1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumTripCountsComputed, 143 "Number of loops with predictable loop counts"); 144 STATISTIC(NumTripCountsNotComputed, 145 "Number of loops without predictable loop counts"); 146 STATISTIC(NumBruteForceTripCountsComputed, 147 "Number of loops with trip counts computed by force"); 148 149 static cl::opt<unsigned> 150 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 151 cl::ZeroOrMore, 152 cl::desc("Maximum number of iterations SCEV will " 153 "symbolically execute a constant " 154 "derived loop"), 155 cl::init(100)); 156 157 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 158 static cl::opt<bool> VerifySCEV( 159 "verify-scev", cl::Hidden, 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 //===----------------------------------------------------------------------===// 235 // SCEV class definitions 236 //===----------------------------------------------------------------------===// 237 238 //===----------------------------------------------------------------------===// 239 // Implementation of the SCEV class. 240 // 241 242 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 243 LLVM_DUMP_METHOD void SCEV::dump() const { 244 print(dbgs()); 245 dbgs() << '\n'; 246 } 247 #endif 248 249 void SCEV::print(raw_ostream &OS) const { 250 switch (getSCEVType()) { 251 case scConstant: 252 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 253 return; 254 case scPtrToInt: { 255 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 256 const SCEV *Op = PtrToInt->getOperand(); 257 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 258 << *PtrToInt->getType() << ")"; 259 return; 260 } 261 case scTruncate: { 262 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 263 const SCEV *Op = Trunc->getOperand(); 264 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 265 << *Trunc->getType() << ")"; 266 return; 267 } 268 case scZeroExtend: { 269 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 270 const SCEV *Op = ZExt->getOperand(); 271 OS << "(zext " << *Op->getType() << " " << *Op << " to " 272 << *ZExt->getType() << ")"; 273 return; 274 } 275 case scSignExtend: { 276 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 277 const SCEV *Op = SExt->getOperand(); 278 OS << "(sext " << *Op->getType() << " " << *Op << " to " 279 << *SExt->getType() << ")"; 280 return; 281 } 282 case scAddRecExpr: { 283 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 284 OS << "{" << *AR->getOperand(0); 285 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 286 OS << ",+," << *AR->getOperand(i); 287 OS << "}<"; 288 if (AR->hasNoUnsignedWrap()) 289 OS << "nuw><"; 290 if (AR->hasNoSignedWrap()) 291 OS << "nsw><"; 292 if (AR->hasNoSelfWrap() && 293 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 294 OS << "nw><"; 295 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 296 OS << ">"; 297 return; 298 } 299 case scAddExpr: 300 case scMulExpr: 301 case scUMaxExpr: 302 case scSMaxExpr: 303 case scUMinExpr: 304 case scSMinExpr: { 305 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 306 const char *OpStr = nullptr; 307 switch (NAry->getSCEVType()) { 308 case scAddExpr: OpStr = " + "; break; 309 case scMulExpr: OpStr = " * "; break; 310 case scUMaxExpr: OpStr = " umax "; break; 311 case scSMaxExpr: OpStr = " smax "; break; 312 case scUMinExpr: 313 OpStr = " umin "; 314 break; 315 case scSMinExpr: 316 OpStr = " smin "; 317 break; 318 default: 319 llvm_unreachable("There are no other nary expression types."); 320 } 321 OS << "("; 322 ListSeparator LS(OpStr); 323 for (const SCEV *Op : NAry->operands()) 324 OS << LS << *Op; 325 OS << ")"; 326 switch (NAry->getSCEVType()) { 327 case scAddExpr: 328 case scMulExpr: 329 if (NAry->hasNoUnsignedWrap()) 330 OS << "<nuw>"; 331 if (NAry->hasNoSignedWrap()) 332 OS << "<nsw>"; 333 break; 334 default: 335 // Nothing to print for other nary expressions. 336 break; 337 } 338 return; 339 } 340 case scUDivExpr: { 341 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 342 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 343 return; 344 } 345 case scUnknown: { 346 const SCEVUnknown *U = cast<SCEVUnknown>(this); 347 Type *AllocTy; 348 if (U->isSizeOf(AllocTy)) { 349 OS << "sizeof(" << *AllocTy << ")"; 350 return; 351 } 352 if (U->isAlignOf(AllocTy)) { 353 OS << "alignof(" << *AllocTy << ")"; 354 return; 355 } 356 357 Type *CTy; 358 Constant *FieldNo; 359 if (U->isOffsetOf(CTy, FieldNo)) { 360 OS << "offsetof(" << *CTy << ", "; 361 FieldNo->printAsOperand(OS, false); 362 OS << ")"; 363 return; 364 } 365 366 // Otherwise just print it normally. 367 U->getValue()->printAsOperand(OS, false); 368 return; 369 } 370 case scCouldNotCompute: 371 OS << "***COULDNOTCOMPUTE***"; 372 return; 373 } 374 llvm_unreachable("Unknown SCEV kind!"); 375 } 376 377 Type *SCEV::getType() const { 378 switch (getSCEVType()) { 379 case scConstant: 380 return cast<SCEVConstant>(this)->getType(); 381 case scPtrToInt: 382 case scTruncate: 383 case scZeroExtend: 384 case scSignExtend: 385 return cast<SCEVCastExpr>(this)->getType(); 386 case scAddRecExpr: 387 return cast<SCEVAddRecExpr>(this)->getType(); 388 case scMulExpr: 389 return cast<SCEVMulExpr>(this)->getType(); 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVMinMaxExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 535 return true; 536 } 537 538 return false; 539 } 540 541 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 542 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 543 if (VCE->getOpcode() == Instruction::PtrToInt) 544 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 545 if (CE->getOpcode() == Instruction::GetElementPtr && 546 CE->getOperand(0)->isNullValue()) { 547 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 548 if (StructType *STy = dyn_cast<StructType>(Ty)) 549 if (!STy->isPacked() && 550 CE->getNumOperands() == 3 && 551 CE->getOperand(1)->isNullValue()) { 552 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 553 if (CI->isOne() && 554 STy->getNumElements() == 2 && 555 STy->getElementType(0)->isIntegerTy(1)) { 556 AllocTy = STy->getElementType(1); 557 return true; 558 } 559 } 560 } 561 562 return false; 563 } 564 565 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 566 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 567 if (VCE->getOpcode() == Instruction::PtrToInt) 568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 569 if (CE->getOpcode() == Instruction::GetElementPtr && 570 CE->getNumOperands() == 3 && 571 CE->getOperand(0)->isNullValue() && 572 CE->getOperand(1)->isNullValue()) { 573 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 574 // Ignore vector types here so that ScalarEvolutionExpander doesn't 575 // emit getelementptrs that index into vectors. 576 if (Ty->isStructTy() || Ty->isArrayTy()) { 577 CTy = Ty; 578 FieldNo = CE->getOperand(2); 579 return true; 580 } 581 } 582 583 return false; 584 } 585 586 //===----------------------------------------------------------------------===// 587 // SCEV Utilities 588 //===----------------------------------------------------------------------===// 589 590 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 591 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 592 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 593 /// have been previously deemed to be "equally complex" by this routine. It is 594 /// intended to avoid exponential time complexity in cases like: 595 /// 596 /// %a = f(%x, %y) 597 /// %b = f(%a, %a) 598 /// %c = f(%b, %b) 599 /// 600 /// %d = f(%x, %y) 601 /// %e = f(%d, %d) 602 /// %f = f(%e, %e) 603 /// 604 /// CompareValueComplexity(%f, %c) 605 /// 606 /// Since we do not continue running this routine on expression trees once we 607 /// have seen unequal values, there is no need to track them in the cache. 608 static int 609 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 610 const LoopInfo *const LI, Value *LV, Value *RV, 611 unsigned Depth) { 612 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 613 return 0; 614 615 // Order pointer values after integer values. This helps SCEVExpander form 616 // GEPs. 617 bool LIsPointer = LV->getType()->isPointerTy(), 618 RIsPointer = RV->getType()->isPointerTy(); 619 if (LIsPointer != RIsPointer) 620 return (int)LIsPointer - (int)RIsPointer; 621 622 // Compare getValueID values. 623 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 624 if (LID != RID) 625 return (int)LID - (int)RID; 626 627 // Sort arguments by their position. 628 if (const auto *LA = dyn_cast<Argument>(LV)) { 629 const auto *RA = cast<Argument>(RV); 630 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 631 return (int)LArgNo - (int)RArgNo; 632 } 633 634 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 635 const auto *RGV = cast<GlobalValue>(RV); 636 637 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 638 auto LT = GV->getLinkage(); 639 return !(GlobalValue::isPrivateLinkage(LT) || 640 GlobalValue::isInternalLinkage(LT)); 641 }; 642 643 // Use the names to distinguish the two values, but only if the 644 // names are semantically important. 645 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 646 return LGV->getName().compare(RGV->getName()); 647 } 648 649 // For instructions, compare their loop depth, and their operand count. This 650 // is pretty loose. 651 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 652 const auto *RInst = cast<Instruction>(RV); 653 654 // Compare loop depths. 655 const BasicBlock *LParent = LInst->getParent(), 656 *RParent = RInst->getParent(); 657 if (LParent != RParent) { 658 unsigned LDepth = LI->getLoopDepth(LParent), 659 RDepth = LI->getLoopDepth(RParent); 660 if (LDepth != RDepth) 661 return (int)LDepth - (int)RDepth; 662 } 663 664 // Compare the number of operands. 665 unsigned LNumOps = LInst->getNumOperands(), 666 RNumOps = RInst->getNumOperands(); 667 if (LNumOps != RNumOps) 668 return (int)LNumOps - (int)RNumOps; 669 670 for (unsigned Idx : seq(0u, LNumOps)) { 671 int Result = 672 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 673 RInst->getOperand(Idx), Depth + 1); 674 if (Result != 0) 675 return Result; 676 } 677 } 678 679 EqCacheValue.unionSets(LV, RV); 680 return 0; 681 } 682 683 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 684 // than RHS, respectively. A three-way result allows recursive comparisons to be 685 // more efficient. 686 // If the max analysis depth was reached, return None, assuming we do not know 687 // if they are equivalent for sure. 688 static Optional<int> 689 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 690 EquivalenceClasses<const Value *> &EqCacheValue, 691 const LoopInfo *const LI, const SCEV *LHS, 692 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 693 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 694 if (LHS == RHS) 695 return 0; 696 697 // Primarily, sort the SCEVs by their getSCEVType(). 698 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 699 if (LType != RType) 700 return (int)LType - (int)RType; 701 702 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 703 return 0; 704 705 if (Depth > MaxSCEVCompareDepth) 706 return None; 707 708 // Aside from the getSCEVType() ordering, the particular ordering 709 // isn't very important except that it's beneficial to be consistent, 710 // so that (a + b) and (b + a) don't end up as different expressions. 711 switch (LType) { 712 case scUnknown: { 713 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 714 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 715 716 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 717 RU->getValue(), Depth + 1); 718 if (X == 0) 719 EqCacheSCEV.unionSets(LHS, RHS); 720 return X; 721 } 722 723 case scConstant: { 724 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 725 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 726 727 // Compare constant values. 728 const APInt &LA = LC->getAPInt(); 729 const APInt &RA = RC->getAPInt(); 730 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 731 if (LBitWidth != RBitWidth) 732 return (int)LBitWidth - (int)RBitWidth; 733 return LA.ult(RA) ? -1 : 1; 734 } 735 736 case scAddRecExpr: { 737 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 738 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 739 740 // There is always a dominance between two recs that are used by one SCEV, 741 // so we can safely sort recs by loop header dominance. We require such 742 // order in getAddExpr. 743 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 744 if (LLoop != RLoop) { 745 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 746 assert(LHead != RHead && "Two loops share the same header?"); 747 if (DT.dominates(LHead, RHead)) 748 return 1; 749 else 750 assert(DT.dominates(RHead, LHead) && 751 "No dominance between recurrences used by one SCEV?"); 752 return -1; 753 } 754 755 // Addrec complexity grows with operand count. 756 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 757 if (LNumOps != RNumOps) 758 return (int)LNumOps - (int)RNumOps; 759 760 // Lexicographically compare. 761 for (unsigned i = 0; i != LNumOps; ++i) { 762 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 763 LA->getOperand(i), RA->getOperand(i), DT, 764 Depth + 1); 765 if (X != 0) 766 return X; 767 } 768 EqCacheSCEV.unionSets(LHS, RHS); 769 return 0; 770 } 771 772 case scAddExpr: 773 case scMulExpr: 774 case scSMaxExpr: 775 case scUMaxExpr: 776 case scSMinExpr: 777 case scUMinExpr: { 778 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 779 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 780 781 // Lexicographically compare n-ary expressions. 782 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 783 if (LNumOps != RNumOps) 784 return (int)LNumOps - (int)RNumOps; 785 786 for (unsigned i = 0; i != LNumOps; ++i) { 787 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 788 LC->getOperand(i), RC->getOperand(i), DT, 789 Depth + 1); 790 if (X != 0) 791 return X; 792 } 793 EqCacheSCEV.unionSets(LHS, RHS); 794 return 0; 795 } 796 797 case scUDivExpr: { 798 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 799 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 800 801 // Lexicographically compare udiv expressions. 802 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 803 RC->getLHS(), DT, Depth + 1); 804 if (X != 0) 805 return X; 806 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 807 RC->getRHS(), DT, Depth + 1); 808 if (X == 0) 809 EqCacheSCEV.unionSets(LHS, RHS); 810 return X; 811 } 812 813 case scPtrToInt: 814 case scTruncate: 815 case scZeroExtend: 816 case scSignExtend: { 817 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 818 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 819 820 // Compare cast expressions by operand. 821 auto X = 822 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 823 RC->getOperand(), DT, Depth + 1); 824 if (X == 0) 825 EqCacheSCEV.unionSets(LHS, RHS); 826 return X; 827 } 828 829 case scCouldNotCompute: 830 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 831 } 832 llvm_unreachable("Unknown SCEV kind!"); 833 } 834 835 /// Given a list of SCEV objects, order them by their complexity, and group 836 /// objects of the same complexity together by value. When this routine is 837 /// finished, we know that any duplicates in the vector are consecutive and that 838 /// complexity is monotonically increasing. 839 /// 840 /// Note that we go take special precautions to ensure that we get deterministic 841 /// results from this routine. In other words, we don't want the results of 842 /// this to depend on where the addresses of various SCEV objects happened to 843 /// land in memory. 844 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 845 LoopInfo *LI, DominatorTree &DT) { 846 if (Ops.size() < 2) return; // Noop 847 848 EquivalenceClasses<const SCEV *> EqCacheSCEV; 849 EquivalenceClasses<const Value *> EqCacheValue; 850 851 // Whether LHS has provably less complexity than RHS. 852 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 853 auto Complexity = 854 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 855 return Complexity && *Complexity < 0; 856 }; 857 if (Ops.size() == 2) { 858 // This is the common case, which also happens to be trivially simple. 859 // Special case it. 860 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 861 if (IsLessComplex(RHS, LHS)) 862 std::swap(LHS, RHS); 863 return; 864 } 865 866 // Do the rough sort by complexity. 867 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 868 return IsLessComplex(LHS, RHS); 869 }); 870 871 // Now that we are sorted by complexity, group elements of the same 872 // complexity. Note that this is, at worst, N^2, but the vector is likely to 873 // be extremely short in practice. Note that we take this approach because we 874 // do not want to depend on the addresses of the objects we are grouping. 875 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 876 const SCEV *S = Ops[i]; 877 unsigned Complexity = S->getSCEVType(); 878 879 // If there are any objects of the same complexity and same value as this 880 // one, group them. 881 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 882 if (Ops[j] == S) { // Found a duplicate. 883 // Move it to immediately after i'th element. 884 std::swap(Ops[i+1], Ops[j]); 885 ++i; // no need to rescan it. 886 if (i == e-2) return; // Done! 887 } 888 } 889 } 890 } 891 892 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 893 /// least HugeExprThreshold nodes). 894 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 895 return any_of(Ops, [](const SCEV *S) { 896 return S->getExpressionSize() >= HugeExprThreshold; 897 }); 898 } 899 900 //===----------------------------------------------------------------------===// 901 // Simple SCEV method implementations 902 //===----------------------------------------------------------------------===// 903 904 /// Compute BC(It, K). The result has width W. Assume, K > 0. 905 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 906 ScalarEvolution &SE, 907 Type *ResultTy) { 908 // Handle the simplest case efficiently. 909 if (K == 1) 910 return SE.getTruncateOrZeroExtend(It, ResultTy); 911 912 // We are using the following formula for BC(It, K): 913 // 914 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 915 // 916 // Suppose, W is the bitwidth of the return value. We must be prepared for 917 // overflow. Hence, we must assure that the result of our computation is 918 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 919 // safe in modular arithmetic. 920 // 921 // However, this code doesn't use exactly that formula; the formula it uses 922 // is something like the following, where T is the number of factors of 2 in 923 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 924 // exponentiation: 925 // 926 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 927 // 928 // This formula is trivially equivalent to the previous formula. However, 929 // this formula can be implemented much more efficiently. The trick is that 930 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 931 // arithmetic. To do exact division in modular arithmetic, all we have 932 // to do is multiply by the inverse. Therefore, this step can be done at 933 // width W. 934 // 935 // The next issue is how to safely do the division by 2^T. The way this 936 // is done is by doing the multiplication step at a width of at least W + T 937 // bits. This way, the bottom W+T bits of the product are accurate. Then, 938 // when we perform the division by 2^T (which is equivalent to a right shift 939 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 940 // truncated out after the division by 2^T. 941 // 942 // In comparison to just directly using the first formula, this technique 943 // is much more efficient; using the first formula requires W * K bits, 944 // but this formula less than W + K bits. Also, the first formula requires 945 // a division step, whereas this formula only requires multiplies and shifts. 946 // 947 // It doesn't matter whether the subtraction step is done in the calculation 948 // width or the input iteration count's width; if the subtraction overflows, 949 // the result must be zero anyway. We prefer here to do it in the width of 950 // the induction variable because it helps a lot for certain cases; CodeGen 951 // isn't smart enough to ignore the overflow, which leads to much less 952 // efficient code if the width of the subtraction is wider than the native 953 // register width. 954 // 955 // (It's possible to not widen at all by pulling out factors of 2 before 956 // the multiplication; for example, K=2 can be calculated as 957 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 958 // extra arithmetic, so it's not an obvious win, and it gets 959 // much more complicated for K > 3.) 960 961 // Protection from insane SCEVs; this bound is conservative, 962 // but it probably doesn't matter. 963 if (K > 1000) 964 return SE.getCouldNotCompute(); 965 966 unsigned W = SE.getTypeSizeInBits(ResultTy); 967 968 // Calculate K! / 2^T and T; we divide out the factors of two before 969 // multiplying for calculating K! / 2^T to avoid overflow. 970 // Other overflow doesn't matter because we only care about the bottom 971 // W bits of the result. 972 APInt OddFactorial(W, 1); 973 unsigned T = 1; 974 for (unsigned i = 3; i <= K; ++i) { 975 APInt Mult(W, i); 976 unsigned TwoFactors = Mult.countTrailingZeros(); 977 T += TwoFactors; 978 Mult.lshrInPlace(TwoFactors); 979 OddFactorial *= Mult; 980 } 981 982 // We need at least W + T bits for the multiplication step 983 unsigned CalculationBits = W + T; 984 985 // Calculate 2^T, at width T+W. 986 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 987 988 // Calculate the multiplicative inverse of K! / 2^T; 989 // this multiplication factor will perform the exact division by 990 // K! / 2^T. 991 APInt Mod = APInt::getSignedMinValue(W+1); 992 APInt MultiplyFactor = OddFactorial.zext(W+1); 993 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 994 MultiplyFactor = MultiplyFactor.trunc(W); 995 996 // Calculate the product, at width T+W 997 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 998 CalculationBits); 999 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1000 for (unsigned i = 1; i != K; ++i) { 1001 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1002 Dividend = SE.getMulExpr(Dividend, 1003 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1004 } 1005 1006 // Divide by 2^T 1007 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1008 1009 // Truncate the result, and divide by K! / 2^T. 1010 1011 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1012 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1013 } 1014 1015 /// Return the value of this chain of recurrences at the specified iteration 1016 /// number. We can evaluate this recurrence by multiplying each element in the 1017 /// chain by the binomial coefficient corresponding to it. In other words, we 1018 /// can evaluate {A,+,B,+,C,+,D} as: 1019 /// 1020 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1021 /// 1022 /// where BC(It, k) stands for binomial coefficient. 1023 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1024 ScalarEvolution &SE) const { 1025 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1026 } 1027 1028 const SCEV * 1029 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1030 const SCEV *It, ScalarEvolution &SE) { 1031 assert(Operands.size() > 0); 1032 const SCEV *Result = Operands[0]; 1033 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1034 // The computation is correct in the face of overflow provided that the 1035 // multiplication is performed _after_ the evaluation of the binomial 1036 // coefficient. 1037 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1038 if (isa<SCEVCouldNotCompute>(Coeff)) 1039 return Coeff; 1040 1041 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1042 } 1043 return Result; 1044 } 1045 1046 //===----------------------------------------------------------------------===// 1047 // SCEV Expression folder implementations 1048 //===----------------------------------------------------------------------===// 1049 1050 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1051 unsigned Depth) { 1052 assert(Depth <= 1 && 1053 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1054 1055 // We could be called with an integer-typed operands during SCEV rewrites. 1056 // Since the operand is an integer already, just perform zext/trunc/self cast. 1057 if (!Op->getType()->isPointerTy()) 1058 return Op; 1059 1060 // What would be an ID for such a SCEV cast expression? 1061 FoldingSetNodeID ID; 1062 ID.AddInteger(scPtrToInt); 1063 ID.AddPointer(Op); 1064 1065 void *IP = nullptr; 1066 1067 // Is there already an expression for such a cast? 1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1069 return S; 1070 1071 // It isn't legal for optimizations to construct new ptrtoint expressions 1072 // for non-integral pointers. 1073 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1074 return getCouldNotCompute(); 1075 1076 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1077 1078 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1079 // is sufficiently wide to represent all possible pointer values. 1080 // We could theoretically teach SCEV to truncate wider pointers, but 1081 // that isn't implemented for now. 1082 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1083 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1084 return getCouldNotCompute(); 1085 1086 // If not, is this expression something we can't reduce any further? 1087 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1088 // Perform some basic constant folding. If the operand of the ptr2int cast 1089 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1090 // left as-is), but produce a zero constant. 1091 // NOTE: We could handle a more general case, but lack motivational cases. 1092 if (isa<ConstantPointerNull>(U->getValue())) 1093 return getZero(IntPtrTy); 1094 1095 // Create an explicit cast node. 1096 // We can reuse the existing insert position since if we get here, 1097 // we won't have made any changes which would invalidate it. 1098 SCEV *S = new (SCEVAllocator) 1099 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1100 UniqueSCEVs.InsertNode(S, IP); 1101 registerUser(S, Op); 1102 return S; 1103 } 1104 1105 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1106 "non-SCEVUnknown's."); 1107 1108 // Otherwise, we've got some expression that is more complex than just a 1109 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1110 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1111 // only, and the expressions must otherwise be integer-typed. 1112 // So sink the cast down to the SCEVUnknown's. 1113 1114 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1115 /// which computes a pointer-typed value, and rewrites the whole expression 1116 /// tree so that *all* the computations are done on integers, and the only 1117 /// pointer-typed operands in the expression are SCEVUnknown. 1118 class SCEVPtrToIntSinkingRewriter 1119 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1120 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1121 1122 public: 1123 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1124 1125 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1126 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1127 return Rewriter.visit(Scev); 1128 } 1129 1130 const SCEV *visit(const SCEV *S) { 1131 Type *STy = S->getType(); 1132 // If the expression is not pointer-typed, just keep it as-is. 1133 if (!STy->isPointerTy()) 1134 return S; 1135 // Else, recursively sink the cast down into it. 1136 return Base::visit(S); 1137 } 1138 1139 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1140 SmallVector<const SCEV *, 2> Operands; 1141 bool Changed = false; 1142 for (auto *Op : Expr->operands()) { 1143 Operands.push_back(visit(Op)); 1144 Changed |= Op != Operands.back(); 1145 } 1146 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1147 } 1148 1149 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1150 SmallVector<const SCEV *, 2> Operands; 1151 bool Changed = false; 1152 for (auto *Op : Expr->operands()) { 1153 Operands.push_back(visit(Op)); 1154 Changed |= Op != Operands.back(); 1155 } 1156 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1157 } 1158 1159 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1160 assert(Expr->getType()->isPointerTy() && 1161 "Should only reach pointer-typed SCEVUnknown's."); 1162 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1163 } 1164 }; 1165 1166 // And actually perform the cast sinking. 1167 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1168 assert(IntOp->getType()->isIntegerTy() && 1169 "We must have succeeded in sinking the cast, " 1170 "and ending up with an integer-typed expression!"); 1171 return IntOp; 1172 } 1173 1174 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1175 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1176 1177 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1178 if (isa<SCEVCouldNotCompute>(IntOp)) 1179 return IntOp; 1180 1181 return getTruncateOrZeroExtend(IntOp, Ty); 1182 } 1183 1184 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1185 unsigned Depth) { 1186 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1187 "This is not a truncating conversion!"); 1188 assert(isSCEVable(Ty) && 1189 "This is not a conversion to a SCEVable type!"); 1190 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1191 Ty = getEffectiveSCEVType(Ty); 1192 1193 FoldingSetNodeID ID; 1194 ID.AddInteger(scTruncate); 1195 ID.AddPointer(Op); 1196 ID.AddPointer(Ty); 1197 void *IP = nullptr; 1198 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1199 1200 // Fold if the operand is constant. 1201 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1202 return getConstant( 1203 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1204 1205 // trunc(trunc(x)) --> trunc(x) 1206 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1207 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1208 1209 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1210 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1211 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1212 1213 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1214 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1215 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1216 1217 if (Depth > MaxCastDepth) { 1218 SCEV *S = 1219 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1220 UniqueSCEVs.InsertNode(S, IP); 1221 registerUser(S, Op); 1222 return S; 1223 } 1224 1225 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1226 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1227 // if after transforming we have at most one truncate, not counting truncates 1228 // that replace other casts. 1229 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1230 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1231 SmallVector<const SCEV *, 4> Operands; 1232 unsigned numTruncs = 0; 1233 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1234 ++i) { 1235 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1236 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1237 isa<SCEVTruncateExpr>(S)) 1238 numTruncs++; 1239 Operands.push_back(S); 1240 } 1241 if (numTruncs < 2) { 1242 if (isa<SCEVAddExpr>(Op)) 1243 return getAddExpr(Operands); 1244 else if (isa<SCEVMulExpr>(Op)) 1245 return getMulExpr(Operands); 1246 else 1247 llvm_unreachable("Unexpected SCEV type for Op."); 1248 } 1249 // Although we checked in the beginning that ID is not in the cache, it is 1250 // possible that during recursion and different modification ID was inserted 1251 // into the cache. So if we find it, just return it. 1252 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1253 return S; 1254 } 1255 1256 // If the input value is a chrec scev, truncate the chrec's operands. 1257 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1258 SmallVector<const SCEV *, 4> Operands; 1259 for (const SCEV *Op : AddRec->operands()) 1260 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1261 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1262 } 1263 1264 // Return zero if truncating to known zeros. 1265 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1266 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1267 return getZero(Ty); 1268 1269 // The cast wasn't folded; create an explicit cast node. We can reuse 1270 // the existing insert position since if we get here, we won't have 1271 // made any changes which would invalidate it. 1272 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1273 Op, Ty); 1274 UniqueSCEVs.InsertNode(S, IP); 1275 registerUser(S, Op); 1276 return S; 1277 } 1278 1279 // Get the limit of a recurrence such that incrementing by Step cannot cause 1280 // signed overflow as long as the value of the recurrence within the 1281 // loop does not exceed this limit before incrementing. 1282 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1283 ICmpInst::Predicate *Pred, 1284 ScalarEvolution *SE) { 1285 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1286 if (SE->isKnownPositive(Step)) { 1287 *Pred = ICmpInst::ICMP_SLT; 1288 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1289 SE->getSignedRangeMax(Step)); 1290 } 1291 if (SE->isKnownNegative(Step)) { 1292 *Pred = ICmpInst::ICMP_SGT; 1293 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1294 SE->getSignedRangeMin(Step)); 1295 } 1296 return nullptr; 1297 } 1298 1299 // Get the limit of a recurrence such that incrementing by Step cannot cause 1300 // unsigned overflow as long as the value of the recurrence within the loop does 1301 // not exceed this limit before incrementing. 1302 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1303 ICmpInst::Predicate *Pred, 1304 ScalarEvolution *SE) { 1305 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1306 *Pred = ICmpInst::ICMP_ULT; 1307 1308 return SE->getConstant(APInt::getMinValue(BitWidth) - 1309 SE->getUnsignedRangeMax(Step)); 1310 } 1311 1312 namespace { 1313 1314 struct ExtendOpTraitsBase { 1315 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1316 unsigned); 1317 }; 1318 1319 // Used to make code generic over signed and unsigned overflow. 1320 template <typename ExtendOp> struct ExtendOpTraits { 1321 // Members present: 1322 // 1323 // static const SCEV::NoWrapFlags WrapType; 1324 // 1325 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1326 // 1327 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1328 // ICmpInst::Predicate *Pred, 1329 // ScalarEvolution *SE); 1330 }; 1331 1332 template <> 1333 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1334 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1335 1336 static const GetExtendExprTy GetExtendExpr; 1337 1338 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1339 ICmpInst::Predicate *Pred, 1340 ScalarEvolution *SE) { 1341 return getSignedOverflowLimitForStep(Step, Pred, SE); 1342 } 1343 }; 1344 1345 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1346 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1347 1348 template <> 1349 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1350 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1351 1352 static const GetExtendExprTy GetExtendExpr; 1353 1354 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1355 ICmpInst::Predicate *Pred, 1356 ScalarEvolution *SE) { 1357 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1358 } 1359 }; 1360 1361 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1362 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1363 1364 } // end anonymous namespace 1365 1366 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1367 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1368 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1369 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1370 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1371 // expression "Step + sext/zext(PreIncAR)" is congruent with 1372 // "sext/zext(PostIncAR)" 1373 template <typename ExtendOpTy> 1374 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1375 ScalarEvolution *SE, unsigned Depth) { 1376 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1377 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1378 1379 const Loop *L = AR->getLoop(); 1380 const SCEV *Start = AR->getStart(); 1381 const SCEV *Step = AR->getStepRecurrence(*SE); 1382 1383 // Check for a simple looking step prior to loop entry. 1384 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1385 if (!SA) 1386 return nullptr; 1387 1388 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1389 // subtraction is expensive. For this purpose, perform a quick and dirty 1390 // difference, by checking for Step in the operand list. 1391 SmallVector<const SCEV *, 4> DiffOps; 1392 for (const SCEV *Op : SA->operands()) 1393 if (Op != Step) 1394 DiffOps.push_back(Op); 1395 1396 if (DiffOps.size() == SA->getNumOperands()) 1397 return nullptr; 1398 1399 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1400 // `Step`: 1401 1402 // 1. NSW/NUW flags on the step increment. 1403 auto PreStartFlags = 1404 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1405 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1406 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1407 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1408 1409 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1410 // "S+X does not sign/unsign-overflow". 1411 // 1412 1413 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1414 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1415 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1416 return PreStart; 1417 1418 // 2. Direct overflow check on the step operation's expression. 1419 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1420 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1421 const SCEV *OperandExtendedStart = 1422 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1423 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1424 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1425 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1426 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1427 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1428 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1429 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1430 } 1431 return PreStart; 1432 } 1433 1434 // 3. Loop precondition. 1435 ICmpInst::Predicate Pred; 1436 const SCEV *OverflowLimit = 1437 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1438 1439 if (OverflowLimit && 1440 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1441 return PreStart; 1442 1443 return nullptr; 1444 } 1445 1446 // Get the normalized zero or sign extended expression for this AddRec's Start. 1447 template <typename ExtendOpTy> 1448 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1449 ScalarEvolution *SE, 1450 unsigned Depth) { 1451 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1452 1453 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1454 if (!PreStart) 1455 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1456 1457 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1458 Depth), 1459 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1460 } 1461 1462 // Try to prove away overflow by looking at "nearby" add recurrences. A 1463 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1464 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1465 // 1466 // Formally: 1467 // 1468 // {S,+,X} == {S-T,+,X} + T 1469 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1470 // 1471 // If ({S-T,+,X} + T) does not overflow ... (1) 1472 // 1473 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1474 // 1475 // If {S-T,+,X} does not overflow ... (2) 1476 // 1477 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1478 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1479 // 1480 // If (S-T)+T does not overflow ... (3) 1481 // 1482 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1483 // == {Ext(S),+,Ext(X)} == LHS 1484 // 1485 // Thus, if (1), (2) and (3) are true for some T, then 1486 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1487 // 1488 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1489 // does not overflow" restricted to the 0th iteration. Therefore we only need 1490 // to check for (1) and (2). 1491 // 1492 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1493 // is `Delta` (defined below). 1494 template <typename ExtendOpTy> 1495 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1496 const SCEV *Step, 1497 const Loop *L) { 1498 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1499 1500 // We restrict `Start` to a constant to prevent SCEV from spending too much 1501 // time here. It is correct (but more expensive) to continue with a 1502 // non-constant `Start` and do a general SCEV subtraction to compute 1503 // `PreStart` below. 1504 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1505 if (!StartC) 1506 return false; 1507 1508 APInt StartAI = StartC->getAPInt(); 1509 1510 for (unsigned Delta : {-2, -1, 1, 2}) { 1511 const SCEV *PreStart = getConstant(StartAI - Delta); 1512 1513 FoldingSetNodeID ID; 1514 ID.AddInteger(scAddRecExpr); 1515 ID.AddPointer(PreStart); 1516 ID.AddPointer(Step); 1517 ID.AddPointer(L); 1518 void *IP = nullptr; 1519 const auto *PreAR = 1520 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1521 1522 // Give up if we don't already have the add recurrence we need because 1523 // actually constructing an add recurrence is relatively expensive. 1524 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1525 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1526 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1527 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1528 DeltaS, &Pred, this); 1529 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1530 return true; 1531 } 1532 } 1533 1534 return false; 1535 } 1536 1537 // Finds an integer D for an expression (C + x + y + ...) such that the top 1538 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1539 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1540 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1541 // the (C + x + y + ...) expression is \p WholeAddExpr. 1542 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1543 const SCEVConstant *ConstantTerm, 1544 const SCEVAddExpr *WholeAddExpr) { 1545 const APInt &C = ConstantTerm->getAPInt(); 1546 const unsigned BitWidth = C.getBitWidth(); 1547 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1548 uint32_t TZ = BitWidth; 1549 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1550 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1551 if (TZ) { 1552 // Set D to be as many least significant bits of C as possible while still 1553 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1554 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1555 } 1556 return APInt(BitWidth, 0); 1557 } 1558 1559 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1560 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1561 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1562 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1563 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1564 const APInt &ConstantStart, 1565 const SCEV *Step) { 1566 const unsigned BitWidth = ConstantStart.getBitWidth(); 1567 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1568 if (TZ) 1569 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1570 : ConstantStart; 1571 return APInt(BitWidth, 0); 1572 } 1573 1574 const SCEV * 1575 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1576 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1577 "This is not an extending conversion!"); 1578 assert(isSCEVable(Ty) && 1579 "This is not a conversion to a SCEVable type!"); 1580 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1581 Ty = getEffectiveSCEVType(Ty); 1582 1583 // Fold if the operand is constant. 1584 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1585 return getConstant( 1586 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1587 1588 // zext(zext(x)) --> zext(x) 1589 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1590 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1591 1592 // Before doing any expensive analysis, check to see if we've already 1593 // computed a SCEV for this Op and Ty. 1594 FoldingSetNodeID ID; 1595 ID.AddInteger(scZeroExtend); 1596 ID.AddPointer(Op); 1597 ID.AddPointer(Ty); 1598 void *IP = nullptr; 1599 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1600 if (Depth > MaxCastDepth) { 1601 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1602 Op, Ty); 1603 UniqueSCEVs.InsertNode(S, IP); 1604 registerUser(S, Op); 1605 return S; 1606 } 1607 1608 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1609 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1610 // It's possible the bits taken off by the truncate were all zero bits. If 1611 // so, we should be able to simplify this further. 1612 const SCEV *X = ST->getOperand(); 1613 ConstantRange CR = getUnsignedRange(X); 1614 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1615 unsigned NewBits = getTypeSizeInBits(Ty); 1616 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1617 CR.zextOrTrunc(NewBits))) 1618 return getTruncateOrZeroExtend(X, Ty, Depth); 1619 } 1620 1621 // If the input value is a chrec scev, and we can prove that the value 1622 // did not overflow the old, smaller, value, we can zero extend all of the 1623 // operands (often constants). This allows analysis of something like 1624 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1625 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1626 if (AR->isAffine()) { 1627 const SCEV *Start = AR->getStart(); 1628 const SCEV *Step = AR->getStepRecurrence(*this); 1629 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1630 const Loop *L = AR->getLoop(); 1631 1632 if (!AR->hasNoUnsignedWrap()) { 1633 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1634 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1635 } 1636 1637 // If we have special knowledge that this addrec won't overflow, 1638 // we don't need to do any further analysis. 1639 if (AR->hasNoUnsignedWrap()) 1640 return getAddRecExpr( 1641 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1642 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1643 1644 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1645 // Note that this serves two purposes: It filters out loops that are 1646 // simply not analyzable, and it covers the case where this code is 1647 // being called from within backedge-taken count analysis, such that 1648 // attempting to ask for the backedge-taken count would likely result 1649 // in infinite recursion. In the later case, the analysis code will 1650 // cope with a conservative value, and it will take care to purge 1651 // that value once it has finished. 1652 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1653 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1654 // Manually compute the final value for AR, checking for overflow. 1655 1656 // Check whether the backedge-taken count can be losslessly casted to 1657 // the addrec's type. The count is always unsigned. 1658 const SCEV *CastedMaxBECount = 1659 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1660 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1661 CastedMaxBECount, MaxBECount->getType(), Depth); 1662 if (MaxBECount == RecastedMaxBECount) { 1663 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1664 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1665 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1666 SCEV::FlagAnyWrap, Depth + 1); 1667 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1668 SCEV::FlagAnyWrap, 1669 Depth + 1), 1670 WideTy, Depth + 1); 1671 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1672 const SCEV *WideMaxBECount = 1673 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1674 const SCEV *OperandExtendedAdd = 1675 getAddExpr(WideStart, 1676 getMulExpr(WideMaxBECount, 1677 getZeroExtendExpr(Step, WideTy, Depth + 1), 1678 SCEV::FlagAnyWrap, Depth + 1), 1679 SCEV::FlagAnyWrap, Depth + 1); 1680 if (ZAdd == OperandExtendedAdd) { 1681 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1682 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1683 // Return the expression with the addrec on the outside. 1684 return getAddRecExpr( 1685 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1686 Depth + 1), 1687 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1688 AR->getNoWrapFlags()); 1689 } 1690 // Similar to above, only this time treat the step value as signed. 1691 // This covers loops that count down. 1692 OperandExtendedAdd = 1693 getAddExpr(WideStart, 1694 getMulExpr(WideMaxBECount, 1695 getSignExtendExpr(Step, WideTy, Depth + 1), 1696 SCEV::FlagAnyWrap, Depth + 1), 1697 SCEV::FlagAnyWrap, Depth + 1); 1698 if (ZAdd == OperandExtendedAdd) { 1699 // Cache knowledge of AR NW, which is propagated to this AddRec. 1700 // Negative step causes unsigned wrap, but it still can't self-wrap. 1701 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1702 // Return the expression with the addrec on the outside. 1703 return getAddRecExpr( 1704 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1705 Depth + 1), 1706 getSignExtendExpr(Step, Ty, Depth + 1), L, 1707 AR->getNoWrapFlags()); 1708 } 1709 } 1710 } 1711 1712 // Normally, in the cases we can prove no-overflow via a 1713 // backedge guarding condition, we can also compute a backedge 1714 // taken count for the loop. The exceptions are assumptions and 1715 // guards present in the loop -- SCEV is not great at exploiting 1716 // these to compute max backedge taken counts, but can still use 1717 // these to prove lack of overflow. Use this fact to avoid 1718 // doing extra work that may not pay off. 1719 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1720 !AC.assumptions().empty()) { 1721 1722 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1723 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1724 if (AR->hasNoUnsignedWrap()) { 1725 // Same as nuw case above - duplicated here to avoid a compile time 1726 // issue. It's not clear that the order of checks does matter, but 1727 // it's one of two issue possible causes for a change which was 1728 // reverted. Be conservative for the moment. 1729 return getAddRecExpr( 1730 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1731 Depth + 1), 1732 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1733 AR->getNoWrapFlags()); 1734 } 1735 1736 // For a negative step, we can extend the operands iff doing so only 1737 // traverses values in the range zext([0,UINT_MAX]). 1738 if (isKnownNegative(Step)) { 1739 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1740 getSignedRangeMin(Step)); 1741 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1742 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1743 // Cache knowledge of AR NW, which is propagated to this 1744 // AddRec. Negative step causes unsigned wrap, but it 1745 // still can't self-wrap. 1746 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1747 // Return the expression with the addrec on the outside. 1748 return getAddRecExpr( 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1750 Depth + 1), 1751 getSignExtendExpr(Step, Ty, Depth + 1), L, 1752 AR->getNoWrapFlags()); 1753 } 1754 } 1755 } 1756 1757 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1758 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1759 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1760 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1761 const APInt &C = SC->getAPInt(); 1762 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1763 if (D != 0) { 1764 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1765 const SCEV *SResidual = 1766 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1767 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1768 return getAddExpr(SZExtD, SZExtR, 1769 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1770 Depth + 1); 1771 } 1772 } 1773 1774 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1775 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1776 return getAddRecExpr( 1777 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1778 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1779 } 1780 } 1781 1782 // zext(A % B) --> zext(A) % zext(B) 1783 { 1784 const SCEV *LHS; 1785 const SCEV *RHS; 1786 if (matchURem(Op, LHS, RHS)) 1787 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1788 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1789 } 1790 1791 // zext(A / B) --> zext(A) / zext(B). 1792 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1793 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1794 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1795 1796 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1797 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1798 if (SA->hasNoUnsignedWrap()) { 1799 // If the addition does not unsign overflow then we can, by definition, 1800 // commute the zero extension with the addition operation. 1801 SmallVector<const SCEV *, 4> Ops; 1802 for (const auto *Op : SA->operands()) 1803 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1804 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1805 } 1806 1807 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1808 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1809 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1810 // 1811 // Often address arithmetics contain expressions like 1812 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1813 // This transformation is useful while proving that such expressions are 1814 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1815 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1816 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1817 if (D != 0) { 1818 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1819 const SCEV *SResidual = 1820 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1821 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1822 return getAddExpr(SZExtD, SZExtR, 1823 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1824 Depth + 1); 1825 } 1826 } 1827 } 1828 1829 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1830 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1831 if (SM->hasNoUnsignedWrap()) { 1832 // If the multiply does not unsign overflow then we can, by definition, 1833 // commute the zero extension with the multiply operation. 1834 SmallVector<const SCEV *, 4> Ops; 1835 for (const auto *Op : SM->operands()) 1836 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1837 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1838 } 1839 1840 // zext(2^K * (trunc X to iN)) to iM -> 1841 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1842 // 1843 // Proof: 1844 // 1845 // zext(2^K * (trunc X to iN)) to iM 1846 // = zext((trunc X to iN) << K) to iM 1847 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1848 // (because shl removes the top K bits) 1849 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1850 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1851 // 1852 if (SM->getNumOperands() == 2) 1853 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1854 if (MulLHS->getAPInt().isPowerOf2()) 1855 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1856 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1857 MulLHS->getAPInt().logBase2(); 1858 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1859 return getMulExpr( 1860 getZeroExtendExpr(MulLHS, Ty), 1861 getZeroExtendExpr( 1862 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1863 SCEV::FlagNUW, Depth + 1); 1864 } 1865 } 1866 1867 // The cast wasn't folded; create an explicit cast node. 1868 // Recompute the insert position, as it may have been invalidated. 1869 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1870 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1871 Op, Ty); 1872 UniqueSCEVs.InsertNode(S, IP); 1873 registerUser(S, Op); 1874 return S; 1875 } 1876 1877 const SCEV * 1878 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1879 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1880 "This is not an extending conversion!"); 1881 assert(isSCEVable(Ty) && 1882 "This is not a conversion to a SCEVable type!"); 1883 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1884 Ty = getEffectiveSCEVType(Ty); 1885 1886 // Fold if the operand is constant. 1887 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1888 return getConstant( 1889 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1890 1891 // sext(sext(x)) --> sext(x) 1892 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1893 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1894 1895 // sext(zext(x)) --> zext(x) 1896 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1897 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1898 1899 // Before doing any expensive analysis, check to see if we've already 1900 // computed a SCEV for this Op and Ty. 1901 FoldingSetNodeID ID; 1902 ID.AddInteger(scSignExtend); 1903 ID.AddPointer(Op); 1904 ID.AddPointer(Ty); 1905 void *IP = nullptr; 1906 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1907 // Limit recursion depth. 1908 if (Depth > MaxCastDepth) { 1909 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1910 Op, Ty); 1911 UniqueSCEVs.InsertNode(S, IP); 1912 registerUser(S, Op); 1913 return S; 1914 } 1915 1916 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1917 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1918 // It's possible the bits taken off by the truncate were all sign bits. If 1919 // so, we should be able to simplify this further. 1920 const SCEV *X = ST->getOperand(); 1921 ConstantRange CR = getSignedRange(X); 1922 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1923 unsigned NewBits = getTypeSizeInBits(Ty); 1924 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1925 CR.sextOrTrunc(NewBits))) 1926 return getTruncateOrSignExtend(X, Ty, Depth); 1927 } 1928 1929 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1930 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1931 if (SA->hasNoSignedWrap()) { 1932 // If the addition does not sign overflow then we can, by definition, 1933 // commute the sign extension with the addition operation. 1934 SmallVector<const SCEV *, 4> Ops; 1935 for (const auto *Op : SA->operands()) 1936 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1937 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1938 } 1939 1940 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1941 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1942 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1943 // 1944 // For instance, this will bring two seemingly different expressions: 1945 // 1 + sext(5 + 20 * %x + 24 * %y) and 1946 // sext(6 + 20 * %x + 24 * %y) 1947 // to the same form: 1948 // 2 + sext(4 + 20 * %x + 24 * %y) 1949 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1950 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1951 if (D != 0) { 1952 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1953 const SCEV *SResidual = 1954 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1955 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1956 return getAddExpr(SSExtD, SSExtR, 1957 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1958 Depth + 1); 1959 } 1960 } 1961 } 1962 // If the input value is a chrec scev, and we can prove that the value 1963 // did not overflow the old, smaller, value, we can sign extend all of the 1964 // operands (often constants). This allows analysis of something like 1965 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1966 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1967 if (AR->isAffine()) { 1968 const SCEV *Start = AR->getStart(); 1969 const SCEV *Step = AR->getStepRecurrence(*this); 1970 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1971 const Loop *L = AR->getLoop(); 1972 1973 if (!AR->hasNoSignedWrap()) { 1974 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1975 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1976 } 1977 1978 // If we have special knowledge that this addrec won't overflow, 1979 // we don't need to do any further analysis. 1980 if (AR->hasNoSignedWrap()) 1981 return getAddRecExpr( 1982 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1983 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1984 1985 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1986 // Note that this serves two purposes: It filters out loops that are 1987 // simply not analyzable, and it covers the case where this code is 1988 // being called from within backedge-taken count analysis, such that 1989 // attempting to ask for the backedge-taken count would likely result 1990 // in infinite recursion. In the later case, the analysis code will 1991 // cope with a conservative value, and it will take care to purge 1992 // that value once it has finished. 1993 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1994 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1995 // Manually compute the final value for AR, checking for 1996 // overflow. 1997 1998 // Check whether the backedge-taken count can be losslessly casted to 1999 // the addrec's type. The count is always unsigned. 2000 const SCEV *CastedMaxBECount = 2001 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2002 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2003 CastedMaxBECount, MaxBECount->getType(), Depth); 2004 if (MaxBECount == RecastedMaxBECount) { 2005 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2006 // Check whether Start+Step*MaxBECount has no signed overflow. 2007 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2008 SCEV::FlagAnyWrap, Depth + 1); 2009 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2010 SCEV::FlagAnyWrap, 2011 Depth + 1), 2012 WideTy, Depth + 1); 2013 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2014 const SCEV *WideMaxBECount = 2015 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2016 const SCEV *OperandExtendedAdd = 2017 getAddExpr(WideStart, 2018 getMulExpr(WideMaxBECount, 2019 getSignExtendExpr(Step, WideTy, Depth + 1), 2020 SCEV::FlagAnyWrap, Depth + 1), 2021 SCEV::FlagAnyWrap, Depth + 1); 2022 if (SAdd == OperandExtendedAdd) { 2023 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2024 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2025 // Return the expression with the addrec on the outside. 2026 return getAddRecExpr( 2027 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2028 Depth + 1), 2029 getSignExtendExpr(Step, Ty, Depth + 1), L, 2030 AR->getNoWrapFlags()); 2031 } 2032 // Similar to above, only this time treat the step value as unsigned. 2033 // This covers loops that count up with an unsigned step. 2034 OperandExtendedAdd = 2035 getAddExpr(WideStart, 2036 getMulExpr(WideMaxBECount, 2037 getZeroExtendExpr(Step, WideTy, Depth + 1), 2038 SCEV::FlagAnyWrap, Depth + 1), 2039 SCEV::FlagAnyWrap, Depth + 1); 2040 if (SAdd == OperandExtendedAdd) { 2041 // If AR wraps around then 2042 // 2043 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2044 // => SAdd != OperandExtendedAdd 2045 // 2046 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2047 // (SAdd == OperandExtendedAdd => AR is NW) 2048 2049 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2050 2051 // Return the expression with the addrec on the outside. 