1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
83 #include "llvm/Analysis/TargetLibraryInfo.h"
84 #include "llvm/Analysis/ValueTracking.h"
85 #include "llvm/Config/llvm-config.h"
86 #include "llvm/IR/Argument.h"
87 #include "llvm/IR/BasicBlock.h"
88 #include "llvm/IR/CFG.h"
89 #include "llvm/IR/CallSite.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 
139 #define DEBUG_TYPE "scalar-evolution"
140 
141 STATISTIC(NumArrayLenItCounts,
142           "Number of trip counts computed with array length");
143 STATISTIC(NumTripCountsComputed,
144           "Number of loops with predictable loop counts");
145 STATISTIC(NumTripCountsNotComputed,
146           "Number of loops without predictable loop counts");
147 STATISTIC(NumBruteForceTripCountsComputed,
148           "Number of loops with trip counts computed by force");
149 
150 static cl::opt<unsigned>
151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
152                         cl::ZeroOrMore,
153                         cl::desc("Maximum number of iterations SCEV will "
154                                  "symbolically execute a constant "
155                                  "derived loop"),
156                         cl::init(100));
157 
158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
159 static cl::opt<bool> VerifySCEV(
160     "verify-scev", cl::Hidden,
161     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
162 static cl::opt<bool> VerifySCEVStrict(
163     "verify-scev-strict", cl::Hidden,
164     cl::desc("Enable stricter verification with -verify-scev is passed"));
165 static cl::opt<bool>
166     VerifySCEVMap("verify-scev-maps", cl::Hidden,
167                   cl::desc("Verify no dangling value in ScalarEvolution's "
168                            "ExprValueMap (slow)"));
169 
170 static cl::opt<bool> VerifyIR(
171     "scev-verify-ir", cl::Hidden,
172     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
173     cl::init(false));
174 
175 static cl::opt<unsigned> MulOpsInlineThreshold(
176     "scev-mulops-inline-threshold", cl::Hidden,
177     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
178     cl::init(32));
179 
180 static cl::opt<unsigned> AddOpsInlineThreshold(
181     "scev-addops-inline-threshold", cl::Hidden,
182     cl::desc("Threshold for inlining addition operands into a SCEV"),
183     cl::init(500));
184 
185 static cl::opt<unsigned> MaxSCEVCompareDepth(
186     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
187     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
188     cl::init(32));
189 
190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
191     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
192     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
193     cl::init(2));
194 
195 static cl::opt<unsigned> MaxValueCompareDepth(
196     "scalar-evolution-max-value-compare-depth", cl::Hidden,
197     cl::desc("Maximum depth of recursive value complexity comparisons"),
198     cl::init(2));
199 
200 static cl::opt<unsigned>
201     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
202                   cl::desc("Maximum depth of recursive arithmetics"),
203                   cl::init(32));
204 
205 static cl::opt<unsigned> MaxConstantEvolvingDepth(
206     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
207     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
208 
209 static cl::opt<unsigned>
210     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
211                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
212                  cl::init(8));
213 
214 static cl::opt<unsigned>
215     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
216                   cl::desc("Max coefficients in AddRec during evolving"),
217                   cl::init(8));
218 
219 static cl::opt<unsigned>
220     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
221                   cl::desc("Size of the expression which is considered huge"),
222                   cl::init(4096));
223 
224 static cl::opt<bool>
225 ClassifyExpressions("scalar-evolution-classify-expressions",
226     cl::Hidden, cl::init(true),
227     cl::desc("When printing analysis, include information on every instruction"));
228 
229 
230 //===----------------------------------------------------------------------===//
231 //                           SCEV class definitions
232 //===----------------------------------------------------------------------===//
233 
234 //===----------------------------------------------------------------------===//
235 // Implementation of the SCEV class.
236 //
237 
238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
239 LLVM_DUMP_METHOD void SCEV::dump() const {
240   print(dbgs());
241   dbgs() << '\n';
242 }
243 #endif
244 
245 void SCEV::print(raw_ostream &OS) const {
246   switch (static_cast<SCEVTypes>(getSCEVType())) {
247   case scConstant:
248     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
249     return;
250   case scTruncate: {
251     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
252     const SCEV *Op = Trunc->getOperand();
253     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
254        << *Trunc->getType() << ")";
255     return;
256   }
257   case scZeroExtend: {
258     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
259     const SCEV *Op = ZExt->getOperand();
260     OS << "(zext " << *Op->getType() << " " << *Op << " to "
261        << *ZExt->getType() << ")";
262     return;
263   }
264   case scSignExtend: {
265     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
266     const SCEV *Op = SExt->getOperand();
267     OS << "(sext " << *Op->getType() << " " << *Op << " to "
268        << *SExt->getType() << ")";
269     return;
270   }
271   case scAddRecExpr: {
272     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
273     OS << "{" << *AR->getOperand(0);
274     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
275       OS << ",+," << *AR->getOperand(i);
276     OS << "}<";
277     if (AR->hasNoUnsignedWrap())
278       OS << "nuw><";
279     if (AR->hasNoSignedWrap())
280       OS << "nsw><";
281     if (AR->hasNoSelfWrap() &&
282         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
283       OS << "nw><";
284     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
285     OS << ">";
286     return;
287   }
288   case scAddExpr:
289   case scMulExpr:
290   case scUMaxExpr:
291   case scSMaxExpr:
292   case scUMinExpr:
293   case scSMinExpr: {
294     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
295     const char *OpStr = nullptr;
296     switch (NAry->getSCEVType()) {
297     case scAddExpr: OpStr = " + "; break;
298     case scMulExpr: OpStr = " * "; break;
299     case scUMaxExpr: OpStr = " umax "; break;
300     case scSMaxExpr: OpStr = " smax "; break;
301     case scUMinExpr:
302       OpStr = " umin ";
303       break;
304     case scSMinExpr:
305       OpStr = " smin ";
306       break;
307     }
308     OS << "(";
309     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
310          I != E; ++I) {
311       OS << **I;
312       if (std::next(I) != E)
313         OS << OpStr;
314     }
315     OS << ")";
316     switch (NAry->getSCEVType()) {
317     case scAddExpr:
318     case scMulExpr:
319       if (NAry->hasNoUnsignedWrap())
320         OS << "<nuw>";
321       if (NAry->hasNoSignedWrap())
322         OS << "<nsw>";
323     }
324     return;
325   }
326   case scUDivExpr: {
327     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
328     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
329     return;
330   }
331   case scUnknown: {
332     const SCEVUnknown *U = cast<SCEVUnknown>(this);
333     Type *AllocTy;
334     if (U->isSizeOf(AllocTy)) {
335       OS << "sizeof(" << *AllocTy << ")";
336       return;
337     }
338     if (U->isAlignOf(AllocTy)) {
339       OS << "alignof(" << *AllocTy << ")";
340       return;
341     }
342 
343     Type *CTy;
344     Constant *FieldNo;
345     if (U->isOffsetOf(CTy, FieldNo)) {
346       OS << "offsetof(" << *CTy << ", ";
347       FieldNo->printAsOperand(OS, false);
348       OS << ")";
349       return;
350     }
351 
352     // Otherwise just print it normally.
353     U->getValue()->printAsOperand(OS, false);
354     return;
355   }
356   case scCouldNotCompute:
357     OS << "***COULDNOTCOMPUTE***";
358     return;
359   }
360   llvm_unreachable("Unknown SCEV kind!");
361 }
362 
363 Type *SCEV::getType() const {
364   switch (static_cast<SCEVTypes>(getSCEVType())) {
365   case scConstant:
366     return cast<SCEVConstant>(this)->getType();
367   case scTruncate:
368   case scZeroExtend:
369   case scSignExtend:
370     return cast<SCEVCastExpr>(this)->getType();
371   case scAddRecExpr:
372   case scMulExpr:
373   case scUMaxExpr:
374   case scSMaxExpr:
375   case scUMinExpr:
376   case scSMinExpr:
377     return cast<SCEVNAryExpr>(this)->getType();
378   case scAddExpr:
379     return cast<SCEVAddExpr>(this)->getType();
380   case scUDivExpr:
381     return cast<SCEVUDivExpr>(this)->getType();
382   case scUnknown:
383     return cast<SCEVUnknown>(this)->getType();
384   case scCouldNotCompute:
385     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
386   }
387   llvm_unreachable("Unknown SCEV kind!");
388 }
389 
390 bool SCEV::isZero() const {
391   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
392     return SC->getValue()->isZero();
393   return false;
394 }
395 
396 bool SCEV::isOne() const {
397   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
398     return SC->getValue()->isOne();
399   return false;
400 }
401 
402 bool SCEV::isAllOnesValue() const {
403   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
404     return SC->getValue()->isMinusOne();
405   return false;
406 }
407 
408 bool SCEV::isNonConstantNegative() const {
409   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
410   if (!Mul) return false;
411 
412   // If there is a constant factor, it will be first.
413   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
414   if (!SC) return false;
415 
416   // Return true if the value is negative, this matches things like (-42 * V).
417   return SC->getAPInt().isNegative();
418 }
419 
420 SCEVCouldNotCompute::SCEVCouldNotCompute() :
421   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
422 
423 bool SCEVCouldNotCompute::classof(const SCEV *S) {
424   return S->getSCEVType() == scCouldNotCompute;
425 }
426 
427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
428   FoldingSetNodeID ID;
429   ID.AddInteger(scConstant);
430   ID.AddPointer(V);
431   void *IP = nullptr;
432   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
433   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
434   UniqueSCEVs.InsertNode(S, IP);
435   return S;
436 }
437 
438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
439   return getConstant(ConstantInt::get(getContext(), Val));
440 }
441 
442 const SCEV *
443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
444   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
445   return getConstant(ConstantInt::get(ITy, V, isSigned));
446 }
447 
448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
449                            unsigned SCEVTy, const SCEV *op, Type *ty)
450   : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {}
451 
452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
453                                    const SCEV *op, Type *ty)
454   : SCEVCastExpr(ID, scTruncate, op, ty) {
455   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
456          "Cannot truncate non-integer value!");
457 }
458 
459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
460                                        const SCEV *op, Type *ty)
461   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
462   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
463          "Cannot zero extend non-integer value!");
464 }
465 
466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
467                                        const SCEV *op, Type *ty)
468   : SCEVCastExpr(ID, scSignExtend, op, ty) {
469   assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
470          "Cannot sign extend non-integer value!");
471 }
472 
473 void SCEVUnknown::deleted() {
474   // Clear this SCEVUnknown from various maps.
475   SE->forgetMemoizedResults(this);
476 
477   // Remove this SCEVUnknown from the uniquing map.
478   SE->UniqueSCEVs.RemoveNode(this);
479 
480   // Release the value.
481   setValPtr(nullptr);
482 }
483 
484 void SCEVUnknown::allUsesReplacedWith(Value *New) {
485   // Remove this SCEVUnknown from the uniquing map.
486   SE->UniqueSCEVs.RemoveNode(this);
487 
488   // Update this SCEVUnknown to point to the new value. This is needed
489   // because there may still be outstanding SCEVs which still point to
490   // this SCEVUnknown.
491   setValPtr(New);
492 }
493 
494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
495   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
496     if (VCE->getOpcode() == Instruction::PtrToInt)
497       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
498         if (CE->getOpcode() == Instruction::GetElementPtr &&
499             CE->getOperand(0)->isNullValue() &&
500             CE->getNumOperands() == 2)
501           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
502             if (CI->isOne()) {
503               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
504                                  ->getElementType();
505               return true;
506             }
507 
508   return false;
509 }
510 
511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
512   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
513     if (VCE->getOpcode() == Instruction::PtrToInt)
514       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
515         if (CE->getOpcode() == Instruction::GetElementPtr &&
516             CE->getOperand(0)->isNullValue()) {
517           Type *Ty =
518             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
519           if (StructType *STy = dyn_cast<StructType>(Ty))
520             if (!STy->isPacked() &&
521                 CE->getNumOperands() == 3 &&
522                 CE->getOperand(1)->isNullValue()) {
523               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
524                 if (CI->isOne() &&
525                     STy->getNumElements() == 2 &&
526                     STy->getElementType(0)->isIntegerTy(1)) {
527                   AllocTy = STy->getElementType(1);
528                   return true;
529                 }
530             }
531         }
532 
533   return false;
534 }
535 
536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
537   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
538     if (VCE->getOpcode() == Instruction::PtrToInt)
539       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
540         if (CE->getOpcode() == Instruction::GetElementPtr &&
541             CE->getNumOperands() == 3 &&
542             CE->getOperand(0)->isNullValue() &&
543             CE->getOperand(1)->isNullValue()) {
544           Type *Ty =
545             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
546           // Ignore vector types here so that ScalarEvolutionExpander doesn't
547           // emit getelementptrs that index into vectors.
548           if (Ty->isStructTy() || Ty->isArrayTy()) {
549             CTy = Ty;
550             FieldNo = CE->getOperand(2);
551             return true;
552           }
553         }
554 
555   return false;
556 }
557 
558 //===----------------------------------------------------------------------===//
559 //                               SCEV Utilities
560 //===----------------------------------------------------------------------===//
561 
562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
564 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
565 /// have been previously deemed to be "equally complex" by this routine.  It is
566 /// intended to avoid exponential time complexity in cases like:
567 ///
568 ///   %a = f(%x, %y)
569 ///   %b = f(%a, %a)
570 ///   %c = f(%b, %b)
571 ///
572 ///   %d = f(%x, %y)
573 ///   %e = f(%d, %d)
574 ///   %f = f(%e, %e)
575 ///
576 ///   CompareValueComplexity(%f, %c)
577 ///
578 /// Since we do not continue running this routine on expression trees once we
579 /// have seen unequal values, there is no need to track them in the cache.
580 static int
581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
582                        const LoopInfo *const LI, Value *LV, Value *RV,
583                        unsigned Depth) {
584   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
585     return 0;
586 
587   // Order pointer values after integer values. This helps SCEVExpander form
588   // GEPs.
589   bool LIsPointer = LV->getType()->isPointerTy(),
590        RIsPointer = RV->getType()->isPointerTy();
591   if (LIsPointer != RIsPointer)
592     return (int)LIsPointer - (int)RIsPointer;
593 
594   // Compare getValueID values.
595   unsigned LID = LV->getValueID(), RID = RV->getValueID();
596   if (LID != RID)
597     return (int)LID - (int)RID;
598 
599   // Sort arguments by their position.
600   if (const auto *LA = dyn_cast<Argument>(LV)) {
601     const auto *RA = cast<Argument>(RV);
602     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
603     return (int)LArgNo - (int)RArgNo;
604   }
605 
606   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
607     const auto *RGV = cast<GlobalValue>(RV);
608 
609     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
610       auto LT = GV->getLinkage();
611       return !(GlobalValue::isPrivateLinkage(LT) ||
612                GlobalValue::isInternalLinkage(LT));
613     };
614 
615     // Use the names to distinguish the two values, but only if the
616     // names are semantically important.
617     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
618       return LGV->getName().compare(RGV->getName());
619   }
620 
621   // For instructions, compare their loop depth, and their operand count.  This
622   // is pretty loose.
623   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
624     const auto *RInst = cast<Instruction>(RV);
625 
626     // Compare loop depths.
627     const BasicBlock *LParent = LInst->getParent(),
628                      *RParent = RInst->getParent();
629     if (LParent != RParent) {
630       unsigned LDepth = LI->getLoopDepth(LParent),
631                RDepth = LI->getLoopDepth(RParent);
632       if (LDepth != RDepth)
633         return (int)LDepth - (int)RDepth;
634     }
635 
636     // Compare the number of operands.
637     unsigned LNumOps = LInst->getNumOperands(),
638              RNumOps = RInst->getNumOperands();
639     if (LNumOps != RNumOps)
640       return (int)LNumOps - (int)RNumOps;
641 
642     for (unsigned Idx : seq(0u, LNumOps)) {
643       int Result =
644           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
645                                  RInst->getOperand(Idx), Depth + 1);
646       if (Result != 0)
647         return Result;
648     }
649   }
650 
651   EqCacheValue.unionSets(LV, RV);
652   return 0;
653 }
654 
655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
656 // than RHS, respectively. A three-way result allows recursive comparisons to be
657 // more efficient.
658 static int CompareSCEVComplexity(
659     EquivalenceClasses<const SCEV *> &EqCacheSCEV,
660     EquivalenceClasses<const Value *> &EqCacheValue,
661     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
662     DominatorTree &DT, unsigned Depth = 0) {
663   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
664   if (LHS == RHS)
665     return 0;
666 
667   // Primarily, sort the SCEVs by their getSCEVType().
668   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
669   if (LType != RType)
670     return (int)LType - (int)RType;
671 
672   if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS))
673     return 0;
674   // Aside from the getSCEVType() ordering, the particular ordering
675   // isn't very important except that it's beneficial to be consistent,
676   // so that (a + b) and (b + a) don't end up as different expressions.
677   switch (static_cast<SCEVTypes>(LType)) {
678   case scUnknown: {
679     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
680     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
681 
682     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
683                                    RU->getValue(), Depth + 1);
684     if (X == 0)
685       EqCacheSCEV.unionSets(LHS, RHS);
686     return X;
687   }
688 
689   case scConstant: {
690     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
691     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
692 
693     // Compare constant values.
694     const APInt &LA = LC->getAPInt();
695     const APInt &RA = RC->getAPInt();
696     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
697     if (LBitWidth != RBitWidth)
698       return (int)LBitWidth - (int)RBitWidth;
699     return LA.ult(RA) ? -1 : 1;
700   }
701 
702   case scAddRecExpr: {
703     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
704     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
705 
706     // There is always a dominance between two recs that are used by one SCEV,
707     // so we can safely sort recs by loop header dominance. We require such
708     // order in getAddExpr.
709     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
710     if (LLoop != RLoop) {
711       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
712       assert(LHead != RHead && "Two loops share the same header?");
713       if (DT.dominates(LHead, RHead))
714         return 1;
715       else
716         assert(DT.dominates(RHead, LHead) &&
717                "No dominance between recurrences used by one SCEV?");
718       return -1;
719     }
720 
721     // Addrec complexity grows with operand count.
722     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
723     if (LNumOps != RNumOps)
724       return (int)LNumOps - (int)RNumOps;
725 
726     // Lexicographically compare.
727     for (unsigned i = 0; i != LNumOps; ++i) {
728       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
729                                     LA->getOperand(i), RA->getOperand(i), DT,
730                                     Depth + 1);
731       if (X != 0)
732         return X;
733     }
734     EqCacheSCEV.unionSets(LHS, RHS);
735     return 0;
736   }
737 
738   case scAddExpr:
739   case scMulExpr:
740   case scSMaxExpr:
741   case scUMaxExpr:
742   case scSMinExpr:
743   case scUMinExpr: {
744     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
745     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
746 
747     // Lexicographically compare n-ary expressions.
748     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
749     if (LNumOps != RNumOps)
750       return (int)LNumOps - (int)RNumOps;
751 
752     for (unsigned i = 0; i != LNumOps; ++i) {
753       int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
754                                     LC->getOperand(i), RC->getOperand(i), DT,
755                                     Depth + 1);
756       if (X != 0)
757         return X;
758     }
759     EqCacheSCEV.unionSets(LHS, RHS);
760     return 0;
761   }
762 
763   case scUDivExpr: {
764     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
765     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
766 
767     // Lexicographically compare udiv expressions.
768     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
769                                   RC->getLHS(), DT, Depth + 1);
770     if (X != 0)
771       return X;
772     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
773                               RC->getRHS(), DT, Depth + 1);
774     if (X == 0)
775       EqCacheSCEV.unionSets(LHS, RHS);
776     return X;
777   }
778 
779   case scTruncate:
780   case scZeroExtend:
781   case scSignExtend: {
782     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
783     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
784 
785     // Compare cast expressions by operand.
786     int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
787                                   LC->getOperand(), RC->getOperand(), DT,
788                                   Depth + 1);
789     if (X == 0)
790       EqCacheSCEV.unionSets(LHS, RHS);
791     return X;
792   }
793 
794   case scCouldNotCompute:
795     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
796   }
797   llvm_unreachable("Unknown SCEV kind!");
798 }
799 
800 /// Given a list of SCEV objects, order them by their complexity, and group
801 /// objects of the same complexity together by value.  When this routine is
802 /// finished, we know that any duplicates in the vector are consecutive and that
803 /// complexity is monotonically increasing.
804 ///
805 /// Note that we go take special precautions to ensure that we get deterministic
806 /// results from this routine.  In other words, we don't want the results of
807 /// this to depend on where the addresses of various SCEV objects happened to
808 /// land in memory.
809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
810                               LoopInfo *LI, DominatorTree &DT) {
811   if (Ops.size() < 2) return;  // Noop
812 
813   EquivalenceClasses<const SCEV *> EqCacheSCEV;
814   EquivalenceClasses<const Value *> EqCacheValue;
815   if (Ops.size() == 2) {
816     // This is the common case, which also happens to be trivially simple.
817     // Special case it.
818     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
819     if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0)
820       std::swap(LHS, RHS);
821     return;
822   }
823 
824   // Do the rough sort by complexity.
825   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
826     return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) <
827            0;
828   });
829 
830   // Now that we are sorted by complexity, group elements of the same
831   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
832   // be extremely short in practice.  Note that we take this approach because we
833   // do not want to depend on the addresses of the objects we are grouping.
834   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
835     const SCEV *S = Ops[i];
836     unsigned Complexity = S->getSCEVType();
837 
838     // If there are any objects of the same complexity and same value as this
839     // one, group them.
840     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
841       if (Ops[j] == S) { // Found a duplicate.
842         // Move it to immediately after i'th element.
843         std::swap(Ops[i+1], Ops[j]);
844         ++i;   // no need to rescan it.
845         if (i == e-2) return;  // Done!
846       }
847     }
848   }
849 }
850 
851 // Returns the size of the SCEV S.
852 static inline int sizeOfSCEV(const SCEV *S) {
853   struct FindSCEVSize {
854     int Size = 0;
855 
856     FindSCEVSize() = default;
857 
858     bool follow(const SCEV *S) {
859       ++Size;
860       // Keep looking at all operands of S.
861       return true;
862     }
863 
864     bool isDone() const {
865       return false;
866     }
867   };
868 
869   FindSCEVSize F;
870   SCEVTraversal<FindSCEVSize> ST(F);
871   ST.visitAll(S);
872   return F.Size;
873 }
874 
875 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
876 /// least HugeExprThreshold nodes).
877 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
878   return any_of(Ops, [](const SCEV *S) {
879     return S->getExpressionSize() >= HugeExprThreshold;
880   });
881 }
882 
883 namespace {
884 
885 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
886 public:
887   // Computes the Quotient and Remainder of the division of Numerator by
888   // Denominator.
889   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
890                      const SCEV *Denominator, const SCEV **Quotient,
891                      const SCEV **Remainder) {
892     assert(Numerator && Denominator && "Uninitialized SCEV");
893 
894     SCEVDivision D(SE, Numerator, Denominator);
895 
896     // Check for the trivial case here to avoid having to check for it in the
897     // rest of the code.
898     if (Numerator == Denominator) {
899       *Quotient = D.One;
900       *Remainder = D.Zero;
901       return;
902     }
903 
904     if (Numerator->isZero()) {
905       *Quotient = D.Zero;
906       *Remainder = D.Zero;
907       return;
908     }
909 
910     // A simple case when N/1. The quotient is N.
911     if (Denominator->isOne()) {
912       *Quotient = Numerator;
913       *Remainder = D.Zero;
914       return;
915     }
916 
917     // Split the Denominator when it is a product.
918     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
919       const SCEV *Q, *R;
920       *Quotient = Numerator;
921       for (const SCEV *Op : T->operands()) {
922         divide(SE, *Quotient, Op, &Q, &R);
923         *Quotient = Q;
924 
925         // Bail out when the Numerator is not divisible by one of the terms of
926         // the Denominator.
927         if (!R->isZero()) {
928           *Quotient = D.Zero;
929           *Remainder = Numerator;
930           return;
931         }
932       }
933       *Remainder = D.Zero;
934       return;
935     }
936 
937     D.visit(Numerator);
938     *Quotient = D.Quotient;
939     *Remainder = D.Remainder;
940   }
941 
942   // Except in the trivial case described above, we do not know how to divide
943   // Expr by Denominator for the following functions with empty implementation.
944   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
945   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
946   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
947   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
948   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
949   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
950   void visitSMinExpr(const SCEVSMinExpr *Numerator) {}
951   void visitUMinExpr(const SCEVUMinExpr *Numerator) {}
952   void visitUnknown(const SCEVUnknown *Numerator) {}
953   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
954 
955   void visitConstant(const SCEVConstant *Numerator) {
956     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
957       APInt NumeratorVal = Numerator->getAPInt();
958       APInt DenominatorVal = D->getAPInt();
959       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
960       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
961 
962       if (NumeratorBW > DenominatorBW)
963         DenominatorVal = DenominatorVal.sext(NumeratorBW);
964       else if (NumeratorBW < DenominatorBW)
965         NumeratorVal = NumeratorVal.sext(DenominatorBW);
966 
967       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
968       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
969       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
970       Quotient = SE.getConstant(QuotientVal);
971       Remainder = SE.getConstant(RemainderVal);
972       return;
973     }
974   }
975 
976   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
977     const SCEV *StartQ, *StartR, *StepQ, *StepR;
978     if (!Numerator->isAffine())
979       return cannotDivide(Numerator);
980     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
981     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
982     // Bail out if the types do not match.
983     Type *Ty = Denominator->getType();
984     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
985         Ty != StepQ->getType() || Ty != StepR->getType())
986       return cannotDivide(Numerator);
987     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
988                                 Numerator->getNoWrapFlags());
989     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
990                                  Numerator->getNoWrapFlags());
991   }
992 
993   void visitAddExpr(const SCEVAddExpr *Numerator) {
994     SmallVector<const SCEV *, 2> Qs, Rs;
995     Type *Ty = Denominator->getType();
996 
997     for (const SCEV *Op : Numerator->operands()) {
998       const SCEV *Q, *R;
999       divide(SE, Op, Denominator, &Q, &R);
1000 
1001       // Bail out if types do not match.
1002       if (Ty != Q->getType() || Ty != R->getType())
1003         return cannotDivide(Numerator);
1004 
1005       Qs.push_back(Q);
1006       Rs.push_back(R);
1007     }
1008 
1009     if (Qs.size() == 1) {
1010       Quotient = Qs[0];
1011       Remainder = Rs[0];
1012       return;
1013     }
1014 
1015     Quotient = SE.getAddExpr(Qs);
1016     Remainder = SE.getAddExpr(Rs);
1017   }
1018 
1019   void visitMulExpr(const SCEVMulExpr *Numerator) {
1020     SmallVector<const SCEV *, 2> Qs;
1021     Type *Ty = Denominator->getType();
1022 
1023     bool FoundDenominatorTerm = false;
1024     for (const SCEV *Op : Numerator->operands()) {
1025       // Bail out if types do not match.
1026       if (Ty != Op->getType())
1027         return cannotDivide(Numerator);
1028 
1029       if (FoundDenominatorTerm) {
1030         Qs.push_back(Op);
1031         continue;
1032       }
1033 
1034       // Check whether Denominator divides one of the product operands.
1035       const SCEV *Q, *R;
1036       divide(SE, Op, Denominator, &Q, &R);
1037       if (!R->isZero()) {
1038         Qs.push_back(Op);
1039         continue;
1040       }
1041 
1042       // Bail out if types do not match.
1043       if (Ty != Q->getType())
1044         return cannotDivide(Numerator);
1045 
1046       FoundDenominatorTerm = true;
1047       Qs.push_back(Q);
1048     }
1049 
1050     if (FoundDenominatorTerm) {
1051       Remainder = Zero;
1052       if (Qs.size() == 1)
1053         Quotient = Qs[0];
1054       else
1055         Quotient = SE.getMulExpr(Qs);
1056       return;
1057     }
1058 
1059     if (!isa<SCEVUnknown>(Denominator))
1060       return cannotDivide(Numerator);
1061 
1062     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
1063     ValueToValueMap RewriteMap;
1064     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1065         cast<SCEVConstant>(Zero)->getValue();
1066     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1067 
1068     if (Remainder->isZero()) {
1069       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
1070       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
1071           cast<SCEVConstant>(One)->getValue();
1072       Quotient =
1073           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
1074       return;
1075     }
1076 
1077     // Quotient is (Numerator - Remainder) divided by Denominator.
1078     const SCEV *Q, *R;
1079     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
1080     // This SCEV does not seem to simplify: fail the division here.
1081     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
1082       return cannotDivide(Numerator);
1083     divide(SE, Diff, Denominator, &Q, &R);
1084     if (R != Zero)
1085       return cannotDivide(Numerator);
1086     Quotient = Q;
1087   }
1088 
1089 private:
1090   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
1091                const SCEV *Denominator)
1092       : SE(S), Denominator(Denominator) {
1093     Zero = SE.getZero(Denominator->getType());
1094     One = SE.getOne(Denominator->getType());
1095 
1096     // We generally do not know how to divide Expr by Denominator. We
1097     // initialize the division to a "cannot divide" state to simplify the rest
1098     // of the code.
1099     cannotDivide(Numerator);
1100   }
1101 
1102   // Convenience function for giving up on the division. We set the quotient to
1103   // be equal to zero and the remainder to be equal to the numerator.
1104   void cannotDivide(const SCEV *Numerator) {
1105     Quotient = Zero;
1106     Remainder = Numerator;
1107   }
1108 
1109   ScalarEvolution &SE;
1110   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
1111 };
1112 
1113 } // end anonymous namespace
1114 
1115 //===----------------------------------------------------------------------===//
1116 //                      Simple SCEV method implementations
1117 //===----------------------------------------------------------------------===//
1118 
1119 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1120 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1121                                        ScalarEvolution &SE,
1122                                        Type *ResultTy) {
1123   // Handle the simplest case efficiently.
1124   if (K == 1)
1125     return SE.getTruncateOrZeroExtend(It, ResultTy);
1126 
1127   // We are using the following formula for BC(It, K):
1128   //
1129   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1130   //
1131   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1132   // overflow.  Hence, we must assure that the result of our computation is
1133   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1134   // safe in modular arithmetic.
1135   //
1136   // However, this code doesn't use exactly that formula; the formula it uses
1137   // is something like the following, where T is the number of factors of 2 in
1138   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1139   // exponentiation:
1140   //
1141   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1142   //
1143   // This formula is trivially equivalent to the previous formula.  However,
1144   // this formula can be implemented much more efficiently.  The trick is that
1145   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1146   // arithmetic.  To do exact division in modular arithmetic, all we have
1147   // to do is multiply by the inverse.  Therefore, this step can be done at
1148   // width W.
1149   //
1150   // The next issue is how to safely do the division by 2^T.  The way this
1151   // is done is by doing the multiplication step at a width of at least W + T
1152   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1153   // when we perform the division by 2^T (which is equivalent to a right shift
1154   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1155   // truncated out after the division by 2^T.
1156   //
1157   // In comparison to just directly using the first formula, this technique
1158   // is much more efficient; using the first formula requires W * K bits,
1159   // but this formula less than W + K bits. Also, the first formula requires
1160   // a division step, whereas this formula only requires multiplies and shifts.
1161   //
1162   // It doesn't matter whether the subtraction step is done in the calculation
1163   // width or the input iteration count's width; if the subtraction overflows,
1164   // the result must be zero anyway.  We prefer here to do it in the width of
1165   // the induction variable because it helps a lot for certain cases; CodeGen
1166   // isn't smart enough to ignore the overflow, which leads to much less
1167   // efficient code if the width of the subtraction is wider than the native
1168   // register width.
1169   //
1170   // (It's possible to not widen at all by pulling out factors of 2 before
1171   // the multiplication; for example, K=2 can be calculated as
1172   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1173   // extra arithmetic, so it's not an obvious win, and it gets
1174   // much more complicated for K > 3.)
1175 
1176   // Protection from insane SCEVs; this bound is conservative,
1177   // but it probably doesn't matter.
1178   if (K > 1000)
1179     return SE.getCouldNotCompute();
1180 
1181   unsigned W = SE.getTypeSizeInBits(ResultTy);
1182 
1183   // Calculate K! / 2^T and T; we divide out the factors of two before
1184   // multiplying for calculating K! / 2^T to avoid overflow.
1185   // Other overflow doesn't matter because we only care about the bottom
1186   // W bits of the result.
1187   APInt OddFactorial(W, 1);
1188   unsigned T = 1;
1189   for (unsigned i = 3; i <= K; ++i) {
1190     APInt Mult(W, i);
1191     unsigned TwoFactors = Mult.countTrailingZeros();
1192     T += TwoFactors;
1193     Mult.lshrInPlace(TwoFactors);
1194     OddFactorial *= Mult;
1195   }
1196 
1197   // We need at least W + T bits for the multiplication step
1198   unsigned CalculationBits = W + T;
1199 
1200   // Calculate 2^T, at width T+W.
1201   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1202 
1203   // Calculate the multiplicative inverse of K! / 2^T;
1204   // this multiplication factor will perform the exact division by
1205   // K! / 2^T.
1206   APInt Mod = APInt::getSignedMinValue(W+1);
1207   APInt MultiplyFactor = OddFactorial.zext(W+1);
1208   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1209   MultiplyFactor = MultiplyFactor.trunc(W);
1210 
1211   // Calculate the product, at width T+W
1212   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1213                                                       CalculationBits);
1214   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1215   for (unsigned i = 1; i != K; ++i) {
1216     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1217     Dividend = SE.getMulExpr(Dividend,
1218                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1219   }
1220 
1221   // Divide by 2^T
1222   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1223 
1224   // Truncate the result, and divide by K! / 2^T.
1225 
1226   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1227                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1228 }
1229 
1230 /// Return the value of this chain of recurrences at the specified iteration
1231 /// number.  We can evaluate this recurrence by multiplying each element in the
1232 /// chain by the binomial coefficient corresponding to it.  In other words, we
1233 /// can evaluate {A,+,B,+,C,+,D} as:
1234 ///
1235 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1236 ///
1237 /// where BC(It, k) stands for binomial coefficient.
1238 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1239                                                 ScalarEvolution &SE) const {
1240   const SCEV *Result = getStart();
1241   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1242     // The computation is correct in the face of overflow provided that the
1243     // multiplication is performed _after_ the evaluation of the binomial
1244     // coefficient.
1245     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1246     if (isa<SCEVCouldNotCompute>(Coeff))
1247       return Coeff;
1248 
1249     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1250   }
1251   return Result;
1252 }
1253 
1254 //===----------------------------------------------------------------------===//
1255 //                    SCEV Expression folder implementations
1256 //===----------------------------------------------------------------------===//
1257 
1258 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1259                                              unsigned Depth) {
1260   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1261          "This is not a truncating conversion!");
1262   assert(isSCEVable(Ty) &&
1263          "This is not a conversion to a SCEVable type!");
1264   Ty = getEffectiveSCEVType(Ty);
1265 
1266   FoldingSetNodeID ID;
1267   ID.AddInteger(scTruncate);
1268   ID.AddPointer(Op);
1269   ID.AddPointer(Ty);
1270   void *IP = nullptr;
1271   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1272 
1273   // Fold if the operand is constant.
1274   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1275     return getConstant(
1276       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1277 
1278   // trunc(trunc(x)) --> trunc(x)
1279   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1280     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1281 
1282   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1283   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1284     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1285 
1286   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1287   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1288     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1289 
1290   if (Depth > MaxCastDepth) {
1291     SCEV *S =
1292         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1293     UniqueSCEVs.InsertNode(S, IP);
1294     addToLoopUseLists(S);
1295     return S;
1296   }
1297 
1298   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1299   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1300   // if after transforming we have at most one truncate, not counting truncates
1301   // that replace other casts.
1302   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1303     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1304     SmallVector<const SCEV *, 4> Operands;
1305     unsigned numTruncs = 0;
1306     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1307          ++i) {
1308       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1309       if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S))
1310         numTruncs++;
1311       Operands.push_back(S);
1312     }
1313     if (numTruncs < 2) {
1314       if (isa<SCEVAddExpr>(Op))
1315         return getAddExpr(Operands);
1316       else if (isa<SCEVMulExpr>(Op))
1317         return getMulExpr(Operands);
1318       else
1319         llvm_unreachable("Unexpected SCEV type for Op.");
1320     }
1321     // Although we checked in the beginning that ID is not in the cache, it is
1322     // possible that during recursion and different modification ID was inserted
1323     // into the cache. So if we find it, just return it.
1324     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1325       return S;
1326   }
1327 
1328   // If the input value is a chrec scev, truncate the chrec's operands.
1329   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1330     SmallVector<const SCEV *, 4> Operands;
1331     for (const SCEV *Op : AddRec->operands())
1332       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1333     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1334   }
1335 
1336   // The cast wasn't folded; create an explicit cast node. We can reuse
1337   // the existing insert position since if we get here, we won't have
1338   // made any changes which would invalidate it.
1339   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1340                                                  Op, Ty);
1341   UniqueSCEVs.InsertNode(S, IP);
1342   addToLoopUseLists(S);
1343   return S;
1344 }
1345 
1346 // Get the limit of a recurrence such that incrementing by Step cannot cause
1347 // signed overflow as long as the value of the recurrence within the
1348 // loop does not exceed this limit before incrementing.
1349 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1350                                                  ICmpInst::Predicate *Pred,
1351                                                  ScalarEvolution *SE) {
1352   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1353   if (SE->isKnownPositive(Step)) {
1354     *Pred = ICmpInst::ICMP_SLT;
1355     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1356                            SE->getSignedRangeMax(Step));
1357   }
1358   if (SE->isKnownNegative(Step)) {
1359     *Pred = ICmpInst::ICMP_SGT;
1360     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1361                            SE->getSignedRangeMin(Step));
1362   }
1363   return nullptr;
1364 }
1365 
1366 // Get the limit of a recurrence such that incrementing by Step cannot cause
1367 // unsigned overflow as long as the value of the recurrence within the loop does
1368 // not exceed this limit before incrementing.
1369 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1370                                                    ICmpInst::Predicate *Pred,
1371                                                    ScalarEvolution *SE) {
1372   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1373   *Pred = ICmpInst::ICMP_ULT;
1374 
1375   return SE->getConstant(APInt::getMinValue(BitWidth) -
1376                          SE->getUnsignedRangeMax(Step));
1377 }
1378 
1379 namespace {
1380 
1381 struct ExtendOpTraitsBase {
1382   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1383                                                           unsigned);
1384 };
1385 
1386 // Used to make code generic over signed and unsigned overflow.
1387 template <typename ExtendOp> struct ExtendOpTraits {
1388   // Members present:
1389   //
1390   // static const SCEV::NoWrapFlags WrapType;
1391   //
1392   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1393   //
1394   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1395   //                                           ICmpInst::Predicate *Pred,
1396   //                                           ScalarEvolution *SE);
1397 };
1398 
1399 template <>
1400 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1401   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1402 
1403   static const GetExtendExprTy GetExtendExpr;
1404 
1405   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1406                                              ICmpInst::Predicate *Pred,
1407                                              ScalarEvolution *SE) {
1408     return getSignedOverflowLimitForStep(Step, Pred, SE);
1409   }
1410 };
1411 
1412 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1413     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1414 
1415 template <>
1416 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1417   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1418 
1419   static const GetExtendExprTy GetExtendExpr;
1420 
1421   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1422                                              ICmpInst::Predicate *Pred,
1423                                              ScalarEvolution *SE) {
1424     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1425   }
1426 };
1427 
1428 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1429     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1430 
1431 } // end anonymous namespace
1432 
1433 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1434 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1435 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1436 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1437 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1438 // expression "Step + sext/zext(PreIncAR)" is congruent with
1439 // "sext/zext(PostIncAR)"
1440 template <typename ExtendOpTy>
1441 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1442                                         ScalarEvolution *SE, unsigned Depth) {
1443   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1444   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1445 
1446   const Loop *L = AR->getLoop();
1447   const SCEV *Start = AR->getStart();
1448   const SCEV *Step = AR->getStepRecurrence(*SE);
1449 
1450   // Check for a simple looking step prior to loop entry.
1451   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1452   if (!SA)
1453     return nullptr;
1454 
1455   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1456   // subtraction is expensive. For this purpose, perform a quick and dirty
1457   // difference, by checking for Step in the operand list.
1458   SmallVector<const SCEV *, 4> DiffOps;
1459   for (const SCEV *Op : SA->operands())
1460     if (Op != Step)
1461       DiffOps.push_back(Op);
1462 
1463   if (DiffOps.size() == SA->getNumOperands())
1464     return nullptr;
1465 
1466   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1467   // `Step`:
1468 
1469   // 1. NSW/NUW flags on the step increment.
1470   auto PreStartFlags =
1471     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1472   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1473   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1474       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1475 
1476   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1477   // "S+X does not sign/unsign-overflow".
1478   //
1479 
1480   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1481   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1482       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1483     return PreStart;
1484 
1485   // 2. Direct overflow check on the step operation's expression.
1486   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1487   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1488   const SCEV *OperandExtendedStart =
1489       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1490                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1491   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1492     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1493       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1494       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1495       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1496       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1497     }
1498     return PreStart;
1499   }
1500 
1501   // 3. Loop precondition.
1502   ICmpInst::Predicate Pred;
1503   const SCEV *OverflowLimit =
1504       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1505 
1506   if (OverflowLimit &&
1507       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1508     return PreStart;
1509 
1510   return nullptr;
1511 }
1512 
1513 // Get the normalized zero or sign extended expression for this AddRec's Start.
1514 template <typename ExtendOpTy>
1515 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1516                                         ScalarEvolution *SE,
1517                                         unsigned Depth) {
1518   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1519 
1520   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1521   if (!PreStart)
1522     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1523 
1524   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1525                                              Depth),
1526                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1527 }
1528 
1529 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1530 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1531 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1532 //
1533 // Formally:
1534 //
1535 //     {S,+,X} == {S-T,+,X} + T
1536 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1537 //
1538 // If ({S-T,+,X} + T) does not overflow  ... (1)
1539 //
1540 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1541 //
1542 // If {S-T,+,X} does not overflow  ... (2)
1543 //
1544 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1545 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1546 //
1547 // If (S-T)+T does not overflow  ... (3)
1548 //
1549 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1550 //      == {Ext(S),+,Ext(X)} == LHS
1551 //
1552 // Thus, if (1), (2) and (3) are true for some T, then
1553 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1554 //
1555 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1556 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1557 // to check for (1) and (2).
1558 //
1559 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1560 // is `Delta` (defined below).
1561 template <typename ExtendOpTy>
1562 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1563                                                 const SCEV *Step,
1564                                                 const Loop *L) {
1565   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1566 
1567   // We restrict `Start` to a constant to prevent SCEV from spending too much
1568   // time here.  It is correct (but more expensive) to continue with a
1569   // non-constant `Start` and do a general SCEV subtraction to compute
1570   // `PreStart` below.
1571   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1572   if (!StartC)
1573     return false;
1574 
1575   APInt StartAI = StartC->getAPInt();
1576 
1577   for (unsigned Delta : {-2, -1, 1, 2}) {
1578     const SCEV *PreStart = getConstant(StartAI - Delta);
1579 
1580     FoldingSetNodeID ID;
1581     ID.AddInteger(scAddRecExpr);
1582     ID.AddPointer(PreStart);
1583     ID.AddPointer(Step);
1584     ID.AddPointer(L);
1585     void *IP = nullptr;
1586     const auto *PreAR =
1587       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1588 
1589     // Give up if we don't already have the add recurrence we need because
1590     // actually constructing an add recurrence is relatively expensive.
1591     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1592       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1593       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1594       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1595           DeltaS, &Pred, this);
1596       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1597         return true;
1598     }
1599   }
1600 
1601   return false;
1602 }
1603 
1604 // Finds an integer D for an expression (C + x + y + ...) such that the top
1605 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1606 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1607 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1608 // the (C + x + y + ...) expression is \p WholeAddExpr.
1609 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1610                                             const SCEVConstant *ConstantTerm,
1611                                             const SCEVAddExpr *WholeAddExpr) {
1612   const APInt C = ConstantTerm->getAPInt();
1613   const unsigned BitWidth = C.getBitWidth();
1614   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1615   uint32_t TZ = BitWidth;
1616   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1617     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1618   if (TZ) {
1619     // Set D to be as many least significant bits of C as possible while still
1620     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1621     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1622   }
1623   return APInt(BitWidth, 0);
1624 }
1625 
1626 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1627 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1628 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1629 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1630 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1631                                             const APInt &ConstantStart,
1632                                             const SCEV *Step) {
1633   const unsigned BitWidth = ConstantStart.getBitWidth();
1634   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1635   if (TZ)
1636     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1637                          : ConstantStart;
1638   return APInt(BitWidth, 0);
1639 }
1640 
1641 const SCEV *
1642 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1643   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1644          "This is not an extending conversion!");
1645   assert(isSCEVable(Ty) &&
1646          "This is not a conversion to a SCEVable type!");
1647   Ty = getEffectiveSCEVType(Ty);
1648 
1649   // Fold if the operand is constant.
1650   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1651     return getConstant(
1652       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1653 
1654   // zext(zext(x)) --> zext(x)
1655   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1656     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1657 
1658   // Before doing any expensive analysis, check to see if we've already
1659   // computed a SCEV for this Op and Ty.
1660   FoldingSetNodeID ID;
1661   ID.AddInteger(scZeroExtend);
1662   ID.AddPointer(Op);
1663   ID.AddPointer(Ty);
1664   void *IP = nullptr;
1665   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1666   if (Depth > MaxCastDepth) {
1667     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1668                                                      Op, Ty);
1669     UniqueSCEVs.InsertNode(S, IP);
1670     addToLoopUseLists(S);
1671     return S;
1672   }
1673 
1674   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1675   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1676     // It's possible the bits taken off by the truncate were all zero bits. If
1677     // so, we should be able to simplify this further.
1678     const SCEV *X = ST->getOperand();
1679     ConstantRange CR = getUnsignedRange(X);
1680     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1681     unsigned NewBits = getTypeSizeInBits(Ty);
1682     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1683             CR.zextOrTrunc(NewBits)))
1684       return getTruncateOrZeroExtend(X, Ty, Depth);
1685   }
1686 
1687   // If the input value is a chrec scev, and we can prove that the value
1688   // did not overflow the old, smaller, value, we can zero extend all of the
1689   // operands (often constants).  This allows analysis of something like
1690   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1691   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1692     if (AR->isAffine()) {
1693       const SCEV *Start = AR->getStart();
1694       const SCEV *Step = AR->getStepRecurrence(*this);
1695       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1696       const Loop *L = AR->getLoop();
1697 
1698       if (!AR->hasNoUnsignedWrap()) {
1699         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1700         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1701       }
1702 
1703       // If we have special knowledge that this addrec won't overflow,
1704       // we don't need to do any further analysis.
1705       if (AR->hasNoUnsignedWrap())
1706         return getAddRecExpr(
1707             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1708             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1709 
1710       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1711       // Note that this serves two purposes: It filters out loops that are
1712       // simply not analyzable, and it covers the case where this code is
1713       // being called from within backedge-taken count analysis, such that
1714       // attempting to ask for the backedge-taken count would likely result
1715       // in infinite recursion. In the later case, the analysis code will
1716       // cope with a conservative value, and it will take care to purge
1717       // that value once it has finished.
1718       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1719       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1720         // Manually compute the final value for AR, checking for
1721         // overflow.
1722 
1723         // Check whether the backedge-taken count can be losslessly casted to
1724         // the addrec's type. The count is always unsigned.
1725         const SCEV *CastedMaxBECount =
1726             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1727         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1728             CastedMaxBECount, MaxBECount->getType(), Depth);
1729         if (MaxBECount == RecastedMaxBECount) {
1730           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1731           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1732           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1733                                         SCEV::FlagAnyWrap, Depth + 1);
1734           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1735                                                           SCEV::FlagAnyWrap,
1736                                                           Depth + 1),
1737                                                WideTy, Depth + 1);
1738           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1739           const SCEV *WideMaxBECount =
1740             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1741           const SCEV *OperandExtendedAdd =
1742             getAddExpr(WideStart,
1743                        getMulExpr(WideMaxBECount,
1744                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1745                                   SCEV::FlagAnyWrap, Depth + 1),
1746                        SCEV::FlagAnyWrap, Depth + 1);
1747           if (ZAdd == OperandExtendedAdd) {
1748             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1749             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1750             // Return the expression with the addrec on the outside.
1751             return getAddRecExpr(
1752                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1753                                                          Depth + 1),
1754                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1755                 AR->getNoWrapFlags());
1756           }
1757           // Similar to above, only this time treat the step value as signed.
1758           // This covers loops that count down.
