1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 case scMulExpr: 390 case scUMaxExpr: 391 case scSMaxExpr: 392 case scUMinExpr: 393 case scSMinExpr: 394 return cast<SCEVNAryExpr>(this)->getType(); 395 case scAddExpr: 396 return cast<SCEVAddExpr>(this)->getType(); 397 case scUDivExpr: 398 return cast<SCEVUDivExpr>(this)->getType(); 399 case scUnknown: 400 return cast<SCEVUnknown>(this)->getType(); 401 case scCouldNotCompute: 402 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 403 } 404 llvm_unreachable("Unknown SCEV kind!"); 405 } 406 407 bool SCEV::isZero() const { 408 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 409 return SC->getValue()->isZero(); 410 return false; 411 } 412 413 bool SCEV::isOne() const { 414 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 415 return SC->getValue()->isOne(); 416 return false; 417 } 418 419 bool SCEV::isAllOnesValue() const { 420 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 421 return SC->getValue()->isMinusOne(); 422 return false; 423 } 424 425 bool SCEV::isNonConstantNegative() const { 426 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 427 if (!Mul) return false; 428 429 // If there is a constant factor, it will be first. 430 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 431 if (!SC) return false; 432 433 // Return true if the value is negative, this matches things like (-42 * V). 434 return SC->getAPInt().isNegative(); 435 } 436 437 SCEVCouldNotCompute::SCEVCouldNotCompute() : 438 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 439 440 bool SCEVCouldNotCompute::classof(const SCEV *S) { 441 return S->getSCEVType() == scCouldNotCompute; 442 } 443 444 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 445 FoldingSetNodeID ID; 446 ID.AddInteger(scConstant); 447 ID.AddPointer(V); 448 void *IP = nullptr; 449 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 450 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 451 UniqueSCEVs.InsertNode(S, IP); 452 return S; 453 } 454 455 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 456 return getConstant(ConstantInt::get(getContext(), Val)); 457 } 458 459 const SCEV * 460 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 461 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 462 return getConstant(ConstantInt::get(ITy, V, isSigned)); 463 } 464 465 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 466 const SCEV *op, Type *ty) 467 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 468 Operands[0] = op; 469 } 470 471 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 472 Type *ITy) 473 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 474 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 475 "Must be a non-bit-width-changing pointer-to-integer cast!"); 476 } 477 478 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 479 SCEVTypes SCEVTy, const SCEV *op, 480 Type *ty) 481 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 482 483 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 484 Type *ty) 485 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 486 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 487 "Cannot truncate non-integer value!"); 488 } 489 490 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 491 const SCEV *op, Type *ty) 492 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 493 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 494 "Cannot zero extend non-integer value!"); 495 } 496 497 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 498 const SCEV *op, Type *ty) 499 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 500 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 501 "Cannot sign extend non-integer value!"); 502 } 503 504 void SCEVUnknown::deleted() { 505 // Clear this SCEVUnknown from various maps. 506 SE->forgetMemoizedResults(this); 507 508 // Remove this SCEVUnknown from the uniquing map. 509 SE->UniqueSCEVs.RemoveNode(this); 510 511 // Release the value. 512 setValPtr(nullptr); 513 } 514 515 void SCEVUnknown::allUsesReplacedWith(Value *New) { 516 // Remove this SCEVUnknown from the uniquing map. 517 SE->UniqueSCEVs.RemoveNode(this); 518 519 // Update this SCEVUnknown to point to the new value. This is needed 520 // because there may still be outstanding SCEVs which still point to 521 // this SCEVUnknown. 522 setValPtr(New); 523 } 524 525 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 526 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 527 if (VCE->getOpcode() == Instruction::PtrToInt) 528 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 529 if (CE->getOpcode() == Instruction::GetElementPtr && 530 CE->getOperand(0)->isNullValue() && 531 CE->getNumOperands() == 2) 532 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 533 if (CI->isOne()) { 534 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 535 ->getElementType(); 536 return true; 537 } 538 539 return false; 540 } 541 542 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 543 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 544 if (VCE->getOpcode() == Instruction::PtrToInt) 545 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 546 if (CE->getOpcode() == Instruction::GetElementPtr && 547 CE->getOperand(0)->isNullValue()) { 548 Type *Ty = 549 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = 576 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 577 // Ignore vector types here so that ScalarEvolutionExpander doesn't 578 // emit getelementptrs that index into vectors. 579 if (Ty->isStructTy() || Ty->isArrayTy()) { 580 CTy = Ty; 581 FieldNo = CE->getOperand(2); 582 return true; 583 } 584 } 585 586 return false; 587 } 588 589 //===----------------------------------------------------------------------===// 590 // SCEV Utilities 591 //===----------------------------------------------------------------------===// 592 593 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 594 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 595 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 596 /// have been previously deemed to be "equally complex" by this routine. It is 597 /// intended to avoid exponential time complexity in cases like: 598 /// 599 /// %a = f(%x, %y) 600 /// %b = f(%a, %a) 601 /// %c = f(%b, %b) 602 /// 603 /// %d = f(%x, %y) 604 /// %e = f(%d, %d) 605 /// %f = f(%e, %e) 606 /// 607 /// CompareValueComplexity(%f, %c) 608 /// 609 /// Since we do not continue running this routine on expression trees once we 610 /// have seen unequal values, there is no need to track them in the cache. 611 static int 612 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 613 const LoopInfo *const LI, Value *LV, Value *RV, 614 unsigned Depth) { 615 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 616 return 0; 617 618 // Order pointer values after integer values. This helps SCEVExpander form 619 // GEPs. 620 bool LIsPointer = LV->getType()->isPointerTy(), 621 RIsPointer = RV->getType()->isPointerTy(); 622 if (LIsPointer != RIsPointer) 623 return (int)LIsPointer - (int)RIsPointer; 624 625 // Compare getValueID values. 626 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 627 if (LID != RID) 628 return (int)LID - (int)RID; 629 630 // Sort arguments by their position. 631 if (const auto *LA = dyn_cast<Argument>(LV)) { 632 const auto *RA = cast<Argument>(RV); 633 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 634 return (int)LArgNo - (int)RArgNo; 635 } 636 637 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 638 const auto *RGV = cast<GlobalValue>(RV); 639 640 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 641 auto LT = GV->getLinkage(); 642 return !(GlobalValue::isPrivateLinkage(LT) || 643 GlobalValue::isInternalLinkage(LT)); 644 }; 645 646 // Use the names to distinguish the two values, but only if the 647 // names are semantically important. 648 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 649 return LGV->getName().compare(RGV->getName()); 650 } 651 652 // For instructions, compare their loop depth, and their operand count. This 653 // is pretty loose. 654 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 655 const auto *RInst = cast<Instruction>(RV); 656 657 // Compare loop depths. 658 const BasicBlock *LParent = LInst->getParent(), 659 *RParent = RInst->getParent(); 660 if (LParent != RParent) { 661 unsigned LDepth = LI->getLoopDepth(LParent), 662 RDepth = LI->getLoopDepth(RParent); 663 if (LDepth != RDepth) 664 return (int)LDepth - (int)RDepth; 665 } 666 667 // Compare the number of operands. 668 unsigned LNumOps = LInst->getNumOperands(), 669 RNumOps = RInst->getNumOperands(); 670 if (LNumOps != RNumOps) 671 return (int)LNumOps - (int)RNumOps; 672 673 for (unsigned Idx : seq(0u, LNumOps)) { 674 int Result = 675 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 676 RInst->getOperand(Idx), Depth + 1); 677 if (Result != 0) 678 return Result; 679 } 680 } 681 682 EqCacheValue.unionSets(LV, RV); 683 return 0; 684 } 685 686 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 687 // than RHS, respectively. A three-way result allows recursive comparisons to be 688 // more efficient. 689 // If the max analysis depth was reached, return None, assuming we do not know 690 // if they are equivalent for sure. 691 static Optional<int> 692 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 693 EquivalenceClasses<const Value *> &EqCacheValue, 694 const LoopInfo *const LI, const SCEV *LHS, 695 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 696 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 697 if (LHS == RHS) 698 return 0; 699 700 // Primarily, sort the SCEVs by their getSCEVType(). 701 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 702 if (LType != RType) 703 return (int)LType - (int)RType; 704 705 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 706 return 0; 707 708 if (Depth > MaxSCEVCompareDepth) 709 return None; 710 711 // Aside from the getSCEVType() ordering, the particular ordering 712 // isn't very important except that it's beneficial to be consistent, 713 // so that (a + b) and (b + a) don't end up as different expressions. 714 switch (LType) { 715 case scUnknown: { 716 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 717 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 718 719 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 720 RU->getValue(), Depth + 1); 721 if (X == 0) 722 EqCacheSCEV.unionSets(LHS, RHS); 723 return X; 724 } 725 726 case scConstant: { 727 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 728 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 729 730 // Compare constant values. 731 const APInt &LA = LC->getAPInt(); 732 const APInt &RA = RC->getAPInt(); 733 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 734 if (LBitWidth != RBitWidth) 735 return (int)LBitWidth - (int)RBitWidth; 736 return LA.ult(RA) ? -1 : 1; 737 } 738 739 case scAddRecExpr: { 740 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 741 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 742 743 // There is always a dominance between two recs that are used by one SCEV, 744 // so we can safely sort recs by loop header dominance. We require such 745 // order in getAddExpr. 746 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 747 if (LLoop != RLoop) { 748 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 749 assert(LHead != RHead && "Two loops share the same header?"); 750 if (DT.dominates(LHead, RHead)) 751 return 1; 752 else 753 assert(DT.dominates(RHead, LHead) && 754 "No dominance between recurrences used by one SCEV?"); 755 return -1; 756 } 757 758 // Addrec complexity grows with operand count. 759 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 760 if (LNumOps != RNumOps) 761 return (int)LNumOps - (int)RNumOps; 762 763 // Lexicographically compare. 764 for (unsigned i = 0; i != LNumOps; ++i) { 765 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 766 LA->getOperand(i), RA->getOperand(i), DT, 767 Depth + 1); 768 if (X != 0) 769 return X; 770 } 771 EqCacheSCEV.unionSets(LHS, RHS); 772 return 0; 773 } 774 775 case scAddExpr: 776 case scMulExpr: 777 case scSMaxExpr: 778 case scUMaxExpr: 779 case scSMinExpr: 780 case scUMinExpr: { 781 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 782 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 783 784 // Lexicographically compare n-ary expressions. 785 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 786 if (LNumOps != RNumOps) 787 return (int)LNumOps - (int)RNumOps; 788 789 for (unsigned i = 0; i != LNumOps; ++i) { 790 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 791 LC->getOperand(i), RC->getOperand(i), DT, 792 Depth + 1); 793 if (X != 0) 794 return X; 795 } 796 EqCacheSCEV.unionSets(LHS, RHS); 797 return 0; 798 } 799 800 case scUDivExpr: { 801 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 802 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 803 804 // Lexicographically compare udiv expressions. 805 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 806 RC->getLHS(), DT, Depth + 1); 807 if (X != 0) 808 return X; 809 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 810 RC->getRHS(), DT, Depth + 1); 811 if (X == 0) 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return X; 814 } 815 816 case scPtrToInt: 817 case scTruncate: 818 case scZeroExtend: 819 case scSignExtend: { 820 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 821 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 822 823 // Compare cast expressions by operand. 