2052 return getAddRecExpr( 2053 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2054 Depth + 1), 2055 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2056 AR->getNoWrapFlags()); 2057 } 2058 } 2059 } 2060 2061 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2062 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2063 if (AR->hasNoSignedWrap()) { 2064 // Same as nsw case above - duplicated here to avoid a compile time 2065 // issue. It's not clear that the order of checks does matter, but 2066 // it's one of two issue possible causes for a change which was 2067 // reverted. Be conservative for the moment. 2068 return getAddRecExpr( 2069 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2070 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2071 } 2072 2073 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2074 // if D + (C - D + Step * n) could be proven to not signed wrap 2075 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2076 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2077 const APInt &C = SC->getAPInt(); 2078 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2079 if (D != 0) { 2080 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2081 const SCEV *SResidual = 2082 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2083 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2084 return getAddExpr(SSExtD, SSExtR, 2085 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2086 Depth + 1); 2087 } 2088 } 2089 2090 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2091 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2092 return getAddRecExpr( 2093 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2094 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2095 } 2096 } 2097 2098 // If the input value is provably positive and we could not simplify 2099 // away the sext build a zext instead. 2100 if (isKnownNonNegative(Op)) 2101 return getZeroExtendExpr(Op, Ty, Depth + 1); 2102 2103 // The cast wasn't folded; create an explicit cast node. 2104 // Recompute the insert position, as it may have been invalidated. 2105 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2106 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2107 Op, Ty); 2108 UniqueSCEVs.InsertNode(S, IP); 2109 registerUser(S, { Op }); 2110 return S; 2111 } 2112 2113 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2114 /// unspecified bits out to the given type. 2115 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2116 Type *Ty) { 2117 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2118 "This is not an extending conversion!"); 2119 assert(isSCEVable(Ty) && 2120 "This is not a conversion to a SCEVable type!"); 2121 Ty = getEffectiveSCEVType(Ty); 2122 2123 // Sign-extend negative constants. 2124 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2125 if (SC->getAPInt().isNegative()) 2126 return getSignExtendExpr(Op, Ty); 2127 2128 // Peel off a truncate cast. 2129 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2130 const SCEV *NewOp = T->getOperand(); 2131 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2132 return getAnyExtendExpr(NewOp, Ty); 2133 return getTruncateOrNoop(NewOp, Ty); 2134 } 2135 2136 // Next try a zext cast. If the cast is folded, use it. 2137 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2138 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2139 return ZExt; 2140 2141 // Next try a sext cast. If the cast is folded, use it. 2142 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2143 if (!isa<SCEVSignExtendExpr>(SExt)) 2144 return SExt; 2145 2146 // Force the cast to be folded into the operands of an addrec. 2147 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2148 SmallVector<const SCEV *, 4> Ops; 2149 for (const SCEV *Op : AR->operands()) 2150 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2151 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2152 } 2153 2154 // If the expression is obviously signed, use the sext cast value. 2155 if (isa<SCEVSMaxExpr>(Op)) 2156 return SExt; 2157 2158 // Absent any other information, use the zext cast value. 2159 return ZExt; 2160 } 2161 2162 /// Process the given Ops list, which is a list of operands to be added under 2163 /// the given scale, update the given map. This is a helper function for 2164 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2165 /// that would form an add expression like this: 2166 /// 2167 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2168 /// 2169 /// where A and B are constants, update the map with these values: 2170 /// 2171 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2172 /// 2173 /// and add 13 + A*B*29 to AccumulatedConstant. 2174 /// This will allow getAddRecExpr to produce this: 2175 /// 2176 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2177 /// 2178 /// This form often exposes folding opportunities that are hidden in 2179 /// the original operand list. 2180 /// 2181 /// Return true iff it appears that any interesting folding opportunities 2182 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2183 /// the common case where no interesting opportunities are present, and 2184 /// is also used as a check to avoid infinite recursion. 2185 static bool 2186 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2187 SmallVectorImpl<const SCEV *> &NewOps, 2188 APInt &AccumulatedConstant, 2189 const SCEV *const *Ops, size_t NumOperands, 2190 const APInt &Scale, 2191 ScalarEvolution &SE) { 2192 bool Interesting = false; 2193 2194 // Iterate over the add operands. They are sorted, with constants first. 2195 unsigned i = 0; 2196 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2197 ++i; 2198 // Pull a buried constant out to the outside. 2199 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2200 Interesting = true; 2201 AccumulatedConstant += Scale * C->getAPInt(); 2202 } 2203 2204 // Next comes everything else. We're especially interested in multiplies 2205 // here, but they're in the middle, so just visit the rest with one loop. 2206 for (; i != NumOperands; ++i) { 2207 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2208 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2209 APInt NewScale = 2210 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2211 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2212 // A multiplication of a constant with another add; recurse. 2213 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2214 Interesting |= 2215 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2216 Add->op_begin(), Add->getNumOperands(), 2217 NewScale, SE); 2218 } else { 2219 // A multiplication of a constant with some other value. Update 2220 // the map. 2221 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2222 const SCEV *Key = SE.getMulExpr(MulOps); 2223 auto Pair = M.insert({Key, NewScale}); 2224 if (Pair.second) { 2225 NewOps.push_back(Pair.first->first); 2226 } else { 2227 Pair.first->second += NewScale; 2228 // The map already had an entry for this value, which may indicate 2229 // a folding opportunity. 2230 Interesting = true; 2231 } 2232 } 2233 } else { 2234 // An ordinary operand. Update the map. 2235 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2236 M.insert({Ops[i], Scale}); 2237 if (Pair.second) { 2238 NewOps.push_back(Pair.first->first); 2239 } else { 2240 Pair.first->second += Scale; 2241 // The map already had an entry for this value, which may indicate 2242 // a folding opportunity. 2243 Interesting = true; 2244 } 2245 } 2246 } 2247 2248 return Interesting; 2249 } 2250 2251 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2252 const SCEV *LHS, const SCEV *RHS) { 2253 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2254 SCEV::NoWrapFlags, unsigned); 2255 switch (BinOp) { 2256 default: 2257 llvm_unreachable("Unsupported binary op"); 2258 case Instruction::Add: 2259 Operation = &ScalarEvolution::getAddExpr; 2260 break; 2261 case Instruction::Sub: 2262 Operation = &ScalarEvolution::getMinusSCEV; 2263 break; 2264 case Instruction::Mul: 2265 Operation = &ScalarEvolution::getMulExpr; 2266 break; 2267 } 2268 2269 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2270 Signed ? &ScalarEvolution::getSignExtendExpr 2271 : &ScalarEvolution::getZeroExtendExpr; 2272 2273 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2274 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2275 auto *WideTy = 2276 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2277 2278 const SCEV *A = (this->*Extension)( 2279 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2280 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2281 (this->*Extension)(RHS, WideTy, 0), 2282 SCEV::FlagAnyWrap, 0); 2283 return A == B; 2284 } 2285 2286 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2287 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2288 const OverflowingBinaryOperator *OBO) { 2289 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2290 2291 if (OBO->hasNoUnsignedWrap()) 2292 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2293 if (OBO->hasNoSignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2295 2296 bool Deduced = false; 2297 2298 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2299 return {Flags, Deduced}; 2300 2301 if (OBO->getOpcode() != Instruction::Add && 2302 OBO->getOpcode() != Instruction::Sub && 2303 OBO->getOpcode() != Instruction::Mul) 2304 return {Flags, Deduced}; 2305 2306 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2307 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2308 2309 if (!OBO->hasNoUnsignedWrap() && 2310 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2311 /* Signed */ false, LHS, RHS)) { 2312 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2313 Deduced = true; 2314 } 2315 2316 if (!OBO->hasNoSignedWrap() && 2317 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2318 /* Signed */ true, LHS, RHS)) { 2319 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2320 Deduced = true; 2321 } 2322 2323 return {Flags, Deduced}; 2324 } 2325 2326 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2327 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2328 // can't-overflow flags for the operation if possible. 2329 static SCEV::NoWrapFlags 2330 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2331 const ArrayRef<const SCEV *> Ops, 2332 SCEV::NoWrapFlags Flags) { 2333 using namespace std::placeholders; 2334 2335 using OBO = OverflowingBinaryOperator; 2336 2337 bool CanAnalyze = 2338 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2339 (void)CanAnalyze; 2340 assert(CanAnalyze && "don't call from other places!"); 2341 2342 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2343 SCEV::NoWrapFlags SignOrUnsignWrap = 2344 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2345 2346 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2347 auto IsKnownNonNegative = [&](const SCEV *S) { 2348 return SE->isKnownNonNegative(S); 2349 }; 2350 2351 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2352 Flags = 2353 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2354 2355 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2356 2357 if (SignOrUnsignWrap != SignOrUnsignMask && 2358 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2359 isa<SCEVConstant>(Ops[0])) { 2360 2361 auto Opcode = [&] { 2362 switch (Type) { 2363 case scAddExpr: 2364 return Instruction::Add; 2365 case scMulExpr: 2366 return Instruction::Mul; 2367 default: 2368 llvm_unreachable("Unexpected SCEV op."); 2369 } 2370 }(); 2371 2372 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2373 2374 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2375 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2376 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2377 Opcode, C, OBO::NoSignedWrap); 2378 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2379 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2380 } 2381 2382 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2383 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2384 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2385 Opcode, C, OBO::NoUnsignedWrap); 2386 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2387 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2388 } 2389 } 2390 2391 // <0,+,nonnegative><nw> is also nuw 2392 // TODO: Add corresponding nsw case 2393 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2394 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2395 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2396 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2397 2398 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2399 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2400 Ops.size() == 2) { 2401 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2402 if (UDiv->getOperand(1) == Ops[1]) 2403 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2404 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2405 if (UDiv->getOperand(1) == Ops[0]) 2406 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2407 } 2408 2409 return Flags; 2410 } 2411 2412 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2413 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2414 } 2415 2416 /// Get a canonical add expression, or something simpler if possible. 2417 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2418 SCEV::NoWrapFlags OrigFlags, 2419 unsigned Depth) { 2420 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2421 "only nuw or nsw allowed"); 2422 assert(!Ops.empty() && "Cannot get empty add!"); 2423 if (Ops.size() == 1) return Ops[0]; 2424 #ifndef NDEBUG 2425 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2426 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2427 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2428 "SCEVAddExpr operand types don't match!"); 2429 unsigned NumPtrs = count_if( 2430 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2431 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2432 #endif 2433 2434 // Sort by complexity, this groups all similar expression types together. 2435 GroupByComplexity(Ops, &LI, DT); 2436 2437 // If there are any constants, fold them together. 2438 unsigned Idx = 0; 2439 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2440 ++Idx; 2441 assert(Idx < Ops.size()); 2442 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2443 // We found two constants, fold them together! 2444 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2445 if (Ops.size() == 2) return Ops[0]; 2446 Ops.erase(Ops.begin()+1); // Erase the folded element 2447 LHSC = cast<SCEVConstant>(Ops[0]); 2448 } 2449 2450 // If we are left with a constant zero being added, strip it off. 2451 if (LHSC->getValue()->isZero()) { 2452 Ops.erase(Ops.begin()); 2453 --Idx; 2454 } 2455 2456 if (Ops.size() == 1) return Ops[0]; 2457 } 2458 2459 // Delay expensive flag strengthening until necessary. 2460 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2461 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2462 }; 2463 2464 // Limit recursion calls depth. 2465 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2466 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2467 2468 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2469 // Don't strengthen flags if we have no new information. 2470 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2471 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2472 Add->setNoWrapFlags(ComputeFlags(Ops)); 2473 return S; 2474 } 2475 2476 // Okay, check to see if the same value occurs in the operand list more than 2477 // once. If so, merge them together into an multiply expression. Since we 2478 // sorted the list, these values are required to be adjacent. 2479 Type *Ty = Ops[0]->getType(); 2480 bool FoundMatch = false; 2481 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2482 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2483 // Scan ahead to count how many equal operands there are. 2484 unsigned Count = 2; 2485 while (i+Count != e && Ops[i+Count] == Ops[i]) 2486 ++Count; 2487 // Merge the values into a multiply. 2488 const SCEV *Scale = getConstant(Ty, Count); 2489 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2490 if (Ops.size() == Count) 2491 return Mul; 2492 Ops[i] = Mul; 2493 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2494 --i; e -= Count - 1; 2495 FoundMatch = true; 2496 } 2497 if (FoundMatch) 2498 return getAddExpr(Ops, OrigFlags, Depth + 1); 2499 2500 // Check for truncates. If all the operands are truncated from the same 2501 // type, see if factoring out the truncate would permit the result to be 2502 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2503 // if the contents of the resulting outer trunc fold to something simple. 2504 auto FindTruncSrcType = [&]() -> Type * { 2505 // We're ultimately looking to fold an addrec of truncs and muls of only 2506 // constants and truncs, so if we find any other types of SCEV 2507 // as operands of the addrec then we bail and return nullptr here. 2508 // Otherwise, we return the type of the operand of a trunc that we find. 2509 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2510 return T->getOperand()->getType(); 2511 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2512 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2513 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2514 return T->getOperand()->getType(); 2515 } 2516 return nullptr; 2517 }; 2518 if (auto *SrcType = FindTruncSrcType()) { 2519 SmallVector<const SCEV *, 8> LargeOps; 2520 bool Ok = true; 2521 // Check all the operands to see if they can be represented in the 2522 // source type of the truncate. 2523 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2524 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2525 if (T->getOperand()->getType() != SrcType) { 2526 Ok = false; 2527 break; 2528 } 2529 LargeOps.push_back(T->getOperand()); 2530 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2531 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2532 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2533 SmallVector<const SCEV *, 8> LargeMulOps; 2534 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2535 if (const SCEVTruncateExpr *T = 2536 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2537 if (T->getOperand()->getType() != SrcType) { 2538 Ok = false; 2539 break; 2540 } 2541 LargeMulOps.push_back(T->getOperand()); 2542 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2543 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2544 } else { 2545 Ok = false; 2546 break; 2547 } 2548 } 2549 if (Ok) 2550 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2551 } else { 2552 Ok = false; 2553 break; 2554 } 2555 } 2556 if (Ok) { 2557 // Evaluate the expression in the larger type. 2558 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2559 // If it folds to something simple, use it. Otherwise, don't. 2560 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2561 return getTruncateExpr(Fold, Ty); 2562 } 2563 } 2564 2565 if (Ops.size() == 2) { 2566 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2567 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2568 // C1). 2569 const SCEV *A = Ops[0]; 2570 const SCEV *B = Ops[1]; 2571 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2572 auto *C = dyn_cast<SCEVConstant>(A); 2573 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2574 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2575 auto C2 = C->getAPInt(); 2576 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2577 2578 APInt ConstAdd = C1 + C2; 2579 auto AddFlags = AddExpr->getNoWrapFlags(); 2580 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2581 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2582 ConstAdd.ule(C1)) { 2583 PreservedFlags = 2584 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2585 } 2586 2587 // Adding a constant with the same sign and small magnitude is NSW, if the 2588 // original AddExpr was NSW. 2589 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2590 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2591 ConstAdd.abs().ule(C1.abs())) { 2592 PreservedFlags = 2593 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2594 } 2595 2596 if (PreservedFlags != SCEV::FlagAnyWrap) { 2597 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2598 NewOps[0] = getConstant(ConstAdd); 2599 return getAddExpr(NewOps, PreservedFlags); 2600 } 2601 } 2602 } 2603 2604 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2605 if (Ops.size() == 2) { 2606 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2607 if (Mul && Mul->getNumOperands() == 2 && 2608 Mul->getOperand(0)->isAllOnesValue()) { 2609 const SCEV *X; 2610 const SCEV *Y; 2611 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2612 return getMulExpr(Y, getUDivExpr(X, Y)); 2613 } 2614 } 2615 } 2616 2617 // Skip past any other cast SCEVs. 2618 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2619 ++Idx; 2620 2621 // If there are add operands they would be next. 2622 if (Idx < Ops.size()) { 2623 bool DeletedAdd = false; 2624 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2625 // common NUW flag for expression after inlining. Other flags cannot be 2626 // preserved, because they may depend on the original order of operations. 2627 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2628 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2629 if (Ops.size() > AddOpsInlineThreshold || 2630 Add->getNumOperands() > AddOpsInlineThreshold) 2631 break; 2632 // If we have an add, expand the add operands onto the end of the operands 2633 // list. 2634 Ops.erase(Ops.begin()+Idx); 2635 Ops.append(Add->op_begin(), Add->op_end()); 2636 DeletedAdd = true; 2637 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2638 } 2639 2640 // If we deleted at least one add, we added operands to the end of the list, 2641 // and they are not necessarily sorted. Recurse to resort and resimplify 2642 // any operands we just acquired. 2643 if (DeletedAdd) 2644 return getAddExpr(Ops, CommonFlags, Depth + 1); 2645 } 2646 2647 // Skip over the add expression until we get to a multiply. 2648 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2649 ++Idx; 2650 2651 // Check to see if there are any folding opportunities present with 2652 // operands multiplied by constant values. 2653 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2654 uint64_t BitWidth = getTypeSizeInBits(Ty); 2655 DenseMap<const SCEV *, APInt> M; 2656 SmallVector<const SCEV *, 8> NewOps; 2657 APInt AccumulatedConstant(BitWidth, 0); 2658 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2659 Ops.data(), Ops.size(), 2660 APInt(BitWidth, 1), *this)) { 2661 struct APIntCompare { 2662 bool operator()(const APInt &LHS, const APInt &RHS) const { 2663 return LHS.ult(RHS); 2664 } 2665 }; 2666 2667 // Some interesting folding opportunity is present, so its worthwhile to 2668 // re-generate the operands list. Group the operands by constant scale, 2669 // to avoid multiplying by the same constant scale multiple times. 2670 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2671 for (const SCEV *NewOp : NewOps) 2672 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2673 // Re-generate the operands list. 2674 Ops.clear(); 2675 if (AccumulatedConstant != 0) 2676 Ops.push_back(getConstant(AccumulatedConstant)); 2677 for (auto &MulOp : MulOpLists) { 2678 if (MulOp.first == 1) { 2679 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2680 } else if (MulOp.first != 0) { 2681 Ops.push_back(getMulExpr( 2682 getConstant(MulOp.first), 2683 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2684 SCEV::FlagAnyWrap, Depth + 1)); 2685 } 2686 } 2687 if (Ops.empty()) 2688 return getZero(Ty); 2689 if (Ops.size() == 1) 2690 return Ops[0]; 2691 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2692 } 2693 } 2694 2695 // If we are adding something to a multiply expression, make sure the 2696 // something is not already an operand of the multiply. If so, merge it into 2697 // the multiply. 2698 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2699 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2700 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2701 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2702 if (isa<SCEVConstant>(MulOpSCEV)) 2703 continue; 2704 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2705 if (MulOpSCEV == Ops[AddOp]) { 2706 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2707 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2708 if (Mul->getNumOperands() != 2) { 2709 // If the multiply has more than two operands, we must get the 2710 // Y*Z term. 2711 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2712 Mul->op_begin()+MulOp); 2713 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2714 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2715 } 2716 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2717 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2718 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2719 SCEV::FlagAnyWrap, Depth + 1); 2720 if (Ops.size() == 2) return OuterMul; 2721 if (AddOp < Idx) { 2722 Ops.erase(Ops.begin()+AddOp); 2723 Ops.erase(Ops.begin()+Idx-1); 2724 } else { 2725 Ops.erase(Ops.begin()+Idx); 2726 Ops.erase(Ops.begin()+AddOp-1); 2727 } 2728 Ops.push_back(OuterMul); 2729 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2730 } 2731 2732 // Check this multiply against other multiplies being added together. 2733 for (unsigned OtherMulIdx = Idx+1; 2734 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2735 ++OtherMulIdx) { 2736 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2737 // If MulOp occurs in OtherMul, we can fold the two multiplies 2738 // together. 2739 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2740 OMulOp != e; ++OMulOp) 2741 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2742 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2743 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2746 Mul->op_begin()+MulOp); 2747 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2748 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2749 } 2750 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2751 if (OtherMul->getNumOperands() != 2) { 2752 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2753 OtherMul->op_begin()+OMulOp); 2754 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2755 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2758 const SCEV *InnerMulSum = 2759 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2760 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2761 SCEV::FlagAnyWrap, Depth + 1); 2762 if (Ops.size() == 2) return OuterMul; 2763 Ops.erase(Ops.begin()+Idx); 2764 Ops.erase(Ops.begin()+OtherMulIdx-1); 2765 Ops.push_back(OuterMul); 2766 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2767 } 2768 } 2769 } 2770 } 2771 2772 // If there are any add recurrences in the operands list, see if any other 2773 // added values are loop invariant. If so, we can fold them into the 2774 // recurrence. 2775 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2776 ++Idx; 2777 2778 // Scan over all recurrences, trying to fold loop invariants into them. 2779 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2780 // Scan all of the other operands to this add and add them to the vector if 2781 // they are loop invariant w.r.t. the recurrence. 2782 SmallVector<const SCEV *, 8> LIOps; 2783 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2784 const Loop *AddRecLoop = AddRec->getLoop(); 2785 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2786 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2787 LIOps.push_back(Ops[i]); 2788 Ops.erase(Ops.begin()+i); 2789 --i; --e; 2790 } 2791 2792 // If we found some loop invariants, fold them into the recurrence. 2793 if (!LIOps.empty()) { 2794 // Compute nowrap flags for the addition of the loop-invariant ops and 2795 // the addrec. Temporarily push it as an operand for that purpose. These 2796 // flags are valid in the scope of the addrec only. 2797 LIOps.push_back(AddRec); 2798 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2799 LIOps.pop_back(); 2800 2801 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2802 LIOps.push_back(AddRec->getStart()); 2803 2804 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2805 2806 // It is not in general safe to propagate flags valid on an add within 2807 // the addrec scope to one outside it. We must prove that the inner 2808 // scope is guaranteed to execute if the outer one does to be able to 2809 // safely propagate. We know the program is undefined if poison is 2810 // produced on the inner scoped addrec. We also know that *for this use* 2811 // the outer scoped add can't overflow (because of the flags we just 2812 // computed for the inner scoped add) without the program being undefined. 2813 // Proving that entry to the outer scope neccesitates entry to the inner 2814 // scope, thus proves the program undefined if the flags would be violated 2815 // in the outer scope. 2816 SCEV::NoWrapFlags AddFlags = Flags; 2817 if (AddFlags != SCEV::FlagAnyWrap) { 2818 auto *DefI = getDefiningScopeBound(LIOps); 2819 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2820 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2821 AddFlags = SCEV::FlagAnyWrap; 2822 } 2823 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2824 2825 // Build the new addrec. Propagate the NUW and NSW flags if both the 2826 // outer add and the inner addrec are guaranteed to have no overflow. 2827 // Always propagate NW. 2828 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2829 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2830 2831 // If all of the other operands were loop invariant, we are done. 2832 if (Ops.size() == 1) return NewRec; 2833 2834 // Otherwise, add the folded AddRec by the non-invariant parts. 2835 for (unsigned i = 0;; ++i) 2836 if (Ops[i] == AddRec) { 2837 Ops[i] = NewRec; 2838 break; 2839 } 2840 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2841 } 2842 2843 // Okay, if there weren't any loop invariants to be folded, check to see if 2844 // there are multiple AddRec's with the same loop induction variable being 2845 // added together. If so, we can fold them. 2846 for (unsigned OtherIdx = Idx+1; 2847 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2848 ++OtherIdx) { 2849 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2850 // so that the 1st found AddRecExpr is dominated by all others. 2851 assert(DT.dominates( 2852 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2853 AddRec->getLoop()->getHeader()) && 2854 "AddRecExprs are not sorted in reverse dominance order?"); 2855 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2856 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2857 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2858 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2859 ++OtherIdx) { 2860 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2861 if (OtherAddRec->getLoop() == AddRecLoop) { 2862 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2863 i != e; ++i) { 2864 if (i >= AddRecOps.size()) { 2865 AddRecOps.append(OtherAddRec->op_begin()+i, 2866 OtherAddRec->op_end()); 2867 break; 2868 } 2869 SmallVector<const SCEV *, 2> TwoOps = { 2870 AddRecOps[i], OtherAddRec->getOperand(i)}; 2871 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2872 } 2873 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2874 } 2875 } 2876 // Step size has changed, so we cannot guarantee no self-wraparound. 2877 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2878 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2879 } 2880 } 2881 2882 // Otherwise couldn't fold anything into this recurrence. Move onto the 2883 // next one. 2884 } 2885 2886 // Okay, it looks like we really DO need an add expr. Check to see if we 2887 // already have one, otherwise create a new one. 2888 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2889 } 2890 2891 const SCEV * 2892 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2893 SCEV::NoWrapFlags Flags) { 2894 FoldingSetNodeID ID; 2895 ID.AddInteger(scAddExpr); 2896 for (const SCEV *Op : Ops) 2897 ID.AddPointer(Op); 2898 void *IP = nullptr; 2899 SCEVAddExpr *S = 2900 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2901 if (!S) { 2902 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2903 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2904 S = new (SCEVAllocator) 2905 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2906 UniqueSCEVs.InsertNode(S, IP); 2907 registerUser(S, Ops); 2908 } 2909 S->setNoWrapFlags(Flags); 2910 return S; 2911 } 2912 2913 const SCEV * 2914 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2915 const Loop *L, SCEV::NoWrapFlags Flags) { 2916 FoldingSetNodeID ID; 2917 ID.AddInteger(scAddRecExpr); 2918 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2919 ID.AddPointer(Ops[i]); 2920 ID.AddPointer(L); 2921 void *IP = nullptr; 2922 SCEVAddRecExpr *S = 2923 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2924 if (!S) { 2925 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2926 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2927 S = new (SCEVAllocator) 2928 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2929 UniqueSCEVs.InsertNode(S, IP); 2930 LoopUsers[L].push_back(S); 2931 registerUser(S, Ops); 2932 } 2933 setNoWrapFlags(S, Flags); 2934 return S; 2935 } 2936 2937 const SCEV * 2938 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2939 SCEV::NoWrapFlags Flags) { 2940 FoldingSetNodeID ID; 2941 ID.AddInteger(scMulExpr); 2942 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2943 ID.AddPointer(Ops[i]); 2944 void *IP = nullptr; 2945 SCEVMulExpr *S = 2946 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2947 if (!S) { 2948 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2949 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2950 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2951 O, Ops.size()); 2952 UniqueSCEVs.InsertNode(S, IP); 2953 registerUser(S, Ops); 2954 } 2955 S->setNoWrapFlags(Flags); 2956 return S; 2957 } 2958 2959 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2960 uint64_t k = i*j; 2961 if (j > 1 && k / j != i) Overflow = true; 2962 return k; 2963 } 2964 2965 /// Compute the result of "n choose k", the binomial coefficient. If an 2966 /// intermediate computation overflows, Overflow will be set and the return will 2967 /// be garbage. Overflow is not cleared on absence of overflow. 2968 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2969 // We use the multiplicative formula: 2970 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2971 // At each iteration, we take the n-th term of the numeral and divide by the 2972 // (k-n)th term of the denominator. This division will always produce an 2973 // integral result, and helps reduce the chance of overflow in the 2974 // intermediate computations. However, we can still overflow even when the 2975 // final result would fit. 2976 2977 if (n == 0 || n == k) return 1; 2978 if (k > n) return 0; 2979 2980 if (k > n/2) 2981 k = n-k; 2982 2983 uint64_t r = 1; 2984 for (uint64_t i = 1; i <= k; ++i) { 2985 r = umul_ov(r, n-(i-1), Overflow); 2986 r /= i; 2987 } 2988 return r; 2989 } 2990 2991 /// Determine if any of the operands in this SCEV are a constant or if 2992 /// any of the add or multiply expressions in this SCEV contain a constant. 2993 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2994 struct FindConstantInAddMulChain { 2995 bool FoundConstant = false; 2996 2997 bool follow(const SCEV *S) { 2998 FoundConstant |= isa<SCEVConstant>(S); 2999 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3000 } 3001 3002 bool isDone() const { 3003 return FoundConstant; 3004 } 3005 }; 3006 3007 FindConstantInAddMulChain F; 3008 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3009 ST.visitAll(StartExpr); 3010 return F.FoundConstant; 3011 } 3012 3013 /// Get a canonical multiply expression, or something simpler if possible. 3014 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3015 SCEV::NoWrapFlags OrigFlags, 3016 unsigned Depth) { 3017 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3018 "only nuw or nsw allowed"); 3019 assert(!Ops.empty() && "Cannot get empty mul!"); 3020 if (Ops.size() == 1) return Ops[0]; 3021 #ifndef NDEBUG 3022 Type *ETy = Ops[0]->getType(); 3023 assert(!ETy->isPointerTy()); 3024 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3025 assert(Ops[i]->getType() == ETy && 3026 "SCEVMulExpr operand types don't match!"); 3027 #endif 3028 3029 // Sort by complexity, this groups all similar expression types together. 3030 GroupByComplexity(Ops, &LI, DT); 3031 3032 // If there are any constants, fold them together. 3033 unsigned Idx = 0; 3034 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3035 ++Idx; 3036 assert(Idx < Ops.size()); 3037 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3038 // We found two constants, fold them together! 3039 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3040 if (Ops.size() == 2) return Ops[0]; 3041 Ops.erase(Ops.begin()+1); // Erase the folded element 3042 LHSC = cast<SCEVConstant>(Ops[0]); 3043 } 3044 3045 // If we have a multiply of zero, it will always be zero. 3046 if (LHSC->getValue()->isZero()) 3047 return LHSC; 3048 3049 // If we are left with a constant one being multiplied, strip it off. 3050 if (LHSC->getValue()->isOne()) { 3051 Ops.erase(Ops.begin()); 3052 --Idx; 3053 } 3054 3055 if (Ops.size() == 1) 3056 return Ops[0]; 3057 } 3058 3059 // Delay expensive flag strengthening until necessary. 3060 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3061 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3062 }; 3063 3064 // Limit recursion calls depth. 3065 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3066 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3067 3068 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3069 // Don't strengthen flags if we have no new information. 3070 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3071 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3072 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3073 return S; 3074 } 3075 3076 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3077 if (Ops.size() == 2) { 3078 // C1*(C2+V) -> C1*C2 + C1*V 3079 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3080 // If any of Add's ops are Adds or Muls with a constant, apply this 3081 // transformation as well. 3082 // 3083 // TODO: There are some cases where this transformation is not 3084 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3085 // this transformation should be narrowed down. 3086 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3087 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3088 SCEV::FlagAnyWrap, Depth + 1), 3089 getMulExpr(LHSC, Add->getOperand(1), 3090 SCEV::FlagAnyWrap, Depth + 1), 3091 SCEV::FlagAnyWrap, Depth + 1); 3092 3093 if (Ops[0]->isAllOnesValue()) { 3094 // If we have a mul by -1 of an add, try distributing the -1 among the 3095 // add operands. 3096 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3097 SmallVector<const SCEV *, 4> NewOps; 3098 bool AnyFolded = false; 3099 for (const SCEV *AddOp : Add->operands()) { 3100 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3101 Depth + 1); 3102 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3103 NewOps.push_back(Mul); 3104 } 3105 if (AnyFolded) 3106 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3107 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3108 // Negation preserves a recurrence's no self-wrap property. 3109 SmallVector<const SCEV *, 4> Operands; 3110 for (const SCEV *AddRecOp : AddRec->operands()) 3111 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3112 Depth + 1)); 3113 3114 return getAddRecExpr(Operands, AddRec->getLoop(), 3115 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3116 } 3117 } 3118 } 3119 } 3120 3121 // Skip over the add expression until we get to a multiply. 3122 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3123 ++Idx; 3124 3125 // If there are mul operands inline them all into this expression. 3126 if (Idx < Ops.size()) { 3127 bool DeletedMul = false; 3128 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3129 if (Ops.size() > MulOpsInlineThreshold) 3130 break; 3131 // If we have an mul, expand the mul operands onto the end of the 3132 // operands list. 3133 Ops.erase(Ops.begin()+Idx); 3134 Ops.append(Mul->op_begin(), Mul->op_end()); 3135 DeletedMul = true; 3136 } 3137 3138 // If we deleted at least one mul, we added operands to the end of the 3139 // list, and they are not necessarily sorted. Recurse to resort and 3140 // resimplify any operands we just acquired. 3141 if (DeletedMul) 3142 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3143 } 3144 3145 // If there are any add recurrences in the operands list, see if any other 3146 // added values are loop invariant. If so, we can fold them into the 3147 // recurrence. 3148 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3149 ++Idx; 3150 3151 // Scan over all recurrences, trying to fold loop invariants into them. 3152 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3153 // Scan all of the other operands to this mul and add them to the vector 3154 // if they are loop invariant w.r.t. the recurrence. 3155 SmallVector<const SCEV *, 8> LIOps; 3156 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3157 const Loop *AddRecLoop = AddRec->getLoop(); 3158 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3159 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3160 LIOps.push_back(Ops[i]); 3161 Ops.erase(Ops.begin()+i); 3162 --i; --e; 3163 } 3164 3165 // If we found some loop invariants, fold them into the recurrence. 3166 if (!LIOps.empty()) { 3167 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3168 SmallVector<const SCEV *, 4> NewOps; 3169 NewOps.reserve(AddRec->getNumOperands()); 3170 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3171 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3172 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3173 SCEV::FlagAnyWrap, Depth + 1)); 3174 3175 // Build the new addrec. Propagate the NUW and NSW flags if both the 3176 // outer mul and the inner addrec are guaranteed to have no overflow. 3177 // 3178 // No self-wrap cannot be guaranteed after changing the step size, but 3179 // will be inferred if either NUW or NSW is true. 3180 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3181 const SCEV *NewRec = getAddRecExpr( 3182 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3183 3184 // If all of the other operands were loop invariant, we are done. 3185 if (Ops.size() == 1) return NewRec; 3186 3187 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3188 for (unsigned i = 0;; ++i) 3189 if (Ops[i] == AddRec) { 3190 Ops[i] = NewRec; 3191 break; 3192 } 3193 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3194 } 3195 3196 // Okay, if there weren't any loop invariants to be folded, check to see 3197 // if there are multiple AddRec's with the same loop induction variable 3198 // being multiplied together. If so, we can fold them. 3199 3200 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3201 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3202 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3203 // ]]],+,...up to x=2n}. 3204 // Note that the arguments to choose() are always integers with values 3205 // known at compile time, never SCEV objects. 3206 // 3207 // The implementation avoids pointless extra computations when the two 3208 // addrec's are of different length (mathematically, it's equivalent to 3209 // an infinite stream of zeros on the right). 3210 bool OpsModified = false; 3211 for (unsigned OtherIdx = Idx+1; 3212 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3213 ++OtherIdx) { 3214 const SCEVAddRecExpr *OtherAddRec = 3215 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3216 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3217 continue; 3218 3219 // Limit max number of arguments to avoid creation of unreasonably big 3220 // SCEVAddRecs with very complex operands. 3221 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3222 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3223 continue; 3224 3225 bool Overflow = false; 3226 Type *Ty = AddRec->getType(); 3227 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3228 SmallVector<const SCEV*, 7> AddRecOps; 3229 for (int x = 0, xe = AddRec->getNumOperands() + 3230 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3231 SmallVector <const SCEV *, 7> SumOps; 3232 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3233 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3234 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3235 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3236 z < ze && !Overflow; ++z) { 3237 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3238 uint64_t Coeff; 3239 if (LargerThan64Bits) 3240 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3241 else 3242 Coeff = Coeff1*Coeff2; 3243 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3244 const SCEV *Term1 = AddRec->getOperand(y-z); 3245 const SCEV *Term2 = OtherAddRec->getOperand(z); 3246 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3247 SCEV::FlagAnyWrap, Depth + 1)); 3248 } 3249 } 3250 if (SumOps.empty()) 3251 SumOps.push_back(getZero(Ty)); 3252 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3253 } 3254 if (!Overflow) { 3255 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3256 SCEV::FlagAnyWrap); 3257 if (Ops.size() == 2) return NewAddRec; 3258 Ops[Idx] = NewAddRec; 3259 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3260 OpsModified = true; 3261 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3262 if (!AddRec) 3263 break; 3264 } 3265 } 3266 if (OpsModified) 3267 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3268 3269 // Otherwise couldn't fold anything into this recurrence. Move onto the 3270 // next one. 3271 } 3272 3273 // Okay, it looks like we really DO need an mul expr. Check to see if we 3274 // already have one, otherwise create a new one. 3275 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3276 } 3277 3278 /// Represents an unsigned remainder expression based on unsigned division. 3279 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3280 const SCEV *RHS) { 3281 assert(getEffectiveSCEVType(LHS->getType()) == 3282 getEffectiveSCEVType(RHS->getType()) && 3283 "SCEVURemExpr operand types don't match!"); 3284 3285 // Short-circuit easy cases 3286 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3287 // If constant is one, the result is trivial 3288 if (RHSC->getValue()->isOne()) 3289 return getZero(LHS->getType()); // X urem 1 --> 0 3290 3291 // If constant is a power of two, fold into a zext(trunc(LHS)). 3292 if (RHSC->getAPInt().isPowerOf2()) { 3293 Type *FullTy = LHS->getType(); 3294 Type *TruncTy = 3295 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3296 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3297 } 3298 } 3299 3300 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3301 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3302 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3303 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3304 } 3305 3306 /// Get a canonical unsigned division expression, or something simpler if 3307 /// possible. 3308 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3309 const SCEV *RHS) { 3310 assert(!LHS->getType()->isPointerTy() && 3311 "SCEVUDivExpr operand can't be pointer!"); 3312 assert(LHS->getType() == RHS->getType() && 3313 "SCEVUDivExpr operand types don't match!"); 3314 3315 FoldingSetNodeID ID; 3316 ID.AddInteger(scUDivExpr); 3317 ID.AddPointer(LHS); 3318 ID.AddPointer(RHS); 3319 void *IP = nullptr; 3320 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3321 return S; 3322 3323 // 0 udiv Y == 0 3324 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3325 if (LHSC->getValue()->isZero()) 3326 return LHS; 3327 3328 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3329 if (RHSC->getValue()->isOne()) 3330 return LHS; // X udiv 1 --> x 3331 // If the denominator is zero, the result of the udiv is undefined. Don't 3332 // try to analyze it, because the resolution chosen here may differ from 3333 // the resolution chosen in other parts of the compiler. 3334 if (!RHSC->getValue()->isZero()) { 3335 // Determine if the division can be folded into the operands of 3336 // its operands. 3337 // TODO: Generalize this to non-constants by using known-bits information. 3338 Type *Ty = LHS->getType(); 3339 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3340 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3341 // For non-power-of-two values, effectively round the value up to the 3342 // nearest power of two. 3343 if (!RHSC->getAPInt().isPowerOf2()) 3344 ++MaxShiftAmt; 3345 IntegerType *ExtTy = 3346 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3347 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3348 if (const SCEVConstant *Step = 3349 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3350 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3351 const APInt &StepInt = Step->getAPInt(); 3352 const APInt &DivInt = RHSC->getAPInt(); 3353 if (!StepInt.urem(DivInt) && 3354 getZeroExtendExpr(AR, ExtTy) == 3355 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3356 getZeroExtendExpr(Step, ExtTy), 3357 AR->getLoop(), SCEV::FlagAnyWrap)) { 3358 SmallVector<const SCEV *, 4> Operands; 3359 for (const SCEV *Op : AR->operands()) 3360 Operands.push_back(getUDivExpr(Op, RHS)); 3361 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3362 } 3363 /// Get a canonical UDivExpr for a recurrence. 3364 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3365 // We can currently only fold X%N if X is constant. 3366 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3367 if (StartC && !DivInt.urem(StepInt) && 3368 getZeroExtendExpr(AR, ExtTy) == 3369 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3370 getZeroExtendExpr(Step, ExtTy), 3371 AR->getLoop(), SCEV::FlagAnyWrap)) { 3372 const APInt &StartInt = StartC->getAPInt(); 3373 const APInt &StartRem = StartInt.urem(StepInt); 3374 if (StartRem != 0) { 3375 const SCEV *NewLHS = 3376 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3377 AR->getLoop(), SCEV::FlagNW); 3378 if (LHS != NewLHS) { 3379 LHS = NewLHS; 3380 3381 // Reset the ID to include the new LHS, and check if it is 3382 // already cached. 3383 ID.clear(); 3384 ID.AddInteger(scUDivExpr); 3385 ID.AddPointer(LHS); 3386 ID.AddPointer(RHS); 3387 IP = nullptr; 3388 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3389 return S; 3390 } 3391 } 3392 } 3393 } 3394 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3395 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3396 SmallVector<const SCEV *, 4> Operands; 3397 for (const SCEV *Op : M->operands()) 3398 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3399 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3400 // Find an operand that's safely divisible. 3401 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3402 const SCEV *Op = M->getOperand(i); 3403 const SCEV *Div = getUDivExpr(Op, RHSC); 3404 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3405 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3406 Operands[i] = Div; 3407 return getMulExpr(Operands); 3408 } 3409 } 3410 } 3411 3412 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3413 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3414 if (auto *DivisorConstant = 3415 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3416 bool Overflow = false; 3417 APInt NewRHS = 3418 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3419 if (Overflow) { 3420 return getConstant(RHSC->getType(), 0, false); 3421 } 3422 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3423 } 3424 } 3425 3426 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3427 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3428 SmallVector<const SCEV *, 4> Operands; 3429 for (const SCEV *Op : A->operands()) 3430 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3431 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3432 Operands.clear(); 3433 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3434 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3435 if (isa<SCEVUDivExpr>(Op) || 3436 getMulExpr(Op, RHS) != A->getOperand(i)) 3437 break; 3438 Operands.push_back(Op); 3439 } 3440 if (Operands.size() == A->getNumOperands()) 3441 return getAddExpr(Operands); 3442 } 3443 } 3444 3445 // Fold if both operands are constant. 3446 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3447 Constant *LHSCV = LHSC->getValue(); 3448 Constant *RHSCV = RHSC->getValue(); 3449 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3450 RHSCV))); 3451 } 3452 } 3453 } 3454 3455 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3456 // changes). Make sure we get a new one. 3457 IP = nullptr; 3458 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3459 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3460 LHS, RHS); 3461 UniqueSCEVs.InsertNode(S, IP); 3462 registerUser(S, {LHS, RHS}); 3463 return S; 3464 } 3465 3466 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3467 APInt A = C1->getAPInt().abs(); 3468 APInt B = C2->getAPInt().abs(); 3469 uint32_t ABW = A.getBitWidth(); 3470 uint32_t BBW = B.getBitWidth(); 3471 3472 if (ABW > BBW) 3473 B = B.zext(ABW); 3474 else if (ABW < BBW) 3475 A = A.zext(BBW); 3476 3477 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3478 } 3479 3480 /// Get a canonical unsigned division expression, or something simpler if 3481 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3482 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3483 /// it's not exact because the udiv may be clearing bits. 3484 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3485 const SCEV *RHS) { 3486 // TODO: we could try to find factors in all sorts of things, but for now we 3487 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3488 // end of this file for inspiration. 3489 3490 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3491 if (!Mul || !Mul->hasNoUnsignedWrap()) 3492 return getUDivExpr(LHS, RHS); 3493 3494 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3495 // If the mulexpr multiplies by a constant, then that constant must be the 3496 // first element of the mulexpr. 3497 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3498 if (LHSCst == RHSCst) { 3499 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3500 return getMulExpr(Operands); 3501 } 3502 3503 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3504 // that there's a factor provided by one of the other terms. We need to 3505 // check. 3506 APInt Factor = gcd(LHSCst, RHSCst); 3507 if (!Factor.isIntN(1)) { 3508 LHSCst = 3509 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3510 RHSCst = 3511 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3512 SmallVector<const SCEV *, 2> Operands; 3513 Operands.push_back(LHSCst); 3514 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3515 LHS = getMulExpr(Operands); 3516 RHS = RHSCst; 3517 Mul = dyn_cast<SCEVMulExpr>(LHS); 3518 if (!Mul) 3519 return getUDivExactExpr(LHS, RHS); 3520 } 3521 } 3522 } 3523 3524 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3525 if (Mul->getOperand(i) == RHS) { 3526 SmallVector<const SCEV *, 2> Operands; 3527 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3528 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3529 return getMulExpr(Operands); 3530 } 3531 } 3532 3533 return getUDivExpr(LHS, RHS); 3534 } 3535 3536 /// Get an add recurrence expression for the specified loop. Simplify the 3537 /// expression as much as possible. 3538 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3539 const Loop *L, 3540 SCEV::NoWrapFlags Flags) { 3541 SmallVector<const SCEV *, 4> Operands; 3542 Operands.push_back(Start); 3543 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3544 if (StepChrec->getLoop() == L) { 3545 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3546 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3547 } 3548 3549 Operands.push_back(Step); 3550 return getAddRecExpr(Operands, L, Flags); 3551 } 3552 3553 /// Get an add recurrence expression for the specified loop. Simplify the 3554 /// expression as much as possible. 3555 const SCEV * 3556 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3557 const Loop *L, SCEV::NoWrapFlags Flags) { 3558 if (Operands.size() == 1) return Operands[0]; 3559 #ifndef NDEBUG 3560 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3561 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3562 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3563 "SCEVAddRecExpr operand types don't match!"); 3564 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3565 } 3566 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3567 assert(isLoopInvariant(Operands[i], L) && 3568 "SCEVAddRecExpr operand is not loop-invariant!"); 3569 #endif 3570 3571 if (Operands.back()->isZero()) { 3572 Operands.pop_back(); 3573 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3574 } 3575 3576 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3577 // use that information to infer NUW and NSW flags. However, computing a 3578 // BE count requires calling getAddRecExpr, so we may not yet have a 3579 // meaningful BE count at this point (and if we don't, we'd be stuck 3580 // with a SCEVCouldNotCompute as the cached BE count). 3581 3582 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3583 3584 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3585 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3586 const Loop *NestedLoop = NestedAR->getLoop(); 3587 if (L->contains(NestedLoop) 3588 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3589 : (!NestedLoop->contains(L) && 3590 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3591 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3592 Operands[0] = NestedAR->getStart(); 3593 // AddRecs require their operands be loop-invariant with respect to their 3594 // loops. Don't perform this transformation if it would break this 3595 // requirement. 3596 bool AllInvariant = all_of( 3597 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3598 3599 if (AllInvariant) { 3600 // Create a recurrence for the outer loop with the same step size. 3601 // 3602 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3603 // inner recurrence has the same property. 3604 SCEV::NoWrapFlags OuterFlags = 3605 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3606 3607 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3608 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3609 return isLoopInvariant(Op, NestedLoop); 3610 }); 3611 3612 if (AllInvariant) { 3613 // Ok, both add recurrences are valid after the transformation. 3614 // 3615 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3616 // the outer recurrence has the same property. 3617 SCEV::NoWrapFlags InnerFlags = 3618 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3619 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3620 } 3621 } 3622 // Reset Operands to its original state. 3623 Operands[0] = NestedAR; 3624 } 3625 } 3626 3627 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3628 // already have one, otherwise create a new one. 3629 return getOrCreateAddRecExpr(Operands, L, Flags); 3630 } 3631 3632 const SCEV * 3633 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3634 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3635 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3636 // getSCEV(Base)->getType() has the same address space as Base->getType() 3637 // because SCEV::getType() preserves the address space. 3638 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3639 const bool AssumeInBoundsFlags = [&]() { 3640 if (!GEP->isInBounds()) 3641 return false; 3642 3643 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3644 // but to do that, we have to ensure that said flag is valid in the entire 3645 // defined scope of the SCEV. 3646 auto *GEPI = dyn_cast<Instruction>(GEP); 3647 // TODO: non-instructions have global scope. We might be able to prove 3648 // some global scope cases 3649 return GEPI && isSCEVExprNeverPoison(GEPI); 3650 }(); 3651 3652 SCEV::NoWrapFlags OffsetWrap = 3653 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3654 3655 Type *CurTy = GEP->getType(); 3656 bool FirstIter = true; 3657 SmallVector<const SCEV *, 4> Offsets; 3658 for (const SCEV *IndexExpr : IndexExprs) { 3659 // Compute the (potentially symbolic) offset in bytes for this index. 3660 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3661 // For a struct, add the member offset. 3662 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3663 unsigned FieldNo = Index->getZExtValue(); 3664 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3665 Offsets.push_back(FieldOffset); 3666 3667 // Update CurTy to the type of the field at Index. 3668 CurTy = STy->getTypeAtIndex(Index); 3669 } else { 3670 // Update CurTy to its element type. 3671 if (FirstIter) { 3672 assert(isa<PointerType>(CurTy) && 3673 "The first index of a GEP indexes a pointer"); 3674 CurTy = GEP->getSourceElementType(); 3675 FirstIter = false; 3676 } else { 3677 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3678 } 3679 // For an array, add the element offset, explicitly scaled. 3680 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3681 // Getelementptr indices are signed. 3682 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3683 3684 // Multiply the index by the element size to compute the element offset. 3685 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3686 Offsets.push_back(LocalOffset); 3687 } 3688 } 3689 3690 // Handle degenerate case of GEP without offsets. 3691 if (Offsets.empty()) 3692 return BaseExpr; 3693 3694 // Add the offsets together, assuming nsw if inbounds. 3695 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3696 // Add the base address and the offset. We cannot use the nsw flag, as the 3697 // base address is unsigned. However, if we know that the offset is 3698 // non-negative, we can use nuw. 3699 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3700 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3701 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3702 assert(BaseExpr->getType() == GEPExpr->getType() && 3703 "GEP should not change type mid-flight."); 3704 return GEPExpr; 3705 } 3706 3707 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3708 ArrayRef<const SCEV *> Ops) { 3709 FoldingSetNodeID ID; 3710 ID.AddInteger(SCEVType); 3711 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3712 ID.AddPointer(Ops[i]); 3713 void *IP = nullptr; 3714 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3715 } 3716 3717 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3718 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3719 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3720 } 3721 3722 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3723 SmallVectorImpl<const SCEV *> &Ops) { 3724 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3725 if (Ops.size() == 1) return Ops[0]; 3726 #ifndef NDEBUG 3727 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3728 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3729 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3730 "Operand types don't match!"); 3731 assert(Ops[0]->getType()->isPointerTy() == 3732 Ops[i]->getType()->isPointerTy() && 3733 "min/max should be consistently pointerish"); 3734 } 3735 #endif 3736 3737 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3738 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3739 3740 // Sort by complexity, this groups all similar expression types together. 