1759           OperandExtendedAdd =
1760             getAddExpr(WideStart,
1761                        getMulExpr(WideMaxBECount,
1762                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1763                                   SCEV::FlagAnyWrap, Depth + 1),
1764                        SCEV::FlagAnyWrap, Depth + 1);
1765           if (ZAdd == OperandExtendedAdd) {
1766             // Cache knowledge of AR NW, which is propagated to this AddRec.
1767             // Negative step causes unsigned wrap, but it still can't self-wrap.
1768             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1769             // Return the expression with the addrec on the outside.
1770             return getAddRecExpr(
1771                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1772                                                          Depth + 1),
1773                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1774                 AR->getNoWrapFlags());
1775           }
1776         }
1777       }
1778 
1779       // Normally, in the cases we can prove no-overflow via a
1780       // backedge guarding condition, we can also compute a backedge
1781       // taken count for the loop.  The exceptions are assumptions and
1782       // guards present in the loop -- SCEV is not great at exploiting
1783       // these to compute max backedge taken counts, but can still use
1784       // these to prove lack of overflow.  Use this fact to avoid
1785       // doing extra work that may not pay off.
1786       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1787           !AC.assumptions().empty()) {
1788         // If the backedge is guarded by a comparison with the pre-inc
1789         // value the addrec is safe. Also, if the entry is guarded by
1790         // a comparison with the start value and the backedge is
1791         // guarded by a comparison with the post-inc value, the addrec
1792         // is safe.
1793         if (isKnownPositive(Step)) {
1794           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1795                                       getUnsignedRangeMax(Step));
1796           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1797               isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
1798             // Cache knowledge of AR NUW, which is propagated to this
1799             // AddRec.
1800             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1801             // Return the expression with the addrec on the outside.
1802             return getAddRecExpr(
1803                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1804                                                          Depth + 1),
1805                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1806                 AR->getNoWrapFlags());
1807           }
1808         } else if (isKnownNegative(Step)) {
1809           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1810                                       getSignedRangeMin(Step));
1811           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1812               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1813             // Cache knowledge of AR NW, which is propagated to this
1814             // AddRec.  Negative step causes unsigned wrap, but it
1815             // still can't self-wrap.
1816             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1817             // Return the expression with the addrec on the outside.
1818             return getAddRecExpr(
1819                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1820                                                          Depth + 1),
1821                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1822                 AR->getNoWrapFlags());
1823           }
1824         }
1825       }
1826 
1827       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1828       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1829       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1830       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1831         const APInt &C = SC->getAPInt();
1832         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1833         if (D != 0) {
1834           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1835           const SCEV *SResidual =
1836               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1837           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1838           return getAddExpr(SZExtD, SZExtR,
1839                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1840                             Depth + 1);
1841         }
1842       }
1843 
1844       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1845         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1846         return getAddRecExpr(
1847             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1848             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1849       }
1850     }
1851 
1852   // zext(A % B) --> zext(A) % zext(B)
1853   {
1854     const SCEV *LHS;
1855     const SCEV *RHS;
1856     if (matchURem(Op, LHS, RHS))
1857       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1858                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1859   }
1860 
1861   // zext(A / B) --> zext(A) / zext(B).
1862   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1863     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1864                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1865 
1866   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1867     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1868     if (SA->hasNoUnsignedWrap()) {
1869       // If the addition does not unsign overflow then we can, by definition,
1870       // commute the zero extension with the addition operation.
1871       SmallVector<const SCEV *, 4> Ops;
1872       for (const auto *Op : SA->operands())
1873         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1874       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1875     }
1876 
1877     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1878     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1879     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1880     //
1881     // Often address arithmetics contain expressions like
1882     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1883     // This transformation is useful while proving that such expressions are
1884     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1885     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1886       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1887       if (D != 0) {
1888         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1889         const SCEV *SResidual =
1890             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1891         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1892         return getAddExpr(SZExtD, SZExtR,
1893                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1894                           Depth + 1);
1895       }
1896     }
1897   }
1898 
1899   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1900     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1901     if (SM->hasNoUnsignedWrap()) {
1902       // If the multiply does not unsign overflow then we can, by definition,
1903       // commute the zero extension with the multiply operation.
1904       SmallVector<const SCEV *, 4> Ops;
1905       for (const auto *Op : SM->operands())
1906         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1907       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1908     }
1909 
1910     // zext(2^K * (trunc X to iN)) to iM ->
1911     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1912     //
1913     // Proof:
1914     //
1915     //     zext(2^K * (trunc X to iN)) to iM
1916     //   = zext((trunc X to iN) << K) to iM
1917     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1918     //     (because shl removes the top K bits)
1919     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1920     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1921     //
1922     if (SM->getNumOperands() == 2)
1923       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1924         if (MulLHS->getAPInt().isPowerOf2())
1925           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1926             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1927                                MulLHS->getAPInt().logBase2();
1928             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1929             return getMulExpr(
1930                 getZeroExtendExpr(MulLHS, Ty),
1931                 getZeroExtendExpr(
1932                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1933                 SCEV::FlagNUW, Depth + 1);
1934           }
1935   }
1936 
1937   // The cast wasn't folded; create an explicit cast node.
1938   // Recompute the insert position, as it may have been invalidated.
1939   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1940   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1941                                                    Op, Ty);
1942   UniqueSCEVs.InsertNode(S, IP);
1943   addToLoopUseLists(S);
1944   return S;
1945 }
1946 
1947 const SCEV *
1948 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1949   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1950          "This is not an extending conversion!");
1951   assert(isSCEVable(Ty) &&
1952          "This is not a conversion to a SCEVable type!");
1953   Ty = getEffectiveSCEVType(Ty);
1954 
1955   // Fold if the operand is constant.
1956   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1957     return getConstant(
1958       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1959 
1960   // sext(sext(x)) --> sext(x)
1961   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1962     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1963 
1964   // sext(zext(x)) --> zext(x)
1965   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1966     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1967 
1968   // Before doing any expensive analysis, check to see if we've already
1969   // computed a SCEV for this Op and Ty.
1970   FoldingSetNodeID ID;
1971   ID.AddInteger(scSignExtend);
1972   ID.AddPointer(Op);
1973   ID.AddPointer(Ty);
1974   void *IP = nullptr;
1975   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1976   // Limit recursion depth.
1977   if (Depth > MaxCastDepth) {
1978     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1979                                                      Op, Ty);
1980     UniqueSCEVs.InsertNode(S, IP);
1981     addToLoopUseLists(S);
1982     return S;
1983   }
1984 
1985   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1986   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1987     // It's possible the bits taken off by the truncate were all sign bits. If
1988     // so, we should be able to simplify this further.
1989     const SCEV *X = ST->getOperand();
1990     ConstantRange CR = getSignedRange(X);
1991     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1992     unsigned NewBits = getTypeSizeInBits(Ty);
1993     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1994             CR.sextOrTrunc(NewBits)))
1995       return getTruncateOrSignExtend(X, Ty, Depth);
1996   }
1997 
1998   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1999     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
2000     if (SA->hasNoSignedWrap()) {
2001       // If the addition does not sign overflow then we can, by definition,
2002       // commute the sign extension with the addition operation.
2003       SmallVector<const SCEV *, 4> Ops;
2004       for (const auto *Op : SA->operands())
2005         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
2006       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
2007     }
2008 
2009     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
2010     // if D + (C - D + x + y + ...) could be proven to not signed wrap
2011     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
2012     //
2013     // For instance, this will bring two seemingly different expressions:
2014     //     1 + sext(5 + 20 * %x + 24 * %y)  and
2015     //         sext(6 + 20 * %x + 24 * %y)
2016     // to the same form:
2017     //     2 + sext(4 + 20 * %x + 24 * %y)
2018     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
2019       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
2020       if (D != 0) {
2021         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2022         const SCEV *SResidual =
2023             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
2024         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2025         return getAddExpr(SSExtD, SSExtR,
2026                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2027                           Depth + 1);
2028       }
2029     }
2030   }
2031   // If the input value is a chrec scev, and we can prove that the value
2032   // did not overflow the old, smaller, value, we can sign extend all of the
2033   // operands (often constants).  This allows analysis of something like
2034   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
2035   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
2036     if (AR->isAffine()) {
2037       const SCEV *Start = AR->getStart();
2038       const SCEV *Step = AR->getStepRecurrence(*this);
2039       unsigned BitWidth = getTypeSizeInBits(AR->getType());
2040       const Loop *L = AR->getLoop();
2041 
2042       if (!AR->hasNoSignedWrap()) {
2043         auto NewFlags = proveNoWrapViaConstantRanges(AR);
2044         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
2045       }
2046 
2047       // If we have special knowledge that this addrec won't overflow,
2048       // we don't need to do any further analysis.
2049       if (AR->hasNoSignedWrap())
2050         return getAddRecExpr(
2051             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2052             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
2053 
2054       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2055       // Note that this serves two purposes: It filters out loops that are
2056       // simply not analyzable, and it covers the case where this code is
2057       // being called from within backedge-taken count analysis, such that
2058       // attempting to ask for the backedge-taken count would likely result
2059       // in infinite recursion. In the later case, the analysis code will
2060       // cope with a conservative value, and it will take care to purge
2061       // that value once it has finished.
2062       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2063       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2064         // Manually compute the final value for AR, checking for
2065         // overflow.
2066 
2067         // Check whether the backedge-taken count can be losslessly casted to
2068         // the addrec's type. The count is always unsigned.
2069         const SCEV *CastedMaxBECount =
2070             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2071         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2072             CastedMaxBECount, MaxBECount->getType(), Depth);
2073         if (MaxBECount == RecastedMaxBECount) {
2074           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2075           // Check whether Start+Step*MaxBECount has no signed overflow.
2076           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2077                                         SCEV::FlagAnyWrap, Depth + 1);
2078           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2079                                                           SCEV::FlagAnyWrap,
2080                                                           Depth + 1),
2081                                                WideTy, Depth + 1);
2082           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2083           const SCEV *WideMaxBECount =
2084             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2085           const SCEV *OperandExtendedAdd =
2086             getAddExpr(WideStart,
2087                        getMulExpr(WideMaxBECount,
2088                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2089                                   SCEV::FlagAnyWrap, Depth + 1),
2090                        SCEV::FlagAnyWrap, Depth + 1);
2091           if (SAdd == OperandExtendedAdd) {
2092             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2093             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2094             // Return the expression with the addrec on the outside.
2095             return getAddRecExpr(
2096                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2097                                                          Depth + 1),
2098                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2099                 AR->getNoWrapFlags());
2100           }
2101           // Similar to above, only this time treat the step value as unsigned.
2102           // This covers loops that count up with an unsigned step.
2103           OperandExtendedAdd =
2104             getAddExpr(WideStart,
2105                        getMulExpr(WideMaxBECount,
2106                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2107                                   SCEV::FlagAnyWrap, Depth + 1),
2108                        SCEV::FlagAnyWrap, Depth + 1);
2109           if (SAdd == OperandExtendedAdd) {
2110             // If AR wraps around then
2111             //
2112             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2113             // => SAdd != OperandExtendedAdd
2114             //
2115             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2116             // (SAdd == OperandExtendedAdd => AR is NW)
2117 
2118             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
2119 
2120             // Return the expression with the addrec on the outside.
2121             return getAddRecExpr(
2122                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2123                                                          Depth + 1),
2124                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2125                 AR->getNoWrapFlags());
2126           }
2127         }
2128       }
2129 
2130       // Normally, in the cases we can prove no-overflow via a
2131       // backedge guarding condition, we can also compute a backedge
2132       // taken count for the loop.  The exceptions are assumptions and
2133       // guards present in the loop -- SCEV is not great at exploiting
2134       // these to compute max backedge taken counts, but can still use
2135       // these to prove lack of overflow.  Use this fact to avoid
2136       // doing extra work that may not pay off.
2137 
2138       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
2139           !AC.assumptions().empty()) {
2140         // If the backedge is guarded by a comparison with the pre-inc
2141         // value the addrec is safe. Also, if the entry is guarded by
2142         // a comparison with the start value and the backedge is
2143         // guarded by a comparison with the post-inc value, the addrec
2144         // is safe.
2145         ICmpInst::Predicate Pred;
2146         const SCEV *OverflowLimit =
2147             getSignedOverflowLimitForStep(Step, &Pred, this);
2148         if (OverflowLimit &&
2149             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
2150              isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
2151           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
2152           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2153           return getAddRecExpr(
2154               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2155               getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2156         }
2157       }
2158 
2159       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2160       // if D + (C - D + Step * n) could be proven to not signed wrap
2161       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2162       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2163         const APInt &C = SC->getAPInt();
2164         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2165         if (D != 0) {
2166           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2167           const SCEV *SResidual =
2168               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2169           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2170           return getAddExpr(SSExtD, SSExtR,
2171                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2172                             Depth + 1);
2173         }
2174       }
2175 
2176       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2177         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
2178         return getAddRecExpr(
2179             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2180             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2181       }
2182     }
2183 
2184   // If the input value is provably positive and we could not simplify
2185   // away the sext build a zext instead.
2186   if (isKnownNonNegative(Op))
2187     return getZeroExtendExpr(Op, Ty, Depth + 1);
2188 
2189   // The cast wasn't folded; create an explicit cast node.
2190   // Recompute the insert position, as it may have been invalidated.
2191   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2192   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2193                                                    Op, Ty);
2194   UniqueSCEVs.InsertNode(S, IP);
2195   addToLoopUseLists(S);
2196   return S;
2197 }
2198 
2199 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2200 /// unspecified bits out to the given type.
2201 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2202                                               Type *Ty) {
2203   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2204          "This is not an extending conversion!");
2205   assert(isSCEVable(Ty) &&
2206          "This is not a conversion to a SCEVable type!");
2207   Ty = getEffectiveSCEVType(Ty);
2208 
2209   // Sign-extend negative constants.
2210   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2211     if (SC->getAPInt().isNegative())
2212       return getSignExtendExpr(Op, Ty);
2213 
2214   // Peel off a truncate cast.
2215   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2216     const SCEV *NewOp = T->getOperand();
2217     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2218       return getAnyExtendExpr(NewOp, Ty);
2219     return getTruncateOrNoop(NewOp, Ty);
2220   }
2221 
2222   // Next try a zext cast. If the cast is folded, use it.
2223   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2224   if (!isa<SCEVZeroExtendExpr>(ZExt))
2225     return ZExt;
2226 
2227   // Next try a sext cast. If the cast is folded, use it.
2228   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2229   if (!isa<SCEVSignExtendExpr>(SExt))
2230     return SExt;
2231 
2232   // Force the cast to be folded into the operands of an addrec.
2233   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2234     SmallVector<const SCEV *, 4> Ops;
2235     for (const SCEV *Op : AR->operands())
2236       Ops.push_back(getAnyExtendExpr(Op, Ty));
2237     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2238   }
2239 
2240   // If the expression is obviously signed, use the sext cast value.
2241   if (isa<SCEVSMaxExpr>(Op))
2242     return SExt;
2243 
2244   // Absent any other information, use the zext cast value.
2245   return ZExt;
2246 }
2247 
2248 /// Process the given Ops list, which is a list of operands to be added under
2249 /// the given scale, update the given map. This is a helper function for
2250 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2251 /// that would form an add expression like this:
2252 ///
2253 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2254 ///
2255 /// where A and B are constants, update the map with these values:
2256 ///
2257 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2258 ///
2259 /// and add 13 + A*B*29 to AccumulatedConstant.
2260 /// This will allow getAddRecExpr to produce this:
2261 ///
2262 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2263 ///
2264 /// This form often exposes folding opportunities that are hidden in
2265 /// the original operand list.
2266 ///
2267 /// Return true iff it appears that any interesting folding opportunities
2268 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2269 /// the common case where no interesting opportunities are present, and
2270 /// is also used as a check to avoid infinite recursion.
2271 static bool
2272 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2273                              SmallVectorImpl<const SCEV *> &NewOps,
2274                              APInt &AccumulatedConstant,
2275                              const SCEV *const *Ops, size_t NumOperands,
2276                              const APInt &Scale,
2277                              ScalarEvolution &SE) {
2278   bool Interesting = false;
2279 
2280   // Iterate over the add operands. They are sorted, with constants first.
2281   unsigned i = 0;
2282   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2283     ++i;
2284     // Pull a buried constant out to the outside.
2285     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2286       Interesting = true;
2287     AccumulatedConstant += Scale * C->getAPInt();
2288   }
2289 
2290   // Next comes everything else. We're especially interested in multiplies
2291   // here, but they're in the middle, so just visit the rest with one loop.
2292   for (; i != NumOperands; ++i) {
2293     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2294     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2295       APInt NewScale =
2296           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2297       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2298         // A multiplication of a constant with another add; recurse.
2299         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2300         Interesting |=
2301           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2302                                        Add->op_begin(), Add->getNumOperands(),
2303                                        NewScale, SE);
2304       } else {
2305         // A multiplication of a constant with some other value. Update
2306         // the map.
2307         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2308         const SCEV *Key = SE.getMulExpr(MulOps);
2309         auto Pair = M.insert({Key, NewScale});
2310         if (Pair.second) {
2311           NewOps.push_back(Pair.first->first);
2312         } else {
2313           Pair.first->second += NewScale;
2314           // The map already had an entry for this value, which may indicate
2315           // a folding opportunity.
2316           Interesting = true;
2317         }
2318       }
2319     } else {
2320       // An ordinary operand. Update the map.
2321       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2322           M.insert({Ops[i], Scale});
2323       if (Pair.second) {
2324         NewOps.push_back(Pair.first->first);
2325       } else {
2326         Pair.first->second += Scale;
2327         // The map already had an entry for this value, which may indicate
2328         // a folding opportunity.
2329         Interesting = true;
2330       }
2331     }
2332   }
2333 
2334   return Interesting;
2335 }
2336 
2337 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2338 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2339 // can't-overflow flags for the operation if possible.
2340 static SCEV::NoWrapFlags
2341 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2342                       const ArrayRef<const SCEV *> Ops,
2343                       SCEV::NoWrapFlags Flags) {
2344   using namespace std::placeholders;
2345 
2346   using OBO = OverflowingBinaryOperator;
2347 
2348   bool CanAnalyze =
2349       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2350   (void)CanAnalyze;
2351   assert(CanAnalyze && "don't call from other places!");
2352 
2353   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2354   SCEV::NoWrapFlags SignOrUnsignWrap =
2355       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2356 
2357   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2358   auto IsKnownNonNegative = [&](const SCEV *S) {
2359     return SE->isKnownNonNegative(S);
2360   };
2361 
2362   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2363     Flags =
2364         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2365 
2366   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2367 
2368   if (SignOrUnsignWrap != SignOrUnsignMask &&
2369       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2370       isa<SCEVConstant>(Ops[0])) {
2371 
2372     auto Opcode = [&] {
2373       switch (Type) {
2374       case scAddExpr:
2375         return Instruction::Add;
2376       case scMulExpr:
2377         return Instruction::Mul;
2378       default:
2379         llvm_unreachable("Unexpected SCEV op.");
2380       }
2381     }();
2382 
2383     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2384 
2385     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2386     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2387       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2388           Opcode, C, OBO::NoSignedWrap);
2389       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2390         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2391     }
2392 
2393     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2394     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2395       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2396           Opcode, C, OBO::NoUnsignedWrap);
2397       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2398         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399     }
2400   }
2401 
2402   return Flags;
2403 }
2404 
2405 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2406   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2407 }
2408 
2409 /// Get a canonical add expression, or something simpler if possible.
2410 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2411                                         SCEV::NoWrapFlags Flags,
2412                                         unsigned Depth) {
2413   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2414          "only nuw or nsw allowed");
2415   assert(!Ops.empty() && "Cannot get empty add!");
2416   if (Ops.size() == 1) return Ops[0];
2417 #ifndef NDEBUG
2418   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2419   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2420     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2421            "SCEVAddExpr operand types don't match!");
2422 #endif
2423 
2424   // Sort by complexity, this groups all similar expression types together.
2425   GroupByComplexity(Ops, &LI, DT);
2426 
2427   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2428 
2429   // If there are any constants, fold them together.
2430   unsigned Idx = 0;
2431   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2432     ++Idx;
2433     assert(Idx < Ops.size());
2434     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2435       // We found two constants, fold them together!
2436       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2437       if (Ops.size() == 2) return Ops[0];
2438       Ops.erase(Ops.begin()+1);  // Erase the folded element
2439       LHSC = cast<SCEVConstant>(Ops[0]);
2440     }
2441 
2442     // If we are left with a constant zero being added, strip it off.
2443     if (LHSC->getValue()->isZero()) {
2444       Ops.erase(Ops.begin());
2445       --Idx;
2446     }
2447 
2448     if (Ops.size() == 1) return Ops[0];
2449   }
2450 
2451   // Limit recursion calls depth.
2452   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2453     return getOrCreateAddExpr(Ops, Flags);
2454 
2455   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) {
2456     static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags);
2457     return S;
2458   }
2459 
2460   // Okay, check to see if the same value occurs in the operand list more than
2461   // once.  If so, merge them together into an multiply expression.  Since we
2462   // sorted the list, these values are required to be adjacent.
2463   Type *Ty = Ops[0]->getType();
2464   bool FoundMatch = false;
2465   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2466     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2467       // Scan ahead to count how many equal operands there are.
2468       unsigned Count = 2;
2469       while (i+Count != e && Ops[i+Count] == Ops[i])
2470         ++Count;
2471       // Merge the values into a multiply.
2472       const SCEV *Scale = getConstant(Ty, Count);
2473       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2474       if (Ops.size() == Count)
2475         return Mul;
2476       Ops[i] = Mul;
2477       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2478       --i; e -= Count - 1;
2479       FoundMatch = true;
2480     }
2481   if (FoundMatch)
2482     return getAddExpr(Ops, Flags, Depth + 1);
2483 
2484   // Check for truncates. If all the operands are truncated from the same
2485   // type, see if factoring out the truncate would permit the result to be
2486   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2487   // if the contents of the resulting outer trunc fold to something simple.
2488   auto FindTruncSrcType = [&]() -> Type * {
2489     // We're ultimately looking to fold an addrec of truncs and muls of only
2490     // constants and truncs, so if we find any other types of SCEV
2491     // as operands of the addrec then we bail and return nullptr here.
2492     // Otherwise, we return the type of the operand of a trunc that we find.
2493     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2494       return T->getOperand()->getType();
2495     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2496       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2497       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2498         return T->getOperand()->getType();
2499     }
2500     return nullptr;
2501   };
2502   if (auto *SrcType = FindTruncSrcType()) {
2503     SmallVector<const SCEV *, 8> LargeOps;
2504     bool Ok = true;
2505     // Check all the operands to see if they can be represented in the
2506     // source type of the truncate.
2507     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2508       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2509         if (T->getOperand()->getType() != SrcType) {
2510           Ok = false;
2511           break;
2512         }
2513         LargeOps.push_back(T->getOperand());
2514       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2515         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2516       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2517         SmallVector<const SCEV *, 8> LargeMulOps;
2518         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2519           if (const SCEVTruncateExpr *T =
2520                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2521             if (T->getOperand()->getType() != SrcType) {
2522               Ok = false;
2523               break;
2524             }
2525             LargeMulOps.push_back(T->getOperand());
2526           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2527             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2528           } else {
2529             Ok = false;
2530             break;
2531           }
2532         }
2533         if (Ok)
2534           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2535       } else {
2536         Ok = false;
2537         break;
2538       }
2539     }
2540     if (Ok) {
2541       // Evaluate the expression in the larger type.
2542       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2543       // If it folds to something simple, use it. Otherwise, don't.
2544       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2545         return getTruncateExpr(Fold, Ty);
2546     }
2547   }
2548 
2549   // Skip past any other cast SCEVs.
2550   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2551     ++Idx;
2552 
2553   // If there are add operands they would be next.
2554   if (Idx < Ops.size()) {
2555     bool DeletedAdd = false;
2556     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2557       if (Ops.size() > AddOpsInlineThreshold ||
2558           Add->getNumOperands() > AddOpsInlineThreshold)
2559         break;
2560       // If we have an add, expand the add operands onto the end of the operands
2561       // list.
2562       Ops.erase(Ops.begin()+Idx);
2563       Ops.append(Add->op_begin(), Add->op_end());
2564       DeletedAdd = true;
2565     }
2566 
2567     // If we deleted at least one add, we added operands to the end of the list,
2568     // and they are not necessarily sorted.  Recurse to resort and resimplify
2569     // any operands we just acquired.
2570     if (DeletedAdd)
2571       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2572   }
2573 
2574   // Skip over the add expression until we get to a multiply.
2575   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2576     ++Idx;
2577 
2578   // Check to see if there are any folding opportunities present with
2579   // operands multiplied by constant values.
2580   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2581     uint64_t BitWidth = getTypeSizeInBits(Ty);
2582     DenseMap<const SCEV *, APInt> M;
2583     SmallVector<const SCEV *, 8> NewOps;
2584     APInt AccumulatedConstant(BitWidth, 0);
2585     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2586                                      Ops.data(), Ops.size(),
2587                                      APInt(BitWidth, 1), *this)) {
2588       struct APIntCompare {
2589         bool operator()(const APInt &LHS, const APInt &RHS) const {
2590           return LHS.ult(RHS);
2591         }
2592       };
2593 
2594       // Some interesting folding opportunity is present, so its worthwhile to
2595       // re-generate the operands list. Group the operands by constant scale,
2596       // to avoid multiplying by the same constant scale multiple times.
2597       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2598       for (const SCEV *NewOp : NewOps)
2599         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2600       // Re-generate the operands list.
2601       Ops.clear();
2602       if (AccumulatedConstant != 0)
2603         Ops.push_back(getConstant(AccumulatedConstant));
2604       for (auto &MulOp : MulOpLists)
2605         if (MulOp.first != 0)
2606           Ops.push_back(getMulExpr(
2607               getConstant(MulOp.first),
2608               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2609               SCEV::FlagAnyWrap, Depth + 1));
2610       if (Ops.empty())
2611         return getZero(Ty);
2612       if (Ops.size() == 1)
2613         return Ops[0];
2614       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2615     }
2616   }
2617 
2618   // If we are adding something to a multiply expression, make sure the
2619   // something is not already an operand of the multiply.  If so, merge it into
2620   // the multiply.
2621   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2622     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2623     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2624       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2625       if (isa<SCEVConstant>(MulOpSCEV))
2626         continue;
2627       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2628         if (MulOpSCEV == Ops[AddOp]) {
2629           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2630           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2631           if (Mul->getNumOperands() != 2) {
2632             // If the multiply has more than two operands, we must get the
2633             // Y*Z term.
2634             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2635                                                 Mul->op_begin()+MulOp);
2636             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2637             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2638           }
2639           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2640           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2641           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2642                                             SCEV::FlagAnyWrap, Depth + 1);
2643           if (Ops.size() == 2) return OuterMul;
2644           if (AddOp < Idx) {
2645             Ops.erase(Ops.begin()+AddOp);
2646             Ops.erase(Ops.begin()+Idx-1);
2647           } else {
2648             Ops.erase(Ops.begin()+Idx);
2649             Ops.erase(Ops.begin()+AddOp-1);
2650           }
2651           Ops.push_back(OuterMul);
2652           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2653         }
2654 
2655       // Check this multiply against other multiplies being added together.
2656       for (unsigned OtherMulIdx = Idx+1;
2657            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2658            ++OtherMulIdx) {
2659         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2660         // If MulOp occurs in OtherMul, we can fold the two multiplies
2661         // together.
2662         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2663              OMulOp != e; ++OMulOp)
2664           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2665             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2666             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2667             if (Mul->getNumOperands() != 2) {
2668               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2669                                                   Mul->op_begin()+MulOp);
2670               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2671               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2672             }
2673             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2674             if (OtherMul->getNumOperands() != 2) {
2675               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2676                                                   OtherMul->op_begin()+OMulOp);
2677               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2678               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2679             }
2680             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2681             const SCEV *InnerMulSum =
2682                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2683             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2684                                               SCEV::FlagAnyWrap, Depth + 1);
2685             if (Ops.size() == 2) return OuterMul;
2686             Ops.erase(Ops.begin()+Idx);
2687             Ops.erase(Ops.begin()+OtherMulIdx-1);
2688             Ops.push_back(OuterMul);
2689             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2690           }
2691       }
2692     }
2693   }
2694 
2695   // If there are any add recurrences in the operands list, see if any other
2696   // added values are loop invariant.  If so, we can fold them into the
2697   // recurrence.
2698   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2699     ++Idx;
2700 
2701   // Scan over all recurrences, trying to fold loop invariants into them.
2702   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2703     // Scan all of the other operands to this add and add them to the vector if
2704     // they are loop invariant w.r.t. the recurrence.
2705     SmallVector<const SCEV *, 8> LIOps;
2706     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2707     const Loop *AddRecLoop = AddRec->getLoop();
2708     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2709       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2710         LIOps.push_back(Ops[i]);
2711         Ops.erase(Ops.begin()+i);
2712         --i; --e;
2713       }
2714 
2715     // If we found some loop invariants, fold them into the recurrence.
2716     if (!LIOps.empty()) {
2717       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2718       LIOps.push_back(AddRec->getStart());
2719 
2720       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2721                                              AddRec->op_end());
2722       // This follows from the fact that the no-wrap flags on the outer add
2723       // expression are applicable on the 0th iteration, when the add recurrence
2724       // will be equal to its start value.
2725       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2726 
2727       // Build the new addrec. Propagate the NUW and NSW flags if both the
2728       // outer add and the inner addrec are guaranteed to have no overflow.
2729       // Always propagate NW.
2730       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2731       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2732 
2733       // If all of the other operands were loop invariant, we are done.
2734       if (Ops.size() == 1) return NewRec;
2735 
2736       // Otherwise, add the folded AddRec by the non-invariant parts.
2737       for (unsigned i = 0;; ++i)
2738         if (Ops[i] == AddRec) {
2739           Ops[i] = NewRec;
2740           break;
2741         }
2742       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2743     }
2744 
2745     // Okay, if there weren't any loop invariants to be folded, check to see if
2746     // there are multiple AddRec's with the same loop induction variable being
2747     // added together.  If so, we can fold them.
2748     for (unsigned OtherIdx = Idx+1;
2749          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2750          ++OtherIdx) {
2751       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2752       // so that the 1st found AddRecExpr is dominated by all others.
2753       assert(DT.dominates(
2754            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2755            AddRec->getLoop()->getHeader()) &&
2756         "AddRecExprs are not sorted in reverse dominance order?");
2757       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2758         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2759         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2760                                                AddRec->op_end());
2761         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2762              ++OtherIdx) {
2763           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2764           if (OtherAddRec->getLoop() == AddRecLoop) {
2765             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2766                  i != e; ++i) {
2767               if (i >= AddRecOps.size()) {
2768                 AddRecOps.append(OtherAddRec->op_begin()+i,
2769                                  OtherAddRec->op_end());
2770                 break;
2771               }
2772               SmallVector<const SCEV *, 2> TwoOps = {
2773                   AddRecOps[i], OtherAddRec->getOperand(i)};
2774               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2775             }
2776             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2777           }
2778         }
2779         // Step size has changed, so we cannot guarantee no self-wraparound.
2780         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2781         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2782       }
2783     }
2784 
2785     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2786     // next one.
2787   }
2788 
2789   // Okay, it looks like we really DO need an add expr.  Check to see if we
2790   // already have one, otherwise create a new one.
2791   return getOrCreateAddExpr(Ops, Flags);
2792 }
2793 
2794 const SCEV *
2795 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2796                                     SCEV::NoWrapFlags Flags) {
2797   FoldingSetNodeID ID;
2798   ID.AddInteger(scAddExpr);
2799   for (const SCEV *Op : Ops)
2800     ID.AddPointer(Op);
2801   void *IP = nullptr;
2802   SCEVAddExpr *S =
2803       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2804   if (!S) {
2805     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2806     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2807     S = new (SCEVAllocator)
2808         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2809     UniqueSCEVs.InsertNode(S, IP);
2810     addToLoopUseLists(S);
2811   }
2812   S->setNoWrapFlags(Flags);
2813   return S;
2814 }
2815 
2816 const SCEV *
2817 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2818                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2819   FoldingSetNodeID ID;
2820   ID.AddInteger(scAddRecExpr);
2821   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2822     ID.AddPointer(Ops[i]);
2823   ID.AddPointer(L);
2824   void *IP = nullptr;
2825   SCEVAddRecExpr *S =
2826       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2827   if (!S) {
2828     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2829     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2830     S = new (SCEVAllocator)
2831         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2832     UniqueSCEVs.InsertNode(S, IP);
2833     addToLoopUseLists(S);
2834   }
2835   S->setNoWrapFlags(Flags);
2836   return S;
2837 }
2838 
2839 const SCEV *
2840 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2841                                     SCEV::NoWrapFlags Flags) {
2842   FoldingSetNodeID ID;
2843   ID.AddInteger(scMulExpr);
2844   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2845     ID.AddPointer(Ops[i]);
2846   void *IP = nullptr;
2847   SCEVMulExpr *S =
2848     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2849   if (!S) {
2850     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2851     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2852     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2853                                         O, Ops.size());
2854     UniqueSCEVs.InsertNode(S, IP);
2855     addToLoopUseLists(S);
2856   }
2857   S->setNoWrapFlags(Flags);
2858   return S;
2859 }
2860 
2861 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2862   uint64_t k = i*j;
2863   if (j > 1 && k / j != i) Overflow = true;
2864   return k;
2865 }
2866 
2867 /// Compute the result of "n choose k", the binomial coefficient.  If an
2868 /// intermediate computation overflows, Overflow will be set and the return will
2869 /// be garbage. Overflow is not cleared on absence of overflow.
2870 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2871   // We use the multiplicative formula:
2872   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2873   // At each iteration, we take the n-th term of the numeral and divide by the
2874   // (k-n)th term of the denominator.  This division will always produce an
2875   // integral result, and helps reduce the chance of overflow in the
2876   // intermediate computations. However, we can still overflow even when the
2877   // final result would fit.
2878 
2879   if (n == 0 || n == k) return 1;
2880   if (k > n) return 0;
2881 
2882   if (k > n/2)
2883     k = n-k;
2884 
2885   uint64_t r = 1;
2886   for (uint64_t i = 1; i <= k; ++i) {
2887     r = umul_ov(r, n-(i-1), Overflow);
2888     r /= i;
2889   }
2890   return r;
2891 }
2892 
2893 /// Determine if any of the operands in this SCEV are a constant or if
2894 /// any of the add or multiply expressions in this SCEV contain a constant.
2895 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2896   struct FindConstantInAddMulChain {
2897     bool FoundConstant = false;
2898 
2899     bool follow(const SCEV *S) {
2900       FoundConstant |= isa<SCEVConstant>(S);
2901       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2902     }
2903 
2904     bool isDone() const {
2905       return FoundConstant;
2906     }
2907   };
2908 
2909   FindConstantInAddMulChain F;
2910   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2911   ST.visitAll(StartExpr);
2912   return F.FoundConstant;
2913 }
2914 
2915 /// Get a canonical multiply expression, or something simpler if possible.
2916 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2917                                         SCEV::NoWrapFlags Flags,
2918                                         unsigned Depth) {
2919   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2920          "only nuw or nsw allowed");
2921   assert(!Ops.empty() && "Cannot get empty mul!");
2922   if (Ops.size() == 1) return Ops[0];
2923 #ifndef NDEBUG
2924   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2925   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2926     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2927            "SCEVMulExpr operand types don't match!");
2928 #endif
2929 
2930   // Sort by complexity, this groups all similar expression types together.
2931   GroupByComplexity(Ops, &LI, DT);
2932 
2933   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2934 
2935   // Limit recursion calls depth.
2936   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2937     return getOrCreateMulExpr(Ops, Flags);
2938 
2939   if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) {
2940     static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags);
2941     return S;
2942   }
2943 
2944   // If there are any constants, fold them together.
2945   unsigned Idx = 0;
2946   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2947 
2948     if (Ops.size() == 2)
2949       // C1*(C2+V) -> C1*C2 + C1*V
2950       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2951         // If any of Add's ops are Adds or Muls with a constant, apply this
2952         // transformation as well.
2953         //
2954         // TODO: There are some cases where this transformation is not
2955         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
2956         // this transformation should be narrowed down.
2957         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
2958           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
2959                                        SCEV::FlagAnyWrap, Depth + 1),
2960                             getMulExpr(LHSC, Add->getOperand(1),
2961                                        SCEV::FlagAnyWrap, Depth + 1),
2962                             SCEV::FlagAnyWrap, Depth + 1);
2963 
2964     ++Idx;
2965     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2966       // We found two constants, fold them together!
2967       ConstantInt *Fold =
2968           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2969       Ops[0] = getConstant(Fold);
2970       Ops.erase(Ops.begin()+1);  // Erase the folded element
2971       if (Ops.size() == 1) return Ops[0];
2972       LHSC = cast<SCEVConstant>(Ops[0]);
2973     }
2974 
2975     // If we are left with a constant one being multiplied, strip it off.
2976     if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) {
2977       Ops.erase(Ops.begin());
2978       --Idx;
2979     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2980       // If we have a multiply of zero, it will always be zero.
2981       return Ops[0];
2982     } else if (Ops[0]->isAllOnesValue()) {
2983       // If we have a mul by -1 of an add, try distributing the -1 among the
2984       // add operands.
2985       if (Ops.size() == 2) {
2986         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2987           SmallVector<const SCEV *, 4> NewOps;
2988           bool AnyFolded = false;
2989           for (const SCEV *AddOp : Add->operands()) {
2990             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
2991                                          Depth + 1);
2992             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2993             NewOps.push_back(Mul);
2994           }
2995           if (AnyFolded)
2996             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
2997         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2998           // Negation preserves a recurrence's no self-wrap property.
2999           SmallVector<const SCEV *, 4> Operands;
3000           for (const SCEV *AddRecOp : AddRec->operands())
3001             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3002                                           Depth + 1));
3003 
3004           return getAddRecExpr(Operands, AddRec->getLoop(),
3005                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3006         }
3007       }
3008     }
3009 
3010     if (Ops.size() == 1)
3011       return Ops[0];
3012   }
3013 
3014   // Skip over the add expression until we get to a multiply.
3015   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3016     ++Idx;
3017 
3018   // If there are mul operands inline them all into this expression.
3019   if (Idx < Ops.size()) {
3020     bool DeletedMul = false;
3021     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3022       if (Ops.size() > MulOpsInlineThreshold)
3023         break;
3024       // If we have an mul, expand the mul operands onto the end of the
3025       // operands list.
3026       Ops.erase(Ops.begin()+Idx);
3027       Ops.append(Mul->op_begin(), Mul->op_end());
3028       DeletedMul = true;
3029     }
3030 
3031     // If we deleted at least one mul, we added operands to the end of the
3032     // list, and they are not necessarily sorted.  Recurse to resort and
3033     // resimplify any operands we just acquired.
3034     if (DeletedMul)
3035       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3036   }
3037 
3038   // If there are any add recurrences in the operands list, see if any other
3039   // added values are loop invariant.  If so, we can fold them into the
3040   // recurrence.
3041   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3042     ++Idx;
3043 
3044   // Scan over all recurrences, trying to fold loop invariants into them.
3045   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3046     // Scan all of the other operands to this mul and add them to the vector
3047     // if they are loop invariant w.r.t. the recurrence.
3048     SmallVector<const SCEV *, 8> LIOps;
3049     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3050     const Loop *AddRecLoop = AddRec->getLoop();
3051     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3052       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3053         LIOps.push_back(Ops[i]);
3054         Ops.erase(Ops.begin()+i);
3055         --i; --e;
3056       }
3057 
3058     // If we found some loop invariants, fold them into the recurrence.
3059     if (!LIOps.empty()) {
3060       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3061       SmallVector<const SCEV *, 4> NewOps;
3062       NewOps.reserve(AddRec->getNumOperands());
3063       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3064       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3065         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3066                                     SCEV::FlagAnyWrap, Depth + 1));
3067 
3068       // Build the new addrec. Propagate the NUW and NSW flags if both the
3069       // outer mul and the inner addrec are guaranteed to have no overflow.
3070       //
3071       // No self-wrap cannot be guaranteed after changing the step size, but
3072       // will be inferred if either NUW or NSW is true.
3073       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
3074       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
3075 
3076       // If all of the other operands were loop invariant, we are done.
3077       if (Ops.size() == 1) return NewRec;
3078 
3079       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3080       for (unsigned i = 0;; ++i)
3081         if (Ops[i] == AddRec) {
3082           Ops[i] = NewRec;
3083           break;
3084         }
3085       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3086     }
3087 
3088     // Okay, if there weren't any loop invariants to be folded, check to see
3089     // if there are multiple AddRec's with the same loop induction variable
3090     // being multiplied together.  If so, we can fold them.
3091 
3092     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3093     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3094     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3095     //   ]]],+,...up to x=2n}.
3096     // Note that the arguments to choose() are always integers with values
3097     // known at compile time, never SCEV objects.
3098     //
3099     // The implementation avoids pointless extra computations when the two
3100     // addrec's are of different length (mathematically, it's equivalent to
3101     // an infinite stream of zeros on the right).
3102     bool OpsModified = false;
3103     for (unsigned OtherIdx = Idx+1;
3104          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3105          ++OtherIdx) {
3106       const SCEVAddRecExpr *OtherAddRec =
3107         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3108       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3109         continue;
3110 
3111       // Limit max number of arguments to avoid creation of unreasonably big
3112       // SCEVAddRecs with very complex operands.
3113       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3114           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3115         continue;
3116 
3117       bool Overflow = false;
3118       Type *Ty = AddRec->getType();
3119       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3120       SmallVector<const SCEV*, 7> AddRecOps;
3121       for (int x = 0, xe = AddRec->getNumOperands() +
3122              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3123         SmallVector <const SCEV *, 7> SumOps;
3124         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3125           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3126           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3127                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3128                z < ze && !Overflow; ++z) {
3129             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3130             uint64_t Coeff;
3131             if (LargerThan64Bits)
3132               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3133             else
3134               Coeff = Coeff1*Coeff2;
3135             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3136             const SCEV *Term1 = AddRec->getOperand(y-z);
3137             const SCEV *Term2 = OtherAddRec->getOperand(z);
3138             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3139                                         SCEV::FlagAnyWrap, Depth + 1));
3140           }
3141         }
3142         if (SumOps.empty())
3143           SumOps.push_back(getZero(Ty));
3144         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3145       }
3146       if (!Overflow) {
3147         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3148                                               SCEV::FlagAnyWrap);
3149         if (Ops.size() == 2) return NewAddRec;
3150         Ops[Idx] = NewAddRec;
3151         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3152         OpsModified = true;
3153         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3154         if (!AddRec)
3155           break;
3156       }
3157     }
3158     if (OpsModified)
3159       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3160 
3161     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3162     // next one.
3163   }
3164 
3165   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3166   // already have one, otherwise create a new one.
3167   return getOrCreateMulExpr(Ops, Flags);
3168 }
3169 
3170 /// Represents an unsigned remainder expression based on unsigned division.
3171 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3172                                          const SCEV *RHS) {
3173   assert(getEffectiveSCEVType(LHS->getType()) ==
3174          getEffectiveSCEVType(RHS->getType()) &&
3175          "SCEVURemExpr operand types don't match!");
3176 
3177   // Short-circuit easy cases
3178   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3179     // If constant is one, the result is trivial
3180     if (RHSC->getValue()->isOne())
3181       return getZero(LHS->getType()); // X urem 1 --> 0
3182 
3183     // If constant is a power of two, fold into a zext(trunc(LHS)).
3184     if (RHSC->getAPInt().isPowerOf2()) {
3185       Type *FullTy = LHS->getType();
3186       Type *TruncTy =
3187           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3188       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3189     }
3190   }
3191 
3192   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3193   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3194   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3195   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3196 }
3197 
3198 /// Get a canonical unsigned division expression, or something simpler if
3199 /// possible.
3200 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3201                                          const SCEV *RHS) {
3202   assert(getEffectiveSCEVType(LHS->getType()) ==
3203          getEffectiveSCEVType(RHS->getType()) &&
3204          "SCEVUDivExpr operand types don't match!");
3205 
3206   FoldingSetNodeID ID;
3207   ID.AddInteger(scUDivExpr);
3208   ID.AddPointer(LHS);
3209   ID.AddPointer(RHS);
3210   void *IP = nullptr;
3211   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3212     return S;
3213 
3214   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3215     if (RHSC->getValue()->isOne())
3216       return LHS;                               // X udiv 1 --> x
3217     // If the denominator is zero, the result of the udiv is undefined. Don't
3218     // try to analyze it, because the resolution chosen here may differ from
3219     // the resolution chosen in other parts of the compiler.
3220     if (!RHSC->getValue()->isZero()) {
3221       // Determine if the division can be folded into the operands of
3222       // its operands.
3223       // TODO: Generalize this to non-constants by using known-bits information.
3224       Type *Ty = LHS->getType();
3225       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3226       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3227       // For non-power-of-two values, effectively round the value up to the
3228       // nearest power of two.
3229       if (!RHSC->getAPInt().isPowerOf2())
3230         ++MaxShiftAmt;
3231       IntegerType *ExtTy =
3232         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3233       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3234         if (const SCEVConstant *Step =
3235             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3236           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3237           const APInt &StepInt = Step->getAPInt();
3238           const APInt &DivInt = RHSC->getAPInt();
3239           if (!StepInt.urem(DivInt) &&
3240               getZeroExtendExpr(AR, ExtTy) ==
3241               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3242                             getZeroExtendExpr(Step, ExtTy),
3243                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3244             SmallVector<const SCEV *, 4> Operands;
3245             for (const SCEV *Op : AR->operands())
3246               Operands.push_back(getUDivExpr(Op, RHS));
3247             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3248           }
3249           /// Get a canonical UDivExpr for a recurrence.
3250           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3251           // We can currently only fold X%N if X is constant.
3252           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3253           if (StartC && !DivInt.urem(StepInt) &&
3254               getZeroExtendExpr(AR, ExtTy) ==
3255               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3256                             getZeroExtendExpr(Step, ExtTy),
3257                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3258             const APInt &StartInt = StartC->getAPInt();
3259             const APInt &StartRem = StartInt.urem(StepInt);
3260             if (StartRem != 0) {
3261               const SCEV *NewLHS =
3262                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3263                                 AR->getLoop(), SCEV::FlagNW);
3264               if (LHS != NewLHS) {
3265                 LHS = NewLHS;
3266 
3267                 // Reset the ID to include the new LHS, and check if it is
3268                 // already cached.
3269                 ID.clear();
3270                 ID.AddInteger(scUDivExpr);
3271                 ID.AddPointer(LHS);
3272                 ID.AddPointer(RHS);
3273                 IP = nullptr;
3274                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3275                   return S;
3276               }
3277             }
3278           }
3279         }
3280       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3281       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3282         SmallVector<const SCEV *, 4> Operands;
3283         for (const SCEV *Op : M->operands())
3284           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3285         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3286           // Find an operand that's safely divisible.
3287           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3288             const SCEV *Op = M->getOperand(i);
3289             const SCEV *Div = getUDivExpr(Op, RHSC);
3290             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3291               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
3292                                                       M->op_end());
3293               Operands[i] = Div;
3294               return getMulExpr(Operands);
3295             }
3296           }
3297       }
3298 
3299       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3300       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3301         if (auto *DivisorConstant =
3302                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3303           bool Overflow = false;
3304           APInt NewRHS =
3305               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3306           if (Overflow) {
3307             return getConstant(RHSC->getType(), 0, false);
3308           }
3309           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3310         }
3311       }
3312 
3313       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3314       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3315         SmallVector<const SCEV *, 4> Operands;
3316         for (const SCEV *Op : A->operands())
3317           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3318         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3319           Operands.clear();
3320           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3321             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3322             if (isa<SCEVUDivExpr>(Op) ||
3323                 getMulExpr(Op, RHS) != A->getOperand(i))
3324               break;
3325             Operands.push_back(Op);
3326           }
3327           if (Operands.size() == A->getNumOperands())
3328             return getAddExpr(Operands);
3329         }
3330       }
3331 
3332       // Fold if both operands are constant.
3333       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3334         Constant *LHSCV = LHSC->getValue();
3335         Constant *RHSCV = RHSC->getValue();
3336         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3337                                                                    RHSCV)));
3338       }
3339     }
3340   }
3341 
3342   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3343   // changes). Make sure we get a new one.