824 auto X = 825 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 826 RC->getOperand(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scCouldNotCompute: 833 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 834 } 835 llvm_unreachable("Unknown SCEV kind!"); 836 } 837 838 /// Given a list of SCEV objects, order them by their complexity, and group 839 /// objects of the same complexity together by value. When this routine is 840 /// finished, we know that any duplicates in the vector are consecutive and that 841 /// complexity is monotonically increasing. 842 /// 843 /// Note that we go take special precautions to ensure that we get deterministic 844 /// results from this routine. In other words, we don't want the results of 845 /// this to depend on where the addresses of various SCEV objects happened to 846 /// land in memory. 847 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 848 LoopInfo *LI, DominatorTree &DT) { 849 if (Ops.size() < 2) return; // Noop 850 851 EquivalenceClasses<const SCEV *> EqCacheSCEV; 852 EquivalenceClasses<const Value *> EqCacheValue; 853 854 // Whether LHS has provably less complexity than RHS. 855 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 856 auto Complexity = 857 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 858 return Complexity && *Complexity < 0; 859 }; 860 if (Ops.size() == 2) { 861 // This is the common case, which also happens to be trivially simple. 862 // Special case it. 863 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 864 if (IsLessComplex(RHS, LHS)) 865 std::swap(LHS, RHS); 866 return; 867 } 868 869 // Do the rough sort by complexity. 870 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 871 return IsLessComplex(LHS, RHS); 872 }); 873 874 // Now that we are sorted by complexity, group elements of the same 875 // complexity. Note that this is, at worst, N^2, but the vector is likely to 876 // be extremely short in practice. Note that we take this approach because we 877 // do not want to depend on the addresses of the objects we are grouping. 878 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 879 const SCEV *S = Ops[i]; 880 unsigned Complexity = S->getSCEVType(); 881 882 // If there are any objects of the same complexity and same value as this 883 // one, group them. 884 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 885 if (Ops[j] == S) { // Found a duplicate. 886 // Move it to immediately after i'th element. 887 std::swap(Ops[i+1], Ops[j]); 888 ++i; // no need to rescan it. 889 if (i == e-2) return; // Done! 890 } 891 } 892 } 893 } 894 895 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 896 /// least HugeExprThreshold nodes). 897 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 898 return any_of(Ops, [](const SCEV *S) { 899 return S->getExpressionSize() >= HugeExprThreshold; 900 }); 901 } 902 903 //===----------------------------------------------------------------------===// 904 // Simple SCEV method implementations 905 //===----------------------------------------------------------------------===// 906 907 /// Compute BC(It, K). The result has width W. Assume, K > 0. 908 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 909 ScalarEvolution &SE, 910 Type *ResultTy) { 911 // Handle the simplest case efficiently. 912 if (K == 1) 913 return SE.getTruncateOrZeroExtend(It, ResultTy); 914 915 // We are using the following formula for BC(It, K): 916 // 917 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 918 // 919 // Suppose, W is the bitwidth of the return value. We must be prepared for 920 // overflow. Hence, we must assure that the result of our computation is 921 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 922 // safe in modular arithmetic. 923 // 924 // However, this code doesn't use exactly that formula; the formula it uses 925 // is something like the following, where T is the number of factors of 2 in 926 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 927 // exponentiation: 928 // 929 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 930 // 931 // This formula is trivially equivalent to the previous formula. However, 932 // this formula can be implemented much more efficiently. The trick is that 933 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 934 // arithmetic. To do exact division in modular arithmetic, all we have 935 // to do is multiply by the inverse. Therefore, this step can be done at 936 // width W. 937 // 938 // The next issue is how to safely do the division by 2^T. The way this 939 // is done is by doing the multiplication step at a width of at least W + T 940 // bits. This way, the bottom W+T bits of the product are accurate. Then, 941 // when we perform the division by 2^T (which is equivalent to a right shift 942 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 943 // truncated out after the division by 2^T. 944 // 945 // In comparison to just directly using the first formula, this technique 946 // is much more efficient; using the first formula requires W * K bits, 947 // but this formula less than W + K bits. Also, the first formula requires 948 // a division step, whereas this formula only requires multiplies and shifts. 949 // 950 // It doesn't matter whether the subtraction step is done in the calculation 951 // width or the input iteration count's width; if the subtraction overflows, 952 // the result must be zero anyway. We prefer here to do it in the width of 953 // the induction variable because it helps a lot for certain cases; CodeGen 954 // isn't smart enough to ignore the overflow, which leads to much less 955 // efficient code if the width of the subtraction is wider than the native 956 // register width. 957 // 958 // (It's possible to not widen at all by pulling out factors of 2 before 959 // the multiplication; for example, K=2 can be calculated as 960 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 961 // extra arithmetic, so it's not an obvious win, and it gets 962 // much more complicated for K > 3.) 963 964 // Protection from insane SCEVs; this bound is conservative, 965 // but it probably doesn't matter. 966 if (K > 1000) 967 return SE.getCouldNotCompute(); 968 969 unsigned W = SE.getTypeSizeInBits(ResultTy); 970 971 // Calculate K! / 2^T and T; we divide out the factors of two before 972 // multiplying for calculating K! / 2^T to avoid overflow. 973 // Other overflow doesn't matter because we only care about the bottom 974 // W bits of the result. 975 APInt OddFactorial(W, 1); 976 unsigned T = 1; 977 for (unsigned i = 3; i <= K; ++i) { 978 APInt Mult(W, i); 979 unsigned TwoFactors = Mult.countTrailingZeros(); 980 T += TwoFactors; 981 Mult.lshrInPlace(TwoFactors); 982 OddFactorial *= Mult; 983 } 984 985 // We need at least W + T bits for the multiplication step 986 unsigned CalculationBits = W + T; 987 988 // Calculate 2^T, at width T+W. 989 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 990 991 // Calculate the multiplicative inverse of K! / 2^T; 992 // this multiplication factor will perform the exact division by 993 // K! / 2^T. 994 APInt Mod = APInt::getSignedMinValue(W+1); 995 APInt MultiplyFactor = OddFactorial.zext(W+1); 996 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 997 MultiplyFactor = MultiplyFactor.trunc(W); 998 999 // Calculate the product, at width T+W 1000 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1001 CalculationBits); 1002 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1003 for (unsigned i = 1; i != K; ++i) { 1004 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1005 Dividend = SE.getMulExpr(Dividend, 1006 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1007 } 1008 1009 // Divide by 2^T 1010 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1011 1012 // Truncate the result, and divide by K! / 2^T. 1013 1014 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1015 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1016 } 1017 1018 /// Return the value of this chain of recurrences at the specified iteration 1019 /// number. We can evaluate this recurrence by multiplying each element in the 1020 /// chain by the binomial coefficient corresponding to it. In other words, we 1021 /// can evaluate {A,+,B,+,C,+,D} as: 1022 /// 1023 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1024 /// 1025 /// where BC(It, k) stands for binomial coefficient. 1026 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1027 ScalarEvolution &SE) const { 1028 const SCEV *Result = getStart(); 1029 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 1030 // The computation is correct in the face of overflow provided that the 1031 // multiplication is performed _after_ the evaluation of the binomial 1032 // coefficient. 1033 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 1034 if (isa<SCEVCouldNotCompute>(Coeff)) 1035 return Coeff; 1036 1037 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 1038 } 1039 return Result; 1040 } 1041 1042 //===----------------------------------------------------------------------===// 1043 // SCEV Expression folder implementations 1044 //===----------------------------------------------------------------------===// 1045 1046 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1047 unsigned Depth) { 1048 assert(Depth <= 1 && 1049 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1050 1051 // We could be called with an integer-typed operands during SCEV rewrites. 1052 // Since the operand is an integer already, just perform zext/trunc/self cast. 1053 if (!Op->getType()->isPointerTy()) 1054 return Op; 1055 1056 assert(!getDataLayout().isNonIntegralPointerType(Op->getType()) && 1057 "Source pointer type must be integral for ptrtoint!"); 1058 1059 // What would be an ID for such a SCEV cast expression? 1060 FoldingSetNodeID ID; 1061 ID.AddInteger(scPtrToInt); 1062 ID.AddPointer(Op); 1063 1064 void *IP = nullptr; 1065 1066 // Is there already an expression for such a cast? 1067 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1068 return S; 1069 1070 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1071 1072 // We can only model ptrtoint if SCEV's effective (integer) type 1073 // is sufficiently wide to represent all possible pointer values. 1074 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1075 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1076 return getCouldNotCompute(); 1077 1078 // If not, is this expression something we can't reduce any further? 1079 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1080 // Perform some basic constant folding. If the operand of the ptr2int cast 1081 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1082 // left as-is), but produce a zero constant. 1083 // NOTE: We could handle a more general case, but lack motivational cases. 1084 if (isa<ConstantPointerNull>(U->getValue())) 1085 return getZero(IntPtrTy); 1086 1087 // Create an explicit cast node. 1088 // We can reuse the existing insert position since if we get here, 1089 // we won't have made any changes which would invalidate it. 1090 SCEV *S = new (SCEVAllocator) 1091 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1092 UniqueSCEVs.InsertNode(S, IP); 1093 addToLoopUseLists(S); 1094 return S; 1095 } 1096 1097 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1098 "non-SCEVUnknown's."); 1099 1100 // Otherwise, we've got some expression that is more complex than just a 1101 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1102 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1103 // only, and the expressions must otherwise be integer-typed. 1104 // So sink the cast down to the SCEVUnknown's. 1105 1106 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1107 /// which computes a pointer-typed value, and rewrites the whole expression 1108 /// tree so that *all* the computations are done on integers, and the only 1109 /// pointer-typed operands in the expression are SCEVUnknown. 1110 class SCEVPtrToIntSinkingRewriter 1111 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1112 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1113 1114 public: 1115 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1116 1117 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1118 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1119 return Rewriter.visit(Scev); 1120 } 1121 1122 const SCEV *visit(const SCEV *S) { 1123 Type *STy = S->getType(); 1124 // If the expression is not pointer-typed, just keep it as-is. 1125 if (!STy->isPointerTy()) 1126 return S; 1127 // Else, recursively sink the cast down into it. 1128 return Base::visit(S); 1129 } 1130 1131 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1132 SmallVector<const SCEV *, 2> Operands; 1133 bool Changed = false; 1134 for (auto *Op : Expr->operands()) { 1135 Operands.push_back(visit(Op)); 1136 Changed |= Op != Operands.back(); 1137 } 1138 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1139 } 1140 1141 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1152 assert(Expr->getType()->isPointerTy() && 1153 "Should only reach pointer-typed SCEVUnknown's."); 1154 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1155 } 1156 }; 1157 1158 // And actually perform the cast sinking. 