3741 GroupByComplexity(Ops, &LI, DT); 3742 3743 // Check if we have created the same expression before. 3744 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3745 return S; 3746 } 3747 3748 // If there are any constants, fold them together. 3749 unsigned Idx = 0; 3750 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3751 ++Idx; 3752 assert(Idx < Ops.size()); 3753 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3754 if (Kind == scSMaxExpr) 3755 return APIntOps::smax(LHS, RHS); 3756 else if (Kind == scSMinExpr) 3757 return APIntOps::smin(LHS, RHS); 3758 else if (Kind == scUMaxExpr) 3759 return APIntOps::umax(LHS, RHS); 3760 else if (Kind == scUMinExpr) 3761 return APIntOps::umin(LHS, RHS); 3762 llvm_unreachable("Unknown SCEV min/max opcode"); 3763 }; 3764 3765 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3766 // We found two constants, fold them together! 3767 ConstantInt *Fold = ConstantInt::get( 3768 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3769 Ops[0] = getConstant(Fold); 3770 Ops.erase(Ops.begin()+1); // Erase the folded element 3771 if (Ops.size() == 1) return Ops[0]; 3772 LHSC = cast<SCEVConstant>(Ops[0]); 3773 } 3774 3775 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3776 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3777 3778 if (IsMax ? IsMinV : IsMaxV) { 3779 // If we are left with a constant minimum(/maximum)-int, strip it off. 3780 Ops.erase(Ops.begin()); 3781 --Idx; 3782 } else if (IsMax ? IsMaxV : IsMinV) { 3783 // If we have a max(/min) with a constant maximum(/minimum)-int, 3784 // it will always be the extremum. 3785 return LHSC; 3786 } 3787 3788 if (Ops.size() == 1) return Ops[0]; 3789 } 3790 3791 // Find the first operation of the same kind 3792 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3793 ++Idx; 3794 3795 // Check to see if one of the operands is of the same kind. If so, expand its 3796 // operands onto our operand list, and recurse to simplify. 3797 if (Idx < Ops.size()) { 3798 bool DeletedAny = false; 3799 while (Ops[Idx]->getSCEVType() == Kind) { 3800 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3801 Ops.erase(Ops.begin()+Idx); 3802 Ops.append(SMME->op_begin(), SMME->op_end()); 3803 DeletedAny = true; 3804 } 3805 3806 if (DeletedAny) 3807 return getMinMaxExpr(Kind, Ops); 3808 } 3809 3810 // Okay, check to see if the same value occurs in the operand list twice. If 3811 // so, delete one. Since we sorted the list, these values are required to 3812 // be adjacent. 3813 llvm::CmpInst::Predicate GEPred = 3814 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3815 llvm::CmpInst::Predicate LEPred = 3816 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3817 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3818 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3819 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3820 if (Ops[i] == Ops[i + 1] || 3821 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3822 // X op Y op Y --> X op Y 3823 // X op Y --> X, if we know X, Y are ordered appropriately 3824 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3825 --i; 3826 --e; 3827 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3828 Ops[i + 1])) { 3829 // X op Y --> Y, if we know X, Y are ordered appropriately 3830 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3831 --i; 3832 --e; 3833 } 3834 } 3835 3836 if (Ops.size() == 1) return Ops[0]; 3837 3838 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3839 3840 // Okay, it looks like we really DO need an expr. Check to see if we 3841 // already have one, otherwise create a new one. 3842 FoldingSetNodeID ID; 3843 ID.AddInteger(Kind); 3844 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3845 ID.AddPointer(Ops[i]); 3846 void *IP = nullptr; 3847 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3848 if (ExistingSCEV) 3849 return ExistingSCEV; 3850 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3851 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3852 SCEV *S = new (SCEVAllocator) 3853 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3854 3855 UniqueSCEVs.InsertNode(S, IP); 3856 registerUser(S, Ops); 3857 return S; 3858 } 3859 3860 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3861 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3862 return getSMaxExpr(Ops); 3863 } 3864 3865 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3866 return getMinMaxExpr(scSMaxExpr, Ops); 3867 } 3868 3869 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3870 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3871 return getUMaxExpr(Ops); 3872 } 3873 3874 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3875 return getMinMaxExpr(scUMaxExpr, Ops); 3876 } 3877 3878 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3879 const SCEV *RHS) { 3880 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3881 return getSMinExpr(Ops); 3882 } 3883 3884 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3885 return getMinMaxExpr(scSMinExpr, Ops); 3886 } 3887 3888 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3889 const SCEV *RHS) { 3890 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3891 return getUMinExpr(Ops); 3892 } 3893 3894 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3895 return getMinMaxExpr(scUMinExpr, Ops); 3896 } 3897 3898 const SCEV * 3899 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3900 ScalableVectorType *ScalableTy) { 3901 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3902 Constant *One = ConstantInt::get(IntTy, 1); 3903 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3904 // Note that the expression we created is the final expression, we don't 3905 // want to simplify it any further Also, if we call a normal getSCEV(), 3906 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3907 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3908 } 3909 3910 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3911 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3912 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3913 // We can bypass creating a target-independent constant expression and then 3914 // folding it back into a ConstantInt. This is just a compile-time 3915 // optimization. 3916 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3917 } 3918 3919 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3920 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3921 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3922 // We can bypass creating a target-independent constant expression and then 3923 // folding it back into a ConstantInt. This is just a compile-time 3924 // optimization. 3925 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3926 } 3927 3928 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3929 StructType *STy, 3930 unsigned FieldNo) { 3931 // We can bypass creating a target-independent constant expression and then 3932 // folding it back into a ConstantInt. This is just a compile-time 3933 // optimization. 3934 return getConstant( 3935 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3936 } 3937 3938 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3939 // Don't attempt to do anything other than create a SCEVUnknown object 3940 // here. createSCEV only calls getUnknown after checking for all other 3941 // interesting possibilities, and any other code that calls getUnknown 3942 // is doing so in order to hide a value from SCEV canonicalization. 3943 3944 FoldingSetNodeID ID; 3945 ID.AddInteger(scUnknown); 3946 ID.AddPointer(V); 3947 void *IP = nullptr; 3948 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3949 assert(cast<SCEVUnknown>(S)->getValue() == V && 3950 "Stale SCEVUnknown in uniquing map!"); 3951 return S; 3952 } 3953 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3954 FirstUnknown); 3955 FirstUnknown = cast<SCEVUnknown>(S); 3956 UniqueSCEVs.InsertNode(S, IP); 3957 return S; 3958 } 3959 3960 //===----------------------------------------------------------------------===// 3961 // Basic SCEV Analysis and PHI Idiom Recognition Code 3962 // 3963 3964 /// Test if values of the given type are analyzable within the SCEV 3965 /// framework. This primarily includes integer types, and it can optionally 3966 /// include pointer types if the ScalarEvolution class has access to 3967 /// target-specific information. 3968 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3969 // Integers and pointers are always SCEVable. 3970 return Ty->isIntOrPtrTy(); 3971 } 3972 3973 /// Return the size in bits of the specified type, for which isSCEVable must 3974 /// return true. 3975 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3976 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3977 if (Ty->isPointerTy()) 3978 return getDataLayout().getIndexTypeSizeInBits(Ty); 3979 return getDataLayout().getTypeSizeInBits(Ty); 3980 } 3981 3982 /// Return a type with the same bitwidth as the given type and which represents 3983 /// how SCEV will treat the given type, for which isSCEVable must return 3984 /// true. For pointer types, this is the pointer index sized integer type. 3985 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3986 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3987 3988 if (Ty->isIntegerTy()) 3989 return Ty; 3990 3991 // The only other support type is pointer. 3992 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3993 return getDataLayout().getIndexType(Ty); 3994 } 3995 3996 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3997 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3998 } 3999 4000 const SCEV *ScalarEvolution::getCouldNotCompute() { 4001 return CouldNotCompute.get(); 4002 } 4003 4004 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4005 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4006 auto *SU = dyn_cast<SCEVUnknown>(S); 4007 return SU && SU->getValue() == nullptr; 4008 }); 4009 4010 return !ContainsNulls; 4011 } 4012 4013 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4014 HasRecMapType::iterator I = HasRecMap.find(S); 4015 if (I != HasRecMap.end()) 4016 return I->second; 4017 4018 bool FoundAddRec = 4019 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4020 HasRecMap.insert({S, FoundAddRec}); 4021 return FoundAddRec; 4022 } 4023 4024 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 4025 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 4026 /// offset I, then return {S', I}, else return {\p S, nullptr}. 4027 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 4028 const auto *Add = dyn_cast<SCEVAddExpr>(S); 4029 if (!Add) 4030 return {S, nullptr}; 4031 4032 if (Add->getNumOperands() != 2) 4033 return {S, nullptr}; 4034 4035 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4036 if (!ConstOp) 4037 return {S, nullptr}; 4038 4039 return {Add->getOperand(1), ConstOp->getValue()}; 4040 } 4041 4042 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4043 /// by the value and offset from any ValueOffsetPair in the set. 4044 ScalarEvolution::ValueOffsetPairSetVector * 4045 ScalarEvolution::getSCEVValues(const SCEV *S) { 4046 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4047 if (SI == ExprValueMap.end()) 4048 return nullptr; 4049 #ifndef NDEBUG 4050 if (VerifySCEVMap) { 4051 // Check there is no dangling Value in the set returned. 4052 for (const auto &VE : SI->second) 4053 assert(ValueExprMap.count(VE.first)); 4054 } 4055 #endif 4056 return &SI->second; 4057 } 4058 4059 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4060 /// cannot be used separately. eraseValueFromMap should be used to remove 4061 /// V from ValueExprMap and ExprValueMap at the same time. 4062 void ScalarEvolution::eraseValueFromMap(Value *V) { 4063 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4064 if (I != ValueExprMap.end()) { 4065 const SCEV *S = I->second; 4066 // Remove {V, 0} from the set of ExprValueMap[S] 4067 if (auto *SV = getSCEVValues(S)) 4068 SV->remove({V, nullptr}); 4069 4070 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4071 const SCEV *Stripped; 4072 ConstantInt *Offset; 4073 std::tie(Stripped, Offset) = splitAddExpr(S); 4074 if (Offset != nullptr) { 4075 if (auto *SV = getSCEVValues(Stripped)) 4076 SV->remove({V, Offset}); 4077 } 4078 ValueExprMap.erase(V); 4079 } 4080 } 4081 4082 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4083 /// create a new one. 4084 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4085 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4086 4087 const SCEV *S = getExistingSCEV(V); 4088 if (S == nullptr) { 4089 S = createSCEV(V); 4090 // During PHI resolution, it is possible to create two SCEVs for the same 4091 // V, so it is needed to double check whether V->S is inserted into 4092 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4093 std::pair<ValueExprMapType::iterator, bool> Pair = 4094 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4095 if (Pair.second) { 4096 ExprValueMap[S].insert({V, nullptr}); 4097 4098 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4099 // ExprValueMap. 4100 const SCEV *Stripped = S; 4101 ConstantInt *Offset = nullptr; 4102 std::tie(Stripped, Offset) = splitAddExpr(S); 4103 // If stripped is SCEVUnknown, don't bother to save 4104 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4105 // increase the complexity of the expansion code. 4106 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4107 // because it may generate add/sub instead of GEP in SCEV expansion. 4108 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4109 !isa<GetElementPtrInst>(V)) 4110 ExprValueMap[Stripped].insert({V, Offset}); 4111 } 4112 } 4113 return S; 4114 } 4115 4116 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4117 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4118 4119 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4120 if (I != ValueExprMap.end()) { 4121 const SCEV *S = I->second; 4122 if (checkValidity(S)) 4123 return S; 4124 eraseValueFromMap(V); 4125 forgetMemoizedResults(S); 4126 } 4127 return nullptr; 4128 } 4129 4130 /// Return a SCEV corresponding to -V = -1*V 4131 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4132 SCEV::NoWrapFlags Flags) { 4133 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4134 return getConstant( 4135 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4136 4137 Type *Ty = V->getType(); 4138 Ty = getEffectiveSCEVType(Ty); 4139 return getMulExpr(V, getMinusOne(Ty), Flags); 4140 } 4141 4142 /// If Expr computes ~A, return A else return nullptr 4143 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4144 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4145 if (!Add || Add->getNumOperands() != 2 || 4146 !Add->getOperand(0)->isAllOnesValue()) 4147 return nullptr; 4148 4149 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4150 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4151 !AddRHS->getOperand(0)->isAllOnesValue()) 4152 return nullptr; 4153 4154 return AddRHS->getOperand(1); 4155 } 4156 4157 /// Return a SCEV corresponding to ~V = -1-V 4158 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4159 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4160 4161 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4162 return getConstant( 4163 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4164 4165 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4166 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4167 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4168 SmallVector<const SCEV *, 2> MatchedOperands; 4169 for (const SCEV *Operand : MME->operands()) { 4170 const SCEV *Matched = MatchNotExpr(Operand); 4171 if (!Matched) 4172 return (const SCEV *)nullptr; 4173 MatchedOperands.push_back(Matched); 4174 } 4175 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4176 MatchedOperands); 4177 }; 4178 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4179 return Replaced; 4180 } 4181 4182 Type *Ty = V->getType(); 4183 Ty = getEffectiveSCEVType(Ty); 4184 return getMinusSCEV(getMinusOne(Ty), V); 4185 } 4186 4187 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4188 assert(P->getType()->isPointerTy()); 4189 4190 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4191 // The base of an AddRec is the first operand. 4192 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4193 Ops[0] = removePointerBase(Ops[0]); 4194 // Don't try to transfer nowrap flags for now. We could in some cases 4195 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4196 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4197 } 4198 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4199 // The base of an Add is the pointer operand. 4200 SmallVector<const SCEV *> Ops{Add->operands()}; 4201 const SCEV **PtrOp = nullptr; 4202 for (const SCEV *&AddOp : Ops) { 4203 if (AddOp->getType()->isPointerTy()) { 4204 assert(!PtrOp && "Cannot have multiple pointer ops"); 4205 PtrOp = &AddOp; 4206 } 4207 } 4208 *PtrOp = removePointerBase(*PtrOp); 4209 // Don't try to transfer nowrap flags for now. We could in some cases 4210 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4211 return getAddExpr(Ops); 4212 } 4213 // Any other expression must be a pointer base. 4214 return getZero(P->getType()); 4215 } 4216 4217 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4218 SCEV::NoWrapFlags Flags, 4219 unsigned Depth) { 4220 // Fast path: X - X --> 0. 4221 if (LHS == RHS) 4222 return getZero(LHS->getType()); 4223 4224 // If we subtract two pointers with different pointer bases, bail. 4225 // Eventually, we're going to add an assertion to getMulExpr that we 4226 // can't multiply by a pointer. 4227 if (RHS->getType()->isPointerTy()) { 4228 if (!LHS->getType()->isPointerTy() || 4229 getPointerBase(LHS) != getPointerBase(RHS)) 4230 return getCouldNotCompute(); 4231 LHS = removePointerBase(LHS); 4232 RHS = removePointerBase(RHS); 4233 } 4234 4235 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4236 // makes it so that we cannot make much use of NUW. 4237 auto AddFlags = SCEV::FlagAnyWrap; 4238 const bool RHSIsNotMinSigned = 4239 !getSignedRangeMin(RHS).isMinSignedValue(); 4240 if (hasFlags(Flags, SCEV::FlagNSW)) { 4241 // Let M be the minimum representable signed value. Then (-1)*RHS 4242 // signed-wraps if and only if RHS is M. That can happen even for 4243 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4244 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4245 // (-1)*RHS, we need to prove that RHS != M. 4246 // 4247 // If LHS is non-negative and we know that LHS - RHS does not 4248 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4249 // either by proving that RHS > M or that LHS >= 0. 4250 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4251 AddFlags = SCEV::FlagNSW; 4252 } 4253 } 4254 4255 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4256 // RHS is NSW and LHS >= 0. 4257 // 4258 // The difficulty here is that the NSW flag may have been proven 4259 // relative to a loop that is to be found in a recurrence in LHS and 4260 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4261 // larger scope than intended. 4262 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4263 4264 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4265 } 4266 4267 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4268 unsigned Depth) { 4269 Type *SrcTy = V->getType(); 4270 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4271 "Cannot truncate or zero extend with non-integer arguments!"); 4272 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4273 return V; // No conversion 4274 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4275 return getTruncateExpr(V, Ty, Depth); 4276 return getZeroExtendExpr(V, Ty, Depth); 4277 } 4278 4279 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4280 unsigned Depth) { 4281 Type *SrcTy = V->getType(); 4282 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4283 "Cannot truncate or zero extend with non-integer arguments!"); 4284 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4285 return V; // No conversion 4286 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4287 return getTruncateExpr(V, Ty, Depth); 4288 return getSignExtendExpr(V, Ty, Depth); 4289 } 4290 4291 const SCEV * 4292 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4293 Type *SrcTy = V->getType(); 4294 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4295 "Cannot noop or zero extend with non-integer arguments!"); 4296 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4297 "getNoopOrZeroExtend cannot truncate!"); 4298 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4299 return V; // No conversion 4300 return getZeroExtendExpr(V, Ty); 4301 } 4302 4303 const SCEV * 4304 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4305 Type *SrcTy = V->getType(); 4306 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4307 "Cannot noop or sign extend with non-integer arguments!"); 4308 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4309 "getNoopOrSignExtend cannot truncate!"); 4310 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4311 return V; // No conversion 4312 return getSignExtendExpr(V, Ty); 4313 } 4314 4315 const SCEV * 4316 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4317 Type *SrcTy = V->getType(); 4318 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4319 "Cannot noop or any extend with non-integer arguments!"); 4320 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4321 "getNoopOrAnyExtend cannot truncate!"); 4322 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4323 return V; // No conversion 4324 return getAnyExtendExpr(V, Ty); 4325 } 4326 4327 const SCEV * 4328 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4329 Type *SrcTy = V->getType(); 4330 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4331 "Cannot truncate or noop with non-integer arguments!"); 4332 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4333 "getTruncateOrNoop cannot extend!"); 4334 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4335 return V; // No conversion 4336 return getTruncateExpr(V, Ty); 4337 } 4338 4339 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4340 const SCEV *RHS) { 4341 const SCEV *PromotedLHS = LHS; 4342 const SCEV *PromotedRHS = RHS; 4343 4344 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4345 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4346 else 4347 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4348 4349 return getUMaxExpr(PromotedLHS, PromotedRHS); 4350 } 4351 4352 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4353 const SCEV *RHS) { 4354 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4355 return getUMinFromMismatchedTypes(Ops); 4356 } 4357 4358 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4359 SmallVectorImpl<const SCEV *> &Ops) { 4360 assert(!Ops.empty() && "At least one operand must be!"); 4361 // Trivial case. 4362 if (Ops.size() == 1) 4363 return Ops[0]; 4364 4365 // Find the max type first. 4366 Type *MaxType = nullptr; 4367 for (auto *S : Ops) 4368 if (MaxType) 4369 MaxType = getWiderType(MaxType, S->getType()); 4370 else 4371 MaxType = S->getType(); 4372 assert(MaxType && "Failed to find maximum type!"); 4373 4374 // Extend all ops to max type. 4375 SmallVector<const SCEV *, 2> PromotedOps; 4376 for (auto *S : Ops) 4377 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4378 4379 // Generate umin. 4380 return getUMinExpr(PromotedOps); 4381 } 4382 4383 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4384 // A pointer operand may evaluate to a nonpointer expression, such as null. 4385 if (!V->getType()->isPointerTy()) 4386 return V; 4387 4388 while (true) { 4389 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4390 V = AddRec->getStart(); 4391 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4392 const SCEV *PtrOp = nullptr; 4393 for (const SCEV *AddOp : Add->operands()) { 4394 if (AddOp->getType()->isPointerTy()) { 4395 assert(!PtrOp && "Cannot have multiple pointer ops"); 4396 PtrOp = AddOp; 4397 } 4398 } 4399 assert(PtrOp && "Must have pointer op"); 4400 V = PtrOp; 4401 } else // Not something we can look further into. 4402 return V; 4403 } 4404 } 4405 4406 /// Push users of the given Instruction onto the given Worklist. 4407 static void PushDefUseChildren(Instruction *I, 4408 SmallVectorImpl<Instruction *> &Worklist, 4409 SmallPtrSetImpl<Instruction *> &Visited) { 4410 // Push the def-use children onto the Worklist stack. 4411 for (User *U : I->users()) { 4412 auto *UserInsn = cast<Instruction>(U); 4413 if (Visited.insert(UserInsn).second) 4414 Worklist.push_back(UserInsn); 4415 } 4416 } 4417 4418 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4419 SmallVector<Instruction *, 16> Worklist; 4420 SmallPtrSet<Instruction *, 8> Visited; 4421 SmallVector<const SCEV *, 8> ToForget; 4422 Visited.insert(PN); 4423 Worklist.push_back(PN); 4424 while (!Worklist.empty()) { 4425 Instruction *I = Worklist.pop_back_val(); 4426 4427 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4428 if (It != ValueExprMap.end()) { 4429 const SCEV *Old = It->second; 4430 4431 // Short-circuit the def-use traversal if the symbolic name 4432 // ceases to appear in expressions. 4433 if (Old != SymName && !hasOperand(Old, SymName)) 4434 continue; 4435 4436 // SCEVUnknown for a PHI either means that it has an unrecognized 4437 // structure, it's a PHI that's in the progress of being computed 4438 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4439 // additional loop trip count information isn't going to change anything. 4440 // In the second case, createNodeForPHI will perform the necessary 4441 // updates on its own when it gets to that point. In the third, we do 4442 // want to forget the SCEVUnknown. 4443 if (!isa<PHINode>(I) || 4444 !isa<SCEVUnknown>(Old) || 4445 (I != PN && Old == SymName)) { 4446 eraseValueFromMap(It->first); 4447 ToForget.push_back(Old); 4448 } 4449 } 4450 4451 PushDefUseChildren(I, Worklist, Visited); 4452 } 4453 forgetMemoizedResults(ToForget); 4454 } 4455 4456 namespace { 4457 4458 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4459 /// expression in case its Loop is L. If it is not L then 4460 /// if IgnoreOtherLoops is true then use AddRec itself 4461 /// otherwise rewrite cannot be done. 4462 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4463 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4464 public: 4465 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4466 bool IgnoreOtherLoops = true) { 4467 SCEVInitRewriter Rewriter(L, SE); 4468 const SCEV *Result = Rewriter.visit(S); 4469 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4470 return SE.getCouldNotCompute(); 4471 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4472 ? SE.getCouldNotCompute() 4473 : Result; 4474 } 4475 4476 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4477 if (!SE.isLoopInvariant(Expr, L)) 4478 SeenLoopVariantSCEVUnknown = true; 4479 return Expr; 4480 } 4481 4482 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4483 // Only re-write AddRecExprs for this loop. 4484 if (Expr->getLoop() == L) 4485 return Expr->getStart(); 4486 SeenOtherLoops = true; 4487 return Expr; 4488 } 4489 4490 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4491 4492 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4493 4494 private: 4495 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4496 : SCEVRewriteVisitor(SE), L(L) {} 4497 4498 const Loop *L; 4499 bool SeenLoopVariantSCEVUnknown = false; 4500 bool SeenOtherLoops = false; 4501 }; 4502 4503 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4504 /// increment expression in case its Loop is L. If it is not L then 4505 /// use AddRec itself. 4506 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4507 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4508 public: 4509 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4510 SCEVPostIncRewriter Rewriter(L, SE); 4511 const SCEV *Result = Rewriter.visit(S); 4512 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4513 ? SE.getCouldNotCompute() 4514 : Result; 4515 } 4516 4517 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4518 if (!SE.isLoopInvariant(Expr, L)) 4519 SeenLoopVariantSCEVUnknown = true; 4520 return Expr; 4521 } 4522 4523 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4524 // Only re-write AddRecExprs for this loop. 4525 if (Expr->getLoop() == L) 4526 return Expr->getPostIncExpr(SE); 4527 SeenOtherLoops = true; 4528 return Expr; 4529 } 4530 4531 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4532 4533 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4534 4535 private: 4536 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4537 : SCEVRewriteVisitor(SE), L(L) {} 4538 4539 const Loop *L; 4540 bool SeenLoopVariantSCEVUnknown = false; 4541 bool SeenOtherLoops = false; 4542 }; 4543 4544 /// This class evaluates the compare condition by matching it against the 4545 /// condition of loop latch. If there is a match we assume a true value 4546 /// for the condition while building SCEV nodes. 4547 class SCEVBackedgeConditionFolder 4548 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4549 public: 4550 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4551 ScalarEvolution &SE) { 4552 bool IsPosBECond = false; 4553 Value *BECond = nullptr; 4554 if (BasicBlock *Latch = L->getLoopLatch()) { 4555 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4556 if (BI && BI->isConditional()) { 4557 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4558 "Both outgoing branches should not target same header!"); 4559 BECond = BI->getCondition(); 4560 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4561 } else { 4562 return S; 4563 } 4564 } 4565 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4566 return Rewriter.visit(S); 4567 } 4568 4569 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4570 const SCEV *Result = Expr; 4571 bool InvariantF = SE.isLoopInvariant(Expr, L); 4572 4573 if (!InvariantF) { 4574 Instruction *I = cast<Instruction>(Expr->getValue()); 4575 switch (I->getOpcode()) { 4576 case Instruction::Select: { 4577 SelectInst *SI = cast<SelectInst>(I); 4578 Optional<const SCEV *> Res = 4579 compareWithBackedgeCondition(SI->getCondition()); 4580 if (Res.hasValue()) { 4581 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4582 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4583 } 4584 break; 4585 } 4586 default: { 4587 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4588 if (Res.hasValue()) 4589 Result = Res.getValue(); 4590 break; 4591 } 4592 } 4593 } 4594 return Result; 4595 } 4596 4597 private: 4598 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4599 bool IsPosBECond, ScalarEvolution &SE) 4600 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4601 IsPositiveBECond(IsPosBECond) {} 4602 4603 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4604 4605 const Loop *L; 4606 /// Loop back condition. 4607 Value *BackedgeCond = nullptr; 4608 /// Set to true if loop back is on positive branch condition. 4609 bool IsPositiveBECond; 4610 }; 4611 4612 Optional<const SCEV *> 4613 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4614 4615 // If value matches the backedge condition for loop latch, 4616 // then return a constant evolution node based on loopback 4617 // branch taken. 4618 if (BackedgeCond == IC) 4619 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4620 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4621 return None; 4622 } 4623 4624 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4625 public: 4626 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4627 ScalarEvolution &SE) { 4628 SCEVShiftRewriter Rewriter(L, SE); 4629 const SCEV *Result = Rewriter.visit(S); 4630 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4631 } 4632 4633 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4634 // Only allow AddRecExprs for this loop. 4635 if (!SE.isLoopInvariant(Expr, L)) 4636 Valid = false; 4637 return Expr; 4638 } 4639 4640 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4641 if (Expr->getLoop() == L && Expr->isAffine()) 4642 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4643 Valid = false; 4644 return Expr; 4645 } 4646 4647 bool isValid() { return Valid; } 4648 4649 private: 4650 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4651 : SCEVRewriteVisitor(SE), L(L) {} 4652 4653 const Loop *L; 4654 bool Valid = true; 4655 }; 4656 4657 } // end anonymous namespace 4658 4659 SCEV::NoWrapFlags 4660 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4661 if (!AR->isAffine()) 4662 return SCEV::FlagAnyWrap; 4663 4664 using OBO = OverflowingBinaryOperator; 4665 4666 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4667 4668 if (!AR->hasNoSignedWrap()) { 4669 ConstantRange AddRecRange = getSignedRange(AR); 4670 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4671 4672 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4673 Instruction::Add, IncRange, OBO::NoSignedWrap); 4674 if (NSWRegion.contains(AddRecRange)) 4675 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4676 } 4677 4678 if (!AR->hasNoUnsignedWrap()) { 4679 ConstantRange AddRecRange = getUnsignedRange(AR); 4680 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4681 4682 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4683 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4684 if (NUWRegion.contains(AddRecRange)) 4685 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4686 } 4687 4688 return Result; 4689 } 4690 4691 SCEV::NoWrapFlags 4692 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4693 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4694 4695 if (AR->hasNoSignedWrap()) 4696 return Result; 4697 4698 if (!AR->isAffine()) 4699 return Result; 4700 4701 const SCEV *Step = AR->getStepRecurrence(*this); 4702 const Loop *L = AR->getLoop(); 4703 4704 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4705 // Note that this serves two purposes: It filters out loops that are 4706 // simply not analyzable, and it covers the case where this code is 4707 // being called from within backedge-taken count analysis, such that 4708 // attempting to ask for the backedge-taken count would likely result 4709 // in infinite recursion. In the later case, the analysis code will 4710 // cope with a conservative value, and it will take care to purge 4711 // that value once it has finished. 4712 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4713 4714 // Normally, in the cases we can prove no-overflow via a 4715 // backedge guarding condition, we can also compute a backedge 4716 // taken count for the loop. The exceptions are assumptions and 4717 // guards present in the loop -- SCEV is not great at exploiting 4718 // these to compute max backedge taken counts, but can still use 4719 // these to prove lack of overflow. Use this fact to avoid 4720 // doing extra work that may not pay off. 4721 4722 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4723 AC.assumptions().empty()) 4724 return Result; 4725 4726 // If the backedge is guarded by a comparison with the pre-inc value the 4727 // addrec is safe. Also, if the entry is guarded by a comparison with the 4728 // start value and the backedge is guarded by a comparison with the post-inc 4729 // value, the addrec is safe. 4730 ICmpInst::Predicate Pred; 4731 const SCEV *OverflowLimit = 4732 getSignedOverflowLimitForStep(Step, &Pred, this); 4733 if (OverflowLimit && 4734 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4735 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4736 Result = setFlags(Result, SCEV::FlagNSW); 4737 } 4738 return Result; 4739 } 4740 SCEV::NoWrapFlags 4741 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4742 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4743 4744 if (AR->hasNoUnsignedWrap()) 4745 return Result; 4746 4747 if (!AR->isAffine()) 4748 return Result; 4749 4750 const SCEV *Step = AR->getStepRecurrence(*this); 4751 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4752 const Loop *L = AR->getLoop(); 4753 4754 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4755 // Note that this serves two purposes: It filters out loops that are 4756 // simply not analyzable, and it covers the case where this code is 4757 // being called from within backedge-taken count analysis, such that 4758 // attempting to ask for the backedge-taken count would likely result 4759 // in infinite recursion. In the later case, the analysis code will 4760 // cope with a conservative value, and it will take care to purge 4761 // that value once it has finished. 4762 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4763 4764 // Normally, in the cases we can prove no-overflow via a 4765 // backedge guarding condition, we can also compute a backedge 4766 // taken count for the loop. The exceptions are assumptions and 4767 // guards present in the loop -- SCEV is not great at exploiting 4768 // these to compute max backedge taken counts, but can still use 4769 // these to prove lack of overflow. Use this fact to avoid 4770 // doing extra work that may not pay off. 4771 4772 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4773 AC.assumptions().empty()) 4774 return Result; 4775 4776 // If the backedge is guarded by a comparison with the pre-inc value the 4777 // addrec is safe. Also, if the entry is guarded by a comparison with the 4778 // start value and the backedge is guarded by a comparison with the post-inc 4779 // value, the addrec is safe. 4780 if (isKnownPositive(Step)) { 4781 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4782 getUnsignedRangeMax(Step)); 4783 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4784 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4785 Result = setFlags(Result, SCEV::FlagNUW); 4786 } 4787 } 4788 4789 return Result; 4790 } 4791 4792 namespace { 4793 4794 /// Represents an abstract binary operation. This may exist as a 4795 /// normal instruction or constant expression, or may have been 4796 /// derived from an expression tree. 4797 struct BinaryOp { 4798 unsigned Opcode; 4799 Value *LHS; 4800 Value *RHS; 4801 bool IsNSW = false; 4802 bool IsNUW = false; 4803 4804 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4805 /// constant expression. 4806 Operator *Op = nullptr; 4807 4808 explicit BinaryOp(Operator *Op) 4809 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4810 Op(Op) { 4811 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4812 IsNSW = OBO->hasNoSignedWrap(); 4813 IsNUW = OBO->hasNoUnsignedWrap(); 4814 } 4815 } 4816 4817 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4818 bool IsNUW = false) 4819 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4820 }; 4821 4822 } // end anonymous namespace 4823 4824 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4825 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4826 auto *Op = dyn_cast<Operator>(V); 4827 if (!Op) 4828 return None; 4829 4830 // Implementation detail: all the cleverness here should happen without 4831 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4832 // SCEV expressions when possible, and we should not break that. 4833 4834 switch (Op->getOpcode()) { 4835 case Instruction::Add: 4836 case Instruction::Sub: 4837 case Instruction::Mul: 4838 case Instruction::UDiv: 4839 case Instruction::URem: 4840 case Instruction::And: 4841 case Instruction::Or: 4842 case Instruction::AShr: 4843 case Instruction::Shl: 4844 return BinaryOp(Op); 4845 4846 case Instruction::Xor: 4847 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4848 // If the RHS of the xor is a signmask, then this is just an add. 4849 // Instcombine turns add of signmask into xor as a strength reduction step. 4850 if (RHSC->getValue().isSignMask()) 4851 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4852 return BinaryOp(Op); 4853 4854 case Instruction::LShr: 4855 // Turn logical shift right of a constant into a unsigned divide. 4856 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4857 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4858 4859 // If the shift count is not less than the bitwidth, the result of 4860 // the shift is undefined. Don't try to analyze it, because the 4861 // resolution chosen here may differ from the resolution chosen in 4862 // other parts of the compiler. 4863 if (SA->getValue().ult(BitWidth)) { 4864 Constant *X = 4865 ConstantInt::get(SA->getContext(), 4866 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4867 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4868 } 4869 } 4870 return BinaryOp(Op); 4871 4872 case Instruction::ExtractValue: { 4873 auto *EVI = cast<ExtractValueInst>(Op); 4874 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4875 break; 4876 4877 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4878 if (!WO) 4879 break; 4880 4881 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4882 bool Signed = WO->isSigned(); 4883 // TODO: Should add nuw/nsw flags for mul as well. 4884 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4885 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4886 4887 // Now that we know that all uses of the arithmetic-result component of 4888 // CI are guarded by the overflow check, we can go ahead and pretend 4889 // that the arithmetic is non-overflowing. 4890 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4891 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4892 } 4893 4894 default: 4895 break; 4896 } 4897 4898 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4899 // semantics as a Sub, return a binary sub expression. 4900 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4901 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4902 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4903 4904 return None; 4905 } 4906 4907 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4908 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4909 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4910 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4911 /// follows one of the following patterns: 4912 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4913 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4914 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4915 /// we return the type of the truncation operation, and indicate whether the 4916 /// truncated type should be treated as signed/unsigned by setting 4917 /// \p Signed to true/false, respectively. 4918 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4919 bool &Signed, ScalarEvolution &SE) { 4920 // The case where Op == SymbolicPHI (that is, with no type conversions on 4921 // the way) is handled by the regular add recurrence creating logic and 4922 // would have already been triggered in createAddRecForPHI. Reaching it here 4923 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4924 // because one of the other operands of the SCEVAddExpr updating this PHI is 4925 // not invariant). 4926 // 4927 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4928 // this case predicates that allow us to prove that Op == SymbolicPHI will 4929 // be added. 4930 if (Op == SymbolicPHI) 4931 return nullptr; 4932 4933 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4934 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4935 if (SourceBits != NewBits) 4936 return nullptr; 4937 4938 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4939 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4940 if (!SExt && !ZExt) 4941 return nullptr; 4942 const SCEVTruncateExpr *Trunc = 4943 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4944 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4945 if (!Trunc) 4946 return nullptr; 4947 const SCEV *X = Trunc->getOperand(); 4948 if (X != SymbolicPHI) 4949 return nullptr; 4950 Signed = SExt != nullptr; 4951 return Trunc->getType(); 4952 } 4953 4954 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4955 if (!PN->getType()->isIntegerTy()) 4956 return nullptr; 4957 const Loop *L = LI.getLoopFor(PN->getParent()); 4958 if (!L || L->getHeader() != PN->getParent()) 4959 return nullptr; 4960 return L; 4961 } 4962 4963 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4964 // computation that updates the phi follows the following pattern: 4965 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4966 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4967 // If so, try to see if it can be rewritten as an AddRecExpr under some 4968 // Predicates. If successful, return them as a pair. Also cache the results 4969 // of the analysis. 4970 // 4971 // Example usage scenario: 4972 // Say the Rewriter is called for the following SCEV: 4973 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4974 // where: 4975 // %X = phi i64 (%Start, %BEValue) 4976 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4977 // and call this function with %SymbolicPHI = %X. 4978 // 4979 // The analysis will find that the value coming around the backedge has 4980 // the following SCEV: 4981 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4982 // Upon concluding that this matches the desired pattern, the function 4983 // will return the pair {NewAddRec, SmallPredsVec} where: 4984 // NewAddRec = {%Start,+,%Step} 4985 // SmallPredsVec = {P1, P2, P3} as follows: 4986 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4987 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4988 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4989 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4990 // under the predicates {P1,P2,P3}. 4991 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4992 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4993 // 4994 // TODO's: 4995 // 4996 // 1) Extend the Induction descriptor to also support inductions that involve 4997 // casts: When needed (namely, when we are called in the context of the 4998 // vectorizer induction analysis), a Set of cast instructions will be 4999 // populated by this method, and provided back to isInductionPHI. This is 5000 // needed to allow the vectorizer to properly record them to be ignored by 5001 // the cost model and to avoid vectorizing them (otherwise these casts, 5002 // which are redundant under the runtime overflow checks, will be 5003 // vectorized, which can be costly). 5004 // 5005 // 2) Support additional induction/PHISCEV patterns: We also want to support 5006 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5007 // after the induction update operation (the induction increment): 5008 // 5009 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5010 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5011 // 5012 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5013 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5014 // 5015 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5016 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5017 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5018 SmallVector<const SCEVPredicate *, 3> Predicates; 5019 5020 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5021 // return an AddRec expression under some predicate. 5022 5023 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5024 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5025 assert(L && "Expecting an integer loop header phi"); 5026 5027 // The loop may have multiple entrances or multiple exits; we can analyze 5028 // this phi as an addrec if it has a unique entry value and a unique 5029 // backedge value. 5030 Value *BEValueV = nullptr, *StartValueV = nullptr; 5031 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5032 Value *V = PN->getIncomingValue(i); 5033 if (L->contains(PN->getIncomingBlock(i))) { 5034 if (!BEValueV) { 5035 BEValueV = V; 5036 } else if (BEValueV != V) { 5037 BEValueV = nullptr; 5038 break; 5039 } 5040 } else if (!StartValueV) { 5041 StartValueV = V; 5042 } else if (StartValueV != V) { 5043 StartValueV = nullptr; 5044 break; 5045 } 5046 } 5047 if (!BEValueV || !StartValueV) 5048 return None; 5049 5050 const SCEV *BEValue = getSCEV(BEValueV); 5051 5052 // If the value coming around the backedge is an add with the symbolic 5053 // value we just inserted, possibly with casts that we can ignore under 5054 // an appropriate runtime guard, then we found a simple induction variable! 5055 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5056 if (!Add) 5057 return None; 5058 5059 // If there is a single occurrence of the symbolic value, possibly 5060 // casted, replace it with a recurrence. 5061 unsigned FoundIndex = Add->getNumOperands(); 5062 Type *TruncTy = nullptr; 5063 bool Signed; 5064 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5065 if ((TruncTy = 5066 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5067 if (FoundIndex == e) { 5068 FoundIndex = i; 5069 break; 5070 } 5071 5072 if (FoundIndex == Add->getNumOperands()) 5073 return None; 5074 5075 // Create an add with everything but the specified operand. 5076 SmallVector<const SCEV *, 8> Ops; 5077 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5078 if (i != FoundIndex) 5079 Ops.push_back(Add->getOperand(i)); 5080 const SCEV *Accum = getAddExpr(Ops); 5081 5082 // The runtime checks will not be valid if the step amount is 5083 // varying inside the loop. 5084 if (!isLoopInvariant(Accum, L)) 5085 return None; 5086 5087 // *** Part2: Create the predicates 5088 5089 // Analysis was successful: we have a phi-with-cast pattern for which we 5090 // can return an AddRec expression under the following predicates: 5091 // 5092 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5093 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5094 // P2: An Equal predicate that guarantees that 5095 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5096 // P3: An Equal predicate that guarantees that 5097 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5098 // 5099 // As we next prove, the above predicates guarantee that: 5100 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5101 // 5102 // 5103 // More formally, we want to prove that: 5104 // Expr(i+1) = Start + (i+1) * Accum 5105 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5106 // 5107 // Given that: 5108 // 1) Expr(0) = Start 5109 // 2) Expr(1) = Start + Accum 5110 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5111 // 3) Induction hypothesis (step i): 5112 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5113 // 5114 // Proof: 5115 // Expr(i+1) = 5116 // = Start + (i+1)*Accum 5117 // = (Start + i*Accum) + Accum 5118 // = Expr(i) + Accum 5119 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5120 // :: from step i 5121 // 5122 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5123 // 5124 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5125 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5126 // + Accum :: from P3 5127 // 5128 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5129 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5130 // 5131 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5132 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5133 // 5134 // By induction, the same applies to all iterations 1<=i<n: 5135 // 5136 5137 // Create a truncated addrec for which we will add a no overflow check (P1). 5138 const SCEV *StartVal = getSCEV(StartValueV); 5139 const SCEV *PHISCEV = 5140 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5141 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5142 5143 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5144 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5145 // will be constant. 5146 // 5147 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5148 // add P1. 5149 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5150 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5151 Signed ? SCEVWrapPredicate::IncrementNSSW 5152 : SCEVWrapPredicate::IncrementNUSW; 5153 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5154 Predicates.push_back(AddRecPred); 5155 } 5156 5157 // Create the Equal Predicates P2,P3: 5158 5159 // It is possible that the predicates P2 and/or P3 are computable at 5160 // compile time due to StartVal and/or Accum being constants. 5161 // If either one is, then we can check that now and escape if either P2 5162 // or P3 is false. 5163 5164 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5165 // for each of StartVal and Accum 5166 auto getExtendedExpr = [&](const SCEV *Expr, 5167 bool CreateSignExtend) -> const SCEV * { 5168 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5169 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5170 const SCEV *ExtendedExpr = 5171 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5172 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5173 return ExtendedExpr; 5174 }; 5175 5176 // Given: 5177 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5178 // = getExtendedExpr(Expr) 5179 // Determine whether the predicate P: Expr == ExtendedExpr 5180 // is known to be false at compile time 5181 auto PredIsKnownFalse = [&](const SCEV *Expr, 5182 const SCEV *ExtendedExpr) -> bool { 5183 return Expr != ExtendedExpr && 5184 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5185 }; 5186 5187 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5188 if (PredIsKnownFalse(StartVal, StartExtended)) { 5189 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5190 return None; 5191 } 5192 5193 // The Step is always Signed (because the overflow checks are either 5194 // NSSW or NUSW) 5195 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5196 if (PredIsKnownFalse(Accum, AccumExtended)) { 5197 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5198 return None; 5199 } 5200 5201 auto AppendPredicate = [&](const SCEV *Expr, 5202 const SCEV *ExtendedExpr) -> void { 5203 if (Expr != ExtendedExpr && 5204 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5205 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5206 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5207 Predicates.push_back(Pred); 5208 } 5209 }; 5210 5211 AppendPredicate(StartVal, StartExtended); 5212 AppendPredicate(Accum, AccumExtended); 5213 5214 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5215 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5216 // into NewAR if it will also add the runtime overflow checks specified in 5217 // Predicates. 5218 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5219 5220 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5221 std::make_pair(NewAR, Predicates); 5222 // Remember the result of the analysis for this SCEV at this locayyytion. 5223 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5224 return PredRewrite; 5225 } 5226 5227 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5228 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5229 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5230 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5231 if (!L) 5232 return None; 5233 5234 // Check to see if we already analyzed this PHI. 5235 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5236 if (I != PredicatedSCEVRewrites.end()) { 5237 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5238 I->second; 5239 // Analysis was done before and failed to create an AddRec: 5240 if (Rewrite.first == SymbolicPHI) 5241 return None; 5242 // Analysis was done before and succeeded to create an AddRec under 5243 // a predicate: 5244 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5245 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5246 return Rewrite; 5247 } 5248 5249 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5250 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5251 5252 // Record in the cache that the analysis failed 5253 if (!Rewrite) { 5254 SmallVector<const SCEVPredicate *, 3> Predicates; 5255 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5256 return None; 5257 } 5258 5259 return Rewrite; 5260 } 5261 5262 // FIXME: This utility is currently required because the Rewriter currently 5263 // does not rewrite this expression: 5264 // {0, +, (sext ix (trunc iy to ix) to iy)} 5265 // into {0, +, %step}, 5266 // even when the following Equal predicate exists: 5267 // "%step == (sext ix (trunc iy to ix) to iy)". 5268 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5269 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5270 if (AR1 == AR2) 5271 return true; 5272 5273 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5274 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5275 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5276 return false; 5277 return true; 5278 }; 5279 5280 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5281 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5282 return false; 5283 return true; 5284 } 5285 5286 /// A helper function for createAddRecFromPHI to handle simple cases. 5287 /// 5288 /// This function tries to find an AddRec expression for the simplest (yet most 5289 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5290 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5291 /// technique for finding the AddRec expression. 5292 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5293 Value *BEValueV, 5294 Value *StartValueV) { 5295 const Loop *L = LI.getLoopFor(PN->getParent()); 5296 assert(L && L->getHeader() == PN->getParent()); 5297 assert(BEValueV && StartValueV); 5298 5299 auto BO = MatchBinaryOp(BEValueV, DT); 5300 if (!BO) 5301 return nullptr; 5302 5303 if (BO->Opcode != Instruction::Add) 5304 return nullptr; 5305 5306 const SCEV *Accum = nullptr; 5307 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5308 Accum = getSCEV(BO->RHS); 5309 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5310 Accum = getSCEV(BO->LHS); 5311 5312 if (!Accum) 5313 return nullptr; 5314 5315 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5316 if (BO->IsNUW) 5317 Flags = setFlags(Flags, SCEV::FlagNUW); 5318 if (BO->IsNSW) 5319 Flags = setFlags(Flags, SCEV::FlagNSW); 5320 5321 const SCEV *StartVal = getSCEV(StartValueV); 5322 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5323 5324 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5325 5326 // We can add Flags to the post-inc expression only if we 5327 // know that it is *undefined behavior* for BEValueV to 5328 // overflow. 5329 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5330 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5331 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5332 5333 return PHISCEV; 5334 } 5335 5336 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5337 const Loop *L = LI.getLoopFor(PN->getParent()); 5338 if (!L || L->getHeader() != PN->getParent()) 5339 return nullptr; 5340 5341 // The loop may have multiple entrances or multiple exits; we can analyze 5342 // this phi as an addrec if it has a unique entry value and a unique 5343 // backedge value. 5344 Value *BEValueV = nullptr, *StartValueV = nullptr; 5345 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5346 Value *V = PN->getIncomingValue(i); 5347 if (L->contains(PN->getIncomingBlock(i))) { 5348 if (!BEValueV) { 5349 BEValueV = V; 5350 } else if (BEValueV != V) { 5351 BEValueV = nullptr; 5352 break; 5353 } 5354 } else if (!StartValueV) { 5355 StartValueV = V; 5356 } else if (StartValueV != V) { 5357 StartValueV = nullptr; 5358 break; 5359 } 5360 } 5361 if (!BEValueV || !StartValueV) 5362 return nullptr; 5363 5364 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5365 "PHI node already processed?"); 5366 5367 // First, try to find AddRec expression without creating a fictituos symbolic 5368 // value for PN. 5369 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5370 return S; 5371 5372 // Handle PHI node value symbolically. 5373 const SCEV *SymbolicName = getUnknown(PN); 5374 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5375 5376 // Using this symbolic name for the PHI, analyze the value coming around 5377 // the back-edge. 5378 const SCEV *BEValue = getSCEV(BEValueV); 5379 5380 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5381 // has a special value for the first iteration of the loop. 5382 5383 // If the value coming around the backedge is an add with the symbolic 5384 // value we just inserted, then we found a simple induction variable! 5385 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5386 // If there is a single occurrence of the symbolic value, replace it 5387 // with a recurrence. 5388 unsigned FoundIndex = Add->getNumOperands(); 5389 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5390 if (Add->getOperand(i) == SymbolicName) 5391 if (FoundIndex == e) { 5392 FoundIndex = i; 5393 break; 5394 } 5395 5396 if (FoundIndex != Add->getNumOperands()) { 5397 // Create an add with everything but the specified operand. 5398 SmallVector<const SCEV *, 8> Ops; 5399 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5400 if (i != FoundIndex) 5401 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5402 L, *this)); 5403 const SCEV *Accum = getAddExpr(Ops); 5404 5405 // This is not a valid addrec if the step amount is varying each 5406 // loop iteration, but is not itself an addrec in this loop. 5407 if (isLoopInvariant(Accum, L) || 5408 (isa<SCEVAddRecExpr>(Accum) && 5409 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5410 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5411 5412 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5413 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5414 if (BO->IsNUW) 5415 Flags = setFlags(Flags, SCEV::FlagNUW); 5416 if (BO->IsNSW) 5417 Flags = setFlags(Flags, SCEV::FlagNSW); 5418 } 5419 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5420 // If the increment is an inbounds GEP, then we know the address 5421 // space cannot be wrapped around. We cannot make any guarantee 5422 // about signed or unsigned overflow because pointers are 5423 // unsigned but we may have a negative index from the base 5424 // pointer. We can guarantee that no unsigned wrap occurs if the 5425 // indices form a positive value. 5426 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5427 Flags = setFlags(Flags, SCEV::FlagNW); 5428 5429 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5430 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5431 Flags = setFlags(Flags, SCEV::FlagNUW); 5432 } 5433 5434 // We cannot transfer nuw and nsw flags from subtraction 5435 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5436 // for instance. 5437 } 5438 5439 const SCEV *StartVal = getSCEV(StartValueV); 5440 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5441 5442 // Okay, for the entire analysis of this edge we assumed the PHI 5443 // to be symbolic. We now need to go back and purge all of the 5444 // entries for the scalars that use the symbolic expression. 5445 forgetSymbolicName(PN, SymbolicName); 5446 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5447 5448 // We can add Flags to the post-inc expression only if we 5449 // know that it is *undefined behavior* for BEValueV to 5450 // overflow. 5451 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5452 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5453 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5454 5455 return PHISCEV; 5456 } 5457 } 5458 } else { 5459 // Otherwise, this could be a loop like this: 5460 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5461 // In this case, j = {1,+,1} and BEValue is j. 5462 // Because the other in-value of i (0) fits the evolution of BEValue 5463 // i really is an addrec evolution. 