3344   IP = nullptr;
3345   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3346   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3347                                              LHS, RHS);
3348   UniqueSCEVs.InsertNode(S, IP);
3349   addToLoopUseLists(S);
3350   return S;
3351 }
3352 
3353 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3354   APInt A = C1->getAPInt().abs();
3355   APInt B = C2->getAPInt().abs();
3356   uint32_t ABW = A.getBitWidth();
3357   uint32_t BBW = B.getBitWidth();
3358 
3359   if (ABW > BBW)
3360     B = B.zext(ABW);
3361   else if (ABW < BBW)
3362     A = A.zext(BBW);
3363 
3364   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3365 }
3366 
3367 /// Get a canonical unsigned division expression, or something simpler if
3368 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3369 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3370 /// it's not exact because the udiv may be clearing bits.
3371 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3372                                               const SCEV *RHS) {
3373   // TODO: we could try to find factors in all sorts of things, but for now we
3374   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3375   // end of this file for inspiration.
3376 
3377   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3378   if (!Mul || !Mul->hasNoUnsignedWrap())
3379     return getUDivExpr(LHS, RHS);
3380 
3381   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3382     // If the mulexpr multiplies by a constant, then that constant must be the
3383     // first element of the mulexpr.
3384     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3385       if (LHSCst == RHSCst) {
3386         SmallVector<const SCEV *, 2> Operands;
3387         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3388         return getMulExpr(Operands);
3389       }
3390 
3391       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3392       // that there's a factor provided by one of the other terms. We need to
3393       // check.
3394       APInt Factor = gcd(LHSCst, RHSCst);
3395       if (!Factor.isIntN(1)) {
3396         LHSCst =
3397             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3398         RHSCst =
3399             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3400         SmallVector<const SCEV *, 2> Operands;
3401         Operands.push_back(LHSCst);
3402         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3403         LHS = getMulExpr(Operands);
3404         RHS = RHSCst;
3405         Mul = dyn_cast<SCEVMulExpr>(LHS);
3406         if (!Mul)
3407           return getUDivExactExpr(LHS, RHS);
3408       }
3409     }
3410   }
3411 
3412   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3413     if (Mul->getOperand(i) == RHS) {
3414       SmallVector<const SCEV *, 2> Operands;
3415       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3416       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3417       return getMulExpr(Operands);
3418     }
3419   }
3420 
3421   return getUDivExpr(LHS, RHS);
3422 }
3423 
3424 /// Get an add recurrence expression for the specified loop.  Simplify the
3425 /// expression as much as possible.
3426 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3427                                            const Loop *L,
3428                                            SCEV::NoWrapFlags Flags) {
3429   SmallVector<const SCEV *, 4> Operands;
3430   Operands.push_back(Start);
3431   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3432     if (StepChrec->getLoop() == L) {
3433       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3434       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3435     }
3436 
3437   Operands.push_back(Step);
3438   return getAddRecExpr(Operands, L, Flags);
3439 }
3440 
3441 /// Get an add recurrence expression for the specified loop.  Simplify the
3442 /// expression as much as possible.
3443 const SCEV *
3444 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3445                                const Loop *L, SCEV::NoWrapFlags Flags) {
3446   if (Operands.size() == 1) return Operands[0];
3447 #ifndef NDEBUG
3448   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3449   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
3450     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3451            "SCEVAddRecExpr operand types don't match!");
3452   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3453     assert(isLoopInvariant(Operands[i], L) &&
3454            "SCEVAddRecExpr operand is not loop-invariant!");
3455 #endif
3456 
3457   if (Operands.back()->isZero()) {
3458     Operands.pop_back();
3459     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3460   }
3461 
3462   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3463   // use that information to infer NUW and NSW flags. However, computing a
3464   // BE count requires calling getAddRecExpr, so we may not yet have a
3465   // meaningful BE count at this point (and if we don't, we'd be stuck
3466   // with a SCEVCouldNotCompute as the cached BE count).
3467 
3468   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3469 
3470   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3471   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3472     const Loop *NestedLoop = NestedAR->getLoop();
3473     if (L->contains(NestedLoop)
3474             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3475             : (!NestedLoop->contains(L) &&
3476                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3477       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
3478                                                   NestedAR->op_end());
3479       Operands[0] = NestedAR->getStart();
3480       // AddRecs require their operands be loop-invariant with respect to their
3481       // loops. Don't perform this transformation if it would break this
3482       // requirement.
3483       bool AllInvariant = all_of(
3484           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3485 
3486       if (AllInvariant) {
3487         // Create a recurrence for the outer loop with the same step size.
3488         //
3489         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3490         // inner recurrence has the same property.
3491         SCEV::NoWrapFlags OuterFlags =
3492           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3493 
3494         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3495         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3496           return isLoopInvariant(Op, NestedLoop);
3497         });
3498 
3499         if (AllInvariant) {
3500           // Ok, both add recurrences are valid after the transformation.
3501           //
3502           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3503           // the outer recurrence has the same property.
3504           SCEV::NoWrapFlags InnerFlags =
3505             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3506           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3507         }
3508       }
3509       // Reset Operands to its original state.
3510       Operands[0] = NestedAR;
3511     }
3512   }
3513 
3514   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3515   // already have one, otherwise create a new one.
3516   return getOrCreateAddRecExpr(Operands, L, Flags);
3517 }
3518 
3519 const SCEV *
3520 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3521                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3522   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3523   // getSCEV(Base)->getType() has the same address space as Base->getType()
3524   // because SCEV::getType() preserves the address space.
3525   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3526   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3527   // instruction to its SCEV, because the Instruction may be guarded by control
3528   // flow and the no-overflow bits may not be valid for the expression in any
3529   // context. This can be fixed similarly to how these flags are handled for
3530   // adds.
3531   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3532                                              : SCEV::FlagAnyWrap;
3533 
3534   const SCEV *TotalOffset = getZero(IntIdxTy);
3535   Type *CurTy = GEP->getType();
3536   bool FirstIter = true;
3537   for (const SCEV *IndexExpr : IndexExprs) {
3538     // Compute the (potentially symbolic) offset in bytes for this index.
3539     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3540       // For a struct, add the member offset.
3541       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3542       unsigned FieldNo = Index->getZExtValue();
3543       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3544 
3545       // Add the field offset to the running total offset.
3546       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3547 
3548       // Update CurTy to the type of the field at Index.
3549       CurTy = STy->getTypeAtIndex(Index);
3550     } else {
3551       // Update CurTy to its element type.
3552       if (FirstIter) {
3553         assert(isa<PointerType>(CurTy) &&
3554                "The first index of a GEP indexes a pointer");
3555         CurTy = GEP->getSourceElementType();
3556         FirstIter = false;
3557       } else {
3558         CurTy = cast<SequentialType>(CurTy)->getElementType();
3559       }
3560       // For an array, add the element offset, explicitly scaled.
3561       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3562       // Getelementptr indices are signed.
3563       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3564 
3565       // Multiply the index by the element size to compute the element offset.
3566       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3567 
3568       // Add the element offset to the running total offset.
3569       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3570     }
3571   }
3572 
3573   // Add the total offset from all the GEP indices to the base.
3574   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3575 }
3576 
3577 std::tuple<SCEV *, FoldingSetNodeID, void *>
3578 ScalarEvolution::findExistingSCEVInCache(int SCEVType,
3579                                          ArrayRef<const SCEV *> Ops) {
3580   FoldingSetNodeID ID;
3581   void *IP = nullptr;
3582   ID.AddInteger(SCEVType);
3583   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3584     ID.AddPointer(Ops[i]);
3585   return std::tuple<SCEV *, FoldingSetNodeID, void *>(
3586       UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP);
3587 }
3588 
3589 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind,
3590                                            SmallVectorImpl<const SCEV *> &Ops) {
3591   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3592   if (Ops.size() == 1) return Ops[0];
3593 #ifndef NDEBUG
3594   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3595   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3596     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3597            "Operand types don't match!");
3598 #endif
3599 
3600   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3601   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3602 
3603   // Sort by complexity, this groups all similar expression types together.
3604   GroupByComplexity(Ops, &LI, DT);
3605 
3606   // Check if we have created the same expression before.
3607   if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) {
3608     return S;
3609   }
3610 
3611   // If there are any constants, fold them together.
3612   unsigned Idx = 0;
3613   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3614     ++Idx;
3615     assert(Idx < Ops.size());
3616     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3617       if (Kind == scSMaxExpr)
3618         return APIntOps::smax(LHS, RHS);
3619       else if (Kind == scSMinExpr)
3620         return APIntOps::smin(LHS, RHS);
3621       else if (Kind == scUMaxExpr)
3622         return APIntOps::umax(LHS, RHS);
3623       else if (Kind == scUMinExpr)
3624         return APIntOps::umin(LHS, RHS);
3625       llvm_unreachable("Unknown SCEV min/max opcode");
3626     };
3627 
3628     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3629       // We found two constants, fold them together!
3630       ConstantInt *Fold = ConstantInt::get(
3631           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3632       Ops[0] = getConstant(Fold);
3633       Ops.erase(Ops.begin()+1);  // Erase the folded element
3634       if (Ops.size() == 1) return Ops[0];
3635       LHSC = cast<SCEVConstant>(Ops[0]);
3636     }
3637 
3638     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3639     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3640 
3641     if (IsMax ? IsMinV : IsMaxV) {
3642       // If we are left with a constant minimum(/maximum)-int, strip it off.
3643       Ops.erase(Ops.begin());
3644       --Idx;
3645     } else if (IsMax ? IsMaxV : IsMinV) {
3646       // If we have a max(/min) with a constant maximum(/minimum)-int,
3647       // it will always be the extremum.
3648       return LHSC;
3649     }
3650 
3651     if (Ops.size() == 1) return Ops[0];
3652   }
3653 
3654   // Find the first operation of the same kind
3655   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3656     ++Idx;
3657 
3658   // Check to see if one of the operands is of the same kind. If so, expand its
3659   // operands onto our operand list, and recurse to simplify.
3660   if (Idx < Ops.size()) {
3661     bool DeletedAny = false;
3662     while (Ops[Idx]->getSCEVType() == Kind) {
3663       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3664       Ops.erase(Ops.begin()+Idx);
3665       Ops.append(SMME->op_begin(), SMME->op_end());
3666       DeletedAny = true;
3667     }
3668 
3669     if (DeletedAny)
3670       return getMinMaxExpr(Kind, Ops);
3671   }
3672 
3673   // Okay, check to see if the same value occurs in the operand list twice.  If
3674   // so, delete one.  Since we sorted the list, these values are required to
3675   // be adjacent.
3676   llvm::CmpInst::Predicate GEPred =
3677       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3678   llvm::CmpInst::Predicate LEPred =
3679       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3680   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3681   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3682   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3683     if (Ops[i] == Ops[i + 1] ||
3684         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3685       //  X op Y op Y  -->  X op Y
3686       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3687       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3688       --i;
3689       --e;
3690     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3691                                                Ops[i + 1])) {
3692       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3693       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3694       --i;
3695       --e;
3696     }
3697   }
3698 
3699   if (Ops.size() == 1) return Ops[0];
3700 
3701   assert(!Ops.empty() && "Reduced smax down to nothing!");
3702 
3703   // Okay, it looks like we really DO need an expr.  Check to see if we
3704   // already have one, otherwise create a new one.
3705   const SCEV *ExistingSCEV;
3706   FoldingSetNodeID ID;
3707   void *IP;
3708   std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops);
3709   if (ExistingSCEV)
3710     return ExistingSCEV;
3711   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3712   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3713   SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr(
3714       ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size());
3715 
3716   UniqueSCEVs.InsertNode(S, IP);
3717   addToLoopUseLists(S);
3718   return S;
3719 }
3720 
3721 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3722   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3723   return getSMaxExpr(Ops);
3724 }
3725 
3726 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3727   return getMinMaxExpr(scSMaxExpr, Ops);
3728 }
3729 
3730 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3731   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3732   return getUMaxExpr(Ops);
3733 }
3734 
3735 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3736   return getMinMaxExpr(scUMaxExpr, Ops);
3737 }
3738 
3739 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3740                                          const SCEV *RHS) {
3741   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3742   return getSMinExpr(Ops);
3743 }
3744 
3745 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3746   return getMinMaxExpr(scSMinExpr, Ops);
3747 }
3748 
3749 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3750                                          const SCEV *RHS) {
3751   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3752   return getUMinExpr(Ops);
3753 }
3754 
3755 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3756   return getMinMaxExpr(scUMinExpr, Ops);
3757 }
3758 
3759 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3760   // We can bypass creating a target-independent
3761   // constant expression and then folding it back into a ConstantInt.
3762   // This is just a compile-time optimization.
3763   if (auto *VecTy = dyn_cast<VectorType>(AllocTy)) {
3764     if (VecTy->isScalable()) {
3765       Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo());
3766       Constant *One = ConstantInt::get(IntTy, 1);
3767       Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One);
3768       return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy));
3769     }
3770   }
3771   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3772 }
3773 
3774 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3775                                              StructType *STy,
3776                                              unsigned FieldNo) {
3777   // We can bypass creating a target-independent
3778   // constant expression and then folding it back into a ConstantInt.
3779   // This is just a compile-time optimization.
3780   return getConstant(
3781       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3782 }
3783 
3784 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3785   // Don't attempt to do anything other than create a SCEVUnknown object
3786   // here.  createSCEV only calls getUnknown after checking for all other
3787   // interesting possibilities, and any other code that calls getUnknown
3788   // is doing so in order to hide a value from SCEV canonicalization.
3789 
3790   FoldingSetNodeID ID;
3791   ID.AddInteger(scUnknown);
3792   ID.AddPointer(V);
3793   void *IP = nullptr;
3794   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3795     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3796            "Stale SCEVUnknown in uniquing map!");
3797     return S;
3798   }
3799   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3800                                             FirstUnknown);
3801   FirstUnknown = cast<SCEVUnknown>(S);
3802   UniqueSCEVs.InsertNode(S, IP);
3803   return S;
3804 }
3805 
3806 //===----------------------------------------------------------------------===//
3807 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3808 //
3809 
3810 /// Test if values of the given type are analyzable within the SCEV
3811 /// framework. This primarily includes integer types, and it can optionally
3812 /// include pointer types if the ScalarEvolution class has access to
3813 /// target-specific information.
3814 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3815   // Integers and pointers are always SCEVable.
3816   return Ty->isIntOrPtrTy();
3817 }
3818 
3819 /// Return the size in bits of the specified type, for which isSCEVable must
3820 /// return true.
3821 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3822   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3823   if (Ty->isPointerTy())
3824     return getDataLayout().getIndexTypeSizeInBits(Ty);
3825   return getDataLayout().getTypeSizeInBits(Ty);
3826 }
3827 
3828 /// Return a type with the same bitwidth as the given type and which represents
3829 /// how SCEV will treat the given type, for which isSCEVable must return
3830 /// true. For pointer types, this is the pointer index sized integer type.
3831 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3832   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3833 
3834   if (Ty->isIntegerTy())
3835     return Ty;
3836 
3837   // The only other support type is pointer.
3838   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3839   return getDataLayout().getIndexType(Ty);
3840 }
3841 
3842 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3843   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3844 }
3845 
3846 const SCEV *ScalarEvolution::getCouldNotCompute() {
3847   return CouldNotCompute.get();
3848 }
3849 
3850 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3851   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3852     auto *SU = dyn_cast<SCEVUnknown>(S);
3853     return SU && SU->getValue() == nullptr;
3854   });
3855 
3856   return !ContainsNulls;
3857 }
3858 
3859 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3860   HasRecMapType::iterator I = HasRecMap.find(S);
3861   if (I != HasRecMap.end())
3862     return I->second;
3863 
3864   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3865   HasRecMap.insert({S, FoundAddRec});
3866   return FoundAddRec;
3867 }
3868 
3869 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3870 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3871 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3872 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3873   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3874   if (!Add)
3875     return {S, nullptr};
3876 
3877   if (Add->getNumOperands() != 2)
3878     return {S, nullptr};
3879 
3880   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3881   if (!ConstOp)
3882     return {S, nullptr};
3883 
3884   return {Add->getOperand(1), ConstOp->getValue()};
3885 }
3886 
3887 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3888 /// by the value and offset from any ValueOffsetPair in the set.
3889 SetVector<ScalarEvolution::ValueOffsetPair> *
3890 ScalarEvolution::getSCEVValues(const SCEV *S) {
3891   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3892   if (SI == ExprValueMap.end())
3893     return nullptr;
3894 #ifndef NDEBUG
3895   if (VerifySCEVMap) {
3896     // Check there is no dangling Value in the set returned.
3897     for (const auto &VE : SI->second)
3898       assert(ValueExprMap.count(VE.first));
3899   }
3900 #endif
3901   return &SI->second;
3902 }
3903 
3904 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3905 /// cannot be used separately. eraseValueFromMap should be used to remove
3906 /// V from ValueExprMap and ExprValueMap at the same time.
3907 void ScalarEvolution::eraseValueFromMap(Value *V) {
3908   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3909   if (I != ValueExprMap.end()) {
3910     const SCEV *S = I->second;
3911     // Remove {V, 0} from the set of ExprValueMap[S]
3912     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3913       SV->remove({V, nullptr});
3914 
3915     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3916     const SCEV *Stripped;
3917     ConstantInt *Offset;
3918     std::tie(Stripped, Offset) = splitAddExpr(S);
3919     if (Offset != nullptr) {
3920       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3921         SV->remove({V, Offset});
3922     }
3923     ValueExprMap.erase(V);
3924   }
3925 }
3926 
3927 /// Check whether value has nuw/nsw/exact set but SCEV does not.
3928 /// TODO: In reality it is better to check the poison recursively
3929 /// but this is better than nothing.
3930 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
3931   if (auto *I = dyn_cast<Instruction>(V)) {
3932     if (isa<OverflowingBinaryOperator>(I)) {
3933       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
3934         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
3935           return true;
3936         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
3937           return true;
3938       }
3939     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
3940       return true;
3941   }
3942   return false;
3943 }
3944 
3945 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3946 /// create a new one.
3947 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3948   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3949 
3950   const SCEV *S = getExistingSCEV(V);
3951   if (S == nullptr) {
3952     S = createSCEV(V);
3953     // During PHI resolution, it is possible to create two SCEVs for the same
3954     // V, so it is needed to double check whether V->S is inserted into
3955     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3956     std::pair<ValueExprMapType::iterator, bool> Pair =
3957         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3958     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
3959       ExprValueMap[S].insert({V, nullptr});
3960 
3961       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3962       // ExprValueMap.
3963       const SCEV *Stripped = S;
3964       ConstantInt *Offset = nullptr;
3965       std::tie(Stripped, Offset) = splitAddExpr(S);
3966       // If stripped is SCEVUnknown, don't bother to save
3967       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3968       // increase the complexity of the expansion code.
3969       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3970       // because it may generate add/sub instead of GEP in SCEV expansion.
3971       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3972           !isa<GetElementPtrInst>(V))
3973         ExprValueMap[Stripped].insert({V, Offset});
3974     }
3975   }
3976   return S;
3977 }
3978 
3979 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3980   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3981 
3982   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3983   if (I != ValueExprMap.end()) {
3984     const SCEV *S = I->second;
3985     if (checkValidity(S))
3986       return S;
3987     eraseValueFromMap(V);
3988     forgetMemoizedResults(S);
3989   }
3990   return nullptr;
3991 }
3992 
3993 /// Return a SCEV corresponding to -V = -1*V
3994 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3995                                              SCEV::NoWrapFlags Flags) {
3996   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3997     return getConstant(
3998                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3999 
4000   Type *Ty = V->getType();
4001   Ty = getEffectiveSCEVType(Ty);
4002   return getMulExpr(
4003       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
4004 }
4005 
4006 /// If Expr computes ~A, return A else return nullptr
4007 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4008   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4009   if (!Add || Add->getNumOperands() != 2 ||
4010       !Add->getOperand(0)->isAllOnesValue())
4011     return nullptr;
4012 
4013   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4014   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4015       !AddRHS->getOperand(0)->isAllOnesValue())
4016     return nullptr;
4017 
4018   return AddRHS->getOperand(1);
4019 }
4020 
4021 /// Return a SCEV corresponding to ~V = -1-V
4022 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4023   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4024     return getConstant(
4025                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4026 
4027   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4028   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4029     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4030       SmallVector<const SCEV *, 2> MatchedOperands;
4031       for (const SCEV *Operand : MME->operands()) {
4032         const SCEV *Matched = MatchNotExpr(Operand);
4033         if (!Matched)
4034           return (const SCEV *)nullptr;
4035         MatchedOperands.push_back(Matched);
4036       }
4037       return getMinMaxExpr(
4038           SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())),
4039           MatchedOperands);
4040     };
4041     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4042       return Replaced;
4043   }
4044 
4045   Type *Ty = V->getType();
4046   Ty = getEffectiveSCEVType(Ty);
4047   const SCEV *AllOnes =
4048                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
4049   return getMinusSCEV(AllOnes, V);
4050 }
4051 
4052 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4053                                           SCEV::NoWrapFlags Flags,
4054                                           unsigned Depth) {
4055   // Fast path: X - X --> 0.
4056   if (LHS == RHS)
4057     return getZero(LHS->getType());
4058 
4059   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4060   // makes it so that we cannot make much use of NUW.
4061   auto AddFlags = SCEV::FlagAnyWrap;
4062   const bool RHSIsNotMinSigned =
4063       !getSignedRangeMin(RHS).isMinSignedValue();
4064   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
4065     // Let M be the minimum representable signed value. Then (-1)*RHS
4066     // signed-wraps if and only if RHS is M. That can happen even for
4067     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4068     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4069     // (-1)*RHS, we need to prove that RHS != M.
4070     //
4071     // If LHS is non-negative and we know that LHS - RHS does not
4072     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4073     // either by proving that RHS > M or that LHS >= 0.
4074     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4075       AddFlags = SCEV::FlagNSW;
4076     }
4077   }
4078 
4079   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4080   // RHS is NSW and LHS >= 0.
4081   //
4082   // The difficulty here is that the NSW flag may have been proven
4083   // relative to a loop that is to be found in a recurrence in LHS and
4084   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4085   // larger scope than intended.
4086   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4087 
4088   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4089 }
4090 
4091 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4092                                                      unsigned Depth) {
4093   Type *SrcTy = V->getType();
4094   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4095          "Cannot truncate or zero extend with non-integer arguments!");
4096   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4097     return V;  // No conversion
4098   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4099     return getTruncateExpr(V, Ty, Depth);
4100   return getZeroExtendExpr(V, Ty, Depth);
4101 }
4102 
4103 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4104                                                      unsigned Depth) {
4105   Type *SrcTy = V->getType();
4106   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4107          "Cannot truncate or zero extend with non-integer arguments!");
4108   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4109     return V;  // No conversion
4110   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4111     return getTruncateExpr(V, Ty, Depth);
4112   return getSignExtendExpr(V, Ty, Depth);
4113 }
4114 
4115 const SCEV *
4116 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4117   Type *SrcTy = V->getType();
4118   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4119          "Cannot noop or zero extend with non-integer arguments!");
4120   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4121          "getNoopOrZeroExtend cannot truncate!");
4122   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4123     return V;  // No conversion
4124   return getZeroExtendExpr(V, Ty);
4125 }
4126 
4127 const SCEV *
4128 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4129   Type *SrcTy = V->getType();
4130   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4131          "Cannot noop or sign extend with non-integer arguments!");
4132   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4133          "getNoopOrSignExtend cannot truncate!");
4134   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4135     return V;  // No conversion
4136   return getSignExtendExpr(V, Ty);
4137 }
4138 
4139 const SCEV *
4140 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4141   Type *SrcTy = V->getType();
4142   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4143          "Cannot noop or any extend with non-integer arguments!");
4144   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4145          "getNoopOrAnyExtend cannot truncate!");
4146   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4147     return V;  // No conversion
4148   return getAnyExtendExpr(V, Ty);
4149 }
4150 
4151 const SCEV *
4152 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4153   Type *SrcTy = V->getType();
4154   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4155          "Cannot truncate or noop with non-integer arguments!");
4156   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4157          "getTruncateOrNoop cannot extend!");
4158   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4159     return V;  // No conversion
4160   return getTruncateExpr(V, Ty);
4161 }
4162 
4163 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4164                                                         const SCEV *RHS) {
4165   const SCEV *PromotedLHS = LHS;
4166   const SCEV *PromotedRHS = RHS;
4167 
4168   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4169     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4170   else
4171     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4172 
4173   return getUMaxExpr(PromotedLHS, PromotedRHS);
4174 }
4175 
4176 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4177                                                         const SCEV *RHS) {
4178   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4179   return getUMinFromMismatchedTypes(Ops);
4180 }
4181 
4182 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4183     SmallVectorImpl<const SCEV *> &Ops) {
4184   assert(!Ops.empty() && "At least one operand must be!");
4185   // Trivial case.
4186   if (Ops.size() == 1)
4187     return Ops[0];
4188 
4189   // Find the max type first.
4190   Type *MaxType = nullptr;
4191   for (auto *S : Ops)
4192     if (MaxType)
4193       MaxType = getWiderType(MaxType, S->getType());
4194     else
4195       MaxType = S->getType();
4196 
4197   // Extend all ops to max type.
4198   SmallVector<const SCEV *, 2> PromotedOps;
4199   for (auto *S : Ops)
4200     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4201 
4202   // Generate umin.
4203   return getUMinExpr(PromotedOps);
4204 }
4205 
4206 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4207   // A pointer operand may evaluate to a nonpointer expression, such as null.
4208   if (!V->getType()->isPointerTy())
4209     return V;
4210 
4211   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
4212     return getPointerBase(Cast->getOperand());
4213   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
4214     const SCEV *PtrOp = nullptr;
4215     for (const SCEV *NAryOp : NAry->operands()) {
4216       if (NAryOp->getType()->isPointerTy()) {
4217         // Cannot find the base of an expression with multiple pointer operands.
4218         if (PtrOp)
4219           return V;
4220         PtrOp = NAryOp;
4221       }
4222     }
4223     if (!PtrOp)
4224       return V;
4225     return getPointerBase(PtrOp);
4226   }
4227   return V;
4228 }
4229 
4230 /// Push users of the given Instruction onto the given Worklist.
4231 static void
4232 PushDefUseChildren(Instruction *I,
4233                    SmallVectorImpl<Instruction *> &Worklist) {
4234   // Push the def-use children onto the Worklist stack.
4235   for (User *U : I->users())
4236     Worklist.push_back(cast<Instruction>(U));
4237 }
4238 
4239 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4240   SmallVector<Instruction *, 16> Worklist;
4241   PushDefUseChildren(PN, Worklist);
4242 
4243   SmallPtrSet<Instruction *, 8> Visited;
4244   Visited.insert(PN);
4245   while (!Worklist.empty()) {
4246     Instruction *I = Worklist.pop_back_val();
4247     if (!Visited.insert(I).second)
4248       continue;
4249 
4250     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4251     if (It != ValueExprMap.end()) {
4252       const SCEV *Old = It->second;
4253 
4254       // Short-circuit the def-use traversal if the symbolic name
4255       // ceases to appear in expressions.
4256       if (Old != SymName && !hasOperand(Old, SymName))
4257         continue;
4258 
4259       // SCEVUnknown for a PHI either means that it has an unrecognized
4260       // structure, it's a PHI that's in the progress of being computed
4261       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4262       // additional loop trip count information isn't going to change anything.
4263       // In the second case, createNodeForPHI will perform the necessary
4264       // updates on its own when it gets to that point. In the third, we do
4265       // want to forget the SCEVUnknown.
4266       if (!isa<PHINode>(I) ||
4267           !isa<SCEVUnknown>(Old) ||
4268           (I != PN && Old == SymName)) {
4269         eraseValueFromMap(It->first);
4270         forgetMemoizedResults(Old);
4271       }
4272     }
4273 
4274     PushDefUseChildren(I, Worklist);
4275   }
4276 }
4277 
4278 namespace {
4279 
4280 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4281 /// expression in case its Loop is L. If it is not L then
4282 /// if IgnoreOtherLoops is true then use AddRec itself
4283 /// otherwise rewrite cannot be done.
4284 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4285 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4286 public:
4287   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4288                              bool IgnoreOtherLoops = true) {
4289     SCEVInitRewriter Rewriter(L, SE);
4290     const SCEV *Result = Rewriter.visit(S);
4291     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4292       return SE.getCouldNotCompute();
4293     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4294                ? SE.getCouldNotCompute()
4295                : Result;
4296   }
4297 
4298   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4299     if (!SE.isLoopInvariant(Expr, L))
4300       SeenLoopVariantSCEVUnknown = true;
4301     return Expr;
4302   }
4303 
4304   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4305     // Only re-write AddRecExprs for this loop.
4306     if (Expr->getLoop() == L)
4307       return Expr->getStart();
4308     SeenOtherLoops = true;
4309     return Expr;
4310   }
4311 
4312   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4313 
4314   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4315 
4316 private:
4317   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4318       : SCEVRewriteVisitor(SE), L(L) {}
4319 
4320   const Loop *L;
4321   bool SeenLoopVariantSCEVUnknown = false;
4322   bool SeenOtherLoops = false;
4323 };
4324 
4325 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4326 /// increment expression in case its Loop is L. If it is not L then
4327 /// use AddRec itself.
4328 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4329 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4330 public:
4331   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4332     SCEVPostIncRewriter Rewriter(L, SE);
4333     const SCEV *Result = Rewriter.visit(S);
4334     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4335         ? SE.getCouldNotCompute()
4336         : Result;
4337   }
4338 
4339   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4340     if (!SE.isLoopInvariant(Expr, L))
4341       SeenLoopVariantSCEVUnknown = true;
4342     return Expr;
4343   }
4344 
4345   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4346     // Only re-write AddRecExprs for this loop.
4347     if (Expr->getLoop() == L)
4348       return Expr->getPostIncExpr(SE);
4349     SeenOtherLoops = true;
4350     return Expr;
4351   }
4352 
4353   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4354 
4355   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4356 
4357 private:
4358   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4359       : SCEVRewriteVisitor(SE), L(L) {}
4360 
4361   const Loop *L;
4362   bool SeenLoopVariantSCEVUnknown = false;
4363   bool SeenOtherLoops = false;
4364 };
4365 
4366 /// This class evaluates the compare condition by matching it against the
4367 /// condition of loop latch. If there is a match we assume a true value
4368 /// for the condition while building SCEV nodes.
4369 class SCEVBackedgeConditionFolder
4370     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4371 public:
4372   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4373                              ScalarEvolution &SE) {
4374     bool IsPosBECond = false;
4375     Value *BECond = nullptr;
4376     if (BasicBlock *Latch = L->getLoopLatch()) {
4377       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4378       if (BI && BI->isConditional()) {
4379         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4380                "Both outgoing branches should not target same header!");
4381         BECond = BI->getCondition();
4382         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4383       } else {
4384         return S;
4385       }
4386     }
4387     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4388     return Rewriter.visit(S);
4389   }
4390 
4391   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4392     const SCEV *Result = Expr;
4393     bool InvariantF = SE.isLoopInvariant(Expr, L);
4394 
4395     if (!InvariantF) {
4396       Instruction *I = cast<Instruction>(Expr->getValue());
4397       switch (I->getOpcode()) {
4398       case Instruction::Select: {
4399         SelectInst *SI = cast<SelectInst>(I);
4400         Optional<const SCEV *> Res =
4401             compareWithBackedgeCondition(SI->getCondition());
4402         if (Res.hasValue()) {
4403           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4404           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4405         }
4406         break;
4407       }
4408       default: {
4409         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4410         if (Res.hasValue())
4411           Result = Res.getValue();
4412         break;
4413       }
4414       }
4415     }
4416     return Result;
4417   }
4418 
4419 private:
4420   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4421                                        bool IsPosBECond, ScalarEvolution &SE)
4422       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4423         IsPositiveBECond(IsPosBECond) {}
4424 
4425   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4426 
4427   const Loop *L;
4428   /// Loop back condition.
4429   Value *BackedgeCond = nullptr;
4430   /// Set to true if loop back is on positive branch condition.
4431   bool IsPositiveBECond;
4432 };
4433 
4434 Optional<const SCEV *>
4435 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4436 
4437   // If value matches the backedge condition for loop latch,
4438   // then return a constant evolution node based on loopback
4439   // branch taken.
4440   if (BackedgeCond == IC)
4441     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4442                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4443   return None;
4444 }
4445 
4446 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4447 public:
4448   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4449                              ScalarEvolution &SE) {
4450     SCEVShiftRewriter Rewriter(L, SE);
4451     const SCEV *Result = Rewriter.visit(S);
4452     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4453   }
4454 
4455   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4456     // Only allow AddRecExprs for this loop.
4457     if (!SE.isLoopInvariant(Expr, L))
4458       Valid = false;
4459     return Expr;
4460   }
4461 
4462   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4463     if (Expr->getLoop() == L && Expr->isAffine())
4464       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4465     Valid = false;
4466     return Expr;
4467   }
4468 
4469   bool isValid() { return Valid; }
4470 
4471 private:
4472   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4473       : SCEVRewriteVisitor(SE), L(L) {}
4474 
4475   const Loop *L;
4476   bool Valid = true;
4477 };
4478 
4479 } // end anonymous namespace
4480 
4481 SCEV::NoWrapFlags
4482 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4483   if (!AR->isAffine())
4484     return SCEV::FlagAnyWrap;
4485 
4486   using OBO = OverflowingBinaryOperator;
4487 
4488   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4489 
4490   if (!AR->hasNoSignedWrap()) {
4491     ConstantRange AddRecRange = getSignedRange(AR);
4492     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4493 
4494     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4495         Instruction::Add, IncRange, OBO::NoSignedWrap);
4496     if (NSWRegion.contains(AddRecRange))
4497       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4498   }
4499 
4500   if (!AR->hasNoUnsignedWrap()) {
4501     ConstantRange AddRecRange = getUnsignedRange(AR);
4502     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4503 
4504     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4505         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4506     if (NUWRegion.contains(AddRecRange))
4507       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4508   }
4509 
4510   return Result;
4511 }
4512 
4513 namespace {
4514 
4515 /// Represents an abstract binary operation.  This may exist as a
4516 /// normal instruction or constant expression, or may have been
4517 /// derived from an expression tree.
4518 struct BinaryOp {
4519   unsigned Opcode;
4520   Value *LHS;
4521   Value *RHS;
4522   bool IsNSW = false;
4523   bool IsNUW = false;
4524 
4525   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4526   /// constant expression.
4527   Operator *Op = nullptr;
4528 
4529   explicit BinaryOp(Operator *Op)
4530       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4531         Op(Op) {
4532     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4533       IsNSW = OBO->hasNoSignedWrap();
4534       IsNUW = OBO->hasNoUnsignedWrap();
4535     }
4536   }
4537 
4538   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4539                     bool IsNUW = false)
4540       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4541 };
4542 
4543 } // end anonymous namespace
4544 
4545 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4546 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4547   auto *Op = dyn_cast<Operator>(V);
4548   if (!Op)
4549     return None;
4550 
4551   // Implementation detail: all the cleverness here should happen without
4552   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4553   // SCEV expressions when possible, and we should not break that.
4554 
4555   switch (Op->getOpcode()) {
4556   case Instruction::Add:
4557   case Instruction::Sub:
4558   case Instruction::Mul:
4559   case Instruction::UDiv:
4560   case Instruction::URem:
4561   case Instruction::And:
4562   case Instruction::Or:
4563   case Instruction::AShr:
4564   case Instruction::Shl:
4565     return BinaryOp(Op);
4566 
4567   case Instruction::Xor:
4568     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4569       // If the RHS of the xor is a signmask, then this is just an add.
4570       // Instcombine turns add of signmask into xor as a strength reduction step.
4571       if (RHSC->getValue().isSignMask())
4572         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4573     return BinaryOp(Op);
4574 
4575   case Instruction::LShr:
4576     // Turn logical shift right of a constant into a unsigned divide.
4577     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4578       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4579 
4580       // If the shift count is not less than the bitwidth, the result of
4581       // the shift is undefined. Don't try to analyze it, because the
4582       // resolution chosen here may differ from the resolution chosen in
4583       // other parts of the compiler.
4584       if (SA->getValue().ult(BitWidth)) {
4585         Constant *X =
4586             ConstantInt::get(SA->getContext(),
4587                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4588         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4589       }
4590     }
4591     return BinaryOp(Op);
4592 
4593   case Instruction::ExtractValue: {
4594     auto *EVI = cast<ExtractValueInst>(Op);
4595     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4596       break;
4597 
4598     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4599     if (!WO)
4600       break;
4601 
4602     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4603     bool Signed = WO->isSigned();
4604     // TODO: Should add nuw/nsw flags for mul as well.
4605     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4606       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4607 
4608     // Now that we know that all uses of the arithmetic-result component of
4609     // CI are guarded by the overflow check, we can go ahead and pretend
4610     // that the arithmetic is non-overflowing.
4611     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4612                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4613   }
4614 
4615   default:
4616     break;
4617   }
4618 
4619   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4620   // semantics as a Sub, return a binary sub expression.
4621   if (auto *II = dyn_cast<IntrinsicInst>(V))
4622     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4623       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4624 
4625   return None;
4626 }
4627 
4628 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4629 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4630 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4631 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4632 /// follows one of the following patterns:
4633 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4634 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4635 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4636 /// we return the type of the truncation operation, and indicate whether the
4637 /// truncated type should be treated as signed/unsigned by setting
4638 /// \p Signed to true/false, respectively.
4639 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4640                                bool &Signed, ScalarEvolution &SE) {
4641   // The case where Op == SymbolicPHI (that is, with no type conversions on
4642   // the way) is handled by the regular add recurrence creating logic and
4643   // would have already been triggered in createAddRecForPHI. Reaching it here
4644   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4645   // because one of the other operands of the SCEVAddExpr updating this PHI is
4646   // not invariant).
4647   //
4648   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4649   // this case predicates that allow us to prove that Op == SymbolicPHI will
4650   // be added.
4651   if (Op == SymbolicPHI)
4652     return nullptr;
4653 
4654   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4655   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4656   if (SourceBits != NewBits)
4657     return nullptr;
4658 
4659   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4660   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4661   if (!SExt && !ZExt)
4662     return nullptr;
4663   const SCEVTruncateExpr *Trunc =
4664       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4665            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4666   if (!Trunc)
4667     return nullptr;
4668   const SCEV *X = Trunc->getOperand();
4669   if (X != SymbolicPHI)
4670     return nullptr;
4671   Signed = SExt != nullptr;
4672   return Trunc->getType();
4673 }
4674 
4675 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4676   if (!PN->getType()->isIntegerTy())
4677     return nullptr;
4678   const Loop *L = LI.getLoopFor(PN->getParent());
4679   if (!L || L->getHeader() != PN->getParent())
4680     return nullptr;
4681   return L;
4682 }
4683 
4684 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4685 // computation that updates the phi follows the following pattern:
4686 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4687 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4688 // If so, try to see if it can be rewritten as an AddRecExpr under some
4689 // Predicates. If successful, return them as a pair. Also cache the results
4690 // of the analysis.
4691 //
4692 // Example usage scenario:
4693 //    Say the Rewriter is called for the following SCEV:
4694 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4695 //    where:
4696 //         %X = phi i64 (%Start, %BEValue)
4697 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4698 //    and call this function with %SymbolicPHI = %X.
4699 //
4700 //    The analysis will find that the value coming around the backedge has
4701 //    the following SCEV:
4702 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4703 //    Upon concluding that this matches the desired pattern, the function
4704 //    will return the pair {NewAddRec, SmallPredsVec} where:
4705 //         NewAddRec = {%Start,+,%Step}
4706 //         SmallPredsVec = {P1, P2, P3} as follows:
4707 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4708 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4709 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4710 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4711 //    under the predicates {P1,P2,P3}.
4712 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4713 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4714 //
4715 // TODO's:
4716 //
4717 // 1) Extend the Induction descriptor to also support inductions that involve
4718 //    casts: When needed (namely, when we are called in the context of the
4719 //    vectorizer induction analysis), a Set of cast instructions will be
4720 //    populated by this method, and provided back to isInductionPHI. This is
4721 //    needed to allow the vectorizer to properly record them to be ignored by
4722 //    the cost model and to avoid vectorizing them (otherwise these casts,
4723 //    which are redundant under the runtime overflow checks, will be
4724 //    vectorized, which can be costly).
4725 //
4726 // 2) Support additional induction/PHISCEV patterns: We also want to support
4727 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4728 //    after the induction update operation (the induction increment):
4729 //
4730 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4731 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4732 //
4733 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4734 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4735 //
4736 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4737 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4738 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4739   SmallVector<const SCEVPredicate *, 3> Predicates;
4740 
4741   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
4742   // return an AddRec expression under some predicate.
4743 
4744   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4745   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4746   assert(L && "Expecting an integer loop header phi");
4747 
4748   // The loop may have multiple entrances or multiple exits; we can analyze
4749   // this phi as an addrec if it has a unique entry value and a unique
4750   // backedge value.
4751   Value *BEValueV = nullptr, *StartValueV = nullptr;
4752   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
4753     Value *V = PN->getIncomingValue(i);
4754     if (L->contains(PN->getIncomingBlock(i))) {
4755       if (!BEValueV) {
4756         BEValueV = V;
4757       } else if (BEValueV != V) {
4758         BEValueV = nullptr;
4759         break;
4760       }
4761     } else if (!StartValueV) {
4762       StartValueV = V;
4763     } else if (StartValueV != V) {
4764       StartValueV = nullptr;
4765       break;
4766     }
4767   }
4768   if (!BEValueV || !StartValueV)
4769     return None;
4770 
4771   const SCEV *BEValue = getSCEV(BEValueV);
4772 
4773   // If the value coming around the backedge is an add with the symbolic
4774   // value we just inserted, possibly with casts that we can ignore under
4775   // an appropriate runtime guard, then we found a simple induction variable!
4776   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
4777   if (!Add)
4778     return None;
4779 
4780   // If there is a single occurrence of the symbolic value, possibly
4781   // casted, replace it with a recurrence.
4782   unsigned FoundIndex = Add->getNumOperands();
4783   Type *TruncTy = nullptr;
4784   bool Signed;
4785   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4786     if ((TruncTy =
4787              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
4788       if (FoundIndex == e) {
4789         FoundIndex = i;
4790         break;
4791       }
4792 
4793   if (FoundIndex == Add->getNumOperands())
4794     return None;
4795 
4796   // Create an add with everything but the specified operand.
4797   SmallVector<const SCEV *, 8> Ops;
4798   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4799     if (i != FoundIndex)
4800       Ops.push_back(Add->getOperand(i));
4801   const SCEV *Accum = getAddExpr(Ops);
4802 
4803   // The runtime checks will not be valid if the step amount is
4804   // varying inside the loop.
4805   if (!isLoopInvariant(Accum, L))
4806     return None;
4807 
4808   // *** Part2: Create the predicates
4809 
4810   // Analysis was successful: we have a phi-with-cast pattern for which we
4811   // can return an AddRec expression under the following predicates:
4812   //
4813   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
4814   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
4815   // P2: An Equal predicate that guarantees that
4816   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
4817   // P3: An Equal predicate that guarantees that
4818   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
4819   //
4820   // As we next prove, the above predicates guarantee that:
4821   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
4822   //
4823   //
4824   // More formally, we want to prove that:
4825   //     Expr(i+1) = Start + (i+1) * Accum
4826   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4827   //
4828   // Given that:
4829   // 1) Expr(0) = Start
4830   // 2) Expr(1) = Start + Accum
4831   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
4832   // 3) Induction hypothesis (step i):
4833   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
4834   //
4835   // Proof:
4836   //  Expr(i+1) =
4837   //   = Start + (i+1)*Accum
4838   //   = (Start + i*Accum) + Accum
4839   //   = Expr(i) + Accum
4840   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
4841   //                                                             :: from step i
4842   //
4843   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
4844   //
4845   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
4846   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
4847   //     + Accum                                                     :: from P3
4848   //
4849   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
4850   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
4851   //
4852   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
4853   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
4854   //
4855   // By induction, the same applies to all iterations 1<=i<n:
4856   //
4857 
4858   // Create a truncated addrec for which we will add a no overflow check (P1).
4859   const SCEV *StartVal = getSCEV(StartValueV);
4860   const SCEV *PHISCEV =
4861       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
4862                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
4863 
4864   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
4865   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
4866   // will be constant.
4867   //
4868   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
4869   // add P1.
4870   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
4871     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
4872         Signed ? SCEVWrapPredicate::IncrementNSSW
4873                : SCEVWrapPredicate::IncrementNUSW;
4874     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
4875     Predicates.push_back(AddRecPred);
4876   }
4877 
4878   // Create the Equal Predicates P2,P3:
4879 
4880   // It is possible that the predicates P2 and/or P3 are computable at
4881   // compile time due to StartVal and/or Accum being constants.
4882   // If either one is, then we can check that now and escape if either P2
4883   // or P3 is false.
4884 
4885   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
4886   // for each of StartVal and Accum
4887   auto getExtendedExpr = [&](const SCEV *Expr,
4888                              bool CreateSignExtend) -> const SCEV * {
4889     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
4890     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
4891     const SCEV *ExtendedExpr =
4892         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
4893                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
4894     return ExtendedExpr;
4895   };
4896 
4897   // Given:
4898   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
4899   //               = getExtendedExpr(Expr)
4900   // Determine whether the predicate P: Expr == ExtendedExpr
4901   // is known to be false at compile time
4902   auto PredIsKnownFalse = [&](const SCEV *Expr,
4903                               const SCEV *ExtendedExpr) -> bool {
4904     return Expr != ExtendedExpr &&
4905            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
4906   };
4907 
4908   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
4909   if (PredIsKnownFalse(StartVal, StartExtended)) {
4910     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
4911     return None;
4912   }
4913 
4914   // The Step is always Signed (because the overflow checks are either
4915   // NSSW or NUSW)
4916   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
4917   if (PredIsKnownFalse(Accum, AccumExtended)) {
4918     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
4919     return None;
4920   }
4921 
4922   auto AppendPredicate = [&](const SCEV *Expr,
4923                              const SCEV *ExtendedExpr) -> void {
4924     if (Expr != ExtendedExpr &&
4925         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
4926       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
4927       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
4928       Predicates.push_back(Pred);
4929     }
4930   };
4931 
4932   AppendPredicate(StartVal, StartExtended);
4933   AppendPredicate(Accum, AccumExtended);
4934 
4935   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
4936   // which the casts had been folded away. The caller can rewrite SymbolicPHI
4937   // into NewAR if it will also add the runtime overflow checks specified in
4938   // Predicates.
4939   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
4940 
4941   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
4942       std::make_pair(NewAR, Predicates);
4943   // Remember the result of the analysis for this SCEV at this locayyytion.
4944   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
4945   return PredRewrite;
4946 }
4947 
4948 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4949 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
4950   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
4951   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
4952   if (!L)
4953     return None;
4954 
4955   // Check to see if we already analyzed this PHI.
4956   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
4957   if (I != PredicatedSCEVRewrites.end()) {
4958     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
4959         I->second;
4960     // Analysis was done before and failed to create an AddRec:
4961     if (Rewrite.first == SymbolicPHI)
4962       return None;
4963     // Analysis was done before and succeeded to create an AddRec under
4964     // a predicate:
4965     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
4966     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
4967     return Rewrite;
4968   }
4969 
4970   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4971     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
4972 
4973   // Record in the cache that the analysis failed
4974   if (!Rewrite) {
4975     SmallVector<const SCEVPredicate *, 3> Predicates;
4976     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
4977     return None;
4978   }
4979 
4980   return Rewrite;
4981 }
4982 
4983 // FIXME: This utility is currently required because the Rewriter currently
4984 // does not rewrite this expression:
4985 // {0, +, (sext ix (trunc iy to ix) to iy)}
4986 // into {0, +, %step},
4987 // even when the following Equal predicate exists:
4988 // "%step == (sext ix (trunc iy to ix) to iy)".
4989 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
4990     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
4991   if (AR1 == AR2)
4992     return true;
4993 
4994   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
4995     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
4996         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
4997       return false;
4998     return true;
4999   };
5000 
5001   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5002       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5003     return false;
5004   return true;
5005 }
5006 
5007 /// A helper function for createAddRecFromPHI to handle simple cases.
5008 ///
5009 /// This function tries to find an AddRec expression for the simplest (yet most
5010 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5011 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5012 /// technique for finding the AddRec expression.
5013 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5014                                                       Value *BEValueV,
5015                                                       Value *StartValueV) {
5016   const Loop *L = LI.getLoopFor(PN->getParent());
5017   assert(L && L->getHeader() == PN->getParent());
5018   assert(BEValueV && StartValueV);
5019 
5020   auto BO = MatchBinaryOp(BEValueV, DT);
5021   if (!BO)
5022     return nullptr;
5023 
5024   if (BO->Opcode != Instruction::Add)
5025     return nullptr;
5026 
5027   const SCEV *Accum = nullptr;
5028   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5029     Accum = getSCEV(BO->RHS);
5030   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5031     Accum = getSCEV(BO->LHS);
5032 
5033   if (!Accum)
5034     return nullptr;
5035 
5036   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5037   if (BO->IsNUW)
5038     Flags = setFlags(Flags, SCEV::FlagNUW);
5039   if (BO->IsNSW)
5040     Flags = setFlags(Flags, SCEV::FlagNSW);
5041 
5042   const SCEV *StartVal = getSCEV(StartValueV);
5043   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5044 
5045   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5046 
5047   // We can add Flags to the post-inc expression only if we
5048   // know that it is *undefined behavior* for BEValueV to
5049   // overflow.