1159 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1160 assert(IntOp->getType()->isIntegerTy() && 1161 "We must have succeeded in sinking the cast, " 1162 "and ending up with an integer-typed expression!"); 1163 return IntOp; 1164 } 1165 1166 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1167 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1168 1169 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1170 if (isa<SCEVCouldNotCompute>(IntOp)) 1171 return IntOp; 1172 1173 return getTruncateOrZeroExtend(IntOp, Ty); 1174 } 1175 1176 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1177 unsigned Depth) { 1178 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1179 "This is not a truncating conversion!"); 1180 assert(isSCEVable(Ty) && 1181 "This is not a conversion to a SCEVable type!"); 1182 Ty = getEffectiveSCEVType(Ty); 1183 1184 FoldingSetNodeID ID; 1185 ID.AddInteger(scTruncate); 1186 ID.AddPointer(Op); 1187 ID.AddPointer(Ty); 1188 void *IP = nullptr; 1189 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1190 1191 // Fold if the operand is constant. 1192 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1193 return getConstant( 1194 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1195 1196 // trunc(trunc(x)) --> trunc(x) 1197 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1198 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1199 1200 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1201 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1202 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1203 1204 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1205 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1206 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1207 1208 if (Depth > MaxCastDepth) { 1209 SCEV *S = 1210 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1211 UniqueSCEVs.InsertNode(S, IP); 1212 addToLoopUseLists(S); 1213 return S; 1214 } 1215 1216 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1217 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1218 // if after transforming we have at most one truncate, not counting truncates 1219 // that replace other casts. 1220 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1221 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1222 SmallVector<const SCEV *, 4> Operands; 1223 unsigned numTruncs = 0; 1224 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1225 ++i) { 1226 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1227 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1228 isa<SCEVTruncateExpr>(S)) 1229 numTruncs++; 1230 Operands.push_back(S); 1231 } 1232 if (numTruncs < 2) { 1233 if (isa<SCEVAddExpr>(Op)) 1234 return getAddExpr(Operands); 1235 else if (isa<SCEVMulExpr>(Op)) 1236 return getMulExpr(Operands); 1237 else 1238 llvm_unreachable("Unexpected SCEV type for Op."); 1239 } 1240 // Although we checked in the beginning that ID is not in the cache, it is 1241 // possible that during recursion and different modification ID was inserted 1242 // into the cache. So if we find it, just return it. 1243 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1244 return S; 1245 } 1246 1247 // If the input value is a chrec scev, truncate the chrec's operands. 1248 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1249 SmallVector<const SCEV *, 4> Operands; 1250 for (const SCEV *Op : AddRec->operands()) 1251 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1252 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1253 } 1254 1255 // Return zero if truncating to known zeros. 1256 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1257 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1258 return getZero(Ty); 1259 1260 // The cast wasn't folded; create an explicit cast node. We can reuse 1261 // the existing insert position since if we get here, we won't have 1262 // made any changes which would invalidate it. 1263 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1264 Op, Ty); 1265 UniqueSCEVs.InsertNode(S, IP); 1266 addToLoopUseLists(S); 1267 return S; 1268 } 1269 1270 // Get the limit of a recurrence such that incrementing by Step cannot cause 1271 // signed overflow as long as the value of the recurrence within the 1272 // loop does not exceed this limit before incrementing. 1273 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1274 ICmpInst::Predicate *Pred, 1275 ScalarEvolution *SE) { 1276 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1277 if (SE->isKnownPositive(Step)) { 1278 *Pred = ICmpInst::ICMP_SLT; 1279 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1280 SE->getSignedRangeMax(Step)); 1281 } 1282 if (SE->isKnownNegative(Step)) { 1283 *Pred = ICmpInst::ICMP_SGT; 1284 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1285 SE->getSignedRangeMin(Step)); 1286 } 1287 return nullptr; 1288 } 1289 1290 // Get the limit of a recurrence such that incrementing by Step cannot cause 1291 // unsigned overflow as long as the value of the recurrence within the loop does 1292 // not exceed this limit before incrementing. 1293 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1294 ICmpInst::Predicate *Pred, 1295 ScalarEvolution *SE) { 1296 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1297 *Pred = ICmpInst::ICMP_ULT; 1298 1299 return SE->getConstant(APInt::getMinValue(BitWidth) - 1300 SE->getUnsignedRangeMax(Step)); 1301 } 1302 1303 namespace { 1304 1305 struct ExtendOpTraitsBase { 1306 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1307 unsigned); 1308 }; 1309 1310 // Used to make code generic over signed and unsigned overflow. 1311 template <typename ExtendOp> struct ExtendOpTraits { 1312 // Members present: 1313 // 1314 // static const SCEV::NoWrapFlags WrapType; 1315 // 1316 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1317 // 1318 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1319 // ICmpInst::Predicate *Pred, 1320 // ScalarEvolution *SE); 1321 }; 1322 1323 template <> 1324 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1325 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1326 1327 static const GetExtendExprTy GetExtendExpr; 1328 1329 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 ICmpInst::Predicate *Pred, 1331 ScalarEvolution *SE) { 1332 return getSignedOverflowLimitForStep(Step, Pred, SE); 1333 } 1334 }; 1335 1336 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1337 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1338 1339 template <> 1340 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1341 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1342 1343 static const GetExtendExprTy GetExtendExpr; 1344 1345 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1346 ICmpInst::Predicate *Pred, 1347 ScalarEvolution *SE) { 1348 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1349 } 1350 }; 1351 1352 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1353 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1354 1355 } // end anonymous namespace 1356 1357 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1358 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1359 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1360 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1361 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1362 // expression "Step + sext/zext(PreIncAR)" is congruent with 1363 // "sext/zext(PostIncAR)" 1364 template <typename ExtendOpTy> 1365 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1366 ScalarEvolution *SE, unsigned Depth) { 1367 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1368 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1369 1370 const Loop *L = AR->getLoop(); 1371 const SCEV *Start = AR->getStart(); 1372 const SCEV *Step = AR->getStepRecurrence(*SE); 1373 1374 // Check for a simple looking step prior to loop entry. 1375 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1376 if (!SA) 1377 return nullptr; 1378 1379 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1380 // subtraction is expensive. For this purpose, perform a quick and dirty 1381 // difference, by checking for Step in the operand list. 1382 SmallVector<const SCEV *, 4> DiffOps; 1383 for (const SCEV *Op : SA->operands()) 1384 if (Op != Step) 1385 DiffOps.push_back(Op); 1386 1387 if (DiffOps.size() == SA->getNumOperands()) 1388 return nullptr; 1389 1390 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1391 // `Step`: 1392 1393 // 1. NSW/NUW flags on the step increment. 1394 auto PreStartFlags = 1395 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1396 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1397 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1398 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1399 1400 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1401 // "S+X does not sign/unsign-overflow". 1402 // 1403 1404 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1405 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1406 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1407 return PreStart; 1408 1409 // 2. Direct overflow check on the step operation's expression. 1410 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1411 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1412 const SCEV *OperandExtendedStart = 1413 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1414 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1415 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1416 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1417 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1418 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1419 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1420 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1421 } 1422 return PreStart; 1423 } 1424 1425 // 3. Loop precondition. 1426 ICmpInst::Predicate Pred; 1427 const SCEV *OverflowLimit = 1428 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1429 1430 if (OverflowLimit && 1431 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1432 return PreStart; 1433 1434 return nullptr; 1435 } 1436 1437 // Get the normalized zero or sign extended expression for this AddRec's Start. 1438 template <typename ExtendOpTy> 1439 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1440 ScalarEvolution *SE, 1441 unsigned Depth) { 1442 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1443 1444 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1445 if (!PreStart) 1446 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1447 1448 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1449 Depth), 1450 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1451 } 1452 1453 // Try to prove away overflow by looking at "nearby" add recurrences. A 1454 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1455 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1456 // 1457 // Formally: 1458 // 1459 // {S,+,X} == {S-T,+,X} + T 1460 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1461 // 1462 // If ({S-T,+,X} + T) does not overflow ... (1) 1463 // 1464 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1465 // 1466 // If {S-T,+,X} does not overflow ... (2) 1467 // 1468 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1469 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1470 // 1471 // If (S-T)+T does not overflow ... (3) 1472 // 1473 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1474 // == {Ext(S),+,Ext(X)} == LHS 1475 // 1476 // Thus, if (1), (2) and (3) are true for some T, then 1477 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1478 // 1479 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1480 // does not overflow" restricted to the 0th iteration. Therefore we only need 1481 // to check for (1) and (2). 1482 // 1483 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1484 // is `Delta` (defined below). 1485 template <typename ExtendOpTy> 1486 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1487 const SCEV *Step, 1488 const Loop *L) { 1489 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1490 1491 // We restrict `Start` to a constant to prevent SCEV from spending too much 1492 // time here. It is correct (but more expensive) to continue with a 1493 // non-constant `Start` and do a general SCEV subtraction to compute 1494 // `PreStart` below. 1495 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1496 if (!StartC) 1497 return false; 1498 1499 APInt StartAI = StartC->getAPInt(); 1500 1501 for (unsigned Delta : {-2, -1, 1, 2}) { 1502 const SCEV *PreStart = getConstant(StartAI - Delta); 1503 1504 FoldingSetNodeID ID; 1505 ID.AddInteger(scAddRecExpr); 1506 ID.AddPointer(PreStart); 1507 ID.AddPointer(Step); 1508 ID.AddPointer(L); 1509 void *IP = nullptr; 1510 const auto *PreAR = 1511 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1512 1513 // Give up if we don't already have the add recurrence we need because 1514 // actually constructing an add recurrence is relatively expensive. 1515 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1516 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1517 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1518 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1519 DeltaS, &Pred, this); 1520 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1521 return true; 1522 } 1523 } 1524 1525 return false; 1526 } 1527 1528 // Finds an integer D for an expression (C + x + y + ...) such that the top 1529 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1530 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1531 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1532 // the (C + x + y + ...) expression is \p WholeAddExpr. 