5464 // 5465 // We can generalize this saying that i is the shifted value of BEValue 5466 // by one iteration: 5467 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5468 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5469 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5470 if (Shifted != getCouldNotCompute() && 5471 Start != getCouldNotCompute()) { 5472 const SCEV *StartVal = getSCEV(StartValueV); 5473 if (Start == StartVal) { 5474 // Okay, for the entire analysis of this edge we assumed the PHI 5475 // to be symbolic. We now need to go back and purge all of the 5476 // entries for the scalars that use the symbolic expression. 5477 forgetSymbolicName(PN, SymbolicName); 5478 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5479 return Shifted; 5480 } 5481 } 5482 } 5483 5484 // Remove the temporary PHI node SCEV that has been inserted while intending 5485 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5486 // as it will prevent later (possibly simpler) SCEV expressions to be added 5487 // to the ValueExprMap. 5488 eraseValueFromMap(PN); 5489 5490 return nullptr; 5491 } 5492 5493 // Checks if the SCEV S is available at BB. S is considered available at BB 5494 // if S can be materialized at BB without introducing a fault. 5495 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5496 BasicBlock *BB) { 5497 struct CheckAvailable { 5498 bool TraversalDone = false; 5499 bool Available = true; 5500 5501 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5502 BasicBlock *BB = nullptr; 5503 DominatorTree &DT; 5504 5505 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5506 : L(L), BB(BB), DT(DT) {} 5507 5508 bool setUnavailable() { 5509 TraversalDone = true; 5510 Available = false; 5511 return false; 5512 } 5513 5514 bool follow(const SCEV *S) { 5515 switch (S->getSCEVType()) { 5516 case scConstant: 5517 case scPtrToInt: 5518 case scTruncate: 5519 case scZeroExtend: 5520 case scSignExtend: 5521 case scAddExpr: 5522 case scMulExpr: 5523 case scUMaxExpr: 5524 case scSMaxExpr: 5525 case scUMinExpr: 5526 case scSMinExpr: 5527 // These expressions are available if their operand(s) is/are. 5528 return true; 5529 5530 case scAddRecExpr: { 5531 // We allow add recurrences that are on the loop BB is in, or some 5532 // outer loop. This guarantees availability because the value of the 5533 // add recurrence at BB is simply the "current" value of the induction 5534 // variable. We can relax this in the future; for instance an add 5535 // recurrence on a sibling dominating loop is also available at BB. 5536 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5537 if (L && (ARLoop == L || ARLoop->contains(L))) 5538 return true; 5539 5540 return setUnavailable(); 5541 } 5542 5543 case scUnknown: { 5544 // For SCEVUnknown, we check for simple dominance. 5545 const auto *SU = cast<SCEVUnknown>(S); 5546 Value *V = SU->getValue(); 5547 5548 if (isa<Argument>(V)) 5549 return false; 5550 5551 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5552 return false; 5553 5554 return setUnavailable(); 5555 } 5556 5557 case scUDivExpr: 5558 case scCouldNotCompute: 5559 // We do not try to smart about these at all. 5560 return setUnavailable(); 5561 } 5562 llvm_unreachable("Unknown SCEV kind!"); 5563 } 5564 5565 bool isDone() { return TraversalDone; } 5566 }; 5567 5568 CheckAvailable CA(L, BB, DT); 5569 SCEVTraversal<CheckAvailable> ST(CA); 5570 5571 ST.visitAll(S); 5572 return CA.Available; 5573 } 5574 5575 // Try to match a control flow sequence that branches out at BI and merges back 5576 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5577 // match. 5578 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5579 Value *&C, Value *&LHS, Value *&RHS) { 5580 C = BI->getCondition(); 5581 5582 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5583 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5584 5585 if (!LeftEdge.isSingleEdge()) 5586 return false; 5587 5588 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5589 5590 Use &LeftUse = Merge->getOperandUse(0); 5591 Use &RightUse = Merge->getOperandUse(1); 5592 5593 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5594 LHS = LeftUse; 5595 RHS = RightUse; 5596 return true; 5597 } 5598 5599 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5600 LHS = RightUse; 5601 RHS = LeftUse; 5602 return true; 5603 } 5604 5605 return false; 5606 } 5607 5608 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5609 auto IsReachable = 5610 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5611 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5612 const Loop *L = LI.getLoopFor(PN->getParent()); 5613 5614 // We don't want to break LCSSA, even in a SCEV expression tree. 5615 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5616 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5617 return nullptr; 5618 5619 // Try to match 5620 // 5621 // br %cond, label %left, label %right 5622 // left: 5623 // br label %merge 5624 // right: 5625 // br label %merge 5626 // merge: 5627 // V = phi [ %x, %left ], [ %y, %right ] 5628 // 5629 // as "select %cond, %x, %y" 5630 5631 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5632 assert(IDom && "At least the entry block should dominate PN"); 5633 5634 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5635 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5636 5637 if (BI && BI->isConditional() && 5638 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5639 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5640 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5641 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5642 } 5643 5644 return nullptr; 5645 } 5646 5647 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5648 if (const SCEV *S = createAddRecFromPHI(PN)) 5649 return S; 5650 5651 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5652 return S; 5653 5654 // If the PHI has a single incoming value, follow that value, unless the 5655 // PHI's incoming blocks are in a different loop, in which case doing so 5656 // risks breaking LCSSA form. Instcombine would normally zap these, but 5657 // it doesn't have DominatorTree information, so it may miss cases. 5658 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5659 if (LI.replacementPreservesLCSSAForm(PN, V)) 5660 return getSCEV(V); 5661 5662 // If it's not a loop phi, we can't handle it yet. 5663 return getUnknown(PN); 5664 } 5665 5666 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5667 Value *Cond, 5668 Value *TrueVal, 5669 Value *FalseVal) { 5670 // Handle "constant" branch or select. This can occur for instance when a 5671 // loop pass transforms an inner loop and moves on to process the outer loop. 5672 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5673 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5674 5675 // Try to match some simple smax or umax patterns. 5676 auto *ICI = dyn_cast<ICmpInst>(Cond); 5677 if (!ICI) 5678 return getUnknown(I); 5679 5680 Value *LHS = ICI->getOperand(0); 5681 Value *RHS = ICI->getOperand(1); 5682 5683 switch (ICI->getPredicate()) { 5684 case ICmpInst::ICMP_SLT: 5685 case ICmpInst::ICMP_SLE: 5686 case ICmpInst::ICMP_ULT: 5687 case ICmpInst::ICMP_ULE: 5688 std::swap(LHS, RHS); 5689 LLVM_FALLTHROUGH; 5690 case ICmpInst::ICMP_SGT: 5691 case ICmpInst::ICMP_SGE: 5692 case ICmpInst::ICMP_UGT: 5693 case ICmpInst::ICMP_UGE: 5694 // a > b ? a+x : b+x -> max(a, b)+x 5695 // a > b ? b+x : a+x -> min(a, b)+x 5696 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5697 bool Signed = ICI->isSigned(); 5698 const SCEV *LA = getSCEV(TrueVal); 5699 const SCEV *RA = getSCEV(FalseVal); 5700 const SCEV *LS = getSCEV(LHS); 5701 const SCEV *RS = getSCEV(RHS); 5702 if (LA->getType()->isPointerTy()) { 5703 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5704 // Need to make sure we can't produce weird expressions involving 5705 // negated pointers. 5706 if (LA == LS && RA == RS) 5707 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5708 if (LA == RS && RA == LS) 5709 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5710 } 5711 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5712 if (Op->getType()->isPointerTy()) { 5713 Op = getLosslessPtrToIntExpr(Op); 5714 if (isa<SCEVCouldNotCompute>(Op)) 5715 return Op; 5716 } 5717 if (Signed) 5718 Op = getNoopOrSignExtend(Op, I->getType()); 5719 else 5720 Op = getNoopOrZeroExtend(Op, I->getType()); 5721 return Op; 5722 }; 5723 LS = CoerceOperand(LS); 5724 RS = CoerceOperand(RS); 5725 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5726 break; 5727 const SCEV *LDiff = getMinusSCEV(LA, LS); 5728 const SCEV *RDiff = getMinusSCEV(RA, RS); 5729 if (LDiff == RDiff) 5730 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5731 LDiff); 5732 LDiff = getMinusSCEV(LA, RS); 5733 RDiff = getMinusSCEV(RA, LS); 5734 if (LDiff == RDiff) 5735 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5736 LDiff); 5737 } 5738 break; 5739 case ICmpInst::ICMP_NE: 5740 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5741 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5742 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5743 const SCEV *One = getOne(I->getType()); 5744 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5745 const SCEV *LA = getSCEV(TrueVal); 5746 const SCEV *RA = getSCEV(FalseVal); 5747 const SCEV *LDiff = getMinusSCEV(LA, LS); 5748 const SCEV *RDiff = getMinusSCEV(RA, One); 5749 if (LDiff == RDiff) 5750 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5751 } 5752 break; 5753 case ICmpInst::ICMP_EQ: 5754 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5755 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5756 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5757 const SCEV *One = getOne(I->getType()); 5758 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5759 const SCEV *LA = getSCEV(TrueVal); 5760 const SCEV *RA = getSCEV(FalseVal); 5761 const SCEV *LDiff = getMinusSCEV(LA, One); 5762 const SCEV *RDiff = getMinusSCEV(RA, LS); 5763 if (LDiff == RDiff) 5764 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5765 } 5766 break; 5767 default: 5768 break; 5769 } 5770 5771 return getUnknown(I); 5772 } 5773 5774 /// Expand GEP instructions into add and multiply operations. This allows them 5775 /// to be analyzed by regular SCEV code. 5776 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5777 // Don't attempt to analyze GEPs over unsized objects. 5778 if (!GEP->getSourceElementType()->isSized()) 5779 return getUnknown(GEP); 5780 5781 SmallVector<const SCEV *, 4> IndexExprs; 5782 for (Value *Index : GEP->indices()) 5783 IndexExprs.push_back(getSCEV(Index)); 5784 return getGEPExpr(GEP, IndexExprs); 5785 } 5786 5787 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5788 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5789 return C->getAPInt().countTrailingZeros(); 5790 5791 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5792 return GetMinTrailingZeros(I->getOperand()); 5793 5794 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5795 return std::min(GetMinTrailingZeros(T->getOperand()), 5796 (uint32_t)getTypeSizeInBits(T->getType())); 5797 5798 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5799 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5800 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5801 ? getTypeSizeInBits(E->getType()) 5802 : OpRes; 5803 } 5804 5805 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5806 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5807 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5808 ? getTypeSizeInBits(E->getType()) 5809 : OpRes; 5810 } 5811 5812 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5813 // The result is the min of all operands results. 5814 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5815 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5816 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5817 return MinOpRes; 5818 } 5819 5820 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5821 // The result is the sum of all operands results. 5822 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5823 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5824 for (unsigned i = 1, e = M->getNumOperands(); 5825 SumOpRes != BitWidth && i != e; ++i) 5826 SumOpRes = 5827 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5828 return SumOpRes; 5829 } 5830 5831 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5832 // The result is the min of all operands results. 5833 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5834 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5835 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5836 return MinOpRes; 5837 } 5838 5839 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5840 // The result is the min of all operands results. 5841 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5842 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5843 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5844 return MinOpRes; 5845 } 5846 5847 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5848 // The result is the min of all operands results. 5849 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5850 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5851 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5852 return MinOpRes; 5853 } 5854 5855 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5856 // For a SCEVUnknown, ask ValueTracking. 5857 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5858 return Known.countMinTrailingZeros(); 5859 } 5860 5861 // SCEVUDivExpr 5862 return 0; 5863 } 5864 5865 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5866 auto I = MinTrailingZerosCache.find(S); 5867 if (I != MinTrailingZerosCache.end()) 5868 return I->second; 5869 5870 uint32_t Result = GetMinTrailingZerosImpl(S); 5871 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5872 assert(InsertPair.second && "Should insert a new key"); 5873 return InsertPair.first->second; 5874 } 5875 5876 /// Helper method to assign a range to V from metadata present in the IR. 5877 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5878 if (Instruction *I = dyn_cast<Instruction>(V)) 5879 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5880 return getConstantRangeFromMetadata(*MD); 5881 5882 return None; 5883 } 5884 5885 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5886 SCEV::NoWrapFlags Flags) { 5887 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5888 AddRec->setNoWrapFlags(Flags); 5889 UnsignedRanges.erase(AddRec); 5890 SignedRanges.erase(AddRec); 5891 } 5892 } 5893 5894 ConstantRange ScalarEvolution:: 5895 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5896 const DataLayout &DL = getDataLayout(); 5897 5898 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5899 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5900 5901 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5902 // use information about the trip count to improve our available range. Note 5903 // that the trip count independent cases are already handled by known bits. 5904 // WARNING: The definition of recurrence used here is subtly different than 5905 // the one used by AddRec (and thus most of this file). Step is allowed to 5906 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5907 // and other addrecs in the same loop (for non-affine addrecs). The code 5908 // below intentionally handles the case where step is not loop invariant. 5909 auto *P = dyn_cast<PHINode>(U->getValue()); 5910 if (!P) 5911 return FullSet; 5912 5913 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5914 // even the values that are not available in these blocks may come from them, 5915 // and this leads to false-positive recurrence test. 5916 for (auto *Pred : predecessors(P->getParent())) 5917 if (!DT.isReachableFromEntry(Pred)) 5918 return FullSet; 5919 5920 BinaryOperator *BO; 5921 Value *Start, *Step; 5922 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5923 return FullSet; 5924 5925 // If we found a recurrence in reachable code, we must be in a loop. Note 5926 // that BO might be in some subloop of L, and that's completely okay. 5927 auto *L = LI.getLoopFor(P->getParent()); 5928 assert(L && L->getHeader() == P->getParent()); 5929 if (!L->contains(BO->getParent())) 5930 // NOTE: This bailout should be an assert instead. However, asserting 5931 // the condition here exposes a case where LoopFusion is querying SCEV 5932 // with malformed loop information during the midst of the transform. 5933 // There doesn't appear to be an obvious fix, so for the moment bailout 5934 // until the caller issue can be fixed. PR49566 tracks the bug. 5935 return FullSet; 5936 5937 // TODO: Extend to other opcodes such as mul, and div 5938 switch (BO->getOpcode()) { 5939 default: 5940 return FullSet; 5941 case Instruction::AShr: 5942 case Instruction::LShr: 5943 case Instruction::Shl: 5944 break; 5945 }; 5946 5947 if (BO->getOperand(0) != P) 5948 // TODO: Handle the power function forms some day. 5949 return FullSet; 5950 5951 unsigned TC = getSmallConstantMaxTripCount(L); 5952 if (!TC || TC >= BitWidth) 5953 return FullSet; 5954 5955 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5956 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5957 assert(KnownStart.getBitWidth() == BitWidth && 5958 KnownStep.getBitWidth() == BitWidth); 5959 5960 // Compute total shift amount, being careful of overflow and bitwidths. 5961 auto MaxShiftAmt = KnownStep.getMaxValue(); 5962 APInt TCAP(BitWidth, TC-1); 5963 bool Overflow = false; 5964 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5965 if (Overflow) 5966 return FullSet; 5967 5968 switch (BO->getOpcode()) { 5969 default: 5970 llvm_unreachable("filtered out above"); 5971 case Instruction::AShr: { 5972 // For each ashr, three cases: 5973 // shift = 0 => unchanged value 5974 // saturation => 0 or -1 5975 // other => a value closer to zero (of the same sign) 5976 // Thus, the end value is closer to zero than the start. 5977 auto KnownEnd = KnownBits::ashr(KnownStart, 5978 KnownBits::makeConstant(TotalShift)); 5979 if (KnownStart.isNonNegative()) 5980 // Analogous to lshr (simply not yet canonicalized) 5981 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5982 KnownStart.getMaxValue() + 1); 5983 if (KnownStart.isNegative()) 5984 // End >=u Start && End <=s Start 5985 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5986 KnownEnd.getMaxValue() + 1); 5987 break; 5988 } 5989 case Instruction::LShr: { 5990 // For each lshr, three cases: 5991 // shift = 0 => unchanged value 5992 // saturation => 0 5993 // other => a smaller positive number 5994 // Thus, the low end of the unsigned range is the last value produced. 5995 auto KnownEnd = KnownBits::lshr(KnownStart, 5996 KnownBits::makeConstant(TotalShift)); 5997 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5998 KnownStart.getMaxValue() + 1); 5999 } 6000 case Instruction::Shl: { 6001 // Iff no bits are shifted out, value increases on every shift. 6002 auto KnownEnd = KnownBits::shl(KnownStart, 6003 KnownBits::makeConstant(TotalShift)); 6004 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6005 return ConstantRange(KnownStart.getMinValue(), 6006 KnownEnd.getMaxValue() + 1); 6007 break; 6008 } 6009 }; 6010 return FullSet; 6011 } 6012 6013 /// Determine the range for a particular SCEV. If SignHint is 6014 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6015 /// with a "cleaner" unsigned (resp. signed) representation. 6016 const ConstantRange & 6017 ScalarEvolution::getRangeRef(const SCEV *S, 6018 ScalarEvolution::RangeSignHint SignHint) { 6019 DenseMap<const SCEV *, ConstantRange> &Cache = 6020 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6021 : SignedRanges; 6022 ConstantRange::PreferredRangeType RangeType = 6023 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6024 ? ConstantRange::Unsigned : ConstantRange::Signed; 6025 6026 // See if we've computed this range already. 6027 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6028 if (I != Cache.end()) 6029 return I->second; 6030 6031 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6032 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6033 6034 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6035 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6036 using OBO = OverflowingBinaryOperator; 6037 6038 // If the value has known zeros, the maximum value will have those known zeros 6039 // as well. 6040 uint32_t TZ = GetMinTrailingZeros(S); 6041 if (TZ != 0) { 6042 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6043 ConservativeResult = 6044 ConstantRange(APInt::getMinValue(BitWidth), 6045 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6046 else 6047 ConservativeResult = ConstantRange( 6048 APInt::getSignedMinValue(BitWidth), 6049 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6050 } 6051 6052 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6053 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6054 unsigned WrapType = OBO::AnyWrap; 6055 if (Add->hasNoSignedWrap()) 6056 WrapType |= OBO::NoSignedWrap; 6057 if (Add->hasNoUnsignedWrap()) 6058 WrapType |= OBO::NoUnsignedWrap; 6059 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6060 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6061 WrapType, RangeType); 6062 return setRange(Add, SignHint, 6063 ConservativeResult.intersectWith(X, RangeType)); 6064 } 6065 6066 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6067 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6068 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6069 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6070 return setRange(Mul, SignHint, 6071 ConservativeResult.intersectWith(X, RangeType)); 6072 } 6073 6074 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6075 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6076 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6077 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6078 return setRange(SMax, SignHint, 6079 ConservativeResult.intersectWith(X, RangeType)); 6080 } 6081 6082 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6083 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6084 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6085 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6086 return setRange(UMax, SignHint, 6087 ConservativeResult.intersectWith(X, RangeType)); 6088 } 6089 6090 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6091 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6092 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6093 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6094 return setRange(SMin, SignHint, 6095 ConservativeResult.intersectWith(X, RangeType)); 6096 } 6097 6098 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6099 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6100 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6101 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6102 return setRange(UMin, SignHint, 6103 ConservativeResult.intersectWith(X, RangeType)); 6104 } 6105 6106 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6107 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6108 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6109 return setRange(UDiv, SignHint, 6110 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6111 } 6112 6113 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6114 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6115 return setRange(ZExt, SignHint, 6116 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6117 RangeType)); 6118 } 6119 6120 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6121 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6122 return setRange(SExt, SignHint, 6123 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6124 RangeType)); 6125 } 6126 6127 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6128 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6129 return setRange(PtrToInt, SignHint, X); 6130 } 6131 6132 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6133 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6134 return setRange(Trunc, SignHint, 6135 ConservativeResult.intersectWith(X.truncate(BitWidth), 6136 RangeType)); 6137 } 6138 6139 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6140 // If there's no unsigned wrap, the value will never be less than its 6141 // initial value. 6142 if (AddRec->hasNoUnsignedWrap()) { 6143 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6144 if (!UnsignedMinValue.isZero()) 6145 ConservativeResult = ConservativeResult.intersectWith( 6146 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6147 } 6148 6149 // If there's no signed wrap, and all the operands except initial value have 6150 // the same sign or zero, the value won't ever be: 6151 // 1: smaller than initial value if operands are non negative, 6152 // 2: bigger than initial value if operands are non positive. 6153 // For both cases, value can not cross signed min/max boundary. 6154 if (AddRec->hasNoSignedWrap()) { 6155 bool AllNonNeg = true; 6156 bool AllNonPos = true; 6157 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6158 if (!isKnownNonNegative(AddRec->getOperand(i))) 6159 AllNonNeg = false; 6160 if (!isKnownNonPositive(AddRec->getOperand(i))) 6161 AllNonPos = false; 6162 } 6163 if (AllNonNeg) 6164 ConservativeResult = ConservativeResult.intersectWith( 6165 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6166 APInt::getSignedMinValue(BitWidth)), 6167 RangeType); 6168 else if (AllNonPos) 6169 ConservativeResult = ConservativeResult.intersectWith( 6170 ConstantRange::getNonEmpty( 6171 APInt::getSignedMinValue(BitWidth), 6172 getSignedRangeMax(AddRec->getStart()) + 1), 6173 RangeType); 6174 } 6175 6176 // TODO: non-affine addrec 6177 if (AddRec->isAffine()) { 6178 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6179 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6180 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6181 auto RangeFromAffine = getRangeForAffineAR( 6182 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6183 BitWidth); 6184 ConservativeResult = 6185 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6186 6187 auto RangeFromFactoring = getRangeViaFactoring( 6188 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6189 BitWidth); 6190 ConservativeResult = 6191 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6192 } 6193 6194 // Now try symbolic BE count and more powerful methods. 6195 if (UseExpensiveRangeSharpening) { 6196 const SCEV *SymbolicMaxBECount = 6197 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6198 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6199 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6200 AddRec->hasNoSelfWrap()) { 6201 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6202 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6203 ConservativeResult = 6204 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6205 } 6206 } 6207 } 6208 6209 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6210 } 6211 6212 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6213 6214 // Check if the IR explicitly contains !range metadata. 6215 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6216 if (MDRange.hasValue()) 6217 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6218 RangeType); 6219 6220 // Use facts about recurrences in the underlying IR. Note that add 6221 // recurrences are AddRecExprs and thus don't hit this path. This 6222 // primarily handles shift recurrences. 6223 auto CR = getRangeForUnknownRecurrence(U); 6224 ConservativeResult = ConservativeResult.intersectWith(CR); 6225 6226 // See if ValueTracking can give us a useful range. 6227 const DataLayout &DL = getDataLayout(); 6228 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6229 if (Known.getBitWidth() != BitWidth) 6230 Known = Known.zextOrTrunc(BitWidth); 6231 6232 // ValueTracking may be able to compute a tighter result for the number of 6233 // sign bits than for the value of those sign bits. 6234 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6235 if (U->getType()->isPointerTy()) { 6236 // If the pointer size is larger than the index size type, this can cause 6237 // NS to be larger than BitWidth. So compensate for this. 6238 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6239 int ptrIdxDiff = ptrSize - BitWidth; 6240 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6241 NS -= ptrIdxDiff; 6242 } 6243 6244 if (NS > 1) { 6245 // If we know any of the sign bits, we know all of the sign bits. 6246 if (!Known.Zero.getHiBits(NS).isZero()) 6247 Known.Zero.setHighBits(NS); 6248 if (!Known.One.getHiBits(NS).isZero()) 6249 Known.One.setHighBits(NS); 6250 } 6251 6252 if (Known.getMinValue() != Known.getMaxValue() + 1) 6253 ConservativeResult = ConservativeResult.intersectWith( 6254 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6255 RangeType); 6256 if (NS > 1) 6257 ConservativeResult = ConservativeResult.intersectWith( 6258 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6259 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6260 RangeType); 6261 6262 // A range of Phi is a subset of union of all ranges of its input. 6263 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6264 // Make sure that we do not run over cycled Phis. 6265 if (PendingPhiRanges.insert(Phi).second) { 6266 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6267 for (auto &Op : Phi->operands()) { 6268 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6269 RangeFromOps = RangeFromOps.unionWith(OpRange); 6270 // No point to continue if we already have a full set. 6271 if (RangeFromOps.isFullSet()) 6272 break; 6273 } 6274 ConservativeResult = 6275 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6276 bool Erased = PendingPhiRanges.erase(Phi); 6277 assert(Erased && "Failed to erase Phi properly?"); 6278 (void) Erased; 6279 } 6280 } 6281 6282 return setRange(U, SignHint, std::move(ConservativeResult)); 6283 } 6284 6285 return setRange(S, SignHint, std::move(ConservativeResult)); 6286 } 6287 6288 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6289 // values that the expression can take. Initially, the expression has a value 6290 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6291 // argument defines if we treat Step as signed or unsigned. 6292 static ConstantRange getRangeForAffineARHelper(APInt Step, 6293 const ConstantRange &StartRange, 6294 const APInt &MaxBECount, 6295 unsigned BitWidth, bool Signed) { 6296 // If either Step or MaxBECount is 0, then the expression won't change, and we 6297 // just need to return the initial range. 6298 if (Step == 0 || MaxBECount == 0) 6299 return StartRange; 6300 6301 // If we don't know anything about the initial value (i.e. StartRange is 6302 // FullRange), then we don't know anything about the final range either. 6303 // Return FullRange. 6304 if (StartRange.isFullSet()) 6305 return ConstantRange::getFull(BitWidth); 6306 6307 // If Step is signed and negative, then we use its absolute value, but we also 6308 // note that we're moving in the opposite direction. 6309 bool Descending = Signed && Step.isNegative(); 6310 6311 if (Signed) 6312 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6313 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6314 // This equations hold true due to the well-defined wrap-around behavior of 6315 // APInt. 6316 Step = Step.abs(); 6317 6318 // Check if Offset is more than full span of BitWidth. If it is, the 6319 // expression is guaranteed to overflow. 6320 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6321 return ConstantRange::getFull(BitWidth); 6322 6323 // Offset is by how much the expression can change. Checks above guarantee no 6324 // overflow here. 6325 APInt Offset = Step * MaxBECount; 6326 6327 // Minimum value of the final range will match the minimal value of StartRange 6328 // if the expression is increasing and will be decreased by Offset otherwise. 6329 // Maximum value of the final range will match the maximal value of StartRange 6330 // if the expression is decreasing and will be increased by Offset otherwise. 6331 APInt StartLower = StartRange.getLower(); 6332 APInt StartUpper = StartRange.getUpper() - 1; 6333 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6334 : (StartUpper + std::move(Offset)); 6335 6336 // It's possible that the new minimum/maximum value will fall into the initial 6337 // range (due to wrap around). This means that the expression can take any 6338 // value in this bitwidth, and we have to return full range. 6339 if (StartRange.contains(MovedBoundary)) 6340 return ConstantRange::getFull(BitWidth); 6341 6342 APInt NewLower = 6343 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6344 APInt NewUpper = 6345 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6346 NewUpper += 1; 6347 6348 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6349 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6350 } 6351 6352 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6353 const SCEV *Step, 6354 const SCEV *MaxBECount, 6355 unsigned BitWidth) { 6356 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6357 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6358 "Precondition!"); 6359 6360 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6361 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6362 6363 // First, consider step signed. 6364 ConstantRange StartSRange = getSignedRange(Start); 6365 ConstantRange StepSRange = getSignedRange(Step); 6366 6367 // If Step can be both positive and negative, we need to find ranges for the 6368 // maximum absolute step values in both directions and union them. 6369 ConstantRange SR = 6370 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6371 MaxBECountValue, BitWidth, /* Signed = */ true); 6372 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6373 StartSRange, MaxBECountValue, 6374 BitWidth, /* Signed = */ true)); 6375 6376 // Next, consider step unsigned. 6377 ConstantRange UR = getRangeForAffineARHelper( 6378 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6379 MaxBECountValue, BitWidth, /* Signed = */ false); 6380 6381 // Finally, intersect signed and unsigned ranges. 6382 return SR.intersectWith(UR, ConstantRange::Smallest); 6383 } 6384 6385 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6386 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6387 ScalarEvolution::RangeSignHint SignHint) { 6388 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6389 assert(AddRec->hasNoSelfWrap() && 6390 "This only works for non-self-wrapping AddRecs!"); 6391 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6392 const SCEV *Step = AddRec->getStepRecurrence(*this); 6393 // Only deal with constant step to save compile time. 6394 if (!isa<SCEVConstant>(Step)) 6395 return ConstantRange::getFull(BitWidth); 6396 // Let's make sure that we can prove that we do not self-wrap during 6397 // MaxBECount iterations. We need this because MaxBECount is a maximum 6398 // iteration count estimate, and we might infer nw from some exit for which we 6399 // do not know max exit count (or any other side reasoning). 6400 // TODO: Turn into assert at some point. 6401 if (getTypeSizeInBits(MaxBECount->getType()) > 6402 getTypeSizeInBits(AddRec->getType())) 6403 return ConstantRange::getFull(BitWidth); 6404 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6405 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6406 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6407 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6408 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6409 MaxItersWithoutWrap)) 6410 return ConstantRange::getFull(BitWidth); 6411 6412 ICmpInst::Predicate LEPred = 6413 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6414 ICmpInst::Predicate GEPred = 6415 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6416 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6417 6418 // We know that there is no self-wrap. Let's take Start and End values and 6419 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6420 // the iteration. They either lie inside the range [Min(Start, End), 6421 // Max(Start, End)] or outside it: 6422 // 6423 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6424 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6425 // 6426 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6427 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6428 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6429 // Start <= End and step is positive, or Start >= End and step is negative. 6430 const SCEV *Start = AddRec->getStart(); 6431 ConstantRange StartRange = getRangeRef(Start, SignHint); 6432 ConstantRange EndRange = getRangeRef(End, SignHint); 6433 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6434 // If they already cover full iteration space, we will know nothing useful 6435 // even if we prove what we want to prove. 6436 if (RangeBetween.isFullSet()) 6437 return RangeBetween; 6438 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6439 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6440 : RangeBetween.isWrappedSet(); 6441 if (IsWrappedSet) 6442 return ConstantRange::getFull(BitWidth); 6443 6444 if (isKnownPositive(Step) && 6445 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6446 return RangeBetween; 6447 else if (isKnownNegative(Step) && 6448 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6449 return RangeBetween; 6450 return ConstantRange::getFull(BitWidth); 6451 } 6452 6453 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6454 const SCEV *Step, 6455 const SCEV *MaxBECount, 6456 unsigned BitWidth) { 6457 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6458 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6459 6460 struct SelectPattern { 6461 Value *Condition = nullptr; 6462 APInt TrueValue; 6463 APInt FalseValue; 6464 6465 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6466 const SCEV *S) { 6467 Optional<unsigned> CastOp; 6468 APInt Offset(BitWidth, 0); 6469 6470 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6471 "Should be!"); 6472 6473 // Peel off a constant offset: 6474 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6475 // In the future we could consider being smarter here and handle 6476 // {Start+Step,+,Step} too. 6477 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6478 return; 6479 6480 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6481 S = SA->getOperand(1); 6482 } 6483 6484 // Peel off a cast operation 6485 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6486 CastOp = SCast->getSCEVType(); 6487 S = SCast->getOperand(); 6488 } 6489 6490 using namespace llvm::PatternMatch; 6491 6492 auto *SU = dyn_cast<SCEVUnknown>(S); 6493 const APInt *TrueVal, *FalseVal; 6494 if (!SU || 6495 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6496 m_APInt(FalseVal)))) { 6497 Condition = nullptr; 6498 return; 6499 } 6500 6501 TrueValue = *TrueVal; 6502 FalseValue = *FalseVal; 6503 6504 // Re-apply the cast we peeled off earlier 6505 if (CastOp.hasValue()) 6506 switch (*CastOp) { 6507 default: 6508 llvm_unreachable("Unknown SCEV cast type!"); 6509 6510 case scTruncate: 6511 TrueValue = TrueValue.trunc(BitWidth); 6512 FalseValue = FalseValue.trunc(BitWidth); 6513 break; 6514 case scZeroExtend: 6515 TrueValue = TrueValue.zext(BitWidth); 6516 FalseValue = FalseValue.zext(BitWidth); 6517 break; 6518 case scSignExtend: 6519 TrueValue = TrueValue.sext(BitWidth); 6520 FalseValue = FalseValue.sext(BitWidth); 6521 break; 6522 } 6523 6524 // Re-apply the constant offset we peeled off earlier 6525 TrueValue += Offset; 6526 FalseValue += Offset; 6527 } 6528 6529 bool isRecognized() { return Condition != nullptr; } 6530 }; 6531 6532 SelectPattern StartPattern(*this, BitWidth, Start); 6533 if (!StartPattern.isRecognized()) 6534 return ConstantRange::getFull(BitWidth); 6535 6536 SelectPattern StepPattern(*this, BitWidth, Step); 6537 if (!StepPattern.isRecognized()) 6538 return ConstantRange::getFull(BitWidth); 6539 6540 if (StartPattern.Condition != StepPattern.Condition) { 6541 // We don't handle this case today; but we could, by considering four 6542 // possibilities below instead of two. I'm not sure if there are cases where 6543 // that will help over what getRange already does, though. 6544 return ConstantRange::getFull(BitWidth); 6545 } 6546 6547 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6548 // construct arbitrary general SCEV expressions here. This function is called 6549 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6550 // say) can end up caching a suboptimal value. 6551 6552 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6553 // C2352 and C2512 (otherwise it isn't needed). 6554 6555 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6556 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6557 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6558 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6559 6560 ConstantRange TrueRange = 6561 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6562 ConstantRange FalseRange = 6563 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6564 6565 return TrueRange.unionWith(FalseRange); 6566 } 6567 6568 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6569 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6570 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6571 6572 // Return early if there are no flags to propagate to the SCEV. 6573 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6574 if (BinOp->hasNoUnsignedWrap()) 6575 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6576 if (BinOp->hasNoSignedWrap()) 6577 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6578 if (Flags == SCEV::FlagAnyWrap) 6579 return SCEV::FlagAnyWrap; 6580 6581 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6582 } 6583 6584 const Instruction * 6585 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6586 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6587 return &*AddRec->getLoop()->getHeader()->begin(); 6588 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6589 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6590 return I; 6591 return nullptr; 6592 } 6593 6594 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6595 /// \p Ops remains unmodified. 6596 static void collectUniqueOps(const SCEV *S, 6597 SmallVectorImpl<const SCEV *> &Ops) { 6598 SmallPtrSet<const SCEV *, 4> Unique; 6599 auto InsertUnique = [&](const SCEV *S) { 6600 if (Unique.insert(S).second) 6601 Ops.push_back(S); 6602 }; 6603 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6604 for (auto *Op : S2->operands()) 6605 InsertUnique(Op); 6606 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6607 for (auto *Op : S2->operands()) 6608 InsertUnique(Op); 6609 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6610 for (auto *Op : S2->operands()) 6611 InsertUnique(Op); 6612 } 6613 6614 const Instruction * 6615 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 6616 // Do a bounded search of the def relation of the requested SCEVs. 6617 SmallSet<const SCEV *, 16> Visited; 6618 SmallVector<const SCEV *> Worklist; 6619 auto pushOp = [&](const SCEV *S) { 6620 if (!Visited.insert(S).second) 6621 return; 6622 // Threshold of 30 here is arbitrary. 6623 if (Visited.size() > 30) 6624 return; 6625 Worklist.push_back(S); 6626 }; 6627 6628 for (auto *S : Ops) 6629 pushOp(S); 6630 6631 const Instruction *Bound = nullptr; 6632 while (!Worklist.empty()) { 6633 auto *S = Worklist.pop_back_val(); 6634 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 6635 if (!Bound || DT.dominates(Bound, DefI)) 6636 Bound = DefI; 6637 } else { 6638 SmallVector<const SCEV *, 4> Ops; 6639 collectUniqueOps(S, Ops); 6640 for (auto *Op : Ops) 6641 pushOp(Op); 6642 } 6643 } 6644 return Bound ? Bound : &*F.getEntryBlock().begin(); 6645 } 6646 6647 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 6648 const Instruction *B) { 6649 if (A->getParent() == B->getParent() && 6650 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6651 B->getIterator())) 6652 return true; 6653 6654 auto *BLoop = LI.getLoopFor(B->getParent()); 6655 if (BLoop && BLoop->getHeader() == B->getParent() && 6656 BLoop->getLoopPreheader() == A->getParent() && 6657 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 6658 A->getParent()->end()) && 6659 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 6660 B->getIterator())) 6661 return true; 6662 return false; 6663 } 6664 6665 6666 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6667 // Only proceed if we can prove that I does not yield poison. 6668 if (!programUndefinedIfPoison(I)) 6669 return false; 6670 6671 // At this point we know that if I is executed, then it does not wrap 6672 // according to at least one of NSW or NUW. If I is not executed, then we do 6673 // not know if the calculation that I represents would wrap. Multiple 6674 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6675 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6676 // derived from other instructions that map to the same SCEV. We cannot make 6677 // that guarantee for cases where I is not executed. So we need to find a 6678 // upper bound on the defining scope for the SCEV, and prove that I is 6679 // executed every time we enter that scope. When the bounding scope is a 6680 // loop (the common case), this is equivalent to proving I executes on every 6681 // iteration of that loop. 6682 SmallVector<const SCEV *> SCEVOps; 6683 for (const Use &Op : I->operands()) { 6684 // I could be an extractvalue from a call to an overflow intrinsic. 6685 // TODO: We can do better here in some cases. 6686 if (isSCEVable(Op->getType())) 6687 SCEVOps.push_back(getSCEV(Op)); 6688 } 6689 auto *DefI = getDefiningScopeBound(SCEVOps); 6690 return isGuaranteedToTransferExecutionTo(DefI, I); 6691 } 6692 6693 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6694 // If we know that \c I can never be poison period, then that's enough. 6695 if (isSCEVExprNeverPoison(I)) 6696 return true; 6697 6698 // For an add recurrence specifically, we assume that infinite loops without 6699 // side effects are undefined behavior, and then reason as follows: 6700 // 6701 // If the add recurrence is poison in any iteration, it is poison on all 6702 // future iterations (since incrementing poison yields poison). If the result 6703 // of the add recurrence is fed into the loop latch condition and the loop 6704 // does not contain any throws or exiting blocks other than the latch, we now 6705 // have the ability to "choose" whether the backedge is taken or not (by 6706 // choosing a sufficiently evil value for the poison feeding into the branch) 6707 // for every iteration including and after the one in which \p I first became 6708 // poison. There are two possibilities (let's call the iteration in which \p 6709 // I first became poison as K): 6710 // 6711 // 1. In the set of iterations including and after K, the loop body executes 6712 // no side effects. In this case executing the backege an infinte number 6713 // of times will yield undefined behavior. 6714 // 6715 // 2. In the set of iterations including and after K, the loop body executes 6716 // at least one side effect. In this case, that specific instance of side 6717 // effect is control dependent on poison, which also yields undefined 6718 // behavior. 6719 6720 auto *ExitingBB = L->getExitingBlock(); 6721 auto *LatchBB = L->getLoopLatch(); 6722 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6723 return false; 6724 6725 SmallPtrSet<const Instruction *, 16> Pushed; 6726 SmallVector<const Instruction *, 8> PoisonStack; 6727 6728 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6729 // things that are known to be poison under that assumption go on the 6730 // PoisonStack. 6731 Pushed.insert(I); 6732 PoisonStack.push_back(I); 6733 6734 bool LatchControlDependentOnPoison = false; 6735 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6736 const Instruction *Poison = PoisonStack.pop_back_val(); 6737 6738 for (auto *PoisonUser : Poison->users()) { 6739 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6740 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6741 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6742 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6743 assert(BI->isConditional() && "Only possibility!"); 6744 if (BI->getParent() == LatchBB) { 6745 LatchControlDependentOnPoison = true; 6746 break; 6747 } 6748 } 6749 } 6750 } 6751 6752 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6753 } 6754 6755 ScalarEvolution::LoopProperties 6756 ScalarEvolution::getLoopProperties(const Loop *L) { 6757 using LoopProperties = ScalarEvolution::LoopProperties; 6758 6759 auto Itr = LoopPropertiesCache.find(L); 6760 if (Itr == LoopPropertiesCache.end()) { 6761 auto HasSideEffects = [](Instruction *I) { 6762 if (auto *SI = dyn_cast<StoreInst>(I)) 6763 return !SI->isSimple(); 6764 6765 return I->mayThrow() || I->mayWriteToMemory(); 6766 }; 6767 6768 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6769 /*HasNoSideEffects*/ true}; 6770 6771 for (auto *BB : L->getBlocks()) 6772 for (auto &I : *BB) { 6773 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6774 LP.HasNoAbnormalExits = false; 6775 if (HasSideEffects(&I)) 6776 LP.HasNoSideEffects = false; 6777 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6778 break; // We're already as pessimistic as we can get. 6779 } 6780 6781 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6782 assert(InsertPair.second && "We just checked!"); 6783 Itr = InsertPair.first; 6784 } 6785 6786 return Itr->second; 6787 } 6788 6789 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6790 // A mustprogress loop without side effects must be finite. 6791 // TODO: The check used here is very conservative. It's only *specific* 6792 // side effects which are well defined in infinite loops. 6793 return isMustProgress(L) && loopHasNoSideEffects(L); 6794 } 6795 6796 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6797 if (!isSCEVable(V->getType())) 6798 return getUnknown(V); 6799 6800 if (Instruction *I = dyn_cast<Instruction>(V)) { 6801 // Don't attempt to analyze instructions in blocks that aren't 6802 // reachable. Such instructions don't matter, and they aren't required 6803 // to obey basic rules for definitions dominating uses which this 6804 // analysis depends on. 6805 if (!DT.isReachableFromEntry(I->getParent())) 6806 return getUnknown(UndefValue::get(V->getType())); 6807 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6808 return getConstant(CI); 6809 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6810 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6811 else if (!isa<ConstantExpr>(V)) 6812 return getUnknown(V); 6813 6814 Operator *U = cast<Operator>(V); 6815 if (auto BO = MatchBinaryOp(U, DT)) { 6816 switch (BO->Opcode) { 6817 case Instruction::Add: { 6818 // The simple thing to do would be to just call getSCEV on both operands 6819 // and call getAddExpr with the result. However if we're looking at a 6820 // bunch of things all added together, this can be quite inefficient, 6821 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6822 // Instead, gather up all the operands and make a single getAddExpr call. 6823 // LLVM IR canonical form means we need only traverse the left operands. 6824 SmallVector<const SCEV *, 4> AddOps; 6825 do { 6826 if (BO->Op) { 6827 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6828 AddOps.push_back(OpSCEV); 6829 break; 6830 } 6831 6832 // If a NUW or NSW flag can be applied to the SCEV for this 6833 // addition, then compute the SCEV for this addition by itself 6834 // with a separate call to getAddExpr. We need to do that 6835 // instead of pushing the operands of the addition onto AddOps, 6836 // since the flags are only known to apply to this particular 6837 // addition - they may not apply to other additions that can be 6838 // formed with operands from AddOps. 6839 const SCEV *RHS = getSCEV(BO->RHS); 6840 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6841 if (Flags != SCEV::FlagAnyWrap) { 6842 const SCEV *LHS = getSCEV(BO->LHS); 6843 if (BO->Opcode == Instruction::Sub) 6844 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6845 else 6846 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6847 break; 6848 } 6849 } 6850 6851 if (BO->Opcode == Instruction::Sub) 6852 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6853 else 6854 AddOps.push_back(getSCEV(BO->RHS)); 6855 6856 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6857 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6858 NewBO->Opcode != Instruction::Sub)) { 6859 AddOps.push_back(getSCEV(BO->LHS)); 6860 break; 6861 } 6862 BO = NewBO; 6863 } while (true); 6864 6865 return getAddExpr(AddOps); 6866 } 6867 6868 case Instruction::Mul: { 6869 SmallVector<const SCEV *, 4> MulOps; 6870 do { 6871 if (BO->Op) { 6872 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6873 MulOps.push_back(OpSCEV); 6874 break; 6875 } 6876 6877 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6878 if (Flags != SCEV::FlagAnyWrap) { 6879 MulOps.push_back( 6880 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6881 break; 6882 } 6883 } 6884 6885 MulOps.push_back(getSCEV(BO->RHS)); 6886 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6887 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6888 MulOps.push_back(getSCEV(BO->LHS)); 6889 break; 6890 } 6891 BO = NewBO; 6892 } while (true); 6893 6894 return getMulExpr(MulOps); 6895 } 6896 case Instruction::UDiv: 6897 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6898 case Instruction::URem: 6899 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6900 case Instruction::Sub: { 6901 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6902 if (BO->Op) 6903 Flags = getNoWrapFlagsFromUB(BO->Op); 6904 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6905 } 6906 case Instruction::And: 6907 // For an expression like x&255 that merely masks off the high bits, 6908 // use zext(trunc(x)) as the SCEV expression. 6909 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6910 if (CI->isZero()) 6911 return getSCEV(BO->RHS); 6912 if (CI->isMinusOne()) 6913 return getSCEV(BO->LHS); 6914 const APInt &A = CI->getValue(); 6915 6916 // Instcombine's ShrinkDemandedConstant may strip bits out of 6917 // constants, obscuring what would otherwise be a low-bits mask. 6918 // Use computeKnownBits to compute what ShrinkDemandedConstant 6919 // knew about to reconstruct a low-bits mask value. 6920 unsigned LZ = A.countLeadingZeros(); 6921 unsigned TZ = A.countTrailingZeros(); 6922 unsigned BitWidth = A.getBitWidth(); 6923 KnownBits Known(BitWidth); 6924 computeKnownBits(BO->LHS, Known, getDataLayout(), 6925 0, &AC, nullptr, &DT); 6926 6927 APInt EffectiveMask = 6928 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6929 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6930 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6931 const SCEV *LHS = getSCEV(BO->LHS); 6932 const SCEV *ShiftedLHS = nullptr; 6933 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6934 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6935 // For an expression like (x * 8) & 8, simplify the multiply. 6936 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6937 unsigned GCD = std::min(MulZeros, TZ); 6938 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6939 SmallVector<const SCEV*, 4> MulOps; 6940 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6941 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6942 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6943 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6944 } 6945 } 6946 if (!ShiftedLHS) 6947 ShiftedLHS = getUDivExpr(LHS, MulCount); 6948 return getMulExpr( 6949 getZeroExtendExpr( 6950 getTruncateExpr(ShiftedLHS, 6951 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6952 BO->LHS->getType()), 6953 MulCount); 6954 } 6955 } 6956 break; 6957 6958 case Instruction::Or: 6959 // If the RHS of the Or is a constant, we may have something like: 6960 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6961 // optimizations will transparently handle this case. 6962 // 6963 // In order for this transformation to be safe, the LHS must be of the 6964 // form X*(2^n) and the Or constant must be less than 2^n. 6965 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6966 const SCEV *LHS = getSCEV(BO->LHS); 6967 const APInt &CIVal = CI->getValue(); 6968 if (GetMinTrailingZeros(LHS) >= 6969 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6970 // Build a plain add SCEV. 6971 return getAddExpr(LHS, getSCEV(CI), 6972 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6973 } 6974 } 6975 break; 6976 6977 case Instruction::Xor: 6978 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6979 // If the RHS of xor is -1, then this is a not operation. 6980 if (CI->isMinusOne()) 6981 return getNotSCEV(getSCEV(BO->LHS)); 6982 6983 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6984 // This is a variant of the check for xor with -1, and it handles 6985 // the case where instcombine has trimmed non-demanded bits out 6986 // of an xor with -1. 6987 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6988 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6989 if (LBO->getOpcode() == Instruction::And && 6990 LCI->getValue() == CI->getValue()) 6991 if (const SCEVZeroExtendExpr *Z = 6992 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6993 Type *UTy = BO->LHS->getType(); 6994 const SCEV *Z0 = Z->getOperand(); 6995 Type *Z0Ty = Z0->getType(); 6996 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6997 6998 // If C is a low-bits mask, the zero extend is serving to 6999 // mask off the high bits. Complement the operand and 7000 // re-apply the zext. 7001 if (CI->getValue().isMask(Z0TySize)) 7002 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7003 7004 // If C is a single bit, it may be in the sign-bit position 7005 // before the zero-extend. In this case, represent the xor 7006 // using an add, which is equivalent, and re-apply the zext. 7007 APInt Trunc = CI->getValue().trunc(Z0TySize); 7008 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7009 Trunc.isSignMask()) 7010 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7011 UTy); 7012 } 7013 } 7014 break; 7015 7016 case Instruction::Shl: 7017 // Turn shift left of a constant amount into a multiply. 7018 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7019 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7020 7021 // If the shift count is not less than the bitwidth, the result of 7022 // the shift is undefined. Don't try to analyze it, because the 7023 // resolution chosen here may differ from the resolution chosen in 7024 // other parts of the compiler. 7025 if (SA->getValue().uge(BitWidth)) 7026 break; 7027 7028 // We can safely preserve the nuw flag in all cases. It's also safe to 7029 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7030 // requires special handling. It can be preserved as long as we're not 7031 // left shifting by bitwidth - 1. 7032 auto Flags = SCEV::FlagAnyWrap; 7033 if (BO->Op) { 7034 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7035 if ((MulFlags & SCEV::FlagNSW) && 7036 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7037 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7038 if (MulFlags & SCEV::FlagNUW) 7039 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7040 } 7041 7042 Constant *X = ConstantInt::get( 7043 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7044 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 7045 } 7046 break; 7047 7048 case Instruction::AShr: { 7049 // AShr X, C, where C is a constant. 7050 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7051 if (!CI) 7052 break; 7053 7054 Type *OuterTy = BO->LHS->getType(); 7055 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7056 // If the shift count is not less than the bitwidth, the result of 7057 // the shift is undefined. Don't try to analyze it, because the 7058 // resolution chosen here may differ from the resolution chosen in 7059 // other parts of the compiler. 7060 if (CI->getValue().uge(BitWidth)) 7061 break; 7062 7063 if (CI->isZero()) 7064 return getSCEV(BO->LHS); // shift by zero --> noop 7065 7066 uint64_t AShrAmt = CI->getZExtValue(); 7067 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7068 7069 Operator *L = dyn_cast<Operator>(BO->LHS); 7070 if (L && L->getOpcode() == Instruction::Shl) { 7071 // X = Shl A, n 7072 // Y = AShr X, m 7073 // Both n and m are constant. 7074 7075 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7076 if (L->getOperand(1) == BO->RHS) 7077 // For a two-shift sext-inreg, i.e. n = m, 7078 // use sext(trunc(x)) as the SCEV expression. 7079 return getSignExtendExpr( 7080 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7081 7082 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7083 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7084 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7085 if (ShlAmt > AShrAmt) { 7086 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7087 // expression. We already checked that ShlAmt < BitWidth, so 7088 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7089 // ShlAmt - AShrAmt < Amt. 7090 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7091 ShlAmt - AShrAmt); 7092 return getSignExtendExpr( 7093 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7094 getConstant(Mul)), OuterTy); 7095 } 7096 } 7097 } 7098 break; 7099 } 7100 } 7101 } 7102 7103 switch (U->getOpcode()) { 7104 case Instruction::Trunc: 7105 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7106 7107 case Instruction::ZExt: 7108 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7109 7110 case Instruction::SExt: 7111 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7112 // The NSW flag of a subtract does not always survive the conversion to 7113 // A + (-1)*B. By pushing sign extension onto its operands we are much 7114 // more likely to preserve NSW and allow later AddRec optimisations. 7115 // 7116 // NOTE: This is effectively duplicating this logic from getSignExtend: 7117 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7118 // but by that point the NSW information has potentially been lost. 7119 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7120 Type *Ty = U->getType(); 7121 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7122 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7123 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7124 } 7125 } 7126 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7127 7128 case Instruction::BitCast: 7129 // BitCasts are no-op casts so we just eliminate the cast. 7130 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7131 return getSCEV(U->getOperand(0)); 7132 break; 7133 7134 case Instruction::PtrToInt: { 7135 // Pointer to integer cast is straight-forward, so do model it. 7136 const SCEV *Op = getSCEV(U->getOperand(0)); 7137 Type *DstIntTy = U->getType(); 7138 // But only if effective SCEV (integer) type is wide enough to represent 7139 // all possible pointer values. 7140 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7141 if (isa<SCEVCouldNotCompute>(IntOp)) 7142 return getUnknown(V); 7143 return IntOp; 7144 } 7145 case Instruction::IntToPtr: 7146 // Just don't deal with inttoptr casts. 