5050   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5051     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5052       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5053 
5054   return PHISCEV;
5055 }
5056 
5057 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5058   const Loop *L = LI.getLoopFor(PN->getParent());
5059   if (!L || L->getHeader() != PN->getParent())
5060     return nullptr;
5061 
5062   // The loop may have multiple entrances or multiple exits; we can analyze
5063   // this phi as an addrec if it has a unique entry value and a unique
5064   // backedge value.
5065   Value *BEValueV = nullptr, *StartValueV = nullptr;
5066   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5067     Value *V = PN->getIncomingValue(i);
5068     if (L->contains(PN->getIncomingBlock(i))) {
5069       if (!BEValueV) {
5070         BEValueV = V;
5071       } else if (BEValueV != V) {
5072         BEValueV = nullptr;
5073         break;
5074       }
5075     } else if (!StartValueV) {
5076       StartValueV = V;
5077     } else if (StartValueV != V) {
5078       StartValueV = nullptr;
5079       break;
5080     }
5081   }
5082   if (!BEValueV || !StartValueV)
5083     return nullptr;
5084 
5085   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5086          "PHI node already processed?");
5087 
5088   // First, try to find AddRec expression without creating a fictituos symbolic
5089   // value for PN.
5090   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5091     return S;
5092 
5093   // Handle PHI node value symbolically.
5094   const SCEV *SymbolicName = getUnknown(PN);
5095   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5096 
5097   // Using this symbolic name for the PHI, analyze the value coming around
5098   // the back-edge.
5099   const SCEV *BEValue = getSCEV(BEValueV);
5100 
5101   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5102   // has a special value for the first iteration of the loop.
5103 
5104   // If the value coming around the backedge is an add with the symbolic
5105   // value we just inserted, then we found a simple induction variable!
5106   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5107     // If there is a single occurrence of the symbolic value, replace it
5108     // with a recurrence.
5109     unsigned FoundIndex = Add->getNumOperands();
5110     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5111       if (Add->getOperand(i) == SymbolicName)
5112         if (FoundIndex == e) {
5113           FoundIndex = i;
5114           break;
5115         }
5116 
5117     if (FoundIndex != Add->getNumOperands()) {
5118       // Create an add with everything but the specified operand.
5119       SmallVector<const SCEV *, 8> Ops;
5120       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5121         if (i != FoundIndex)
5122           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5123                                                              L, *this));
5124       const SCEV *Accum = getAddExpr(Ops);
5125 
5126       // This is not a valid addrec if the step amount is varying each
5127       // loop iteration, but is not itself an addrec in this loop.
5128       if (isLoopInvariant(Accum, L) ||
5129           (isa<SCEVAddRecExpr>(Accum) &&
5130            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5131         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5132 
5133         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5134           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5135             if (BO->IsNUW)
5136               Flags = setFlags(Flags, SCEV::FlagNUW);
5137             if (BO->IsNSW)
5138               Flags = setFlags(Flags, SCEV::FlagNSW);
5139           }
5140         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5141           // If the increment is an inbounds GEP, then we know the address
5142           // space cannot be wrapped around. We cannot make any guarantee
5143           // about signed or unsigned overflow because pointers are
5144           // unsigned but we may have a negative index from the base
5145           // pointer. We can guarantee that no unsigned wrap occurs if the
5146           // indices form a positive value.
5147           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5148             Flags = setFlags(Flags, SCEV::FlagNW);
5149 
5150             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5151             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5152               Flags = setFlags(Flags, SCEV::FlagNUW);
5153           }
5154 
5155           // We cannot transfer nuw and nsw flags from subtraction
5156           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5157           // for instance.
5158         }
5159 
5160         const SCEV *StartVal = getSCEV(StartValueV);
5161         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5162 
5163         // Okay, for the entire analysis of this edge we assumed the PHI
5164         // to be symbolic.  We now need to go back and purge all of the
5165         // entries for the scalars that use the symbolic expression.
5166         forgetSymbolicName(PN, SymbolicName);
5167         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5168 
5169         // We can add Flags to the post-inc expression only if we
5170         // know that it is *undefined behavior* for BEValueV to
5171         // overflow.
5172         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5173           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5174             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5175 
5176         return PHISCEV;
5177       }
5178     }
5179   } else {
5180     // Otherwise, this could be a loop like this:
5181     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5182     // In this case, j = {1,+,1}  and BEValue is j.
5183     // Because the other in-value of i (0) fits the evolution of BEValue
5184     // i really is an addrec evolution.
5185     //
5186     // We can generalize this saying that i is the shifted value of BEValue
5187     // by one iteration:
5188     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5189     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5190     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5191     if (Shifted != getCouldNotCompute() &&
5192         Start != getCouldNotCompute()) {
5193       const SCEV *StartVal = getSCEV(StartValueV);
5194       if (Start == StartVal) {
5195         // Okay, for the entire analysis of this edge we assumed the PHI
5196         // to be symbolic.  We now need to go back and purge all of the
5197         // entries for the scalars that use the symbolic expression.
5198         forgetSymbolicName(PN, SymbolicName);
5199         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5200         return Shifted;
5201       }
5202     }
5203   }
5204 
5205   // Remove the temporary PHI node SCEV that has been inserted while intending
5206   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5207   // as it will prevent later (possibly simpler) SCEV expressions to be added
5208   // to the ValueExprMap.
5209   eraseValueFromMap(PN);
5210 
5211   return nullptr;
5212 }
5213 
5214 // Checks if the SCEV S is available at BB.  S is considered available at BB
5215 // if S can be materialized at BB without introducing a fault.
5216 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5217                                BasicBlock *BB) {
5218   struct CheckAvailable {
5219     bool TraversalDone = false;
5220     bool Available = true;
5221 
5222     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5223     BasicBlock *BB = nullptr;
5224     DominatorTree &DT;
5225 
5226     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5227       : L(L), BB(BB), DT(DT) {}
5228 
5229     bool setUnavailable() {
5230       TraversalDone = true;
5231       Available = false;
5232       return false;
5233     }
5234 
5235     bool follow(const SCEV *S) {
5236       switch (S->getSCEVType()) {
5237       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
5238       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
5239       case scUMinExpr:
5240       case scSMinExpr:
5241         // These expressions are available if their operand(s) is/are.
5242         return true;
5243 
5244       case scAddRecExpr: {
5245         // We allow add recurrences that are on the loop BB is in, or some
5246         // outer loop.  This guarantees availability because the value of the
5247         // add recurrence at BB is simply the "current" value of the induction
5248         // variable.  We can relax this in the future; for instance an add
5249         // recurrence on a sibling dominating loop is also available at BB.
5250         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5251         if (L && (ARLoop == L || ARLoop->contains(L)))
5252           return true;
5253 
5254         return setUnavailable();
5255       }
5256 
5257       case scUnknown: {
5258         // For SCEVUnknown, we check for simple dominance.
5259         const auto *SU = cast<SCEVUnknown>(S);
5260         Value *V = SU->getValue();
5261 
5262         if (isa<Argument>(V))
5263           return false;
5264 
5265         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5266           return false;
5267 
5268         return setUnavailable();
5269       }
5270 
5271       case scUDivExpr:
5272       case scCouldNotCompute:
5273         // We do not try to smart about these at all.
5274         return setUnavailable();
5275       }
5276       llvm_unreachable("switch should be fully covered!");
5277     }
5278 
5279     bool isDone() { return TraversalDone; }
5280   };
5281 
5282   CheckAvailable CA(L, BB, DT);
5283   SCEVTraversal<CheckAvailable> ST(CA);
5284 
5285   ST.visitAll(S);
5286   return CA.Available;
5287 }
5288 
5289 // Try to match a control flow sequence that branches out at BI and merges back
5290 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5291 // match.
5292 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5293                           Value *&C, Value *&LHS, Value *&RHS) {
5294   C = BI->getCondition();
5295 
5296   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5297   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5298 
5299   if (!LeftEdge.isSingleEdge())
5300     return false;
5301 
5302   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5303 
5304   Use &LeftUse = Merge->getOperandUse(0);
5305   Use &RightUse = Merge->getOperandUse(1);
5306 
5307   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5308     LHS = LeftUse;
5309     RHS = RightUse;
5310     return true;
5311   }
5312 
5313   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5314     LHS = RightUse;
5315     RHS = LeftUse;
5316     return true;
5317   }
5318 
5319   return false;
5320 }
5321 
5322 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5323   auto IsReachable =
5324       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5325   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5326     const Loop *L = LI.getLoopFor(PN->getParent());
5327 
5328     // We don't want to break LCSSA, even in a SCEV expression tree.
5329     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5330       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5331         return nullptr;
5332 
5333     // Try to match
5334     //
5335     //  br %cond, label %left, label %right
5336     // left:
5337     //  br label %merge
5338     // right:
5339     //  br label %merge
5340     // merge:
5341     //  V = phi [ %x, %left ], [ %y, %right ]
5342     //
5343     // as "select %cond, %x, %y"
5344 
5345     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5346     assert(IDom && "At least the entry block should dominate PN");
5347 
5348     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5349     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5350 
5351     if (BI && BI->isConditional() &&
5352         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5353         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5354         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5355       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5356   }
5357 
5358   return nullptr;
5359 }
5360 
5361 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5362   if (const SCEV *S = createAddRecFromPHI(PN))
5363     return S;
5364 
5365   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5366     return S;
5367 
5368   // If the PHI has a single incoming value, follow that value, unless the
5369   // PHI's incoming blocks are in a different loop, in which case doing so
5370   // risks breaking LCSSA form. Instcombine would normally zap these, but
5371   // it doesn't have DominatorTree information, so it may miss cases.
5372   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5373     if (LI.replacementPreservesLCSSAForm(PN, V))
5374       return getSCEV(V);
5375 
5376   // If it's not a loop phi, we can't handle it yet.
5377   return getUnknown(PN);
5378 }
5379 
5380 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5381                                                       Value *Cond,
5382                                                       Value *TrueVal,
5383                                                       Value *FalseVal) {
5384   // Handle "constant" branch or select. This can occur for instance when a
5385   // loop pass transforms an inner loop and moves on to process the outer loop.
5386   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5387     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5388 
5389   // Try to match some simple smax or umax patterns.
5390   auto *ICI = dyn_cast<ICmpInst>(Cond);
5391   if (!ICI)
5392     return getUnknown(I);
5393 
5394   Value *LHS = ICI->getOperand(0);
5395   Value *RHS = ICI->getOperand(1);
5396 
5397   switch (ICI->getPredicate()) {
5398   case ICmpInst::ICMP_SLT:
5399   case ICmpInst::ICMP_SLE:
5400     std::swap(LHS, RHS);
5401     LLVM_FALLTHROUGH;
5402   case ICmpInst::ICMP_SGT:
5403   case ICmpInst::ICMP_SGE:
5404     // a >s b ? a+x : b+x  ->  smax(a, b)+x
5405     // a >s b ? b+x : a+x  ->  smin(a, b)+x
5406     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5407       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
5408       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
5409       const SCEV *LA = getSCEV(TrueVal);
5410       const SCEV *RA = getSCEV(FalseVal);
5411       const SCEV *LDiff = getMinusSCEV(LA, LS);
5412       const SCEV *RDiff = getMinusSCEV(RA, RS);
5413       if (LDiff == RDiff)
5414         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
5415       LDiff = getMinusSCEV(LA, RS);
5416       RDiff = getMinusSCEV(RA, LS);
5417       if (LDiff == RDiff)
5418         return getAddExpr(getSMinExpr(LS, RS), LDiff);
5419     }
5420     break;
5421   case ICmpInst::ICMP_ULT:
5422   case ICmpInst::ICMP_ULE:
5423     std::swap(LHS, RHS);
5424     LLVM_FALLTHROUGH;
5425   case ICmpInst::ICMP_UGT:
5426   case ICmpInst::ICMP_UGE:
5427     // a >u b ? a+x : b+x  ->  umax(a, b)+x
5428     // a >u b ? b+x : a+x  ->  umin(a, b)+x
5429     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5430       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5431       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
5432       const SCEV *LA = getSCEV(TrueVal);
5433       const SCEV *RA = getSCEV(FalseVal);
5434       const SCEV *LDiff = getMinusSCEV(LA, LS);
5435       const SCEV *RDiff = getMinusSCEV(RA, RS);
5436       if (LDiff == RDiff)
5437         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
5438       LDiff = getMinusSCEV(LA, RS);
5439       RDiff = getMinusSCEV(RA, LS);
5440       if (LDiff == RDiff)
5441         return getAddExpr(getUMinExpr(LS, RS), LDiff);
5442     }
5443     break;
5444   case ICmpInst::ICMP_NE:
5445     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5446     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5447         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5448       const SCEV *One = getOne(I->getType());
5449       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5450       const SCEV *LA = getSCEV(TrueVal);
5451       const SCEV *RA = getSCEV(FalseVal);
5452       const SCEV *LDiff = getMinusSCEV(LA, LS);
5453       const SCEV *RDiff = getMinusSCEV(RA, One);
5454       if (LDiff == RDiff)
5455         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5456     }
5457     break;
5458   case ICmpInst::ICMP_EQ:
5459     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5460     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5461         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5462       const SCEV *One = getOne(I->getType());
5463       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5464       const SCEV *LA = getSCEV(TrueVal);
5465       const SCEV *RA = getSCEV(FalseVal);
5466       const SCEV *LDiff = getMinusSCEV(LA, One);
5467       const SCEV *RDiff = getMinusSCEV(RA, LS);
5468       if (LDiff == RDiff)
5469         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5470     }
5471     break;
5472   default:
5473     break;
5474   }
5475 
5476   return getUnknown(I);
5477 }
5478 
5479 /// Expand GEP instructions into add and multiply operations. This allows them
5480 /// to be analyzed by regular SCEV code.
5481 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5482   // Don't attempt to analyze GEPs over unsized objects.
5483   if (!GEP->getSourceElementType()->isSized())
5484     return getUnknown(GEP);
5485 
5486   SmallVector<const SCEV *, 4> IndexExprs;
5487   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
5488     IndexExprs.push_back(getSCEV(*Index));
5489   return getGEPExpr(GEP, IndexExprs);
5490 }
5491 
5492 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5493   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5494     return C->getAPInt().countTrailingZeros();
5495 
5496   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5497     return std::min(GetMinTrailingZeros(T->getOperand()),
5498                     (uint32_t)getTypeSizeInBits(T->getType()));
5499 
5500   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5501     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5502     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5503                ? getTypeSizeInBits(E->getType())
5504                : OpRes;
5505   }
5506 
5507   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5508     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5509     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5510                ? getTypeSizeInBits(E->getType())
5511                : OpRes;
5512   }
5513 
5514   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5515     // The result is the min of all operands results.
5516     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5517     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5518       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5519     return MinOpRes;
5520   }
5521 
5522   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5523     // The result is the sum of all operands results.
5524     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5525     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5526     for (unsigned i = 1, e = M->getNumOperands();
5527          SumOpRes != BitWidth && i != e; ++i)
5528       SumOpRes =
5529           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5530     return SumOpRes;
5531   }
5532 
5533   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5534     // The result is the min of all operands results.
5535     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5536     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5537       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5538     return MinOpRes;
5539   }
5540 
5541   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5542     // The result is the min of all operands results.
5543     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5544     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5545       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5546     return MinOpRes;
5547   }
5548 
5549   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5550     // The result is the min of all operands results.
5551     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5552     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5553       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5554     return MinOpRes;
5555   }
5556 
5557   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5558     // For a SCEVUnknown, ask ValueTracking.
5559     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5560     return Known.countMinTrailingZeros();
5561   }
5562 
5563   // SCEVUDivExpr
5564   return 0;
5565 }
5566 
5567 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5568   auto I = MinTrailingZerosCache.find(S);
5569   if (I != MinTrailingZerosCache.end())
5570     return I->second;
5571 
5572   uint32_t Result = GetMinTrailingZerosImpl(S);
5573   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5574   assert(InsertPair.second && "Should insert a new key");
5575   return InsertPair.first->second;
5576 }
5577 
5578 /// Helper method to assign a range to V from metadata present in the IR.
5579 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5580   if (Instruction *I = dyn_cast<Instruction>(V))
5581     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5582       return getConstantRangeFromMetadata(*MD);
5583 
5584   return None;
5585 }
5586 
5587 /// Determine the range for a particular SCEV.  If SignHint is
5588 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5589 /// with a "cleaner" unsigned (resp. signed) representation.
5590 const ConstantRange &
5591 ScalarEvolution::getRangeRef(const SCEV *S,
5592                              ScalarEvolution::RangeSignHint SignHint) {
5593   DenseMap<const SCEV *, ConstantRange> &Cache =
5594       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
5595                                                        : SignedRanges;
5596   ConstantRange::PreferredRangeType RangeType =
5597       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
5598           ? ConstantRange::Unsigned : ConstantRange::Signed;
5599 
5600   // See if we've computed this range already.
5601   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
5602   if (I != Cache.end())
5603     return I->second;
5604 
5605   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5606     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
5607 
5608   unsigned BitWidth = getTypeSizeInBits(S->getType());
5609   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
5610   using OBO = OverflowingBinaryOperator;
5611 
5612   // If the value has known zeros, the maximum value will have those known zeros
5613   // as well.
5614   uint32_t TZ = GetMinTrailingZeros(S);
5615   if (TZ != 0) {
5616     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
5617       ConservativeResult =
5618           ConstantRange(APInt::getMinValue(BitWidth),
5619                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
5620     else
5621       ConservativeResult = ConstantRange(
5622           APInt::getSignedMinValue(BitWidth),
5623           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
5624   }
5625 
5626   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
5627     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
5628     unsigned WrapType = OBO::AnyWrap;
5629     if (Add->hasNoSignedWrap())
5630       WrapType |= OBO::NoSignedWrap;
5631     if (Add->hasNoUnsignedWrap())
5632       WrapType |= OBO::NoUnsignedWrap;
5633     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
5634       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
5635                           WrapType, RangeType);
5636     return setRange(Add, SignHint,
5637                     ConservativeResult.intersectWith(X, RangeType));
5638   }
5639 
5640   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
5641     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
5642     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
5643       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
5644     return setRange(Mul, SignHint,
5645                     ConservativeResult.intersectWith(X, RangeType));
5646   }
5647 
5648   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
5649     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
5650     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
5651       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
5652     return setRange(SMax, SignHint,
5653                     ConservativeResult.intersectWith(X, RangeType));
5654   }
5655 
5656   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
5657     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
5658     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
5659       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
5660     return setRange(UMax, SignHint,
5661                     ConservativeResult.intersectWith(X, RangeType));
5662   }
5663 
5664   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
5665     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
5666     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
5667       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
5668     return setRange(SMin, SignHint,
5669                     ConservativeResult.intersectWith(X, RangeType));
5670   }
5671 
5672   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
5673     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
5674     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
5675       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
5676     return setRange(UMin, SignHint,
5677                     ConservativeResult.intersectWith(X, RangeType));
5678   }
5679 
5680   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
5681     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
5682     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
5683     return setRange(UDiv, SignHint,
5684                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
5685   }
5686 
5687   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
5688     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
5689     return setRange(ZExt, SignHint,
5690                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
5691                                                      RangeType));
5692   }
5693 
5694   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
5695     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
5696     return setRange(SExt, SignHint,
5697                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
5698                                                      RangeType));
5699   }
5700 
5701   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
5702     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
5703     return setRange(Trunc, SignHint,
5704                     ConservativeResult.intersectWith(X.truncate(BitWidth),
5705                                                      RangeType));
5706   }
5707 
5708   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
5709     // If there's no unsigned wrap, the value will never be less than its
5710     // initial value.
5711     if (AddRec->hasNoUnsignedWrap()) {
5712       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
5713       if (!UnsignedMinValue.isNullValue())
5714         ConservativeResult = ConservativeResult.intersectWith(
5715             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
5716     }
5717 
5718     // If there's no signed wrap, and all the operands except initial value have
5719     // the same sign or zero, the value won't ever be:
5720     // 1: smaller than initial value if operands are non negative,
5721     // 2: bigger than initial value if operands are non positive.
5722     // For both cases, value can not cross signed min/max boundary.
5723     if (AddRec->hasNoSignedWrap()) {
5724       bool AllNonNeg = true;
5725       bool AllNonPos = true;
5726       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
5727         if (!isKnownNonNegative(AddRec->getOperand(i)))
5728           AllNonNeg = false;
5729         if (!isKnownNonPositive(AddRec->getOperand(i)))
5730           AllNonPos = false;
5731       }
5732       if (AllNonNeg)
5733         ConservativeResult = ConservativeResult.intersectWith(
5734             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
5735                                        APInt::getSignedMinValue(BitWidth)),
5736             RangeType);
5737       else if (AllNonPos)
5738         ConservativeResult = ConservativeResult.intersectWith(
5739             ConstantRange::getNonEmpty(
5740                 APInt::getSignedMinValue(BitWidth),
5741                 getSignedRangeMax(AddRec->getStart()) + 1),
5742             RangeType);
5743     }
5744 
5745     // TODO: non-affine addrec
5746     if (AddRec->isAffine()) {
5747       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
5748       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
5749           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
5750         auto RangeFromAffine = getRangeForAffineAR(
5751             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5752             BitWidth);
5753         if (!RangeFromAffine.isFullSet())
5754           ConservativeResult =
5755               ConservativeResult.intersectWith(RangeFromAffine, RangeType);
5756 
5757         auto RangeFromFactoring = getRangeViaFactoring(
5758             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
5759             BitWidth);
5760         if (!RangeFromFactoring.isFullSet())
5761           ConservativeResult =
5762               ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
5763       }
5764     }
5765 
5766     return setRange(AddRec, SignHint, std::move(ConservativeResult));
5767   }
5768 
5769   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5770     // Check if the IR explicitly contains !range metadata.
5771     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
5772     if (MDRange.hasValue())
5773       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
5774                                                             RangeType);
5775 
5776     // Split here to avoid paying the compile-time cost of calling both
5777     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
5778     // if needed.
5779     const DataLayout &DL = getDataLayout();
5780     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
5781       // For a SCEVUnknown, ask ValueTracking.
5782       KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5783       if (Known.getBitWidth() != BitWidth)
5784         Known = Known.zextOrTrunc(BitWidth);
5785       // If Known does not result in full-set, intersect with it.
5786       if (Known.getMinValue() != Known.getMaxValue() + 1)
5787         ConservativeResult = ConservativeResult.intersectWith(
5788             ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
5789             RangeType);
5790     } else {
5791       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
5792              "generalize as needed!");
5793       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
5794       // If the pointer size is larger than the index size type, this can cause
5795       // NS to be larger than BitWidth. So compensate for this.
5796       if (U->getType()->isPointerTy()) {
5797         unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
5798         int ptrIdxDiff = ptrSize - BitWidth;
5799         if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
5800           NS -= ptrIdxDiff;
5801       }
5802 
5803       if (NS > 1)
5804         ConservativeResult = ConservativeResult.intersectWith(
5805             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
5806                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
5807             RangeType);
5808     }
5809 
5810     // A range of Phi is a subset of union of all ranges of its input.
5811     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
5812       // Make sure that we do not run over cycled Phis.
5813       if (PendingPhiRanges.insert(Phi).second) {
5814         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
5815         for (auto &Op : Phi->operands()) {
5816           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
5817           RangeFromOps = RangeFromOps.unionWith(OpRange);
5818           // No point to continue if we already have a full set.
5819           if (RangeFromOps.isFullSet())
5820             break;
5821         }
5822         ConservativeResult =
5823             ConservativeResult.intersectWith(RangeFromOps, RangeType);
5824         bool Erased = PendingPhiRanges.erase(Phi);
5825         assert(Erased && "Failed to erase Phi properly?");
5826         (void) Erased;
5827       }
5828     }
5829 
5830     return setRange(U, SignHint, std::move(ConservativeResult));
5831   }
5832 
5833   return setRange(S, SignHint, std::move(ConservativeResult));
5834 }
5835 
5836 // Given a StartRange, Step and MaxBECount for an expression compute a range of
5837 // values that the expression can take. Initially, the expression has a value
5838 // from StartRange and then is changed by Step up to MaxBECount times. Signed
5839 // argument defines if we treat Step as signed or unsigned.
5840 static ConstantRange getRangeForAffineARHelper(APInt Step,
5841                                                const ConstantRange &StartRange,
5842                                                const APInt &MaxBECount,
5843                                                unsigned BitWidth, bool Signed) {
5844   // If either Step or MaxBECount is 0, then the expression won't change, and we
5845   // just need to return the initial range.
5846   if (Step == 0 || MaxBECount == 0)
5847     return StartRange;
5848 
5849   // If we don't know anything about the initial value (i.e. StartRange is
5850   // FullRange), then we don't know anything about the final range either.
5851   // Return FullRange.
5852   if (StartRange.isFullSet())
5853     return ConstantRange::getFull(BitWidth);
5854 
5855   // If Step is signed and negative, then we use its absolute value, but we also
5856   // note that we're moving in the opposite direction.
5857   bool Descending = Signed && Step.isNegative();
5858 
5859   if (Signed)
5860     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
5861     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
5862     // This equations hold true due to the well-defined wrap-around behavior of
5863     // APInt.
5864     Step = Step.abs();
5865 
5866   // Check if Offset is more than full span of BitWidth. If it is, the
5867   // expression is guaranteed to overflow.
5868   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
5869     return ConstantRange::getFull(BitWidth);
5870 
5871   // Offset is by how much the expression can change. Checks above guarantee no
5872   // overflow here.
5873   APInt Offset = Step * MaxBECount;
5874 
5875   // Minimum value of the final range will match the minimal value of StartRange
5876   // if the expression is increasing and will be decreased by Offset otherwise.
5877   // Maximum value of the final range will match the maximal value of StartRange
5878   // if the expression is decreasing and will be increased by Offset otherwise.
5879   APInt StartLower = StartRange.getLower();
5880   APInt StartUpper = StartRange.getUpper() - 1;
5881   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
5882                                    : (StartUpper + std::move(Offset));
5883 
5884   // It's possible that the new minimum/maximum value will fall into the initial
5885   // range (due to wrap around). This means that the expression can take any
5886   // value in this bitwidth, and we have to return full range.
5887   if (StartRange.contains(MovedBoundary))
5888     return ConstantRange::getFull(BitWidth);
5889 
5890   APInt NewLower =
5891       Descending ? std::move(MovedBoundary) : std::move(StartLower);
5892   APInt NewUpper =
5893       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
5894   NewUpper += 1;
5895 
5896   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
5897   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
5898 }
5899 
5900 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
5901                                                    const SCEV *Step,
5902                                                    const SCEV *MaxBECount,
5903                                                    unsigned BitWidth) {
5904   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
5905          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
5906          "Precondition!");
5907 
5908   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
5909   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
5910 
5911   // First, consider step signed.
5912   ConstantRange StartSRange = getSignedRange(Start);
5913   ConstantRange StepSRange = getSignedRange(Step);
5914 
5915   // If Step can be both positive and negative, we need to find ranges for the
5916   // maximum absolute step values in both directions and union them.
5917   ConstantRange SR =
5918       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
5919                                 MaxBECountValue, BitWidth, /* Signed = */ true);
5920   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
5921                                               StartSRange, MaxBECountValue,
5922                                               BitWidth, /* Signed = */ true));
5923 
5924   // Next, consider step unsigned.
5925   ConstantRange UR = getRangeForAffineARHelper(
5926       getUnsignedRangeMax(Step), getUnsignedRange(Start),
5927       MaxBECountValue, BitWidth, /* Signed = */ false);
5928 
5929   // Finally, intersect signed and unsigned ranges.
5930   return SR.intersectWith(UR, ConstantRange::Smallest);
5931 }
5932 
5933 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
5934                                                     const SCEV *Step,
5935                                                     const SCEV *MaxBECount,
5936                                                     unsigned BitWidth) {
5937   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
5938   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
5939 
5940   struct SelectPattern {
5941     Value *Condition = nullptr;
5942     APInt TrueValue;
5943     APInt FalseValue;
5944 
5945     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
5946                            const SCEV *S) {
5947       Optional<unsigned> CastOp;
5948       APInt Offset(BitWidth, 0);
5949 
5950       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
5951              "Should be!");
5952 
5953       // Peel off a constant offset:
5954       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
5955         // In the future we could consider being smarter here and handle
5956         // {Start+Step,+,Step} too.
5957         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
5958           return;
5959 
5960         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
5961         S = SA->getOperand(1);
5962       }
5963 
5964       // Peel off a cast operation
5965       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
5966         CastOp = SCast->getSCEVType();
5967         S = SCast->getOperand();
5968       }
5969 
5970       using namespace llvm::PatternMatch;
5971 
5972       auto *SU = dyn_cast<SCEVUnknown>(S);
5973       const APInt *TrueVal, *FalseVal;
5974       if (!SU ||
5975           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
5976                                           m_APInt(FalseVal)))) {
5977         Condition = nullptr;
5978         return;
5979       }
5980 
5981       TrueValue = *TrueVal;
5982       FalseValue = *FalseVal;
5983 
5984       // Re-apply the cast we peeled off earlier
5985       if (CastOp.hasValue())
5986         switch (*CastOp) {
5987         default:
5988           llvm_unreachable("Unknown SCEV cast type!");
5989 
5990         case scTruncate:
5991           TrueValue = TrueValue.trunc(BitWidth);
5992           FalseValue = FalseValue.trunc(BitWidth);
5993           break;
5994         case scZeroExtend:
5995           TrueValue = TrueValue.zext(BitWidth);
5996           FalseValue = FalseValue.zext(BitWidth);
5997           break;
5998         case scSignExtend:
5999           TrueValue = TrueValue.sext(BitWidth);
6000           FalseValue = FalseValue.sext(BitWidth);
6001           break;
6002         }
6003 
6004       // Re-apply the constant offset we peeled off earlier
6005       TrueValue += Offset;
6006       FalseValue += Offset;
6007     }
6008 
6009     bool isRecognized() { return Condition != nullptr; }
6010   };
6011 
6012   SelectPattern StartPattern(*this, BitWidth, Start);
6013   if (!StartPattern.isRecognized())
6014     return ConstantRange::getFull(BitWidth);
6015 
6016   SelectPattern StepPattern(*this, BitWidth, Step);
6017   if (!StepPattern.isRecognized())
6018     return ConstantRange::getFull(BitWidth);
6019 
6020   if (StartPattern.Condition != StepPattern.Condition) {
6021     // We don't handle this case today; but we could, by considering four
6022     // possibilities below instead of two. I'm not sure if there are cases where
6023     // that will help over what getRange already does, though.
6024     return ConstantRange::getFull(BitWidth);
6025   }
6026 
6027   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6028   // construct arbitrary general SCEV expressions here.  This function is called
6029   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6030   // say) can end up caching a suboptimal value.
6031 
6032   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6033   // C2352 and C2512 (otherwise it isn't needed).
6034 
6035   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6036   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6037   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6038   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6039 
6040   ConstantRange TrueRange =
6041       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6042   ConstantRange FalseRange =
6043       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6044 
6045   return TrueRange.unionWith(FalseRange);
6046 }
6047 
6048 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6049   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6050   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6051 
6052   // Return early if there are no flags to propagate to the SCEV.
6053   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6054   if (BinOp->hasNoUnsignedWrap())
6055     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6056   if (BinOp->hasNoSignedWrap())
6057     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6058   if (Flags == SCEV::FlagAnyWrap)
6059     return SCEV::FlagAnyWrap;
6060 
6061   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6062 }
6063 
6064 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6065   // Here we check that I is in the header of the innermost loop containing I,
6066   // since we only deal with instructions in the loop header. The actual loop we
6067   // need to check later will come from an add recurrence, but getting that
6068   // requires computing the SCEV of the operands, which can be expensive. This
6069   // check we can do cheaply to rule out some cases early.
6070   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6071   if (InnermostContainingLoop == nullptr ||
6072       InnermostContainingLoop->getHeader() != I->getParent())
6073     return false;
6074 
6075   // Only proceed if we can prove that I does not yield poison.
6076   if (!programUndefinedIfFullPoison(I))
6077     return false;
6078 
6079   // At this point we know that if I is executed, then it does not wrap
6080   // according to at least one of NSW or NUW. If I is not executed, then we do
6081   // not know if the calculation that I represents would wrap. Multiple
6082   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6083   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6084   // derived from other instructions that map to the same SCEV. We cannot make
6085   // that guarantee for cases where I is not executed. So we need to find the
6086   // loop that I is considered in relation to and prove that I is executed for
6087   // every iteration of that loop. That implies that the value that I
6088   // calculates does not wrap anywhere in the loop, so then we can apply the
6089   // flags to the SCEV.
6090   //
6091   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6092   // from different loops, so that we know which loop to prove that I is
6093   // executed in.
6094   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6095     // I could be an extractvalue from a call to an overflow intrinsic.
6096     // TODO: We can do better here in some cases.
6097     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6098       return false;
6099     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6100     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6101       bool AllOtherOpsLoopInvariant = true;
6102       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6103            ++OtherOpIndex) {
6104         if (OtherOpIndex != OpIndex) {
6105           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6106           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6107             AllOtherOpsLoopInvariant = false;
6108             break;
6109           }
6110         }
6111       }
6112       if (AllOtherOpsLoopInvariant &&
6113           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6114         return true;
6115     }
6116   }
6117   return false;
6118 }
6119 
6120 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6121   // If we know that \c I can never be poison period, then that's enough.
6122   if (isSCEVExprNeverPoison(I))
6123     return true;
6124 
6125   // For an add recurrence specifically, we assume that infinite loops without
6126   // side effects are undefined behavior, and then reason as follows:
6127   //
6128   // If the add recurrence is poison in any iteration, it is poison on all
6129   // future iterations (since incrementing poison yields poison). If the result
6130   // of the add recurrence is fed into the loop latch condition and the loop
6131   // does not contain any throws or exiting blocks other than the latch, we now
6132   // have the ability to "choose" whether the backedge is taken or not (by
6133   // choosing a sufficiently evil value for the poison feeding into the branch)
6134   // for every iteration including and after the one in which \p I first became
6135   // poison.  There are two possibilities (let's call the iteration in which \p
6136   // I first became poison as K):
6137   //
6138   //  1. In the set of iterations including and after K, the loop body executes
6139   //     no side effects.  In this case executing the backege an infinte number
6140   //     of times will yield undefined behavior.
6141   //
6142   //  2. In the set of iterations including and after K, the loop body executes
6143   //     at least one side effect.  In this case, that specific instance of side
6144   //     effect is control dependent on poison, which also yields undefined
6145   //     behavior.
6146 
6147   auto *ExitingBB = L->getExitingBlock();
6148   auto *LatchBB = L->getLoopLatch();
6149   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6150     return false;
6151 
6152   SmallPtrSet<const Instruction *, 16> Pushed;
6153   SmallVector<const Instruction *, 8> PoisonStack;
6154 
6155   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6156   // things that are known to be fully poison under that assumption go on the
6157   // PoisonStack.
6158   Pushed.insert(I);
6159   PoisonStack.push_back(I);
6160 
6161   bool LatchControlDependentOnPoison = false;
6162   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6163     const Instruction *Poison = PoisonStack.pop_back_val();
6164 
6165     for (auto *PoisonUser : Poison->users()) {
6166       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
6167         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6168           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6169       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6170         assert(BI->isConditional() && "Only possibility!");
6171         if (BI->getParent() == LatchBB) {
6172           LatchControlDependentOnPoison = true;
6173           break;
6174         }
6175       }
6176     }
6177   }
6178 
6179   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6180 }
6181 
6182 ScalarEvolution::LoopProperties
6183 ScalarEvolution::getLoopProperties(const Loop *L) {
6184   using LoopProperties = ScalarEvolution::LoopProperties;
6185 
6186   auto Itr = LoopPropertiesCache.find(L);
6187   if (Itr == LoopPropertiesCache.end()) {
6188     auto HasSideEffects = [](Instruction *I) {
6189       if (auto *SI = dyn_cast<StoreInst>(I))
6190         return !SI->isSimple();
6191 
6192       return I->mayHaveSideEffects();
6193     };
6194 
6195     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6196                          /*HasNoSideEffects*/ true};
6197 
6198     for (auto *BB : L->getBlocks())
6199       for (auto &I : *BB) {
6200         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6201           LP.HasNoAbnormalExits = false;
6202         if (HasSideEffects(&I))
6203           LP.HasNoSideEffects = false;
6204         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6205           break; // We're already as pessimistic as we can get.
6206       }
6207 
6208     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6209     assert(InsertPair.second && "We just checked!");
6210     Itr = InsertPair.first;
6211   }
6212 
6213   return Itr->second;
6214 }
6215 
6216 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6217   if (!isSCEVable(V->getType()))
6218     return getUnknown(V);
6219 
6220   if (Instruction *I = dyn_cast<Instruction>(V)) {
6221     // Don't attempt to analyze instructions in blocks that aren't
6222     // reachable. Such instructions don't matter, and they aren't required
6223     // to obey basic rules for definitions dominating uses which this
6224     // analysis depends on.
6225     if (!DT.isReachableFromEntry(I->getParent()))
6226       return getUnknown(UndefValue::get(V->getType()));
6227   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6228     return getConstant(CI);
6229   else if (isa<ConstantPointerNull>(V))
6230     return getZero(V->getType());
6231   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6232     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6233   else if (!isa<ConstantExpr>(V))
6234     return getUnknown(V);
6235 
6236   Operator *U = cast<Operator>(V);
6237   if (auto BO = MatchBinaryOp(U, DT)) {
6238     switch (BO->Opcode) {
6239     case Instruction::Add: {
6240       // The simple thing to do would be to just call getSCEV on both operands
6241       // and call getAddExpr with the result. However if we're looking at a
6242       // bunch of things all added together, this can be quite inefficient,
6243       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6244       // Instead, gather up all the operands and make a single getAddExpr call.
6245       // LLVM IR canonical form means we need only traverse the left operands.
6246       SmallVector<const SCEV *, 4> AddOps;
6247       do {
6248         if (BO->Op) {
6249           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6250             AddOps.push_back(OpSCEV);
6251             break;
6252           }
6253 
6254           // If a NUW or NSW flag can be applied to the SCEV for this
6255           // addition, then compute the SCEV for this addition by itself
6256           // with a separate call to getAddExpr. We need to do that
6257           // instead of pushing the operands of the addition onto AddOps,
6258           // since the flags are only known to apply to this particular
6259           // addition - they may not apply to other additions that can be
6260           // formed with operands from AddOps.
6261           const SCEV *RHS = getSCEV(BO->RHS);
6262           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6263           if (Flags != SCEV::FlagAnyWrap) {
6264             const SCEV *LHS = getSCEV(BO->LHS);
6265             if (BO->Opcode == Instruction::Sub)
6266               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6267             else
6268               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6269             break;
6270           }
6271         }
6272 
6273         if (BO->Opcode == Instruction::Sub)
6274           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6275         else
6276           AddOps.push_back(getSCEV(BO->RHS));
6277 
6278         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6279         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6280                        NewBO->Opcode != Instruction::Sub)) {
6281           AddOps.push_back(getSCEV(BO->LHS));
6282           break;
6283         }
6284         BO = NewBO;
6285       } while (true);
6286 
6287       return getAddExpr(AddOps);
6288     }
6289 
6290     case Instruction::Mul: {
6291       SmallVector<const SCEV *, 4> MulOps;
6292       do {
6293         if (BO->Op) {
6294           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6295             MulOps.push_back(OpSCEV);
6296             break;
6297           }
6298 
6299           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6300           if (Flags != SCEV::FlagAnyWrap) {
6301             MulOps.push_back(
6302                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6303             break;
6304           }
6305         }
6306 
6307         MulOps.push_back(getSCEV(BO->RHS));
6308         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6309         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6310           MulOps.push_back(getSCEV(BO->LHS));
6311           break;
6312         }
6313         BO = NewBO;
6314       } while (true);
6315 
6316       return getMulExpr(MulOps);
6317     }
6318     case Instruction::UDiv:
6319       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6320     case Instruction::URem:
6321       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6322     case Instruction::Sub: {
6323       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6324       if (BO->Op)
6325         Flags = getNoWrapFlagsFromUB(BO->Op);
6326       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6327     }
6328     case Instruction::And:
6329       // For an expression like x&255 that merely masks off the high bits,
6330       // use zext(trunc(x)) as the SCEV expression.
6331       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6332         if (CI->isZero())
6333           return getSCEV(BO->RHS);
6334         if (CI->isMinusOne())
6335           return getSCEV(BO->LHS);
6336         const APInt &A = CI->getValue();
6337 
6338         // Instcombine's ShrinkDemandedConstant may strip bits out of
6339         // constants, obscuring what would otherwise be a low-bits mask.
6340         // Use computeKnownBits to compute what ShrinkDemandedConstant
6341         // knew about to reconstruct a low-bits mask value.
6342         unsigned LZ = A.countLeadingZeros();
6343         unsigned TZ = A.countTrailingZeros();
6344         unsigned BitWidth = A.getBitWidth();
6345         KnownBits Known(BitWidth);
6346         computeKnownBits(BO->LHS, Known, getDataLayout(),
6347                          0, &AC, nullptr, &DT);
6348 
6349         APInt EffectiveMask =
6350             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6351         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6352           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6353           const SCEV *LHS = getSCEV(BO->LHS);
6354           const SCEV *ShiftedLHS = nullptr;
6355           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6356             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6357               // For an expression like (x * 8) & 8, simplify the multiply.
6358               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6359               unsigned GCD = std::min(MulZeros, TZ);
6360               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6361               SmallVector<const SCEV*, 4> MulOps;
6362               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6363               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6364               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6365               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6366             }
6367           }
6368           if (!ShiftedLHS)
6369             ShiftedLHS = getUDivExpr(LHS, MulCount);
6370           return getMulExpr(
6371               getZeroExtendExpr(
6372                   getTruncateExpr(ShiftedLHS,
6373                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6374                   BO->LHS->getType()),
6375               MulCount);
6376         }
6377       }
6378       break;
6379 
6380     case Instruction::Or:
6381       // If the RHS of the Or is a constant, we may have something like:
6382       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6383       // optimizations will transparently handle this case.
6384       //
6385       // In order for this transformation to be safe, the LHS must be of the
6386       // form X*(2^n) and the Or constant must be less than 2^n.
6387       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6388         const SCEV *LHS = getSCEV(BO->LHS);
6389         const APInt &CIVal = CI->getValue();
6390         if (GetMinTrailingZeros(LHS) >=
6391             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6392           // Build a plain add SCEV.
6393           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
6394           // If the LHS of the add was an addrec and it has no-wrap flags,
6395           // transfer the no-wrap flags, since an or won't introduce a wrap.
6396           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
6397             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
6398             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
6399                 OldAR->getNoWrapFlags());
6400           }
6401           return S;
6402         }
6403       }
6404       break;
6405 
6406     case Instruction::Xor:
6407       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6408         // If the RHS of xor is -1, then this is a not operation.
6409         if (CI->isMinusOne())
6410           return getNotSCEV(getSCEV(BO->LHS));
6411 
6412         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6413         // This is a variant of the check for xor with -1, and it handles
6414         // the case where instcombine has trimmed non-demanded bits out
6415         // of an xor with -1.
6416         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6417           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6418             if (LBO->getOpcode() == Instruction::And &&
6419                 LCI->getValue() == CI->getValue())
6420               if (const SCEVZeroExtendExpr *Z =
6421                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6422                 Type *UTy = BO->LHS->getType();
6423                 const SCEV *Z0 = Z->getOperand();
6424                 Type *Z0Ty = Z0->getType();
6425                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6426 
6427                 // If C is a low-bits mask, the zero extend is serving to
6428                 // mask off the high bits. Complement the operand and
6429                 // re-apply the zext.
6430                 if (CI->getValue().isMask(Z0TySize))
6431                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6432 
6433                 // If C is a single bit, it may be in the sign-bit position
6434                 // before the zero-extend. In this case, represent the xor
6435                 // using an add, which is equivalent, and re-apply the zext.
6436                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6437                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6438                     Trunc.isSignMask())
6439                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6440                                            UTy);
6441               }
6442       }
6443       break;
6444 
6445     case Instruction::Shl:
6446       // Turn shift left of a constant amount into a multiply.
6447       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6448         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6449 
6450         // If the shift count is not less than the bitwidth, the result of
6451         // the shift is undefined. Don't try to analyze it, because the
6452         // resolution chosen here may differ from the resolution chosen in
6453         // other parts of the compiler.
6454         if (SA->getValue().uge(BitWidth))
6455           break;
6456 
6457         // It is currently not resolved how to interpret NSW for left
6458         // shift by BitWidth - 1, so we avoid applying flags in that
6459         // case. Remove this check (or this comment) once the situation
6460         // is resolved. See
6461         // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
6462         // and http://reviews.llvm.org/D8890 .
6463         auto Flags = SCEV::FlagAnyWrap;
6464         if (BO->Op && SA->getValue().ult(BitWidth - 1))
6465           Flags = getNoWrapFlagsFromUB(BO->Op);
6466 
6467         Constant *X = ConstantInt::get(
6468             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6469         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6470       }
6471       break;
6472 
6473     case Instruction::AShr: {
6474       // AShr X, C, where C is a constant.
6475       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6476       if (!CI)
6477         break;
6478 
6479       Type *OuterTy = BO->LHS->getType();
6480       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6481       // If the shift count is not less than the bitwidth, the result of
6482       // the shift is undefined. Don't try to analyze it, because the
6483       // resolution chosen here may differ from the resolution chosen in
6484       // other parts of the compiler.
6485       if (CI->getValue().uge(BitWidth))
6486         break;
6487 
6488       if (CI->isZero())
6489         return getSCEV(BO->LHS); // shift by zero --> noop
6490 
6491       uint64_t AShrAmt = CI->getZExtValue();
6492       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6493 
6494       Operator *L = dyn_cast<Operator>(BO->LHS);
6495       if (L && L->getOpcode() == Instruction::Shl) {
6496         // X = Shl A, n
6497         // Y = AShr X, m
6498         // Both n and m are constant.
6499 
6500         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
6501         if (L->getOperand(1) == BO->RHS)
6502           // For a two-shift sext-inreg, i.e. n = m,
6503           // use sext(trunc(x)) as the SCEV expression.
6504           return getSignExtendExpr(
6505               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
6506 
6507         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
6508         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
6509           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
6510           if (ShlAmt > AShrAmt) {
6511             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
6512             // expression. We already checked that ShlAmt < BitWidth, so
6513             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
6514             // ShlAmt - AShrAmt < Amt.
6515             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
6516                                             ShlAmt - AShrAmt);
6517             return getSignExtendExpr(
6518                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
6519                 getConstant(Mul)), OuterTy);
6520           }
6521         }
6522       }
6523       break;
6524     }
6525     }
6526   }
6527 
6528   switch (U->getOpcode()) {
6529   case Instruction::Trunc:
6530     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
6531 
6532   case Instruction::ZExt:
6533     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6534 
6535   case Instruction::SExt:
6536     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
6537       // The NSW flag of a subtract does not always survive the conversion to
6538       // A + (-1)*B.  By pushing sign extension onto its operands we are much
6539       // more likely to preserve NSW and allow later AddRec optimisations.
6540       //
6541       // NOTE: This is effectively duplicating this logic from getSignExtend:
6542       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
6543       // but by that point the NSW information has potentially been lost.
6544       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
6545         Type *Ty = U->getType();
6546         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
6547         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
6548         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
6549       }
6550     }
6551     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
6552 
6553   case Instruction::BitCast:
6554     // BitCasts are no-op casts so we just eliminate the cast.
6555     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
6556       return getSCEV(U->getOperand(0));
6557     break;
6558 
6559   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
6560   // lead to pointer expressions which cannot safely be expanded to GEPs,
6561   // because ScalarEvolution doesn't respect the GEP aliasing rules when
6562   // simplifying integer expressions.
6563 
6564   case Instruction::GetElementPtr:
6565     return createNodeForGEP(cast<GEPOperator>(U));
6566 
6567   case Instruction::PHI:
6568     return createNodeForPHI(cast<PHINode>(U));
6569 
6570   case Instruction::Select:
6571     // U can also be a select constant expr, which let fall through.  Since
6572     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
6573     // constant expressions cannot have instructions as operands, we'd have
6574     // returned getUnknown for a select constant expressions anyway.