1533 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1534 const SCEVConstant *ConstantTerm, 1535 const SCEVAddExpr *WholeAddExpr) { 1536 const APInt &C = ConstantTerm->getAPInt(); 1537 const unsigned BitWidth = C.getBitWidth(); 1538 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1539 uint32_t TZ = BitWidth; 1540 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1541 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1542 if (TZ) { 1543 // Set D to be as many least significant bits of C as possible while still 1544 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1545 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1546 } 1547 return APInt(BitWidth, 0); 1548 } 1549 1550 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1551 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1552 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1553 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1554 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1555 const APInt &ConstantStart, 1556 const SCEV *Step) { 1557 const unsigned BitWidth = ConstantStart.getBitWidth(); 1558 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1559 if (TZ) 1560 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1561 : ConstantStart; 1562 return APInt(BitWidth, 0); 1563 } 1564 1565 const SCEV * 1566 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1567 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1568 "This is not an extending conversion!"); 1569 assert(isSCEVable(Ty) && 1570 "This is not a conversion to a SCEVable type!"); 1571 Ty = getEffectiveSCEVType(Ty); 1572 1573 // Fold if the operand is constant. 1574 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1575 return getConstant( 1576 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1577 1578 // zext(zext(x)) --> zext(x) 1579 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1580 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1581 1582 // Before doing any expensive analysis, check to see if we've already 1583 // computed a SCEV for this Op and Ty. 1584 FoldingSetNodeID ID; 1585 ID.AddInteger(scZeroExtend); 1586 ID.AddPointer(Op); 1587 ID.AddPointer(Ty); 1588 void *IP = nullptr; 1589 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1590 if (Depth > MaxCastDepth) { 1591 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1592 Op, Ty); 1593 UniqueSCEVs.InsertNode(S, IP); 1594 addToLoopUseLists(S); 1595 return S; 1596 } 1597 1598 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1599 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1600 // It's possible the bits taken off by the truncate were all zero bits. If 1601 // so, we should be able to simplify this further. 1602 const SCEV *X = ST->getOperand(); 1603 ConstantRange CR = getUnsignedRange(X); 1604 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1605 unsigned NewBits = getTypeSizeInBits(Ty); 1606 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1607 CR.zextOrTrunc(NewBits))) 1608 return getTruncateOrZeroExtend(X, Ty, Depth); 1609 } 1610 1611 // If the input value is a chrec scev, and we can prove that the value 1612 // did not overflow the old, smaller, value, we can zero extend all of the 1613 // operands (often constants). This allows analysis of something like 1614 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1615 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1616 if (AR->isAffine()) { 1617 const SCEV *Start = AR->getStart(); 1618 const SCEV *Step = AR->getStepRecurrence(*this); 1619 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1620 const Loop *L = AR->getLoop(); 1621 1622 if (!AR->hasNoUnsignedWrap()) { 1623 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1624 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1625 } 1626 1627 // If we have special knowledge that this addrec won't overflow, 1628 // we don't need to do any further analysis. 1629 if (AR->hasNoUnsignedWrap()) 1630 return getAddRecExpr( 1631 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1632 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1633 1634 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1635 // Note that this serves two purposes: It filters out loops that are 1636 // simply not analyzable, and it covers the case where this code is 1637 // being called from within backedge-taken count analysis, such that 1638 // attempting to ask for the backedge-taken count would likely result 1639 // in infinite recursion. In the later case, the analysis code will 1640 // cope with a conservative value, and it will take care to purge 1641 // that value once it has finished. 1642 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1643 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1644 // Manually compute the final value for AR, checking for overflow. 1645 1646 // Check whether the backedge-taken count can be losslessly casted to 1647 // the addrec's type. The count is always unsigned. 1648 const SCEV *CastedMaxBECount = 1649 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1650 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1651 CastedMaxBECount, MaxBECount->getType(), Depth); 1652 if (MaxBECount == RecastedMaxBECount) { 1653 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1654 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1655 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1656 SCEV::FlagAnyWrap, Depth + 1); 1657 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1658 SCEV::FlagAnyWrap, 1659 Depth + 1), 1660 WideTy, Depth + 1); 1661 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1662 const SCEV *WideMaxBECount = 1663 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1664 const SCEV *OperandExtendedAdd = 1665 getAddExpr(WideStart, 1666 getMulExpr(WideMaxBECount, 1667 getZeroExtendExpr(Step, WideTy, Depth + 1), 1668 SCEV::FlagAnyWrap, Depth + 1), 1669 SCEV::FlagAnyWrap, Depth + 1); 1670 if (ZAdd == OperandExtendedAdd) { 1671 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1672 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1673 // Return the expression with the addrec on the outside. 1674 return getAddRecExpr( 1675 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1676 Depth + 1), 1677 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1678 AR->getNoWrapFlags()); 1679 } 1680 // Similar to above, only this time treat the step value as signed. 1681 // This covers loops that count down. 1682 OperandExtendedAdd = 1683 getAddExpr(WideStart, 1684 getMulExpr(WideMaxBECount, 1685 getSignExtendExpr(Step, WideTy, Depth + 1), 1686 SCEV::FlagAnyWrap, Depth + 1), 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 if (ZAdd == OperandExtendedAdd) { 1689 // Cache knowledge of AR NW, which is propagated to this AddRec. 1690 // Negative step causes unsigned wrap, but it still can't self-wrap. 1691 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1692 // Return the expression with the addrec on the outside. 1693 return getAddRecExpr( 1694 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1695 Depth + 1), 1696 getSignExtendExpr(Step, Ty, Depth + 1), L, 1697 AR->getNoWrapFlags()); 1698 } 1699 } 1700 } 1701 1702 // Normally, in the cases we can prove no-overflow via a 1703 // backedge guarding condition, we can also compute a backedge 1704 // taken count for the loop. The exceptions are assumptions and 1705 // guards present in the loop -- SCEV is not great at exploiting 1706 // these to compute max backedge taken counts, but can still use 1707 // these to prove lack of overflow. Use this fact to avoid 1708 // doing extra work that may not pay off. 1709 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1710 !AC.assumptions().empty()) { 1711 1712 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1713 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1714 if (AR->hasNoUnsignedWrap()) { 1715 // Same as nuw case above - duplicated here to avoid a compile time 1716 // issue. It's not clear that the order of checks does matter, but 1717 // it's one of two issue possible causes for a change which was 1718 // reverted. Be conservative for the moment. 1719 return getAddRecExpr( 1720 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1721 Depth + 1), 1722 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1723 AR->getNoWrapFlags()); 1724 } 1725 1726 // For a negative step, we can extend the operands iff doing so only 1727 // traverses values in the range zext([0,UINT_MAX]). 1728 if (isKnownNegative(Step)) { 1729 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1730 getSignedRangeMin(Step)); 1731 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1732 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1733 // Cache knowledge of AR NW, which is propagated to this 1734 // AddRec. Negative step causes unsigned wrap, but it 1735 // still can't self-wrap. 1736 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1737 // Return the expression with the addrec on the outside. 1738 return getAddRecExpr( 1739 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1740 Depth + 1), 1741 getSignExtendExpr(Step, Ty, Depth + 1), L, 1742 AR->getNoWrapFlags()); 1743 } 1744 } 1745 } 1746 1747 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1748 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1749 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1750 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1751 const APInt &C = SC->getAPInt(); 1752 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1753 if (D != 0) { 1754 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1755 const SCEV *SResidual = 1756 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1757 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1758 return getAddExpr(SZExtD, SZExtR, 1759 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1760 Depth + 1); 1761 } 1762 } 1763 1764 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1765 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1766 return getAddRecExpr( 1767 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1768 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1769 } 1770 } 1771 1772 // zext(A % B) --> zext(A) % zext(B) 1773 { 1774 const SCEV *LHS; 1775 const SCEV *RHS; 1776 if (matchURem(Op, LHS, RHS)) 1777 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1778 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1779 } 1780 1781 // zext(A / B) --> zext(A) / zext(B). 1782 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1783 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1784 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1785 1786 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1787 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1788 if (SA->hasNoUnsignedWrap()) { 1789 // If the addition does not unsign overflow then we can, by definition, 1790 // commute the zero extension with the addition operation. 1791 SmallVector<const SCEV *, 4> Ops; 1792 for (const auto *Op : SA->operands()) 1793 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1794 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1795 } 1796 1797 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1798 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1799 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1800 // 1801 // Often address arithmetics contain expressions like 1802 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1803 // This transformation is useful while proving that such expressions are 1804 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1805 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1806 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1807 if (D != 0) { 1808 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1809 const SCEV *SResidual = 1810 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1811 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1812 return getAddExpr(SZExtD, SZExtR, 1813 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1814 Depth + 1); 1815 } 1816 } 1817 } 1818 1819 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1820 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1821 if (SM->hasNoUnsignedWrap()) { 1822 // If the multiply does not unsign overflow then we can, by definition, 1823 // commute the zero extension with the multiply operation. 1824 SmallVector<const SCEV *, 4> Ops; 1825 for (const auto *Op : SM->operands()) 1826 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1827 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1828 } 1829 1830 // zext(2^K * (trunc X to iN)) to iM -> 1831 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1832 // 1833 // Proof: 1834 // 1835 // zext(2^K * (trunc X to iN)) to iM 1836 // = zext((trunc X to iN) << K) to iM 1837 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1838 // (because shl removes the top K bits) 1839 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1840 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1841 // 1842 if (SM->getNumOperands() == 2) 1843 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1844 if (MulLHS->getAPInt().isPowerOf2()) 1845 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1846 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1847 MulLHS->getAPInt().logBase2(); 1848 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1849 return getMulExpr( 1850 getZeroExtendExpr(MulLHS, Ty), 1851 getZeroExtendExpr( 1852 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1853 SCEV::FlagNUW, Depth + 1); 1854 } 1855 } 1856 1857 // The cast wasn't folded; create an explicit cast node. 1858 // Recompute the insert position, as it may have been invalidated. 