7147 return getUnknown(V); 7148 7149 case Instruction::SDiv: 7150 // If both operands are non-negative, this is just an udiv. 7151 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7152 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7153 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7154 break; 7155 7156 case Instruction::SRem: 7157 // If both operands are non-negative, this is just an urem. 7158 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7159 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7160 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7161 break; 7162 7163 case Instruction::GetElementPtr: 7164 return createNodeForGEP(cast<GEPOperator>(U)); 7165 7166 case Instruction::PHI: 7167 return createNodeForPHI(cast<PHINode>(U)); 7168 7169 case Instruction::Select: 7170 // U can also be a select constant expr, which let fall through. Since 7171 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7172 // constant expressions cannot have instructions as operands, we'd have 7173 // returned getUnknown for a select constant expressions anyway. 7174 if (isa<Instruction>(U)) 7175 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7176 U->getOperand(1), U->getOperand(2)); 7177 break; 7178 7179 case Instruction::Call: 7180 case Instruction::Invoke: 7181 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7182 return getSCEV(RV); 7183 7184 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7185 switch (II->getIntrinsicID()) { 7186 case Intrinsic::abs: 7187 return getAbsExpr( 7188 getSCEV(II->getArgOperand(0)), 7189 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7190 case Intrinsic::umax: 7191 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7192 getSCEV(II->getArgOperand(1))); 7193 case Intrinsic::umin: 7194 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7195 getSCEV(II->getArgOperand(1))); 7196 case Intrinsic::smax: 7197 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7198 getSCEV(II->getArgOperand(1))); 7199 case Intrinsic::smin: 7200 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7201 getSCEV(II->getArgOperand(1))); 7202 case Intrinsic::usub_sat: { 7203 const SCEV *X = getSCEV(II->getArgOperand(0)); 7204 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7205 const SCEV *ClampedY = getUMinExpr(X, Y); 7206 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7207 } 7208 case Intrinsic::uadd_sat: { 7209 const SCEV *X = getSCEV(II->getArgOperand(0)); 7210 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7211 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7212 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7213 } 7214 case Intrinsic::start_loop_iterations: 7215 // A start_loop_iterations is just equivalent to the first operand for 7216 // SCEV purposes. 7217 return getSCEV(II->getArgOperand(0)); 7218 default: 7219 break; 7220 } 7221 } 7222 break; 7223 } 7224 7225 return getUnknown(V); 7226 } 7227 7228 //===----------------------------------------------------------------------===// 7229 // Iteration Count Computation Code 7230 // 7231 7232 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7233 bool Extend) { 7234 if (isa<SCEVCouldNotCompute>(ExitCount)) 7235 return getCouldNotCompute(); 7236 7237 auto *ExitCountType = ExitCount->getType(); 7238 assert(ExitCountType->isIntegerTy()); 7239 7240 if (!Extend) 7241 return getAddExpr(ExitCount, getOne(ExitCountType)); 7242 7243 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7244 1 + ExitCountType->getScalarSizeInBits()); 7245 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7246 getOne(WiderType)); 7247 } 7248 7249 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7250 if (!ExitCount) 7251 return 0; 7252 7253 ConstantInt *ExitConst = ExitCount->getValue(); 7254 7255 // Guard against huge trip counts. 7256 if (ExitConst->getValue().getActiveBits() > 32) 7257 return 0; 7258 7259 // In case of integer overflow, this returns 0, which is correct. 7260 return ((unsigned)ExitConst->getZExtValue()) + 1; 7261 } 7262 7263 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7264 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7265 return getConstantTripCount(ExitCount); 7266 } 7267 7268 unsigned 7269 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7270 const BasicBlock *ExitingBlock) { 7271 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7272 assert(L->isLoopExiting(ExitingBlock) && 7273 "Exiting block must actually branch out of the loop!"); 7274 const SCEVConstant *ExitCount = 7275 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7276 return getConstantTripCount(ExitCount); 7277 } 7278 7279 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7280 const auto *MaxExitCount = 7281 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7282 return getConstantTripCount(MaxExitCount); 7283 } 7284 7285 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7286 // We can't infer from Array in Irregular Loop. 7287 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7288 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7289 return getCouldNotCompute(); 7290 7291 // FIXME: To make the scene more typical, we only analysis loops that have 7292 // one exiting block and that block must be the latch. To make it easier to 7293 // capture loops that have memory access and memory access will be executed 7294 // in each iteration. 7295 const BasicBlock *LoopLatch = L->getLoopLatch(); 7296 assert(LoopLatch && "See defination of simplify form loop."); 7297 if (L->getExitingBlock() != LoopLatch) 7298 return getCouldNotCompute(); 7299 7300 const DataLayout &DL = getDataLayout(); 7301 SmallVector<const SCEV *> InferCountColl; 7302 for (auto *BB : L->getBlocks()) { 7303 // Go here, we can know that Loop is a single exiting and simplified form 7304 // loop. Make sure that infer from Memory Operation in those BBs must be 7305 // executed in loop. First step, we can make sure that max execution time 7306 // of MemAccessBB in loop represents latch max excution time. 7307 // If MemAccessBB does not dom Latch, skip. 7308 // Entry 7309 // │ 7310 // ┌─────▼─────┐ 7311 // │Loop Header◄─────┐ 7312 // └──┬──────┬─┘ │ 7313 // │ │ │ 7314 // ┌────────▼──┐ ┌─▼─────┐ │ 7315 // │MemAccessBB│ │OtherBB│ │ 7316 // └────────┬──┘ └─┬─────┘ │ 7317 // │ │ │ 7318 // ┌─▼──────▼─┐ │ 7319 // │Loop Latch├─────┘ 7320 // └────┬─────┘ 7321 // ▼ 7322 // Exit 7323 if (!DT.dominates(BB, LoopLatch)) 7324 continue; 7325 7326 for (Instruction &Inst : *BB) { 7327 // Find Memory Operation Instruction. 7328 auto *GEP = getLoadStorePointerOperand(&Inst); 7329 if (!GEP) 7330 continue; 7331 7332 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7333 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7334 if (!ElemSize) 7335 continue; 7336 7337 // Use a existing polynomial recurrence on the trip count. 7338 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7339 if (!AddRec) 7340 continue; 7341 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7342 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7343 if (!ArrBase || !Step) 7344 continue; 7345 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7346 7347 // Only handle { %array + step }, 7348 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7349 if (AddRec->getStart() != ArrBase) 7350 continue; 7351 7352 // Memory operation pattern which have gaps. 7353 // Or repeat memory opreation. 7354 // And index of GEP wraps arround. 7355 if (Step->getAPInt().getActiveBits() > 32 || 7356 Step->getAPInt().getZExtValue() != 7357 ElemSize->getAPInt().getZExtValue() || 7358 Step->isZero() || Step->getAPInt().isNegative()) 7359 continue; 7360 7361 // Only infer from stack array which has certain size. 7362 // Make sure alloca instruction is not excuted in loop. 7363 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7364 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7365 continue; 7366 7367 // Make sure only handle normal array. 7368 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7369 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7370 if (!Ty || !ArrSize || !ArrSize->isOne()) 7371 continue; 7372 // Also make sure step was increased the same with sizeof allocated 7373 // element type. 7374 const PointerType *GEPT = dyn_cast<PointerType>(GEP->getType()); 7375 if (Ty->getElementType() != GEPT->getElementType()) 7376 continue; 7377 7378 // FIXME: Since gep indices are silently zext to the indexing type, 7379 // we will have a narrow gep index which wraps around rather than 7380 // increasing strictly, we shoule ensure that step is increasing 7381 // strictly by the loop iteration. 7382 // Now we can infer a max execution time by MemLength/StepLength. 7383 const SCEV *MemSize = 7384 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7385 auto *MaxExeCount = 7386 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7387 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7388 continue; 7389 7390 // If the loop reaches the maximum number of executions, we can not 7391 // access bytes starting outside the statically allocated size without 7392 // being immediate UB. But it is allowed to enter loop header one more 7393 // time. 7394 auto *InferCount = dyn_cast<SCEVConstant>( 7395 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7396 // Discard the maximum number of execution times under 32bits. 7397 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7398 continue; 7399 7400 InferCountColl.push_back(InferCount); 7401 } 7402 } 7403 7404 if (InferCountColl.size() == 0) 7405 return getCouldNotCompute(); 7406 7407 return getUMinFromMismatchedTypes(InferCountColl); 7408 } 7409 7410 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7411 SmallVector<BasicBlock *, 8> ExitingBlocks; 7412 L->getExitingBlocks(ExitingBlocks); 7413 7414 Optional<unsigned> Res = None; 7415 for (auto *ExitingBB : ExitingBlocks) { 7416 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7417 if (!Res) 7418 Res = Multiple; 7419 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7420 } 7421 return Res.getValueOr(1); 7422 } 7423 7424 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7425 const SCEV *ExitCount) { 7426 if (ExitCount == getCouldNotCompute()) 7427 return 1; 7428 7429 // Get the trip count 7430 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7431 7432 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7433 if (!TC) 7434 // Attempt to factor more general cases. Returns the greatest power of 7435 // two divisor. If overflow happens, the trip count expression is still 7436 // divisible by the greatest power of 2 divisor returned. 7437 return 1U << std::min((uint32_t)31, 7438 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7439 7440 ConstantInt *Result = TC->getValue(); 7441 7442 // Guard against huge trip counts (this requires checking 7443 // for zero to handle the case where the trip count == -1 and the 7444 // addition wraps). 7445 if (!Result || Result->getValue().getActiveBits() > 32 || 7446 Result->getValue().getActiveBits() == 0) 7447 return 1; 7448 7449 return (unsigned)Result->getZExtValue(); 7450 } 7451 7452 /// Returns the largest constant divisor of the trip count of this loop as a 7453 /// normal unsigned value, if possible. This means that the actual trip count is 7454 /// always a multiple of the returned value (don't forget the trip count could 7455 /// very well be zero as well!). 7456 /// 7457 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7458 /// multiple of a constant (which is also the case if the trip count is simply 7459 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7460 /// if the trip count is very large (>= 2^32). 7461 /// 7462 /// As explained in the comments for getSmallConstantTripCount, this assumes 7463 /// that control exits the loop via ExitingBlock. 7464 unsigned 7465 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7466 const BasicBlock *ExitingBlock) { 7467 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7468 assert(L->isLoopExiting(ExitingBlock) && 7469 "Exiting block must actually branch out of the loop!"); 7470 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7471 return getSmallConstantTripMultiple(L, ExitCount); 7472 } 7473 7474 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7475 const BasicBlock *ExitingBlock, 7476 ExitCountKind Kind) { 7477 switch (Kind) { 7478 case Exact: 7479 case SymbolicMaximum: 7480 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7481 case ConstantMaximum: 7482 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7483 }; 7484 llvm_unreachable("Invalid ExitCountKind!"); 7485 } 7486 7487 const SCEV * 7488 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7489 SCEVUnionPredicate &Preds) { 7490 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7491 } 7492 7493 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7494 ExitCountKind Kind) { 7495 switch (Kind) { 7496 case Exact: 7497 return getBackedgeTakenInfo(L).getExact(L, this); 7498 case ConstantMaximum: 7499 return getBackedgeTakenInfo(L).getConstantMax(this); 7500 case SymbolicMaximum: 7501 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7502 }; 7503 llvm_unreachable("Invalid ExitCountKind!"); 7504 } 7505 7506 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7507 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7508 } 7509 7510 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7511 static void PushLoopPHIs(const Loop *L, 7512 SmallVectorImpl<Instruction *> &Worklist, 7513 SmallPtrSetImpl<Instruction *> &Visited) { 7514 BasicBlock *Header = L->getHeader(); 7515 7516 // Push all Loop-header PHIs onto the Worklist stack. 7517 for (PHINode &PN : Header->phis()) 7518 if (Visited.insert(&PN).second) 7519 Worklist.push_back(&PN); 7520 } 7521 7522 const ScalarEvolution::BackedgeTakenInfo & 7523 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7524 auto &BTI = getBackedgeTakenInfo(L); 7525 if (BTI.hasFullInfo()) 7526 return BTI; 7527 7528 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7529 7530 if (!Pair.second) 7531 return Pair.first->second; 7532 7533 BackedgeTakenInfo Result = 7534 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7535 7536 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7537 } 7538 7539 ScalarEvolution::BackedgeTakenInfo & 7540 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7541 // Initially insert an invalid entry for this loop. If the insertion 7542 // succeeds, proceed to actually compute a backedge-taken count and 7543 // update the value. The temporary CouldNotCompute value tells SCEV 7544 // code elsewhere that it shouldn't attempt to request a new 7545 // backedge-taken count, which could result in infinite recursion. 7546 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7547 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7548 if (!Pair.second) 7549 return Pair.first->second; 7550 7551 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7552 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7553 // must be cleared in this scope. 7554 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7555 7556 // In product build, there are no usage of statistic. 7557 (void)NumTripCountsComputed; 7558 (void)NumTripCountsNotComputed; 7559 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7560 const SCEV *BEExact = Result.getExact(L, this); 7561 if (BEExact != getCouldNotCompute()) { 7562 assert(isLoopInvariant(BEExact, L) && 7563 isLoopInvariant(Result.getConstantMax(this), L) && 7564 "Computed backedge-taken count isn't loop invariant for loop!"); 7565 ++NumTripCountsComputed; 7566 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7567 isa<PHINode>(L->getHeader()->begin())) { 7568 // Only count loops that have phi nodes as not being computable. 7569 ++NumTripCountsNotComputed; 7570 } 7571 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7572 7573 // Now that we know more about the trip count for this loop, forget any 7574 // existing SCEV values for PHI nodes in this loop since they are only 7575 // conservative estimates made without the benefit of trip count 7576 // information. This is similar to the code in forgetLoop, except that 7577 // it handles SCEVUnknown PHI nodes specially. 7578 if (Result.hasAnyInfo()) { 7579 SmallVector<Instruction *, 16> Worklist; 7580 SmallPtrSet<Instruction *, 8> Discovered; 7581 SmallVector<const SCEV *, 8> ToForget; 7582 PushLoopPHIs(L, Worklist, Discovered); 7583 while (!Worklist.empty()) { 7584 Instruction *I = Worklist.pop_back_val(); 7585 7586 ValueExprMapType::iterator It = 7587 ValueExprMap.find_as(static_cast<Value *>(I)); 7588 if (It != ValueExprMap.end()) { 7589 const SCEV *Old = It->second; 7590 7591 // SCEVUnknown for a PHI either means that it has an unrecognized 7592 // structure, or it's a PHI that's in the progress of being computed 7593 // by createNodeForPHI. In the former case, additional loop trip 7594 // count information isn't going to change anything. In the later 7595 // case, createNodeForPHI will perform the necessary updates on its 7596 // own when it gets to that point. 7597 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7598 eraseValueFromMap(It->first); 7599 ToForget.push_back(Old); 7600 } 7601 if (PHINode *PN = dyn_cast<PHINode>(I)) 7602 ConstantEvolutionLoopExitValue.erase(PN); 7603 } 7604 7605 // Since we don't need to invalidate anything for correctness and we're 7606 // only invalidating to make SCEV's results more precise, we get to stop 7607 // early to avoid invalidating too much. This is especially important in 7608 // cases like: 7609 // 7610 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7611 // loop0: 7612 // %pn0 = phi 7613 // ... 7614 // loop1: 7615 // %pn1 = phi 7616 // ... 7617 // 7618 // where both loop0 and loop1's backedge taken count uses the SCEV 7619 // expression for %v. If we don't have the early stop below then in cases 7620 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7621 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7622 // count for loop1, effectively nullifying SCEV's trip count cache. 7623 for (auto *U : I->users()) 7624 if (auto *I = dyn_cast<Instruction>(U)) { 7625 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7626 if (LoopForUser && L->contains(LoopForUser) && 7627 Discovered.insert(I).second) 7628 Worklist.push_back(I); 7629 } 7630 } 7631 forgetMemoizedResults(ToForget); 7632 } 7633 7634 // Re-lookup the insert position, since the call to 7635 // computeBackedgeTakenCount above could result in a 7636 // recusive call to getBackedgeTakenInfo (on a different 7637 // loop), which would invalidate the iterator computed 7638 // earlier. 7639 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7640 } 7641 7642 void ScalarEvolution::forgetAllLoops() { 7643 // This method is intended to forget all info about loops. It should 7644 // invalidate caches as if the following happened: 7645 // - The trip counts of all loops have changed arbitrarily 7646 // - Every llvm::Value has been updated in place to produce a different 7647 // result. 7648 BackedgeTakenCounts.clear(); 7649 PredicatedBackedgeTakenCounts.clear(); 7650 LoopPropertiesCache.clear(); 7651 ConstantEvolutionLoopExitValue.clear(); 7652 ValueExprMap.clear(); 7653 ValuesAtScopes.clear(); 7654 LoopDispositions.clear(); 7655 BlockDispositions.clear(); 7656 UnsignedRanges.clear(); 7657 SignedRanges.clear(); 7658 ExprValueMap.clear(); 7659 HasRecMap.clear(); 7660 MinTrailingZerosCache.clear(); 7661 PredicatedSCEVRewrites.clear(); 7662 } 7663 7664 void ScalarEvolution::forgetLoop(const Loop *L) { 7665 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7666 SmallVector<Instruction *, 32> Worklist; 7667 SmallPtrSet<Instruction *, 16> Visited; 7668 SmallVector<const SCEV *, 16> ToForget; 7669 7670 // Iterate over all the loops and sub-loops to drop SCEV information. 7671 while (!LoopWorklist.empty()) { 7672 auto *CurrL = LoopWorklist.pop_back_val(); 7673 7674 // Drop any stored trip count value. 7675 BackedgeTakenCounts.erase(CurrL); 7676 PredicatedBackedgeTakenCounts.erase(CurrL); 7677 7678 // Drop information about predicated SCEV rewrites for this loop. 7679 for (auto I = PredicatedSCEVRewrites.begin(); 7680 I != PredicatedSCEVRewrites.end();) { 7681 std::pair<const SCEV *, const Loop *> Entry = I->first; 7682 if (Entry.second == CurrL) 7683 PredicatedSCEVRewrites.erase(I++); 7684 else 7685 ++I; 7686 } 7687 7688 auto LoopUsersItr = LoopUsers.find(CurrL); 7689 if (LoopUsersItr != LoopUsers.end()) { 7690 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 7691 LoopUsersItr->second.end()); 7692 LoopUsers.erase(LoopUsersItr); 7693 } 7694 7695 // Drop information about expressions based on loop-header PHIs. 7696 PushLoopPHIs(CurrL, Worklist, Visited); 7697 7698 while (!Worklist.empty()) { 7699 Instruction *I = Worklist.pop_back_val(); 7700 7701 ValueExprMapType::iterator It = 7702 ValueExprMap.find_as(static_cast<Value *>(I)); 7703 if (It != ValueExprMap.end()) { 7704 eraseValueFromMap(It->first); 7705 ToForget.push_back(It->second); 7706 if (PHINode *PN = dyn_cast<PHINode>(I)) 7707 ConstantEvolutionLoopExitValue.erase(PN); 7708 } 7709 7710 PushDefUseChildren(I, Worklist, Visited); 7711 } 7712 7713 LoopPropertiesCache.erase(CurrL); 7714 // Forget all contained loops too, to avoid dangling entries in the 7715 // ValuesAtScopes map. 7716 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7717 } 7718 forgetMemoizedResults(ToForget); 7719 } 7720 7721 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7722 while (Loop *Parent = L->getParentLoop()) 7723 L = Parent; 7724 forgetLoop(L); 7725 } 7726 7727 void ScalarEvolution::forgetValue(Value *V) { 7728 Instruction *I = dyn_cast<Instruction>(V); 7729 if (!I) return; 7730 7731 // Drop information about expressions based on loop-header PHIs. 7732 SmallVector<Instruction *, 16> Worklist; 7733 SmallPtrSet<Instruction *, 8> Visited; 7734 SmallVector<const SCEV *, 8> ToForget; 7735 Worklist.push_back(I); 7736 Visited.insert(I); 7737 7738 while (!Worklist.empty()) { 7739 I = Worklist.pop_back_val(); 7740 ValueExprMapType::iterator It = 7741 ValueExprMap.find_as(static_cast<Value *>(I)); 7742 if (It != ValueExprMap.end()) { 7743 eraseValueFromMap(It->first); 7744 ToForget.push_back(It->second); 7745 if (PHINode *PN = dyn_cast<PHINode>(I)) 7746 ConstantEvolutionLoopExitValue.erase(PN); 7747 } 7748 7749 PushDefUseChildren(I, Worklist, Visited); 7750 } 7751 forgetMemoizedResults(ToForget); 7752 } 7753 7754 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7755 LoopDispositions.clear(); 7756 } 7757 7758 /// Get the exact loop backedge taken count considering all loop exits. A 7759 /// computable result can only be returned for loops with all exiting blocks 7760 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7761 /// is never skipped. This is a valid assumption as long as the loop exits via 7762 /// that test. For precise results, it is the caller's responsibility to specify 7763 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7764 const SCEV * 7765 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7766 SCEVUnionPredicate *Preds) const { 7767 // If any exits were not computable, the loop is not computable. 7768 if (!isComplete() || ExitNotTaken.empty()) 7769 return SE->getCouldNotCompute(); 7770 7771 const BasicBlock *Latch = L->getLoopLatch(); 7772 // All exiting blocks we have collected must dominate the only backedge. 7773 if (!Latch) 7774 return SE->getCouldNotCompute(); 7775 7776 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7777 // count is simply a minimum out of all these calculated exit counts. 7778 SmallVector<const SCEV *, 2> Ops; 7779 for (auto &ENT : ExitNotTaken) { 7780 const SCEV *BECount = ENT.ExactNotTaken; 7781 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7782 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7783 "We should only have known counts for exiting blocks that dominate " 7784 "latch!"); 7785 7786 Ops.push_back(BECount); 7787 7788 if (Preds && !ENT.hasAlwaysTruePredicate()) 7789 Preds->add(ENT.Predicate.get()); 7790 7791 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7792 "Predicate should be always true!"); 7793 } 7794 7795 return SE->getUMinFromMismatchedTypes(Ops); 7796 } 7797 7798 /// Get the exact not taken count for this loop exit. 7799 const SCEV * 7800 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7801 ScalarEvolution *SE) const { 7802 for (auto &ENT : ExitNotTaken) 7803 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7804 return ENT.ExactNotTaken; 7805 7806 return SE->getCouldNotCompute(); 7807 } 7808 7809 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7810 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7811 for (auto &ENT : ExitNotTaken) 7812 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7813 return ENT.MaxNotTaken; 7814 7815 return SE->getCouldNotCompute(); 7816 } 7817 7818 /// getConstantMax - Get the constant max backedge taken count for the loop. 7819 const SCEV * 7820 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7821 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7822 return !ENT.hasAlwaysTruePredicate(); 7823 }; 7824 7825 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 7826 return SE->getCouldNotCompute(); 7827 7828 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7829 isa<SCEVConstant>(getConstantMax())) && 7830 "No point in having a non-constant max backedge taken count!"); 7831 return getConstantMax(); 7832 } 7833 7834 const SCEV * 7835 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7836 ScalarEvolution *SE) { 7837 if (!SymbolicMax) 7838 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7839 return SymbolicMax; 7840 } 7841 7842 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7843 ScalarEvolution *SE) const { 7844 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7845 return !ENT.hasAlwaysTruePredicate(); 7846 }; 7847 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7848 } 7849 7850 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7851 return Operands.contains(S); 7852 } 7853 7854 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7855 : ExitLimit(E, E, false, None) { 7856 } 7857 7858 ScalarEvolution::ExitLimit::ExitLimit( 7859 const SCEV *E, const SCEV *M, bool MaxOrZero, 7860 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7861 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7862 // If we prove the max count is zero, so is the symbolic bound. This happens 7863 // in practice due to differences in a) how context sensitive we've chosen 7864 // to be and b) how we reason about bounds impied by UB. 7865 if (MaxNotTaken->isZero()) 7866 ExactNotTaken = MaxNotTaken; 7867 7868 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7869 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7870 "Exact is not allowed to be less precise than Max"); 7871 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7872 isa<SCEVConstant>(MaxNotTaken)) && 7873 "No point in having a non-constant max backedge taken count!"); 7874 for (auto *PredSet : PredSetList) 7875 for (auto *P : *PredSet) 7876 addPredicate(P); 7877 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7878 "Backedge count should be int"); 7879 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7880 "Max backedge count should be int"); 7881 } 7882 7883 ScalarEvolution::ExitLimit::ExitLimit( 7884 const SCEV *E, const SCEV *M, bool MaxOrZero, 7885 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7886 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7887 } 7888 7889 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7890 bool MaxOrZero) 7891 : ExitLimit(E, M, MaxOrZero, None) { 7892 } 7893 7894 class SCEVRecordOperands { 7895 SmallPtrSetImpl<const SCEV *> &Operands; 7896 7897 public: 7898 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7899 : Operands(Operands) {} 7900 bool follow(const SCEV *S) { 7901 Operands.insert(S); 7902 return true; 7903 } 7904 bool isDone() { return false; } 7905 }; 7906 7907 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7908 /// computable exit into a persistent ExitNotTakenInfo array. 7909 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7910 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7911 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7912 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7913 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7914 7915 ExitNotTaken.reserve(ExitCounts.size()); 7916 std::transform( 7917 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7918 [&](const EdgeExitInfo &EEI) { 7919 BasicBlock *ExitBB = EEI.first; 7920 const ExitLimit &EL = EEI.second; 7921 if (EL.Predicates.empty()) 7922 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7923 nullptr); 7924 7925 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7926 for (auto *Pred : EL.Predicates) 7927 Predicate->add(Pred); 7928 7929 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7930 std::move(Predicate)); 7931 }); 7932 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7933 isa<SCEVConstant>(ConstantMax)) && 7934 "No point in having a non-constant max backedge taken count!"); 7935 7936 SCEVRecordOperands RecordOperands(Operands); 7937 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7938 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7939 ST.visitAll(ConstantMax); 7940 for (auto &ENT : ExitNotTaken) 7941 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7942 ST.visitAll(ENT.ExactNotTaken); 7943 } 7944 7945 /// Compute the number of times the backedge of the specified loop will execute. 7946 ScalarEvolution::BackedgeTakenInfo 7947 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7948 bool AllowPredicates) { 7949 SmallVector<BasicBlock *, 8> ExitingBlocks; 7950 L->getExitingBlocks(ExitingBlocks); 7951 7952 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7953 7954 SmallVector<EdgeExitInfo, 4> ExitCounts; 7955 bool CouldComputeBECount = true; 7956 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7957 const SCEV *MustExitMaxBECount = nullptr; 7958 const SCEV *MayExitMaxBECount = nullptr; 7959 bool MustExitMaxOrZero = false; 7960 7961 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7962 // and compute maxBECount. 7963 // Do a union of all the predicates here. 7964 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7965 BasicBlock *ExitBB = ExitingBlocks[i]; 7966 7967 // We canonicalize untaken exits to br (constant), ignore them so that 7968 // proving an exit untaken doesn't negatively impact our ability to reason 7969 // about the loop as whole. 7970 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7971 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7972 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7973 if (ExitIfTrue == CI->isZero()) 7974 continue; 7975 } 7976 7977 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7978 7979 assert((AllowPredicates || EL.Predicates.empty()) && 7980 "Predicated exit limit when predicates are not allowed!"); 7981 7982 // 1. For each exit that can be computed, add an entry to ExitCounts. 7983 // CouldComputeBECount is true only if all exits can be computed. 7984 if (EL.ExactNotTaken == getCouldNotCompute()) 7985 // We couldn't compute an exact value for this exit, so 7986 // we won't be able to compute an exact value for the loop. 7987 CouldComputeBECount = false; 7988 else 7989 ExitCounts.emplace_back(ExitBB, EL); 7990 7991 // 2. Derive the loop's MaxBECount from each exit's max number of 7992 // non-exiting iterations. Partition the loop exits into two kinds: 7993 // LoopMustExits and LoopMayExits. 7994 // 7995 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7996 // is a LoopMayExit. If any computable LoopMustExit is found, then 7997 // MaxBECount is the minimum EL.MaxNotTaken of computable 7998 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7999 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8000 // computable EL.MaxNotTaken. 8001 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8002 DT.dominates(ExitBB, Latch)) { 8003 if (!MustExitMaxBECount) { 8004 MustExitMaxBECount = EL.MaxNotTaken; 8005 MustExitMaxOrZero = EL.MaxOrZero; 8006 } else { 8007 MustExitMaxBECount = 8008 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8009 } 8010 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8011 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8012 MayExitMaxBECount = EL.MaxNotTaken; 8013 else { 8014 MayExitMaxBECount = 8015 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8016 } 8017 } 8018 } 8019 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8020 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8021 // The loop backedge will be taken the maximum or zero times if there's 8022 // a single exit that must be taken the maximum or zero times. 8023 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8024 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8025 MaxBECount, MaxOrZero); 8026 } 8027 8028 ScalarEvolution::ExitLimit 8029 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8030 bool AllowPredicates) { 8031 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8032 // If our exiting block does not dominate the latch, then its connection with 8033 // loop's exit limit may be far from trivial. 8034 const BasicBlock *Latch = L->getLoopLatch(); 8035 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8036 return getCouldNotCompute(); 8037 8038 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8039 Instruction *Term = ExitingBlock->getTerminator(); 8040 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8041 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8042 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8043 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8044 "It should have one successor in loop and one exit block!"); 8045 // Proceed to the next level to examine the exit condition expression. 8046 return computeExitLimitFromCond( 8047 L, BI->getCondition(), ExitIfTrue, 8048 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8049 } 8050 8051 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8052 // For switch, make sure that there is a single exit from the loop. 8053 BasicBlock *Exit = nullptr; 8054 for (auto *SBB : successors(ExitingBlock)) 8055 if (!L->contains(SBB)) { 8056 if (Exit) // Multiple exit successors. 8057 return getCouldNotCompute(); 8058 Exit = SBB; 8059 } 8060 assert(Exit && "Exiting block must have at least one exit"); 8061 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8062 /*ControlsExit=*/IsOnlyExit); 8063 } 8064 8065 return getCouldNotCompute(); 8066 } 8067 8068 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8069 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8070 bool ControlsExit, bool AllowPredicates) { 8071 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8072 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8073 ControlsExit, AllowPredicates); 8074 } 8075 8076 Optional<ScalarEvolution::ExitLimit> 8077 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8078 bool ExitIfTrue, bool ControlsExit, 8079 bool AllowPredicates) { 8080 (void)this->L; 8081 (void)this->ExitIfTrue; 8082 (void)this->AllowPredicates; 8083 8084 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8085 this->AllowPredicates == AllowPredicates && 8086 "Variance in assumed invariant key components!"); 8087 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8088 if (Itr == TripCountMap.end()) 8089 return None; 8090 return Itr->second; 8091 } 8092 8093 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8094 bool ExitIfTrue, 8095 bool ControlsExit, 8096 bool AllowPredicates, 8097 const ExitLimit &EL) { 8098 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8099 this->AllowPredicates == AllowPredicates && 8100 "Variance in assumed invariant key components!"); 8101 8102 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8103 assert(InsertResult.second && "Expected successful insertion!"); 8104 (void)InsertResult; 8105 (void)ExitIfTrue; 8106 } 8107 8108 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8109 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8110 bool ControlsExit, bool AllowPredicates) { 8111 8112 if (auto MaybeEL = 8113 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8114 return *MaybeEL; 8115 8116 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8117 ControlsExit, AllowPredicates); 8118 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8119 return EL; 8120 } 8121 8122 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8123 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8124 bool ControlsExit, bool AllowPredicates) { 8125 // Handle BinOp conditions (And, Or). 8126 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8127 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8128 return *LimitFromBinOp; 8129 8130 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8131 // Proceed to the next level to examine the icmp. 8132 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8133 ExitLimit EL = 8134 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8135 if (EL.hasFullInfo() || !AllowPredicates) 8136 return EL; 8137 8138 // Try again, but use SCEV predicates this time. 8139 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8140 /*AllowPredicates=*/true); 8141 } 8142 8143 // Check for a constant condition. These are normally stripped out by 8144 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8145 // preserve the CFG and is temporarily leaving constant conditions 8146 // in place. 8147 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8148 if (ExitIfTrue == !CI->getZExtValue()) 8149 // The backedge is always taken. 8150 return getCouldNotCompute(); 8151 else 8152 // The backedge is never taken. 8153 return getZero(CI->getType()); 8154 } 8155 8156 // If it's not an integer or pointer comparison then compute it the hard way. 8157 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8158 } 8159 8160 Optional<ScalarEvolution::ExitLimit> 8161 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8162 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8163 bool ControlsExit, bool AllowPredicates) { 8164 // Check if the controlling expression for this loop is an And or Or. 8165 Value *Op0, *Op1; 8166 bool IsAnd = false; 8167 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8168 IsAnd = true; 8169 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8170 IsAnd = false; 8171 else 8172 return None; 8173 8174 // EitherMayExit is true in these two cases: 8175 // br (and Op0 Op1), loop, exit 8176 // br (or Op0 Op1), exit, loop 8177 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8178 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8179 ControlsExit && !EitherMayExit, 8180 AllowPredicates); 8181 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8182 ControlsExit && !EitherMayExit, 8183 AllowPredicates); 8184 8185 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8186 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8187 if (isa<ConstantInt>(Op1)) 8188 return Op1 == NeutralElement ? EL0 : EL1; 8189 if (isa<ConstantInt>(Op0)) 8190 return Op0 == NeutralElement ? EL1 : EL0; 8191 8192 const SCEV *BECount = getCouldNotCompute(); 8193 const SCEV *MaxBECount = getCouldNotCompute(); 8194 if (EitherMayExit) { 8195 // Both conditions must be same for the loop to continue executing. 8196 // Choose the less conservative count. 8197 // If ExitCond is a short-circuit form (select), using 8198 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 8199 // To see the detailed examples, please see 8200 // test/Analysis/ScalarEvolution/exit-count-select.ll 8201 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 8202 if (!PoisonSafe) 8203 // Even if ExitCond is select, we can safely derive BECount using both 8204 // EL0 and EL1 in these cases: 8205 // (1) EL0.ExactNotTaken is non-zero 8206 // (2) EL1.ExactNotTaken is non-poison 8207 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 8208 // it cannot be umin(0, ..)) 8209 // The PoisonSafe assignment below is simplified and the assertion after 8210 // BECount calculation fully guarantees the condition (3). 8211 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8212 isa<SCEVConstant>(EL1.ExactNotTaken); 8213 if (EL0.ExactNotTaken != getCouldNotCompute() && 8214 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 8215 BECount = 8216 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8217 8218 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8219 // it should have been simplified to zero (see the condition (3) above) 8220 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8221 BECount->isZero()); 8222 } 8223 if (EL0.MaxNotTaken == getCouldNotCompute()) 8224 MaxBECount = EL1.MaxNotTaken; 8225 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8226 MaxBECount = EL0.MaxNotTaken; 8227 else 8228 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8229 } else { 8230 // Both conditions must be same at the same time for the loop to exit. 8231 // For now, be conservative. 8232 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8233 BECount = EL0.ExactNotTaken; 8234 } 8235 8236 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8237 // to be more aggressive when computing BECount than when computing 8238 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8239 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8240 // to not. 8241 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8242 !isa<SCEVCouldNotCompute>(BECount)) 8243 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8244 8245 return ExitLimit(BECount, MaxBECount, false, 8246 { &EL0.Predicates, &EL1.Predicates }); 8247 } 8248 8249 ScalarEvolution::ExitLimit 8250 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8251 ICmpInst *ExitCond, 8252 bool ExitIfTrue, 8253 bool ControlsExit, 8254 bool AllowPredicates) { 8255 // If the condition was exit on true, convert the condition to exit on false 8256 ICmpInst::Predicate Pred; 8257 if (!ExitIfTrue) 8258 Pred = ExitCond->getPredicate(); 8259 else 8260 Pred = ExitCond->getInversePredicate(); 8261 const ICmpInst::Predicate OriginalPred = Pred; 8262 8263 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8264 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8265 8266 // Try to evaluate any dependencies out of the loop. 8267 LHS = getSCEVAtScope(LHS, L); 8268 RHS = getSCEVAtScope(RHS, L); 8269 8270 // At this point, we would like to compute how many iterations of the 8271 // loop the predicate will return true for these inputs. 8272 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8273 // If there is a loop-invariant, force it into the RHS. 8274 std::swap(LHS, RHS); 8275 Pred = ICmpInst::getSwappedPredicate(Pred); 8276 } 8277 8278 // Simplify the operands before analyzing them. 8279 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8280 8281 // If we have a comparison of a chrec against a constant, try to use value 8282 // ranges to answer this query. 8283 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8284 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8285 if (AddRec->getLoop() == L) { 8286 // Form the constant range. 8287 ConstantRange CompRange = 8288 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8289 8290 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8291 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8292 } 8293 8294 switch (Pred) { 8295 case ICmpInst::ICMP_NE: { // while (X != Y) 8296 // Convert to: while (X-Y != 0) 8297 if (LHS->getType()->isPointerTy()) { 8298 LHS = getLosslessPtrToIntExpr(LHS); 8299 if (isa<SCEVCouldNotCompute>(LHS)) 8300 return LHS; 8301 } 8302 if (RHS->getType()->isPointerTy()) { 8303 RHS = getLosslessPtrToIntExpr(RHS); 8304 if (isa<SCEVCouldNotCompute>(RHS)) 8305 return RHS; 8306 } 8307 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8308 AllowPredicates); 8309 if (EL.hasAnyInfo()) return EL; 8310 break; 8311 } 8312 case ICmpInst::ICMP_EQ: { // while (X == Y) 8313 // Convert to: while (X-Y == 0) 8314 if (LHS->getType()->isPointerTy()) { 8315 LHS = getLosslessPtrToIntExpr(LHS); 8316 if (isa<SCEVCouldNotCompute>(LHS)) 8317 return LHS; 8318 } 8319 if (RHS->getType()->isPointerTy()) { 8320 RHS = getLosslessPtrToIntExpr(RHS); 8321 if (isa<SCEVCouldNotCompute>(RHS)) 8322 return RHS; 8323 } 8324 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8325 if (EL.hasAnyInfo()) return EL; 8326 break; 8327 } 8328 case ICmpInst::ICMP_SLT: 8329 case ICmpInst::ICMP_ULT: { // while (X < Y) 8330 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8331 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8332 AllowPredicates); 8333 if (EL.hasAnyInfo()) return EL; 8334 break; 8335 } 8336 case ICmpInst::ICMP_SGT: 8337 case ICmpInst::ICMP_UGT: { // while (X > Y) 8338 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8339 ExitLimit EL = 8340 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8341 AllowPredicates); 8342 if (EL.hasAnyInfo()) return EL; 8343 break; 8344 } 8345 default: 8346 break; 8347 } 8348 8349 auto *ExhaustiveCount = 8350 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8351 8352 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8353 return ExhaustiveCount; 8354 8355 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8356 ExitCond->getOperand(1), L, OriginalPred); 8357 } 8358 8359 ScalarEvolution::ExitLimit 8360 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8361 SwitchInst *Switch, 8362 BasicBlock *ExitingBlock, 8363 bool ControlsExit) { 8364 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8365 8366 // Give up if the exit is the default dest of a switch. 8367 if (Switch->getDefaultDest() == ExitingBlock) 8368 return getCouldNotCompute(); 8369 8370 assert(L->contains(Switch->getDefaultDest()) && 8371 "Default case must not exit the loop!"); 8372 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8373 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8374 8375 // while (X != Y) --> while (X-Y != 0) 8376 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8377 if (EL.hasAnyInfo()) 8378 return EL; 8379 8380 return getCouldNotCompute(); 8381 } 8382 8383 static ConstantInt * 8384 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8385 ScalarEvolution &SE) { 8386 const SCEV *InVal = SE.getConstant(C); 8387 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8388 assert(isa<SCEVConstant>(Val) && 8389 "Evaluation of SCEV at constant didn't fold correctly?"); 8390 return cast<SCEVConstant>(Val)->getValue(); 8391 } 8392 8393 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8394 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8395 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8396 if (!RHS) 8397 return getCouldNotCompute(); 8398 8399 const BasicBlock *Latch = L->getLoopLatch(); 8400 if (!Latch) 8401 return getCouldNotCompute(); 8402 8403 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8404 if (!Predecessor) 8405 return getCouldNotCompute(); 8406 8407 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8408 // Return LHS in OutLHS and shift_opt in OutOpCode. 8409 auto MatchPositiveShift = 8410 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8411 8412 using namespace PatternMatch; 8413 8414 ConstantInt *ShiftAmt; 8415 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8416 OutOpCode = Instruction::LShr; 8417 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8418 OutOpCode = Instruction::AShr; 8419 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8420 OutOpCode = Instruction::Shl; 8421 else 8422 return false; 8423 8424 return ShiftAmt->getValue().isStrictlyPositive(); 8425 }; 8426 8427 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8428 // 8429 // loop: 8430 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8431 // %iv.shifted = lshr i32 %iv, <positive constant> 8432 // 8433 // Return true on a successful match. Return the corresponding PHI node (%iv 8434 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8435 auto MatchShiftRecurrence = 8436 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8437 Optional<Instruction::BinaryOps> PostShiftOpCode; 8438 8439 { 8440 Instruction::BinaryOps OpC; 8441 Value *V; 8442 8443 // If we encounter a shift instruction, "peel off" the shift operation, 8444 // and remember that we did so. Later when we inspect %iv's backedge 8445 // value, we will make sure that the backedge value uses the same 8446 // operation. 8447 // 8448 // Note: the peeled shift operation does not have to be the same 8449 // instruction as the one feeding into the PHI's backedge value. We only 8450 // really care about it being the same *kind* of shift instruction -- 8451 // that's all that is required for our later inferences to hold. 8452 if (MatchPositiveShift(LHS, V, OpC)) { 8453 PostShiftOpCode = OpC; 8454 LHS = V; 8455 } 8456 } 8457 8458 PNOut = dyn_cast<PHINode>(LHS); 8459 if (!PNOut || PNOut->getParent() != L->getHeader()) 8460 return false; 8461 8462 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8463 Value *OpLHS; 8464 8465 return 8466 // The backedge value for the PHI node must be a shift by a positive 8467 // amount 8468 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8469 8470 // of the PHI node itself 8471 OpLHS == PNOut && 8472 8473 // and the kind of shift should be match the kind of shift we peeled 8474 // off, if any. 8475 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8476 }; 8477 8478 PHINode *PN; 8479 Instruction::BinaryOps OpCode; 8480 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8481 return getCouldNotCompute(); 8482 8483 const DataLayout &DL = getDataLayout(); 8484 8485 // The key rationale for this optimization is that for some kinds of shift 8486 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8487 // within a finite number of iterations. If the condition guarding the 8488 // backedge (in the sense that the backedge is taken if the condition is true) 8489 // is false for the value the shift recurrence stabilizes to, then we know 8490 // that the backedge is taken only a finite number of times. 8491 8492 ConstantInt *StableValue = nullptr; 8493 switch (OpCode) { 8494 default: 8495 llvm_unreachable("Impossible case!"); 8496 8497 case Instruction::AShr: { 8498 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8499 // bitwidth(K) iterations. 8500 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8501 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8502 Predecessor->getTerminator(), &DT); 8503 auto *Ty = cast<IntegerType>(RHS->getType()); 8504 if (Known.isNonNegative()) 8505 StableValue = ConstantInt::get(Ty, 0); 8506 else if (Known.isNegative()) 8507 StableValue = ConstantInt::get(Ty, -1, true); 8508 else 8509 return getCouldNotCompute(); 8510 8511 break; 8512 } 8513 case Instruction::LShr: 8514 case Instruction::Shl: 8515 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8516 // stabilize to 0 in at most bitwidth(K) iterations. 8517 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8518 break; 8519 } 8520 8521 auto *Result = 8522 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8523 assert(Result->getType()->isIntegerTy(1) && 8524 "Otherwise cannot be an operand to a branch instruction"); 8525 8526 if (Result->isZeroValue()) { 8527 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8528 const SCEV *UpperBound = 8529 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8530 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8531 } 8532 8533 return getCouldNotCompute(); 8534 } 8535 8536 /// Return true if we can constant fold an instruction of the specified type, 8537 /// assuming that all operands were constants. 8538 static bool CanConstantFold(const Instruction *I) { 8539 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8540 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8541 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8542 return true; 8543 8544 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8545 if (const Function *F = CI->getCalledFunction()) 8546 return canConstantFoldCallTo(CI, F); 8547 return false; 8548 } 8549 8550 /// Determine whether this instruction can constant evolve within this loop 8551 /// assuming its operands can all constant evolve. 8552 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8553 // An instruction outside of the loop can't be derived from a loop PHI. 8554 if (!L->contains(I)) return false; 8555 8556 if (isa<PHINode>(I)) { 8557 // We don't currently keep track of the control flow needed to evaluate 8558 // PHIs, so we cannot handle PHIs inside of loops. 8559 return L->getHeader() == I->getParent(); 8560 } 8561 8562 // If we won't be able to constant fold this expression even if the operands 8563 // are constants, bail early. 8564 return CanConstantFold(I); 8565 } 8566 8567 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8568 /// recursing through each instruction operand until reaching a loop header phi. 8569 static PHINode * 8570 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8571 DenseMap<Instruction *, PHINode *> &PHIMap, 8572 unsigned Depth) { 8573 if (Depth > MaxConstantEvolvingDepth) 8574 return nullptr; 8575 8576 // Otherwise, we can evaluate this instruction if all of its operands are 8577 // constant or derived from a PHI node themselves. 8578 PHINode *PHI = nullptr; 8579 for (Value *Op : UseInst->operands()) { 8580 if (isa<Constant>(Op)) continue; 8581 8582 Instruction *OpInst = dyn_cast<Instruction>(Op); 8583 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8584 8585 PHINode *P = dyn_cast<PHINode>(OpInst); 8586 if (!P) 8587 // If this operand is already visited, reuse the prior result. 8588 // We may have P != PHI if this is the deepest point at which the 8589 // inconsistent paths meet. 8590 P = PHIMap.lookup(OpInst); 8591 if (!P) { 8592 // Recurse and memoize the results, whether a phi is found or not. 8593 // This recursive call invalidates pointers into PHIMap. 8594 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8595 PHIMap[OpInst] = P; 8596 } 8597 if (!P) 8598 return nullptr; // Not evolving from PHI 8599 if (PHI && PHI != P) 8600 return nullptr; // Evolving from multiple different PHIs. 8601 PHI = P; 8602 } 8603 // This is a expression evolving from a constant PHI! 8604 return PHI; 8605 } 8606 8607 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8608 /// in the loop that V is derived from. We allow arbitrary operations along the 8609 /// way, but the operands of an operation must either be constants or a value 8610 /// derived from a constant PHI. If this expression does not fit with these 8611 /// constraints, return null. 8612 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8613 Instruction *I = dyn_cast<Instruction>(V); 8614 if (!I || !canConstantEvolve(I, L)) return nullptr; 8615 8616 if (PHINode *PN = dyn_cast<PHINode>(I)) 8617 return PN; 8618 8619 // Record non-constant instructions contained by the loop. 8620 DenseMap<Instruction *, PHINode *> PHIMap; 8621 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8622 } 8623 8624 /// EvaluateExpression - Given an expression that passes the 8625 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8626 /// in the loop has the value PHIVal. If we can't fold this expression for some 8627 /// reason, return null. 8628 static Constant *EvaluateExpression(Value *V, const Loop *L, 8629 DenseMap<Instruction *, Constant *> &Vals, 8630 const DataLayout &DL, 8631 const TargetLibraryInfo *TLI) { 8632 // Convenient constant check, but redundant for recursive calls. 8633 if (Constant *C = dyn_cast<Constant>(V)) return C; 8634 Instruction *I = dyn_cast<Instruction>(V); 8635 if (!I) return nullptr; 8636 8637 if (Constant *C = Vals.lookup(I)) return C; 8638 8639 // An instruction inside the loop depends on a value outside the loop that we 8640 // weren't given a mapping for, or a value such as a call inside the loop. 8641 if (!canConstantEvolve(I, L)) return nullptr; 8642 8643 // An unmapped PHI can be due to a branch or another loop inside this loop, 8644 // or due to this not being the initial iteration through a loop where we 8645 // couldn't compute the evolution of this particular PHI last time. 8646 if (isa<PHINode>(I)) return nullptr; 8647 8648 std::vector<Constant*> Operands(I->getNumOperands()); 8649 8650 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8651 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8652 if (!Operand) { 8653 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8654 if (!Operands[i]) return nullptr; 8655 continue; 8656 } 8657 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8658 Vals[Operand] = C; 8659 if (!C) return nullptr; 8660 Operands[i] = C; 8661 } 8662 8663 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8664 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8665 Operands[1], DL, TLI); 8666 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8667 if (!LI->isVolatile()) 8668 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8669 } 8670 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8671 } 8672 8673 8674 // If every incoming value to PN except the one for BB is a specific Constant, 8675 // return that, else return nullptr. 8676 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8677 Constant *IncomingVal = nullptr; 8678 8679 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8680 if (PN->getIncomingBlock(i) == BB) 8681 continue; 8682 8683 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8684 if (!CurrentVal) 8685 return nullptr; 8686 8687 if (IncomingVal != CurrentVal) { 8688 if (IncomingVal) 8689 return nullptr; 8690 IncomingVal = CurrentVal; 8691 } 8692 } 8693 8694 return IncomingVal; 8695 } 8696 8697 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8698 /// in the header of its containing loop, we know the loop executes a 8699 /// constant number of times, and the PHI node is just a recurrence 8700 /// involving constants, fold it. 8701 Constant * 8702 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8703 const APInt &BEs, 8704 const Loop *L) { 8705 auto I = ConstantEvolutionLoopExitValue.find(PN); 8706 if (I != ConstantEvolutionLoopExitValue.end()) 8707 return I->second; 8708 8709 if (BEs.ugt(MaxBruteForceIterations)) 8710 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8711 8712 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8713 8714 DenseMap<Instruction *, Constant *> CurrentIterVals; 8715 BasicBlock *Header = L->getHeader(); 8716 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8717 8718 BasicBlock *Latch = L->getLoopLatch(); 8719 if (!Latch) 8720 return nullptr; 8721 8722 for (PHINode &PHI : Header->phis()) { 8723 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8724 CurrentIterVals[&PHI] = StartCST; 8725 } 8726 if (!CurrentIterVals.count(PN)) 8727 return RetVal = nullptr; 8728 8729 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8730 8731 // Execute the loop symbolically to determine the exit value. 8732 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8733 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8734 8735 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8736 unsigned IterationNum = 0; 8737 const DataLayout &DL = getDataLayout(); 8738 for (; ; ++IterationNum) { 8739 if (IterationNum == NumIterations) 8740 return RetVal = CurrentIterVals[PN]; // Got exit value! 8741 8742 // Compute the value of the PHIs for the next iteration. 8743 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8744 DenseMap<Instruction *, Constant *> NextIterVals; 8745 Constant *NextPHI = 8746 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8747 if (!NextPHI) 8748 return nullptr; // Couldn't evaluate! 8749 NextIterVals[PN] = NextPHI; 8750 8751 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8752 8753 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8754 // cease to be able to evaluate one of them or if they stop evolving, 8755 // because that doesn't necessarily prevent us from computing PN. 8756 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8757 for (const auto &I : CurrentIterVals) { 8758 PHINode *PHI = dyn_cast<PHINode>(I.first); 8759 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8760 PHIsToCompute.emplace_back(PHI, I.second); 8761 } 8762 // We use two distinct loops because EvaluateExpression may invalidate any 8763 // iterators into CurrentIterVals. 8764 for (const auto &I : PHIsToCompute) { 8765 PHINode *PHI = I.first; 8766 Constant *&NextPHI = NextIterVals[PHI]; 8767 if (!NextPHI) { // Not already computed. 8768 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8769 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8770 } 8771 if (NextPHI != I.second) 8772 StoppedEvolving = false; 8773 } 8774 8775 // If all entries in CurrentIterVals == NextIterVals then we can stop 8776 // iterating, the loop can't continue to change. 8777 if (StoppedEvolving) 8778 return RetVal = CurrentIterVals[PN]; 8779 8780 CurrentIterVals.swap(NextIterVals); 8781 } 8782 } 8783 8784 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8785 Value *Cond, 8786 bool ExitWhen) { 8787 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8788 if (!PN) return getCouldNotCompute(); 8789 8790 // If the loop is canonicalized, the PHI will have exactly two entries. 8791 // That's the only form we support here. 8792 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8793 8794 DenseMap<Instruction *, Constant *> CurrentIterVals; 8795 BasicBlock *Header = L->getHeader(); 8796 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8797 8798 BasicBlock *Latch = L->getLoopLatch(); 8799 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8800 8801 for (PHINode &PHI : Header->phis()) { 8802 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8803 CurrentIterVals[&PHI] = StartCST; 8804 } 8805 if (!CurrentIterVals.count(PN)) 8806 return getCouldNotCompute(); 8807 8808 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8809 // the loop symbolically to determine when the condition gets a value of 8810 // "ExitWhen". 8811 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8812 const DataLayout &DL = getDataLayout(); 8813 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8814 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8815 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8816 8817 // Couldn't symbolically evaluate. 8818 if (!CondVal) return getCouldNotCompute(); 8819 8820 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8821 ++NumBruteForceTripCountsComputed; 8822 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8823 } 8824 8825 // Update all the PHI nodes for the next iteration. 8826 DenseMap<Instruction *, Constant *> NextIterVals; 8827 8828 // Create a list of which PHIs we need to compute. We want to do this before 8829 // calling EvaluateExpression on them because that may invalidate iterators 8830 // into CurrentIterVals. 8831 SmallVector<PHINode *, 8> PHIsToCompute; 8832 for (const auto &I : CurrentIterVals) { 8833 PHINode *PHI = dyn_cast<PHINode>(I.first); 8834 if (!PHI || PHI->getParent() != Header) continue; 8835 PHIsToCompute.push_back(PHI); 8836 } 8837 for (PHINode *PHI : PHIsToCompute) { 8838 Constant *&NextPHI = NextIterVals[PHI]; 8839 if (NextPHI) continue; // Already computed! 8840 8841 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8842 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8843 } 8844 CurrentIterVals.swap(NextIterVals); 8845 } 8846 8847 // Too many iterations were needed to evaluate. 8848 return getCouldNotCompute(); 8849 } 8850 8851 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8852 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8853 ValuesAtScopes[V]; 8854 // Check to see if we've folded this expression at this loop before. 8855 for (auto &LS : Values) 8856 if (LS.first == L) 8857 return LS.second ? LS.second : V; 8858 8859 Values.emplace_back(L, nullptr); 8860 8861 // Otherwise compute it. 8862 const SCEV *C = computeSCEVAtScope(V, L); 8863 for (auto &LS : reverse(ValuesAtScopes[V])) 8864 if (LS.first == L) { 8865 LS.second = C; 8866 break; 8867 } 8868 return C; 8869 } 8870 8871 /// This builds up a Constant using the ConstantExpr interface. That way, we 8872 /// will return Constants for objects which aren't represented by a 8873 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8874 /// Returns NULL if the SCEV isn't representable as a Constant. 