6575     if (isa<Instruction>(U))
6576       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
6577                                       U->getOperand(1), U->getOperand(2));
6578     break;
6579 
6580   case Instruction::Call:
6581   case Instruction::Invoke:
6582     if (Value *RV = CallSite(U).getReturnedArgOperand())
6583       return getSCEV(RV);
6584     break;
6585   }
6586 
6587   return getUnknown(V);
6588 }
6589 
6590 //===----------------------------------------------------------------------===//
6591 //                   Iteration Count Computation Code
6592 //
6593 
6594 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
6595   if (!ExitCount)
6596     return 0;
6597 
6598   ConstantInt *ExitConst = ExitCount->getValue();
6599 
6600   // Guard against huge trip counts.
6601   if (ExitConst->getValue().getActiveBits() > 32)
6602     return 0;
6603 
6604   // In case of integer overflow, this returns 0, which is correct.
6605   return ((unsigned)ExitConst->getZExtValue()) + 1;
6606 }
6607 
6608 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
6609   if (BasicBlock *ExitingBB = L->getExitingBlock())
6610     return getSmallConstantTripCount(L, ExitingBB);
6611 
6612   // No trip count information for multiple exits.
6613   return 0;
6614 }
6615 
6616 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L,
6617                                                     BasicBlock *ExitingBlock) {
6618   assert(ExitingBlock && "Must pass a non-null exiting block!");
6619   assert(L->isLoopExiting(ExitingBlock) &&
6620          "Exiting block must actually branch out of the loop!");
6621   const SCEVConstant *ExitCount =
6622       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
6623   return getConstantTripCount(ExitCount);
6624 }
6625 
6626 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
6627   const auto *MaxExitCount =
6628       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
6629   return getConstantTripCount(MaxExitCount);
6630 }
6631 
6632 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
6633   if (BasicBlock *ExitingBB = L->getExitingBlock())
6634     return getSmallConstantTripMultiple(L, ExitingBB);
6635 
6636   // No trip multiple information for multiple exits.
6637   return 0;
6638 }
6639 
6640 /// Returns the largest constant divisor of the trip count of this loop as a
6641 /// normal unsigned value, if possible. This means that the actual trip count is
6642 /// always a multiple of the returned value (don't forget the trip count could
6643 /// very well be zero as well!).
6644 ///
6645 /// Returns 1 if the trip count is unknown or not guaranteed to be the
6646 /// multiple of a constant (which is also the case if the trip count is simply
6647 /// constant, use getSmallConstantTripCount for that case), Will also return 1
6648 /// if the trip count is very large (>= 2^32).
6649 ///
6650 /// As explained in the comments for getSmallConstantTripCount, this assumes
6651 /// that control exits the loop via ExitingBlock.
6652 unsigned
6653 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
6654                                               BasicBlock *ExitingBlock) {
6655   assert(ExitingBlock && "Must pass a non-null exiting block!");
6656   assert(L->isLoopExiting(ExitingBlock) &&
6657          "Exiting block must actually branch out of the loop!");
6658   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
6659   if (ExitCount == getCouldNotCompute())
6660     return 1;
6661 
6662   // Get the trip count from the BE count by adding 1.
6663   const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType()));
6664 
6665   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
6666   if (!TC)
6667     // Attempt to factor more general cases. Returns the greatest power of
6668     // two divisor. If overflow happens, the trip count expression is still
6669     // divisible by the greatest power of 2 divisor returned.
6670     return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr));
6671 
6672   ConstantInt *Result = TC->getValue();
6673 
6674   // Guard against huge trip counts (this requires checking
6675   // for zero to handle the case where the trip count == -1 and the
6676   // addition wraps).
6677   if (!Result || Result->getValue().getActiveBits() > 32 ||
6678       Result->getValue().getActiveBits() == 0)
6679     return 1;
6680 
6681   return (unsigned)Result->getZExtValue();
6682 }
6683 
6684 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
6685                                           BasicBlock *ExitingBlock,
6686                                           ExitCountKind Kind) {
6687   switch (Kind) {
6688   case Exact:
6689     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
6690   case ConstantMaximum:
6691     return getBackedgeTakenInfo(L).getMax(ExitingBlock, this);
6692   };
6693   llvm_unreachable("Invalid ExitCountKind!");
6694 }
6695 
6696 const SCEV *
6697 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
6698                                                  SCEVUnionPredicate &Preds) {
6699   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
6700 }
6701 
6702 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
6703                                                    ExitCountKind Kind) {
6704   switch (Kind) {
6705   case Exact:
6706     return getBackedgeTakenInfo(L).getExact(L, this);
6707   case ConstantMaximum:
6708     return getBackedgeTakenInfo(L).getMax(this);
6709   };
6710   llvm_unreachable("Invalid ExitCountKind!");
6711 }
6712 
6713 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
6714   return getBackedgeTakenInfo(L).isMaxOrZero(this);
6715 }
6716 
6717 /// Push PHI nodes in the header of the given loop onto the given Worklist.
6718 static void
6719 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
6720   BasicBlock *Header = L->getHeader();
6721 
6722   // Push all Loop-header PHIs onto the Worklist stack.
6723   for (PHINode &PN : Header->phis())
6724     Worklist.push_back(&PN);
6725 }
6726 
6727 const ScalarEvolution::BackedgeTakenInfo &
6728 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
6729   auto &BTI = getBackedgeTakenInfo(L);
6730   if (BTI.hasFullInfo())
6731     return BTI;
6732 
6733   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6734 
6735   if (!Pair.second)
6736     return Pair.first->second;
6737 
6738   BackedgeTakenInfo Result =
6739       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
6740 
6741   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
6742 }
6743 
6744 const ScalarEvolution::BackedgeTakenInfo &
6745 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
6746   // Initially insert an invalid entry for this loop. If the insertion
6747   // succeeds, proceed to actually compute a backedge-taken count and
6748   // update the value. The temporary CouldNotCompute value tells SCEV
6749   // code elsewhere that it shouldn't attempt to request a new
6750   // backedge-taken count, which could result in infinite recursion.
6751   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
6752       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
6753   if (!Pair.second)
6754     return Pair.first->second;
6755 
6756   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
6757   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
6758   // must be cleared in this scope.
6759   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
6760 
6761   // In product build, there are no usage of statistic.
6762   (void)NumTripCountsComputed;
6763   (void)NumTripCountsNotComputed;
6764 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
6765   const SCEV *BEExact = Result.getExact(L, this);
6766   if (BEExact != getCouldNotCompute()) {
6767     assert(isLoopInvariant(BEExact, L) &&
6768            isLoopInvariant(Result.getMax(this), L) &&
6769            "Computed backedge-taken count isn't loop invariant for loop!");
6770     ++NumTripCountsComputed;
6771   }
6772   else if (Result.getMax(this) == getCouldNotCompute() &&
6773            isa<PHINode>(L->getHeader()->begin())) {
6774     // Only count loops that have phi nodes as not being computable.
6775     ++NumTripCountsNotComputed;
6776   }
6777 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
6778 
6779   // Now that we know more about the trip count for this loop, forget any
6780   // existing SCEV values for PHI nodes in this loop since they are only
6781   // conservative estimates made without the benefit of trip count
6782   // information. This is similar to the code in forgetLoop, except that
6783   // it handles SCEVUnknown PHI nodes specially.
6784   if (Result.hasAnyInfo()) {
6785     SmallVector<Instruction *, 16> Worklist;
6786     PushLoopPHIs(L, Worklist);
6787 
6788     SmallPtrSet<Instruction *, 8> Discovered;
6789     while (!Worklist.empty()) {
6790       Instruction *I = Worklist.pop_back_val();
6791 
6792       ValueExprMapType::iterator It =
6793         ValueExprMap.find_as(static_cast<Value *>(I));
6794       if (It != ValueExprMap.end()) {
6795         const SCEV *Old = It->second;
6796 
6797         // SCEVUnknown for a PHI either means that it has an unrecognized
6798         // structure, or it's a PHI that's in the progress of being computed
6799         // by createNodeForPHI.  In the former case, additional loop trip
6800         // count information isn't going to change anything. In the later
6801         // case, createNodeForPHI will perform the necessary updates on its
6802         // own when it gets to that point.
6803         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
6804           eraseValueFromMap(It->first);
6805           forgetMemoizedResults(Old);
6806         }
6807         if (PHINode *PN = dyn_cast<PHINode>(I))
6808           ConstantEvolutionLoopExitValue.erase(PN);
6809       }
6810 
6811       // Since we don't need to invalidate anything for correctness and we're
6812       // only invalidating to make SCEV's results more precise, we get to stop
6813       // early to avoid invalidating too much.  This is especially important in
6814       // cases like:
6815       //
6816       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
6817       // loop0:
6818       //   %pn0 = phi
6819       //   ...
6820       // loop1:
6821       //   %pn1 = phi
6822       //   ...
6823       //
6824       // where both loop0 and loop1's backedge taken count uses the SCEV
6825       // expression for %v.  If we don't have the early stop below then in cases
6826       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
6827       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
6828       // count for loop1, effectively nullifying SCEV's trip count cache.
6829       for (auto *U : I->users())
6830         if (auto *I = dyn_cast<Instruction>(U)) {
6831           auto *LoopForUser = LI.getLoopFor(I->getParent());
6832           if (LoopForUser && L->contains(LoopForUser) &&
6833               Discovered.insert(I).second)
6834             Worklist.push_back(I);
6835         }
6836     }
6837   }
6838 
6839   // Re-lookup the insert position, since the call to
6840   // computeBackedgeTakenCount above could result in a
6841   // recusive call to getBackedgeTakenInfo (on a different
6842   // loop), which would invalidate the iterator computed
6843   // earlier.
6844   return BackedgeTakenCounts.find(L)->second = std::move(Result);
6845 }
6846 
6847 void ScalarEvolution::forgetAllLoops() {
6848   // This method is intended to forget all info about loops. It should
6849   // invalidate caches as if the following happened:
6850   // - The trip counts of all loops have changed arbitrarily
6851   // - Every llvm::Value has been updated in place to produce a different
6852   // result.
6853   BackedgeTakenCounts.clear();
6854   PredicatedBackedgeTakenCounts.clear();
6855   LoopPropertiesCache.clear();
6856   ConstantEvolutionLoopExitValue.clear();
6857   ValueExprMap.clear();
6858   ValuesAtScopes.clear();
6859   LoopDispositions.clear();
6860   BlockDispositions.clear();
6861   UnsignedRanges.clear();
6862   SignedRanges.clear();
6863   ExprValueMap.clear();
6864   HasRecMap.clear();
6865   MinTrailingZerosCache.clear();
6866   PredicatedSCEVRewrites.clear();
6867 }
6868 
6869 void ScalarEvolution::forgetLoop(const Loop *L) {
6870   // Drop any stored trip count value.
6871   auto RemoveLoopFromBackedgeMap =
6872       [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) {
6873         auto BTCPos = Map.find(L);
6874         if (BTCPos != Map.end()) {
6875           BTCPos->second.clear();
6876           Map.erase(BTCPos);
6877         }
6878       };
6879 
6880   SmallVector<const Loop *, 16> LoopWorklist(1, L);
6881   SmallVector<Instruction *, 32> Worklist;
6882   SmallPtrSet<Instruction *, 16> Visited;
6883 
6884   // Iterate over all the loops and sub-loops to drop SCEV information.
6885   while (!LoopWorklist.empty()) {
6886     auto *CurrL = LoopWorklist.pop_back_val();
6887 
6888     RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL);
6889     RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL);
6890 
6891     // Drop information about predicated SCEV rewrites for this loop.
6892     for (auto I = PredicatedSCEVRewrites.begin();
6893          I != PredicatedSCEVRewrites.end();) {
6894       std::pair<const SCEV *, const Loop *> Entry = I->first;
6895       if (Entry.second == CurrL)
6896         PredicatedSCEVRewrites.erase(I++);
6897       else
6898         ++I;
6899     }
6900 
6901     auto LoopUsersItr = LoopUsers.find(CurrL);
6902     if (LoopUsersItr != LoopUsers.end()) {
6903       for (auto *S : LoopUsersItr->second)
6904         forgetMemoizedResults(S);
6905       LoopUsers.erase(LoopUsersItr);
6906     }
6907 
6908     // Drop information about expressions based on loop-header PHIs.
6909     PushLoopPHIs(CurrL, Worklist);
6910 
6911     while (!Worklist.empty()) {
6912       Instruction *I = Worklist.pop_back_val();
6913       if (!Visited.insert(I).second)
6914         continue;
6915 
6916       ValueExprMapType::iterator It =
6917           ValueExprMap.find_as(static_cast<Value *>(I));
6918       if (It != ValueExprMap.end()) {
6919         eraseValueFromMap(It->first);
6920         forgetMemoizedResults(It->second);
6921         if (PHINode *PN = dyn_cast<PHINode>(I))
6922           ConstantEvolutionLoopExitValue.erase(PN);
6923       }
6924 
6925       PushDefUseChildren(I, Worklist);
6926     }
6927 
6928     LoopPropertiesCache.erase(CurrL);
6929     // Forget all contained loops too, to avoid dangling entries in the
6930     // ValuesAtScopes map.
6931     LoopWorklist.append(CurrL->begin(), CurrL->end());
6932   }
6933 }
6934 
6935 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
6936   while (Loop *Parent = L->getParentLoop())
6937     L = Parent;
6938   forgetLoop(L);
6939 }
6940 
6941 void ScalarEvolution::forgetValue(Value *V) {
6942   Instruction *I = dyn_cast<Instruction>(V);
6943   if (!I) return;
6944 
6945   // Drop information about expressions based on loop-header PHIs.
6946   SmallVector<Instruction *, 16> Worklist;
6947   Worklist.push_back(I);
6948 
6949   SmallPtrSet<Instruction *, 8> Visited;
6950   while (!Worklist.empty()) {
6951     I = Worklist.pop_back_val();
6952     if (!Visited.insert(I).second)
6953       continue;
6954 
6955     ValueExprMapType::iterator It =
6956       ValueExprMap.find_as(static_cast<Value *>(I));
6957     if (It != ValueExprMap.end()) {
6958       eraseValueFromMap(It->first);
6959       forgetMemoizedResults(It->second);
6960       if (PHINode *PN = dyn_cast<PHINode>(I))
6961         ConstantEvolutionLoopExitValue.erase(PN);
6962     }
6963 
6964     PushDefUseChildren(I, Worklist);
6965   }
6966 }
6967 
6968 /// Get the exact loop backedge taken count considering all loop exits. A
6969 /// computable result can only be returned for loops with all exiting blocks
6970 /// dominating the latch. howFarToZero assumes that the limit of each loop test
6971 /// is never skipped. This is a valid assumption as long as the loop exits via
6972 /// that test. For precise results, it is the caller's responsibility to specify
6973 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
6974 const SCEV *
6975 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
6976                                              SCEVUnionPredicate *Preds) const {
6977   // If any exits were not computable, the loop is not computable.
6978   if (!isComplete() || ExitNotTaken.empty())
6979     return SE->getCouldNotCompute();
6980 
6981   const BasicBlock *Latch = L->getLoopLatch();
6982   // All exiting blocks we have collected must dominate the only backedge.
6983   if (!Latch)
6984     return SE->getCouldNotCompute();
6985 
6986   // All exiting blocks we have gathered dominate loop's latch, so exact trip
6987   // count is simply a minimum out of all these calculated exit counts.
6988   SmallVector<const SCEV *, 2> Ops;
6989   for (auto &ENT : ExitNotTaken) {
6990     const SCEV *BECount = ENT.ExactNotTaken;
6991     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
6992     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
6993            "We should only have known counts for exiting blocks that dominate "
6994            "latch!");
6995 
6996     Ops.push_back(BECount);
6997 
6998     if (Preds && !ENT.hasAlwaysTruePredicate())
6999       Preds->add(ENT.Predicate.get());
7000 
7001     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7002            "Predicate should be always true!");
7003   }
7004 
7005   return SE->getUMinFromMismatchedTypes(Ops);
7006 }
7007 
7008 /// Get the exact not taken count for this loop exit.
7009 const SCEV *
7010 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
7011                                              ScalarEvolution *SE) const {
7012   for (auto &ENT : ExitNotTaken)
7013     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7014       return ENT.ExactNotTaken;
7015 
7016   return SE->getCouldNotCompute();
7017 }
7018 
7019 const SCEV *
7020 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock,
7021                                            ScalarEvolution *SE) const {
7022   for (auto &ENT : ExitNotTaken)
7023     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7024       return ENT.MaxNotTaken;
7025 
7026   return SE->getCouldNotCompute();
7027 }
7028 
7029 /// getMax - Get the max backedge taken count for the loop.
7030 const SCEV *
7031 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
7032   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7033     return !ENT.hasAlwaysTruePredicate();
7034   };
7035 
7036   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
7037     return SE->getCouldNotCompute();
7038 
7039   assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) &&
7040          "No point in having a non-constant max backedge taken count!");
7041   return getMax();
7042 }
7043 
7044 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
7045   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7046     return !ENT.hasAlwaysTruePredicate();
7047   };
7048   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7049 }
7050 
7051 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
7052                                                     ScalarEvolution *SE) const {
7053   if (getMax() && getMax() != SE->getCouldNotCompute() &&
7054       SE->hasOperand(getMax(), S))
7055     return true;
7056 
7057   for (auto &ENT : ExitNotTaken)
7058     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
7059         SE->hasOperand(ENT.ExactNotTaken, S))
7060       return true;
7061 
7062   return false;
7063 }
7064 
7065 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7066     : ExactNotTaken(E), MaxNotTaken(E) {
7067   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7068           isa<SCEVConstant>(MaxNotTaken)) &&
7069          "No point in having a non-constant max backedge taken count!");
7070 }
7071 
7072 ScalarEvolution::ExitLimit::ExitLimit(
7073     const SCEV *E, const SCEV *M, bool MaxOrZero,
7074     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7075     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7076   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7077           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7078          "Exact is not allowed to be less precise than Max");
7079   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7080           isa<SCEVConstant>(MaxNotTaken)) &&
7081          "No point in having a non-constant max backedge taken count!");
7082   for (auto *PredSet : PredSetList)
7083     for (auto *P : *PredSet)
7084       addPredicate(P);
7085 }
7086 
7087 ScalarEvolution::ExitLimit::ExitLimit(
7088     const SCEV *E, const SCEV *M, bool MaxOrZero,
7089     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7090     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7091   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7092           isa<SCEVConstant>(MaxNotTaken)) &&
7093          "No point in having a non-constant max backedge taken count!");
7094 }
7095 
7096 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7097                                       bool MaxOrZero)
7098     : ExitLimit(E, M, MaxOrZero, None) {
7099   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7100           isa<SCEVConstant>(MaxNotTaken)) &&
7101          "No point in having a non-constant max backedge taken count!");
7102 }
7103 
7104 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7105 /// computable exit into a persistent ExitNotTakenInfo array.
7106 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7107     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
7108         ExitCounts,
7109     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
7110     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
7111   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7112 
7113   ExitNotTaken.reserve(ExitCounts.size());
7114   std::transform(
7115       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7116       [&](const EdgeExitInfo &EEI) {
7117         BasicBlock *ExitBB = EEI.first;
7118         const ExitLimit &EL = EEI.second;
7119         if (EL.Predicates.empty())
7120           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7121                                   nullptr);
7122 
7123         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7124         for (auto *Pred : EL.Predicates)
7125           Predicate->add(Pred);
7126 
7127         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7128                                 std::move(Predicate));
7129       });
7130   assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) &&
7131          "No point in having a non-constant max backedge taken count!");
7132 }
7133 
7134 /// Invalidate this result and free the ExitNotTakenInfo array.
7135 void ScalarEvolution::BackedgeTakenInfo::clear() {
7136   ExitNotTaken.clear();
7137 }
7138 
7139 /// Compute the number of times the backedge of the specified loop will execute.
7140 ScalarEvolution::BackedgeTakenInfo
7141 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7142                                            bool AllowPredicates) {
7143   SmallVector<BasicBlock *, 8> ExitingBlocks;
7144   L->getExitingBlocks(ExitingBlocks);
7145 
7146   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7147 
7148   SmallVector<EdgeExitInfo, 4> ExitCounts;
7149   bool CouldComputeBECount = true;
7150   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7151   const SCEV *MustExitMaxBECount = nullptr;
7152   const SCEV *MayExitMaxBECount = nullptr;
7153   bool MustExitMaxOrZero = false;
7154 
7155   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7156   // and compute maxBECount.
7157   // Do a union of all the predicates here.
7158   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7159     BasicBlock *ExitBB = ExitingBlocks[i];
7160 
7161     // We canonicalize untaken exits to br (constant), ignore them so that
7162     // proving an exit untaken doesn't negatively impact our ability to reason
7163     // about the loop as whole.
7164     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7165       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7166         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7167         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7168           continue;
7169       }
7170 
7171     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7172 
7173     assert((AllowPredicates || EL.Predicates.empty()) &&
7174            "Predicated exit limit when predicates are not allowed!");
7175 
7176     // 1. For each exit that can be computed, add an entry to ExitCounts.
7177     // CouldComputeBECount is true only if all exits can be computed.
7178     if (EL.ExactNotTaken == getCouldNotCompute())
7179       // We couldn't compute an exact value for this exit, so
7180       // we won't be able to compute an exact value for the loop.
7181       CouldComputeBECount = false;
7182     else
7183       ExitCounts.emplace_back(ExitBB, EL);
7184 
7185     // 2. Derive the loop's MaxBECount from each exit's max number of
7186     // non-exiting iterations. Partition the loop exits into two kinds:
7187     // LoopMustExits and LoopMayExits.
7188     //
7189     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7190     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7191     // MaxBECount is the minimum EL.MaxNotTaken of computable
7192     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7193     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7194     // computable EL.MaxNotTaken.
7195     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7196         DT.dominates(ExitBB, Latch)) {
7197       if (!MustExitMaxBECount) {
7198         MustExitMaxBECount = EL.MaxNotTaken;
7199         MustExitMaxOrZero = EL.MaxOrZero;
7200       } else {
7201         MustExitMaxBECount =
7202             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7203       }
7204     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7205       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7206         MayExitMaxBECount = EL.MaxNotTaken;
7207       else {
7208         MayExitMaxBECount =
7209             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7210       }
7211     }
7212   }
7213   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7214     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7215   // The loop backedge will be taken the maximum or zero times if there's
7216   // a single exit that must be taken the maximum or zero times.
7217   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7218   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7219                            MaxBECount, MaxOrZero);
7220 }
7221 
7222 ScalarEvolution::ExitLimit
7223 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7224                                       bool AllowPredicates) {
7225   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7226   // If our exiting block does not dominate the latch, then its connection with
7227   // loop's exit limit may be far from trivial.
7228   const BasicBlock *Latch = L->getLoopLatch();
7229   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7230     return getCouldNotCompute();
7231 
7232   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7233   Instruction *Term = ExitingBlock->getTerminator();
7234   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7235     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7236     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7237     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7238            "It should have one successor in loop and one exit block!");
7239     // Proceed to the next level to examine the exit condition expression.
7240     return computeExitLimitFromCond(
7241         L, BI->getCondition(), ExitIfTrue,
7242         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7243   }
7244 
7245   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7246     // For switch, make sure that there is a single exit from the loop.
7247     BasicBlock *Exit = nullptr;
7248     for (auto *SBB : successors(ExitingBlock))
7249       if (!L->contains(SBB)) {
7250         if (Exit) // Multiple exit successors.
7251           return getCouldNotCompute();
7252         Exit = SBB;
7253       }
7254     assert(Exit && "Exiting block must have at least one exit");
7255     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7256                                                 /*ControlsExit=*/IsOnlyExit);
7257   }
7258 
7259   return getCouldNotCompute();
7260 }
7261 
7262 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7263     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7264     bool ControlsExit, bool AllowPredicates) {
7265   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7266   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7267                                         ControlsExit, AllowPredicates);
7268 }
7269 
7270 Optional<ScalarEvolution::ExitLimit>
7271 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7272                                       bool ExitIfTrue, bool ControlsExit,
7273                                       bool AllowPredicates) {
7274   (void)this->L;
7275   (void)this->ExitIfTrue;
7276   (void)this->AllowPredicates;
7277 
7278   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7279          this->AllowPredicates == AllowPredicates &&
7280          "Variance in assumed invariant key components!");
7281   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7282   if (Itr == TripCountMap.end())
7283     return None;
7284   return Itr->second;
7285 }
7286 
7287 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7288                                              bool ExitIfTrue,
7289                                              bool ControlsExit,
7290                                              bool AllowPredicates,
7291                                              const ExitLimit &EL) {
7292   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7293          this->AllowPredicates == AllowPredicates &&
7294          "Variance in assumed invariant key components!");
7295 
7296   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7297   assert(InsertResult.second && "Expected successful insertion!");
7298   (void)InsertResult;
7299   (void)ExitIfTrue;
7300 }
7301 
7302 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7303     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7304     bool ControlsExit, bool AllowPredicates) {
7305 
7306   if (auto MaybeEL =
7307           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7308     return *MaybeEL;
7309 
7310   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7311                                               ControlsExit, AllowPredicates);
7312   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7313   return EL;
7314 }
7315 
7316 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7317     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7318     bool ControlsExit, bool AllowPredicates) {
7319   // Check if the controlling expression for this loop is an And or Or.
7320   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
7321     if (BO->getOpcode() == Instruction::And) {
7322       // Recurse on the operands of the and.
7323       bool EitherMayExit = !ExitIfTrue;
7324       ExitLimit EL0 = computeExitLimitFromCondCached(
7325           Cache, L, BO->getOperand(0), ExitIfTrue,
7326           ControlsExit && !EitherMayExit, AllowPredicates);
7327       ExitLimit EL1 = computeExitLimitFromCondCached(
7328           Cache, L, BO->getOperand(1), ExitIfTrue,
7329           ControlsExit && !EitherMayExit, AllowPredicates);
7330       // Be robust against unsimplified IR for the form "and i1 X, true"
7331       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7332         return CI->isOne() ? EL0 : EL1;
7333       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7334         return CI->isOne() ? EL1 : EL0;
7335       const SCEV *BECount = getCouldNotCompute();
7336       const SCEV *MaxBECount = getCouldNotCompute();
7337       if (EitherMayExit) {
7338         // Both conditions must be true for the loop to continue executing.
7339         // Choose the less conservative count.
7340         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7341             EL1.ExactNotTaken == getCouldNotCompute())
7342           BECount = getCouldNotCompute();
7343         else
7344           BECount =
7345               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7346         if (EL0.MaxNotTaken == getCouldNotCompute())
7347           MaxBECount = EL1.MaxNotTaken;
7348         else if (EL1.MaxNotTaken == getCouldNotCompute())
7349           MaxBECount = EL0.MaxNotTaken;
7350         else
7351           MaxBECount =
7352               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7353       } else {
7354         // Both conditions must be true at the same time for the loop to exit.
7355         // For now, be conservative.
7356         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7357           MaxBECount = EL0.MaxNotTaken;
7358         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7359           BECount = EL0.ExactNotTaken;
7360       }
7361 
7362       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7363       // to be more aggressive when computing BECount than when computing
7364       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7365       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7366       // to not.
7367       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7368           !isa<SCEVCouldNotCompute>(BECount))
7369         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7370 
7371       return ExitLimit(BECount, MaxBECount, false,
7372                        {&EL0.Predicates, &EL1.Predicates});
7373     }
7374     if (BO->getOpcode() == Instruction::Or) {
7375       // Recurse on the operands of the or.
7376       bool EitherMayExit = ExitIfTrue;
7377       ExitLimit EL0 = computeExitLimitFromCondCached(
7378           Cache, L, BO->getOperand(0), ExitIfTrue,
7379           ControlsExit && !EitherMayExit, AllowPredicates);
7380       ExitLimit EL1 = computeExitLimitFromCondCached(
7381           Cache, L, BO->getOperand(1), ExitIfTrue,
7382           ControlsExit && !EitherMayExit, AllowPredicates);
7383       // Be robust against unsimplified IR for the form "or i1 X, true"
7384       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1)))
7385         return CI->isZero() ? EL0 : EL1;
7386       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0)))
7387         return CI->isZero() ? EL1 : EL0;
7388       const SCEV *BECount = getCouldNotCompute();
7389       const SCEV *MaxBECount = getCouldNotCompute();
7390       if (EitherMayExit) {
7391         // Both conditions must be false for the loop to continue executing.
7392         // Choose the less conservative count.
7393         if (EL0.ExactNotTaken == getCouldNotCompute() ||
7394             EL1.ExactNotTaken == getCouldNotCompute())
7395           BECount = getCouldNotCompute();
7396         else
7397           BECount =
7398               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
7399         if (EL0.MaxNotTaken == getCouldNotCompute())
7400           MaxBECount = EL1.MaxNotTaken;
7401         else if (EL1.MaxNotTaken == getCouldNotCompute())
7402           MaxBECount = EL0.MaxNotTaken;
7403         else
7404           MaxBECount =
7405               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
7406       } else {
7407         // Both conditions must be false at the same time for the loop to exit.
7408         // For now, be conservative.
7409         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
7410           MaxBECount = EL0.MaxNotTaken;
7411         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
7412           BECount = EL0.ExactNotTaken;
7413       }
7414       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
7415       // to be more aggressive when computing BECount than when computing
7416       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
7417       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
7418       // to not.
7419       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
7420           !isa<SCEVCouldNotCompute>(BECount))
7421         MaxBECount = getConstant(getUnsignedRangeMax(BECount));
7422 
7423       return ExitLimit(BECount, MaxBECount, false,
7424                        {&EL0.Predicates, &EL1.Predicates});
7425     }
7426   }
7427 
7428   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7429   // Proceed to the next level to examine the icmp.
7430   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7431     ExitLimit EL =
7432         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7433     if (EL.hasFullInfo() || !AllowPredicates)
7434       return EL;
7435 
7436     // Try again, but use SCEV predicates this time.
7437     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7438                                     /*AllowPredicates=*/true);
7439   }
7440 
7441   // Check for a constant condition. These are normally stripped out by
7442   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7443   // preserve the CFG and is temporarily leaving constant conditions
7444   // in place.
7445   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7446     if (ExitIfTrue == !CI->getZExtValue())
7447       // The backedge is always taken.
7448       return getCouldNotCompute();
7449     else
7450       // The backedge is never taken.
7451       return getZero(CI->getType());
7452   }
7453 
7454   // If it's not an integer or pointer comparison then compute it the hard way.
7455   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7456 }
7457 
7458 ScalarEvolution::ExitLimit
7459 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
7460                                           ICmpInst *ExitCond,
7461                                           bool ExitIfTrue,
7462                                           bool ControlsExit,
7463                                           bool AllowPredicates) {
7464   // If the condition was exit on true, convert the condition to exit on false
7465   ICmpInst::Predicate Pred;
7466   if (!ExitIfTrue)
7467     Pred = ExitCond->getPredicate();
7468   else
7469     Pred = ExitCond->getInversePredicate();
7470   const ICmpInst::Predicate OriginalPred = Pred;
7471 
7472   // Handle common loops like: for (X = "string"; *X; ++X)
7473   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
7474     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
7475       ExitLimit ItCnt =
7476         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
7477       if (ItCnt.hasAnyInfo())
7478         return ItCnt;
7479     }
7480 
7481   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
7482   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
7483 
7484   // Try to evaluate any dependencies out of the loop.
7485   LHS = getSCEVAtScope(LHS, L);
7486   RHS = getSCEVAtScope(RHS, L);
7487 
7488   // At this point, we would like to compute how many iterations of the
7489   // loop the predicate will return true for these inputs.
7490   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
7491     // If there is a loop-invariant, force it into the RHS.
7492     std::swap(LHS, RHS);
7493     Pred = ICmpInst::getSwappedPredicate(Pred);
7494   }
7495 
7496   // Simplify the operands before analyzing them.
7497   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7498 
7499   // If we have a comparison of a chrec against a constant, try to use value
7500   // ranges to answer this query.
7501   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
7502     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
7503       if (AddRec->getLoop() == L) {
7504         // Form the constant range.
7505         ConstantRange CompRange =
7506             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
7507 
7508         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
7509         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
7510       }
7511 
7512   switch (Pred) {
7513   case ICmpInst::ICMP_NE: {                     // while (X != Y)
7514     // Convert to: while (X-Y != 0)
7515     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
7516                                 AllowPredicates);
7517     if (EL.hasAnyInfo()) return EL;
7518     break;
7519   }
7520   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
7521     // Convert to: while (X-Y == 0)
7522     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
7523     if (EL.hasAnyInfo()) return EL;
7524     break;
7525   }
7526   case ICmpInst::ICMP_SLT:
7527   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
7528     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
7529     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
7530                                     AllowPredicates);
7531     if (EL.hasAnyInfo()) return EL;
7532     break;
7533   }
7534   case ICmpInst::ICMP_SGT:
7535   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
7536     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
7537     ExitLimit EL =
7538         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
7539                             AllowPredicates);
7540     if (EL.hasAnyInfo()) return EL;
7541     break;
7542   }
7543   default:
7544     break;
7545   }
7546 
7547   auto *ExhaustiveCount =
7548       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7549 
7550   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
7551     return ExhaustiveCount;
7552 
7553   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
7554                                       ExitCond->getOperand(1), L, OriginalPred);
7555 }
7556 
7557 ScalarEvolution::ExitLimit
7558 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
7559                                                       SwitchInst *Switch,
7560                                                       BasicBlock *ExitingBlock,
7561                                                       bool ControlsExit) {
7562   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
7563 
7564   // Give up if the exit is the default dest of a switch.
7565   if (Switch->getDefaultDest() == ExitingBlock)
7566     return getCouldNotCompute();
7567 
7568   assert(L->contains(Switch->getDefaultDest()) &&
7569          "Default case must not exit the loop!");
7570   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
7571   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
7572 
7573   // while (X != Y) --> while (X-Y != 0)
7574   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
7575   if (EL.hasAnyInfo())
7576     return EL;
7577 
7578   return getCouldNotCompute();
7579 }
7580 
7581 static ConstantInt *
7582 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
7583                                 ScalarEvolution &SE) {
7584   const SCEV *InVal = SE.getConstant(C);
7585   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
7586   assert(isa<SCEVConstant>(Val) &&
7587          "Evaluation of SCEV at constant didn't fold correctly?");
7588   return cast<SCEVConstant>(Val)->getValue();
7589 }
7590 
7591 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
7592 /// compute the backedge execution count.
7593 ScalarEvolution::ExitLimit
7594 ScalarEvolution::computeLoadConstantCompareExitLimit(
7595   LoadInst *LI,
7596   Constant *RHS,
7597   const Loop *L,
7598   ICmpInst::Predicate predicate) {
7599   if (LI->isVolatile()) return getCouldNotCompute();
7600 
7601   // Check to see if the loaded pointer is a getelementptr of a global.
7602   // TODO: Use SCEV instead of manually grubbing with GEPs.
7603   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
7604   if (!GEP) return getCouldNotCompute();
7605 
7606   // Make sure that it is really a constant global we are gepping, with an
7607   // initializer, and make sure the first IDX is really 0.
7608   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
7609   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
7610       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
7611       !cast<Constant>(GEP->getOperand(1))->isNullValue())
7612     return getCouldNotCompute();
7613 
7614   // Okay, we allow one non-constant index into the GEP instruction.
7615   Value *VarIdx = nullptr;
7616   std::vector<Constant*> Indexes;
7617   unsigned VarIdxNum = 0;
7618   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
7619     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
7620       Indexes.push_back(CI);
7621     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
7622       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
7623       VarIdx = GEP->getOperand(i);
7624       VarIdxNum = i-2;
7625       Indexes.push_back(nullptr);
7626     }
7627 
7628   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
7629   if (!VarIdx)
7630     return getCouldNotCompute();
7631 
7632   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
7633   // Check to see if X is a loop variant variable value now.
7634   const SCEV *Idx = getSCEV(VarIdx);
7635   Idx = getSCEVAtScope(Idx, L);
7636 
7637   // We can only recognize very limited forms of loop index expressions, in
7638   // particular, only affine AddRec's like {C1,+,C2}.
7639   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
7640   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
7641       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
7642       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
7643     return getCouldNotCompute();
7644 
7645   unsigned MaxSteps = MaxBruteForceIterations;
7646   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
7647     ConstantInt *ItCst = ConstantInt::get(
7648                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
7649     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
7650 
7651     // Form the GEP offset.
7652     Indexes[VarIdxNum] = Val;
7653 
7654     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
7655                                                          Indexes);
7656     if (!Result) break;  // Cannot compute!
7657 
7658     // Evaluate the condition for this iteration.
7659     Result = ConstantExpr::getICmp(predicate, Result, RHS);
7660     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
7661     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
7662       ++NumArrayLenItCounts;
7663       return getConstant(ItCst);   // Found terminating iteration!
7664     }
7665   }
7666   return getCouldNotCompute();
7667 }
7668 
7669 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
7670     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
7671   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
7672   if (!RHS)
7673     return getCouldNotCompute();
7674 
7675   const BasicBlock *Latch = L->getLoopLatch();
7676   if (!Latch)
7677     return getCouldNotCompute();
7678 
7679   const BasicBlock *Predecessor = L->getLoopPredecessor();
7680   if (!Predecessor)
7681     return getCouldNotCompute();
7682 
7683   // Return true if V is of the form "LHS `shift_op` <positive constant>".
7684   // Return LHS in OutLHS and shift_opt in OutOpCode.
7685   auto MatchPositiveShift =
7686       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
7687 
7688     using namespace PatternMatch;
7689 
7690     ConstantInt *ShiftAmt;
7691     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7692       OutOpCode = Instruction::LShr;
7693     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7694       OutOpCode = Instruction::AShr;
7695     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
7696       OutOpCode = Instruction::Shl;
7697     else
7698       return false;
7699 
7700     return ShiftAmt->getValue().isStrictlyPositive();
7701   };
7702 
7703   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
7704   //
7705   // loop:
7706   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
7707   //   %iv.shifted = lshr i32 %iv, <positive constant>
7708   //
7709   // Return true on a successful match.  Return the corresponding PHI node (%iv
7710   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
7711   auto MatchShiftRecurrence =
7712       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
7713     Optional<Instruction::BinaryOps> PostShiftOpCode;
7714 
7715     {
7716       Instruction::BinaryOps OpC;
7717       Value *V;
7718 
7719       // If we encounter a shift instruction, "peel off" the shift operation,
7720       // and remember that we did so.  Later when we inspect %iv's backedge
7721       // value, we will make sure that the backedge value uses the same
7722       // operation.
7723       //
7724       // Note: the peeled shift operation does not have to be the same
7725       // instruction as the one feeding into the PHI's backedge value.  We only
7726       // really care about it being the same *kind* of shift instruction --
7727       // that's all that is required for our later inferences to hold.
7728       if (MatchPositiveShift(LHS, V, OpC)) {
7729         PostShiftOpCode = OpC;
7730         LHS = V;
7731       }
7732     }
7733 
7734     PNOut = dyn_cast<PHINode>(LHS);
7735     if (!PNOut || PNOut->getParent() != L->getHeader())
7736       return false;
7737 
7738     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
7739     Value *OpLHS;
7740 
7741     return
7742         // The backedge value for the PHI node must be a shift by a positive
7743         // amount
7744         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
7745 
7746         // of the PHI node itself
7747         OpLHS == PNOut &&
7748 
7749         // and the kind of shift should be match the kind of shift we peeled
7750         // off, if any.
7751         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
7752   };
7753 
7754   PHINode *PN;
7755   Instruction::BinaryOps OpCode;
7756   if (!MatchShiftRecurrence(LHS, PN, OpCode))
7757     return getCouldNotCompute();
7758 
7759   const DataLayout &DL = getDataLayout();
7760 
7761   // The key rationale for this optimization is that for some kinds of shift
7762   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
7763   // within a finite number of iterations.  If the condition guarding the
7764   // backedge (in the sense that the backedge is taken if the condition is true)
7765   // is false for the value the shift recurrence stabilizes to, then we know
7766   // that the backedge is taken only a finite number of times.
7767 
7768   ConstantInt *StableValue = nullptr;
7769   switch (OpCode) {
7770   default:
7771     llvm_unreachable("Impossible case!");
7772 
7773   case Instruction::AShr: {
7774     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
7775     // bitwidth(K) iterations.
7776     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
7777     KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr,
7778                                        Predecessor->getTerminator(), &DT);
7779     auto *Ty = cast<IntegerType>(RHS->getType());
7780     if (Known.isNonNegative())
7781       StableValue = ConstantInt::get(Ty, 0);
7782     else if (Known.isNegative())
7783       StableValue = ConstantInt::get(Ty, -1, true);
7784     else
7785       return getCouldNotCompute();
7786 
7787     break;
7788   }
7789   case Instruction::LShr:
7790   case Instruction::Shl:
7791     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
7792     // stabilize to 0 in at most bitwidth(K) iterations.
7793     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
7794     break;
7795   }
7796 
7797   auto *Result =
7798       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
7799   assert(Result->getType()->isIntegerTy(1) &&
7800          "Otherwise cannot be an operand to a branch instruction");
7801 
7802   if (Result->isZeroValue()) {
7803     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
7804     const SCEV *UpperBound =
7805         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
7806     return ExitLimit(getCouldNotCompute(), UpperBound, false);
7807   }
7808 
7809   return getCouldNotCompute();
7810 }
7811 
7812 /// Return true if we can constant fold an instruction of the specified type,
7813 /// assuming that all operands were constants.
7814 static bool CanConstantFold(const Instruction *I) {
7815   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
7816       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
7817       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
7818     return true;
7819 
7820   if (const CallInst *CI = dyn_cast<CallInst>(I))
7821     if (const Function *F = CI->getCalledFunction())
7822       return canConstantFoldCallTo(CI, F);
7823   return false;
7824 }
7825 
7826 /// Determine whether this instruction can constant evolve within this loop
7827 /// assuming its operands can all constant evolve.
7828 static bool canConstantEvolve(Instruction *I, const Loop *L) {
7829   // An instruction outside of the loop can't be derived from a loop PHI.
7830   if (!L->contains(I)) return false;
7831 
7832   if (isa<PHINode>(I)) {
7833     // We don't currently keep track of the control flow needed to evaluate
7834     // PHIs, so we cannot handle PHIs inside of loops.
7835     return L->getHeader() == I->getParent();
7836   }
7837 
7838   // If we won't be able to constant fold this expression even if the operands
7839   // are constants, bail early.
7840   return CanConstantFold(I);
7841 }
7842 
7843 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
7844 /// recursing through each instruction operand until reaching a loop header phi.
7845 static PHINode *
7846 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
7847                                DenseMap<Instruction *, PHINode *> &PHIMap,
7848                                unsigned Depth) {
7849   if (Depth > MaxConstantEvolvingDepth)
7850     return nullptr;
7851 
7852   // Otherwise, we can evaluate this instruction if all of its operands are
7853   // constant or derived from a PHI node themselves.
7854   PHINode *PHI = nullptr;
7855   for (Value *Op : UseInst->operands()) {
7856     if (isa<Constant>(Op)) continue;
7857 
7858     Instruction *OpInst = dyn_cast<Instruction>(Op);
7859     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
7860 
7861     PHINode *P = dyn_cast<PHINode>(OpInst);
7862     if (!P)
7863       // If this operand is already visited, reuse the prior result.
7864       // We may have P != PHI if this is the deepest point at which the
7865       // inconsistent paths meet.
7866       P = PHIMap.lookup(OpInst);
7867     if (!P) {
7868       // Recurse and memoize the results, whether a phi is found or not.
7869       // This recursive call invalidates pointers into PHIMap.
7870       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
7871       PHIMap[OpInst] = P;
7872     }
7873     if (!P)
7874       return nullptr;  // Not evolving from PHI
7875     if (PHI && PHI != P)
7876       return nullptr;  // Evolving from multiple different PHIs.
7877     PHI = P;
7878   }
7879   // This is a expression evolving from a constant PHI!
7880   return PHI;
7881 }
7882 
7883 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
7884 /// in the loop that V is derived from.  We allow arbitrary operations along the
7885 /// way, but the operands of an operation must either be constants or a value
7886 /// derived from a constant PHI.  If this expression does not fit with these
7887 /// constraints, return null.
7888 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
7889   Instruction *I = dyn_cast<Instruction>(V);
7890   if (!I || !canConstantEvolve(I, L)) return nullptr;
7891 
7892   if (PHINode *PN = dyn_cast<PHINode>(I))
7893     return PN;
7894 
7895   // Record non-constant instructions contained by the loop.
7896   DenseMap<Instruction *, PHINode *> PHIMap;
7897   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
7898 }
7899 
7900 /// EvaluateExpression - Given an expression that passes the
7901 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
7902 /// in the loop has the value PHIVal.  If we can't fold this expression for some
7903 /// reason, return null.
7904 static Constant *EvaluateExpression(Value *V, const Loop *L,
7905                                     DenseMap<Instruction *, Constant *> &Vals,
7906                                     const DataLayout &DL,
7907                                     const TargetLibraryInfo *TLI) {
7908   // Convenient constant check, but redundant for recursive calls.
7909   if (Constant *C = dyn_cast<Constant>(V)) return C;
7910   Instruction *I = dyn_cast<Instruction>(V);
7911   if (!I) return nullptr;
7912 
7913   if (Constant *C = Vals.lookup(I)) return C;
7914 
7915   // An instruction inside the loop depends on a value outside the loop that we
7916   // weren't given a mapping for, or a value such as a call inside the loop.
7917   if (!canConstantEvolve(I, L)) return nullptr;
7918 
7919   // An unmapped PHI can be due to a branch or another loop inside this loop,
7920   // or due to this not being the initial iteration through a loop where we
7921   // couldn't compute the evolution of this particular PHI last time.
7922   if (isa<PHINode>(I)) return nullptr;
7923 
7924   std::vector<Constant*> Operands(I->getNumOperands());
7925 
7926   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
7927     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
7928     if (!Operand) {
7929       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
7930       if (!Operands[i]) return nullptr;
7931       continue;
7932     }
7933     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
7934     Vals[Operand] = C;
7935     if (!C) return nullptr;
7936     Operands[i] = C;
7937   }
7938 
7939   if (CmpInst *CI = dyn_cast<CmpInst>(I))
7940     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
7941                                            Operands[1], DL, TLI);
7942   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
7943     if (!LI->isVolatile())
7944       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
7945   }
7946   return ConstantFoldInstOperands(I, Operands, DL, TLI);
7947 }
7948 
7949 
7950 // If every incoming value to PN except the one for BB is a specific Constant,
7951 // return that, else return nullptr.
7952 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
7953   Constant *IncomingVal = nullptr;
7954 
7955   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
7956     if (PN->getIncomingBlock(i) == BB)
7957       continue;
7958 
7959     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
7960     if (!CurrentVal)
7961       return nullptr;
7962 
7963     if (IncomingVal != CurrentVal) {
7964       if (IncomingVal)
7965         return nullptr;
7966       IncomingVal = CurrentVal;
7967     }
7968   }
7969 
7970   return IncomingVal;
7971 }
7972 
7973 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
7974 /// in the header of its containing loop, we know the loop executes a
7975 /// constant number of times, and the PHI node is just a recurrence
7976 /// involving constants, fold it.
7977 Constant *
7978 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
7979                                                    const APInt &BEs,
7980                                                    const Loop *L) {
7981   auto I = ConstantEvolutionLoopExitValue.find(PN);
7982   if (I != ConstantEvolutionLoopExitValue.end())
7983     return I->second;
7984 
7985   if (BEs.ugt(MaxBruteForceIterations))
7986     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
7987 
7988   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
7989 
7990   DenseMap<Instruction *, Constant *> CurrentIterVals;
7991   BasicBlock *Header = L->getHeader();
7992   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
7993 
7994   BasicBlock *Latch = L->getLoopLatch();
7995   if (!Latch)
7996     return nullptr;
7997 
7998   for (PHINode &PHI : Header->phis()) {
7999     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8000       CurrentIterVals[&PHI] = StartCST;
8001   }
8002   if (!CurrentIterVals.count(PN))
8003     return RetVal = nullptr;
8004 
8005   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8006 
8007   // Execute the loop symbolically to determine the exit value.
8008   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8009          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8010 
8011   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8012   unsigned IterationNum = 0;
8013   const DataLayout &DL = getDataLayout();
8014   for (; ; ++IterationNum) {
8015     if (IterationNum == NumIterations)
8016       return RetVal = CurrentIterVals[PN];  // Got exit value!
8017 
8018     // Compute the value of the PHIs for the next iteration.
8019     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8020     DenseMap<Instruction *, Constant *> NextIterVals;
8021     Constant *NextPHI =
8022         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8023     if (!NextPHI)
8024       return nullptr;        // Couldn't evaluate!