1859 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1860 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1861 Op, Ty); 1862 UniqueSCEVs.InsertNode(S, IP); 1863 addToLoopUseLists(S); 1864 return S; 1865 } 1866 1867 const SCEV * 1868 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1869 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1870 "This is not an extending conversion!"); 1871 assert(isSCEVable(Ty) && 1872 "This is not a conversion to a SCEVable type!"); 1873 Ty = getEffectiveSCEVType(Ty); 1874 1875 // Fold if the operand is constant. 1876 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1877 return getConstant( 1878 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1879 1880 // sext(sext(x)) --> sext(x) 1881 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1882 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1883 1884 // sext(zext(x)) --> zext(x) 1885 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1886 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1887 1888 // Before doing any expensive analysis, check to see if we've already 1889 // computed a SCEV for this Op and Ty. 1890 FoldingSetNodeID ID; 1891 ID.AddInteger(scSignExtend); 1892 ID.AddPointer(Op); 1893 ID.AddPointer(Ty); 1894 void *IP = nullptr; 1895 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1896 // Limit recursion depth. 1897 if (Depth > MaxCastDepth) { 1898 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1899 Op, Ty); 1900 UniqueSCEVs.InsertNode(S, IP); 1901 addToLoopUseLists(S); 1902 return S; 1903 } 1904 1905 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1906 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1907 // It's possible the bits taken off by the truncate were all sign bits. If 1908 // so, we should be able to simplify this further. 1909 const SCEV *X = ST->getOperand(); 1910 ConstantRange CR = getSignedRange(X); 1911 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1912 unsigned NewBits = getTypeSizeInBits(Ty); 1913 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1914 CR.sextOrTrunc(NewBits))) 1915 return getTruncateOrSignExtend(X, Ty, Depth); 1916 } 1917 1918 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1919 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1920 if (SA->hasNoSignedWrap()) { 1921 // If the addition does not sign overflow then we can, by definition, 1922 // commute the sign extension with the addition operation. 1923 SmallVector<const SCEV *, 4> Ops; 1924 for (const auto *Op : SA->operands()) 1925 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1926 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1927 } 1928 1929 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1930 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1931 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1932 // 1933 // For instance, this will bring two seemingly different expressions: 1934 // 1 + sext(5 + 20 * %x + 24 * %y) and 1935 // sext(6 + 20 * %x + 24 * %y) 1936 // to the same form: 1937 // 2 + sext(4 + 20 * %x + 24 * %y) 1938 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1939 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1940 if (D != 0) { 1941 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1942 const SCEV *SResidual = 1943 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1944 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1945 return getAddExpr(SSExtD, SSExtR, 1946 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1947 Depth + 1); 1948 } 1949 } 1950 } 1951 // If the input value is a chrec scev, and we can prove that the value 1952 // did not overflow the old, smaller, value, we can sign extend all of the 1953 // operands (often constants). This allows analysis of something like 1954 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1955 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1956 if (AR->isAffine()) { 1957 const SCEV *Start = AR->getStart(); 1958 const SCEV *Step = AR->getStepRecurrence(*this); 1959 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1960 const Loop *L = AR->getLoop(); 1961 1962 if (!AR->hasNoSignedWrap()) { 1963 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1964 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1965 } 1966 1967 // If we have special knowledge that this addrec won't overflow, 1968 // we don't need to do any further analysis. 1969 if (AR->hasNoSignedWrap()) 1970 return getAddRecExpr( 1971 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1972 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1973 1974 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1975 // Note that this serves two purposes: It filters out loops that are 1976 // simply not analyzable, and it covers the case where this code is 1977 // being called from within backedge-taken count analysis, such that 1978 // attempting to ask for the backedge-taken count would likely result 1979 // in infinite recursion. In the later case, the analysis code will 1980 // cope with a conservative value, and it will take care to purge 1981 // that value once it has finished. 1982 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1983 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1984 // Manually compute the final value for AR, checking for 1985 // overflow. 1986 1987 // Check whether the backedge-taken count can be losslessly casted to 1988 // the addrec's type. The count is always unsigned. 1989 const SCEV *CastedMaxBECount = 1990 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1991 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1992 CastedMaxBECount, MaxBECount->getType(), Depth); 1993 if (MaxBECount == RecastedMaxBECount) { 1994 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1995 // Check whether Start+Step*MaxBECount has no signed overflow. 1996 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1997 SCEV::FlagAnyWrap, Depth + 1); 1998 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1999 SCEV::FlagAnyWrap, 2000 Depth + 1), 2001 WideTy, Depth + 1); 2002 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2003 const SCEV *WideMaxBECount = 2004 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2005 const SCEV *OperandExtendedAdd = 2006 getAddExpr(WideStart, 2007 getMulExpr(WideMaxBECount, 2008 getSignExtendExpr(Step, WideTy, Depth + 1), 2009 SCEV::FlagAnyWrap, Depth + 1), 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 if (SAdd == OperandExtendedAdd) { 2012 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2013 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2014 // Return the expression with the addrec on the outside. 2015 return getAddRecExpr( 2016 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2017 Depth + 1), 2018 getSignExtendExpr(Step, Ty, Depth + 1), L, 2019 AR->getNoWrapFlags()); 2020 } 2021 // Similar to above, only this time treat the step value as unsigned. 2022 // This covers loops that count up with an unsigned step. 2023 OperandExtendedAdd = 2024 getAddExpr(WideStart, 2025 getMulExpr(WideMaxBECount, 2026 getZeroExtendExpr(Step, WideTy, Depth + 1), 2027 SCEV::FlagAnyWrap, Depth + 1), 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 if (SAdd == OperandExtendedAdd) { 2030 // If AR wraps around then 2031 // 2032 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2033 // => SAdd != OperandExtendedAdd 2034 // 2035 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2036 // (SAdd == OperandExtendedAdd => AR is NW) 2037 2038 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2039 2040 // Return the expression with the addrec on the outside. 2041 return getAddRecExpr( 2042 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2043 Depth + 1), 2044 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2045 AR->getNoWrapFlags()); 2046 } 2047 } 2048 } 2049 2050 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2052 if (AR->hasNoSignedWrap()) { 2053 // Same as nsw case above - duplicated here to avoid a compile time 2054 // issue. It's not clear that the order of checks does matter, but 2055 // it's one of two issue possible causes for a change which was 2056 // reverted. Be conservative for the moment. 2057 return getAddRecExpr( 2058 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2059 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2060 } 2061 2062 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2063 // if D + (C - D + Step * n) could be proven to not signed wrap 2064 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2065 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2066 const APInt &C = SC->getAPInt(); 2067 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2068 if (D != 0) { 2069 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2070 const SCEV *SResidual = 2071 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2072 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2073 return getAddExpr(SSExtD, SSExtR, 2074 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2075 Depth + 1); 2076 } 2077 } 2078 2079 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2081 return getAddRecExpr( 2082 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2083 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2084 } 2085 } 2086 2087 // If the input value is provably positive and we could not simplify 2088 // away the sext build a zext instead. 2089 if (isKnownNonNegative(Op)) 2090 return getZeroExtendExpr(Op, Ty, Depth + 1); 2091 2092 // The cast wasn't folded; create an explicit cast node. 2093 // Recompute the insert position, as it may have been invalidated. 2094 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2095 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2096 Op, Ty); 2097 UniqueSCEVs.InsertNode(S, IP); 2098 addToLoopUseLists(S); 2099 return S; 2100 } 2101 2102 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2103 /// unspecified bits out to the given type. 2104 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2105 Type *Ty) { 2106 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2107 "This is not an extending conversion!"); 2108 assert(isSCEVable(Ty) && 2109 "This is not a conversion to a SCEVable type!"); 2110 Ty = getEffectiveSCEVType(Ty); 2111 2112 // Sign-extend negative constants. 2113 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2114 if (SC->getAPInt().isNegative()) 2115 return getSignExtendExpr(Op, Ty); 2116 2117 // Peel off a truncate cast. 2118 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2119 const SCEV *NewOp = T->getOperand(); 2120 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2121 return getAnyExtendExpr(NewOp, Ty); 2122 return getTruncateOrNoop(NewOp, Ty); 2123 } 2124 2125 // Next try a zext cast. If the cast is folded, use it. 2126 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2127 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2128 return ZExt; 2129 2130 // Next try a sext cast. If the cast is folded, use it. 2131 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2132 if (!isa<SCEVSignExtendExpr>(SExt)) 2133 return SExt; 2134 2135 // Force the cast to be folded into the operands of an addrec. 2136 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2137 SmallVector<const SCEV *, 4> Ops; 2138 for (const SCEV *Op : AR->operands()) 2139 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2140 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2141 } 2142 2143 // If the expression is obviously signed, use the sext cast value. 2144 if (isa<SCEVSMaxExpr>(Op)) 2145 return SExt; 2146 2147 // Absent any other information, use the zext cast value. 2148 return ZExt; 2149 } 2150 2151 /// Process the given Ops list, which is a list of operands to be added under 2152 /// the given scale, update the given map. This is a helper function for 2153 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2154 /// that would form an add expression like this: 2155 /// 2156 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2157 /// 2158 /// where A and B are constants, update the map with these values: 2159 /// 2160 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2161 /// 2162 /// and add 13 + A*B*29 to AccumulatedConstant. 2163 /// This will allow getAddRecExpr to produce this: 2164 /// 2165 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2166 /// 2167 /// This form often exposes folding opportunities that are hidden in 2168 /// the original operand list. 2169 /// 2170 /// Return true iff it appears that any interesting folding opportunities 2171 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2172 /// the common case where no interesting opportunities are present, and 2173 /// is also used as a check to avoid infinite recursion. 2174 static bool 2175 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2176 SmallVectorImpl<const SCEV *> &NewOps, 2177 APInt &AccumulatedConstant, 2178 const SCEV *const *Ops, size_t NumOperands, 2179 const APInt &Scale, 2180 ScalarEvolution &SE) { 2181 bool Interesting = false; 2182 2183 // Iterate over the add operands. They are sorted, with constants first. 2184 unsigned i = 0; 2185 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2186 ++i; 2187 // Pull a buried constant out to the outside. 2188 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2189 Interesting = true; 2190 AccumulatedConstant += Scale * C->getAPInt(); 2191 } 2192 2193 // Next comes everything else. We're especially interested in multiplies 2194 // here, but they're in the middle, so just visit the rest with one loop. 2195 for (; i != NumOperands; ++i) { 2196 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2197 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2198 APInt NewScale = 2199 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2200 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2201 // A multiplication of a constant with another add; recurse. 