8875 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8876 switch (V->getSCEVType()) { 8877 case scCouldNotCompute: 8878 case scAddRecExpr: 8879 return nullptr; 8880 case scConstant: 8881 return cast<SCEVConstant>(V)->getValue(); 8882 case scUnknown: 8883 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8884 case scSignExtend: { 8885 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8886 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8887 return ConstantExpr::getSExt(CastOp, SS->getType()); 8888 return nullptr; 8889 } 8890 case scZeroExtend: { 8891 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8892 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8893 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8894 return nullptr; 8895 } 8896 case scPtrToInt: { 8897 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8898 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8899 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8900 8901 return nullptr; 8902 } 8903 case scTruncate: { 8904 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8905 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8906 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8907 return nullptr; 8908 } 8909 case scAddExpr: { 8910 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8911 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8912 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8913 unsigned AS = PTy->getAddressSpace(); 8914 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8915 C = ConstantExpr::getBitCast(C, DestPtrTy); 8916 } 8917 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8918 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8919 if (!C2) 8920 return nullptr; 8921 8922 // First pointer! 8923 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8924 unsigned AS = C2->getType()->getPointerAddressSpace(); 8925 std::swap(C, C2); 8926 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8927 // The offsets have been converted to bytes. We can add bytes to an 8928 // i8* by GEP with the byte count in the first index. 8929 C = ConstantExpr::getBitCast(C, DestPtrTy); 8930 } 8931 8932 // Don't bother trying to sum two pointers. We probably can't 8933 // statically compute a load that results from it anyway. 8934 if (C2->getType()->isPointerTy()) 8935 return nullptr; 8936 8937 if (C->getType()->isPointerTy()) { 8938 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8939 C, C2); 8940 } else { 8941 C = ConstantExpr::getAdd(C, C2); 8942 } 8943 } 8944 return C; 8945 } 8946 return nullptr; 8947 } 8948 case scMulExpr: { 8949 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8950 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8951 // Don't bother with pointers at all. 8952 if (C->getType()->isPointerTy()) 8953 return nullptr; 8954 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8955 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8956 if (!C2 || C2->getType()->isPointerTy()) 8957 return nullptr; 8958 C = ConstantExpr::getMul(C, C2); 8959 } 8960 return C; 8961 } 8962 return nullptr; 8963 } 8964 case scUDivExpr: { 8965 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8966 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8967 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8968 if (LHS->getType() == RHS->getType()) 8969 return ConstantExpr::getUDiv(LHS, RHS); 8970 return nullptr; 8971 } 8972 case scSMaxExpr: 8973 case scUMaxExpr: 8974 case scSMinExpr: 8975 case scUMinExpr: 8976 return nullptr; // TODO: smax, umax, smin, umax. 8977 } 8978 llvm_unreachable("Unknown SCEV kind!"); 8979 } 8980 8981 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8982 if (isa<SCEVConstant>(V)) return V; 8983 8984 // If this instruction is evolved from a constant-evolving PHI, compute the 8985 // exit value from the loop without using SCEVs. 8986 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8987 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8988 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8989 const Loop *CurrLoop = this->LI[I->getParent()]; 8990 // Looking for loop exit value. 8991 if (CurrLoop && CurrLoop->getParentLoop() == L && 8992 PN->getParent() == CurrLoop->getHeader()) { 8993 // Okay, there is no closed form solution for the PHI node. Check 8994 // to see if the loop that contains it has a known backedge-taken 8995 // count. If so, we may be able to force computation of the exit 8996 // value. 8997 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8998 // This trivial case can show up in some degenerate cases where 8999 // the incoming IR has not yet been fully simplified. 9000 if (BackedgeTakenCount->isZero()) { 9001 Value *InitValue = nullptr; 9002 bool MultipleInitValues = false; 9003 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9004 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9005 if (!InitValue) 9006 InitValue = PN->getIncomingValue(i); 9007 else if (InitValue != PN->getIncomingValue(i)) { 9008 MultipleInitValues = true; 9009 break; 9010 } 9011 } 9012 } 9013 if (!MultipleInitValues && InitValue) 9014 return getSCEV(InitValue); 9015 } 9016 // Do we have a loop invariant value flowing around the backedge 9017 // for a loop which must execute the backedge? 9018 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9019 isKnownPositive(BackedgeTakenCount) && 9020 PN->getNumIncomingValues() == 2) { 9021 9022 unsigned InLoopPred = 9023 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9024 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9025 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9026 return getSCEV(BackedgeVal); 9027 } 9028 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9029 // Okay, we know how many times the containing loop executes. If 9030 // this is a constant evolving PHI node, get the final value at 9031 // the specified iteration number. 9032 Constant *RV = getConstantEvolutionLoopExitValue( 9033 PN, BTCC->getAPInt(), CurrLoop); 9034 if (RV) return getSCEV(RV); 9035 } 9036 } 9037 9038 // If there is a single-input Phi, evaluate it at our scope. If we can 9039 // prove that this replacement does not break LCSSA form, use new value. 9040 if (PN->getNumOperands() == 1) { 9041 const SCEV *Input = getSCEV(PN->getOperand(0)); 9042 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9043 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9044 // for the simplest case just support constants. 9045 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9046 } 9047 } 9048 9049 // Okay, this is an expression that we cannot symbolically evaluate 9050 // into a SCEV. Check to see if it's possible to symbolically evaluate 9051 // the arguments into constants, and if so, try to constant propagate the 9052 // result. This is particularly useful for computing loop exit values. 9053 if (CanConstantFold(I)) { 9054 SmallVector<Constant *, 4> Operands; 9055 bool MadeImprovement = false; 9056 for (Value *Op : I->operands()) { 9057 if (Constant *C = dyn_cast<Constant>(Op)) { 9058 Operands.push_back(C); 9059 continue; 9060 } 9061 9062 // If any of the operands is non-constant and if they are 9063 // non-integer and non-pointer, don't even try to analyze them 9064 // with scev techniques. 9065 if (!isSCEVable(Op->getType())) 9066 return V; 9067 9068 const SCEV *OrigV = getSCEV(Op); 9069 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9070 MadeImprovement |= OrigV != OpV; 9071 9072 Constant *C = BuildConstantFromSCEV(OpV); 9073 if (!C) return V; 9074 if (C->getType() != Op->getType()) 9075 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9076 Op->getType(), 9077 false), 9078 C, Op->getType()); 9079 Operands.push_back(C); 9080 } 9081 9082 // Check to see if getSCEVAtScope actually made an improvement. 9083 if (MadeImprovement) { 9084 Constant *C = nullptr; 9085 const DataLayout &DL = getDataLayout(); 9086 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9087 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9088 Operands[1], DL, &TLI); 9089 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9090 if (!Load->isVolatile()) 9091 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9092 DL); 9093 } else 9094 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9095 if (!C) return V; 9096 return getSCEV(C); 9097 } 9098 } 9099 } 9100 9101 // This is some other type of SCEVUnknown, just return it. 9102 return V; 9103 } 9104 9105 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 9106 // Avoid performing the look-up in the common case where the specified 9107 // expression has no loop-variant portions. 9108 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9109 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9110 if (OpAtScope != Comm->getOperand(i)) { 9111 // Okay, at least one of these operands is loop variant but might be 9112 // foldable. Build a new instance of the folded commutative expression. 9113 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9114 Comm->op_begin()+i); 9115 NewOps.push_back(OpAtScope); 9116 9117 for (++i; i != e; ++i) { 9118 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9119 NewOps.push_back(OpAtScope); 9120 } 9121 if (isa<SCEVAddExpr>(Comm)) 9122 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9123 if (isa<SCEVMulExpr>(Comm)) 9124 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9125 if (isa<SCEVMinMaxExpr>(Comm)) 9126 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9127 llvm_unreachable("Unknown commutative SCEV type!"); 9128 } 9129 } 9130 // If we got here, all operands are loop invariant. 9131 return Comm; 9132 } 9133 9134 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9135 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9136 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9137 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9138 return Div; // must be loop invariant 9139 return getUDivExpr(LHS, RHS); 9140 } 9141 9142 // If this is a loop recurrence for a loop that does not contain L, then we 9143 // are dealing with the final value computed by the loop. 9144 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9145 // First, attempt to evaluate each operand. 9146 // Avoid performing the look-up in the common case where the specified 9147 // expression has no loop-variant portions. 9148 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9149 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9150 if (OpAtScope == AddRec->getOperand(i)) 9151 continue; 9152 9153 // Okay, at least one of these operands is loop variant but might be 9154 // foldable. Build a new instance of the folded commutative expression. 9155 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9156 AddRec->op_begin()+i); 9157 NewOps.push_back(OpAtScope); 9158 for (++i; i != e; ++i) 9159 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9160 9161 const SCEV *FoldedRec = 9162 getAddRecExpr(NewOps, AddRec->getLoop(), 9163 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9164 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9165 // The addrec may be folded to a nonrecurrence, for example, if the 9166 // induction variable is multiplied by zero after constant folding. Go 9167 // ahead and return the folded value. 9168 if (!AddRec) 9169 return FoldedRec; 9170 break; 9171 } 9172 9173 // If the scope is outside the addrec's loop, evaluate it by using the 9174 // loop exit value of the addrec. 9175 if (!AddRec->getLoop()->contains(L)) { 9176 // To evaluate this recurrence, we need to know how many times the AddRec 9177 // loop iterates. Compute this now. 9178 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9179 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9180 9181 // Then, evaluate the AddRec. 9182 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9183 } 9184 9185 return AddRec; 9186 } 9187 9188 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9189 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9190 if (Op == Cast->getOperand()) 9191 return Cast; // must be loop invariant 9192 return getZeroExtendExpr(Op, Cast->getType()); 9193 } 9194 9195 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9196 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9197 if (Op == Cast->getOperand()) 9198 return Cast; // must be loop invariant 9199 return getSignExtendExpr(Op, Cast->getType()); 9200 } 9201 9202 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9203 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9204 if (Op == Cast->getOperand()) 9205 return Cast; // must be loop invariant 9206 return getTruncateExpr(Op, Cast->getType()); 9207 } 9208 9209 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9210 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9211 if (Op == Cast->getOperand()) 9212 return Cast; // must be loop invariant 9213 return getPtrToIntExpr(Op, Cast->getType()); 9214 } 9215 9216 llvm_unreachable("Unknown SCEV type!"); 9217 } 9218 9219 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9220 return getSCEVAtScope(getSCEV(V), L); 9221 } 9222 9223 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9224 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9225 return stripInjectiveFunctions(ZExt->getOperand()); 9226 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9227 return stripInjectiveFunctions(SExt->getOperand()); 9228 return S; 9229 } 9230 9231 /// Finds the minimum unsigned root of the following equation: 9232 /// 9233 /// A * X = B (mod N) 9234 /// 9235 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9236 /// A and B isn't important. 9237 /// 9238 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9239 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9240 ScalarEvolution &SE) { 9241 uint32_t BW = A.getBitWidth(); 9242 assert(BW == SE.getTypeSizeInBits(B->getType())); 9243 assert(A != 0 && "A must be non-zero."); 9244 9245 // 1. D = gcd(A, N) 9246 // 9247 // The gcd of A and N may have only one prime factor: 2. The number of 9248 // trailing zeros in A is its multiplicity 9249 uint32_t Mult2 = A.countTrailingZeros(); 9250 // D = 2^Mult2 9251 9252 // 2. Check if B is divisible by D. 9253 // 9254 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9255 // is not less than multiplicity of this prime factor for D. 9256 if (SE.GetMinTrailingZeros(B) < Mult2) 9257 return SE.getCouldNotCompute(); 9258 9259 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9260 // modulo (N / D). 9261 // 9262 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9263 // (N / D) in general. The inverse itself always fits into BW bits, though, 9264 // so we immediately truncate it. 9265 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9266 APInt Mod(BW + 1, 0); 9267 Mod.setBit(BW - Mult2); // Mod = N / D 9268 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9269 9270 // 4. Compute the minimum unsigned root of the equation: 9271 // I * (B / D) mod (N / D) 9272 // To simplify the computation, we factor out the divide by D: 9273 // (I * B mod N) / D 9274 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9275 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9276 } 9277 9278 /// For a given quadratic addrec, generate coefficients of the corresponding 9279 /// quadratic equation, multiplied by a common value to ensure that they are 9280 /// integers. 9281 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9282 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9283 /// were multiplied by, and BitWidth is the bit width of the original addrec 9284 /// coefficients. 9285 /// This function returns None if the addrec coefficients are not compile- 9286 /// time constants. 9287 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9288 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9289 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9290 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9291 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9292 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9293 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9294 << *AddRec << '\n'); 9295 9296 // We currently can only solve this if the coefficients are constants. 9297 if (!LC || !MC || !NC) { 9298 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9299 return None; 9300 } 9301 9302 APInt L = LC->getAPInt(); 9303 APInt M = MC->getAPInt(); 9304 APInt N = NC->getAPInt(); 9305 assert(!N.isZero() && "This is not a quadratic addrec"); 9306 9307 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9308 unsigned NewWidth = BitWidth + 1; 9309 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9310 << BitWidth << '\n'); 9311 // The sign-extension (as opposed to a zero-extension) here matches the 9312 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9313 N = N.sext(NewWidth); 9314 M = M.sext(NewWidth); 9315 L = L.sext(NewWidth); 9316 9317 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9318 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9319 // L+M, L+2M+N, L+3M+3N, ... 9320 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9321 // 9322 // The equation Acc = 0 is then 9323 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9324 // In a quadratic form it becomes: 9325 // N n^2 + (2M-N) n + 2L = 0. 9326 9327 APInt A = N; 9328 APInt B = 2 * M - A; 9329 APInt C = 2 * L; 9330 APInt T = APInt(NewWidth, 2); 9331 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9332 << "x + " << C << ", coeff bw: " << NewWidth 9333 << ", multiplied by " << T << '\n'); 9334 return std::make_tuple(A, B, C, T, BitWidth); 9335 } 9336 9337 /// Helper function to compare optional APInts: 9338 /// (a) if X and Y both exist, return min(X, Y), 9339 /// (b) if neither X nor Y exist, return None, 9340 /// (c) if exactly one of X and Y exists, return that value. 9341 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9342 if (X.hasValue() && Y.hasValue()) { 9343 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9344 APInt XW = X->sextOrSelf(W); 9345 APInt YW = Y->sextOrSelf(W); 9346 return XW.slt(YW) ? *X : *Y; 9347 } 9348 if (!X.hasValue() && !Y.hasValue()) 9349 return None; 9350 return X.hasValue() ? *X : *Y; 9351 } 9352 9353 /// Helper function to truncate an optional APInt to a given BitWidth. 9354 /// When solving addrec-related equations, it is preferable to return a value 9355 /// that has the same bit width as the original addrec's coefficients. If the 9356 /// solution fits in the original bit width, truncate it (except for i1). 9357 /// Returning a value of a different bit width may inhibit some optimizations. 9358 /// 9359 /// In general, a solution to a quadratic equation generated from an addrec 9360 /// may require BW+1 bits, where BW is the bit width of the addrec's 9361 /// coefficients. The reason is that the coefficients of the quadratic 9362 /// equation are BW+1 bits wide (to avoid truncation when converting from 9363 /// the addrec to the equation). 9364 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9365 if (!X.hasValue()) 9366 return None; 9367 unsigned W = X->getBitWidth(); 9368 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9369 return X->trunc(BitWidth); 9370 return X; 9371 } 9372 9373 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9374 /// iterations. The values L, M, N are assumed to be signed, and they 9375 /// should all have the same bit widths. 9376 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9377 /// where BW is the bit width of the addrec's coefficients. 9378 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9379 /// returned as such, otherwise the bit width of the returned value may 9380 /// be greater than BW. 9381 /// 9382 /// This function returns None if 9383 /// (a) the addrec coefficients are not constant, or 9384 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9385 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9386 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9387 static Optional<APInt> 9388 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9389 APInt A, B, C, M; 9390 unsigned BitWidth; 9391 auto T = GetQuadraticEquation(AddRec); 9392 if (!T.hasValue()) 9393 return None; 9394 9395 std::tie(A, B, C, M, BitWidth) = *T; 9396 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9397 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9398 if (!X.hasValue()) 9399 return None; 9400 9401 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9402 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9403 if (!V->isZero()) 9404 return None; 9405 9406 return TruncIfPossible(X, BitWidth); 9407 } 9408 9409 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9410 /// iterations. The values M, N are assumed to be signed, and they 9411 /// should all have the same bit widths. 9412 /// Find the least n such that c(n) does not belong to the given range, 9413 /// while c(n-1) does. 9414 /// 9415 /// This function returns None if 9416 /// (a) the addrec coefficients are not constant, or 9417 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9418 /// bounds of the range. 9419 static Optional<APInt> 9420 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9421 const ConstantRange &Range, ScalarEvolution &SE) { 9422 assert(AddRec->getOperand(0)->isZero() && 9423 "Starting value of addrec should be 0"); 9424 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9425 << Range << ", addrec " << *AddRec << '\n'); 9426 // This case is handled in getNumIterationsInRange. Here we can assume that 9427 // we start in the range. 9428 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9429 "Addrec's initial value should be in range"); 9430 9431 APInt A, B, C, M; 9432 unsigned BitWidth; 9433 auto T = GetQuadraticEquation(AddRec); 9434 if (!T.hasValue()) 9435 return None; 9436 9437 // Be careful about the return value: there can be two reasons for not 9438 // returning an actual number. First, if no solutions to the equations 9439 // were found, and second, if the solutions don't leave the given range. 9440 // The first case means that the actual solution is "unknown", the second 9441 // means that it's known, but not valid. If the solution is unknown, we 9442 // cannot make any conclusions. 9443 // Return a pair: the optional solution and a flag indicating if the 9444 // solution was found. 9445 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9446 // Solve for signed overflow and unsigned overflow, pick the lower 9447 // solution. 9448 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9449 << Bound << " (before multiplying by " << M << ")\n"); 9450 Bound *= M; // The quadratic equation multiplier. 9451 9452 Optional<APInt> SO = None; 9453 if (BitWidth > 1) { 9454 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9455 "signed overflow\n"); 9456 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9457 } 9458 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9459 "unsigned overflow\n"); 9460 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9461 BitWidth+1); 9462 9463 auto LeavesRange = [&] (const APInt &X) { 9464 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9465 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9466 if (Range.contains(V0->getValue())) 9467 return false; 9468 // X should be at least 1, so X-1 is non-negative. 9469 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9470 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9471 if (Range.contains(V1->getValue())) 9472 return true; 9473 return false; 9474 }; 9475 9476 // If SolveQuadraticEquationWrap returns None, it means that there can 9477 // be a solution, but the function failed to find it. We cannot treat it 9478 // as "no solution". 9479 if (!SO.hasValue() || !UO.hasValue()) 9480 return { None, false }; 9481 9482 // Check the smaller value first to see if it leaves the range. 9483 // At this point, both SO and UO must have values. 9484 Optional<APInt> Min = MinOptional(SO, UO); 9485 if (LeavesRange(*Min)) 9486 return { Min, true }; 9487 Optional<APInt> Max = Min == SO ? UO : SO; 9488 if (LeavesRange(*Max)) 9489 return { Max, true }; 9490 9491 // Solutions were found, but were eliminated, hence the "true". 9492 return { None, true }; 9493 }; 9494 9495 std::tie(A, B, C, M, BitWidth) = *T; 9496 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9497 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9498 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9499 auto SL = SolveForBoundary(Lower); 9500 auto SU = SolveForBoundary(Upper); 9501 // If any of the solutions was unknown, no meaninigful conclusions can 9502 // be made. 9503 if (!SL.second || !SU.second) 9504 return None; 9505 9506 // Claim: The correct solution is not some value between Min and Max. 9507 // 9508 // Justification: Assuming that Min and Max are different values, one of 9509 // them is when the first signed overflow happens, the other is when the 9510 // first unsigned overflow happens. Crossing the range boundary is only 9511 // possible via an overflow (treating 0 as a special case of it, modeling 9512 // an overflow as crossing k*2^W for some k). 9513 // 9514 // The interesting case here is when Min was eliminated as an invalid 9515 // solution, but Max was not. The argument is that if there was another 9516 // overflow between Min and Max, it would also have been eliminated if 9517 // it was considered. 9518 // 9519 // For a given boundary, it is possible to have two overflows of the same 9520 // type (signed/unsigned) without having the other type in between: this 9521 // can happen when the vertex of the parabola is between the iterations 9522 // corresponding to the overflows. This is only possible when the two 9523 // overflows cross k*2^W for the same k. In such case, if the second one 9524 // left the range (and was the first one to do so), the first overflow 9525 // would have to enter the range, which would mean that either we had left 9526 // the range before or that we started outside of it. Both of these cases 9527 // are contradictions. 9528 // 9529 // Claim: In the case where SolveForBoundary returns None, the correct 9530 // solution is not some value between the Max for this boundary and the 9531 // Min of the other boundary. 9532 // 9533 // Justification: Assume that we had such Max_A and Min_B corresponding 9534 // to range boundaries A and B and such that Max_A < Min_B. If there was 9535 // a solution between Max_A and Min_B, it would have to be caused by an 9536 // overflow corresponding to either A or B. It cannot correspond to B, 9537 // since Min_B is the first occurrence of such an overflow. If it 9538 // corresponded to A, it would have to be either a signed or an unsigned 9539 // overflow that is larger than both eliminated overflows for A. But 9540 // between the eliminated overflows and this overflow, the values would 9541 // cover the entire value space, thus crossing the other boundary, which 9542 // is a contradiction. 9543 9544 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9545 } 9546 9547 ScalarEvolution::ExitLimit 9548 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9549 bool AllowPredicates) { 9550 9551 // This is only used for loops with a "x != y" exit test. The exit condition 9552 // is now expressed as a single expression, V = x-y. So the exit test is 9553 // effectively V != 0. We know and take advantage of the fact that this 9554 // expression only being used in a comparison by zero context. 9555 9556 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9557 // If the value is a constant 9558 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9559 // If the value is already zero, the branch will execute zero times. 9560 if (C->getValue()->isZero()) return C; 9561 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9562 } 9563 9564 const SCEVAddRecExpr *AddRec = 9565 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9566 9567 if (!AddRec && AllowPredicates) 9568 // Try to make this an AddRec using runtime tests, in the first X 9569 // iterations of this loop, where X is the SCEV expression found by the 9570 // algorithm below. 9571 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9572 9573 if (!AddRec || AddRec->getLoop() != L) 9574 return getCouldNotCompute(); 9575 9576 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9577 // the quadratic equation to solve it. 9578 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9579 // We can only use this value if the chrec ends up with an exact zero 9580 // value at this index. When solving for "X*X != 5", for example, we 9581 // should not accept a root of 2. 9582 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9583 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9584 return ExitLimit(R, R, false, Predicates); 9585 } 9586 return getCouldNotCompute(); 9587 } 9588 9589 // Otherwise we can only handle this if it is affine. 9590 if (!AddRec->isAffine()) 9591 return getCouldNotCompute(); 9592 9593 // If this is an affine expression, the execution count of this branch is 9594 // the minimum unsigned root of the following equation: 9595 // 9596 // Start + Step*N = 0 (mod 2^BW) 9597 // 9598 // equivalent to: 9599 // 9600 // Step*N = -Start (mod 2^BW) 9601 // 9602 // where BW is the common bit width of Start and Step. 9603 9604 // Get the initial value for the loop. 9605 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9606 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9607 9608 // For now we handle only constant steps. 9609 // 9610 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9611 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9612 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9613 // We have not yet seen any such cases. 9614 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9615 if (!StepC || StepC->getValue()->isZero()) 9616 return getCouldNotCompute(); 9617 9618 // For positive steps (counting up until unsigned overflow): 9619 // N = -Start/Step (as unsigned) 9620 // For negative steps (counting down to zero): 9621 // N = Start/-Step 9622 // First compute the unsigned distance from zero in the direction of Step. 9623 bool CountDown = StepC->getAPInt().isNegative(); 9624 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9625 9626 // Handle unitary steps, which cannot wraparound. 9627 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9628 // N = Distance (as unsigned) 9629 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9630 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9631 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 9632 9633 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9634 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9635 // case, and see if we can improve the bound. 9636 // 9637 // Explicitly handling this here is necessary because getUnsignedRange 9638 // isn't context-sensitive; it doesn't know that we only care about the 9639 // range inside the loop. 9640 const SCEV *Zero = getZero(Distance->getType()); 9641 const SCEV *One = getOne(Distance->getType()); 9642 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9643 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9644 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9645 // as "unsigned_max(Distance + 1) - 1". 9646 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9647 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9648 } 9649 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9650 } 9651 9652 // If the condition controls loop exit (the loop exits only if the expression 9653 // is true) and the addition is no-wrap we can use unsigned divide to 9654 // compute the backedge count. In this case, the step may not divide the 9655 // distance, but we don't care because if the condition is "missed" the loop 9656 // will have undefined behavior due to wrapping. 9657 if (ControlsExit && AddRec->hasNoSelfWrap() && 9658 loopHasNoAbnormalExits(AddRec->getLoop())) { 9659 const SCEV *Exact = 9660 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9661 const SCEV *Max = getCouldNotCompute(); 9662 if (Exact != getCouldNotCompute()) { 9663 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9664 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 9665 } 9666 return ExitLimit(Exact, Max, false, Predicates); 9667 } 9668 9669 // Solve the general equation. 9670 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9671 getNegativeSCEV(Start), *this); 9672 const SCEV *M = E == getCouldNotCompute() 9673 ? E 9674 : getConstant(getUnsignedRangeMax(E)); 9675 return ExitLimit(E, M, false, Predicates); 9676 } 9677 9678 ScalarEvolution::ExitLimit 9679 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9680 // Loops that look like: while (X == 0) are very strange indeed. We don't 9681 // handle them yet except for the trivial case. This could be expanded in the 9682 // future as needed. 9683 9684 // If the value is a constant, check to see if it is known to be non-zero 9685 // already. If so, the backedge will execute zero times. 9686 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9687 if (!C->getValue()->isZero()) 9688 return getZero(C->getType()); 9689 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9690 } 9691 9692 // We could implement others, but I really doubt anyone writes loops like 9693 // this, and if they did, they would already be constant folded. 9694 return getCouldNotCompute(); 9695 } 9696 9697 std::pair<const BasicBlock *, const BasicBlock *> 9698 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9699 const { 9700 // If the block has a unique predecessor, then there is no path from the 9701 // predecessor to the block that does not go through the direct edge 9702 // from the predecessor to the block. 9703 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9704 return {Pred, BB}; 9705 9706 // A loop's header is defined to be a block that dominates the loop. 9707 // If the header has a unique predecessor outside the loop, it must be 9708 // a block that has exactly one successor that can reach the loop. 9709 if (const Loop *L = LI.getLoopFor(BB)) 9710 return {L->getLoopPredecessor(), L->getHeader()}; 9711 9712 return {nullptr, nullptr}; 9713 } 9714 9715 /// SCEV structural equivalence is usually sufficient for testing whether two 9716 /// expressions are equal, however for the purposes of looking for a condition 9717 /// guarding a loop, it can be useful to be a little more general, since a 9718 /// front-end may have replicated the controlling expression. 9719 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9720 // Quick check to see if they are the same SCEV. 9721 if (A == B) return true; 9722 9723 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9724 // Not all instructions that are "identical" compute the same value. For 9725 // instance, two distinct alloca instructions allocating the same type are 9726 // identical and do not read memory; but compute distinct values. 9727 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9728 }; 9729 9730 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9731 // two different instructions with the same value. Check for this case. 9732 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9733 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9734 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9735 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9736 if (ComputesEqualValues(AI, BI)) 9737 return true; 9738 9739 // Otherwise assume they may have a different value. 9740 return false; 9741 } 9742 9743 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9744 const SCEV *&LHS, const SCEV *&RHS, 9745 unsigned Depth) { 9746 bool Changed = false; 9747 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9748 // '0 != 0'. 9749 auto TrivialCase = [&](bool TriviallyTrue) { 9750 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9751 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9752 return true; 9753 }; 9754 // If we hit the max recursion limit bail out. 9755 if (Depth >= 3) 9756 return false; 9757 9758 // Canonicalize a constant to the right side. 9759 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9760 // Check for both operands constant. 9761 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9762 if (ConstantExpr::getICmp(Pred, 9763 LHSC->getValue(), 9764 RHSC->getValue())->isNullValue()) 9765 return TrivialCase(false); 9766 else 9767 return TrivialCase(true); 9768 } 9769 // Otherwise swap the operands to put the constant on the right. 9770 std::swap(LHS, RHS); 9771 Pred = ICmpInst::getSwappedPredicate(Pred); 9772 Changed = true; 9773 } 9774 9775 // If we're comparing an addrec with a value which is loop-invariant in the 9776 // addrec's loop, put the addrec on the left. Also make a dominance check, 9777 // as both operands could be addrecs loop-invariant in each other's loop. 9778 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9779 const Loop *L = AR->getLoop(); 9780 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9781 std::swap(LHS, RHS); 9782 Pred = ICmpInst::getSwappedPredicate(Pred); 9783 Changed = true; 9784 } 9785 } 9786 9787 // If there's a constant operand, canonicalize comparisons with boundary 9788 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9789 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9790 const APInt &RA = RC->getAPInt(); 9791 9792 bool SimplifiedByConstantRange = false; 9793 9794 if (!ICmpInst::isEquality(Pred)) { 9795 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9796 if (ExactCR.isFullSet()) 9797 return TrivialCase(true); 9798 else if (ExactCR.isEmptySet()) 9799 return TrivialCase(false); 9800 9801 APInt NewRHS; 9802 CmpInst::Predicate NewPred; 9803 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9804 ICmpInst::isEquality(NewPred)) { 9805 // We were able to convert an inequality to an equality. 9806 Pred = NewPred; 9807 RHS = getConstant(NewRHS); 9808 Changed = SimplifiedByConstantRange = true; 9809 } 9810 } 9811 9812 if (!SimplifiedByConstantRange) { 9813 switch (Pred) { 9814 default: 9815 break; 9816 case ICmpInst::ICMP_EQ: 9817 case ICmpInst::ICMP_NE: 9818 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9819 if (!RA) 9820 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9821 if (const SCEVMulExpr *ME = 9822 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9823 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9824 ME->getOperand(0)->isAllOnesValue()) { 9825 RHS = AE->getOperand(1); 9826 LHS = ME->getOperand(1); 9827 Changed = true; 9828 } 9829 break; 9830 9831 9832 // The "Should have been caught earlier!" messages refer to the fact 9833 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9834 // should have fired on the corresponding cases, and canonicalized the 9835 // check to trivial case. 9836 9837 case ICmpInst::ICMP_UGE: 9838 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9839 Pred = ICmpInst::ICMP_UGT; 9840 RHS = getConstant(RA - 1); 9841 Changed = true; 9842 break; 9843 case ICmpInst::ICMP_ULE: 9844 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9845 Pred = ICmpInst::ICMP_ULT; 9846 RHS = getConstant(RA + 1); 9847 Changed = true; 9848 break; 9849 case ICmpInst::ICMP_SGE: 9850 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9851 Pred = ICmpInst::ICMP_SGT; 9852 RHS = getConstant(RA - 1); 9853 Changed = true; 9854 break; 9855 case ICmpInst::ICMP_SLE: 9856 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9857 Pred = ICmpInst::ICMP_SLT; 9858 RHS = getConstant(RA + 1); 9859 Changed = true; 9860 break; 9861 } 9862 } 9863 } 9864 9865 // Check for obvious equality. 9866 if (HasSameValue(LHS, RHS)) { 9867 if (ICmpInst::isTrueWhenEqual(Pred)) 9868 return TrivialCase(true); 9869 if (ICmpInst::isFalseWhenEqual(Pred)) 9870 return TrivialCase(false); 9871 } 9872 9873 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9874 // adding or subtracting 1 from one of the operands. 9875 switch (Pred) { 9876 case ICmpInst::ICMP_SLE: 9877 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9878 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9879 SCEV::FlagNSW); 9880 Pred = ICmpInst::ICMP_SLT; 9881 Changed = true; 9882 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9883 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9884 SCEV::FlagNSW); 9885 Pred = ICmpInst::ICMP_SLT; 9886 Changed = true; 9887 } 9888 break; 9889 case ICmpInst::ICMP_SGE: 9890 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9891 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9892 SCEV::FlagNSW); 9893 Pred = ICmpInst::ICMP_SGT; 9894 Changed = true; 9895 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9896 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9897 SCEV::FlagNSW); 9898 Pred = ICmpInst::ICMP_SGT; 9899 Changed = true; 9900 } 9901 break; 9902 case ICmpInst::ICMP_ULE: 9903 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9904 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9905 SCEV::FlagNUW); 9906 Pred = ICmpInst::ICMP_ULT; 9907 Changed = true; 9908 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9909 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9910 Pred = ICmpInst::ICMP_ULT; 9911 Changed = true; 9912 } 9913 break; 9914 case ICmpInst::ICMP_UGE: 9915 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9916 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9917 Pred = ICmpInst::ICMP_UGT; 9918 Changed = true; 9919 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9920 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9921 SCEV::FlagNUW); 9922 Pred = ICmpInst::ICMP_UGT; 9923 Changed = true; 9924 } 9925 break; 9926 default: 9927 break; 9928 } 9929 9930 // TODO: More simplifications are possible here. 9931 9932 // Recursively simplify until we either hit a recursion limit or nothing 9933 // changes. 9934 if (Changed) 9935 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9936 9937 return Changed; 9938 } 9939 9940 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9941 return getSignedRangeMax(S).isNegative(); 9942 } 9943 9944 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9945 return getSignedRangeMin(S).isStrictlyPositive(); 9946 } 9947 9948 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9949 return !getSignedRangeMin(S).isNegative(); 9950 } 9951 9952 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9953 return !getSignedRangeMax(S).isStrictlyPositive(); 9954 } 9955 9956 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9957 return getUnsignedRangeMin(S) != 0; 9958 } 9959 9960 std::pair<const SCEV *, const SCEV *> 9961 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9962 // Compute SCEV on entry of loop L. 9963 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9964 if (Start == getCouldNotCompute()) 9965 return { Start, Start }; 9966 // Compute post increment SCEV for loop L. 9967 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9968 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9969 return { Start, PostInc }; 9970 } 9971 9972 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9973 const SCEV *LHS, const SCEV *RHS) { 9974 // First collect all loops. 9975 SmallPtrSet<const Loop *, 8> LoopsUsed; 9976 getUsedLoops(LHS, LoopsUsed); 9977 getUsedLoops(RHS, LoopsUsed); 9978 9979 if (LoopsUsed.empty()) 9980 return false; 9981 9982 // Domination relationship must be a linear order on collected loops. 9983 #ifndef NDEBUG 9984 for (auto *L1 : LoopsUsed) 9985 for (auto *L2 : LoopsUsed) 9986 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9987 DT.dominates(L2->getHeader(), L1->getHeader())) && 9988 "Domination relationship is not a linear order"); 9989 #endif 9990 9991 const Loop *MDL = 9992 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9993 [&](const Loop *L1, const Loop *L2) { 9994 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9995 }); 9996 9997 // Get init and post increment value for LHS. 9998 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9999 // if LHS contains unknown non-invariant SCEV then bail out. 10000 if (SplitLHS.first == getCouldNotCompute()) 10001 return false; 10002 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10003 // Get init and post increment value for RHS. 10004 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10005 // if RHS contains unknown non-invariant SCEV then bail out. 10006 if (SplitRHS.first == getCouldNotCompute()) 10007 return false; 10008 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10009 // It is possible that init SCEV contains an invariant load but it does 10010 // not dominate MDL and is not available at MDL loop entry, so we should 10011 // check it here. 10012 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10013 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10014 return false; 10015 10016 // It seems backedge guard check is faster than entry one so in some cases 10017 // it can speed up whole estimation by short circuit 10018 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10019 SplitRHS.second) && 10020 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10021 } 10022 10023 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10024 const SCEV *LHS, const SCEV *RHS) { 10025 // Canonicalize the inputs first. 10026 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10027 10028 if (isKnownViaInduction(Pred, LHS, RHS)) 10029 return true; 10030 10031 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10032 return true; 10033 10034 // Otherwise see what can be done with some simple reasoning. 10035 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10036 } 10037 10038 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10039 const SCEV *LHS, 10040 const SCEV *RHS) { 10041 if (isKnownPredicate(Pred, LHS, RHS)) 10042 return true; 10043 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10044 return false; 10045 return None; 10046 } 10047 10048 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10049 const SCEV *LHS, const SCEV *RHS, 10050 const Instruction *CtxI) { 10051 // TODO: Analyze guards and assumes from Context's block. 10052 return isKnownPredicate(Pred, LHS, RHS) || 10053 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10054 } 10055 10056 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10057 const SCEV *LHS, 10058 const SCEV *RHS, 10059 const Instruction *CtxI) { 10060 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10061 if (KnownWithoutContext) 10062 return KnownWithoutContext; 10063 10064 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10065 return true; 10066 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10067 ICmpInst::getInversePredicate(Pred), 10068 LHS, RHS)) 10069 return false; 10070 return None; 10071 } 10072 10073 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10074 const SCEVAddRecExpr *LHS, 10075 const SCEV *RHS) { 10076 const Loop *L = LHS->getLoop(); 10077 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10078 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10079 } 10080 10081 Optional<ScalarEvolution::MonotonicPredicateType> 10082 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10083 ICmpInst::Predicate Pred) { 10084 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10085 10086 #ifndef NDEBUG 10087 // Verify an invariant: inverting the predicate should turn a monotonically 10088 // increasing change to a monotonically decreasing one, and vice versa. 10089 if (Result) { 10090 auto ResultSwapped = 10091 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10092 10093 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 10094 assert(ResultSwapped.getValue() != Result.getValue() && 10095 "monotonicity should flip as we flip the predicate"); 10096 } 10097 #endif 10098 10099 return Result; 10100 } 10101 10102 Optional<ScalarEvolution::MonotonicPredicateType> 10103 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10104 ICmpInst::Predicate Pred) { 10105 // A zero step value for LHS means the induction variable is essentially a 10106 // loop invariant value. We don't really depend on the predicate actually 10107 // flipping from false to true (for increasing predicates, and the other way 10108 // around for decreasing predicates), all we care about is that *if* the 10109 // predicate changes then it only changes from false to true. 10110 // 10111 // A zero step value in itself is not very useful, but there may be places 10112 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10113 // as general as possible. 10114 10115 // Only handle LE/LT/GE/GT predicates. 10116 if (!ICmpInst::isRelational(Pred)) 10117 return None; 10118 10119 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10120 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10121 "Should be greater or less!"); 10122 10123 // Check that AR does not wrap. 10124 if (ICmpInst::isUnsigned(Pred)) { 10125 if (!LHS->hasNoUnsignedWrap()) 10126 return None; 10127 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10128 } else { 10129 assert(ICmpInst::isSigned(Pred) && 10130 "Relational predicate is either signed or unsigned!"); 10131 if (!LHS->hasNoSignedWrap()) 10132 return None; 10133 10134 const SCEV *Step = LHS->getStepRecurrence(*this); 10135 10136 if (isKnownNonNegative(Step)) 10137 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10138 10139 if (isKnownNonPositive(Step)) 10140 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10141 10142 return None; 10143 } 10144 } 10145 10146 Optional<ScalarEvolution::LoopInvariantPredicate> 10147 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10148 const SCEV *LHS, const SCEV *RHS, 10149 const Loop *L) { 10150 10151 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10152 if (!isLoopInvariant(RHS, L)) { 10153 if (!isLoopInvariant(LHS, L)) 10154 return None; 10155 10156 std::swap(LHS, RHS); 10157 Pred = ICmpInst::getSwappedPredicate(Pred); 10158 } 10159 10160 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10161 if (!ArLHS || ArLHS->getLoop() != L) 10162 return None; 10163 10164 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10165 if (!MonotonicType) 10166 return None; 10167 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10168 // true as the loop iterates, and the backedge is control dependent on 10169 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10170 // 10171 // * if the predicate was false in the first iteration then the predicate 10172 // is never evaluated again, since the loop exits without taking the 10173 // backedge. 10174 // * if the predicate was true in the first iteration then it will 10175 // continue to be true for all future iterations since it is 10176 // monotonically increasing. 10177 // 10178 // For both the above possibilities, we can replace the loop varying 10179 // predicate with its value on the first iteration of the loop (which is 10180 // loop invariant). 10181 // 10182 // A similar reasoning applies for a monotonically decreasing predicate, by 10183 // replacing true with false and false with true in the above two bullets. 10184 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10185 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10186 10187 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10188 return None; 10189 10190 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10191 } 10192 10193 Optional<ScalarEvolution::LoopInvariantPredicate> 10194 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10195 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10196 const Instruction *CtxI, const SCEV *MaxIter) { 10197 // Try to prove the following set of facts: 10198 // - The predicate is monotonic in the iteration space. 10199 // - If the check does not fail on the 1st iteration: 10200 // - No overflow will happen during first MaxIter iterations; 10201 // - It will not fail on the MaxIter'th iteration. 10202 // If the check does fail on the 1st iteration, we leave the loop and no 10203 // other checks matter. 10204 10205 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10206 if (!isLoopInvariant(RHS, L)) { 10207 if (!isLoopInvariant(LHS, L)) 10208 return None; 10209 10210 std::swap(LHS, RHS); 10211 Pred = ICmpInst::getSwappedPredicate(Pred); 10212 } 10213 10214 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10215 if (!AR || AR->getLoop() != L) 10216 return None; 10217 10218 // The predicate must be relational (i.e. <, <=, >=, >). 10219 if (!ICmpInst::isRelational(Pred)) 10220 return None; 10221 10222 // TODO: Support steps other than +/- 1. 10223 const SCEV *Step = AR->getStepRecurrence(*this); 10224 auto *One = getOne(Step->getType()); 10225 auto *MinusOne = getNegativeSCEV(One); 10226 if (Step != One && Step != MinusOne) 10227 return None; 10228 10229 // Type mismatch here means that MaxIter is potentially larger than max 10230 // unsigned value in start type, which mean we cannot prove no wrap for the 10231 // indvar. 10232 if (AR->getType() != MaxIter->getType()) 10233 return None; 10234 10235 // Value of IV on suggested last iteration. 10236 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10237 // Does it still meet the requirement? 10238 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10239 return None; 10240 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10241 // not exceed max unsigned value of this type), this effectively proves 10242 // that there is no wrap during the iteration. To prove that there is no 10243 // signed/unsigned wrap, we need to check that 10244 // Start <= Last for step = 1 or Start >= Last for step = -1. 10245 ICmpInst::Predicate NoOverflowPred = 10246 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10247 if (Step == MinusOne) 10248 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10249 const SCEV *Start = AR->getStart(); 10250 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10251 return None; 10252 10253 // Everything is fine. 10254 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10255 } 10256 10257 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10258 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10259 if (HasSameValue(LHS, RHS)) 10260 return ICmpInst::isTrueWhenEqual(Pred); 10261 10262 // This code is split out from isKnownPredicate because it is called from 10263 // within isLoopEntryGuardedByCond. 10264 10265 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10266 const ConstantRange &RangeRHS) { 10267 return RangeLHS.icmp(Pred, RangeRHS); 10268 }; 10269 10270 // The check at the top of the function catches the case where the values are 10271 // known to be equal. 10272 if (Pred == CmpInst::ICMP_EQ) 10273 return false; 10274 10275 if (Pred == CmpInst::ICMP_NE) { 10276 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10277 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10278 return true; 10279 auto *Diff = getMinusSCEV(LHS, RHS); 10280 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10281 } 10282 10283 if (CmpInst::isSigned(Pred)) 10284 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10285 10286 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10287 } 10288 10289 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10290 const SCEV *LHS, 10291 const SCEV *RHS) { 10292 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10293 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10294 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10295 // OutC1 and OutC2. 10296 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10297 APInt &OutC1, APInt &OutC2, 10298 SCEV::NoWrapFlags ExpectedFlags) { 10299 const SCEV *XNonConstOp, *XConstOp; 10300 const SCEV *YNonConstOp, *YConstOp; 10301 SCEV::NoWrapFlags XFlagsPresent; 10302 SCEV::NoWrapFlags YFlagsPresent; 10303 10304 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10305 XConstOp = getZero(X->getType()); 10306 XNonConstOp = X; 10307 XFlagsPresent = ExpectedFlags; 10308 } 10309 if (!isa<SCEVConstant>(XConstOp) || 10310 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10311 return false; 10312 10313 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10314 YConstOp = getZero(Y->getType()); 10315 YNonConstOp = Y; 10316 YFlagsPresent = ExpectedFlags; 10317 } 10318 10319 if (!isa<SCEVConstant>(YConstOp) || 10320 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10321 return false; 10322 10323 if (YNonConstOp != XNonConstOp) 10324 return false; 10325 10326 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10327 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10328 10329 return true; 10330 }; 10331 10332 APInt C1; 10333 APInt C2; 10334 10335 switch (Pred) { 10336 default: 10337 break; 10338 10339 case ICmpInst::ICMP_SGE: 10340 std::swap(LHS, RHS); 10341 LLVM_FALLTHROUGH; 10342 case ICmpInst::ICMP_SLE: 10343 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10344 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10345 return true; 10346 10347 break; 10348 10349 case ICmpInst::ICMP_SGT: 10350 std::swap(LHS, RHS); 10351 LLVM_FALLTHROUGH; 10352 case ICmpInst::ICMP_SLT: 10353 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10354 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10355 return true; 10356 10357 break; 10358 10359 case ICmpInst::ICMP_UGE: 10360 std::swap(LHS, RHS); 10361 LLVM_FALLTHROUGH; 10362 case ICmpInst::ICMP_ULE: 10363 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10364 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10365 return true; 10366 10367 break; 10368 10369 case ICmpInst::ICMP_UGT: 10370 std::swap(LHS, RHS); 10371 LLVM_FALLTHROUGH; 10372 case ICmpInst::ICMP_ULT: 10373 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10374 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10375 return true; 10376 break; 10377 } 10378 10379 return false; 10380 } 10381 10382 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10383 const SCEV *LHS, 10384 const SCEV *RHS) { 10385 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10386 return false; 10387 10388 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10389 // the stack can result in exponential time complexity. 10390 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10391 10392 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10393 // 10394 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10395 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10396 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10397 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10398 // use isKnownPredicate later if needed. 10399 return isKnownNonNegative(RHS) && 10400 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10401 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10402 } 10403 10404 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10405 ICmpInst::Predicate Pred, 10406 const SCEV *LHS, const SCEV *RHS) { 10407 // No need to even try if we know the module has no guards. 10408 if (!HasGuards) 10409 return false; 10410 10411 return any_of(*BB, [&](const Instruction &I) { 10412 using namespace llvm::PatternMatch; 10413 10414 Value *Condition; 10415 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10416 m_Value(Condition))) && 10417 isImpliedCond(Pred, LHS, RHS, Condition, false); 10418 }); 10419 } 10420 10421 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10422 /// protected by a conditional between LHS and RHS. This is used to 10423 /// to eliminate casts. 10424 bool 10425 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10426 ICmpInst::Predicate Pred, 10427 const SCEV *LHS, const SCEV *RHS) { 10428 // Interpret a null as meaning no loop, where there is obviously no guard 10429 // (interprocedural conditions notwithstanding). 10430 if (!L) return true; 10431 10432 if (VerifyIR) 10433 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10434 "This cannot be done on broken IR!"); 10435 10436 10437 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10438 return true; 10439 10440 BasicBlock *Latch = L->getLoopLatch(); 10441 if (!Latch) 10442 return false; 10443 10444 BranchInst *LoopContinuePredicate = 10445 dyn_cast<BranchInst>(Latch->getTerminator()); 10446 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10447 isImpliedCond(Pred, LHS, RHS, 10448 LoopContinuePredicate->getCondition(), 10449 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10450 return true; 10451 10452 // We don't want more than one activation of the following loops on the stack 10453 // -- that can lead to O(n!) time complexity. 10454 if (WalkingBEDominatingConds) 10455 return false; 10456 10457 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10458 10459 // See if we can exploit a trip count to prove the predicate. 10460 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10461 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10462 if (LatchBECount != getCouldNotCompute()) { 10463 // We know that Latch branches back to the loop header exactly 10464 // LatchBECount times. This means the backdege condition at Latch is 10465 // equivalent to "{0,+,1} u< LatchBECount". 10466 Type *Ty = LatchBECount->getType(); 10467 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10468 const SCEV *LoopCounter = 10469 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10470 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10471 LatchBECount)) 10472 return true; 10473 } 10474 10475 // Check conditions due to any @llvm.assume intrinsics. 10476 for (auto &AssumeVH : AC.assumptions()) { 10477 if (!AssumeVH) 10478 continue; 10479 auto *CI = cast<CallInst>(AssumeVH); 10480 if (!DT.dominates(CI, Latch->getTerminator())) 10481 continue; 10482 10483 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10484 return true; 10485 } 10486 10487 // If the loop is not reachable from the entry block, we risk running into an 10488 // infinite loop as we walk up into the dom tree. These loops do not matter 10489 // anyway, so we just return a conservative answer when we see them. 10490 if (!DT.isReachableFromEntry(L->getHeader())) 10491 return false; 10492 10493 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10494 return true; 10495 10496 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10497 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10498 assert(DTN && "should reach the loop header before reaching the root!"); 10499 10500 BasicBlock *BB = DTN->getBlock(); 10501 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10502 return true; 10503 10504 BasicBlock *PBB = BB->getSinglePredecessor(); 10505 if (!PBB) 10506 continue; 10507 10508 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10509 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10510 continue; 10511 10512 Value *Condition = ContinuePredicate->getCondition(); 10513 10514 // If we have an edge `E` within the loop body that dominates the only 10515 // latch, the condition guarding `E` also guards the backedge. This 10516 // reasoning works only for loops with a single latch. 10517 10518 BasicBlockEdge DominatingEdge(PBB, BB); 10519 if (DominatingEdge.isSingleEdge()) { 10520 // We're constructively (and conservatively) enumerating edges within the 10521 // loop body that dominate the latch. The dominator tree better agree 10522 // with us on this: 10523 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10524 10525 if (isImpliedCond(Pred, LHS, RHS, Condition, 10526 BB != ContinuePredicate->getSuccessor(0))) 10527 return true; 10528 } 10529 } 10530 10531 return false; 10532 } 10533 10534 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10535 ICmpInst::Predicate Pred, 10536 const SCEV *LHS, 10537 const SCEV *RHS) { 10538 if (VerifyIR) 10539 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10540 "This cannot be done on broken IR!"); 10541 10542 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10543 // the facts (a >= b && a != b) separately. A typical situation is when the 10544 // non-strict comparison is known from ranges and non-equality is known from 10545 // dominating predicates. If we are proving strict comparison, we always try 10546 // to prove non-equality and non-strict comparison separately. 