8025     NextIterVals[PN] = NextPHI;
8026 
8027     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8028 
8029     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8030     // cease to be able to evaluate one of them or if they stop evolving,
8031     // because that doesn't necessarily prevent us from computing PN.
8032     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8033     for (const auto &I : CurrentIterVals) {
8034       PHINode *PHI = dyn_cast<PHINode>(I.first);
8035       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8036       PHIsToCompute.emplace_back(PHI, I.second);
8037     }
8038     // We use two distinct loops because EvaluateExpression may invalidate any
8039     // iterators into CurrentIterVals.
8040     for (const auto &I : PHIsToCompute) {
8041       PHINode *PHI = I.first;
8042       Constant *&NextPHI = NextIterVals[PHI];
8043       if (!NextPHI) {   // Not already computed.
8044         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8045         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8046       }
8047       if (NextPHI != I.second)
8048         StoppedEvolving = false;
8049     }
8050 
8051     // If all entries in CurrentIterVals == NextIterVals then we can stop
8052     // iterating, the loop can't continue to change.
8053     if (StoppedEvolving)
8054       return RetVal = CurrentIterVals[PN];
8055 
8056     CurrentIterVals.swap(NextIterVals);
8057   }
8058 }
8059 
8060 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8061                                                           Value *Cond,
8062                                                           bool ExitWhen) {
8063   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8064   if (!PN) return getCouldNotCompute();
8065 
8066   // If the loop is canonicalized, the PHI will have exactly two entries.
8067   // That's the only form we support here.
8068   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8069 
8070   DenseMap<Instruction *, Constant *> CurrentIterVals;
8071   BasicBlock *Header = L->getHeader();
8072   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8073 
8074   BasicBlock *Latch = L->getLoopLatch();
8075   assert(Latch && "Should follow from NumIncomingValues == 2!");
8076 
8077   for (PHINode &PHI : Header->phis()) {
8078     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8079       CurrentIterVals[&PHI] = StartCST;
8080   }
8081   if (!CurrentIterVals.count(PN))
8082     return getCouldNotCompute();
8083 
8084   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8085   // the loop symbolically to determine when the condition gets a value of
8086   // "ExitWhen".
8087   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8088   const DataLayout &DL = getDataLayout();
8089   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8090     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8091         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8092 
8093     // Couldn't symbolically evaluate.
8094     if (!CondVal) return getCouldNotCompute();
8095 
8096     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8097       ++NumBruteForceTripCountsComputed;
8098       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8099     }
8100 
8101     // Update all the PHI nodes for the next iteration.
8102     DenseMap<Instruction *, Constant *> NextIterVals;
8103 
8104     // Create a list of which PHIs we need to compute. We want to do this before
8105     // calling EvaluateExpression on them because that may invalidate iterators
8106     // into CurrentIterVals.
8107     SmallVector<PHINode *, 8> PHIsToCompute;
8108     for (const auto &I : CurrentIterVals) {
8109       PHINode *PHI = dyn_cast<PHINode>(I.first);
8110       if (!PHI || PHI->getParent() != Header) continue;
8111       PHIsToCompute.push_back(PHI);
8112     }
8113     for (PHINode *PHI : PHIsToCompute) {
8114       Constant *&NextPHI = NextIterVals[PHI];
8115       if (NextPHI) continue;    // Already computed!
8116 
8117       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8118       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8119     }
8120     CurrentIterVals.swap(NextIterVals);
8121   }
8122 
8123   // Too many iterations were needed to evaluate.
8124   return getCouldNotCompute();
8125 }
8126 
8127 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8128   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8129       ValuesAtScopes[V];
8130   // Check to see if we've folded this expression at this loop before.
8131   for (auto &LS : Values)
8132     if (LS.first == L)
8133       return LS.second ? LS.second : V;
8134 
8135   Values.emplace_back(L, nullptr);
8136 
8137   // Otherwise compute it.
8138   const SCEV *C = computeSCEVAtScope(V, L);
8139   for (auto &LS : reverse(ValuesAtScopes[V]))
8140     if (LS.first == L) {
8141       LS.second = C;
8142       break;
8143     }
8144   return C;
8145 }
8146 
8147 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8148 /// will return Constants for objects which aren't represented by a
8149 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8150 /// Returns NULL if the SCEV isn't representable as a Constant.
8151 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8152   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
8153     case scCouldNotCompute:
8154     case scAddRecExpr:
8155       break;
8156     case scConstant:
8157       return cast<SCEVConstant>(V)->getValue();
8158     case scUnknown:
8159       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8160     case scSignExtend: {
8161       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8162       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8163         return ConstantExpr::getSExt(CastOp, SS->getType());
8164       break;
8165     }
8166     case scZeroExtend: {
8167       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8168       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8169         return ConstantExpr::getZExt(CastOp, SZ->getType());
8170       break;
8171     }
8172     case scTruncate: {
8173       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8174       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8175         return ConstantExpr::getTrunc(CastOp, ST->getType());
8176       break;
8177     }
8178     case scAddExpr: {
8179       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8180       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8181         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8182           unsigned AS = PTy->getAddressSpace();
8183           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8184           C = ConstantExpr::getBitCast(C, DestPtrTy);
8185         }
8186         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8187           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8188           if (!C2) return nullptr;
8189 
8190           // First pointer!
8191           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8192             unsigned AS = C2->getType()->getPointerAddressSpace();
8193             std::swap(C, C2);
8194             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8195             // The offsets have been converted to bytes.  We can add bytes to an
8196             // i8* by GEP with the byte count in the first index.
8197             C = ConstantExpr::getBitCast(C, DestPtrTy);
8198           }
8199 
8200           // Don't bother trying to sum two pointers. We probably can't
8201           // statically compute a load that results from it anyway.
8202           if (C2->getType()->isPointerTy())
8203             return nullptr;
8204 
8205           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8206             if (PTy->getElementType()->isStructTy())
8207               C2 = ConstantExpr::getIntegerCast(
8208                   C2, Type::getInt32Ty(C->getContext()), true);
8209             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
8210           } else
8211             C = ConstantExpr::getAdd(C, C2);
8212         }
8213         return C;
8214       }
8215       break;
8216     }
8217     case scMulExpr: {
8218       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8219       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8220         // Don't bother with pointers at all.
8221         if (C->getType()->isPointerTy()) return nullptr;
8222         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8223           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8224           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
8225           C = ConstantExpr::getMul(C, C2);
8226         }
8227         return C;
8228       }
8229       break;
8230     }
8231     case scUDivExpr: {
8232       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8233       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8234         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8235           if (LHS->getType() == RHS->getType())
8236             return ConstantExpr::getUDiv(LHS, RHS);
8237       break;
8238     }
8239     case scSMaxExpr:
8240     case scUMaxExpr:
8241     case scSMinExpr:
8242     case scUMinExpr:
8243       break; // TODO: smax, umax, smin, umax.
8244   }
8245   return nullptr;
8246 }
8247 
8248 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8249   if (isa<SCEVConstant>(V)) return V;
8250 
8251   // If this instruction is evolved from a constant-evolving PHI, compute the
8252   // exit value from the loop without using SCEVs.
8253   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8254     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8255       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8256         const Loop *LI = this->LI[I->getParent()];
8257         // Looking for loop exit value.
8258         if (LI && LI->getParentLoop() == L &&
8259             PN->getParent() == LI->getHeader()) {
8260           // Okay, there is no closed form solution for the PHI node.  Check
8261           // to see if the loop that contains it has a known backedge-taken
8262           // count.  If so, we may be able to force computation of the exit
8263           // value.
8264           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
8265           // This trivial case can show up in some degenerate cases where
8266           // the incoming IR has not yet been fully simplified.
8267           if (BackedgeTakenCount->isZero()) {
8268             Value *InitValue = nullptr;
8269             bool MultipleInitValues = false;
8270             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8271               if (!LI->contains(PN->getIncomingBlock(i))) {
8272                 if (!InitValue)
8273                   InitValue = PN->getIncomingValue(i);
8274                 else if (InitValue != PN->getIncomingValue(i)) {
8275                   MultipleInitValues = true;
8276                   break;
8277                 }
8278               }
8279             }
8280             if (!MultipleInitValues && InitValue)
8281               return getSCEV(InitValue);
8282           }
8283           // Do we have a loop invariant value flowing around the backedge
8284           // for a loop which must execute the backedge?
8285           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8286               isKnownPositive(BackedgeTakenCount) &&
8287               PN->getNumIncomingValues() == 2) {
8288             unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8289             const SCEV *OnBackedge = getSCEV(PN->getIncomingValue(InLoopPred));
8290             if (IsAvailableOnEntry(LI, DT, OnBackedge, PN->getParent()))
8291               return OnBackedge;
8292           }
8293           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8294             // Okay, we know how many times the containing loop executes.  If
8295             // this is a constant evolving PHI node, get the final value at
8296             // the specified iteration number.
8297             Constant *RV =
8298                 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
8299             if (RV) return getSCEV(RV);
8300           }
8301         }
8302 
8303         // If there is a single-input Phi, evaluate it at our scope. If we can
8304         // prove that this replacement does not break LCSSA form, use new value.
8305         if (PN->getNumOperands() == 1) {
8306           const SCEV *Input = getSCEV(PN->getOperand(0));
8307           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8308           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8309           // for the simplest case just support constants.
8310           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8311         }
8312       }
8313 
8314       // Okay, this is an expression that we cannot symbolically evaluate
8315       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8316       // the arguments into constants, and if so, try to constant propagate the
8317       // result.  This is particularly useful for computing loop exit values.
8318       if (CanConstantFold(I)) {
8319         SmallVector<Constant *, 4> Operands;
8320         bool MadeImprovement = false;
8321         for (Value *Op : I->operands()) {
8322           if (Constant *C = dyn_cast<Constant>(Op)) {
8323             Operands.push_back(C);
8324             continue;
8325           }
8326 
8327           // If any of the operands is non-constant and if they are
8328           // non-integer and non-pointer, don't even try to analyze them
8329           // with scev techniques.
8330           if (!isSCEVable(Op->getType()))
8331             return V;
8332 
8333           const SCEV *OrigV = getSCEV(Op);
8334           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8335           MadeImprovement |= OrigV != OpV;
8336 
8337           Constant *C = BuildConstantFromSCEV(OpV);
8338           if (!C) return V;
8339           if (C->getType() != Op->getType())
8340             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8341                                                               Op->getType(),
8342                                                               false),
8343                                       C, Op->getType());
8344           Operands.push_back(C);
8345         }
8346 
8347         // Check to see if getSCEVAtScope actually made an improvement.
8348         if (MadeImprovement) {
8349           Constant *C = nullptr;
8350           const DataLayout &DL = getDataLayout();
8351           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8352             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8353                                                 Operands[1], DL, &TLI);
8354           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
8355             if (!LI->isVolatile())
8356               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8357           } else
8358             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8359           if (!C) return V;
8360           return getSCEV(C);
8361         }
8362       }
8363     }
8364 
8365     // This is some other type of SCEVUnknown, just return it.
8366     return V;
8367   }
8368 
8369   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8370     // Avoid performing the look-up in the common case where the specified
8371     // expression has no loop-variant portions.
8372     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8373       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8374       if (OpAtScope != Comm->getOperand(i)) {
8375         // Okay, at least one of these operands is loop variant but might be
8376         // foldable.  Build a new instance of the folded commutative expression.
8377         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8378                                             Comm->op_begin()+i);
8379         NewOps.push_back(OpAtScope);
8380 
8381         for (++i; i != e; ++i) {
8382           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8383           NewOps.push_back(OpAtScope);
8384         }
8385         if (isa<SCEVAddExpr>(Comm))
8386           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8387         if (isa<SCEVMulExpr>(Comm))
8388           return getMulExpr(NewOps, Comm->getNoWrapFlags());
8389         if (isa<SCEVMinMaxExpr>(Comm))
8390           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
8391         llvm_unreachable("Unknown commutative SCEV type!");
8392       }
8393     }
8394     // If we got here, all operands are loop invariant.
8395     return Comm;
8396   }
8397 
8398   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
8399     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
8400     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
8401     if (LHS == Div->getLHS() && RHS == Div->getRHS())
8402       return Div;   // must be loop invariant
8403     return getUDivExpr(LHS, RHS);
8404   }
8405 
8406   // If this is a loop recurrence for a loop that does not contain L, then we
8407   // are dealing with the final value computed by the loop.
8408   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
8409     // First, attempt to evaluate each operand.
8410     // Avoid performing the look-up in the common case where the specified
8411     // expression has no loop-variant portions.
8412     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
8413       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
8414       if (OpAtScope == AddRec->getOperand(i))
8415         continue;
8416 
8417       // Okay, at least one of these operands is loop variant but might be
8418       // foldable.  Build a new instance of the folded commutative expression.
8419       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
8420                                           AddRec->op_begin()+i);
8421       NewOps.push_back(OpAtScope);
8422       for (++i; i != e; ++i)
8423         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
8424 
8425       const SCEV *FoldedRec =
8426         getAddRecExpr(NewOps, AddRec->getLoop(),
8427                       AddRec->getNoWrapFlags(SCEV::FlagNW));
8428       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
8429       // The addrec may be folded to a nonrecurrence, for example, if the
8430       // induction variable is multiplied by zero after constant folding. Go
8431       // ahead and return the folded value.
8432       if (!AddRec)
8433         return FoldedRec;
8434       break;
8435     }
8436 
8437     // If the scope is outside the addrec's loop, evaluate it by using the
8438     // loop exit value of the addrec.
8439     if (!AddRec->getLoop()->contains(L)) {
8440       // To evaluate this recurrence, we need to know how many times the AddRec
8441       // loop iterates.  Compute this now.
8442       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
8443       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
8444 
8445       // Then, evaluate the AddRec.
8446       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
8447     }
8448 
8449     return AddRec;
8450   }
8451 
8452   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
8453     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8454     if (Op == Cast->getOperand())
8455       return Cast;  // must be loop invariant
8456     return getZeroExtendExpr(Op, Cast->getType());
8457   }
8458 
8459   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
8460     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8461     if (Op == Cast->getOperand())
8462       return Cast;  // must be loop invariant
8463     return getSignExtendExpr(Op, Cast->getType());
8464   }
8465 
8466   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
8467     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
8468     if (Op == Cast->getOperand())
8469       return Cast;  // must be loop invariant
8470     return getTruncateExpr(Op, Cast->getType());
8471   }
8472 
8473   llvm_unreachable("Unknown SCEV type!");
8474 }
8475 
8476 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
8477   return getSCEVAtScope(getSCEV(V), L);
8478 }
8479 
8480 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
8481   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
8482     return stripInjectiveFunctions(ZExt->getOperand());
8483   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
8484     return stripInjectiveFunctions(SExt->getOperand());
8485   return S;
8486 }
8487 
8488 /// Finds the minimum unsigned root of the following equation:
8489 ///
8490 ///     A * X = B (mod N)
8491 ///
8492 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
8493 /// A and B isn't important.
8494 ///
8495 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
8496 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
8497                                                ScalarEvolution &SE) {
8498   uint32_t BW = A.getBitWidth();
8499   assert(BW == SE.getTypeSizeInBits(B->getType()));
8500   assert(A != 0 && "A must be non-zero.");
8501 
8502   // 1. D = gcd(A, N)
8503   //
8504   // The gcd of A and N may have only one prime factor: 2. The number of
8505   // trailing zeros in A is its multiplicity
8506   uint32_t Mult2 = A.countTrailingZeros();
8507   // D = 2^Mult2
8508 
8509   // 2. Check if B is divisible by D.
8510   //
8511   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
8512   // is not less than multiplicity of this prime factor for D.
8513   if (SE.GetMinTrailingZeros(B) < Mult2)
8514     return SE.getCouldNotCompute();
8515 
8516   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
8517   // modulo (N / D).
8518   //
8519   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
8520   // (N / D) in general. The inverse itself always fits into BW bits, though,
8521   // so we immediately truncate it.
8522   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
8523   APInt Mod(BW + 1, 0);
8524   Mod.setBit(BW - Mult2);  // Mod = N / D
8525   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
8526 
8527   // 4. Compute the minimum unsigned root of the equation:
8528   // I * (B / D) mod (N / D)
8529   // To simplify the computation, we factor out the divide by D:
8530   // (I * B mod N) / D
8531   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
8532   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
8533 }
8534 
8535 /// For a given quadratic addrec, generate coefficients of the corresponding
8536 /// quadratic equation, multiplied by a common value to ensure that they are
8537 /// integers.
8538 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
8539 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
8540 /// were multiplied by, and BitWidth is the bit width of the original addrec
8541 /// coefficients.
8542 /// This function returns None if the addrec coefficients are not compile-
8543 /// time constants.
8544 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
8545 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
8546   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
8547   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
8548   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
8549   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
8550   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
8551                     << *AddRec << '\n');
8552 
8553   // We currently can only solve this if the coefficients are constants.
8554   if (!LC || !MC || !NC) {
8555     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
8556     return None;
8557   }
8558 
8559   APInt L = LC->getAPInt();
8560   APInt M = MC->getAPInt();
8561   APInt N = NC->getAPInt();
8562   assert(!N.isNullValue() && "This is not a quadratic addrec");
8563 
8564   unsigned BitWidth = LC->getAPInt().getBitWidth();
8565   unsigned NewWidth = BitWidth + 1;
8566   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
8567                     << BitWidth << '\n');
8568   // The sign-extension (as opposed to a zero-extension) here matches the
8569   // extension used in SolveQuadraticEquationWrap (with the same motivation).
8570   N = N.sext(NewWidth);
8571   M = M.sext(NewWidth);
8572   L = L.sext(NewWidth);
8573 
8574   // The increments are M, M+N, M+2N, ..., so the accumulated values are
8575   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
8576   //   L+M, L+2M+N, L+3M+3N, ...
8577   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
8578   //
8579   // The equation Acc = 0 is then
8580   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
8581   // In a quadratic form it becomes:
8582   //   N n^2 + (2M-N) n + 2L = 0.
8583 
8584   APInt A = N;
8585   APInt B = 2 * M - A;
8586   APInt C = 2 * L;
8587   APInt T = APInt(NewWidth, 2);
8588   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
8589                     << "x + " << C << ", coeff bw: " << NewWidth
8590                     << ", multiplied by " << T << '\n');
8591   return std::make_tuple(A, B, C, T, BitWidth);
8592 }
8593 
8594 /// Helper function to compare optional APInts:
8595 /// (a) if X and Y both exist, return min(X, Y),
8596 /// (b) if neither X nor Y exist, return None,
8597 /// (c) if exactly one of X and Y exists, return that value.
8598 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
8599   if (X.hasValue() && Y.hasValue()) {
8600     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
8601     APInt XW = X->sextOrSelf(W);
8602     APInt YW = Y->sextOrSelf(W);
8603     return XW.slt(YW) ? *X : *Y;
8604   }
8605   if (!X.hasValue() && !Y.hasValue())
8606     return None;
8607   return X.hasValue() ? *X : *Y;
8608 }
8609 
8610 /// Helper function to truncate an optional APInt to a given BitWidth.
8611 /// When solving addrec-related equations, it is preferable to return a value
8612 /// that has the same bit width as the original addrec's coefficients. If the
8613 /// solution fits in the original bit width, truncate it (except for i1).
8614 /// Returning a value of a different bit width may inhibit some optimizations.
8615 ///
8616 /// In general, a solution to a quadratic equation generated from an addrec
8617 /// may require BW+1 bits, where BW is the bit width of the addrec's
8618 /// coefficients. The reason is that the coefficients of the quadratic
8619 /// equation are BW+1 bits wide (to avoid truncation when converting from
8620 /// the addrec to the equation).
8621 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
8622   if (!X.hasValue())
8623     return None;
8624   unsigned W = X->getBitWidth();
8625   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
8626     return X->trunc(BitWidth);
8627   return X;
8628 }
8629 
8630 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
8631 /// iterations. The values L, M, N are assumed to be signed, and they
8632 /// should all have the same bit widths.
8633 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
8634 /// where BW is the bit width of the addrec's coefficients.
8635 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
8636 /// returned as such, otherwise the bit width of the returned value may
8637 /// be greater than BW.
8638 ///
8639 /// This function returns None if
8640 /// (a) the addrec coefficients are not constant, or
8641 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
8642 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
8643 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
8644 static Optional<APInt>
8645 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
8646   APInt A, B, C, M;
8647   unsigned BitWidth;
8648   auto T = GetQuadraticEquation(AddRec);
8649   if (!T.hasValue())
8650     return None;
8651 
8652   std::tie(A, B, C, M, BitWidth) = *T;
8653   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
8654   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
8655   if (!X.hasValue())
8656     return None;
8657 
8658   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
8659   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
8660   if (!V->isZero())
8661     return None;
8662 
8663   return TruncIfPossible(X, BitWidth);
8664 }
8665 
8666 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
8667 /// iterations. The values M, N are assumed to be signed, and they
8668 /// should all have the same bit widths.
8669 /// Find the least n such that c(n) does not belong to the given range,
8670 /// while c(n-1) does.
8671 ///
8672 /// This function returns None if
8673 /// (a) the addrec coefficients are not constant, or
8674 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
8675 ///     bounds of the range.
8676 static Optional<APInt>
8677 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
8678                           const ConstantRange &Range, ScalarEvolution &SE) {
8679   assert(AddRec->getOperand(0)->isZero() &&
8680          "Starting value of addrec should be 0");
8681   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
8682                     << Range << ", addrec " << *AddRec << '\n');
8683   // This case is handled in getNumIterationsInRange. Here we can assume that
8684   // we start in the range.
8685   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
8686          "Addrec's initial value should be in range");
8687 
8688   APInt A, B, C, M;
8689   unsigned BitWidth;
8690   auto T = GetQuadraticEquation(AddRec);
8691   if (!T.hasValue())
8692     return None;
8693 
8694   // Be careful about the return value: there can be two reasons for not
8695   // returning an actual number. First, if no solutions to the equations
8696   // were found, and second, if the solutions don't leave the given range.
8697   // The first case means that the actual solution is "unknown", the second
8698   // means that it's known, but not valid. If the solution is unknown, we
8699   // cannot make any conclusions.
8700   // Return a pair: the optional solution and a flag indicating if the
8701   // solution was found.
8702   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
8703     // Solve for signed overflow and unsigned overflow, pick the lower
8704     // solution.
8705     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
8706                       << Bound << " (before multiplying by " << M << ")\n");
8707     Bound *= M; // The quadratic equation multiplier.
8708 
8709     Optional<APInt> SO = None;
8710     if (BitWidth > 1) {
8711       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8712                            "signed overflow\n");
8713       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
8714     }
8715     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
8716                          "unsigned overflow\n");
8717     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
8718                                                               BitWidth+1);
8719 
8720     auto LeavesRange = [&] (const APInt &X) {
8721       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
8722       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
8723       if (Range.contains(V0->getValue()))
8724         return false;
8725       // X should be at least 1, so X-1 is non-negative.
8726       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
8727       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
8728       if (Range.contains(V1->getValue()))
8729         return true;
8730       return false;
8731     };
8732 
8733     // If SolveQuadraticEquationWrap returns None, it means that there can
8734     // be a solution, but the function failed to find it. We cannot treat it
8735     // as "no solution".
8736     if (!SO.hasValue() || !UO.hasValue())
8737       return { None, false };
8738 
8739     // Check the smaller value first to see if it leaves the range.
8740     // At this point, both SO and UO must have values.
8741     Optional<APInt> Min = MinOptional(SO, UO);
8742     if (LeavesRange(*Min))
8743       return { Min, true };
8744     Optional<APInt> Max = Min == SO ? UO : SO;
8745     if (LeavesRange(*Max))
8746       return { Max, true };
8747 
8748     // Solutions were found, but were eliminated, hence the "true".
8749     return { None, true };
8750   };
8751 
8752   std::tie(A, B, C, M, BitWidth) = *T;
8753   // Lower bound is inclusive, subtract 1 to represent the exiting value.
8754   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
8755   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
8756   auto SL = SolveForBoundary(Lower);
8757   auto SU = SolveForBoundary(Upper);
8758   // If any of the solutions was unknown, no meaninigful conclusions can
8759   // be made.
8760   if (!SL.second || !SU.second)
8761     return None;
8762 
8763   // Claim: The correct solution is not some value between Min and Max.
8764   //
8765   // Justification: Assuming that Min and Max are different values, one of
8766   // them is when the first signed overflow happens, the other is when the
8767   // first unsigned overflow happens. Crossing the range boundary is only
8768   // possible via an overflow (treating 0 as a special case of it, modeling
8769   // an overflow as crossing k*2^W for some k).
8770   //
8771   // The interesting case here is when Min was eliminated as an invalid
8772   // solution, but Max was not. The argument is that if there was another
8773   // overflow between Min and Max, it would also have been eliminated if
8774   // it was considered.
8775   //
8776   // For a given boundary, it is possible to have two overflows of the same
8777   // type (signed/unsigned) without having the other type in between: this
8778   // can happen when the vertex of the parabola is between the iterations
8779   // corresponding to the overflows. This is only possible when the two
8780   // overflows cross k*2^W for the same k. In such case, if the second one
8781   // left the range (and was the first one to do so), the first overflow
8782   // would have to enter the range, which would mean that either we had left
8783   // the range before or that we started outside of it. Both of these cases
8784   // are contradictions.
8785   //
8786   // Claim: In the case where SolveForBoundary returns None, the correct
8787   // solution is not some value between the Max for this boundary and the
8788   // Min of the other boundary.
8789   //
8790   // Justification: Assume that we had such Max_A and Min_B corresponding
8791   // to range boundaries A and B and such that Max_A < Min_B. If there was
8792   // a solution between Max_A and Min_B, it would have to be caused by an
8793   // overflow corresponding to either A or B. It cannot correspond to B,
8794   // since Min_B is the first occurrence of such an overflow. If it
8795   // corresponded to A, it would have to be either a signed or an unsigned
8796   // overflow that is larger than both eliminated overflows for A. But
8797   // between the eliminated overflows and this overflow, the values would
8798   // cover the entire value space, thus crossing the other boundary, which
8799   // is a contradiction.
8800 
8801   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
8802 }
8803 
8804 ScalarEvolution::ExitLimit
8805 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
8806                               bool AllowPredicates) {
8807 
8808   // This is only used for loops with a "x != y" exit test. The exit condition
8809   // is now expressed as a single expression, V = x-y. So the exit test is
8810   // effectively V != 0.  We know and take advantage of the fact that this
8811   // expression only being used in a comparison by zero context.
8812 
8813   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8814   // If the value is a constant
8815   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8816     // If the value is already zero, the branch will execute zero times.
8817     if (C->getValue()->isZero()) return C;
8818     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8819   }
8820 
8821   const SCEVAddRecExpr *AddRec =
8822       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
8823 
8824   if (!AddRec && AllowPredicates)
8825     // Try to make this an AddRec using runtime tests, in the first X
8826     // iterations of this loop, where X is the SCEV expression found by the
8827     // algorithm below.
8828     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
8829 
8830   if (!AddRec || AddRec->getLoop() != L)
8831     return getCouldNotCompute();
8832 
8833   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
8834   // the quadratic equation to solve it.
8835   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
8836     // We can only use this value if the chrec ends up with an exact zero
8837     // value at this index.  When solving for "X*X != 5", for example, we
8838     // should not accept a root of 2.
8839     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
8840       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
8841       return ExitLimit(R, R, false, Predicates);
8842     }
8843     return getCouldNotCompute();
8844   }
8845 
8846   // Otherwise we can only handle this if it is affine.
8847   if (!AddRec->isAffine())
8848     return getCouldNotCompute();
8849 
8850   // If this is an affine expression, the execution count of this branch is
8851   // the minimum unsigned root of the following equation:
8852   //
8853   //     Start + Step*N = 0 (mod 2^BW)
8854   //
8855   // equivalent to:
8856   //
8857   //             Step*N = -Start (mod 2^BW)
8858   //
8859   // where BW is the common bit width of Start and Step.
8860 
8861   // Get the initial value for the loop.
8862   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
8863   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
8864 
8865   // For now we handle only constant steps.
8866   //
8867   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
8868   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
8869   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
8870   // We have not yet seen any such cases.
8871   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
8872   if (!StepC || StepC->getValue()->isZero())
8873     return getCouldNotCompute();
8874 
8875   // For positive steps (counting up until unsigned overflow):
8876   //   N = -Start/Step (as unsigned)
8877   // For negative steps (counting down to zero):
8878   //   N = Start/-Step
8879   // First compute the unsigned distance from zero in the direction of Step.
8880   bool CountDown = StepC->getAPInt().isNegative();
8881   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
8882 
8883   // Handle unitary steps, which cannot wraparound.
8884   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
8885   //   N = Distance (as unsigned)
8886   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
8887     APInt MaxBECount = getUnsignedRangeMax(Distance);
8888 
8889     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
8890     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
8891     // case, and see if we can improve the bound.
8892     //
8893     // Explicitly handling this here is necessary because getUnsignedRange
8894     // isn't context-sensitive; it doesn't know that we only care about the
8895     // range inside the loop.
8896     const SCEV *Zero = getZero(Distance->getType());
8897     const SCEV *One = getOne(Distance->getType());
8898     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
8899     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
8900       // If Distance + 1 doesn't overflow, we can compute the maximum distance
8901       // as "unsigned_max(Distance + 1) - 1".
8902       ConstantRange CR = getUnsignedRange(DistancePlusOne);
8903       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
8904     }
8905     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
8906   }
8907 
8908   // If the condition controls loop exit (the loop exits only if the expression
8909   // is true) and the addition is no-wrap we can use unsigned divide to
8910   // compute the backedge count.  In this case, the step may not divide the
8911   // distance, but we don't care because if the condition is "missed" the loop
8912   // will have undefined behavior due to wrapping.
8913   if (ControlsExit && AddRec->hasNoSelfWrap() &&
8914       loopHasNoAbnormalExits(AddRec->getLoop())) {
8915     const SCEV *Exact =
8916         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
8917     const SCEV *Max =
8918         Exact == getCouldNotCompute()
8919             ? Exact
8920             : getConstant(getUnsignedRangeMax(Exact));
8921     return ExitLimit(Exact, Max, false, Predicates);
8922   }
8923 
8924   // Solve the general equation.
8925   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
8926                                                getNegativeSCEV(Start), *this);
8927   const SCEV *M = E == getCouldNotCompute()
8928                       ? E
8929                       : getConstant(getUnsignedRangeMax(E));
8930   return ExitLimit(E, M, false, Predicates);
8931 }
8932 
8933 ScalarEvolution::ExitLimit
8934 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
8935   // Loops that look like: while (X == 0) are very strange indeed.  We don't
8936   // handle them yet except for the trivial case.  This could be expanded in the
8937   // future as needed.
8938 
8939   // If the value is a constant, check to see if it is known to be non-zero
8940   // already.  If so, the backedge will execute zero times.
8941   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
8942     if (!C->getValue()->isZero())
8943       return getZero(C->getType());
8944     return getCouldNotCompute();  // Otherwise it will loop infinitely.
8945   }
8946 
8947   // We could implement others, but I really doubt anyone writes loops like
8948   // this, and if they did, they would already be constant folded.
8949   return getCouldNotCompute();
8950 }
8951 
8952 std::pair<BasicBlock *, BasicBlock *>
8953 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
8954   // If the block has a unique predecessor, then there is no path from the
8955   // predecessor to the block that does not go through the direct edge
8956   // from the predecessor to the block.
8957   if (BasicBlock *Pred = BB->getSinglePredecessor())
8958     return {Pred, BB};
8959 
8960   // A loop's header is defined to be a block that dominates the loop.
8961   // If the header has a unique predecessor outside the loop, it must be
8962   // a block that has exactly one successor that can reach the loop.
8963   if (Loop *L = LI.getLoopFor(BB))
8964     return {L->getLoopPredecessor(), L->getHeader()};
8965 
8966   return {nullptr, nullptr};
8967 }
8968 
8969 /// SCEV structural equivalence is usually sufficient for testing whether two
8970 /// expressions are equal, however for the purposes of looking for a condition
8971 /// guarding a loop, it can be useful to be a little more general, since a
8972 /// front-end may have replicated the controlling expression.
8973 static bool HasSameValue(const SCEV *A, const SCEV *B) {
8974   // Quick check to see if they are the same SCEV.
8975   if (A == B) return true;
8976 
8977   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
8978     // Not all instructions that are "identical" compute the same value.  For
8979     // instance, two distinct alloca instructions allocating the same type are
8980     // identical and do not read memory; but compute distinct values.
8981     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
8982   };
8983 
8984   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
8985   // two different instructions with the same value. Check for this case.
8986   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
8987     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
8988       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
8989         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
8990           if (ComputesEqualValues(AI, BI))
8991             return true;
8992 
8993   // Otherwise assume they may have a different value.
8994   return false;
8995 }
8996 
8997 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
8998                                            const SCEV *&LHS, const SCEV *&RHS,
8999                                            unsigned Depth) {
9000   bool Changed = false;
9001   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9002   // '0 != 0'.
9003   auto TrivialCase = [&](bool TriviallyTrue) {
9004     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9005     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9006     return true;
9007   };
9008   // If we hit the max recursion limit bail out.
9009   if (Depth >= 3)
9010     return false;
9011 
9012   // Canonicalize a constant to the right side.
9013   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9014     // Check for both operands constant.
9015     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9016       if (ConstantExpr::getICmp(Pred,
9017                                 LHSC->getValue(),
9018                                 RHSC->getValue())->isNullValue())
9019         return TrivialCase(false);
9020       else
9021         return TrivialCase(true);
9022     }
9023     // Otherwise swap the operands to put the constant on the right.
9024     std::swap(LHS, RHS);
9025     Pred = ICmpInst::getSwappedPredicate(Pred);
9026     Changed = true;
9027   }
9028 
9029   // If we're comparing an addrec with a value which is loop-invariant in the
9030   // addrec's loop, put the addrec on the left. Also make a dominance check,
9031   // as both operands could be addrecs loop-invariant in each other's loop.
9032   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9033     const Loop *L = AR->getLoop();
9034     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9035       std::swap(LHS, RHS);
9036       Pred = ICmpInst::getSwappedPredicate(Pred);
9037       Changed = true;
9038     }
9039   }
9040 
9041   // If there's a constant operand, canonicalize comparisons with boundary
9042   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9043   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9044     const APInt &RA = RC->getAPInt();
9045 
9046     bool SimplifiedByConstantRange = false;
9047 
9048     if (!ICmpInst::isEquality(Pred)) {
9049       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9050       if (ExactCR.isFullSet())
9051         return TrivialCase(true);
9052       else if (ExactCR.isEmptySet())
9053         return TrivialCase(false);
9054 
9055       APInt NewRHS;
9056       CmpInst::Predicate NewPred;
9057       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9058           ICmpInst::isEquality(NewPred)) {
9059         // We were able to convert an inequality to an equality.
9060         Pred = NewPred;
9061         RHS = getConstant(NewRHS);
9062         Changed = SimplifiedByConstantRange = true;
9063       }
9064     }
9065 
9066     if (!SimplifiedByConstantRange) {
9067       switch (Pred) {
9068       default:
9069         break;
9070       case ICmpInst::ICMP_EQ:
9071       case ICmpInst::ICMP_NE:
9072         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9073         if (!RA)
9074           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9075             if (const SCEVMulExpr *ME =
9076                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9077               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9078                   ME->getOperand(0)->isAllOnesValue()) {
9079                 RHS = AE->getOperand(1);
9080                 LHS = ME->getOperand(1);
9081                 Changed = true;
9082               }
9083         break;
9084 
9085 
9086         // The "Should have been caught earlier!" messages refer to the fact
9087         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9088         // should have fired on the corresponding cases, and canonicalized the
9089         // check to trivial case.
9090 
9091       case ICmpInst::ICMP_UGE:
9092         assert(!RA.isMinValue() && "Should have been caught earlier!");
9093         Pred = ICmpInst::ICMP_UGT;
9094         RHS = getConstant(RA - 1);
9095         Changed = true;
9096         break;
9097       case ICmpInst::ICMP_ULE:
9098         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9099         Pred = ICmpInst::ICMP_ULT;
9100         RHS = getConstant(RA + 1);
9101         Changed = true;
9102         break;
9103       case ICmpInst::ICMP_SGE:
9104         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9105         Pred = ICmpInst::ICMP_SGT;
9106         RHS = getConstant(RA - 1);
9107         Changed = true;
9108         break;
9109       case ICmpInst::ICMP_SLE:
9110         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9111         Pred = ICmpInst::ICMP_SLT;
9112         RHS = getConstant(RA + 1);
9113         Changed = true;
9114         break;
9115       }
9116     }
9117   }
9118 
9119   // Check for obvious equality.
9120   if (HasSameValue(LHS, RHS)) {
9121     if (ICmpInst::isTrueWhenEqual(Pred))
9122       return TrivialCase(true);
9123     if (ICmpInst::isFalseWhenEqual(Pred))
9124       return TrivialCase(false);
9125   }
9126 
9127   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9128   // adding or subtracting 1 from one of the operands.
9129   switch (Pred) {
9130   case ICmpInst::ICMP_SLE:
9131     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9132       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9133                        SCEV::FlagNSW);
9134       Pred = ICmpInst::ICMP_SLT;
9135       Changed = true;
9136     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9137       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9138                        SCEV::FlagNSW);
9139       Pred = ICmpInst::ICMP_SLT;
9140       Changed = true;
9141     }
9142     break;
9143   case ICmpInst::ICMP_SGE:
9144     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9145       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9146                        SCEV::FlagNSW);
9147       Pred = ICmpInst::ICMP_SGT;
9148       Changed = true;
9149     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9150       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9151                        SCEV::FlagNSW);
9152       Pred = ICmpInst::ICMP_SGT;
9153       Changed = true;
9154     }
9155     break;
9156   case ICmpInst::ICMP_ULE:
9157     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9158       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9159                        SCEV::FlagNUW);
9160       Pred = ICmpInst::ICMP_ULT;
9161       Changed = true;
9162     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9163       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9164       Pred = ICmpInst::ICMP_ULT;
9165       Changed = true;
9166     }
9167     break;
9168   case ICmpInst::ICMP_UGE:
9169     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9170       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9171       Pred = ICmpInst::ICMP_UGT;
9172       Changed = true;
9173     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9174       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9175                        SCEV::FlagNUW);
9176       Pred = ICmpInst::ICMP_UGT;
9177       Changed = true;
9178     }
9179     break;
9180   default:
9181     break;
9182   }
9183 
9184   // TODO: More simplifications are possible here.
9185 
9186   // Recursively simplify until we either hit a recursion limit or nothing
9187   // changes.
9188   if (Changed)
9189     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9190 
9191   return Changed;
9192 }
9193 
9194 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9195   return getSignedRangeMax(S).isNegative();
9196 }
9197 
9198 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9199   return getSignedRangeMin(S).isStrictlyPositive();
9200 }
9201 
9202 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9203   return !getSignedRangeMin(S).isNegative();
9204 }
9205 
9206 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9207   return !getSignedRangeMax(S).isStrictlyPositive();
9208 }
9209 
9210 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9211   return isKnownNegative(S) || isKnownPositive(S);
9212 }
9213 
9214 std::pair<const SCEV *, const SCEV *>
9215 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9216   // Compute SCEV on entry of loop L.
9217   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9218   if (Start == getCouldNotCompute())
9219     return { Start, Start };
9220   // Compute post increment SCEV for loop L.
9221   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9222   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9223   return { Start, PostInc };
9224 }
9225 
9226 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9227                                           const SCEV *LHS, const SCEV *RHS) {
9228   // First collect all loops.
9229   SmallPtrSet<const Loop *, 8> LoopsUsed;
9230   getUsedLoops(LHS, LoopsUsed);
9231   getUsedLoops(RHS, LoopsUsed);
9232 
9233   if (LoopsUsed.empty())
9234     return false;
9235 
9236   // Domination relationship must be a linear order on collected loops.
9237 #ifndef NDEBUG
9238   for (auto *L1 : LoopsUsed)
9239     for (auto *L2 : LoopsUsed)
9240       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9241               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9242              "Domination relationship is not a linear order");
9243 #endif
9244 
9245   const Loop *MDL =
9246       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9247                         [&](const Loop *L1, const Loop *L2) {
9248          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9249        });
9250 
9251   // Get init and post increment value for LHS.
9252   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9253   // if LHS contains unknown non-invariant SCEV then bail out.
9254   if (SplitLHS.first == getCouldNotCompute())
9255     return false;
9256   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9257   // Get init and post increment value for RHS.
9258   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9259   // if RHS contains unknown non-invariant SCEV then bail out.
9260   if (SplitRHS.first == getCouldNotCompute())
9261     return false;
9262   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9263   // It is possible that init SCEV contains an invariant load but it does
9264   // not dominate MDL and is not available at MDL loop entry, so we should
9265   // check it here.
9266   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9267       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9268     return false;
9269 
9270   // It seems backedge guard check is faster than entry one so in some cases
9271   // it can speed up whole estimation by short circuit
9272   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9273                                      SplitRHS.second) &&
9274          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9275 }
9276 
9277 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9278                                        const SCEV *LHS, const SCEV *RHS) {
9279   // Canonicalize the inputs first.
9280   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9281 
9282   if (isKnownViaInduction(Pred, LHS, RHS))
9283     return true;
9284 
9285   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9286     return true;
9287 
9288   // Otherwise see what can be done with some simple reasoning.
9289   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9290 }
9291 
9292 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9293                                               const SCEVAddRecExpr *LHS,
9294                                               const SCEV *RHS) {
9295   const Loop *L = LHS->getLoop();
9296   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9297          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9298 }
9299 
9300 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
9301                                            ICmpInst::Predicate Pred,
9302                                            bool &Increasing) {
9303   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
9304 
9305 #ifndef NDEBUG
9306   // Verify an invariant: inverting the predicate should turn a monotonically
9307   // increasing change to a monotonically decreasing one, and vice versa.
9308   bool IncreasingSwapped;
9309   bool ResultSwapped = isMonotonicPredicateImpl(
9310       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
9311 
9312   assert(Result == ResultSwapped && "should be able to analyze both!");
9313   if (ResultSwapped)
9314     assert(Increasing == !IncreasingSwapped &&
9315            "monotonicity should flip as we flip the predicate");
9316 #endif
9317 
9318   return Result;
9319 }
9320 
9321 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
9322                                                ICmpInst::Predicate Pred,
9323                                                bool &Increasing) {
9324 
9325   // A zero step value for LHS means the induction variable is essentially a
9326   // loop invariant value. We don't really depend on the predicate actually
9327   // flipping from false to true (for increasing predicates, and the other way
9328   // around for decreasing predicates), all we care about is that *if* the
9329   // predicate changes then it only changes from false to true.
9330   //
9331   // A zero step value in itself is not very useful, but there may be places
9332   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9333   // as general as possible.
9334 
9335   switch (Pred) {
9336   default:
9337     return false; // Conservative answer
9338 
9339   case ICmpInst::ICMP_UGT:
9340   case ICmpInst::ICMP_UGE:
9341   case ICmpInst::ICMP_ULT:
9342   case ICmpInst::ICMP_ULE:
9343     if (!LHS->hasNoUnsignedWrap())
9344       return false;
9345 
9346     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
9347     return true;
9348 
9349   case ICmpInst::ICMP_SGT:
9350   case ICmpInst::ICMP_SGE:
9351   case ICmpInst::ICMP_SLT:
9352   case ICmpInst::ICMP_SLE: {
9353     if (!LHS->hasNoSignedWrap())
9354       return false;
9355 
9356     const SCEV *Step = LHS->getStepRecurrence(*this);
9357 
9358     if (isKnownNonNegative(Step)) {
9359       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
9360       return true;
9361     }
9362 
9363     if (isKnownNonPositive(Step)) {
9364       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
9365       return true;
9366     }
9367 
9368     return false;
9369   }
9370 
9371   }
9372 
9373   llvm_unreachable("switch has default clause!");
9374 }
9375 
9376 bool ScalarEvolution::isLoopInvariantPredicate(
9377     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
9378     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
9379     const SCEV *&InvariantRHS) {
9380 
9381   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
9382   if (!isLoopInvariant(RHS, L)) {
9383     if (!isLoopInvariant(LHS, L))
9384       return false;
9385 
9386     std::swap(LHS, RHS);
9387     Pred = ICmpInst::getSwappedPredicate(Pred);
9388   }
9389 
9390   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
9391   if (!ArLHS || ArLHS->getLoop() != L)
9392     return false;
9393 
9394   bool Increasing;
9395   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
9396     return false;
9397 
9398   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
9399   // true as the loop iterates, and the backedge is control dependent on
9400   // "ArLHS `Pred` RHS" == true then we can reason as follows:
9401   //
9402   //   * if the predicate was false in the first iteration then the predicate
9403   //     is never evaluated again, since the loop exits without taking the
9404   //     backedge.
9405   //   * if the predicate was true in the first iteration then it will
9406   //     continue to be true for all future iterations since it is
9407   //     monotonically increasing.
9408   //
9409   // For both the above possibilities, we can replace the loop varying
9410   // predicate with its value on the first iteration of the loop (which is
9411   // loop invariant).
9412   //
9413   // A similar reasoning applies for a monotonically decreasing predicate, by
9414   // replacing true with false and false with true in the above two bullets.
9415 
9416   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
9417 
9418   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
9419     return false;
9420 
9421   InvariantPred = Pred;
9422   InvariantLHS = ArLHS->getStart();
9423   InvariantRHS = RHS;
9424   return true;
9425 }
9426 
9427 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
9428     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
9429   if (HasSameValue(LHS, RHS))
9430     return ICmpInst::isTrueWhenEqual(Pred);
9431 
9432   // This code is split out from isKnownPredicate because it is called from
9433   // within isLoopEntryGuardedByCond.
9434 
9435   auto CheckRanges =
9436       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
9437     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
9438         .contains(RangeLHS);
9439   };
9440 
9441   // The check at the top of the function catches the case where the values are
9442   // known to be equal.
9443   if (Pred == CmpInst::ICMP_EQ)
9444     return false;
9445 
9446   if (Pred == CmpInst::ICMP_NE)
9447     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
9448            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
9449            isKnownNonZero(getMinusSCEV(LHS, RHS));
9450 
9451   if (CmpInst::isSigned(Pred))
9452     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
9453 
9454   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
9455 }
9456 
9457 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
9458                                                     const SCEV *LHS,
9459                                                     const SCEV *RHS) {
9460   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
9461   // Return Y via OutY.
9462   auto MatchBinaryAddToConst =
9463       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
9464              SCEV::NoWrapFlags ExpectedFlags) {
9465     const SCEV *NonConstOp, *ConstOp;
9466     SCEV::NoWrapFlags FlagsPresent;
9467 
9468     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
9469         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
9470       return false;
9471 
9472     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
9473     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
9474   };
9475 
9476   APInt C;
9477 
9478   switch (Pred) {
9479   default:
9480     break;
9481 
9482   case ICmpInst::ICMP_SGE:
9483     std::swap(LHS, RHS);
9484     LLVM_FALLTHROUGH;
9485   case ICmpInst::ICMP_SLE:
9486     // X s<= (X + C)<nsw> if C >= 0
9487     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
9488       return true;
9489 
9490     // (X + C)<nsw> s<= X if C <= 0
9491     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
9492         !C.isStrictlyPositive())
9493       return true;
9494     break;
9495 
9496   case ICmpInst::ICMP_SGT:
9497     std::swap(LHS, RHS);
9498     LLVM_FALLTHROUGH;
9499   case ICmpInst::ICMP_SLT:
9500     // X s< (X + C)<nsw> if C > 0
9501     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
9502         C.isStrictlyPositive())
9503       return true;
9504 
9505     // (X + C)<nsw> s< X if C < 0
9506     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
9507       return true;
9508     break;
9509   }
9510 
9511   return false;
9512 }
9513 
9514 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
9515                                                    const SCEV *LHS,
9516                                                    const SCEV *RHS) {
9517   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
9518     return false;
9519 
9520   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
9521   // the stack can result in exponential time complexity.
9522   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
9523 
9524   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
9525   //
9526   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
9527   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
9528   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
9529   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
9530   // use isKnownPredicate later if needed.
9531   return isKnownNonNegative(RHS) &&
9532          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
9533          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
9534 }
9535 
9536 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
9537                                         ICmpInst::Predicate Pred,
9538                                         const SCEV *LHS, const SCEV *RHS) {
9539   // No need to even try if we know the module has no guards.
9540   if (!HasGuards)
9541     return false;
9542 
9543   return any_of(*BB, [&](Instruction &I) {
9544     using namespace llvm::PatternMatch;
9545 
9546     Value *Condition;
9547     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
9548                          m_Value(Condition))) &&
9549            isImpliedCond(Pred, LHS, RHS, Condition, false);
9550   });
9551 }
9552 
9553 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
9554 /// protected by a conditional between LHS and RHS.  This is used to
9555 /// to eliminate casts.