2202 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2203 Interesting |= 2204 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2205 Add->op_begin(), Add->getNumOperands(), 2206 NewScale, SE); 2207 } else { 2208 // A multiplication of a constant with some other value. Update 2209 // the map. 2210 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2211 const SCEV *Key = SE.getMulExpr(MulOps); 2212 auto Pair = M.insert({Key, NewScale}); 2213 if (Pair.second) { 2214 NewOps.push_back(Pair.first->first); 2215 } else { 2216 Pair.first->second += NewScale; 2217 // The map already had an entry for this value, which may indicate 2218 // a folding opportunity. 2219 Interesting = true; 2220 } 2221 } 2222 } else { 2223 // An ordinary operand. Update the map. 2224 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2225 M.insert({Ops[i], Scale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += Scale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } 2236 2237 return Interesting; 2238 } 2239 2240 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2241 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2242 // can't-overflow flags for the operation if possible. 2243 static SCEV::NoWrapFlags 2244 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2245 const ArrayRef<const SCEV *> Ops, 2246 SCEV::NoWrapFlags Flags) { 2247 using namespace std::placeholders; 2248 2249 using OBO = OverflowingBinaryOperator; 2250 2251 bool CanAnalyze = 2252 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2253 (void)CanAnalyze; 2254 assert(CanAnalyze && "don't call from other places!"); 2255 2256 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2257 SCEV::NoWrapFlags SignOrUnsignWrap = 2258 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2259 2260 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2261 auto IsKnownNonNegative = [&](const SCEV *S) { 2262 return SE->isKnownNonNegative(S); 2263 }; 2264 2265 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2266 Flags = 2267 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2268 2269 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2270 2271 if (SignOrUnsignWrap != SignOrUnsignMask && 2272 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2273 isa<SCEVConstant>(Ops[0])) { 2274 2275 auto Opcode = [&] { 2276 switch (Type) { 2277 case scAddExpr: 2278 return Instruction::Add; 2279 case scMulExpr: 2280 return Instruction::Mul; 2281 default: 2282 llvm_unreachable("Unexpected SCEV op."); 2283 } 2284 }(); 2285 2286 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2287 2288 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2289 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2290 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2291 Opcode, C, OBO::NoSignedWrap); 2292 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2293 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2294 } 2295 2296 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2297 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2298 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2299 Opcode, C, OBO::NoUnsignedWrap); 2300 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2301 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2302 } 2303 } 2304 2305 return Flags; 2306 } 2307 2308 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2309 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2310 } 2311 2312 /// Get a canonical add expression, or something simpler if possible. 2313 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2314 SCEV::NoWrapFlags OrigFlags, 2315 unsigned Depth) { 2316 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2317 "only nuw or nsw allowed"); 2318 assert(!Ops.empty() && "Cannot get empty add!"); 2319 if (Ops.size() == 1) return Ops[0]; 2320 #ifndef NDEBUG 2321 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2322 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2323 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2324 "SCEVAddExpr operand types don't match!"); 2325 #endif 2326 2327 // Sort by complexity, this groups all similar expression types together. 2328 GroupByComplexity(Ops, &LI, DT); 2329 2330 // If there are any constants, fold them together. 2331 unsigned Idx = 0; 2332 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2333 ++Idx; 2334 assert(Idx < Ops.size()); 2335 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2336 // We found two constants, fold them together! 2337 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2338 if (Ops.size() == 2) return Ops[0]; 2339 Ops.erase(Ops.begin()+1); // Erase the folded element 2340 LHSC = cast<SCEVConstant>(Ops[0]); 2341 } 2342 2343 // If we are left with a constant zero being added, strip it off. 2344 if (LHSC->getValue()->isZero()) { 2345 Ops.erase(Ops.begin()); 2346 --Idx; 2347 } 2348 2349 if (Ops.size() == 1) return Ops[0]; 2350 } 2351 2352 // Delay expensive flag strengthening until necessary. 2353 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2354 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2355 }; 2356 2357 // Limit recursion calls depth. 2358 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2359 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2360 2361 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2362 // Don't strengthen flags if we have no new information. 2363 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2364 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2365 Add->setNoWrapFlags(ComputeFlags(Ops)); 2366 return S; 2367 } 2368 2369 // Okay, check to see if the same value occurs in the operand list more than 2370 // once. If so, merge them together into an multiply expression. Since we 2371 // sorted the list, these values are required to be adjacent. 2372 Type *Ty = Ops[0]->getType(); 2373 bool FoundMatch = false; 2374 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2375 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2376 // Scan ahead to count how many equal operands there are. 2377 unsigned Count = 2; 2378 while (i+Count != e && Ops[i+Count] == Ops[i]) 2379 ++Count; 2380 // Merge the values into a multiply. 2381 const SCEV *Scale = getConstant(Ty, Count); 2382 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2383 if (Ops.size() == Count) 2384 return Mul; 2385 Ops[i] = Mul; 2386 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2387 --i; e -= Count - 1; 2388 FoundMatch = true; 2389 } 2390 if (FoundMatch) 2391 return getAddExpr(Ops, OrigFlags, Depth + 1); 2392 2393 // Check for truncates. If all the operands are truncated from the same 2394 // type, see if factoring out the truncate would permit the result to be 2395 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2396 // if the contents of the resulting outer trunc fold to something simple. 2397 auto FindTruncSrcType = [&]() -> Type * { 2398 // We're ultimately looking to fold an addrec of truncs and muls of only 2399 // constants and truncs, so if we find any other types of SCEV 2400 // as operands of the addrec then we bail and return nullptr here. 2401 // Otherwise, we return the type of the operand of a trunc that we find. 2402 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2403 return T->getOperand()->getType(); 2404 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2405 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2406 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2407 return T->getOperand()->getType(); 2408 } 2409 return nullptr; 2410 }; 2411 if (auto *SrcType = FindTruncSrcType()) { 2412 SmallVector<const SCEV *, 8> LargeOps; 2413 bool Ok = true; 2414 // Check all the operands to see if they can be represented in the 2415 // source type of the truncate. 2416 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2417 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2418 if (T->getOperand()->getType() != SrcType) { 2419 Ok = false; 2420 break; 2421 } 2422 LargeOps.push_back(T->getOperand()); 2423 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2424 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2425 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2426 SmallVector<const SCEV *, 8> LargeMulOps; 2427 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2428 if (const SCEVTruncateExpr *T = 2429 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2430 if (T->getOperand()->getType() != SrcType) { 2431 Ok = false; 2432 break; 2433 } 2434 LargeMulOps.push_back(T->getOperand()); 2435 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2436 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2437 } else { 2438 Ok = false; 2439 break; 2440 } 2441 } 2442 if (Ok) 2443 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2444 } else { 2445 Ok = false; 2446 break; 2447 } 2448 } 2449 if (Ok) { 2450 // Evaluate the expression in the larger type. 2451 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2452 // If it folds to something simple, use it. Otherwise, don't. 2453 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2454 return getTruncateExpr(Fold, Ty); 2455 } 2456 } 2457 2458 // Skip past any other cast SCEVs. 2459 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2460 ++Idx; 2461 2462 // If there are add operands they would be next. 2463 if (Idx < Ops.size()) { 2464 bool DeletedAdd = false; 2465 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2466 if (Ops.size() > AddOpsInlineThreshold || 2467 Add->getNumOperands() > AddOpsInlineThreshold) 2468 break; 2469 // If we have an add, expand the add operands onto the end of the operands 2470 // list. 2471 Ops.erase(Ops.begin()+Idx); 2472 Ops.append(Add->op_begin(), Add->op_end()); 2473 DeletedAdd = true; 2474 } 2475 2476 // If we deleted at least one add, we added operands to the end of the list, 2477 // and they are not necessarily sorted. Recurse to resort and resimplify 2478 // any operands we just acquired. 2479 if (DeletedAdd) 2480 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2481 } 2482 2483 // Skip over the add expression until we get to a multiply. 2484 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2485 ++Idx; 2486 2487 // Check to see if there are any folding opportunities present with 2488 // operands multiplied by constant values. 2489 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2490 uint64_t BitWidth = getTypeSizeInBits(Ty); 2491 DenseMap<const SCEV *, APInt> M; 2492 SmallVector<const SCEV *, 8> NewOps; 2493 APInt AccumulatedConstant(BitWidth, 0); 2494 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2495 Ops.data(), Ops.size(), 2496 APInt(BitWidth, 1), *this)) { 2497 struct APIntCompare { 2498 bool operator()(const APInt &LHS, const APInt &RHS) const { 2499 return LHS.ult(RHS); 2500 } 2501 }; 2502 2503 // Some interesting folding opportunity is present, so its worthwhile to 2504 // re-generate the operands list. Group the operands by constant scale, 2505 // to avoid multiplying by the same constant scale multiple times. 2506 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2507 for (const SCEV *NewOp : NewOps) 2508 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2509 // Re-generate the operands list. 2510 Ops.clear(); 2511 if (AccumulatedConstant != 0) 2512 Ops.push_back(getConstant(AccumulatedConstant)); 2513 for (auto &MulOp : MulOpLists) 2514 if (MulOp.first != 0) 2515 Ops.push_back(getMulExpr( 2516 getConstant(MulOp.first), 2517 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2518 SCEV::FlagAnyWrap, Depth + 1)); 2519 if (Ops.empty()) 2520 return getZero(Ty); 2521 if (Ops.size() == 1) 2522 return Ops[0]; 2523 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2524 } 2525 } 2526 2527 // If we are adding something to a multiply expression, make sure the 2528 // something is not already an operand of the multiply. If so, merge it into 2529 // the multiply. 2530 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2531 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2532 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2533 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2534 if (isa<SCEVConstant>(MulOpSCEV)) 2535 continue; 2536 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2537 if (MulOpSCEV == Ops[AddOp]) { 2538 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2539 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2540 if (Mul->getNumOperands() != 2) { 2541 // If the multiply has more than two operands, we must get the 2542 // Y*Z term. 2543 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2544 Mul->op_begin()+MulOp); 2545 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2546 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2547 } 2548 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2549 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2550 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2551 SCEV::FlagAnyWrap, Depth + 1); 2552 if (Ops.size() == 2) return OuterMul; 2553 if (AddOp < Idx) { 2554 Ops.erase(Ops.begin()+AddOp); 2555 Ops.erase(Ops.begin()+Idx-1); 2556 } else { 2557 Ops.erase(Ops.begin()+Idx); 2558 Ops.erase(Ops.begin()+AddOp-1); 2559 } 2560 Ops.push_back(OuterMul); 2561 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2562 } 2563 2564 // Check this multiply against other multiplies being added together. 