10547 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10548 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10549 bool ProvedNonStrictComparison = false; 10550 bool ProvedNonEquality = false; 10551 10552 auto SplitAndProve = 10553 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10554 if (!ProvedNonStrictComparison) 10555 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10556 if (!ProvedNonEquality) 10557 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10558 if (ProvedNonStrictComparison && ProvedNonEquality) 10559 return true; 10560 return false; 10561 }; 10562 10563 if (ProvingStrictComparison) { 10564 auto ProofFn = [&](ICmpInst::Predicate P) { 10565 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10566 }; 10567 if (SplitAndProve(ProofFn)) 10568 return true; 10569 } 10570 10571 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10572 auto ProveViaGuard = [&](const BasicBlock *Block) { 10573 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10574 return true; 10575 if (ProvingStrictComparison) { 10576 auto ProofFn = [&](ICmpInst::Predicate P) { 10577 return isImpliedViaGuard(Block, P, LHS, RHS); 10578 }; 10579 if (SplitAndProve(ProofFn)) 10580 return true; 10581 } 10582 return false; 10583 }; 10584 10585 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10586 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10587 const Instruction *CtxI = &BB->front(); 10588 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10589 return true; 10590 if (ProvingStrictComparison) { 10591 auto ProofFn = [&](ICmpInst::Predicate P) { 10592 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10593 }; 10594 if (SplitAndProve(ProofFn)) 10595 return true; 10596 } 10597 return false; 10598 }; 10599 10600 // Starting at the block's predecessor, climb up the predecessor chain, as long 10601 // as there are predecessors that can be found that have unique successors 10602 // leading to the original block. 10603 const Loop *ContainingLoop = LI.getLoopFor(BB); 10604 const BasicBlock *PredBB; 10605 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10606 PredBB = ContainingLoop->getLoopPredecessor(); 10607 else 10608 PredBB = BB->getSinglePredecessor(); 10609 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10610 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10611 if (ProveViaGuard(Pair.first)) 10612 return true; 10613 10614 const BranchInst *LoopEntryPredicate = 10615 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10616 if (!LoopEntryPredicate || 10617 LoopEntryPredicate->isUnconditional()) 10618 continue; 10619 10620 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10621 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10622 return true; 10623 } 10624 10625 // Check conditions due to any @llvm.assume intrinsics. 10626 for (auto &AssumeVH : AC.assumptions()) { 10627 if (!AssumeVH) 10628 continue; 10629 auto *CI = cast<CallInst>(AssumeVH); 10630 if (!DT.dominates(CI, BB)) 10631 continue; 10632 10633 if (ProveViaCond(CI->getArgOperand(0), false)) 10634 return true; 10635 } 10636 10637 return false; 10638 } 10639 10640 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10641 ICmpInst::Predicate Pred, 10642 const SCEV *LHS, 10643 const SCEV *RHS) { 10644 // Interpret a null as meaning no loop, where there is obviously no guard 10645 // (interprocedural conditions notwithstanding). 10646 if (!L) 10647 return false; 10648 10649 // Both LHS and RHS must be available at loop entry. 10650 assert(isAvailableAtLoopEntry(LHS, L) && 10651 "LHS is not available at Loop Entry"); 10652 assert(isAvailableAtLoopEntry(RHS, L) && 10653 "RHS is not available at Loop Entry"); 10654 10655 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10656 return true; 10657 10658 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10659 } 10660 10661 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10662 const SCEV *RHS, 10663 const Value *FoundCondValue, bool Inverse, 10664 const Instruction *CtxI) { 10665 // False conditions implies anything. Do not bother analyzing it further. 10666 if (FoundCondValue == 10667 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10668 return true; 10669 10670 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10671 return false; 10672 10673 auto ClearOnExit = 10674 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10675 10676 // Recursively handle And and Or conditions. 10677 const Value *Op0, *Op1; 10678 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10679 if (!Inverse) 10680 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10681 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10682 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10683 if (Inverse) 10684 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10685 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10686 } 10687 10688 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10689 if (!ICI) return false; 10690 10691 // Now that we found a conditional branch that dominates the loop or controls 10692 // the loop latch. Check to see if it is the comparison we are looking for. 10693 ICmpInst::Predicate FoundPred; 10694 if (Inverse) 10695 FoundPred = ICI->getInversePredicate(); 10696 else 10697 FoundPred = ICI->getPredicate(); 10698 10699 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10700 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10701 10702 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10703 } 10704 10705 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10706 const SCEV *RHS, 10707 ICmpInst::Predicate FoundPred, 10708 const SCEV *FoundLHS, const SCEV *FoundRHS, 10709 const Instruction *CtxI) { 10710 // Balance the types. 10711 if (getTypeSizeInBits(LHS->getType()) < 10712 getTypeSizeInBits(FoundLHS->getType())) { 10713 // For unsigned and equality predicates, try to prove that both found 10714 // operands fit into narrow unsigned range. If so, try to prove facts in 10715 // narrow types. 10716 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10717 auto *NarrowType = LHS->getType(); 10718 auto *WideType = FoundLHS->getType(); 10719 auto BitWidth = getTypeSizeInBits(NarrowType); 10720 const SCEV *MaxValue = getZeroExtendExpr( 10721 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10722 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 10723 MaxValue) && 10724 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 10725 MaxValue)) { 10726 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10727 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10728 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10729 TruncFoundRHS, CtxI)) 10730 return true; 10731 } 10732 } 10733 10734 if (LHS->getType()->isPointerTy()) 10735 return false; 10736 if (CmpInst::isSigned(Pred)) { 10737 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10738 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10739 } else { 10740 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10741 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10742 } 10743 } else if (getTypeSizeInBits(LHS->getType()) > 10744 getTypeSizeInBits(FoundLHS->getType())) { 10745 if (FoundLHS->getType()->isPointerTy()) 10746 return false; 10747 if (CmpInst::isSigned(FoundPred)) { 10748 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10749 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10750 } else { 10751 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10752 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10753 } 10754 } 10755 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10756 FoundRHS, CtxI); 10757 } 10758 10759 bool ScalarEvolution::isImpliedCondBalancedTypes( 10760 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10761 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10762 const Instruction *CtxI) { 10763 assert(getTypeSizeInBits(LHS->getType()) == 10764 getTypeSizeInBits(FoundLHS->getType()) && 10765 "Types should be balanced!"); 10766 // Canonicalize the query to match the way instcombine will have 10767 // canonicalized the comparison. 10768 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10769 if (LHS == RHS) 10770 return CmpInst::isTrueWhenEqual(Pred); 10771 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10772 if (FoundLHS == FoundRHS) 10773 return CmpInst::isFalseWhenEqual(FoundPred); 10774 10775 // Check to see if we can make the LHS or RHS match. 10776 if (LHS == FoundRHS || RHS == FoundLHS) { 10777 if (isa<SCEVConstant>(RHS)) { 10778 std::swap(FoundLHS, FoundRHS); 10779 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10780 } else { 10781 std::swap(LHS, RHS); 10782 Pred = ICmpInst::getSwappedPredicate(Pred); 10783 } 10784 } 10785 10786 // Check whether the found predicate is the same as the desired predicate. 10787 if (FoundPred == Pred) 10788 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10789 10790 // Check whether swapping the found predicate makes it the same as the 10791 // desired predicate. 10792 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10793 // We can write the implication 10794 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10795 // using one of the following ways: 10796 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10797 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10798 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10799 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10800 // Forms 1. and 2. require swapping the operands of one condition. Don't 10801 // do this if it would break canonical constant/addrec ordering. 10802 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10803 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10804 CtxI); 10805 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10806 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10807 10808 // There's no clear preference between forms 3. and 4., try both. Avoid 10809 // forming getNotSCEV of pointer values as the resulting subtract is 10810 // not legal. 10811 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10812 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10813 FoundLHS, FoundRHS, CtxI)) 10814 return true; 10815 10816 if (!FoundLHS->getType()->isPointerTy() && 10817 !FoundRHS->getType()->isPointerTy() && 10818 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10819 getNotSCEV(FoundRHS), CtxI)) 10820 return true; 10821 10822 return false; 10823 } 10824 10825 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10826 CmpInst::Predicate P2) { 10827 assert(P1 != P2 && "Handled earlier!"); 10828 return CmpInst::isRelational(P2) && 10829 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10830 }; 10831 if (IsSignFlippedPredicate(Pred, FoundPred)) { 10832 // Unsigned comparison is the same as signed comparison when both the 10833 // operands are non-negative or negative. 10834 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10835 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 10836 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10837 // Create local copies that we can freely swap and canonicalize our 10838 // conditions to "le/lt". 10839 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 10840 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 10841 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 10842 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 10843 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 10844 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 10845 std::swap(CanonicalLHS, CanonicalRHS); 10846 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 10847 } 10848 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 10849 "Must be!"); 10850 assert((ICmpInst::isLT(CanonicalFoundPred) || 10851 ICmpInst::isLE(CanonicalFoundPred)) && 10852 "Must be!"); 10853 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 10854 // Use implication: 10855 // x <u y && y >=s 0 --> x <s y. 10856 // If we can prove the left part, the right part is also proven. 10857 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10858 CanonicalRHS, CanonicalFoundLHS, 10859 CanonicalFoundRHS); 10860 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 10861 // Use implication: 10862 // x <s y && y <s 0 --> x <u y. 10863 // If we can prove the left part, the right part is also proven. 10864 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 10865 CanonicalRHS, CanonicalFoundLHS, 10866 CanonicalFoundRHS); 10867 } 10868 10869 // Check if we can make progress by sharpening ranges. 10870 if (FoundPred == ICmpInst::ICMP_NE && 10871 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10872 10873 const SCEVConstant *C = nullptr; 10874 const SCEV *V = nullptr; 10875 10876 if (isa<SCEVConstant>(FoundLHS)) { 10877 C = cast<SCEVConstant>(FoundLHS); 10878 V = FoundRHS; 10879 } else { 10880 C = cast<SCEVConstant>(FoundRHS); 10881 V = FoundLHS; 10882 } 10883 10884 // The guarding predicate tells us that C != V. If the known range 10885 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10886 // range we consider has to correspond to same signedness as the 10887 // predicate we're interested in folding. 10888 10889 APInt Min = ICmpInst::isSigned(Pred) ? 10890 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10891 10892 if (Min == C->getAPInt()) { 10893 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10894 // This is true even if (Min + 1) wraps around -- in case of 10895 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10896 10897 APInt SharperMin = Min + 1; 10898 10899 switch (Pred) { 10900 case ICmpInst::ICMP_SGE: 10901 case ICmpInst::ICMP_UGE: 10902 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10903 // RHS, we're done. 10904 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10905 CtxI)) 10906 return true; 10907 LLVM_FALLTHROUGH; 10908 10909 case ICmpInst::ICMP_SGT: 10910 case ICmpInst::ICMP_UGT: 10911 // We know from the range information that (V `Pred` Min || 10912 // V == Min). We know from the guarding condition that !(V 10913 // == Min). This gives us 10914 // 10915 // V `Pred` Min || V == Min && !(V == Min) 10916 // => V `Pred` Min 10917 // 10918 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10919 10920 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10921 return true; 10922 break; 10923 10924 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10925 case ICmpInst::ICMP_SLE: 10926 case ICmpInst::ICMP_ULE: 10927 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10928 LHS, V, getConstant(SharperMin), CtxI)) 10929 return true; 10930 LLVM_FALLTHROUGH; 10931 10932 case ICmpInst::ICMP_SLT: 10933 case ICmpInst::ICMP_ULT: 10934 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10935 LHS, V, getConstant(Min), CtxI)) 10936 return true; 10937 break; 10938 10939 default: 10940 // No change 10941 break; 10942 } 10943 } 10944 } 10945 10946 // Check whether the actual condition is beyond sufficient. 10947 if (FoundPred == ICmpInst::ICMP_EQ) 10948 if (ICmpInst::isTrueWhenEqual(Pred)) 10949 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10950 return true; 10951 if (Pred == ICmpInst::ICMP_NE) 10952 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10953 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10954 return true; 10955 10956 // Otherwise assume the worst. 10957 return false; 10958 } 10959 10960 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10961 const SCEV *&L, const SCEV *&R, 10962 SCEV::NoWrapFlags &Flags) { 10963 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10964 if (!AE || AE->getNumOperands() != 2) 10965 return false; 10966 10967 L = AE->getOperand(0); 10968 R = AE->getOperand(1); 10969 Flags = AE->getNoWrapFlags(); 10970 return true; 10971 } 10972 10973 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10974 const SCEV *Less) { 10975 // We avoid subtracting expressions here because this function is usually 10976 // fairly deep in the call stack (i.e. is called many times). 10977 10978 // X - X = 0. 10979 if (More == Less) 10980 return APInt(getTypeSizeInBits(More->getType()), 0); 10981 10982 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10983 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10984 const auto *MAR = cast<SCEVAddRecExpr>(More); 10985 10986 if (LAR->getLoop() != MAR->getLoop()) 10987 return None; 10988 10989 // We look at affine expressions only; not for correctness but to keep 10990 // getStepRecurrence cheap. 10991 if (!LAR->isAffine() || !MAR->isAffine()) 10992 return None; 10993 10994 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10995 return None; 10996 10997 Less = LAR->getStart(); 10998 More = MAR->getStart(); 10999 11000 // fall through 11001 } 11002 11003 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11004 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11005 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11006 return M - L; 11007 } 11008 11009 SCEV::NoWrapFlags Flags; 11010 const SCEV *LLess = nullptr, *RLess = nullptr; 11011 const SCEV *LMore = nullptr, *RMore = nullptr; 11012 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11013 // Compare (X + C1) vs X. 11014 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11015 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11016 if (RLess == More) 11017 return -(C1->getAPInt()); 11018 11019 // Compare X vs (X + C2). 11020 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11021 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11022 if (RMore == Less) 11023 return C2->getAPInt(); 11024 11025 // Compare (X + C1) vs (X + C2). 11026 if (C1 && C2 && RLess == RMore) 11027 return C2->getAPInt() - C1->getAPInt(); 11028 11029 return None; 11030 } 11031 11032 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11033 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11034 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11035 // Try to recognize the following pattern: 11036 // 11037 // FoundRHS = ... 11038 // ... 11039 // loop: 11040 // FoundLHS = {Start,+,W} 11041 // context_bb: // Basic block from the same loop 11042 // known(Pred, FoundLHS, FoundRHS) 11043 // 11044 // If some predicate is known in the context of a loop, it is also known on 11045 // each iteration of this loop, including the first iteration. Therefore, in 11046 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11047 // prove the original pred using this fact. 11048 if (!CtxI) 11049 return false; 11050 const BasicBlock *ContextBB = CtxI->getParent(); 11051 // Make sure AR varies in the context block. 11052 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11053 const Loop *L = AR->getLoop(); 11054 // Make sure that context belongs to the loop and executes on 1st iteration 11055 // (if it ever executes at all). 11056 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11057 return false; 11058 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11059 return false; 11060 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11061 } 11062 11063 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11064 const Loop *L = AR->getLoop(); 11065 // Make sure that context belongs to the loop and executes on 1st iteration 11066 // (if it ever executes at all). 11067 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11068 return false; 11069 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11070 return false; 11071 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11072 } 11073 11074 return false; 11075 } 11076 11077 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11078 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11079 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11080 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11081 return false; 11082 11083 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11084 if (!AddRecLHS) 11085 return false; 11086 11087 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11088 if (!AddRecFoundLHS) 11089 return false; 11090 11091 // We'd like to let SCEV reason about control dependencies, so we constrain 11092 // both the inequalities to be about add recurrences on the same loop. This 11093 // way we can use isLoopEntryGuardedByCond later. 11094 11095 const Loop *L = AddRecFoundLHS->getLoop(); 11096 if (L != AddRecLHS->getLoop()) 11097 return false; 11098 11099 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11100 // 11101 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11102 // ... (2) 11103 // 11104 // Informal proof for (2), assuming (1) [*]: 11105 // 11106 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11107 // 11108 // Then 11109 // 11110 // FoundLHS s< FoundRHS s< INT_MIN - C 11111 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11112 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11113 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11114 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11115 // <=> FoundLHS + C s< FoundRHS + C 11116 // 11117 // [*]: (1) can be proved by ruling out overflow. 11118 // 11119 // [**]: This can be proved by analyzing all the four possibilities: 11120 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11121 // (A s>= 0, B s>= 0). 11122 // 11123 // Note: 11124 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11125 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11126 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11127 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11128 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11129 // C)". 11130 11131 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11132 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11133 if (!LDiff || !RDiff || *LDiff != *RDiff) 11134 return false; 11135 11136 if (LDiff->isMinValue()) 11137 return true; 11138 11139 APInt FoundRHSLimit; 11140 11141 if (Pred == CmpInst::ICMP_ULT) { 11142 FoundRHSLimit = -(*RDiff); 11143 } else { 11144 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11145 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11146 } 11147 11148 // Try to prove (1) or (2), as needed. 11149 return isAvailableAtLoopEntry(FoundRHS, L) && 11150 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11151 getConstant(FoundRHSLimit)); 11152 } 11153 11154 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11155 const SCEV *LHS, const SCEV *RHS, 11156 const SCEV *FoundLHS, 11157 const SCEV *FoundRHS, unsigned Depth) { 11158 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11159 11160 auto ClearOnExit = make_scope_exit([&]() { 11161 if (LPhi) { 11162 bool Erased = PendingMerges.erase(LPhi); 11163 assert(Erased && "Failed to erase LPhi!"); 11164 (void)Erased; 11165 } 11166 if (RPhi) { 11167 bool Erased = PendingMerges.erase(RPhi); 11168 assert(Erased && "Failed to erase RPhi!"); 11169 (void)Erased; 11170 } 11171 }); 11172 11173 // Find respective Phis and check that they are not being pending. 11174 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11175 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11176 if (!PendingMerges.insert(Phi).second) 11177 return false; 11178 LPhi = Phi; 11179 } 11180 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11181 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11182 // If we detect a loop of Phi nodes being processed by this method, for 11183 // example: 11184 // 11185 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11186 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11187 // 11188 // we don't want to deal with a case that complex, so return conservative 11189 // answer false. 11190 if (!PendingMerges.insert(Phi).second) 11191 return false; 11192 RPhi = Phi; 11193 } 11194 11195 // If none of LHS, RHS is a Phi, nothing to do here. 11196 if (!LPhi && !RPhi) 11197 return false; 11198 11199 // If there is a SCEVUnknown Phi we are interested in, make it left. 11200 if (!LPhi) { 11201 std::swap(LHS, RHS); 11202 std::swap(FoundLHS, FoundRHS); 11203 std::swap(LPhi, RPhi); 11204 Pred = ICmpInst::getSwappedPredicate(Pred); 11205 } 11206 11207 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11208 const BasicBlock *LBB = LPhi->getParent(); 11209 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11210 11211 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11212 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11213 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11214 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11215 }; 11216 11217 if (RPhi && RPhi->getParent() == LBB) { 11218 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11219 // If we compare two Phis from the same block, and for each entry block 11220 // the predicate is true for incoming values from this block, then the 11221 // predicate is also true for the Phis. 11222 for (const BasicBlock *IncBB : predecessors(LBB)) { 11223 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11224 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11225 if (!ProvedEasily(L, R)) 11226 return false; 11227 } 11228 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11229 // Case two: RHS is also a Phi from the same basic block, and it is an 11230 // AddRec. It means that there is a loop which has both AddRec and Unknown 11231 // PHIs, for it we can compare incoming values of AddRec from above the loop 11232 // and latch with their respective incoming values of LPhi. 11233 // TODO: Generalize to handle loops with many inputs in a header. 11234 if (LPhi->getNumIncomingValues() != 2) return false; 11235 11236 auto *RLoop = RAR->getLoop(); 11237 auto *Predecessor = RLoop->getLoopPredecessor(); 11238 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11239 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11240 if (!ProvedEasily(L1, RAR->getStart())) 11241 return false; 11242 auto *Latch = RLoop->getLoopLatch(); 11243 assert(Latch && "Loop with AddRec with no latch?"); 11244 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11245 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11246 return false; 11247 } else { 11248 // In all other cases go over inputs of LHS and compare each of them to RHS, 11249 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11250 // At this point RHS is either a non-Phi, or it is a Phi from some block 11251 // different from LBB. 11252 for (const BasicBlock *IncBB : predecessors(LBB)) { 11253 // Check that RHS is available in this block. 11254 if (!dominates(RHS, IncBB)) 11255 return false; 11256 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11257 // Make sure L does not refer to a value from a potentially previous 11258 // iteration of a loop. 11259 if (!properlyDominates(L, IncBB)) 11260 return false; 11261 if (!ProvedEasily(L, RHS)) 11262 return false; 11263 } 11264 } 11265 return true; 11266 } 11267 11268 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11269 const SCEV *LHS, const SCEV *RHS, 11270 const SCEV *FoundLHS, 11271 const SCEV *FoundRHS, 11272 const Instruction *CtxI) { 11273 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11274 return true; 11275 11276 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11277 return true; 11278 11279 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11280 CtxI)) 11281 return true; 11282 11283 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11284 FoundLHS, FoundRHS); 11285 } 11286 11287 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11288 template <typename MinMaxExprType> 11289 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11290 const SCEV *Candidate) { 11291 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11292 if (!MinMaxExpr) 11293 return false; 11294 11295 return is_contained(MinMaxExpr->operands(), Candidate); 11296 } 11297 11298 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11299 ICmpInst::Predicate Pred, 11300 const SCEV *LHS, const SCEV *RHS) { 11301 // If both sides are affine addrecs for the same loop, with equal 11302 // steps, and we know the recurrences don't wrap, then we only 11303 // need to check the predicate on the starting values. 11304 11305 if (!ICmpInst::isRelational(Pred)) 11306 return false; 11307 11308 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11309 if (!LAR) 11310 return false; 11311 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11312 if (!RAR) 11313 return false; 11314 if (LAR->getLoop() != RAR->getLoop()) 11315 return false; 11316 if (!LAR->isAffine() || !RAR->isAffine()) 11317 return false; 11318 11319 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11320 return false; 11321 11322 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11323 SCEV::FlagNSW : SCEV::FlagNUW; 11324 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11325 return false; 11326 11327 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11328 } 11329 11330 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11331 /// expression? 11332 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11333 ICmpInst::Predicate Pred, 11334 const SCEV *LHS, const SCEV *RHS) { 11335 switch (Pred) { 11336 default: 11337 return false; 11338 11339 case ICmpInst::ICMP_SGE: 11340 std::swap(LHS, RHS); 11341 LLVM_FALLTHROUGH; 11342 case ICmpInst::ICMP_SLE: 11343 return 11344 // min(A, ...) <= A 11345 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11346 // A <= max(A, ...) 11347 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11348 11349 case ICmpInst::ICMP_UGE: 11350 std::swap(LHS, RHS); 11351 LLVM_FALLTHROUGH; 11352 case ICmpInst::ICMP_ULE: 11353 return 11354 // min(A, ...) <= A 11355 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11356 // A <= max(A, ...) 11357 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11358 } 11359 11360 llvm_unreachable("covered switch fell through?!"); 11361 } 11362 11363 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11364 const SCEV *LHS, const SCEV *RHS, 11365 const SCEV *FoundLHS, 11366 const SCEV *FoundRHS, 11367 unsigned Depth) { 11368 assert(getTypeSizeInBits(LHS->getType()) == 11369 getTypeSizeInBits(RHS->getType()) && 11370 "LHS and RHS have different sizes?"); 11371 assert(getTypeSizeInBits(FoundLHS->getType()) == 11372 getTypeSizeInBits(FoundRHS->getType()) && 11373 "FoundLHS and FoundRHS have different sizes?"); 11374 // We want to avoid hurting the compile time with analysis of too big trees. 11375 if (Depth > MaxSCEVOperationsImplicationDepth) 11376 return false; 11377 11378 // We only want to work with GT comparison so far. 11379 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11380 Pred = CmpInst::getSwappedPredicate(Pred); 11381 std::swap(LHS, RHS); 11382 std::swap(FoundLHS, FoundRHS); 11383 } 11384 11385 // For unsigned, try to reduce it to corresponding signed comparison. 11386 if (Pred == ICmpInst::ICMP_UGT) 11387 // We can replace unsigned predicate with its signed counterpart if all 11388 // involved values are non-negative. 11389 // TODO: We could have better support for unsigned. 11390 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11391 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11392 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11393 // use this fact to prove that LHS and RHS are non-negative. 11394 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11395 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11396 FoundRHS) && 11397 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11398 FoundRHS)) 11399 Pred = ICmpInst::ICMP_SGT; 11400 } 11401 11402 if (Pred != ICmpInst::ICMP_SGT) 11403 return false; 11404 11405 auto GetOpFromSExt = [&](const SCEV *S) { 11406 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11407 return Ext->getOperand(); 11408 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11409 // the constant in some cases. 11410 return S; 11411 }; 11412 11413 // Acquire values from extensions. 11414 auto *OrigLHS = LHS; 11415 auto *OrigFoundLHS = FoundLHS; 11416 LHS = GetOpFromSExt(LHS); 11417 FoundLHS = GetOpFromSExt(FoundLHS); 11418 11419 // Is the SGT predicate can be proved trivially or using the found context. 11420 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11421 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11422 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11423 FoundRHS, Depth + 1); 11424 }; 11425 11426 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11427 // We want to avoid creation of any new non-constant SCEV. Since we are 11428 // going to compare the operands to RHS, we should be certain that we don't 11429 // need any size extensions for this. So let's decline all cases when the 11430 // sizes of types of LHS and RHS do not match. 11431 // TODO: Maybe try to get RHS from sext to catch more cases? 11432 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11433 return false; 11434 11435 // Should not overflow. 11436 if (!LHSAddExpr->hasNoSignedWrap()) 11437 return false; 11438 11439 auto *LL = LHSAddExpr->getOperand(0); 11440 auto *LR = LHSAddExpr->getOperand(1); 11441 auto *MinusOne = getMinusOne(RHS->getType()); 11442 11443 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11444 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11445 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11446 }; 11447 // Try to prove the following rule: 11448 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11449 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11450 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11451 return true; 11452 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11453 Value *LL, *LR; 11454 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11455 11456 using namespace llvm::PatternMatch; 11457 11458 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11459 // Rules for division. 11460 // We are going to perform some comparisons with Denominator and its 11461 // derivative expressions. In general case, creating a SCEV for it may 11462 // lead to a complex analysis of the entire graph, and in particular it 11463 // can request trip count recalculation for the same loop. This would 11464 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11465 // this, we only want to create SCEVs that are constants in this section. 11466 // So we bail if Denominator is not a constant. 11467 if (!isa<ConstantInt>(LR)) 11468 return false; 11469 11470 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11471 11472 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11473 // then a SCEV for the numerator already exists and matches with FoundLHS. 11474 auto *Numerator = getExistingSCEV(LL); 11475 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11476 return false; 11477 11478 // Make sure that the numerator matches with FoundLHS and the denominator 11479 // is positive. 11480 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11481 return false; 11482 11483 auto *DTy = Denominator->getType(); 11484 auto *FRHSTy = FoundRHS->getType(); 11485 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11486 // One of types is a pointer and another one is not. We cannot extend 11487 // them properly to a wider type, so let us just reject this case. 11488 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11489 // to avoid this check. 11490 return false; 11491 11492 // Given that: 11493 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11494 auto *WTy = getWiderType(DTy, FRHSTy); 11495 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11496 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11497 11498 // Try to prove the following rule: 11499 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11500 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11501 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11502 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11503 if (isKnownNonPositive(RHS) && 11504 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11505 return true; 11506 11507 // Try to prove the following rule: 11508 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11509 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11510 // If we divide it by Denominator > 2, then: 11511 // 1. If FoundLHS is negative, then the result is 0. 11512 // 2. If FoundLHS is non-negative, then the result is non-negative. 11513 // Anyways, the result is non-negative. 11514 auto *MinusOne = getMinusOne(WTy); 11515 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11516 if (isKnownNegative(RHS) && 11517 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11518 return true; 11519 } 11520 } 11521 11522 // If our expression contained SCEVUnknown Phis, and we split it down and now 11523 // need to prove something for them, try to prove the predicate for every 11524 // possible incoming values of those Phis. 11525 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11526 return true; 11527 11528 return false; 11529 } 11530 11531 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11532 const SCEV *LHS, const SCEV *RHS) { 11533 // zext x u<= sext x, sext x s<= zext x 11534 switch (Pred) { 11535 case ICmpInst::ICMP_SGE: 11536 std::swap(LHS, RHS); 11537 LLVM_FALLTHROUGH; 11538 case ICmpInst::ICMP_SLE: { 11539 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11540 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11541 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11542 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11543 return true; 11544 break; 11545 } 11546 case ICmpInst::ICMP_UGE: 11547 std::swap(LHS, RHS); 11548 LLVM_FALLTHROUGH; 11549 case ICmpInst::ICMP_ULE: { 11550 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11551 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11552 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11553 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11554 return true; 11555 break; 11556 } 11557 default: 11558 break; 11559 }; 11560 return false; 11561 } 11562 11563 bool 11564 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11565 const SCEV *LHS, const SCEV *RHS) { 11566 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11567 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11568 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11569 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11570 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11571 } 11572 11573 bool 11574 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11575 const SCEV *LHS, const SCEV *RHS, 11576 const SCEV *FoundLHS, 11577 const SCEV *FoundRHS) { 11578 switch (Pred) { 11579 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11580 case ICmpInst::ICMP_EQ: 11581 case ICmpInst::ICMP_NE: 11582 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11583 return true; 11584 break; 11585 case ICmpInst::ICMP_SLT: 11586 case ICmpInst::ICMP_SLE: 11587 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11588 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11589 return true; 11590 break; 11591 case ICmpInst::ICMP_SGT: 11592 case ICmpInst::ICMP_SGE: 11593 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11594 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11595 return true; 11596 break; 11597 case ICmpInst::ICMP_ULT: 11598 case ICmpInst::ICMP_ULE: 11599 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11600 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11601 return true; 11602 break; 11603 case ICmpInst::ICMP_UGT: 11604 case ICmpInst::ICMP_UGE: 11605 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11606 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11607 return true; 11608 break; 11609 } 11610 11611 // Maybe it can be proved via operations? 11612 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11613 return true; 11614 11615 return false; 11616 } 11617 11618 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11619 const SCEV *LHS, 11620 const SCEV *RHS, 11621 const SCEV *FoundLHS, 11622 const SCEV *FoundRHS) { 11623 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11624 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11625 // reduce the compile time impact of this optimization. 11626 return false; 11627 11628 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11629 if (!Addend) 11630 return false; 11631 11632 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11633 11634 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11635 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11636 ConstantRange FoundLHSRange = 11637 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11638 11639 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11640 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11641 11642 // We can also compute the range of values for `LHS` that satisfy the 11643 // consequent, "`LHS` `Pred` `RHS`": 11644 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11645 // The antecedent implies the consequent if every value of `LHS` that 11646 // satisfies the antecedent also satisfies the consequent. 11647 return LHSRange.icmp(Pred, ConstRHS); 11648 } 11649 11650 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11651 bool IsSigned) { 11652 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11653 11654 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11655 const SCEV *One = getOne(Stride->getType()); 11656 11657 if (IsSigned) { 11658 APInt MaxRHS = getSignedRangeMax(RHS); 11659 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11660 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11661 11662 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11663 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11664 } 11665 11666 APInt MaxRHS = getUnsignedRangeMax(RHS); 11667 APInt MaxValue = APInt::getMaxValue(BitWidth); 11668 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11669 11670 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11671 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11672 } 11673 11674 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11675 bool IsSigned) { 11676 11677 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11678 const SCEV *One = getOne(Stride->getType()); 11679 11680 if (IsSigned) { 11681 APInt MinRHS = getSignedRangeMin(RHS); 11682 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11683 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11684 11685 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11686 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11687 } 11688 11689 APInt MinRHS = getUnsignedRangeMin(RHS); 11690 APInt MinValue = APInt::getMinValue(BitWidth); 11691 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11692 11693 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11694 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11695 } 11696 11697 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11698 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11699 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11700 // expression fixes the case of N=0. 11701 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11702 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11703 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11704 } 11705 11706 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11707 const SCEV *Stride, 11708 const SCEV *End, 11709 unsigned BitWidth, 11710 bool IsSigned) { 11711 // The logic in this function assumes we can represent a positive stride. 11712 // If we can't, the backedge-taken count must be zero. 11713 if (IsSigned && BitWidth == 1) 11714 return getZero(Stride->getType()); 11715 11716 // This code has only been closely audited for negative strides in the 11717 // unsigned comparison case, it may be correct for signed comparison, but 11718 // that needs to be established. 11719 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11720 "Stride is expected strictly positive for signed case!"); 11721 11722 // Calculate the maximum backedge count based on the range of values 11723 // permitted by Start, End, and Stride. 11724 APInt MinStart = 11725 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11726 11727 APInt MinStride = 11728 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11729 11730 // We assume either the stride is positive, or the backedge-taken count 11731 // is zero. So force StrideForMaxBECount to be at least one. 11732 APInt One(BitWidth, 1); 11733 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11734 : APIntOps::umax(One, MinStride); 11735 11736 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11737 : APInt::getMaxValue(BitWidth); 11738 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11739 11740 // Although End can be a MAX expression we estimate MaxEnd considering only 11741 // the case End = RHS of the loop termination condition. This is safe because 11742 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11743 // taken count. 11744 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11745 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11746 11747 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11748 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11749 : APIntOps::umax(MaxEnd, MinStart); 11750 11751 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11752 getConstant(StrideForMaxBECount) /* Step */); 11753 } 11754 11755 ScalarEvolution::ExitLimit 11756 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11757 const Loop *L, bool IsSigned, 11758 bool ControlsExit, bool AllowPredicates) { 11759 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11760 11761 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11762 bool PredicatedIV = false; 11763 11764 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11765 // Can we prove this loop *must* be UB if overflow of IV occurs? 11766 // Reasoning goes as follows: 11767 // * Suppose the IV did self wrap. 11768 // * If Stride evenly divides the iteration space, then once wrap 11769 // occurs, the loop must revisit the same values. 11770 // * We know that RHS is invariant, and that none of those values 11771 // caused this exit to be taken previously. Thus, this exit is 11772 // dynamically dead. 11773 // * If this is the sole exit, then a dead exit implies the loop 11774 // must be infinite if there are no abnormal exits. 11775 // * If the loop were infinite, then it must either not be mustprogress 11776 // or have side effects. Otherwise, it must be UB. 11777 // * It can't (by assumption), be UB so we have contradicted our 11778 // premise and can conclude the IV did not in fact self-wrap. 11779 if (!isLoopInvariant(RHS, L)) 11780 return false; 11781 11782 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11783 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11784 return false; 11785 11786 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11787 return false; 11788 11789 return loopIsFiniteByAssumption(L); 11790 }; 11791 11792 if (!IV) { 11793 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11794 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11795 if (AR && AR->getLoop() == L && AR->isAffine()) { 11796 auto Flags = AR->getNoWrapFlags(); 11797 if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) { 11798 Flags = setFlags(Flags, SCEV::FlagNW); 11799 11800 SmallVector<const SCEV*> Operands{AR->operands()}; 11801 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 11802 } 11803 11804 auto canProveNUW = [&]() { 11805 if (!isLoopInvariant(RHS, L)) 11806 return false; 11807 11808 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 11809 // We need the sequence defined by AR to strictly increase in the 11810 // unsigned integer domain for the logic below to hold. 11811 return false; 11812 11813 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 11814 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 11815 // If RHS <=u Limit, then there must exist a value V in the sequence 11816 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 11817 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 11818 // overflow occurs. This limit also implies that a signed comparison 11819 // (in the wide bitwidth) is equivalent to an unsigned comparison as 11820 // the high bits on both sides must be zero. 11821 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 11822 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 11823 Limit = Limit.zext(OuterBitWidth); 11824 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 11825 }; 11826 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 11827 Flags = setFlags(Flags, SCEV::FlagNUW); 11828 11829 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11830 if (AR->hasNoUnsignedWrap()) { 11831 // Emulate what getZeroExtendExpr would have done during construction 11832 // if we'd been able to infer the fact just above at that time. 11833 const SCEV *Step = AR->getStepRecurrence(*this); 11834 Type *Ty = ZExt->getType(); 11835 auto *S = getAddRecExpr( 11836 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11837 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11838 IV = dyn_cast<SCEVAddRecExpr>(S); 11839 } 11840 } 11841 } 11842 } 11843 11844 11845 if (!IV && AllowPredicates) { 11846 // Try to make this an AddRec using runtime tests, in the first X 11847 // iterations of this loop, where X is the SCEV expression found by the 11848 // algorithm below. 11849 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11850 PredicatedIV = true; 11851 } 11852 11853 // Avoid weird loops 11854 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11855 return getCouldNotCompute(); 11856 11857 // A precondition of this method is that the condition being analyzed 11858 // reaches an exiting branch which dominates the latch. Given that, we can 11859 // assume that an increment which violates the nowrap specification and 11860 // produces poison must cause undefined behavior when the resulting poison 11861 // value is branched upon and thus we can conclude that the backedge is 11862 // taken no more often than would be required to produce that poison value. 11863 // Note that a well defined loop can exit on the iteration which violates 11864 // the nowrap specification if there is another exit (either explicit or 11865 // implicit/exceptional) which causes the loop to execute before the 11866 // exiting instruction we're analyzing would trigger UB. 11867 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11868 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11869 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11870 11871 const SCEV *Stride = IV->getStepRecurrence(*this); 11872 11873 bool PositiveStride = isKnownPositive(Stride); 11874 11875 // Avoid negative or zero stride values. 11876 if (!PositiveStride) { 11877 // We can compute the correct backedge taken count for loops with unknown 11878 // strides if we can prove that the loop is not an infinite loop with side 11879 // effects. Here's the loop structure we are trying to handle - 11880 // 11881 // i = start 11882 // do { 11883 // A[i] = i; 11884 // i += s; 11885 // } while (i < end); 11886 // 11887 // The backedge taken count for such loops is evaluated as - 11888 // (max(end, start + stride) - start - 1) /u stride 11889 // 11890 // The additional preconditions that we need to check to prove correctness 11891 // of the above formula is as follows - 11892 // 11893 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11894 // NoWrap flag). 11895 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11896 // no side effects within the loop) 11897 // c) loop has a single static exit (with no abnormal exits) 11898 // 11899 // Precondition a) implies that if the stride is negative, this is a single 11900 // trip loop. The backedge taken count formula reduces to zero in this case. 11901 // 11902 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11903 // then a zero stride means the backedge can't be taken without executing 11904 // undefined behavior. 11905 // 11906 // The positive stride case is the same as isKnownPositive(Stride) returning 11907 // true (original behavior of the function). 11908 // 11909 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11910 !loopHasNoAbnormalExits(L)) 11911 return getCouldNotCompute(); 11912 11913 // This bailout is protecting the logic in computeMaxBECountForLT which 11914 // has not yet been sufficiently auditted or tested with negative strides. 11915 // We used to filter out all known-non-positive cases here, we're in the 11916 // process of being less restrictive bit by bit. 11917 if (IsSigned && isKnownNonPositive(Stride)) 11918 return getCouldNotCompute(); 11919 11920 if (!isKnownNonZero(Stride)) { 11921 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11922 // if it might eventually be greater than start and if so, on which 11923 // iteration. We can't even produce a useful upper bound. 11924 if (!isLoopInvariant(RHS, L)) 11925 return getCouldNotCompute(); 11926 11927 // We allow a potentially zero stride, but we need to divide by stride 11928 // below. Since the loop can't be infinite and this check must control 11929 // the sole exit, we can infer the exit must be taken on the first 11930 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11931 // we know the numerator in the divides below must be zero, so we can 11932 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11933 // and produce the right result. 11934 // FIXME: Handle the case where Stride is poison? 11935 auto wouldZeroStrideBeUB = [&]() { 11936 // Proof by contradiction. Suppose the stride were zero. If we can 11937 // prove that the backedge *is* taken on the first iteration, then since 11938 // we know this condition controls the sole exit, we must have an 11939 // infinite loop. We can't have a (well defined) infinite loop per 11940 // check just above. 11941 // Note: The (Start - Stride) term is used to get the start' term from 11942 // (start' + stride,+,stride). Remember that we only care about the 11943 // result of this expression when stride == 0 at runtime. 11944 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11945 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11946 }; 11947 if (!wouldZeroStrideBeUB()) { 11948 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11949 } 11950 } 11951 } else if (!Stride->isOne() && !NoWrap) { 11952 auto isUBOnWrap = [&]() { 11953 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11954 // follows trivially from the fact that every (un)signed-wrapped, but 11955 // not self-wrapped value must be LT than the last value before 11956 // (un)signed wrap. Since we know that last value didn't exit, nor 11957 // will any smaller one. 11958 return canAssumeNoSelfWrap(IV); 11959 }; 11960 11961 // Avoid proven overflow cases: this will ensure that the backedge taken 11962 // count will not generate any unsigned overflow. Relaxed no-overflow 11963 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11964 // undefined behaviors like the case of C language. 11965 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11966 return getCouldNotCompute(); 11967 } 11968 11969 // On all paths just preceeding, we established the following invariant: 11970 // IV can be assumed not to overflow up to and including the exiting 11971 // iteration. We proved this in one of two ways: 11972 // 1) We can show overflow doesn't occur before the exiting iteration 11973 // 1a) canIVOverflowOnLT, and b) step of one 11974 // 2) We can show that if overflow occurs, the loop must execute UB 11975 // before any possible exit. 11976 // Note that we have not yet proved RHS invariant (in general). 11977 11978 const SCEV *Start = IV->getStart(); 11979 11980 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11981 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 11982 // Use integer-typed versions for actual computation; we can't subtract 11983 // pointers in general. 11984 const SCEV *OrigStart = Start; 11985 const SCEV *OrigRHS = RHS; 11986 if (Start->getType()->isPointerTy()) { 11987 Start = getLosslessPtrToIntExpr(Start); 11988 if (isa<SCEVCouldNotCompute>(Start)) 11989 return Start; 11990 } 11991 if (RHS->getType()->isPointerTy()) { 11992 RHS = getLosslessPtrToIntExpr(RHS); 11993 if (isa<SCEVCouldNotCompute>(RHS)) 11994 return RHS; 11995 } 11996 11997 // When the RHS is not invariant, we do not know the end bound of the loop and 11998 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11999 // calculate the MaxBECount, given the start, stride and max value for the end 12000 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12001 // checked above). 12002 if (!isLoopInvariant(RHS, L)) { 12003 const SCEV *MaxBECount = computeMaxBECountForLT( 12004 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12005 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12006 false /*MaxOrZero*/, Predicates); 12007 } 12008 12009 // We use the expression (max(End,Start)-Start)/Stride to describe the 12010 // backedge count, as if the backedge is taken at least once max(End,Start) 12011 // is End and so the result is as above, and if not max(End,Start) is Start 12012 // so we get a backedge count of zero. 12013 const SCEV *BECount = nullptr; 12014 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12015 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12016 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12017 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12018 // Can we prove (max(RHS,Start) > Start - Stride? 12019 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12020 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12021 // In this case, we can use a refined formula for computing backedge taken 12022 // count. The general formula remains: 12023 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12024 // We want to use the alternate formula: 12025 // "((End - 1) - (Start - Stride)) /u Stride" 12026 // Let's do a quick case analysis to show these are equivalent under 12027 // our precondition that max(RHS,Start) > Start - Stride. 12028 // * For RHS <= Start, the backedge-taken count must be zero. 12029 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12030 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12031 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12032 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12033 // this to the stride of 1 case. 12034 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12035 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12036 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12037 // "((RHS - (Start - Stride) - 1) /u Stride". 12038 // Our preconditions trivially imply no overflow in that form. 12039 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12040 const SCEV *Numerator = 12041 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12042 BECount = getUDivExpr(Numerator, Stride); 12043 } 12044 12045 const SCEV *BECountIfBackedgeTaken = nullptr; 12046 if (!BECount) { 12047 auto canProveRHSGreaterThanEqualStart = [&]() { 12048 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12049 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12050 return true; 12051 12052 // (RHS > Start - 1) implies RHS >= Start. 12053 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12054 // "Start - 1" doesn't overflow. 12055 // * For signed comparison, if Start - 1 does overflow, it's equal 12056 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12057 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12058 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12059 // 12060 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12061 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12062 auto *StartMinusOne = getAddExpr(OrigStart, 12063 getMinusOne(OrigStart->getType())); 12064 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12065 }; 12066 12067 // If we know that RHS >= Start in the context of loop, then we know that 12068 // max(RHS, Start) = RHS at this point. 12069 const SCEV *End; 12070 if (canProveRHSGreaterThanEqualStart()) { 12071 End = RHS; 12072 } else { 12073 // If RHS < Start, the backedge will be taken zero times. So in 12074 // general, we can write the backedge-taken count as: 12075 // 12076 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12077 // 12078 // We convert it to the following to make it more convenient for SCEV: 12079 // 12080 // ceil(max(RHS, Start) - Start) / Stride 12081 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12082 12083 // See what would happen if we assume the backedge is taken. This is 12084 // used to compute MaxBECount. 12085 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12086 } 12087 12088 // At this point, we know: 12089 // 12090 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12091 // 2. The index variable doesn't overflow. 12092 // 12093 // Therefore, we know N exists such that 12094 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12095 // doesn't overflow. 12096 // 12097 // Using this information, try to prove whether the addition in 12098 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12099 const SCEV *One = getOne(Stride->getType()); 12100 bool MayAddOverflow = [&] { 12101 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12102 if (StrideC->getAPInt().isPowerOf2()) { 12103 // Suppose Stride is a power of two, and Start/End are unsigned 12104 // integers. Let UMAX be the largest representable unsigned 12105 // integer. 12106 // 12107 // By the preconditions of this function, we know 12108 // "(Start + Stride * N) >= End", and this doesn't overflow. 12109 // As a formula: 12110 // 12111 // End <= (Start + Stride * N) <= UMAX 12112 // 12113 // Subtracting Start from all the terms: 12114 // 12115 // End - Start <= Stride * N <= UMAX - Start 12116 // 12117 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12118 // 12119 // End - Start <= Stride * N <= UMAX 12120 // 12121 // Stride * N is a multiple of Stride. Therefore, 12122 // 12123 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12124 // 12125 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12126 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12127 // 12128 // End - Start <= Stride * N <= UMAX - Stride - 1 12129 // 12130 // Dropping the middle term: 12131 // 12132 // End - Start <= UMAX - Stride - 1 12133 // 12134 // Adding Stride - 1 to both sides: 12135 // 12136 // (End - Start) + (Stride - 1) <= UMAX 12137 // 12138 // In other words, the addition doesn't have unsigned overflow. 12139 // 12140 // A similar proof works if we treat Start/End as signed values. 12141 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12142 // use signed max instead of unsigned max. Note that we're trying 12143 // to prove a lack of unsigned overflow in either case. 12144 return false; 12145 } 12146 } 12147 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12148 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12149 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12150 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12151 // 12152 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12153 return false; 12154 } 12155 return true; 12156 }(); 12157 12158 const SCEV *Delta = getMinusSCEV(End, Start); 12159 if (!MayAddOverflow) { 12160 // floor((D + (S - 1)) / S) 12161 // We prefer this formulation if it's legal because it's fewer operations. 12162 BECount = 12163 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12164 } else { 12165 BECount = getUDivCeilSCEV(Delta, Stride); 12166 } 12167 } 12168 12169 const SCEV *MaxBECount; 12170 bool MaxOrZero = false; 12171 if (isa<SCEVConstant>(BECount)) { 12172 MaxBECount = BECount; 12173 } else if (BECountIfBackedgeTaken && 12174 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12175 // If we know exactly how many times the backedge will be taken if it's 12176 // taken at least once, then the backedge count will either be that or 12177 // zero. 12178 MaxBECount = BECountIfBackedgeTaken; 12179 MaxOrZero = true; 12180 } else { 12181 MaxBECount = computeMaxBECountForLT( 12182 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12183 } 12184 12185 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12186 !isa<SCEVCouldNotCompute>(BECount)) 12187 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12188 12189 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12190 } 12191 12192 ScalarEvolution::ExitLimit 12193 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12194 const Loop *L, bool IsSigned, 12195 bool ControlsExit, bool AllowPredicates) { 12196 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12197 // We handle only IV > Invariant 12198 if (!isLoopInvariant(RHS, L)) 12199 return getCouldNotCompute(); 12200 12201 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12202 if (!IV && AllowPredicates) 12203 // Try to make this an AddRec using runtime tests, in the first X 12204 // iterations of this loop, where X is the SCEV expression found by the 12205 // algorithm below. 