9556 bool
9557 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
9558                                              ICmpInst::Predicate Pred,
9559                                              const SCEV *LHS, const SCEV *RHS) {
9560   // Interpret a null as meaning no loop, where there is obviously no guard
9561   // (interprocedural conditions notwithstanding).
9562   if (!L) return true;
9563 
9564   if (VerifyIR)
9565     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9566            "This cannot be done on broken IR!");
9567 
9568 
9569   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9570     return true;
9571 
9572   BasicBlock *Latch = L->getLoopLatch();
9573   if (!Latch)
9574     return false;
9575 
9576   BranchInst *LoopContinuePredicate =
9577     dyn_cast<BranchInst>(Latch->getTerminator());
9578   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
9579       isImpliedCond(Pred, LHS, RHS,
9580                     LoopContinuePredicate->getCondition(),
9581                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
9582     return true;
9583 
9584   // We don't want more than one activation of the following loops on the stack
9585   // -- that can lead to O(n!) time complexity.
9586   if (WalkingBEDominatingConds)
9587     return false;
9588 
9589   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
9590 
9591   // See if we can exploit a trip count to prove the predicate.
9592   const auto &BETakenInfo = getBackedgeTakenInfo(L);
9593   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
9594   if (LatchBECount != getCouldNotCompute()) {
9595     // We know that Latch branches back to the loop header exactly
9596     // LatchBECount times.  This means the backdege condition at Latch is
9597     // equivalent to  "{0,+,1} u< LatchBECount".
9598     Type *Ty = LatchBECount->getType();
9599     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
9600     const SCEV *LoopCounter =
9601       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
9602     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
9603                       LatchBECount))
9604       return true;
9605   }
9606 
9607   // Check conditions due to any @llvm.assume intrinsics.
9608   for (auto &AssumeVH : AC.assumptions()) {
9609     if (!AssumeVH)
9610       continue;
9611     auto *CI = cast<CallInst>(AssumeVH);
9612     if (!DT.dominates(CI, Latch->getTerminator()))
9613       continue;
9614 
9615     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
9616       return true;
9617   }
9618 
9619   // If the loop is not reachable from the entry block, we risk running into an
9620   // infinite loop as we walk up into the dom tree.  These loops do not matter
9621   // anyway, so we just return a conservative answer when we see them.
9622   if (!DT.isReachableFromEntry(L->getHeader()))
9623     return false;
9624 
9625   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
9626     return true;
9627 
9628   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
9629        DTN != HeaderDTN; DTN = DTN->getIDom()) {
9630     assert(DTN && "should reach the loop header before reaching the root!");
9631 
9632     BasicBlock *BB = DTN->getBlock();
9633     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
9634       return true;
9635 
9636     BasicBlock *PBB = BB->getSinglePredecessor();
9637     if (!PBB)
9638       continue;
9639 
9640     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
9641     if (!ContinuePredicate || !ContinuePredicate->isConditional())
9642       continue;
9643 
9644     Value *Condition = ContinuePredicate->getCondition();
9645 
9646     // If we have an edge `E` within the loop body that dominates the only
9647     // latch, the condition guarding `E` also guards the backedge.  This
9648     // reasoning works only for loops with a single latch.
9649 
9650     BasicBlockEdge DominatingEdge(PBB, BB);
9651     if (DominatingEdge.isSingleEdge()) {
9652       // We're constructively (and conservatively) enumerating edges within the
9653       // loop body that dominate the latch.  The dominator tree better agree
9654       // with us on this:
9655       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
9656 
9657       if (isImpliedCond(Pred, LHS, RHS, Condition,
9658                         BB != ContinuePredicate->getSuccessor(0)))
9659         return true;
9660     }
9661   }
9662 
9663   return false;
9664 }
9665 
9666 bool
9667 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
9668                                           ICmpInst::Predicate Pred,
9669                                           const SCEV *LHS, const SCEV *RHS) {
9670   // Interpret a null as meaning no loop, where there is obviously no guard
9671   // (interprocedural conditions notwithstanding).
9672   if (!L) return false;
9673 
9674   if (VerifyIR)
9675     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
9676            "This cannot be done on broken IR!");
9677 
9678   // Both LHS and RHS must be available at loop entry.
9679   assert(isAvailableAtLoopEntry(LHS, L) &&
9680          "LHS is not available at Loop Entry");
9681   assert(isAvailableAtLoopEntry(RHS, L) &&
9682          "RHS is not available at Loop Entry");
9683 
9684   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
9685     return true;
9686 
9687   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
9688   // the facts (a >= b && a != b) separately. A typical situation is when the
9689   // non-strict comparison is known from ranges and non-equality is known from
9690   // dominating predicates. If we are proving strict comparison, we always try
9691   // to prove non-equality and non-strict comparison separately.
9692   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
9693   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
9694   bool ProvedNonStrictComparison = false;
9695   bool ProvedNonEquality = false;
9696 
9697   if (ProvingStrictComparison) {
9698     ProvedNonStrictComparison =
9699         isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS);
9700     ProvedNonEquality =
9701         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS);
9702     if (ProvedNonStrictComparison && ProvedNonEquality)
9703       return true;
9704   }
9705 
9706   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
9707   auto ProveViaGuard = [&](BasicBlock *Block) {
9708     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
9709       return true;
9710     if (ProvingStrictComparison) {
9711       if (!ProvedNonStrictComparison)
9712         ProvedNonStrictComparison =
9713             isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS);
9714       if (!ProvedNonEquality)
9715         ProvedNonEquality =
9716             isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS);
9717       if (ProvedNonStrictComparison && ProvedNonEquality)
9718         return true;
9719     }
9720     return false;
9721   };
9722 
9723   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
9724   auto ProveViaCond = [&](Value *Condition, bool Inverse) {
9725     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse))
9726       return true;
9727     if (ProvingStrictComparison) {
9728       if (!ProvedNonStrictComparison)
9729         ProvedNonStrictComparison =
9730             isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse);
9731       if (!ProvedNonEquality)
9732         ProvedNonEquality =
9733             isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse);
9734       if (ProvedNonStrictComparison && ProvedNonEquality)
9735         return true;
9736     }
9737     return false;
9738   };
9739 
9740   // Starting at the loop predecessor, climb up the predecessor chain, as long
9741   // as there are predecessors that can be found that have unique successors
9742   // leading to the original header.
9743   for (std::pair<BasicBlock *, BasicBlock *>
9744          Pair(L->getLoopPredecessor(), L->getHeader());
9745        Pair.first;
9746        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
9747 
9748     if (ProveViaGuard(Pair.first))
9749       return true;
9750 
9751     BranchInst *LoopEntryPredicate =
9752       dyn_cast<BranchInst>(Pair.first->getTerminator());
9753     if (!LoopEntryPredicate ||
9754         LoopEntryPredicate->isUnconditional())
9755       continue;
9756 
9757     if (ProveViaCond(LoopEntryPredicate->getCondition(),
9758                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
9759       return true;
9760   }
9761 
9762   // Check conditions due to any @llvm.assume intrinsics.
9763   for (auto &AssumeVH : AC.assumptions()) {
9764     if (!AssumeVH)
9765       continue;
9766     auto *CI = cast<CallInst>(AssumeVH);
9767     if (!DT.dominates(CI, L->getHeader()))
9768       continue;
9769 
9770     if (ProveViaCond(CI->getArgOperand(0), false))
9771       return true;
9772   }
9773 
9774   return false;
9775 }
9776 
9777 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
9778                                     const SCEV *LHS, const SCEV *RHS,
9779                                     Value *FoundCondValue,
9780                                     bool Inverse) {
9781   if (!PendingLoopPredicates.insert(FoundCondValue).second)
9782     return false;
9783 
9784   auto ClearOnExit =
9785       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
9786 
9787   // Recursively handle And and Or conditions.
9788   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
9789     if (BO->getOpcode() == Instruction::And) {
9790       if (!Inverse)
9791         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9792                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9793     } else if (BO->getOpcode() == Instruction::Or) {
9794       if (Inverse)
9795         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
9796                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
9797     }
9798   }
9799 
9800   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
9801   if (!ICI) return false;
9802 
9803   // Now that we found a conditional branch that dominates the loop or controls
9804   // the loop latch. Check to see if it is the comparison we are looking for.
9805   ICmpInst::Predicate FoundPred;
9806   if (Inverse)
9807     FoundPred = ICI->getInversePredicate();
9808   else
9809     FoundPred = ICI->getPredicate();
9810 
9811   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
9812   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
9813 
9814   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
9815 }
9816 
9817 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
9818                                     const SCEV *RHS,
9819                                     ICmpInst::Predicate FoundPred,
9820                                     const SCEV *FoundLHS,
9821                                     const SCEV *FoundRHS) {
9822   // Balance the types.
9823   if (getTypeSizeInBits(LHS->getType()) <
9824       getTypeSizeInBits(FoundLHS->getType())) {
9825     if (CmpInst::isSigned(Pred)) {
9826       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
9827       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
9828     } else {
9829       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
9830       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
9831     }
9832   } else if (getTypeSizeInBits(LHS->getType()) >
9833       getTypeSizeInBits(FoundLHS->getType())) {
9834     if (CmpInst::isSigned(FoundPred)) {
9835       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
9836       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
9837     } else {
9838       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
9839       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
9840     }
9841   }
9842 
9843   // Canonicalize the query to match the way instcombine will have
9844   // canonicalized the comparison.
9845   if (SimplifyICmpOperands(Pred, LHS, RHS))
9846     if (LHS == RHS)
9847       return CmpInst::isTrueWhenEqual(Pred);
9848   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
9849     if (FoundLHS == FoundRHS)
9850       return CmpInst::isFalseWhenEqual(FoundPred);
9851 
9852   // Check to see if we can make the LHS or RHS match.
9853   if (LHS == FoundRHS || RHS == FoundLHS) {
9854     if (isa<SCEVConstant>(RHS)) {
9855       std::swap(FoundLHS, FoundRHS);
9856       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
9857     } else {
9858       std::swap(LHS, RHS);
9859       Pred = ICmpInst::getSwappedPredicate(Pred);
9860     }
9861   }
9862 
9863   // Check whether the found predicate is the same as the desired predicate.
9864   if (FoundPred == Pred)
9865     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9866 
9867   // Check whether swapping the found predicate makes it the same as the
9868   // desired predicate.
9869   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
9870     if (isa<SCEVConstant>(RHS))
9871       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
9872     else
9873       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
9874                                    RHS, LHS, FoundLHS, FoundRHS);
9875   }
9876 
9877   // Unsigned comparison is the same as signed comparison when both the operands
9878   // are non-negative.
9879   if (CmpInst::isUnsigned(FoundPred) &&
9880       CmpInst::getSignedPredicate(FoundPred) == Pred &&
9881       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
9882     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
9883 
9884   // Check if we can make progress by sharpening ranges.
9885   if (FoundPred == ICmpInst::ICMP_NE &&
9886       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
9887 
9888     const SCEVConstant *C = nullptr;
9889     const SCEV *V = nullptr;
9890 
9891     if (isa<SCEVConstant>(FoundLHS)) {
9892       C = cast<SCEVConstant>(FoundLHS);
9893       V = FoundRHS;
9894     } else {
9895       C = cast<SCEVConstant>(FoundRHS);
9896       V = FoundLHS;
9897     }
9898 
9899     // The guarding predicate tells us that C != V. If the known range
9900     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
9901     // range we consider has to correspond to same signedness as the
9902     // predicate we're interested in folding.
9903 
9904     APInt Min = ICmpInst::isSigned(Pred) ?
9905         getSignedRangeMin(V) : getUnsignedRangeMin(V);
9906 
9907     if (Min == C->getAPInt()) {
9908       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
9909       // This is true even if (Min + 1) wraps around -- in case of
9910       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
9911 
9912       APInt SharperMin = Min + 1;
9913 
9914       switch (Pred) {
9915         case ICmpInst::ICMP_SGE:
9916         case ICmpInst::ICMP_UGE:
9917           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
9918           // RHS, we're done.
9919           if (isImpliedCondOperands(Pred, LHS, RHS, V,
9920                                     getConstant(SharperMin)))
9921             return true;
9922           LLVM_FALLTHROUGH;
9923 
9924         case ICmpInst::ICMP_SGT:
9925         case ICmpInst::ICMP_UGT:
9926           // We know from the range information that (V `Pred` Min ||
9927           // V == Min).  We know from the guarding condition that !(V
9928           // == Min).  This gives us
9929           //
9930           //       V `Pred` Min || V == Min && !(V == Min)
9931           //   =>  V `Pred` Min
9932           //
9933           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
9934 
9935           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
9936             return true;
9937           LLVM_FALLTHROUGH;
9938 
9939         default:
9940           // No change
9941           break;
9942       }
9943     }
9944   }
9945 
9946   // Check whether the actual condition is beyond sufficient.
9947   if (FoundPred == ICmpInst::ICMP_EQ)
9948     if (ICmpInst::isTrueWhenEqual(Pred))
9949       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
9950         return true;
9951   if (Pred == ICmpInst::ICMP_NE)
9952     if (!ICmpInst::isTrueWhenEqual(FoundPred))
9953       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
9954         return true;
9955 
9956   // Otherwise assume the worst.
9957   return false;
9958 }
9959 
9960 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
9961                                      const SCEV *&L, const SCEV *&R,
9962                                      SCEV::NoWrapFlags &Flags) {
9963   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
9964   if (!AE || AE->getNumOperands() != 2)
9965     return false;
9966 
9967   L = AE->getOperand(0);
9968   R = AE->getOperand(1);
9969   Flags = AE->getNoWrapFlags();
9970   return true;
9971 }
9972 
9973 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
9974                                                            const SCEV *Less) {
9975   // We avoid subtracting expressions here because this function is usually
9976   // fairly deep in the call stack (i.e. is called many times).
9977 
9978   // X - X = 0.
9979   if (More == Less)
9980     return APInt(getTypeSizeInBits(More->getType()), 0);
9981 
9982   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
9983     const auto *LAR = cast<SCEVAddRecExpr>(Less);
9984     const auto *MAR = cast<SCEVAddRecExpr>(More);
9985 
9986     if (LAR->getLoop() != MAR->getLoop())
9987       return None;
9988 
9989     // We look at affine expressions only; not for correctness but to keep
9990     // getStepRecurrence cheap.
9991     if (!LAR->isAffine() || !MAR->isAffine())
9992       return None;
9993 
9994     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
9995       return None;
9996 
9997     Less = LAR->getStart();
9998     More = MAR->getStart();
9999 
10000     // fall through
10001   }
10002 
10003   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10004     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10005     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10006     return M - L;
10007   }
10008 
10009   SCEV::NoWrapFlags Flags;
10010   const SCEV *LLess = nullptr, *RLess = nullptr;
10011   const SCEV *LMore = nullptr, *RMore = nullptr;
10012   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10013   // Compare (X + C1) vs X.
10014   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10015     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10016       if (RLess == More)
10017         return -(C1->getAPInt());
10018 
10019   // Compare X vs (X + C2).
10020   if (splitBinaryAdd(More, LMore, RMore, Flags))
10021     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10022       if (RMore == Less)
10023         return C2->getAPInt();
10024 
10025   // Compare (X + C1) vs (X + C2).
10026   if (C1 && C2 && RLess == RMore)
10027     return C2->getAPInt() - C1->getAPInt();
10028 
10029   return None;
10030 }
10031 
10032 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10033     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10034     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10035   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10036     return false;
10037 
10038   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10039   if (!AddRecLHS)
10040     return false;
10041 
10042   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10043   if (!AddRecFoundLHS)
10044     return false;
10045 
10046   // We'd like to let SCEV reason about control dependencies, so we constrain
10047   // both the inequalities to be about add recurrences on the same loop.  This
10048   // way we can use isLoopEntryGuardedByCond later.
10049 
10050   const Loop *L = AddRecFoundLHS->getLoop();
10051   if (L != AddRecLHS->getLoop())
10052     return false;
10053 
10054   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10055   //
10056   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10057   //                                                                  ... (2)
10058   //
10059   // Informal proof for (2), assuming (1) [*]:
10060   //
10061   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10062   //
10063   // Then
10064   //
10065   //       FoundLHS s< FoundRHS s< INT_MIN - C
10066   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10067   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10068   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10069   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10070   // <=>  FoundLHS + C s< FoundRHS + C
10071   //
10072   // [*]: (1) can be proved by ruling out overflow.
10073   //
10074   // [**]: This can be proved by analyzing all the four possibilities:
10075   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10076   //    (A s>= 0, B s>= 0).
10077   //
10078   // Note:
10079   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10080   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10081   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10082   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10083   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10084   // C)".
10085 
10086   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10087   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10088   if (!LDiff || !RDiff || *LDiff != *RDiff)
10089     return false;
10090 
10091   if (LDiff->isMinValue())
10092     return true;
10093 
10094   APInt FoundRHSLimit;
10095 
10096   if (Pred == CmpInst::ICMP_ULT) {
10097     FoundRHSLimit = -(*RDiff);
10098   } else {
10099     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10100     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10101   }
10102 
10103   // Try to prove (1) or (2), as needed.
10104   return isAvailableAtLoopEntry(FoundRHS, L) &&
10105          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
10106                                   getConstant(FoundRHSLimit));
10107 }
10108 
10109 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
10110                                         const SCEV *LHS, const SCEV *RHS,
10111                                         const SCEV *FoundLHS,
10112                                         const SCEV *FoundRHS, unsigned Depth) {
10113   const PHINode *LPhi = nullptr, *RPhi = nullptr;
10114 
10115   auto ClearOnExit = make_scope_exit([&]() {
10116     if (LPhi) {
10117       bool Erased = PendingMerges.erase(LPhi);
10118       assert(Erased && "Failed to erase LPhi!");
10119       (void)Erased;
10120     }
10121     if (RPhi) {
10122       bool Erased = PendingMerges.erase(RPhi);
10123       assert(Erased && "Failed to erase RPhi!");
10124       (void)Erased;
10125     }
10126   });
10127 
10128   // Find respective Phis and check that they are not being pending.
10129   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
10130     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
10131       if (!PendingMerges.insert(Phi).second)
10132         return false;
10133       LPhi = Phi;
10134     }
10135   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
10136     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
10137       // If we detect a loop of Phi nodes being processed by this method, for
10138       // example:
10139       //
10140       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
10141       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
10142       //
10143       // we don't want to deal with a case that complex, so return conservative
10144       // answer false.
10145       if (!PendingMerges.insert(Phi).second)
10146         return false;
10147       RPhi = Phi;
10148     }
10149 
10150   // If none of LHS, RHS is a Phi, nothing to do here.
10151   if (!LPhi && !RPhi)
10152     return false;
10153 
10154   // If there is a SCEVUnknown Phi we are interested in, make it left.
10155   if (!LPhi) {
10156     std::swap(LHS, RHS);
10157     std::swap(FoundLHS, FoundRHS);
10158     std::swap(LPhi, RPhi);
10159     Pred = ICmpInst::getSwappedPredicate(Pred);
10160   }
10161 
10162   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
10163   const BasicBlock *LBB = LPhi->getParent();
10164   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10165 
10166   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
10167     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
10168            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
10169            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
10170   };
10171 
10172   if (RPhi && RPhi->getParent() == LBB) {
10173     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
10174     // If we compare two Phis from the same block, and for each entry block
10175     // the predicate is true for incoming values from this block, then the
10176     // predicate is also true for the Phis.
10177     for (const BasicBlock *IncBB : predecessors(LBB)) {
10178       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10179       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
10180       if (!ProvedEasily(L, R))
10181         return false;
10182     }
10183   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
10184     // Case two: RHS is also a Phi from the same basic block, and it is an
10185     // AddRec. It means that there is a loop which has both AddRec and Unknown
10186     // PHIs, for it we can compare incoming values of AddRec from above the loop
10187     // and latch with their respective incoming values of LPhi.
10188     // TODO: Generalize to handle loops with many inputs in a header.
10189     if (LPhi->getNumIncomingValues() != 2) return false;
10190 
10191     auto *RLoop = RAR->getLoop();
10192     auto *Predecessor = RLoop->getLoopPredecessor();
10193     assert(Predecessor && "Loop with AddRec with no predecessor?");
10194     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
10195     if (!ProvedEasily(L1, RAR->getStart()))
10196       return false;
10197     auto *Latch = RLoop->getLoopLatch();
10198     assert(Latch && "Loop with AddRec with no latch?");
10199     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
10200     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
10201       return false;
10202   } else {
10203     // In all other cases go over inputs of LHS and compare each of them to RHS,
10204     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
10205     // At this point RHS is either a non-Phi, or it is a Phi from some block
10206     // different from LBB.
10207     for (const BasicBlock *IncBB : predecessors(LBB)) {
10208       // Check that RHS is available in this block.
10209       if (!dominates(RHS, IncBB))
10210         return false;
10211       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
10212       if (!ProvedEasily(L, RHS))
10213         return false;
10214     }
10215   }
10216   return true;
10217 }
10218 
10219 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
10220                                             const SCEV *LHS, const SCEV *RHS,
10221                                             const SCEV *FoundLHS,
10222                                             const SCEV *FoundRHS) {
10223   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
10224     return true;
10225 
10226   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
10227     return true;
10228 
10229   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
10230                                      FoundLHS, FoundRHS) ||
10231          // ~x < ~y --> x > y
10232          isImpliedCondOperandsHelper(Pred, LHS, RHS,
10233                                      getNotSCEV(FoundRHS),
10234                                      getNotSCEV(FoundLHS));
10235 }
10236 
10237 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
10238 template <typename MinMaxExprType>
10239 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
10240                                  const SCEV *Candidate) {
10241   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
10242   if (!MinMaxExpr)
10243     return false;
10244 
10245   return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end();
10246 }
10247 
10248 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
10249                                            ICmpInst::Predicate Pred,
10250                                            const SCEV *LHS, const SCEV *RHS) {
10251   // If both sides are affine addrecs for the same loop, with equal
10252   // steps, and we know the recurrences don't wrap, then we only
10253   // need to check the predicate on the starting values.
10254 
10255   if (!ICmpInst::isRelational(Pred))
10256     return false;
10257 
10258   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
10259   if (!LAR)
10260     return false;
10261   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
10262   if (!RAR)
10263     return false;
10264   if (LAR->getLoop() != RAR->getLoop())
10265     return false;
10266   if (!LAR->isAffine() || !RAR->isAffine())
10267     return false;
10268 
10269   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
10270     return false;
10271 
10272   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
10273                          SCEV::FlagNSW : SCEV::FlagNUW;
10274   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
10275     return false;
10276 
10277   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
10278 }
10279 
10280 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
10281 /// expression?
10282 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
10283                                         ICmpInst::Predicate Pred,
10284                                         const SCEV *LHS, const SCEV *RHS) {
10285   switch (Pred) {
10286   default:
10287     return false;
10288 
10289   case ICmpInst::ICMP_SGE:
10290     std::swap(LHS, RHS);
10291     LLVM_FALLTHROUGH;
10292   case ICmpInst::ICMP_SLE:
10293     return
10294         // min(A, ...) <= A
10295         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
10296         // A <= max(A, ...)
10297         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
10298 
10299   case ICmpInst::ICMP_UGE:
10300     std::swap(LHS, RHS);
10301     LLVM_FALLTHROUGH;
10302   case ICmpInst::ICMP_ULE:
10303     return
10304         // min(A, ...) <= A
10305         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
10306         // A <= max(A, ...)
10307         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
10308   }
10309 
10310   llvm_unreachable("covered switch fell through?!");
10311 }
10312 
10313 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
10314                                              const SCEV *LHS, const SCEV *RHS,
10315                                              const SCEV *FoundLHS,
10316                                              const SCEV *FoundRHS,
10317                                              unsigned Depth) {
10318   assert(getTypeSizeInBits(LHS->getType()) ==
10319              getTypeSizeInBits(RHS->getType()) &&
10320          "LHS and RHS have different sizes?");
10321   assert(getTypeSizeInBits(FoundLHS->getType()) ==
10322              getTypeSizeInBits(FoundRHS->getType()) &&
10323          "FoundLHS and FoundRHS have different sizes?");
10324   // We want to avoid hurting the compile time with analysis of too big trees.
10325   if (Depth > MaxSCEVOperationsImplicationDepth)
10326     return false;
10327   // We only want to work with ICMP_SGT comparison so far.
10328   // TODO: Extend to ICMP_UGT?
10329   if (Pred == ICmpInst::ICMP_SLT) {
10330     Pred = ICmpInst::ICMP_SGT;
10331     std::swap(LHS, RHS);
10332     std::swap(FoundLHS, FoundRHS);
10333   }
10334   if (Pred != ICmpInst::ICMP_SGT)
10335     return false;
10336 
10337   auto GetOpFromSExt = [&](const SCEV *S) {
10338     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
10339       return Ext->getOperand();
10340     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
10341     // the constant in some cases.
10342     return S;
10343   };
10344 
10345   // Acquire values from extensions.
10346   auto *OrigLHS = LHS;
10347   auto *OrigFoundLHS = FoundLHS;
10348   LHS = GetOpFromSExt(LHS);
10349   FoundLHS = GetOpFromSExt(FoundLHS);
10350 
10351   // Is the SGT predicate can be proved trivially or using the found context.
10352   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
10353     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
10354            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
10355                                   FoundRHS, Depth + 1);
10356   };
10357 
10358   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
10359     // We want to avoid creation of any new non-constant SCEV. Since we are
10360     // going to compare the operands to RHS, we should be certain that we don't
10361     // need any size extensions for this. So let's decline all cases when the
10362     // sizes of types of LHS and RHS do not match.
10363     // TODO: Maybe try to get RHS from sext to catch more cases?
10364     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
10365       return false;
10366 
10367     // Should not overflow.
10368     if (!LHSAddExpr->hasNoSignedWrap())
10369       return false;
10370 
10371     auto *LL = LHSAddExpr->getOperand(0);
10372     auto *LR = LHSAddExpr->getOperand(1);
10373     auto *MinusOne = getNegativeSCEV(getOne(RHS->getType()));
10374 
10375     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
10376     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
10377       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
10378     };
10379     // Try to prove the following rule:
10380     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
10381     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
10382     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
10383       return true;
10384   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
10385     Value *LL, *LR;
10386     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
10387 
10388     using namespace llvm::PatternMatch;
10389 
10390     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
10391       // Rules for division.
10392       // We are going to perform some comparisons with Denominator and its
10393       // derivative expressions. In general case, creating a SCEV for it may
10394       // lead to a complex analysis of the entire graph, and in particular it
10395       // can request trip count recalculation for the same loop. This would
10396       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
10397       // this, we only want to create SCEVs that are constants in this section.
10398       // So we bail if Denominator is not a constant.
10399       if (!isa<ConstantInt>(LR))
10400         return false;
10401 
10402       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
10403 
10404       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
10405       // then a SCEV for the numerator already exists and matches with FoundLHS.
10406       auto *Numerator = getExistingSCEV(LL);
10407       if (!Numerator || Numerator->getType() != FoundLHS->getType())
10408         return false;
10409 
10410       // Make sure that the numerator matches with FoundLHS and the denominator
10411       // is positive.
10412       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
10413         return false;
10414 
10415       auto *DTy = Denominator->getType();
10416       auto *FRHSTy = FoundRHS->getType();
10417       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
10418         // One of types is a pointer and another one is not. We cannot extend
10419         // them properly to a wider type, so let us just reject this case.
10420         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
10421         // to avoid this check.
10422         return false;
10423 
10424       // Given that:
10425       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
10426       auto *WTy = getWiderType(DTy, FRHSTy);
10427       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
10428       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
10429 
10430       // Try to prove the following rule:
10431       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
10432       // For example, given that FoundLHS > 2. It means that FoundLHS is at
10433       // least 3. If we divide it by Denominator < 4, we will have at least 1.
10434       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
10435       if (isKnownNonPositive(RHS) &&
10436           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
10437         return true;
10438 
10439       // Try to prove the following rule:
10440       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
10441       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
10442       // If we divide it by Denominator > 2, then:
10443       // 1. If FoundLHS is negative, then the result is 0.
10444       // 2. If FoundLHS is non-negative, then the result is non-negative.
10445       // Anyways, the result is non-negative.
10446       auto *MinusOne = getNegativeSCEV(getOne(WTy));
10447       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
10448       if (isKnownNegative(RHS) &&
10449           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
10450         return true;
10451     }
10452   }
10453 
10454   // If our expression contained SCEVUnknown Phis, and we split it down and now
10455   // need to prove something for them, try to prove the predicate for every
10456   // possible incoming values of those Phis.
10457   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
10458     return true;
10459 
10460   return false;
10461 }
10462 
10463 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
10464                                         const SCEV *LHS, const SCEV *RHS) {
10465   // zext x u<= sext x, sext x s<= zext x
10466   switch (Pred) {
10467   case ICmpInst::ICMP_SGE:
10468     std::swap(LHS, RHS);
10469     LLVM_FALLTHROUGH;
10470   case ICmpInst::ICMP_SLE: {
10471     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
10472     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
10473     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
10474     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10475       return true;
10476     break;
10477   }
10478   case ICmpInst::ICMP_UGE:
10479     std::swap(LHS, RHS);
10480     LLVM_FALLTHROUGH;
10481   case ICmpInst::ICMP_ULE: {
10482     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
10483     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
10484     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
10485     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
10486       return true;
10487     break;
10488   }
10489   default:
10490     break;
10491   };
10492   return false;
10493 }
10494 
10495 bool
10496 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
10497                                            const SCEV *LHS, const SCEV *RHS) {
10498   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
10499          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
10500          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
10501          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
10502          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
10503 }
10504 
10505 bool
10506 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
10507                                              const SCEV *LHS, const SCEV *RHS,
10508                                              const SCEV *FoundLHS,
10509                                              const SCEV *FoundRHS) {
10510   switch (Pred) {
10511   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
10512   case ICmpInst::ICMP_EQ:
10513   case ICmpInst::ICMP_NE:
10514     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
10515       return true;
10516     break;
10517   case ICmpInst::ICMP_SLT:
10518   case ICmpInst::ICMP_SLE:
10519     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
10520         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
10521       return true;
10522     break;
10523   case ICmpInst::ICMP_SGT:
10524   case ICmpInst::ICMP_SGE:
10525     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
10526         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
10527       return true;
10528     break;
10529   case ICmpInst::ICMP_ULT:
10530   case ICmpInst::ICMP_ULE:
10531     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
10532         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
10533       return true;
10534     break;
10535   case ICmpInst::ICMP_UGT:
10536   case ICmpInst::ICMP_UGE:
10537     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
10538         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
10539       return true;
10540     break;
10541   }
10542 
10543   // Maybe it can be proved via operations?
10544   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
10545     return true;
10546 
10547   return false;
10548 }
10549 
10550 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
10551                                                      const SCEV *LHS,
10552                                                      const SCEV *RHS,
10553                                                      const SCEV *FoundLHS,
10554                                                      const SCEV *FoundRHS) {
10555   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
10556     // The restriction on `FoundRHS` be lifted easily -- it exists only to
10557     // reduce the compile time impact of this optimization.
10558     return false;
10559 
10560   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
10561   if (!Addend)
10562     return false;
10563 
10564   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
10565 
10566   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
10567   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
10568   ConstantRange FoundLHSRange =
10569       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
10570 
10571   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
10572   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
10573 
10574   // We can also compute the range of values for `LHS` that satisfy the
10575   // consequent, "`LHS` `Pred` `RHS`":
10576   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
10577   ConstantRange SatisfyingLHSRange =
10578       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
10579 
10580   // The antecedent implies the consequent if every value of `LHS` that
10581   // satisfies the antecedent also satisfies the consequent.
10582   return SatisfyingLHSRange.contains(LHSRange);
10583 }
10584 
10585 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
10586                                          bool IsSigned, bool NoWrap) {
10587   assert(isKnownPositive(Stride) && "Positive stride expected!");
10588 
10589   if (NoWrap) return false;
10590 
10591   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10592   const SCEV *One = getOne(Stride->getType());
10593 
10594   if (IsSigned) {
10595     APInt MaxRHS = getSignedRangeMax(RHS);
10596     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
10597     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10598 
10599     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
10600     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
10601   }
10602 
10603   APInt MaxRHS = getUnsignedRangeMax(RHS);
10604   APInt MaxValue = APInt::getMaxValue(BitWidth);
10605   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10606 
10607   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
10608   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
10609 }
10610 
10611 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
10612                                          bool IsSigned, bool NoWrap) {
10613   if (NoWrap) return false;
10614 
10615   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
10616   const SCEV *One = getOne(Stride->getType());
10617 
10618   if (IsSigned) {
10619     APInt MinRHS = getSignedRangeMin(RHS);
10620     APInt MinValue = APInt::getSignedMinValue(BitWidth);
10621     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
10622 
10623     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
10624     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
10625   }
10626 
10627   APInt MinRHS = getUnsignedRangeMin(RHS);
10628   APInt MinValue = APInt::getMinValue(BitWidth);
10629   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
10630 
10631   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
10632   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
10633 }
10634 
10635 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
10636                                             bool Equality) {
10637   const SCEV *One = getOne(Step->getType());
10638   Delta = Equality ? getAddExpr(Delta, Step)
10639                    : getAddExpr(Delta, getMinusSCEV(Step, One));
10640   return getUDivExpr(Delta, Step);
10641 }
10642 
10643 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
10644                                                     const SCEV *Stride,
10645                                                     const SCEV *End,
10646                                                     unsigned BitWidth,
10647                                                     bool IsSigned) {
10648 
10649   assert(!isKnownNonPositive(Stride) &&
10650          "Stride is expected strictly positive!");
10651   // Calculate the maximum backedge count based on the range of values
10652   // permitted by Start, End, and Stride.
10653   const SCEV *MaxBECount;
10654   APInt MinStart =
10655       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
10656 
10657   APInt StrideForMaxBECount =
10658       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
10659 
10660   // We already know that the stride is positive, so we paper over conservatism
10661   // in our range computation by forcing StrideForMaxBECount to be at least one.
10662   // In theory this is unnecessary, but we expect MaxBECount to be a
10663   // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there
10664   // is nothing to constant fold it to).
10665   APInt One(BitWidth, 1, IsSigned);
10666   StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount);
10667 
10668   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
10669                             : APInt::getMaxValue(BitWidth);
10670   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
10671 
10672   // Although End can be a MAX expression we estimate MaxEnd considering only
10673   // the case End = RHS of the loop termination condition. This is safe because
10674   // in the other case (End - Start) is zero, leading to a zero maximum backedge
10675   // taken count.
10676   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
10677                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
10678 
10679   MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */,
10680                               getConstant(StrideForMaxBECount) /* Step */,
10681                               false /* Equality */);
10682 
10683   return MaxBECount;
10684 }
10685 
10686 ScalarEvolution::ExitLimit
10687 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
10688                                   const Loop *L, bool IsSigned,
10689                                   bool ControlsExit, bool AllowPredicates) {
10690   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10691 
10692   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10693   bool PredicatedIV = false;
10694 
10695   if (!IV && AllowPredicates) {
10696     // Try to make this an AddRec using runtime tests, in the first X
10697     // iterations of this loop, where X is the SCEV expression found by the
10698     // algorithm below.
10699     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10700     PredicatedIV = true;
10701   }
10702 
10703   // Avoid weird loops
10704   if (!IV || IV->getLoop() != L || !IV->isAffine())
10705     return getCouldNotCompute();
10706 
10707   bool NoWrap = ControlsExit &&
10708                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10709 
10710   const SCEV *Stride = IV->getStepRecurrence(*this);
10711 
10712   bool PositiveStride = isKnownPositive(Stride);
10713 
10714   // Avoid negative or zero stride values.
10715   if (!PositiveStride) {
10716     // We can compute the correct backedge taken count for loops with unknown
10717     // strides if we can prove that the loop is not an infinite loop with side
10718     // effects. Here's the loop structure we are trying to handle -
10719     //
10720     // i = start
10721     // do {
10722     //   A[i] = i;
10723     //   i += s;
10724     // } while (i < end);
10725     //
10726     // The backedge taken count for such loops is evaluated as -
10727     // (max(end, start + stride) - start - 1) /u stride
10728     //
10729     // The additional preconditions that we need to check to prove correctness
10730     // of the above formula is as follows -
10731     //
10732     // a) IV is either nuw or nsw depending upon signedness (indicated by the
10733     //    NoWrap flag).
10734     // b) loop is single exit with no side effects.
10735     //
10736     //
10737     // Precondition a) implies that if the stride is negative, this is a single
10738     // trip loop. The backedge taken count formula reduces to zero in this case.
10739     //
10740     // Precondition b) implies that the unknown stride cannot be zero otherwise
10741     // we have UB.
10742     //
10743     // The positive stride case is the same as isKnownPositive(Stride) returning
10744     // true (original behavior of the function).
10745     //
10746     // We want to make sure that the stride is truly unknown as there are edge
10747     // cases where ScalarEvolution propagates no wrap flags to the
10748     // post-increment/decrement IV even though the increment/decrement operation
10749     // itself is wrapping. The computed backedge taken count may be wrong in
10750     // such cases. This is prevented by checking that the stride is not known to
10751     // be either positive or non-positive. For example, no wrap flags are
10752     // propagated to the post-increment IV of this loop with a trip count of 2 -
10753     //
10754     // unsigned char i;
10755     // for(i=127; i<128; i+=129)
10756     //   A[i] = i;
10757     //
10758     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
10759         !loopHasNoSideEffects(L))
10760       return getCouldNotCompute();
10761   } else if (!Stride->isOne() &&
10762              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
10763     // Avoid proven overflow cases: this will ensure that the backedge taken
10764     // count will not generate any unsigned overflow. Relaxed no-overflow
10765     // conditions exploit NoWrapFlags, allowing to optimize in presence of
10766     // undefined behaviors like the case of C language.
10767     return getCouldNotCompute();
10768 
10769   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
10770                                       : ICmpInst::ICMP_ULT;
10771   const SCEV *Start = IV->getStart();
10772   const SCEV *End = RHS;
10773   // When the RHS is not invariant, we do not know the end bound of the loop and
10774   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
10775   // calculate the MaxBECount, given the start, stride and max value for the end
10776   // bound of the loop (RHS), and the fact that IV does not overflow (which is
10777   // checked above).
10778   if (!isLoopInvariant(RHS, L)) {
10779     const SCEV *MaxBECount = computeMaxBECountForLT(
10780         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10781     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
10782                      false /*MaxOrZero*/, Predicates);
10783   }
10784   // If the backedge is taken at least once, then it will be taken
10785   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
10786   // is the LHS value of the less-than comparison the first time it is evaluated
10787   // and End is the RHS.
10788   const SCEV *BECountIfBackedgeTaken =
10789     computeBECount(getMinusSCEV(End, Start), Stride, false);
10790   // If the loop entry is guarded by the result of the backedge test of the
10791   // first loop iteration, then we know the backedge will be taken at least
10792   // once and so the backedge taken count is as above. If not then we use the
10793   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
10794   // as if the backedge is taken at least once max(End,Start) is End and so the
10795   // result is as above, and if not max(End,Start) is Start so we get a backedge
10796   // count of zero.
10797   const SCEV *BECount;
10798   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
10799     BECount = BECountIfBackedgeTaken;
10800   else {
10801     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
10802     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
10803   }
10804 
10805   const SCEV *MaxBECount;
10806   bool MaxOrZero = false;
10807   if (isa<SCEVConstant>(BECount))
10808     MaxBECount = BECount;
10809   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
10810     // If we know exactly how many times the backedge will be taken if it's
10811     // taken at least once, then the backedge count will either be that or
10812     // zero.
10813     MaxBECount = BECountIfBackedgeTaken;
10814     MaxOrZero = true;
10815   } else {
10816     MaxBECount = computeMaxBECountForLT(
10817         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
10818   }
10819 
10820   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
10821       !isa<SCEVCouldNotCompute>(BECount))
10822     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
10823 
10824   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
10825 }
10826 
10827 ScalarEvolution::ExitLimit
10828 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
10829                                      const Loop *L, bool IsSigned,
10830                                      bool ControlsExit, bool AllowPredicates) {
10831   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
10832   // We handle only IV > Invariant
10833   if (!isLoopInvariant(RHS, L))
10834     return getCouldNotCompute();
10835 
10836   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
10837   if (!IV && AllowPredicates)
10838     // Try to make this an AddRec using runtime tests, in the first X
10839     // iterations of this loop, where X is the SCEV expression found by the
10840     // algorithm below.
10841     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
10842 
10843   // Avoid weird loops
10844   if (!IV || IV->getLoop() != L || !IV->isAffine())
10845     return getCouldNotCompute();
10846 
10847   bool NoWrap = ControlsExit &&
10848                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
10849 
10850   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
10851 
10852   // Avoid negative or zero stride values
10853   if (!isKnownPositive(Stride))
10854     return getCouldNotCompute();
10855 
10856   // Avoid proven overflow cases: this will ensure that the backedge taken count
10857   // will not generate any unsigned overflow. Relaxed no-overflow conditions
10858   // exploit NoWrapFlags, allowing to optimize in presence of undefined
10859   // behaviors like the case of C language.
10860   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
10861     return getCouldNotCompute();
10862 
10863   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
10864                                       : ICmpInst::ICMP_UGT;
10865 
10866   const SCEV *Start = IV->getStart();
10867   const SCEV *End = RHS;
10868   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
10869     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
10870 
10871   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
10872 
10873   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
10874                             : getUnsignedRangeMax(Start);
10875 
10876   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
10877                              : getUnsignedRangeMin(Stride);
10878 
10879   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
10880   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
10881                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
10882 
10883   // Although End can be a MIN expression we estimate MinEnd considering only
10884   // the case End = RHS. This is safe because in the other case (Start - End)
10885   // is zero, leading to a zero maximum backedge taken count.
10886   APInt MinEnd =
10887     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
10888              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
10889 
10890   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
10891                                ? BECount
10892                                : computeBECount(getConstant(MaxStart - MinEnd),
10893                                                 getConstant(MinStride), false);
10894 
10895   if (isa<SCEVCouldNotCompute>(MaxBECount))
10896     MaxBECount = BECount;
10897 
10898   return ExitLimit(BECount, MaxBECount, false, Predicates);
10899 }
10900 
10901 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
10902                                                     ScalarEvolution &SE) const {
10903   if (Range.isFullSet())  // Infinite loop.
10904     return SE.getCouldNotCompute();
10905 
10906   // If the start is a non-zero constant, shift the range to simplify things.
10907   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
10908     if (!SC->getValue()->isZero()) {
10909       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
10910       Operands[0] = SE.getZero(SC->getType());
10911       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
10912                                              getNoWrapFlags(FlagNW));
10913       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
10914         return ShiftedAddRec->getNumIterationsInRange(
10915             Range.subtract(SC->getAPInt()), SE);
10916       // This is strange and shouldn't happen.
10917       return SE.getCouldNotCompute();
10918     }
10919 
10920   // The only time we can solve this is when we have all constant indices.
10921   // Otherwise, we cannot determine the overflow conditions.
10922   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
10923     return SE.getCouldNotCompute();
10924 
10925   // Okay at this point we know that all elements of the chrec are constants and
10926   // that the start element is zero.
10927 
10928   // First check to see if the range contains zero.  If not, the first
10929   // iteration exits.
10930   unsigned BitWidth = SE.getTypeSizeInBits(getType());
10931   if (!Range.contains(APInt(BitWidth, 0)))
10932     return SE.getZero(getType());
10933 
10934   if (isAffine()) {
10935     // If this is an affine expression then we have this situation:
10936     //   Solve {0,+,A} in Range  ===  Ax in Range
10937 
10938     // We know that zero is in the range.  If A is positive then we know that
10939     // the upper value of the range must be the first possible exit value.
10940     // If A is negative then the lower of the range is the last possible loop
10941     // value.  Also note that we already checked for a full range.
10942     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
10943     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
10944 
10945     // The exit value should be (End+A)/A.
10946     APInt ExitVal = (End + A).udiv(A);
10947     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
10948 
10949     // Evaluate at the exit value.  If we really did fall out of the valid
10950     // range, then we computed our trip count, otherwise wrap around or other
10951     // things must have happened.
10952     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
10953     if (Range.contains(Val->getValue()))
10954       return SE.getCouldNotCompute();  // Something strange happened
10955 
10956     // Ensure that the previous value is in the range.  This is a sanity check.
10957     assert(Range.contains(
10958            EvaluateConstantChrecAtConstant(this,
10959            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
10960            "Linear scev computation is off in a bad way!");
10961     return SE.getConstant(ExitValue);
10962   }
10963 
10964   if (isQuadratic()) {
10965     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
10966       return SE.getConstant(S.getValue());
10967   }
10968 
10969   return SE.getCouldNotCompute();
10970 }
10971 
10972 const SCEVAddRecExpr *
10973 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
10974   assert(getNumOperands() > 1 && "AddRec with zero step?");
10975   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
10976   // but in this case we cannot guarantee that the value returned will be an
10977   // AddRec because SCEV does not have a fixed point where it stops
10978   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
10979   // may happen if we reach arithmetic depth limit while simplifying. So we
10980   // construct the returned value explicitly.
10981   SmallVector<const SCEV *, 3> Ops;
10982   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
10983   // (this + Step) is {A+B,+,B+C,+...,+,N}.
10984   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
10985     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
10986   // We know that the last operand is not a constant zero (otherwise it would
10987   // have been popped out earlier). This guarantees us that if the result has
10988   // the same last operand, then it will also not be popped out, meaning that
10989   // the returned value will be an AddRec.
10990   const SCEV *Last = getOperand(getNumOperands() - 1);
10991   assert(!Last->isZero() && "Recurrency with zero step?");
10992   Ops.push_back(Last);
10993   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
10994                                                SCEV::FlagAnyWrap));
10995 }
10996 
10997 // Return true when S contains at least an undef value.
10998 static inline bool containsUndefs(const SCEV *S) {
10999   return SCEVExprContains(S, [](const SCEV *S) {
11000     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
11001       return isa<UndefValue>(SU->getValue());
11002     return false;
11003   });
11004 }
11005 
11006 namespace {
11007 
11008 // Collect all steps of SCEV expressions.
11009 struct SCEVCollectStrides {
11010   ScalarEvolution &SE;
11011   SmallVectorImpl<const SCEV *> &Strides;
11012 
11013   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
11014       : SE(SE), Strides(S) {}
11015 
11016   bool follow(const SCEV *S) {
11017     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
11018       Strides.push_back(AR->getStepRecurrence(SE));
11019     return true;
11020   }
11021 
11022   bool isDone() const { return false; }
11023 };
11024 
11025 // Collect all SCEVUnknown and SCEVMulExpr expressions.
11026 struct SCEVCollectTerms {
11027   SmallVectorImpl<const SCEV *> &Terms;
11028 
11029   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {}
11030 
11031   bool follow(const SCEV *S) {
11032     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
11033         isa<SCEVSignExtendExpr>(S)) {
11034       if (!containsUndefs(S))
11035         Terms.push_back(S);
11036 
11037       // Stop recursion: once we collected a term, do not walk its operands.
11038       return false;
11039     }
11040 
11041     // Keep looking.
11042     return true;
11043   }
11044 
11045   bool isDone() const { return false; }
11046 };
11047 
11048 // Check if a SCEV contains an AddRecExpr.
11049 struct SCEVHasAddRec {
11050   bool &ContainsAddRec;
11051 
11052   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
11053     ContainsAddRec = false;
11054   }
11055 
11056   bool follow(const SCEV *S) {
11057     if (isa<SCEVAddRecExpr>(S)) {
11058       ContainsAddRec = true;
11059 
11060       // Stop recursion: once we collected a term, do not walk its operands.
11061       return false;
11062     }
11063 
11064     // Keep looking.
11065     return true;
11066   }
11067 
11068   bool isDone() const { return false; }
11069 };
11070 
11071 // Find factors that are multiplied with an expression that (possibly as a
11072 // subexpression) contains an AddRecExpr. In the expression:
11073 //
11074 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
11075 //
11076 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
11077 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
11078 // parameters as they form a product with an induction variable.
11079 //
11080 // This collector expects all array size parameters to be in the same MulExpr.
11081 // It might be necessary to later add support for collecting parameters that are
11082 // spread over different nested MulExpr.