2565 for (unsigned OtherMulIdx = Idx+1; 2566 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2567 ++OtherMulIdx) { 2568 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2569 // If MulOp occurs in OtherMul, we can fold the two multiplies 2570 // together. 2571 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2572 OMulOp != e; ++OMulOp) 2573 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2574 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2575 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2576 if (Mul->getNumOperands() != 2) { 2577 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2578 Mul->op_begin()+MulOp); 2579 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2580 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2581 } 2582 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2583 if (OtherMul->getNumOperands() != 2) { 2584 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2585 OtherMul->op_begin()+OMulOp); 2586 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2587 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2588 } 2589 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2590 const SCEV *InnerMulSum = 2591 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2592 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2593 SCEV::FlagAnyWrap, Depth + 1); 2594 if (Ops.size() == 2) return OuterMul; 2595 Ops.erase(Ops.begin()+Idx); 2596 Ops.erase(Ops.begin()+OtherMulIdx-1); 2597 Ops.push_back(OuterMul); 2598 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2599 } 2600 } 2601 } 2602 } 2603 2604 // If there are any add recurrences in the operands list, see if any other 2605 // added values are loop invariant. If so, we can fold them into the 2606 // recurrence. 2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2608 ++Idx; 2609 2610 // Scan over all recurrences, trying to fold loop invariants into them. 2611 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2612 // Scan all of the other operands to this add and add them to the vector if 2613 // they are loop invariant w.r.t. the recurrence. 2614 SmallVector<const SCEV *, 8> LIOps; 2615 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2616 const Loop *AddRecLoop = AddRec->getLoop(); 2617 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2618 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2619 LIOps.push_back(Ops[i]); 2620 Ops.erase(Ops.begin()+i); 2621 --i; --e; 2622 } 2623 2624 // If we found some loop invariants, fold them into the recurrence. 2625 if (!LIOps.empty()) { 2626 // Compute nowrap flags for the addition of the loop-invariant ops and 2627 // the addrec. Temporarily push it as an operand for that purpose. 2628 LIOps.push_back(AddRec); 2629 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2630 LIOps.pop_back(); 2631 2632 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2633 LIOps.push_back(AddRec->getStart()); 2634 2635 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2636 // This follows from the fact that the no-wrap flags on the outer add 2637 // expression are applicable on the 0th iteration, when the add recurrence 2638 // will be equal to its start value. 2639 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2640 2641 // Build the new addrec. Propagate the NUW and NSW flags if both the 2642 // outer add and the inner addrec are guaranteed to have no overflow. 2643 // Always propagate NW. 2644 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2645 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2646 2647 // If all of the other operands were loop invariant, we are done. 2648 if (Ops.size() == 1) return NewRec; 2649 2650 // Otherwise, add the folded AddRec by the non-invariant parts. 2651 for (unsigned i = 0;; ++i) 2652 if (Ops[i] == AddRec) { 2653 Ops[i] = NewRec; 2654 break; 2655 } 2656 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2657 } 2658 2659 // Okay, if there weren't any loop invariants to be folded, check to see if 2660 // there are multiple AddRec's with the same loop induction variable being 2661 // added together. If so, we can fold them. 2662 for (unsigned OtherIdx = Idx+1; 2663 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2664 ++OtherIdx) { 2665 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2666 // so that the 1st found AddRecExpr is dominated by all others. 2667 assert(DT.dominates( 2668 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2669 AddRec->getLoop()->getHeader()) && 2670 "AddRecExprs are not sorted in reverse dominance order?"); 2671 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2672 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2673 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2674 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2675 ++OtherIdx) { 2676 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2677 if (OtherAddRec->getLoop() == AddRecLoop) { 2678 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2679 i != e; ++i) { 2680 if (i >= AddRecOps.size()) { 2681 AddRecOps.append(OtherAddRec->op_begin()+i, 2682 OtherAddRec->op_end()); 2683 break; 2684 } 2685 SmallVector<const SCEV *, 2> TwoOps = { 2686 AddRecOps[i], OtherAddRec->getOperand(i)}; 2687 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2688 } 2689 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2690 } 2691 } 2692 // Step size has changed, so we cannot guarantee no self-wraparound. 2693 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2694 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2695 } 2696 } 2697 2698 // Otherwise couldn't fold anything into this recurrence. Move onto the 2699 // next one. 2700 } 2701 2702 // Okay, it looks like we really DO need an add expr. Check to see if we 2703 // already have one, otherwise create a new one. 2704 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2705 } 2706 2707 const SCEV * 2708 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2709 SCEV::NoWrapFlags Flags) { 2710 FoldingSetNodeID ID; 2711 ID.AddInteger(scAddExpr); 2712 for (const SCEV *Op : Ops) 2713 ID.AddPointer(Op); 2714 void *IP = nullptr; 2715 SCEVAddExpr *S = 2716 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2717 if (!S) { 2718 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2719 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2720 S = new (SCEVAllocator) 2721 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2722 UniqueSCEVs.InsertNode(S, IP); 2723 addToLoopUseLists(S); 2724 } 2725 S->setNoWrapFlags(Flags); 2726 return S; 2727 } 2728 2729 const SCEV * 2730 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2731 const Loop *L, SCEV::NoWrapFlags Flags) { 2732 FoldingSetNodeID ID; 2733 ID.AddInteger(scAddRecExpr); 2734 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2735 ID.AddPointer(Ops[i]); 2736 ID.AddPointer(L); 2737 void *IP = nullptr; 2738 SCEVAddRecExpr *S = 2739 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2740 if (!S) { 2741 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2742 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2743 S = new (SCEVAllocator) 2744 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2745 UniqueSCEVs.InsertNode(S, IP); 2746 addToLoopUseLists(S); 2747 } 2748 setNoWrapFlags(S, Flags); 2749 return S; 2750 } 2751 2752 const SCEV * 2753 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2754 SCEV::NoWrapFlags Flags) { 2755 FoldingSetNodeID ID; 2756 ID.AddInteger(scMulExpr); 2757 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2758 ID.AddPointer(Ops[i]); 2759 void *IP = nullptr; 2760 SCEVMulExpr *S = 2761 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2762 if (!S) { 2763 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2764 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2765 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2766 O, Ops.size()); 2767 UniqueSCEVs.InsertNode(S, IP); 2768 addToLoopUseLists(S); 2769 } 2770 S->setNoWrapFlags(Flags); 2771 return S; 2772 } 2773 2774 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2775 uint64_t k = i*j; 2776 if (j > 1 && k / j != i) Overflow = true; 2777 return k; 2778 } 2779 2780 /// Compute the result of "n choose k", the binomial coefficient. If an 2781 /// intermediate computation overflows, Overflow will be set and the return will 2782 /// be garbage. Overflow is not cleared on absence of overflow. 2783 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2784 // We use the multiplicative formula: 2785 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2786 // At each iteration, we take the n-th term of the numeral and divide by the 2787 // (k-n)th term of the denominator. This division will always produce an 2788 // integral result, and helps reduce the chance of overflow in the 2789 // intermediate computations. However, we can still overflow even when the 2790 // final result would fit. 2791 2792 if (n == 0 || n == k) return 1; 2793 if (k > n) return 0; 2794 2795 if (k > n/2) 2796 k = n-k; 2797 2798 uint64_t r = 1; 2799 for (uint64_t i = 1; i <= k; ++i) { 2800 r = umul_ov(r, n-(i-1), Overflow); 2801 r /= i; 2802 } 2803 return r; 2804 } 2805 2806 /// Determine if any of the operands in this SCEV are a constant or if 2807 /// any of the add or multiply expressions in this SCEV contain a constant. 2808 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2809 struct FindConstantInAddMulChain { 2810 bool FoundConstant = false; 2811 2812 bool follow(const SCEV *S) { 2813 FoundConstant |= isa<SCEVConstant>(S); 2814 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2815 } 2816 2817 bool isDone() const { 2818 return FoundConstant; 2819 } 2820 }; 2821 2822 FindConstantInAddMulChain F; 2823 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2824 ST.visitAll(StartExpr); 2825 return F.FoundConstant; 2826 } 2827 2828 /// Get a canonical multiply expression, or something simpler if possible. 2829 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2830 SCEV::NoWrapFlags OrigFlags, 2831 unsigned Depth) { 2832 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2833 "only nuw or nsw allowed"); 2834 assert(!Ops.empty() && "Cannot get empty mul!"); 2835 if (Ops.size() == 1) return Ops[0]; 2836 #ifndef NDEBUG 2837 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2838 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2839 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2840 "SCEVMulExpr operand types don't match!"); 2841 #endif 2842 2843 // Sort by complexity, this groups all similar expression types together. 2844 GroupByComplexity(Ops, &LI, DT); 2845 2846 // If there are any constants, fold them together. 2847 unsigned Idx = 0; 2848 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2849 ++Idx; 2850 assert(Idx < Ops.size()); 2851 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2852 // We found two constants, fold them together! 2853 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 2854 if (Ops.size() == 2) return Ops[0]; 2855 Ops.erase(Ops.begin()+1); // Erase the folded element 2856 LHSC = cast<SCEVConstant>(Ops[0]); 2857 } 2858 2859 // If we have a multiply of zero, it will always be zero. 2860 if (LHSC->getValue()->isZero()) 2861 return LHSC; 2862 2863 // If we are left with a constant one being multiplied, strip it off. 2864 if (LHSC->getValue()->isOne()) { 2865 Ops.erase(Ops.begin()); 2866 --Idx; 2867 } 2868 2869 if (Ops.size() == 1) 2870 return Ops[0]; 2871 } 2872 2873 // Delay expensive flag strengthening until necessary. 2874 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2875 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 2876 }; 2877 2878 // Limit recursion calls depth. 2879 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2880 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 2881 2882 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2883 // Don't strengthen flags if we have no new information. 2884 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 2885 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 2886 Mul->setNoWrapFlags(ComputeFlags(Ops)); 2887 return S; 2888 } 2889 2890 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2891 if (Ops.size() == 2) { 2892 // C1*(C2+V) -> C1*C2 + C1*V 2893 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2894 // If any of Add's ops are Adds or Muls with a constant, apply this 2895 // transformation as well. 2896 // 2897 // TODO: There are some cases where this transformation is not 2898 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2899 // this transformation should be narrowed down. 2900 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2901 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2902 SCEV::FlagAnyWrap, Depth + 1), 2903 getMulExpr(LHSC, Add->getOperand(1), 2904 SCEV::FlagAnyWrap, Depth + 1), 2905 SCEV::FlagAnyWrap, Depth + 1); 2906 2907 if (Ops[0]->isAllOnesValue()) { 2908 // If we have a mul by -1 of an add, try distributing the -1 among the 2909 // add operands. 2910 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2911 SmallVector<const SCEV *, 4> NewOps; 2912 bool AnyFolded = false; 2913 for (const SCEV *AddOp : Add->operands()) { 2914 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2915 Depth + 1); 2916 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2917 NewOps.push_back(Mul); 2918 } 2919 if (AnyFolded) 2920 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2921 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2922 // Negation preserves a recurrence's no self-wrap property. 