12206 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12207 12208 // Avoid weird loops 12209 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12210 return getCouldNotCompute(); 12211 12212 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12213 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12214 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12215 12216 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12217 12218 // Avoid negative or zero stride values 12219 if (!isKnownPositive(Stride)) 12220 return getCouldNotCompute(); 12221 12222 // Avoid proven overflow cases: this will ensure that the backedge taken count 12223 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12224 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12225 // behaviors like the case of C language. 12226 if (!Stride->isOne() && !NoWrap) 12227 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12228 return getCouldNotCompute(); 12229 12230 const SCEV *Start = IV->getStart(); 12231 const SCEV *End = RHS; 12232 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12233 // If we know that Start >= RHS in the context of loop, then we know that 12234 // min(RHS, Start) = RHS at this point. 12235 if (isLoopEntryGuardedByCond( 12236 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12237 End = RHS; 12238 else 12239 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12240 } 12241 12242 if (Start->getType()->isPointerTy()) { 12243 Start = getLosslessPtrToIntExpr(Start); 12244 if (isa<SCEVCouldNotCompute>(Start)) 12245 return Start; 12246 } 12247 if (End->getType()->isPointerTy()) { 12248 End = getLosslessPtrToIntExpr(End); 12249 if (isa<SCEVCouldNotCompute>(End)) 12250 return End; 12251 } 12252 12253 // Compute ((Start - End) + (Stride - 1)) / Stride. 12254 // FIXME: This can overflow. Holding off on fixing this for now; 12255 // howManyGreaterThans will hopefully be gone soon. 12256 const SCEV *One = getOne(Stride->getType()); 12257 const SCEV *BECount = getUDivExpr( 12258 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12259 12260 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12261 : getUnsignedRangeMax(Start); 12262 12263 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12264 : getUnsignedRangeMin(Stride); 12265 12266 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12267 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12268 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12269 12270 // Although End can be a MIN expression we estimate MinEnd considering only 12271 // the case End = RHS. This is safe because in the other case (Start - End) 12272 // is zero, leading to a zero maximum backedge taken count. 12273 APInt MinEnd = 12274 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12275 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12276 12277 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12278 ? BECount 12279 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12280 getConstant(MinStride)); 12281 12282 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12283 MaxBECount = BECount; 12284 12285 return ExitLimit(BECount, MaxBECount, false, Predicates); 12286 } 12287 12288 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12289 ScalarEvolution &SE) const { 12290 if (Range.isFullSet()) // Infinite loop. 12291 return SE.getCouldNotCompute(); 12292 12293 // If the start is a non-zero constant, shift the range to simplify things. 12294 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12295 if (!SC->getValue()->isZero()) { 12296 SmallVector<const SCEV *, 4> Operands(operands()); 12297 Operands[0] = SE.getZero(SC->getType()); 12298 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12299 getNoWrapFlags(FlagNW)); 12300 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12301 return ShiftedAddRec->getNumIterationsInRange( 12302 Range.subtract(SC->getAPInt()), SE); 12303 // This is strange and shouldn't happen. 12304 return SE.getCouldNotCompute(); 12305 } 12306 12307 // The only time we can solve this is when we have all constant indices. 12308 // Otherwise, we cannot determine the overflow conditions. 12309 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12310 return SE.getCouldNotCompute(); 12311 12312 // Okay at this point we know that all elements of the chrec are constants and 12313 // that the start element is zero. 12314 12315 // First check to see if the range contains zero. If not, the first 12316 // iteration exits. 12317 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12318 if (!Range.contains(APInt(BitWidth, 0))) 12319 return SE.getZero(getType()); 12320 12321 if (isAffine()) { 12322 // If this is an affine expression then we have this situation: 12323 // Solve {0,+,A} in Range === Ax in Range 12324 12325 // We know that zero is in the range. If A is positive then we know that 12326 // the upper value of the range must be the first possible exit value. 12327 // If A is negative then the lower of the range is the last possible loop 12328 // value. Also note that we already checked for a full range. 12329 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12330 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12331 12332 // The exit value should be (End+A)/A. 12333 APInt ExitVal = (End + A).udiv(A); 12334 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12335 12336 // Evaluate at the exit value. If we really did fall out of the valid 12337 // range, then we computed our trip count, otherwise wrap around or other 12338 // things must have happened. 12339 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12340 if (Range.contains(Val->getValue())) 12341 return SE.getCouldNotCompute(); // Something strange happened 12342 12343 // Ensure that the previous value is in the range. This is a sanity check. 12344 assert(Range.contains( 12345 EvaluateConstantChrecAtConstant(this, 12346 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12347 "Linear scev computation is off in a bad way!"); 12348 return SE.getConstant(ExitValue); 12349 } 12350 12351 if (isQuadratic()) { 12352 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12353 return SE.getConstant(S.getValue()); 12354 } 12355 12356 return SE.getCouldNotCompute(); 12357 } 12358 12359 const SCEVAddRecExpr * 12360 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12361 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12362 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12363 // but in this case we cannot guarantee that the value returned will be an 12364 // AddRec because SCEV does not have a fixed point where it stops 12365 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12366 // may happen if we reach arithmetic depth limit while simplifying. So we 12367 // construct the returned value explicitly. 12368 SmallVector<const SCEV *, 3> Ops; 12369 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12370 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12371 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12372 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12373 // We know that the last operand is not a constant zero (otherwise it would 12374 // have been popped out earlier). This guarantees us that if the result has 12375 // the same last operand, then it will also not be popped out, meaning that 12376 // the returned value will be an AddRec. 12377 const SCEV *Last = getOperand(getNumOperands() - 1); 12378 assert(!Last->isZero() && "Recurrency with zero step?"); 12379 Ops.push_back(Last); 12380 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12381 SCEV::FlagAnyWrap)); 12382 } 12383 12384 // Return true when S contains at least an undef value. 12385 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12386 return SCEVExprContains(S, [](const SCEV *S) { 12387 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12388 return isa<UndefValue>(SU->getValue()); 12389 return false; 12390 }); 12391 } 12392 12393 /// Return the size of an element read or written by Inst. 12394 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12395 Type *Ty; 12396 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12397 Ty = Store->getValueOperand()->getType(); 12398 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12399 Ty = Load->getType(); 12400 else 12401 return nullptr; 12402 12403 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12404 return getSizeOfExpr(ETy, Ty); 12405 } 12406 12407 //===----------------------------------------------------------------------===// 12408 // SCEVCallbackVH Class Implementation 12409 //===----------------------------------------------------------------------===// 12410 12411 void ScalarEvolution::SCEVCallbackVH::deleted() { 12412 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12413 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12414 SE->ConstantEvolutionLoopExitValue.erase(PN); 12415 SE->eraseValueFromMap(getValPtr()); 12416 // this now dangles! 12417 } 12418 12419 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12420 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12421 12422 // Forget all the expressions associated with users of the old value, 12423 // so that future queries will recompute the expressions using the new 12424 // value. 12425 Value *Old = getValPtr(); 12426 SmallVector<User *, 16> Worklist(Old->users()); 12427 SmallPtrSet<User *, 8> Visited; 12428 while (!Worklist.empty()) { 12429 User *U = Worklist.pop_back_val(); 12430 // Deleting the Old value will cause this to dangle. Postpone 12431 // that until everything else is done. 12432 if (U == Old) 12433 continue; 12434 if (!Visited.insert(U).second) 12435 continue; 12436 if (PHINode *PN = dyn_cast<PHINode>(U)) 12437 SE->ConstantEvolutionLoopExitValue.erase(PN); 12438 SE->eraseValueFromMap(U); 12439 llvm::append_range(Worklist, U->users()); 12440 } 12441 // Delete the Old value. 12442 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12443 SE->ConstantEvolutionLoopExitValue.erase(PN); 12444 SE->eraseValueFromMap(Old); 12445 // this now dangles! 12446 } 12447 12448 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12449 : CallbackVH(V), SE(se) {} 12450 12451 //===----------------------------------------------------------------------===// 12452 // ScalarEvolution Class Implementation 12453 //===----------------------------------------------------------------------===// 12454 12455 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12456 AssumptionCache &AC, DominatorTree &DT, 12457 LoopInfo &LI) 12458 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12459 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12460 LoopDispositions(64), BlockDispositions(64) { 12461 // To use guards for proving predicates, we need to scan every instruction in 12462 // relevant basic blocks, and not just terminators. Doing this is a waste of 12463 // time if the IR does not actually contain any calls to 12464 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12465 // 12466 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12467 // to _add_ guards to the module when there weren't any before, and wants 12468 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12469 // efficient in lieu of being smart in that rather obscure case. 12470 12471 auto *GuardDecl = F.getParent()->getFunction( 12472 Intrinsic::getName(Intrinsic::experimental_guard)); 12473 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12474 } 12475 12476 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12477 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12478 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12479 ValueExprMap(std::move(Arg.ValueExprMap)), 12480 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12481 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12482 PendingMerges(std::move(Arg.PendingMerges)), 12483 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12484 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12485 PredicatedBackedgeTakenCounts( 12486 std::move(Arg.PredicatedBackedgeTakenCounts)), 12487 ConstantEvolutionLoopExitValue( 12488 std::move(Arg.ConstantEvolutionLoopExitValue)), 12489 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12490 LoopDispositions(std::move(Arg.LoopDispositions)), 12491 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12492 BlockDispositions(std::move(Arg.BlockDispositions)), 12493 SCEVUsers(std::move(Arg.SCEVUsers)), 12494 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12495 SignedRanges(std::move(Arg.SignedRanges)), 12496 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12497 UniquePreds(std::move(Arg.UniquePreds)), 12498 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12499 LoopUsers(std::move(Arg.LoopUsers)), 12500 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12501 FirstUnknown(Arg.FirstUnknown) { 12502 Arg.FirstUnknown = nullptr; 12503 } 12504 12505 ScalarEvolution::~ScalarEvolution() { 12506 // Iterate through all the SCEVUnknown instances and call their 12507 // destructors, so that they release their references to their values. 12508 for (SCEVUnknown *U = FirstUnknown; U;) { 12509 SCEVUnknown *Tmp = U; 12510 U = U->Next; 12511 Tmp->~SCEVUnknown(); 12512 } 12513 FirstUnknown = nullptr; 12514 12515 ExprValueMap.clear(); 12516 ValueExprMap.clear(); 12517 HasRecMap.clear(); 12518 BackedgeTakenCounts.clear(); 12519 PredicatedBackedgeTakenCounts.clear(); 12520 12521 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12522 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12523 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12524 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12525 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12526 } 12527 12528 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12529 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12530 } 12531 12532 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12533 const Loop *L) { 12534 // Print all inner loops first 12535 for (Loop *I : *L) 12536 PrintLoopInfo(OS, SE, I); 12537 12538 OS << "Loop "; 12539 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12540 OS << ": "; 12541 12542 SmallVector<BasicBlock *, 8> ExitingBlocks; 12543 L->getExitingBlocks(ExitingBlocks); 12544 if (ExitingBlocks.size() != 1) 12545 OS << "<multiple exits> "; 12546 12547 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12548 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12549 else 12550 OS << "Unpredictable backedge-taken count.\n"; 12551 12552 if (ExitingBlocks.size() > 1) 12553 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12554 OS << " exit count for " << ExitingBlock->getName() << ": " 12555 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12556 } 12557 12558 OS << "Loop "; 12559 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12560 OS << ": "; 12561 12562 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12563 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12564 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12565 OS << ", actual taken count either this or zero."; 12566 } else { 12567 OS << "Unpredictable max backedge-taken count. "; 12568 } 12569 12570 OS << "\n" 12571 "Loop "; 12572 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12573 OS << ": "; 12574 12575 SCEVUnionPredicate Pred; 12576 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12577 if (!isa<SCEVCouldNotCompute>(PBT)) { 12578 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12579 OS << " Predicates:\n"; 12580 Pred.print(OS, 4); 12581 } else { 12582 OS << "Unpredictable predicated backedge-taken count. "; 12583 } 12584 OS << "\n"; 12585 12586 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12587 OS << "Loop "; 12588 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12589 OS << ": "; 12590 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12591 } 12592 } 12593 12594 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12595 switch (LD) { 12596 case ScalarEvolution::LoopVariant: 12597 return "Variant"; 12598 case ScalarEvolution::LoopInvariant: 12599 return "Invariant"; 12600 case ScalarEvolution::LoopComputable: 12601 return "Computable"; 12602 } 12603 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12604 } 12605 12606 void ScalarEvolution::print(raw_ostream &OS) const { 12607 // ScalarEvolution's implementation of the print method is to print 12608 // out SCEV values of all instructions that are interesting. Doing 12609 // this potentially causes it to create new SCEV objects though, 12610 // which technically conflicts with the const qualifier. This isn't 12611 // observable from outside the class though, so casting away the 12612 // const isn't dangerous. 12613 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12614 12615 if (ClassifyExpressions) { 12616 OS << "Classifying expressions for: "; 12617 F.printAsOperand(OS, /*PrintType=*/false); 12618 OS << "\n"; 12619 for (Instruction &I : instructions(F)) 12620 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12621 OS << I << '\n'; 12622 OS << " --> "; 12623 const SCEV *SV = SE.getSCEV(&I); 12624 SV->print(OS); 12625 if (!isa<SCEVCouldNotCompute>(SV)) { 12626 OS << " U: "; 12627 SE.getUnsignedRange(SV).print(OS); 12628 OS << " S: "; 12629 SE.getSignedRange(SV).print(OS); 12630 } 12631 12632 const Loop *L = LI.getLoopFor(I.getParent()); 12633 12634 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12635 if (AtUse != SV) { 12636 OS << " --> "; 12637 AtUse->print(OS); 12638 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12639 OS << " U: "; 12640 SE.getUnsignedRange(AtUse).print(OS); 12641 OS << " S: "; 12642 SE.getSignedRange(AtUse).print(OS); 12643 } 12644 } 12645 12646 if (L) { 12647 OS << "\t\t" "Exits: "; 12648 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12649 if (!SE.isLoopInvariant(ExitValue, L)) { 12650 OS << "<<Unknown>>"; 12651 } else { 12652 OS << *ExitValue; 12653 } 12654 12655 bool First = true; 12656 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12657 if (First) { 12658 OS << "\t\t" "LoopDispositions: { "; 12659 First = false; 12660 } else { 12661 OS << ", "; 12662 } 12663 12664 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12665 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12666 } 12667 12668 for (auto *InnerL : depth_first(L)) { 12669 if (InnerL == L) 12670 continue; 12671 if (First) { 12672 OS << "\t\t" "LoopDispositions: { "; 12673 First = false; 12674 } else { 12675 OS << ", "; 12676 } 12677 12678 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12679 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12680 } 12681 12682 OS << " }"; 12683 } 12684 12685 OS << "\n"; 12686 } 12687 } 12688 12689 OS << "Determining loop execution counts for: "; 12690 F.printAsOperand(OS, /*PrintType=*/false); 12691 OS << "\n"; 12692 for (Loop *I : LI) 12693 PrintLoopInfo(OS, &SE, I); 12694 } 12695 12696 ScalarEvolution::LoopDisposition 12697 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12698 auto &Values = LoopDispositions[S]; 12699 for (auto &V : Values) { 12700 if (V.getPointer() == L) 12701 return V.getInt(); 12702 } 12703 Values.emplace_back(L, LoopVariant); 12704 LoopDisposition D = computeLoopDisposition(S, L); 12705 auto &Values2 = LoopDispositions[S]; 12706 for (auto &V : llvm::reverse(Values2)) { 12707 if (V.getPointer() == L) { 12708 V.setInt(D); 12709 break; 12710 } 12711 } 12712 return D; 12713 } 12714 12715 ScalarEvolution::LoopDisposition 12716 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12717 switch (S->getSCEVType()) { 12718 case scConstant: 12719 return LoopInvariant; 12720 case scPtrToInt: 12721 case scTruncate: 12722 case scZeroExtend: 12723 case scSignExtend: 12724 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12725 case scAddRecExpr: { 12726 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12727 12728 // If L is the addrec's loop, it's computable. 12729 if (AR->getLoop() == L) 12730 return LoopComputable; 12731 12732 // Add recurrences are never invariant in the function-body (null loop). 12733 if (!L) 12734 return LoopVariant; 12735 12736 // Everything that is not defined at loop entry is variant. 12737 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12738 return LoopVariant; 12739 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12740 " dominate the contained loop's header?"); 12741 12742 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12743 if (AR->getLoop()->contains(L)) 12744 return LoopInvariant; 12745 12746 // This recurrence is variant w.r.t. L if any of its operands 12747 // are variant. 12748 for (auto *Op : AR->operands()) 12749 if (!isLoopInvariant(Op, L)) 12750 return LoopVariant; 12751 12752 // Otherwise it's loop-invariant. 12753 return LoopInvariant; 12754 } 12755 case scAddExpr: 12756 case scMulExpr: 12757 case scUMaxExpr: 12758 case scSMaxExpr: 12759 case scUMinExpr: 12760 case scSMinExpr: { 12761 bool HasVarying = false; 12762 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12763 LoopDisposition D = getLoopDisposition(Op, L); 12764 if (D == LoopVariant) 12765 return LoopVariant; 12766 if (D == LoopComputable) 12767 HasVarying = true; 12768 } 12769 return HasVarying ? LoopComputable : LoopInvariant; 12770 } 12771 case scUDivExpr: { 12772 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12773 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12774 if (LD == LoopVariant) 12775 return LoopVariant; 12776 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12777 if (RD == LoopVariant) 12778 return LoopVariant; 12779 return (LD == LoopInvariant && RD == LoopInvariant) ? 12780 LoopInvariant : LoopComputable; 12781 } 12782 case scUnknown: 12783 // All non-instruction values are loop invariant. All instructions are loop 12784 // invariant if they are not contained in the specified loop. 12785 // Instructions are never considered invariant in the function body 12786 // (null loop) because they are defined within the "loop". 12787 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12788 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12789 return LoopInvariant; 12790 case scCouldNotCompute: 12791 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12792 } 12793 llvm_unreachable("Unknown SCEV kind!"); 12794 } 12795 12796 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12797 return getLoopDisposition(S, L) == LoopInvariant; 12798 } 12799 12800 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12801 return getLoopDisposition(S, L) == LoopComputable; 12802 } 12803 12804 ScalarEvolution::BlockDisposition 12805 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12806 auto &Values = BlockDispositions[S]; 12807 for (auto &V : Values) { 12808 if (V.getPointer() == BB) 12809 return V.getInt(); 12810 } 12811 Values.emplace_back(BB, DoesNotDominateBlock); 12812 BlockDisposition D = computeBlockDisposition(S, BB); 12813 auto &Values2 = BlockDispositions[S]; 12814 for (auto &V : llvm::reverse(Values2)) { 12815 if (V.getPointer() == BB) { 12816 V.setInt(D); 12817 break; 12818 } 12819 } 12820 return D; 12821 } 12822 12823 ScalarEvolution::BlockDisposition 12824 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12825 switch (S->getSCEVType()) { 12826 case scConstant: 12827 return ProperlyDominatesBlock; 12828 case scPtrToInt: 12829 case scTruncate: 12830 case scZeroExtend: 12831 case scSignExtend: 12832 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12833 case scAddRecExpr: { 12834 // This uses a "dominates" query instead of "properly dominates" query 12835 // to test for proper dominance too, because the instruction which 12836 // produces the addrec's value is a PHI, and a PHI effectively properly 12837 // dominates its entire containing block. 12838 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12839 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12840 return DoesNotDominateBlock; 12841 12842 // Fall through into SCEVNAryExpr handling. 12843 LLVM_FALLTHROUGH; 12844 } 12845 case scAddExpr: 12846 case scMulExpr: 12847 case scUMaxExpr: 12848 case scSMaxExpr: 12849 case scUMinExpr: 12850 case scSMinExpr: { 12851 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12852 bool Proper = true; 12853 for (const SCEV *NAryOp : NAry->operands()) { 12854 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12855 if (D == DoesNotDominateBlock) 12856 return DoesNotDominateBlock; 12857 if (D == DominatesBlock) 12858 Proper = false; 12859 } 12860 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12861 } 12862 case scUDivExpr: { 12863 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12864 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12865 BlockDisposition LD = getBlockDisposition(LHS, BB); 12866 if (LD == DoesNotDominateBlock) 12867 return DoesNotDominateBlock; 12868 BlockDisposition RD = getBlockDisposition(RHS, BB); 12869 if (RD == DoesNotDominateBlock) 12870 return DoesNotDominateBlock; 12871 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12872 ProperlyDominatesBlock : DominatesBlock; 12873 } 12874 case scUnknown: 12875 if (Instruction *I = 12876 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12877 if (I->getParent() == BB) 12878 return DominatesBlock; 12879 if (DT.properlyDominates(I->getParent(), BB)) 12880 return ProperlyDominatesBlock; 12881 return DoesNotDominateBlock; 12882 } 12883 return ProperlyDominatesBlock; 12884 case scCouldNotCompute: 12885 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12886 } 12887 llvm_unreachable("Unknown SCEV kind!"); 12888 } 12889 12890 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12891 return getBlockDisposition(S, BB) >= DominatesBlock; 12892 } 12893 12894 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12895 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12896 } 12897 12898 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12899 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12900 } 12901 12902 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 12903 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 12904 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 12905 12906 while (!Worklist.empty()) { 12907 const SCEV *Curr = Worklist.pop_back_val(); 12908 auto Users = SCEVUsers.find(Curr); 12909 if (Users != SCEVUsers.end()) 12910 for (auto *User : Users->second) 12911 if (ToForget.insert(User).second) 12912 Worklist.push_back(User); 12913 } 12914 12915 for (auto *S : ToForget) 12916 forgetMemoizedResultsImpl(S); 12917 12918 for (auto I = PredicatedSCEVRewrites.begin(); 12919 I != PredicatedSCEVRewrites.end();) { 12920 std::pair<const SCEV *, const Loop *> Entry = I->first; 12921 if (ToForget.count(Entry.first)) 12922 PredicatedSCEVRewrites.erase(I++); 12923 else 12924 ++I; 12925 } 12926 12927 auto RemoveSCEVFromBackedgeMap = [&ToForget]( 12928 DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12929 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12930 BackedgeTakenInfo &BEInfo = I->second; 12931 if (any_of(ToForget, 12932 [&BEInfo](const SCEV *S) { return BEInfo.hasOperand(S); })) 12933 Map.erase(I++); 12934 else 12935 ++I; 12936 } 12937 }; 12938 12939 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12940 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12941 } 12942 12943 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 12944 ValuesAtScopes.erase(S); 12945 LoopDispositions.erase(S); 12946 BlockDispositions.erase(S); 12947 UnsignedRanges.erase(S); 12948 SignedRanges.erase(S); 12949 ExprValueMap.erase(S); 12950 HasRecMap.erase(S); 12951 MinTrailingZerosCache.erase(S); 12952 } 12953 12954 void 12955 ScalarEvolution::getUsedLoops(const SCEV *S, 12956 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12957 struct FindUsedLoops { 12958 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12959 : LoopsUsed(LoopsUsed) {} 12960 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12961 bool follow(const SCEV *S) { 12962 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12963 LoopsUsed.insert(AR->getLoop()); 12964 return true; 12965 } 12966 12967 bool isDone() const { return false; } 12968 }; 12969 12970 FindUsedLoops F(LoopsUsed); 12971 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12972 } 12973 12974 void ScalarEvolution::verify() const { 12975 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12976 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12977 12978 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12979 12980 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12981 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12982 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12983 12984 const SCEV *visitConstant(const SCEVConstant *Constant) { 12985 return SE.getConstant(Constant->getAPInt()); 12986 } 12987 12988 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12989 return SE.getUnknown(Expr->getValue()); 12990 } 12991 12992 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12993 return SE.getCouldNotCompute(); 12994 } 12995 }; 12996 12997 SCEVMapper SCM(SE2); 12998 12999 while (!LoopStack.empty()) { 13000 auto *L = LoopStack.pop_back_val(); 13001 llvm::append_range(LoopStack, *L); 13002 13003 auto *CurBECount = SCM.visit( 13004 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 13005 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13006 13007 if (CurBECount == SE2.getCouldNotCompute() || 13008 NewBECount == SE2.getCouldNotCompute()) { 13009 // NB! This situation is legal, but is very suspicious -- whatever pass 13010 // change the loop to make a trip count go from could not compute to 13011 // computable or vice-versa *should have* invalidated SCEV. However, we 13012 // choose not to assert here (for now) since we don't want false 13013 // positives. 13014 continue; 13015 } 13016 13017 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 13018 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13019 // not propagate undef aggressively). This means we can (and do) fail 13020 // verification in cases where a transform makes the trip count of a loop 13021 // go from "undef" to "undef+1" (say). The transform is fine, since in 13022 // both cases the loop iterates "undef" times, but SCEV thinks we 13023 // increased the trip count of the loop by 1 incorrectly. 13024 continue; 13025 } 13026 13027 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13028 SE.getTypeSizeInBits(NewBECount->getType())) 13029 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13030 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13031 SE.getTypeSizeInBits(NewBECount->getType())) 13032 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13033 13034 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 13035 13036 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13037 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 13038 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13039 dbgs() << "Old: " << *CurBECount << "\n"; 13040 dbgs() << "New: " << *NewBECount << "\n"; 13041 dbgs() << "Delta: " << *Delta << "\n"; 13042 std::abort(); 13043 } 13044 } 13045 13046 // Collect all valid loops currently in LoopInfo. 13047 SmallPtrSet<Loop *, 32> ValidLoops; 13048 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13049 while (!Worklist.empty()) { 13050 Loop *L = Worklist.pop_back_val(); 13051 if (ValidLoops.contains(L)) 13052 continue; 13053 ValidLoops.insert(L); 13054 Worklist.append(L->begin(), L->end()); 13055 } 13056 // Check for SCEV expressions referencing invalid/deleted loops. 13057 for (auto &KV : ValueExprMap) { 13058 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 13059 if (!AR) 13060 continue; 13061 assert(ValidLoops.contains(AR->getLoop()) && 13062 "AddRec references invalid loop"); 13063 } 13064 13065 // Verify intergity of SCEV users. 13066 for (const auto &S : UniqueSCEVs) { 13067 SmallVector<const SCEV *, 4> Ops; 13068 collectUniqueOps(&S, Ops); 13069 for (const auto *Op : Ops) { 13070 // We do not store dependencies of constants. 13071 if (isa<SCEVConstant>(Op)) 13072 continue; 13073 auto It = SCEVUsers.find(Op); 13074 if (It != SCEVUsers.end() && It->second.count(&S)) 13075 continue; 13076 dbgs() << "Use of operand " << *Op << " by user " << S 13077 << " is not being tracked!\n"; 13078 std::abort(); 13079 } 13080 } 13081 } 13082 13083 bool ScalarEvolution::invalidate( 13084 Function &F, const PreservedAnalyses &PA, 13085 FunctionAnalysisManager::Invalidator &Inv) { 13086 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13087 // of its dependencies is invalidated. 13088 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13089 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13090 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13091 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13092 Inv.invalidate<LoopAnalysis>(F, PA); 13093 } 13094 13095 AnalysisKey ScalarEvolutionAnalysis::Key; 13096 13097 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13098 FunctionAnalysisManager &AM) { 13099 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13100 AM.getResult<AssumptionAnalysis>(F), 13101 AM.getResult<DominatorTreeAnalysis>(F), 13102 AM.getResult<LoopAnalysis>(F)); 13103 } 13104 13105 PreservedAnalyses 13106 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13107 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13108 return PreservedAnalyses::all(); 13109 } 13110 13111 PreservedAnalyses 13112 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13113 // For compatibility with opt's -analyze feature under legacy pass manager 13114 // which was not ported to NPM. This keeps tests using 13115 // update_analyze_test_checks.py working. 13116 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13117 << F.getName() << "':\n"; 13118 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13119 return PreservedAnalyses::all(); 13120 } 13121 13122 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13123 "Scalar Evolution Analysis", false, true) 13124 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13125 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13126 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13127 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13128 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13129 "Scalar Evolution Analysis", false, true) 13130 13131 char ScalarEvolutionWrapperPass::ID = 0; 13132 13133 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13134 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13135 } 13136 13137 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13138 SE.reset(new ScalarEvolution( 13139 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13140 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13141 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13142 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13143 return false; 13144 } 13145 13146 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13147 13148 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13149 SE->print(OS); 13150 } 13151 13152 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13153 if (!VerifySCEV) 13154 return; 13155 13156 SE->verify(); 13157 } 13158 13159 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13160 AU.setPreservesAll(); 13161 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13162 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13163 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13164 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13165 } 13166 13167 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13168 const SCEV *RHS) { 13169 FoldingSetNodeID ID; 13170 assert(LHS->getType() == RHS->getType() && 13171 "Type mismatch between LHS and RHS"); 13172 // Unique this node based on the arguments 13173 ID.AddInteger(SCEVPredicate::P_Equal); 13174 ID.AddPointer(LHS); 13175 ID.AddPointer(RHS); 13176 void *IP = nullptr; 13177 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13178 return S; 13179 SCEVEqualPredicate *Eq = new (SCEVAllocator) 13180 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 13181 UniquePreds.InsertNode(Eq, IP); 13182 return Eq; 13183 } 13184 13185 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13186 const SCEVAddRecExpr *AR, 13187 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13188 FoldingSetNodeID ID; 13189 // Unique this node based on the arguments 13190 ID.AddInteger(SCEVPredicate::P_Wrap); 13191 ID.AddPointer(AR); 13192 ID.AddInteger(AddedFlags); 13193 void *IP = nullptr; 13194 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13195 return S; 13196 auto *OF = new (SCEVAllocator) 13197 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13198 UniquePreds.InsertNode(OF, IP); 13199 return OF; 13200 } 13201 13202 namespace { 13203 13204 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13205 public: 13206 13207 /// Rewrites \p S in the context of a loop L and the SCEV predication 13208 /// infrastructure. 13209 /// 13210 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13211 /// equivalences present in \p Pred. 13212 /// 13213 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13214 /// \p NewPreds such that the result will be an AddRecExpr. 13215 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13216 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13217 SCEVUnionPredicate *Pred) { 13218 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13219 return Rewriter.visit(S); 13220 } 13221 13222 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13223 if (Pred) { 13224 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13225 for (auto *Pred : ExprPreds) 13226 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13227 if (IPred->getLHS() == Expr) 13228 return IPred->getRHS(); 13229 } 13230 return convertToAddRecWithPreds(Expr); 13231 } 13232 13233 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13234 const SCEV *Operand = visit(Expr->getOperand()); 13235 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13236 if (AR && AR->getLoop() == L && AR->isAffine()) { 13237 // This couldn't be folded because the operand didn't have the nuw 13238 // flag. Add the nusw flag as an assumption that we could make. 13239 const SCEV *Step = AR->getStepRecurrence(SE); 13240 Type *Ty = Expr->getType(); 13241 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13242 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13243 SE.getSignExtendExpr(Step, Ty), L, 13244 AR->getNoWrapFlags()); 13245 } 13246 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13247 } 13248 13249 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13250 const SCEV *Operand = visit(Expr->getOperand()); 13251 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13252 if (AR && AR->getLoop() == L && AR->isAffine()) { 13253 // This couldn't be folded because the operand didn't have the nsw 13254 // flag. Add the nssw flag as an assumption that we could make. 13255 const SCEV *Step = AR->getStepRecurrence(SE); 13256 Type *Ty = Expr->getType(); 13257 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13258 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13259 SE.getSignExtendExpr(Step, Ty), L, 13260 AR->getNoWrapFlags()); 13261 } 13262 return SE.getSignExtendExpr(Operand, Expr->getType()); 13263 } 13264 13265 private: 13266 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13267 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13268 SCEVUnionPredicate *Pred) 13269 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13270 13271 bool addOverflowAssumption(const SCEVPredicate *P) { 13272 if (!NewPreds) { 13273 // Check if we've already made this assumption. 13274 return Pred && Pred->implies(P); 13275 } 13276 NewPreds->insert(P); 13277 return true; 13278 } 13279 13280 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13281 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13282 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13283 return addOverflowAssumption(A); 13284 } 13285 13286 // If \p Expr represents a PHINode, we try to see if it can be represented 13287 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13288 // to add this predicate as a runtime overflow check, we return the AddRec. 13289 // If \p Expr does not meet these conditions (is not a PHI node, or we 13290 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13291 // return \p Expr. 13292 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13293 if (!isa<PHINode>(Expr->getValue())) 13294 return Expr; 13295 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13296 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13297 if (!PredicatedRewrite) 13298 return Expr; 13299 for (auto *P : PredicatedRewrite->second){ 13300 // Wrap predicates from outer loops are not supported. 13301 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13302 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13303 if (L != AR->getLoop()) 13304 return Expr; 13305 } 13306 if (!addOverflowAssumption(P)) 13307 return Expr; 13308 } 13309 return PredicatedRewrite->first; 13310 } 13311 13312 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13313 SCEVUnionPredicate *Pred; 13314 const Loop *L; 13315 }; 13316 13317 } // end anonymous namespace 13318 13319 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13320 SCEVUnionPredicate &Preds) { 13321 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13322 } 13323 13324 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13325 const SCEV *S, const Loop *L, 13326 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13327 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13328 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13329 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13330 13331 if (!AddRec) 13332 return nullptr; 13333 13334 // Since the transformation was successful, we can now transfer the SCEV 13335 // predicates. 13336 for (auto *P : TransformPreds) 13337 Preds.insert(P); 13338 13339 return AddRec; 13340 } 13341 13342 /// SCEV predicates 13343 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13344 SCEVPredicateKind Kind) 13345 : FastID(ID), Kind(Kind) {} 13346 13347 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13348 const SCEV *LHS, const SCEV *RHS) 13349 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13350 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13351 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13352 } 13353 13354 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13355 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13356 13357 if (!Op) 13358 return false; 13359 13360 return Op->LHS == LHS && Op->RHS == RHS; 13361 } 13362 13363 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13364 13365 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13366 13367 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13368 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13369 } 13370 13371 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13372 const SCEVAddRecExpr *AR, 13373 IncrementWrapFlags Flags) 13374 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13375 13376 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13377 13378 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13379 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13380 13381 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13382 } 13383 13384 bool SCEVWrapPredicate::isAlwaysTrue() const { 13385 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13386 IncrementWrapFlags IFlags = Flags; 13387 13388 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13389 IFlags = clearFlags(IFlags, IncrementNSSW); 13390 13391 return IFlags == IncrementAnyWrap; 13392 } 13393 13394 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13395 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13396 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13397 OS << "<nusw>"; 13398 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13399 OS << "<nssw>"; 13400 OS << "\n"; 13401 } 13402 13403 SCEVWrapPredicate::IncrementWrapFlags 13404 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13405 ScalarEvolution &SE) { 13406 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13407 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13408 13409 // We can safely transfer the NSW flag as NSSW. 13410 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13411 ImpliedFlags = IncrementNSSW; 13412 13413 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13414 // If the increment is positive, the SCEV NUW flag will also imply the 13415 // WrapPredicate NUSW flag. 13416 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13417 if (Step->getValue()->getValue().isNonNegative()) 13418 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13419 } 13420 13421 return ImpliedFlags; 13422 } 13423 13424 /// Union predicates don't get cached so create a dummy set ID for it. 13425 SCEVUnionPredicate::SCEVUnionPredicate() 13426 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13427 13428 bool SCEVUnionPredicate::isAlwaysTrue() const { 13429 return all_of(Preds, 13430 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13431 } 13432 13433 ArrayRef<const SCEVPredicate *> 13434 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13435 auto I = SCEVToPreds.find(Expr); 13436 if (I == SCEVToPreds.end()) 13437 return ArrayRef<const SCEVPredicate *>(); 13438 return I->second; 13439 } 13440 13441 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13442 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13443 return all_of(Set->Preds, 13444 [this](const SCEVPredicate *I) { return this->implies(I); }); 13445 13446 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13447 if (ScevPredsIt == SCEVToPreds.end()) 13448 return false; 13449 auto &SCEVPreds = ScevPredsIt->second; 13450 13451 return any_of(SCEVPreds, 13452 [N](const SCEVPredicate *I) { return I->implies(N); }); 13453 } 13454 13455 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13456 13457 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13458 for (auto Pred : Preds) 13459 Pred->print(OS, Depth); 13460 } 13461 13462 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13463 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13464 for (auto Pred : Set->Preds) 13465 add(Pred); 13466 return; 13467 } 13468 13469 if (implies(N)) 13470 return; 13471 13472 const SCEV *Key = N->getExpr(); 13473 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13474 " associated expression!"); 13475 13476 SCEVToPreds[Key].push_back(N); 13477 Preds.push_back(N); 13478 } 13479 13480 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13481 Loop &L) 13482 : SE(SE), L(L) {} 13483 13484 void ScalarEvolution::registerUser(const SCEV *User, 13485 ArrayRef<const SCEV *> Ops) { 13486 for (auto *Op : Ops) 13487 // We do not expect that forgetting cached data for SCEVConstants will ever 13488 // open any prospects for sharpening or introduce any correctness issues, 13489 // so we don't bother storing their dependencies. 13490 if (!isa<SCEVConstant>(Op)) 13491 SCEVUsers[Op].insert(User); 13492 } 13493 13494 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13495 const SCEV *Expr = SE.getSCEV(V); 13496 RewriteEntry &Entry = RewriteMap[Expr]; 13497 13498 // If we already have an entry and the version matches, return it. 13499 if (Entry.second && Generation == Entry.first) 13500 return Entry.second; 13501 13502 // We found an entry but it's stale. Rewrite the stale entry 13503 // according to the current predicate. 13504 if (Entry.second) 13505 Expr = Entry.second; 13506 13507 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13508 Entry = {Generation, NewSCEV}; 13509 13510 return NewSCEV; 13511 } 13512 13513 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13514 if (!BackedgeCount) { 13515 SCEVUnionPredicate BackedgePred; 13516 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13517 addPredicate(BackedgePred); 13518 } 13519 return BackedgeCount; 13520 } 13521 13522 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13523 if (Preds.implies(&Pred)) 13524 return; 13525 Preds.add(&Pred); 13526 updateGeneration(); 13527 } 13528 13529 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13530 return Preds; 13531 } 13532 13533 void PredicatedScalarEvolution::updateGeneration() { 13534 // If the generation number wrapped recompute everything. 13535 if (++Generation == 0) { 13536 for (auto &II : RewriteMap) { 13537 const SCEV *Rewritten = II.second.second; 13538 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13539 } 13540 } 13541 } 13542 13543 void PredicatedScalarEvolution::setNoOverflow( 13544 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13545 const SCEV *Expr = getSCEV(V); 13546 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13547 13548 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13549 13550 // Clear the statically implied flags. 13551 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13552 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13553 13554 auto II = FlagsMap.insert({V, Flags}); 13555 if (!II.second) 13556 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13557 } 13558 13559 bool PredicatedScalarEvolution::hasNoOverflow( 13560 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13561 const SCEV *Expr = getSCEV(V); 13562 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13563 13564 Flags = SCEVWrapPredicate::clearFlags( 13565 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13566 13567 auto II = FlagsMap.find(V); 13568 13569 if (II != FlagsMap.end()) 13570 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13571 13572 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13573 } 13574 13575 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13576 const SCEV *Expr = this->getSCEV(V); 13577 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13578 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13579 13580 if (!New) 13581 return nullptr; 13582 13583 for (auto *P : NewPreds) 13584 Preds.add(P); 13585 13586 updateGeneration(); 13587 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13588 return New; 13589 } 13590 13591 PredicatedScalarEvolution::PredicatedScalarEvolution( 13592 const PredicatedScalarEvolution &Init) 13593 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13594 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13595 for (auto I : Init.FlagsMap) 13596 FlagsMap.insert(I); 13597 } 13598 13599 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13600 // For each block. 13601 for (auto *BB : L.getBlocks()) 13602 for (auto &I : *BB) { 13603 if (!SE.isSCEVable(I.getType())) 13604 continue; 13605 13606 auto *Expr = SE.getSCEV(&I); 13607 auto II = RewriteMap.find(Expr); 13608 13609 if (II == RewriteMap.end()) 13610 continue; 13611 13612 // Don't print things that are not interesting. 13613 if (II->second.second == Expr) 13614 continue; 13615 13616 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13617 OS.indent(Depth + 2) << *Expr << "\n"; 13618 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13619 } 13620 } 13621 13622 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13623 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13624 // for URem with constant power-of-2 second operands. 13625 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13626 // 4, A / B becomes X / 8). 13627 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13628 const SCEV *&RHS) { 13629 // Try to match 'zext (trunc A to iB) to iY', which is used 13630 // for URem with constant power-of-2 second operands. Make sure the size of 13631 // the operand A matches the size of the whole expressions. 13632 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13633 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13634 LHS = Trunc->getOperand(); 13635 // Bail out if the type of the LHS is larger than the type of the 13636 // expression for now. 13637 if (getTypeSizeInBits(LHS->getType()) > 13638 getTypeSizeInBits(Expr->getType())) 13639 return false; 13640 if (LHS->getType() != Expr->getType()) 13641 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13642 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13643 << getTypeSizeInBits(Trunc->getType())); 13644 return true; 13645 } 13646 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13647 if (Add == nullptr || Add->getNumOperands() != 2) 13648 return false; 13649 13650 const SCEV *A = Add->getOperand(1); 13651 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13652 13653 if (Mul == nullptr) 13654 return false; 13655 13656 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13657 // (SomeExpr + (-(SomeExpr / B) * B)). 13658 if (Expr == getURemExpr(A, B)) { 13659 LHS = A; 13660 RHS = B; 13661 return true; 13662 } 13663 return false; 13664 }; 13665 13666 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13667 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13668 return MatchURemWithDivisor(Mul->getOperand(1)) || 13669 MatchURemWithDivisor(Mul->getOperand(2)); 13670 13671 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13672 if (Mul->getNumOperands() == 2) 13673 return MatchURemWithDivisor(Mul->getOperand(1)) || 13674 MatchURemWithDivisor(Mul->getOperand(0)) || 13675 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13676 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13677 return false; 13678 } 13679 13680 const SCEV * 13681 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13682 SmallVector<BasicBlock*, 16> ExitingBlocks; 13683 L->getExitingBlocks(ExitingBlocks); 13684 13685 // Form an expression for the maximum exit count possible for this loop. We 13686 // merge the max and exact information to approximate a version of 13687 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13688 SmallVector<const SCEV*, 4> ExitCounts; 13689 for (BasicBlock *ExitingBB : ExitingBlocks) { 13690 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13691 if (isa<SCEVCouldNotCompute>(ExitCount)) 13692 ExitCount = getExitCount(L, ExitingBB, 13693 ScalarEvolution::ConstantMaximum); 13694 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13695 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13696 "We should only have known counts for exiting blocks that " 13697 "dominate latch!"); 13698 ExitCounts.push_back(ExitCount); 13699 } 13700 } 13701 if (ExitCounts.empty()) 13702 return getCouldNotCompute(); 13703 return getUMinFromMismatchedTypes(ExitCounts); 13704 } 13705 13706 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 13707 /// in the map. It skips AddRecExpr because we cannot guarantee that the 13708 /// replacement is loop invariant in the loop of the AddRec. 13709 /// 13710 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 13711 /// supported. 13712 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13713 const DenseMap<const SCEV *, const SCEV *> ⤅ 13714 13715 public: 13716 SCEVLoopGuardRewriter(ScalarEvolution &SE, 13717 DenseMap<const SCEV *, const SCEV *> &M) 13718 : SCEVRewriteVisitor(SE), Map(M) {} 13719 13720 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13721 13722 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13723 auto I = Map.find(Expr); 13724 if (I == Map.end()) 13725 return Expr; 13726 return I->second; 13727 } 13728 13729 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13730 auto I = Map.find(Expr); 13731 if (I == Map.end()) 13732 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 13733 Expr); 13734 return I->second; 13735 } 13736 }; 13737 13738 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13739 SmallVector<const SCEV *> ExprsToRewrite; 13740 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13741 const SCEV *RHS, 13742 DenseMap<const SCEV *, const SCEV *> 13743 &RewriteMap) { 13744 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13745 // replacement SCEV which isn't directly implied by the structure of that 13746 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13747 // legal. See the scoping rules for flags in the header to understand why. 13748 13749 // If we have LHS == 0, check if LHS is computing a property of some unknown 13750 // SCEV %v which we can rewrite %v to express explicitly. 13751 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13752 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13753 RHSC->getValue()->isNullValue()) { 13754 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13755 // explicitly express that. 13756 const SCEV *URemLHS = nullptr; 13757 const SCEV *URemRHS = nullptr; 13758 if (matchURem(LHS, URemLHS, URemRHS)) { 13759 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13760 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13761 RewriteMap[LHSUnknown] = Multiple; 13762 ExprsToRewrite.push_back(LHSUnknown); 13763 return; 13764 } 13765 } 13766 } 13767 13768 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13769 std::swap(LHS, RHS); 13770 Predicate = CmpInst::getSwappedPredicate(Predicate); 13771 } 13772 13773 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13774 // create this form when combining two checks of the form (X u< C2 + C1) and 13775 // (X >=u C1). 13776 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 13777 &ExprsToRewrite]() { 13778 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13779 if (!AddExpr || AddExpr->getNumOperands() != 2) 13780 return false; 13781 13782 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13783 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13784 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13785 if (!C1 || !C2 || !LHSUnknown) 13786 return false; 13787 13788 auto ExactRegion = 13789 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13790 .sub(C1->getAPInt()); 13791 13792 // Bail out, unless we have a non-wrapping, monotonic range. 13793 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13794 return false; 13795 auto I = RewriteMap.find(LHSUnknown); 13796 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13797 RewriteMap[LHSUnknown] = getUMaxExpr( 13798 getConstant(ExactRegion.getUnsignedMin()), 13799 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13800 ExprsToRewrite.push_back(LHSUnknown); 13801 return true; 13802 }; 13803 if (MatchRangeCheckIdiom()) 13804 return; 13805 13806 // If RHS is SCEVUnknown, make sure the information is applied to it. 13807 if (isa<SCEVUnknown>(RHS)) { 13808 std::swap(LHS, RHS); 13809 Predicate = CmpInst::getSwappedPredicate(Predicate); 13810 } 13811 // If LHS is a constant, apply information to the other expression. 13812 if (isa<SCEVConstant>(LHS)) { 13813 std::swap(LHS, RHS); 13814 Predicate = CmpInst::getSwappedPredicate(Predicate); 13815 } 13816 // Do not apply information for constants or if RHS contains an AddRec. 13817 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 13818 return; 13819 13820 // Limit to expressions that can be rewritten. 13821 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 13822 return; 13823 13824 // Check whether LHS has already been rewritten. In that case we want to 13825 // chain further rewrites onto the already rewritten value. 13826 auto I = RewriteMap.find(LHS); 13827 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13828 13829 const SCEV *RewrittenRHS = nullptr; 13830 switch (Predicate) { 13831 case CmpInst::ICMP_ULT: 13832 RewrittenRHS = 13833 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13834 break; 13835 case CmpInst::ICMP_SLT: 13836 RewrittenRHS = 13837 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13838 break; 13839 case CmpInst::ICMP_ULE: 13840 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13841 break; 13842 case CmpInst::ICMP_SLE: 13843 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13844 break; 13845 case CmpInst::ICMP_UGT: 13846 RewrittenRHS = 13847 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13848 break; 13849 case CmpInst::ICMP_SGT: 13850 RewrittenRHS = 13851 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13852 break; 13853 case CmpInst::ICMP_UGE: 13854 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13855 break; 13856 case CmpInst::ICMP_SGE: 13857 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13858 break; 13859 case CmpInst::ICMP_EQ: 13860 if (isa<SCEVConstant>(RHS)) 13861 RewrittenRHS = RHS; 13862 break; 13863 case CmpInst::ICMP_NE: 13864 if (isa<SCEVConstant>(RHS) && 13865 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13866 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13867 break; 13868 default: 13869 break; 13870 } 13871 13872 if (RewrittenRHS) { 13873 RewriteMap[LHS] = RewrittenRHS; 13874 if (LHS == RewrittenLHS) 13875 ExprsToRewrite.push_back(LHS); 13876 } 13877 }; 13878 // Starting at the loop predecessor, climb up the predecessor chain, as long 13879 // as there are predecessors that can be found that have unique successors 13880 // leading to the original header. 13881 // TODO: share this logic with isLoopEntryGuardedByCond. 13882 DenseMap<const SCEV *, const SCEV *> RewriteMap; 13883 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13884 L->getLoopPredecessor(), L->getHeader()); 13885 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13886 13887 const BranchInst *LoopEntryPredicate = 13888 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13889 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13890 continue; 13891 13892 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13893 SmallVector<Value *, 8> Worklist; 13894 SmallPtrSet<Value *, 8> Visited; 13895 Worklist.push_back(LoopEntryPredicate->getCondition()); 13896 while (!Worklist.empty()) { 13897 Value *Cond = Worklist.pop_back_val(); 13898 if (!Visited.insert(Cond).second) 13899 continue; 13900 13901 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13902 auto Predicate = 13903 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13904 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13905 getSCEV(Cmp->getOperand(1)), RewriteMap); 13906 continue; 13907 } 13908 13909 Value *L, *R; 13910 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13911 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13912 Worklist.push_back(L); 13913 Worklist.push_back(R); 13914 } 13915 } 13916 } 13917 13918 // Also collect information from assumptions dominating the loop. 13919 for (auto &AssumeVH : AC.assumptions()) { 13920 if (!AssumeVH) 13921 continue; 13922 auto *AssumeI = cast<CallInst>(AssumeVH); 13923 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13924 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13925 continue; 13926 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13927 getSCEV(Cmp->getOperand(1)), RewriteMap); 13928 } 13929 13930 if (RewriteMap.empty()) 13931 return Expr; 13932 13933 // Now that all rewrite information is collect, rewrite the collected 13934 // expressions with the information in the map. This applies information to 13935 // sub-expressions. 13936 if (ExprsToRewrite.size() > 1) { 13937 for (const SCEV *Expr : ExprsToRewrite) { 13938 const SCEV *RewriteTo = RewriteMap[Expr]; 13939 RewriteMap.erase(Expr); 13940 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13941 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 13942 } 13943 } 13944 13945 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13946 return Rewriter.visit(Expr); 13947 } 13948