11083 struct SCEVCollectAddRecMultiplies {
11084   SmallVectorImpl<const SCEV *> &Terms;
11085   ScalarEvolution &SE;
11086 
11087   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
11088       : Terms(T), SE(SE) {}
11089 
11090   bool follow(const SCEV *S) {
11091     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
11092       bool HasAddRec = false;
11093       SmallVector<const SCEV *, 0> Operands;
11094       for (auto Op : Mul->operands()) {
11095         const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op);
11096         if (Unknown && !isa<CallInst>(Unknown->getValue())) {
11097           Operands.push_back(Op);
11098         } else if (Unknown) {
11099           HasAddRec = true;
11100         } else {
11101           bool ContainsAddRec = false;
11102           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
11103           visitAll(Op, ContiansAddRec);
11104           HasAddRec |= ContainsAddRec;
11105         }
11106       }
11107       if (Operands.size() == 0)
11108         return true;
11109 
11110       if (!HasAddRec)
11111         return false;
11112 
11113       Terms.push_back(SE.getMulExpr(Operands));
11114       // Stop recursion: once we collected a term, do not walk its operands.
11115       return false;
11116     }
11117 
11118     // Keep looking.
11119     return true;
11120   }
11121 
11122   bool isDone() const { return false; }
11123 };
11124 
11125 } // end anonymous namespace
11126 
11127 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
11128 /// two places:
11129 ///   1) The strides of AddRec expressions.
11130 ///   2) Unknowns that are multiplied with AddRec expressions.
11131 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
11132     SmallVectorImpl<const SCEV *> &Terms) {
11133   SmallVector<const SCEV *, 4> Strides;
11134   SCEVCollectStrides StrideCollector(*this, Strides);
11135   visitAll(Expr, StrideCollector);
11136 
11137   LLVM_DEBUG({
11138     dbgs() << "Strides:\n";
11139     for (const SCEV *S : Strides)
11140       dbgs() << *S << "\n";
11141   });
11142 
11143   for (const SCEV *S : Strides) {
11144     SCEVCollectTerms TermCollector(Terms);
11145     visitAll(S, TermCollector);
11146   }
11147 
11148   LLVM_DEBUG({
11149     dbgs() << "Terms:\n";
11150     for (const SCEV *T : Terms)
11151       dbgs() << *T << "\n";
11152   });
11153 
11154   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
11155   visitAll(Expr, MulCollector);
11156 }
11157 
11158 static bool findArrayDimensionsRec(ScalarEvolution &SE,
11159                                    SmallVectorImpl<const SCEV *> &Terms,
11160                                    SmallVectorImpl<const SCEV *> &Sizes) {
11161   int Last = Terms.size() - 1;
11162   const SCEV *Step = Terms[Last];
11163 
11164   // End of recursion.
11165   if (Last == 0) {
11166     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
11167       SmallVector<const SCEV *, 2> Qs;
11168       for (const SCEV *Op : M->operands())
11169         if (!isa<SCEVConstant>(Op))
11170           Qs.push_back(Op);
11171 
11172       Step = SE.getMulExpr(Qs);
11173     }
11174 
11175     Sizes.push_back(Step);
11176     return true;
11177   }
11178 
11179   for (const SCEV *&Term : Terms) {
11180     // Normalize the terms before the next call to findArrayDimensionsRec.
11181     const SCEV *Q, *R;
11182     SCEVDivision::divide(SE, Term, Step, &Q, &R);
11183 
11184     // Bail out when GCD does not evenly divide one of the terms.
11185     if (!R->isZero())
11186       return false;
11187 
11188     Term = Q;
11189   }
11190 
11191   // Remove all SCEVConstants.
11192   Terms.erase(
11193       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
11194       Terms.end());
11195 
11196   if (Terms.size() > 0)
11197     if (!findArrayDimensionsRec(SE, Terms, Sizes))
11198       return false;
11199 
11200   Sizes.push_back(Step);
11201   return true;
11202 }
11203 
11204 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
11205 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
11206   for (const SCEV *T : Terms)
11207     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
11208       return true;
11209   return false;
11210 }
11211 
11212 // Return the number of product terms in S.
11213 static inline int numberOfTerms(const SCEV *S) {
11214   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
11215     return Expr->getNumOperands();
11216   return 1;
11217 }
11218 
11219 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
11220   if (isa<SCEVConstant>(T))
11221     return nullptr;
11222 
11223   if (isa<SCEVUnknown>(T))
11224     return T;
11225 
11226   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
11227     SmallVector<const SCEV *, 2> Factors;
11228     for (const SCEV *Op : M->operands())
11229       if (!isa<SCEVConstant>(Op))
11230         Factors.push_back(Op);
11231 
11232     return SE.getMulExpr(Factors);
11233   }
11234 
11235   return T;
11236 }
11237 
11238 /// Return the size of an element read or written by Inst.
11239 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
11240   Type *Ty;
11241   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
11242     Ty = Store->getValueOperand()->getType();
11243   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
11244     Ty = Load->getType();
11245   else
11246     return nullptr;
11247 
11248   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
11249   return getSizeOfExpr(ETy, Ty);
11250 }
11251 
11252 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
11253                                           SmallVectorImpl<const SCEV *> &Sizes,
11254                                           const SCEV *ElementSize) {
11255   if (Terms.size() < 1 || !ElementSize)
11256     return;
11257 
11258   // Early return when Terms do not contain parameters: we do not delinearize
11259   // non parametric SCEVs.
11260   if (!containsParameters(Terms))
11261     return;
11262 
11263   LLVM_DEBUG({
11264     dbgs() << "Terms:\n";
11265     for (const SCEV *T : Terms)
11266       dbgs() << *T << "\n";
11267   });
11268 
11269   // Remove duplicates.
11270   array_pod_sort(Terms.begin(), Terms.end());
11271   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
11272 
11273   // Put larger terms first.
11274   llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) {
11275     return numberOfTerms(LHS) > numberOfTerms(RHS);
11276   });
11277 
11278   // Try to divide all terms by the element size. If term is not divisible by
11279   // element size, proceed with the original term.
11280   for (const SCEV *&Term : Terms) {
11281     const SCEV *Q, *R;
11282     SCEVDivision::divide(*this, Term, ElementSize, &Q, &R);
11283     if (!Q->isZero())
11284       Term = Q;
11285   }
11286 
11287   SmallVector<const SCEV *, 4> NewTerms;
11288 
11289   // Remove constant factors.
11290   for (const SCEV *T : Terms)
11291     if (const SCEV *NewT = removeConstantFactors(*this, T))
11292       NewTerms.push_back(NewT);
11293 
11294   LLVM_DEBUG({
11295     dbgs() << "Terms after sorting:\n";
11296     for (const SCEV *T : NewTerms)
11297       dbgs() << *T << "\n";
11298   });
11299 
11300   if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) {
11301     Sizes.clear();
11302     return;
11303   }
11304 
11305   // The last element to be pushed into Sizes is the size of an element.
11306   Sizes.push_back(ElementSize);
11307 
11308   LLVM_DEBUG({
11309     dbgs() << "Sizes:\n";
11310     for (const SCEV *S : Sizes)
11311       dbgs() << *S << "\n";
11312   });
11313 }
11314 
11315 void ScalarEvolution::computeAccessFunctions(
11316     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
11317     SmallVectorImpl<const SCEV *> &Sizes) {
11318   // Early exit in case this SCEV is not an affine multivariate function.
11319   if (Sizes.empty())
11320     return;
11321 
11322   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
11323     if (!AR->isAffine())
11324       return;
11325 
11326   const SCEV *Res = Expr;
11327   int Last = Sizes.size() - 1;
11328   for (int i = Last; i >= 0; i--) {
11329     const SCEV *Q, *R;
11330     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
11331 
11332     LLVM_DEBUG({
11333       dbgs() << "Res: " << *Res << "\n";
11334       dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
11335       dbgs() << "Res divided by Sizes[i]:\n";
11336       dbgs() << "Quotient: " << *Q << "\n";
11337       dbgs() << "Remainder: " << *R << "\n";
11338     });
11339 
11340     Res = Q;
11341 
11342     // Do not record the last subscript corresponding to the size of elements in
11343     // the array.
11344     if (i == Last) {
11345 
11346       // Bail out if the remainder is too complex.
11347       if (isa<SCEVAddRecExpr>(R)) {
11348         Subscripts.clear();
11349         Sizes.clear();
11350         return;
11351       }
11352 
11353       continue;
11354     }
11355 
11356     // Record the access function for the current subscript.
11357     Subscripts.push_back(R);
11358   }
11359 
11360   // Also push in last position the remainder of the last division: it will be
11361   // the access function of the innermost dimension.
11362   Subscripts.push_back(Res);
11363 
11364   std::reverse(Subscripts.begin(), Subscripts.end());
11365 
11366   LLVM_DEBUG({
11367     dbgs() << "Subscripts:\n";
11368     for (const SCEV *S : Subscripts)
11369       dbgs() << *S << "\n";
11370   });
11371 }
11372 
11373 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
11374 /// sizes of an array access. Returns the remainder of the delinearization that
11375 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
11376 /// the multiples of SCEV coefficients: that is a pattern matching of sub
11377 /// expressions in the stride and base of a SCEV corresponding to the
11378 /// computation of a GCD (greatest common divisor) of base and stride.  When
11379 /// SCEV->delinearize fails, it returns the SCEV unchanged.
11380 ///
11381 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
11382 ///
11383 ///  void foo(long n, long m, long o, double A[n][m][o]) {
11384 ///
11385 ///    for (long i = 0; i < n; i++)
11386 ///      for (long j = 0; j < m; j++)
11387 ///        for (long k = 0; k < o; k++)
11388 ///          A[i][j][k] = 1.0;
11389 ///  }
11390 ///
11391 /// the delinearization input is the following AddRec SCEV:
11392 ///
11393 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
11394 ///
11395 /// From this SCEV, we are able to say that the base offset of the access is %A
11396 /// because it appears as an offset that does not divide any of the strides in
11397 /// the loops:
11398 ///
11399 ///  CHECK: Base offset: %A
11400 ///
11401 /// and then SCEV->delinearize determines the size of some of the dimensions of
11402 /// the array as these are the multiples by which the strides are happening:
11403 ///
11404 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
11405 ///
11406 /// Note that the outermost dimension remains of UnknownSize because there are
11407 /// no strides that would help identifying the size of the last dimension: when
11408 /// the array has been statically allocated, one could compute the size of that
11409 /// dimension by dividing the overall size of the array by the size of the known
11410 /// dimensions: %m * %o * 8.
11411 ///
11412 /// Finally delinearize provides the access functions for the array reference
11413 /// that does correspond to A[i][j][k] of the above C testcase:
11414 ///
11415 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
11416 ///
11417 /// The testcases are checking the output of a function pass:
11418 /// DelinearizationPass that walks through all loads and stores of a function
11419 /// asking for the SCEV of the memory access with respect to all enclosing
11420 /// loops, calling SCEV->delinearize on that and printing the results.
11421 void ScalarEvolution::delinearize(const SCEV *Expr,
11422                                  SmallVectorImpl<const SCEV *> &Subscripts,
11423                                  SmallVectorImpl<const SCEV *> &Sizes,
11424                                  const SCEV *ElementSize) {
11425   // First step: collect parametric terms.
11426   SmallVector<const SCEV *, 4> Terms;
11427   collectParametricTerms(Expr, Terms);
11428 
11429   if (Terms.empty())
11430     return;
11431 
11432   // Second step: find subscript sizes.
11433   findArrayDimensions(Terms, Sizes, ElementSize);
11434 
11435   if (Sizes.empty())
11436     return;
11437 
11438   // Third step: compute the access functions for each subscript.
11439   computeAccessFunctions(Expr, Subscripts, Sizes);
11440 
11441   if (Subscripts.empty())
11442     return;
11443 
11444   LLVM_DEBUG({
11445     dbgs() << "succeeded to delinearize " << *Expr << "\n";
11446     dbgs() << "ArrayDecl[UnknownSize]";
11447     for (const SCEV *S : Sizes)
11448       dbgs() << "[" << *S << "]";
11449 
11450     dbgs() << "\nArrayRef";
11451     for (const SCEV *S : Subscripts)
11452       dbgs() << "[" << *S << "]";
11453     dbgs() << "\n";
11454   });
11455 }
11456 
11457 bool ScalarEvolution::getIndexExpressionsFromGEP(
11458     const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts,
11459     SmallVectorImpl<int> &Sizes) {
11460   assert(Subscripts.empty() && Sizes.empty() &&
11461          "Expected output lists to be empty on entry to this function.");
11462   assert(GEP && "getIndexExpressionsFromGEP called with a null GEP");
11463   Type *Ty = GEP->getPointerOperandType();
11464   bool DroppedFirstDim = false;
11465   for (unsigned i = 1; i < GEP->getNumOperands(); i++) {
11466     const SCEV *Expr = getSCEV(GEP->getOperand(i));
11467     if (i == 1) {
11468       if (auto *PtrTy = dyn_cast<PointerType>(Ty)) {
11469         Ty = PtrTy->getElementType();
11470       } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) {
11471         Ty = ArrayTy->getElementType();
11472       } else {
11473         Subscripts.clear();
11474         Sizes.clear();
11475         return false;
11476       }
11477       if (auto *Const = dyn_cast<SCEVConstant>(Expr))
11478         if (Const->getValue()->isZero()) {
11479           DroppedFirstDim = true;
11480           continue;
11481         }
11482       Subscripts.push_back(Expr);
11483       continue;
11484     }
11485 
11486     auto *ArrayTy = dyn_cast<ArrayType>(Ty);
11487     if (!ArrayTy) {
11488       Subscripts.clear();
11489       Sizes.clear();
11490       return false;
11491     }
11492 
11493     Subscripts.push_back(Expr);
11494     if (!(DroppedFirstDim && i == 2))
11495       Sizes.push_back(ArrayTy->getNumElements());
11496 
11497     Ty = ArrayTy->getElementType();
11498   }
11499   return !Subscripts.empty();
11500 }
11501 
11502 //===----------------------------------------------------------------------===//
11503 //                   SCEVCallbackVH Class Implementation
11504 //===----------------------------------------------------------------------===//
11505 
11506 void ScalarEvolution::SCEVCallbackVH::deleted() {
11507   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11508   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
11509     SE->ConstantEvolutionLoopExitValue.erase(PN);
11510   SE->eraseValueFromMap(getValPtr());
11511   // this now dangles!
11512 }
11513 
11514 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
11515   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
11516 
11517   // Forget all the expressions associated with users of the old value,
11518   // so that future queries will recompute the expressions using the new
11519   // value.
11520   Value *Old = getValPtr();
11521   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
11522   SmallPtrSet<User *, 8> Visited;
11523   while (!Worklist.empty()) {
11524     User *U = Worklist.pop_back_val();
11525     // Deleting the Old value will cause this to dangle. Postpone
11526     // that until everything else is done.
11527     if (U == Old)
11528       continue;
11529     if (!Visited.insert(U).second)
11530       continue;
11531     if (PHINode *PN = dyn_cast<PHINode>(U))
11532       SE->ConstantEvolutionLoopExitValue.erase(PN);
11533     SE->eraseValueFromMap(U);
11534     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
11535   }
11536   // Delete the Old value.
11537   if (PHINode *PN = dyn_cast<PHINode>(Old))
11538     SE->ConstantEvolutionLoopExitValue.erase(PN);
11539   SE->eraseValueFromMap(Old);
11540   // this now dangles!
11541 }
11542 
11543 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
11544   : CallbackVH(V), SE(se) {}
11545 
11546 //===----------------------------------------------------------------------===//
11547 //                   ScalarEvolution Class Implementation
11548 //===----------------------------------------------------------------------===//
11549 
11550 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
11551                                  AssumptionCache &AC, DominatorTree &DT,
11552                                  LoopInfo &LI)
11553     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
11554       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
11555       LoopDispositions(64), BlockDispositions(64) {
11556   // To use guards for proving predicates, we need to scan every instruction in
11557   // relevant basic blocks, and not just terminators.  Doing this is a waste of
11558   // time if the IR does not actually contain any calls to
11559   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
11560   //
11561   // This pessimizes the case where a pass that preserves ScalarEvolution wants
11562   // to _add_ guards to the module when there weren't any before, and wants
11563   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
11564   // efficient in lieu of being smart in that rather obscure case.
11565 
11566   auto *GuardDecl = F.getParent()->getFunction(
11567       Intrinsic::getName(Intrinsic::experimental_guard));
11568   HasGuards = GuardDecl && !GuardDecl->use_empty();
11569 }
11570 
11571 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
11572     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
11573       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
11574       ValueExprMap(std::move(Arg.ValueExprMap)),
11575       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
11576       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
11577       PendingMerges(std::move(Arg.PendingMerges)),
11578       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
11579       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
11580       PredicatedBackedgeTakenCounts(
11581           std::move(Arg.PredicatedBackedgeTakenCounts)),
11582       ConstantEvolutionLoopExitValue(
11583           std::move(Arg.ConstantEvolutionLoopExitValue)),
11584       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
11585       LoopDispositions(std::move(Arg.LoopDispositions)),
11586       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
11587       BlockDispositions(std::move(Arg.BlockDispositions)),
11588       UnsignedRanges(std::move(Arg.UnsignedRanges)),
11589       SignedRanges(std::move(Arg.SignedRanges)),
11590       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
11591       UniquePreds(std::move(Arg.UniquePreds)),
11592       SCEVAllocator(std::move(Arg.SCEVAllocator)),
11593       LoopUsers(std::move(Arg.LoopUsers)),
11594       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
11595       FirstUnknown(Arg.FirstUnknown) {
11596   Arg.FirstUnknown = nullptr;
11597 }
11598 
11599 ScalarEvolution::~ScalarEvolution() {
11600   // Iterate through all the SCEVUnknown instances and call their
11601   // destructors, so that they release their references to their values.
11602   for (SCEVUnknown *U = FirstUnknown; U;) {
11603     SCEVUnknown *Tmp = U;
11604     U = U->Next;
11605     Tmp->~SCEVUnknown();
11606   }
11607   FirstUnknown = nullptr;
11608 
11609   ExprValueMap.clear();
11610   ValueExprMap.clear();
11611   HasRecMap.clear();
11612 
11613   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
11614   // that a loop had multiple computable exits.
11615   for (auto &BTCI : BackedgeTakenCounts)
11616     BTCI.second.clear();
11617   for (auto &BTCI : PredicatedBackedgeTakenCounts)
11618     BTCI.second.clear();
11619 
11620   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
11621   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
11622   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
11623   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
11624   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
11625 }
11626 
11627 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
11628   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
11629 }
11630 
11631 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
11632                           const Loop *L) {
11633   // Print all inner loops first
11634   for (Loop *I : *L)
11635     PrintLoopInfo(OS, SE, I);
11636 
11637   OS << "Loop ";
11638   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11639   OS << ": ";
11640 
11641   SmallVector<BasicBlock *, 8> ExitingBlocks;
11642   L->getExitingBlocks(ExitingBlocks);
11643   if (ExitingBlocks.size() != 1)
11644     OS << "<multiple exits> ";
11645 
11646   if (SE->hasLoopInvariantBackedgeTakenCount(L))
11647     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
11648   else
11649     OS << "Unpredictable backedge-taken count.\n";
11650 
11651   if (ExitingBlocks.size() > 1)
11652     for (BasicBlock *ExitingBlock : ExitingBlocks) {
11653       OS << "  exit count for " << ExitingBlock->getName() << ": "
11654          << *SE->getExitCount(L, ExitingBlock) << "\n";
11655     }
11656 
11657   OS << "Loop ";
11658   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11659   OS << ": ";
11660 
11661   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
11662     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
11663     if (SE->isBackedgeTakenCountMaxOrZero(L))
11664       OS << ", actual taken count either this or zero.";
11665   } else {
11666     OS << "Unpredictable max backedge-taken count. ";
11667   }
11668 
11669   OS << "\n"
11670         "Loop ";
11671   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11672   OS << ": ";
11673 
11674   SCEVUnionPredicate Pred;
11675   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
11676   if (!isa<SCEVCouldNotCompute>(PBT)) {
11677     OS << "Predicated backedge-taken count is " << *PBT << "\n";
11678     OS << " Predicates:\n";
11679     Pred.print(OS, 4);
11680   } else {
11681     OS << "Unpredictable predicated backedge-taken count. ";
11682   }
11683   OS << "\n";
11684 
11685   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
11686     OS << "Loop ";
11687     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11688     OS << ": ";
11689     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
11690   }
11691 }
11692 
11693 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
11694   switch (LD) {
11695   case ScalarEvolution::LoopVariant:
11696     return "Variant";
11697   case ScalarEvolution::LoopInvariant:
11698     return "Invariant";
11699   case ScalarEvolution::LoopComputable:
11700     return "Computable";
11701   }
11702   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
11703 }
11704 
11705 void ScalarEvolution::print(raw_ostream &OS) const {
11706   // ScalarEvolution's implementation of the print method is to print
11707   // out SCEV values of all instructions that are interesting. Doing
11708   // this potentially causes it to create new SCEV objects though,
11709   // which technically conflicts with the const qualifier. This isn't
11710   // observable from outside the class though, so casting away the
11711   // const isn't dangerous.
11712   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
11713 
11714   if (ClassifyExpressions) {
11715     OS << "Classifying expressions for: ";
11716     F.printAsOperand(OS, /*PrintType=*/false);
11717     OS << "\n";
11718     for (Instruction &I : instructions(F))
11719       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
11720         OS << I << '\n';
11721         OS << "  -->  ";
11722         const SCEV *SV = SE.getSCEV(&I);
11723         SV->print(OS);
11724         if (!isa<SCEVCouldNotCompute>(SV)) {
11725           OS << " U: ";
11726           SE.getUnsignedRange(SV).print(OS);
11727           OS << " S: ";
11728           SE.getSignedRange(SV).print(OS);
11729         }
11730 
11731         const Loop *L = LI.getLoopFor(I.getParent());
11732 
11733         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
11734         if (AtUse != SV) {
11735           OS << "  -->  ";
11736           AtUse->print(OS);
11737           if (!isa<SCEVCouldNotCompute>(AtUse)) {
11738             OS << " U: ";
11739             SE.getUnsignedRange(AtUse).print(OS);
11740             OS << " S: ";
11741             SE.getSignedRange(AtUse).print(OS);
11742           }
11743         }
11744 
11745         if (L) {
11746           OS << "\t\t" "Exits: ";
11747           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
11748           if (!SE.isLoopInvariant(ExitValue, L)) {
11749             OS << "<<Unknown>>";
11750           } else {
11751             OS << *ExitValue;
11752           }
11753 
11754           bool First = true;
11755           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
11756             if (First) {
11757               OS << "\t\t" "LoopDispositions: { ";
11758               First = false;
11759             } else {
11760               OS << ", ";
11761             }
11762 
11763             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11764             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
11765           }
11766 
11767           for (auto *InnerL : depth_first(L)) {
11768             if (InnerL == L)
11769               continue;
11770             if (First) {
11771               OS << "\t\t" "LoopDispositions: { ";
11772               First = false;
11773             } else {
11774               OS << ", ";
11775             }
11776 
11777             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
11778             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
11779           }
11780 
11781           OS << " }";
11782         }
11783 
11784         OS << "\n";
11785       }
11786   }
11787 
11788   OS << "Determining loop execution counts for: ";
11789   F.printAsOperand(OS, /*PrintType=*/false);
11790   OS << "\n";
11791   for (Loop *I : LI)
11792     PrintLoopInfo(OS, &SE, I);
11793 }
11794 
11795 ScalarEvolution::LoopDisposition
11796 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
11797   auto &Values = LoopDispositions[S];
11798   for (auto &V : Values) {
11799     if (V.getPointer() == L)
11800       return V.getInt();
11801   }
11802   Values.emplace_back(L, LoopVariant);
11803   LoopDisposition D = computeLoopDisposition(S, L);
11804   auto &Values2 = LoopDispositions[S];
11805   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11806     if (V.getPointer() == L) {
11807       V.setInt(D);
11808       break;
11809     }
11810   }
11811   return D;
11812 }
11813 
11814 ScalarEvolution::LoopDisposition
11815 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
11816   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11817   case scConstant:
11818     return LoopInvariant;
11819   case scTruncate:
11820   case scZeroExtend:
11821   case scSignExtend:
11822     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
11823   case scAddRecExpr: {
11824     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11825 
11826     // If L is the addrec's loop, it's computable.
11827     if (AR->getLoop() == L)
11828       return LoopComputable;
11829 
11830     // Add recurrences are never invariant in the function-body (null loop).
11831     if (!L)
11832       return LoopVariant;
11833 
11834     // Everything that is not defined at loop entry is variant.
11835     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
11836       return LoopVariant;
11837     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
11838            " dominate the contained loop's header?");
11839 
11840     // This recurrence is invariant w.r.t. L if AR's loop contains L.
11841     if (AR->getLoop()->contains(L))
11842       return LoopInvariant;
11843 
11844     // This recurrence is variant w.r.t. L if any of its operands
11845     // are variant.
11846     for (auto *Op : AR->operands())
11847       if (!isLoopInvariant(Op, L))
11848         return LoopVariant;
11849 
11850     // Otherwise it's loop-invariant.
11851     return LoopInvariant;
11852   }
11853   case scAddExpr:
11854   case scMulExpr:
11855   case scUMaxExpr:
11856   case scSMaxExpr:
11857   case scUMinExpr:
11858   case scSMinExpr: {
11859     bool HasVarying = false;
11860     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
11861       LoopDisposition D = getLoopDisposition(Op, L);
11862       if (D == LoopVariant)
11863         return LoopVariant;
11864       if (D == LoopComputable)
11865         HasVarying = true;
11866     }
11867     return HasVarying ? LoopComputable : LoopInvariant;
11868   }
11869   case scUDivExpr: {
11870     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11871     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
11872     if (LD == LoopVariant)
11873       return LoopVariant;
11874     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
11875     if (RD == LoopVariant)
11876       return LoopVariant;
11877     return (LD == LoopInvariant && RD == LoopInvariant) ?
11878            LoopInvariant : LoopComputable;
11879   }
11880   case scUnknown:
11881     // All non-instruction values are loop invariant.  All instructions are loop
11882     // invariant if they are not contained in the specified loop.
11883     // Instructions are never considered invariant in the function body
11884     // (null loop) because they are defined within the "loop".
11885     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
11886       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
11887     return LoopInvariant;
11888   case scCouldNotCompute:
11889     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11890   }
11891   llvm_unreachable("Unknown SCEV kind!");
11892 }
11893 
11894 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
11895   return getLoopDisposition(S, L) == LoopInvariant;
11896 }
11897 
11898 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
11899   return getLoopDisposition(S, L) == LoopComputable;
11900 }
11901 
11902 ScalarEvolution::BlockDisposition
11903 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11904   auto &Values = BlockDispositions[S];
11905   for (auto &V : Values) {
11906     if (V.getPointer() == BB)
11907       return V.getInt();
11908   }
11909   Values.emplace_back(BB, DoesNotDominateBlock);
11910   BlockDisposition D = computeBlockDisposition(S, BB);
11911   auto &Values2 = BlockDispositions[S];
11912   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
11913     if (V.getPointer() == BB) {
11914       V.setInt(D);
11915       break;
11916     }
11917   }
11918   return D;
11919 }
11920 
11921 ScalarEvolution::BlockDisposition
11922 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
11923   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
11924   case scConstant:
11925     return ProperlyDominatesBlock;
11926   case scTruncate:
11927   case scZeroExtend:
11928   case scSignExtend:
11929     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
11930   case scAddRecExpr: {
11931     // This uses a "dominates" query instead of "properly dominates" query
11932     // to test for proper dominance too, because the instruction which
11933     // produces the addrec's value is a PHI, and a PHI effectively properly
11934     // dominates its entire containing block.
11935     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
11936     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
11937       return DoesNotDominateBlock;
11938 
11939     // Fall through into SCEVNAryExpr handling.
11940     LLVM_FALLTHROUGH;
11941   }
11942   case scAddExpr:
11943   case scMulExpr:
11944   case scUMaxExpr:
11945   case scSMaxExpr:
11946   case scUMinExpr:
11947   case scSMinExpr: {
11948     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
11949     bool Proper = true;
11950     for (const SCEV *NAryOp : NAry->operands()) {
11951       BlockDisposition D = getBlockDisposition(NAryOp, BB);
11952       if (D == DoesNotDominateBlock)
11953         return DoesNotDominateBlock;
11954       if (D == DominatesBlock)
11955         Proper = false;
11956     }
11957     return Proper ? ProperlyDominatesBlock : DominatesBlock;
11958   }
11959   case scUDivExpr: {
11960     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
11961     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
11962     BlockDisposition LD = getBlockDisposition(LHS, BB);
11963     if (LD == DoesNotDominateBlock)
11964       return DoesNotDominateBlock;
11965     BlockDisposition RD = getBlockDisposition(RHS, BB);
11966     if (RD == DoesNotDominateBlock)
11967       return DoesNotDominateBlock;
11968     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
11969       ProperlyDominatesBlock : DominatesBlock;
11970   }
11971   case scUnknown:
11972     if (Instruction *I =
11973           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
11974       if (I->getParent() == BB)
11975         return DominatesBlock;
11976       if (DT.properlyDominates(I->getParent(), BB))
11977         return ProperlyDominatesBlock;
11978       return DoesNotDominateBlock;
11979     }
11980     return ProperlyDominatesBlock;
11981   case scCouldNotCompute:
11982     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
11983   }
11984   llvm_unreachable("Unknown SCEV kind!");
11985 }
11986 
11987 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
11988   return getBlockDisposition(S, BB) >= DominatesBlock;
11989 }
11990 
11991 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
11992   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
11993 }
11994 
11995 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
11996   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
11997 }
11998 
11999 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const {
12000   auto IsS = [&](const SCEV *X) { return S == X; };
12001   auto ContainsS = [&](const SCEV *X) {
12002     return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS);
12003   };
12004   return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken);
12005 }
12006 
12007 void
12008 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12009   ValuesAtScopes.erase(S);
12010   LoopDispositions.erase(S);
12011   BlockDispositions.erase(S);
12012   UnsignedRanges.erase(S);
12013   SignedRanges.erase(S);
12014   ExprValueMap.erase(S);
12015   HasRecMap.erase(S);
12016   MinTrailingZerosCache.erase(S);
12017 
12018   for (auto I = PredicatedSCEVRewrites.begin();
12019        I != PredicatedSCEVRewrites.end();) {
12020     std::pair<const SCEV *, const Loop *> Entry = I->first;
12021     if (Entry.first == S)
12022       PredicatedSCEVRewrites.erase(I++);
12023     else
12024       ++I;
12025   }
12026 
12027   auto RemoveSCEVFromBackedgeMap =
12028       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12029         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12030           BackedgeTakenInfo &BEInfo = I->second;
12031           if (BEInfo.hasOperand(S, this)) {
12032             BEInfo.clear();
12033             Map.erase(I++);
12034           } else
12035             ++I;
12036         }
12037       };
12038 
12039   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12040   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12041 }
12042 
12043 void
12044 ScalarEvolution::getUsedLoops(const SCEV *S,
12045                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12046   struct FindUsedLoops {
12047     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12048         : LoopsUsed(LoopsUsed) {}
12049     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12050     bool follow(const SCEV *S) {
12051       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12052         LoopsUsed.insert(AR->getLoop());
12053       return true;
12054     }
12055 
12056     bool isDone() const { return false; }
12057   };
12058 
12059   FindUsedLoops F(LoopsUsed);
12060   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12061 }
12062 
12063 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12064   SmallPtrSet<const Loop *, 8> LoopsUsed;
12065   getUsedLoops(S, LoopsUsed);
12066   for (auto *L : LoopsUsed)
12067     LoopUsers[L].push_back(S);
12068 }
12069 
12070 void ScalarEvolution::verify() const {
12071   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12072   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12073 
12074   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12075 
12076   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12077   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12078     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12079 
12080     const SCEV *visitConstant(const SCEVConstant *Constant) {
12081       return SE.getConstant(Constant->getAPInt());
12082     }
12083 
12084     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12085       return SE.getUnknown(Expr->getValue());
12086     }
12087 
12088     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12089       return SE.getCouldNotCompute();
12090     }
12091   };
12092 
12093   SCEVMapper SCM(SE2);
12094 
12095   while (!LoopStack.empty()) {
12096     auto *L = LoopStack.pop_back_val();
12097     LoopStack.insert(LoopStack.end(), L->begin(), L->end());
12098 
12099     auto *CurBECount = SCM.visit(
12100         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12101     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12102 
12103     if (CurBECount == SE2.getCouldNotCompute() ||
12104         NewBECount == SE2.getCouldNotCompute()) {
12105       // NB! This situation is legal, but is very suspicious -- whatever pass
12106       // change the loop to make a trip count go from could not compute to
12107       // computable or vice-versa *should have* invalidated SCEV.  However, we
12108       // choose not to assert here (for now) since we don't want false
12109       // positives.
12110       continue;
12111     }
12112 
12113     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12114       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12115       // not propagate undef aggressively).  This means we can (and do) fail
12116       // verification in cases where a transform makes the trip count of a loop
12117       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12118       // both cases the loop iterates "undef" times, but SCEV thinks we
12119       // increased the trip count of the loop by 1 incorrectly.
12120       continue;
12121     }
12122 
12123     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12124         SE.getTypeSizeInBits(NewBECount->getType()))
12125       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12126     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12127              SE.getTypeSizeInBits(NewBECount->getType()))
12128       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12129 
12130     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12131 
12132     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12133     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12134       dbgs() << "Trip Count for " << *L << " Changed!\n";
12135       dbgs() << "Old: " << *CurBECount << "\n";
12136       dbgs() << "New: " << *NewBECount << "\n";
12137       dbgs() << "Delta: " << *Delta << "\n";
12138       std::abort();
12139     }
12140   }
12141 }
12142 
12143 bool ScalarEvolution::invalidate(
12144     Function &F, const PreservedAnalyses &PA,
12145     FunctionAnalysisManager::Invalidator &Inv) {
12146   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12147   // of its dependencies is invalidated.
12148   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12149   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12150          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12151          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12152          Inv.invalidate<LoopAnalysis>(F, PA);
12153 }
12154 
12155 AnalysisKey ScalarEvolutionAnalysis::Key;
12156 
12157 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12158                                              FunctionAnalysisManager &AM) {
12159   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12160                          AM.getResult<AssumptionAnalysis>(F),
12161                          AM.getResult<DominatorTreeAnalysis>(F),
12162                          AM.getResult<LoopAnalysis>(F));
12163 }
12164 
12165 PreservedAnalyses
12166 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12167   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12168   return PreservedAnalyses::all();
12169 }
12170 
12171 PreservedAnalyses
12172 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12173   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12174   return PreservedAnalyses::all();
12175 }
12176 
12177 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12178                       "Scalar Evolution Analysis", false, true)
12179 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12180 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12181 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12182 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12183 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12184                     "Scalar Evolution Analysis", false, true)
12185 
12186 char ScalarEvolutionWrapperPass::ID = 0;
12187 
12188 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12189   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12190 }
12191 
12192 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12193   SE.reset(new ScalarEvolution(
12194       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12195       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12196       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12197       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12198   return false;
12199 }
12200 
12201 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12202 
12203 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12204   SE->print(OS);
12205 }
12206 
12207 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12208   if (!VerifySCEV)
12209     return;
12210 
12211   SE->verify();
12212 }
12213 
12214 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12215   AU.setPreservesAll();
12216   AU.addRequiredTransitive<AssumptionCacheTracker>();
12217   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12218   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12219   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12220 }
12221 
12222 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12223                                                         const SCEV *RHS) {
12224   FoldingSetNodeID ID;
12225   assert(LHS->getType() == RHS->getType() &&
12226          "Type mismatch between LHS and RHS");
12227   // Unique this node based on the arguments
12228   ID.AddInteger(SCEVPredicate::P_Equal);
12229   ID.AddPointer(LHS);
12230   ID.AddPointer(RHS);
12231   void *IP = nullptr;
12232   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12233     return S;
12234   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12235       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12236   UniquePreds.InsertNode(Eq, IP);
12237   return Eq;
12238 }
12239 
12240 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12241     const SCEVAddRecExpr *AR,
12242     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12243   FoldingSetNodeID ID;
12244   // Unique this node based on the arguments
12245   ID.AddInteger(SCEVPredicate::P_Wrap);
12246   ID.AddPointer(AR);
12247   ID.AddInteger(AddedFlags);
12248   void *IP = nullptr;
12249   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12250     return S;
12251   auto *OF = new (SCEVAllocator)
12252       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12253   UniquePreds.InsertNode(OF, IP);
12254   return OF;
12255 }
12256 
12257 namespace {
12258 
12259 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
12260 public:
12261 
12262   /// Rewrites \p S in the context of a loop L and the SCEV predication
12263   /// infrastructure.
12264   ///
12265   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
12266   /// equivalences present in \p Pred.
12267   ///
12268   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
12269   /// \p NewPreds such that the result will be an AddRecExpr.
12270   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
12271                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12272                              SCEVUnionPredicate *Pred) {
12273     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
12274     return Rewriter.visit(S);
12275   }
12276 
12277   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12278     if (Pred) {
12279       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
12280       for (auto *Pred : ExprPreds)
12281         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
12282           if (IPred->getLHS() == Expr)
12283             return IPred->getRHS();
12284     }
12285     return convertToAddRecWithPreds(Expr);
12286   }
12287 
12288   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
12289     const SCEV *Operand = visit(Expr->getOperand());
12290     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12291     if (AR && AR->getLoop() == L && AR->isAffine()) {
12292       // This couldn't be folded because the operand didn't have the nuw
12293       // flag. Add the nusw flag as an assumption that we could make.
12294       const SCEV *Step = AR->getStepRecurrence(SE);
12295       Type *Ty = Expr->getType();
12296       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
12297         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
12298                                 SE.getSignExtendExpr(Step, Ty), L,
12299                                 AR->getNoWrapFlags());
12300     }
12301     return SE.getZeroExtendExpr(Operand, Expr->getType());
12302   }
12303 
12304   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
12305     const SCEV *Operand = visit(Expr->getOperand());
12306     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
12307     if (AR && AR->getLoop() == L && AR->isAffine()) {
12308       // This couldn't be folded because the operand didn't have the nsw
12309       // flag. Add the nssw flag as an assumption that we could make.
12310       const SCEV *Step = AR->getStepRecurrence(SE);
12311       Type *Ty = Expr->getType();
12312       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
12313         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
12314                                 SE.getSignExtendExpr(Step, Ty), L,
12315                                 AR->getNoWrapFlags());
12316     }
12317     return SE.getSignExtendExpr(Operand, Expr->getType());
12318   }
12319 
12320 private:
12321   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
12322                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
12323                         SCEVUnionPredicate *Pred)
12324       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
12325 
12326   bool addOverflowAssumption(const SCEVPredicate *P) {
12327     if (!NewPreds) {
12328       // Check if we've already made this assumption.
12329       return Pred && Pred->implies(P);
12330     }
12331     NewPreds->insert(P);
12332     return true;
12333   }
12334 
12335   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
12336                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12337     auto *A = SE.getWrapPredicate(AR, AddedFlags);
12338     return addOverflowAssumption(A);
12339   }
12340 
12341   // If \p Expr represents a PHINode, we try to see if it can be represented
12342   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
12343   // to add this predicate as a runtime overflow check, we return the AddRec.
12344   // If \p Expr does not meet these conditions (is not a PHI node, or we
12345   // couldn't create an AddRec for it, or couldn't add the predicate), we just
12346   // return \p Expr.
12347   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
12348     if (!isa<PHINode>(Expr->getValue()))
12349       return Expr;
12350     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
12351     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
12352     if (!PredicatedRewrite)
12353       return Expr;
12354     for (auto *P : PredicatedRewrite->second){
12355       // Wrap predicates from outer loops are not supported.
12356       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
12357         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
12358         if (L != AR->getLoop())
12359           return Expr;
12360       }
12361       if (!addOverflowAssumption(P))
12362         return Expr;
12363     }
12364     return PredicatedRewrite->first;
12365   }
12366 
12367   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
12368   SCEVUnionPredicate *Pred;
12369   const Loop *L;
12370 };
12371 
12372 } // end anonymous namespace
12373 
12374 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
12375                                                    SCEVUnionPredicate &Preds) {
12376   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
12377 }
12378 
12379 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
12380     const SCEV *S, const Loop *L,
12381     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
12382   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
12383   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
12384   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
12385 
12386   if (!AddRec)
12387     return nullptr;
12388 
12389   // Since the transformation was successful, we can now transfer the SCEV
12390   // predicates.
12391   for (auto *P : TransformPreds)
12392     Preds.insert(P);
12393 
12394   return AddRec;
12395 }
12396 
12397 /// SCEV predicates
12398 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
12399                              SCEVPredicateKind Kind)
12400     : FastID(ID), Kind(Kind) {}
12401 
12402 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
12403                                        const SCEV *LHS, const SCEV *RHS)
12404     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
12405   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
12406   assert(LHS != RHS && "LHS and RHS are the same SCEV");
12407 }
12408 
12409 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
12410   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
12411 
12412   if (!Op)
12413     return false;
12414 
12415   return Op->LHS == LHS && Op->RHS == RHS;
12416 }
12417 
12418 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
12419 
12420 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
12421 
12422 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
12423   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
12424 }
12425 
12426 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
12427                                      const SCEVAddRecExpr *AR,
12428                                      IncrementWrapFlags Flags)
12429     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
12430 
12431 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
12432 
12433 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
12434   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
12435 
12436   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
12437 }
12438 
12439 bool SCEVWrapPredicate::isAlwaysTrue() const {
12440   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
12441   IncrementWrapFlags IFlags = Flags;
12442 
12443   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
12444     IFlags = clearFlags(IFlags, IncrementNSSW);
12445 
12446   return IFlags == IncrementAnyWrap;
12447 }
12448 
12449 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
12450   OS.indent(Depth) << *getExpr() << " Added Flags: ";
12451   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
12452     OS << "<nusw>";
12453   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
12454     OS << "<nssw>";
12455   OS << "\n";
12456 }
12457 
12458 SCEVWrapPredicate::IncrementWrapFlags
12459 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
12460                                    ScalarEvolution &SE) {
12461   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
12462   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
12463 
12464   // We can safely transfer the NSW flag as NSSW.
12465   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
12466     ImpliedFlags = IncrementNSSW;
12467 
12468   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
12469     // If the increment is positive, the SCEV NUW flag will also imply the
12470     // WrapPredicate NUSW flag.
12471     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
12472       if (Step->getValue()->getValue().isNonNegative())
12473         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
12474   }
12475 
12476   return ImpliedFlags;
12477 }
12478 
12479 /// Union predicates don't get cached so create a dummy set ID for it.
12480 SCEVUnionPredicate::SCEVUnionPredicate()
12481     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
12482 
12483 bool SCEVUnionPredicate::isAlwaysTrue() const {
12484   return all_of(Preds,
12485                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
12486 }
12487 
12488 ArrayRef<const SCEVPredicate *>
12489 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
12490   auto I = SCEVToPreds.find(Expr);
12491   if (I == SCEVToPreds.end())
12492     return ArrayRef<const SCEVPredicate *>();
12493   return I->second;
12494 }
12495 
12496 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
12497   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
12498     return all_of(Set->Preds,
12499                   [this](const SCEVPredicate *I) { return this->implies(I); });
12500 
12501   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
12502   if (ScevPredsIt == SCEVToPreds.end())
12503     return false;
12504   auto &SCEVPreds = ScevPredsIt->second;
12505 
12506   return any_of(SCEVPreds,
12507                 [N](const SCEVPredicate *I) { return I->implies(N); });
12508 }
12509 
12510 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
12511 
12512 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
12513   for (auto Pred : Preds)
12514     Pred->print(OS, Depth);
12515 }
12516 
12517 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
12518   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
12519     for (auto Pred : Set->Preds)
12520       add(Pred);
12521     return;
12522   }
12523 
12524   if (implies(N))
12525     return;
12526 
12527   const SCEV *Key = N->getExpr();
12528   assert(Key && "Only SCEVUnionPredicate doesn't have an "
12529                 " associated expression!");
12530 
12531   SCEVToPreds[Key].push_back(N);
12532   Preds.push_back(N);
12533 }
12534 
12535 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
12536                                                      Loop &L)
12537     : SE(SE), L(L) {}
12538 
12539 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
12540   const SCEV *Expr = SE.getSCEV(V);
12541   RewriteEntry &Entry = RewriteMap[Expr];
12542 
12543   // If we already have an entry and the version matches, return it.
12544   if (Entry.second && Generation == Entry.first)
12545     return Entry.second;
12546 
12547   // We found an entry but it's stale. Rewrite the stale entry
12548   // according to the current predicate.
12549   if (Entry.second)
12550     Expr = Entry.second;
12551 
12552   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
12553   Entry = {Generation, NewSCEV};
12554 
12555   return NewSCEV;
12556 }
12557 
12558 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
12559   if (!BackedgeCount) {
12560     SCEVUnionPredicate BackedgePred;
12561     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
12562     addPredicate(BackedgePred);
12563   }
12564   return BackedgeCount;
12565 }
12566 
12567 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
12568   if (Preds.implies(&Pred))
12569     return;
12570   Preds.add(&Pred);
12571   updateGeneration();
12572 }
12573 
12574 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
12575   return Preds;
12576 }
12577 
12578 void PredicatedScalarEvolution::updateGeneration() {
12579   // If the generation number wrapped recompute everything.
12580   if (++Generation == 0) {
12581     for (auto &II : RewriteMap) {
12582       const SCEV *Rewritten = II.second.second;
12583       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
12584     }
12585   }
12586 }
12587 
12588 void PredicatedScalarEvolution::setNoOverflow(
12589     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12590   const SCEV *Expr = getSCEV(V);
12591   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12592 
12593   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
12594 
12595   // Clear the statically implied flags.
12596   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
12597   addPredicate(*SE.getWrapPredicate(AR, Flags));
12598 
12599   auto II = FlagsMap.insert({V, Flags});
12600   if (!II.second)
12601     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
12602 }
12603 
12604 bool PredicatedScalarEvolution::hasNoOverflow(
12605     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
12606   const SCEV *Expr = getSCEV(V);
12607   const auto *AR = cast<SCEVAddRecExpr>(Expr);
12608 
12609   Flags = SCEVWrapPredicate::clearFlags(
12610       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
12611 
12612   auto II = FlagsMap.find(V);
12613 
12614   if (II != FlagsMap.end())
12615     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
12616 
12617   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
12618 }
12619 
12620 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
12621   const SCEV *Expr = this->getSCEV(V);
12622   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
12623   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
12624 
12625   if (!New)
12626     return nullptr;
12627 
12628   for (auto *P : NewPreds)
12629     Preds.add(P);
12630 
12631   updateGeneration();
12632   RewriteMap[SE.getSCEV(V)] = {Generation, New};
12633   return New;
12634 }
12635 
12636 PredicatedScalarEvolution::PredicatedScalarEvolution(
12637     const PredicatedScalarEvolution &Init)
12638     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
12639       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
12640   for (auto I : Init.FlagsMap)
12641     FlagsMap.insert(I);
12642 }
12643 
12644 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
12645   // For each block.
12646   for (auto *BB : L.getBlocks())
12647     for (auto &I : *BB) {
12648       if (!SE.isSCEVable(I.getType()))
12649         continue;
12650 
12651       auto *Expr = SE.getSCEV(&I);
12652       auto II = RewriteMap.find(Expr);
12653 
12654       if (II == RewriteMap.end())
12655         continue;
12656 
12657       // Don't print things that are not interesting.
12658       if (II->second.second == Expr)
12659         continue;
12660 
12661       OS.indent(Depth) << "[PSE]" << I << ":\n";
12662       OS.indent(Depth + 2) << *Expr << "\n";
12663       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
12664     }
12665 }
12666 
12667 // Match the mathematical pattern A - (A / B) * B, where A and B can be
12668 // arbitrary expressions.
12669 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
12670 // 4, A / B becomes X / 8).
12671 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
12672                                 const SCEV *&RHS) {
12673   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
12674   if (Add == nullptr || Add->getNumOperands() != 2)
12675     return false;
12676 
12677   const SCEV *A = Add->getOperand(1);
12678   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
12679 
12680   if (Mul == nullptr)
12681     return false;
12682 
12683   const auto MatchURemWithDivisor = [&](const SCEV *B) {
12684     // (SomeExpr + (-(SomeExpr / B) * B)).
12685     if (Expr == getURemExpr(A, B)) {
12686       LHS = A;
12687       RHS = B;
12688       return true;
12689     }
12690     return false;
12691   };
12692 
12693   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
12694   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
12695     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12696            MatchURemWithDivisor(Mul->getOperand(2));
12697 
12698   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
12699   if (Mul->getNumOperands() == 2)
12700     return MatchURemWithDivisor(Mul->getOperand(1)) ||
12701            MatchURemWithDivisor(Mul->getOperand(0)) ||
12702            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
12703            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
12704   return false;
12705 }
12706