAddRecExpr: { 8811 // This uses a "dominates" query instead of "properly dominates" query 8812 // to test for proper dominance too, because the instruction which 8813 // produces the addrec's value is a PHI, and a PHI effectively properly 8814 // dominates its entire containing block. 8815 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 8816 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 8817 return DoesNotDominateBlock; 8818 } 8819 // FALL THROUGH into SCEVNAryExpr handling. 8820 case scAddExpr: 8821 case scMulExpr: 8822 case scUMaxExpr: 8823 case scSMaxExpr: { 8824 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 8825 bool Proper = true; 8826 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 8827 I != E; ++I) { 8828 BlockDisposition D = getBlockDisposition(*I, BB); 8829 if (D == DoesNotDominateBlock) 8830 return DoesNotDominateBlock; 8831 if (D == DominatesBlock) 8832 Proper = false; 8833 } 8834 return Proper ? ProperlyDominatesBlock : DominatesBlock; 8835 } 8836 case scUDivExpr: { 8837 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 8838 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 8839 BlockDisposition LD = getBlockDisposition(LHS, BB); 8840 if (LD == DoesNotDominateBlock) 8841 return DoesNotDominateBlock; 8842 BlockDisposition RD = getBlockDisposition(RHS, BB); 8843 if (RD == DoesNotDominateBlock) 8844 return DoesNotDominateBlock; 8845 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 8846 ProperlyDominatesBlock : DominatesBlock; 8847 } 8848 case scUnknown: 8849 if (Instruction *I = 8850 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 8851 if (I->getParent() == BB) 8852 return DominatesBlock; 8853 if (DT.properlyDominates(I->getParent(), BB)) 8854 return ProperlyDominatesBlock; 8855 return DoesNotDominateBlock; 8856 } 8857 return ProperlyDominatesBlock; 8858 case scCouldNotCompute: 8859 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 8860 } 8861 llvm_unreachable("Unknown SCEV kind!"); 8862 } 8863 8864 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 8865 return getBlockDisposition(S, BB) >= DominatesBlock; 8866 } 8867 8868 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 8869 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 8870 } 8871 8872 namespace { 8873 // Search for a SCEV expression node within an expression tree. 8874 // Implements SCEVTraversal::Visitor. 8875 struct SCEVSearch { 8876 const SCEV *Node; 8877 bool IsFound; 8878 8879 SCEVSearch(const SCEV *N): Node(N), IsFound(false) {} 8880 8881 bool follow(const SCEV *S) { 8882 IsFound |= (S == Node); 8883 return !IsFound; 8884 } 8885 bool isDone() const { return IsFound; } 8886 }; 8887 } 8888 8889 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 8890 SCEVSearch Search(Op); 8891 visitAll(S, Search); 8892 return Search.IsFound; 8893 } 8894 8895 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 8896 ValuesAtScopes.erase(S); 8897 LoopDispositions.erase(S); 8898 BlockDispositions.erase(S); 8899 UnsignedRanges.erase(S); 8900 SignedRanges.erase(S); 8901 8902 for (DenseMap<const Loop*, BackedgeTakenInfo>::iterator I = 8903 BackedgeTakenCounts.begin(), E = BackedgeTakenCounts.end(); I != E; ) { 8904 BackedgeTakenInfo &BEInfo = I->second; 8905 if (BEInfo.hasOperand(S, this)) { 8906 BEInfo.clear(); 8907 BackedgeTakenCounts.erase(I++); 8908 } 8909 else 8910 ++I; 8911 } 8912 } 8913 8914 typedef DenseMap<const Loop *, std::string> VerifyMap; 8915 8916 /// replaceSubString - Replaces all occurrences of From in Str with To. 8917 static void replaceSubString(std::string &Str, StringRef From, StringRef To) { 8918 size_t Pos = 0; 8919 while ((Pos = Str.find(From, Pos)) != std::string::npos) { 8920 Str.replace(Pos, From.size(), To.data(), To.size()); 8921 Pos += To.size(); 8922 } 8923 } 8924 8925 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis. 8926 static void 8927 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) { 8928 for (Loop::reverse_iterator I = L->rbegin(), E = L->rend(); I != E; ++I) { 8929 getLoopBackedgeTakenCounts(*I, Map, SE); // recurse. 8930 8931 std::string &S = Map[L]; 8932 if (S.empty()) { 8933 raw_string_ostream OS(S); 8934 SE.getBackedgeTakenCount(L)->print(OS); 8935 8936 // false and 0 are semantically equivalent. This can happen in dead loops. 8937 replaceSubString(OS.str(), "false", "0"); 8938 // Remove wrap flags, their use in SCEV is highly fragile. 8939 // FIXME: Remove this when SCEV gets smarter about them. 8940 replaceSubString(OS.str(), "<nw>", ""); 8941 replaceSubString(OS.str(), "<nsw>", ""); 8942 replaceSubString(OS.str(), "<nuw>", ""); 8943 } 8944 } 8945 } 8946 8947 void ScalarEvolution::verify() const { 8948 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 8949 8950 // Gather stringified backedge taken counts for all loops using SCEV's caches. 8951 // FIXME: It would be much better to store actual values instead of strings, 8952 // but SCEV pointers will change if we drop the caches. 8953 VerifyMap BackedgeDumpsOld, BackedgeDumpsNew; 8954 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8955 getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE); 8956 8957 // Gather stringified backedge taken counts for all loops using a fresh 8958 // ScalarEvolution object. 8959 ScalarEvolution SE2(F, TLI, AC, DT, LI); 8960 for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I) 8961 getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2); 8962 8963 // Now compare whether they're the same with and without caches. This allows 8964 // verifying that no pass changed the cache. 8965 assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() && 8966 "New loops suddenly appeared!"); 8967 8968 for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(), 8969 OldE = BackedgeDumpsOld.end(), 8970 NewI = BackedgeDumpsNew.begin(); 8971 OldI != OldE; ++OldI, ++NewI) { 8972 assert(OldI->first == NewI->first && "Loop order changed!"); 8973 8974 // Compare the stringified SCEVs. We don't care if undef backedgetaken count 8975 // changes. 8976 // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This 8977 // means that a pass is buggy or SCEV has to learn a new pattern but is 8978 // usually not harmful. 8979 if (OldI->second != NewI->second && 8980 OldI->second.find("undef") == std::string::npos && 8981 NewI->second.find("undef") == std::string::npos && 8982 OldI->second != "***COULDNOTCOMPUTE***" && 8983 NewI->second != "***COULDNOTCOMPUTE***") { 8984 dbgs() << "SCEVValidator: SCEV for loop '" 8985 << OldI->first->getHeader()->getName() 8986 << "' changed from '" << OldI->second 8987 << "' to '" << NewI->second << "'!\n"; 8988 std::abort(); 8989 } 8990 } 8991 8992 // TODO: Verify more things. 8993 } 8994 8995 char ScalarEvolutionAnalysis::PassID; 8996 8997 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 8998 AnalysisManager<Function> *AM) { 8999 return ScalarEvolution(F, AM->getResult<TargetLibraryAnalysis>(F), 9000 AM->getResult<AssumptionAnalysis>(F), 9001 AM->getResult<DominatorTreeAnalysis>(F), 9002 AM->getResult<LoopAnalysis>(F)); 9003 } 9004 9005 PreservedAnalyses 9006 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> *AM) { 9007 AM->getResult<ScalarEvolutionAnalysis>(F).print(OS); 9008 return PreservedAnalyses::all(); 9009 } 9010 9011 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 9012 "Scalar Evolution Analysis", false, true) 9013 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 9014 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 9015 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 9016 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 9017 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 9018 "Scalar Evolution Analysis", false, true) 9019 char ScalarEvolutionWrapperPass::ID = 0; 9020 9021 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 9022 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 9023 } 9024 9025 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 9026 SE.reset(new ScalarEvolution( 9027 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(), 9028 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 9029 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 9030 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 9031 return false; 9032 } 9033 9034 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 9035 9036 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 9037 SE->print(OS); 9038 } 9039 9040 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 9041 if (!VerifySCEV) 9042 return; 9043 9044 SE->verify(); 9045 } 9046 9047 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 9048 AU.setPreservesAll(); 9049 AU.addRequiredTransitive<AssumptionCacheTracker>(); 9050 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 9051 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 9052 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 9053 } 9054