2923 SmallVector<const SCEV *, 4> Operands; 2924 for (const SCEV *AddRecOp : AddRec->operands()) 2925 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2926 Depth + 1)); 2927 2928 return getAddRecExpr(Operands, AddRec->getLoop(), 2929 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2930 } 2931 } 2932 } 2933 } 2934 2935 // Skip over the add expression until we get to a multiply. 2936 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2937 ++Idx; 2938 2939 // If there are mul operands inline them all into this expression. 2940 if (Idx < Ops.size()) { 2941 bool DeletedMul = false; 2942 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2943 if (Ops.size() > MulOpsInlineThreshold) 2944 break; 2945 // If we have an mul, expand the mul operands onto the end of the 2946 // operands list. 2947 Ops.erase(Ops.begin()+Idx); 2948 Ops.append(Mul->op_begin(), Mul->op_end()); 2949 DeletedMul = true; 2950 } 2951 2952 // If we deleted at least one mul, we added operands to the end of the 2953 // list, and they are not necessarily sorted. Recurse to resort and 2954 // resimplify any operands we just acquired. 2955 if (DeletedMul) 2956 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2957 } 2958 2959 // If there are any add recurrences in the operands list, see if any other 2960 // added values are loop invariant. If so, we can fold them into the 2961 // recurrence. 2962 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2963 ++Idx; 2964 2965 // Scan over all recurrences, trying to fold loop invariants into them. 2966 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2967 // Scan all of the other operands to this mul and add them to the vector 2968 // if they are loop invariant w.r.t. the recurrence. 2969 SmallVector<const SCEV *, 8> LIOps; 2970 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2971 const Loop *AddRecLoop = AddRec->getLoop(); 2972 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2973 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2974 LIOps.push_back(Ops[i]); 2975 Ops.erase(Ops.begin()+i); 2976 --i; --e; 2977 } 2978 2979 // If we found some loop invariants, fold them into the recurrence. 2980 if (!LIOps.empty()) { 2981 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2982 SmallVector<const SCEV *, 4> NewOps; 2983 NewOps.reserve(AddRec->getNumOperands()); 2984 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2985 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2986 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2987 SCEV::FlagAnyWrap, Depth + 1)); 2988 2989 // Build the new addrec. Propagate the NUW and NSW flags if both the 2990 // outer mul and the inner addrec are guaranteed to have no overflow. 2991 // 2992 // No self-wrap cannot be guaranteed after changing the step size, but 2993 // will be inferred if either NUW or NSW is true. 2994 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 2995 const SCEV *NewRec = getAddRecExpr( 2996 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 2997 2998 // If all of the other operands were loop invariant, we are done. 2999 if (Ops.size() == 1) return NewRec; 3000 3001 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3002 for (unsigned i = 0;; ++i) 3003 if (Ops[i] == AddRec) { 3004 Ops[i] = NewRec; 3005 break; 3006 } 3007 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3008 } 3009 3010 // Okay, if there weren't any loop invariants to be folded, check to see 3011 // if there are multiple AddRec's with the same loop induction variable 3012 // being multiplied together. If so, we can fold them. 3013 3014 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3015 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3016 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3017 // ]]],+,...up to x=2n}. 3018 // Note that the arguments to choose() are always integers with values 3019 // known at compile time, never SCEV objects. 3020 // 3021 // The implementation avoids pointless extra computations when the two 3022 // addrec's are of different length (mathematically, it's equivalent to 3023 // an infinite stream of zeros on the right). 3024 bool OpsModified = false; 3025 for (unsigned OtherIdx = Idx+1; 3026 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3027 ++OtherIdx) { 3028 const SCEVAddRecExpr *OtherAddRec = 3029 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3030 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3031 continue; 3032 3033 // Limit max number of arguments to avoid creation of unreasonably big 3034 // SCEVAddRecs with very complex operands. 3035 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3036 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3037 continue; 3038 3039 bool Overflow = false; 3040 Type *Ty = AddRec->getType(); 3041 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3042 SmallVector<const SCEV*, 7> AddRecOps; 3043 for (int x = 0, xe = AddRec->getNumOperands() + 3044 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3045 SmallVector <const SCEV *, 7> SumOps; 3046 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3047 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3048 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3049 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3050 z < ze && !Overflow; ++z) { 3051 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3052 uint64_t Coeff; 3053 if (LargerThan64Bits) 3054 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3055 else 3056 Coeff = Coeff1*Coeff2; 3057 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3058 const SCEV *Term1 = AddRec->getOperand(y-z); 3059 const SCEV *Term2 = OtherAddRec->getOperand(z); 3060 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3061 SCEV::FlagAnyWrap, Depth + 1)); 3062 } 3063 } 3064 if (SumOps.empty()) 3065 SumOps.push_back(getZero(Ty)); 3066 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3067 } 3068 if (!Overflow) { 3069 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3070 SCEV::FlagAnyWrap); 3071 if (Ops.size() == 2) return NewAddRec; 3072 Ops[Idx] = NewAddRec; 3073 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3074 OpsModified = true; 3075 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3076 if (!AddRec) 3077 break; 3078 } 3079 } 3080 if (OpsModified) 3081 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3082 3083 // Otherwise couldn't fold anything into this recurrence. Move onto the 3084 // next one. 3085 } 3086 3087 // Okay, it looks like we really DO need an mul expr. Check to see if we 3088 // already have one, otherwise create a new one. 3089 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3090 } 3091 3092 /// Represents an unsigned remainder expression based on unsigned division. 3093 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3094 const SCEV *RHS) { 3095 assert(getEffectiveSCEVType(LHS->getType()) == 3096 getEffectiveSCEVType(RHS->getType()) && 3097 "SCEVURemExpr operand types don't match!"); 3098 3099 // Short-circuit easy cases 3100 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3101 // If constant is one, the result is trivial 3102 if (RHSC->getValue()->isOne()) 3103 return getZero(LHS->getType()); // X urem 1 --> 0 3104 3105 // If constant is a power of two, fold into a zext(trunc(LHS)). 3106 if (RHSC->getAPInt().isPowerOf2()) { 3107 Type *FullTy = LHS->getType(); 3108 Type *TruncTy = 3109 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3110 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3111 } 3112 } 3113 3114 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3115 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3116 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3117 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3118 } 3119 3120 /// Get a canonical unsigned division expression, or something simpler if 3121 /// possible. 3122 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3123 const SCEV *RHS) { 3124 assert(getEffectiveSCEVType(LHS->getType()) == 3125 getEffectiveSCEVType(RHS->getType()) && 3126 "SCEVUDivExpr operand types don't match!"); 3127 3128 FoldingSetNodeID ID; 3129 ID.AddInteger(scUDivExpr); 3130 ID.AddPointer(LHS); 3131 ID.AddPointer(RHS); 3132 void *IP = nullptr; 3133 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3134 return S; 3135 3136 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3137 if (RHSC->getValue()->isOne()) 3138 return LHS; // X udiv 1 --> x 3139 // If the denominator is zero, the result of the udiv is undefined. Don't 3140 // try to analyze it, because the resolution chosen here may differ from 3141 // the resolution chosen in other parts of the compiler. 3142 if (!RHSC->getValue()->isZero()) { 3143 // Determine if the division can be folded into the operands of 3144 // its operands. 3145 // TODO: Generalize this to non-constants by using known-bits information. 3146 Type *Ty = LHS->getType(); 3147 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3148 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3149 // For non-power-of-two values, effectively round the value up to the 3150 // nearest power of two. 3151 if (!RHSC->getAPInt().isPowerOf2()) 3152 ++MaxShiftAmt; 3153 IntegerType *ExtTy = 3154 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3155 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3156 if (const SCEVConstant *Step = 3157 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3158 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3159 const APInt &StepInt = Step->getAPInt(); 3160 const APInt &DivInt = RHSC->getAPInt(); 3161 if (!StepInt.urem(DivInt) && 3162 getZeroExtendExpr(AR, ExtTy) == 3163 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3164 getZeroExtendExpr(Step, ExtTy), 3165 AR->getLoop(), SCEV::FlagAnyWrap)) { 3166 SmallVector<const SCEV *, 4> Operands; 3167 for (const SCEV *Op : AR->operands()) 3168 Operands.push_back(getUDivExpr(Op, RHS)); 3169 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3170 } 3171 /// Get a canonical UDivExpr for a recurrence. 3172 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3173 // We can currently only fold X%N if X is constant. 3174 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3175 if (StartC && !DivInt.urem(StepInt) && 3176 getZeroExtendExpr(AR, ExtTy) == 3177 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3178 getZeroExtendExpr(Step, ExtTy), 3179 AR->getLoop(), SCEV::FlagAnyWrap)) { 3180 const APInt &StartInt = StartC->getAPInt(); 3181 const APInt &StartRem = StartInt.urem(StepInt); 3182 if (StartRem != 0) { 3183 const SCEV *NewLHS = 3184 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3185 AR->getLoop(), SCEV::FlagNW); 3186 if (LHS != NewLHS) { 3187 LHS = NewLHS; 3188 3189 // Reset the ID to include the new LHS, and check if it is 3190 // already cached. 3191 ID.clear(); 3192 ID.AddInteger(scUDivExpr); 3193 ID.AddPointer(LHS); 3194 ID.AddPointer(RHS); 3195 IP = nullptr; 3196 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3197 return S; 3198 } 3199 } 3200 } 3201 } 3202 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3203 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3204 SmallVector<const SCEV *, 4> Operands; 3205 for (const SCEV *Op : M->operands()) 3206 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3207 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3208 // Find an operand that's safely divisible. 3209 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3210 const SCEV *Op = M->getOperand(i); 3211 const SCEV *Div = getUDivExpr(Op, RHSC); 3212 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3213 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3214 Operands[i] = Div; 3215 return getMulExpr(Operands); 3216 } 3217 } 3218 } 3219 3220 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3221 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3222 if (auto *DivisorConstant = 3223 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3224 bool Overflow = false; 3225 APInt NewRHS = 3226 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3227 if (Overflow) { 3228 return getConstant(RHSC->getType(), 0, false); 3229 } 3230 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3231 } 3232 } 3233 3234 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3235 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3236 SmallVector<const SCEV *, 4> Operands; 3237 for (const SCEV *Op : A->operands()) 3238 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3239 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3240 Operands.clear(); 3241 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3242 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3243 if (isa<SCEVUDivExpr>(Op) || 3244 getMulExpr(Op, RHS) != A->getOperand(i)) 3245 break; 3246 Operands.push_back(Op); 3247 } 3248 if (Operands.size() == A->getNumOperands()) 3249 return getAddExpr(Operands); 3250 } 3251 } 3252 3253 // Fold if both operands are constant. 3254 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3255 Constant *LHSCV = LHSC->getValue(); 3256 Constant *RHSCV = RHSC->getValue(); 3257 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3258 RHSCV))); 3259 } 3260 } 3261 } 3262 3263 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3264 // changes). Make sure we get a new one. 3265 IP = nullptr; 3266 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3267 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3268 LHS, RHS); 3269 UniqueSCEVs.InsertNode(S, IP); 3270 addToLoopUseLists(S); 3271 return S; 3272 } 3273 3274 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3275 APInt A = C1->getAPInt().abs(); 3276 APInt B = C2->getAPInt().abs(); 3277 uint32_t ABW = A.getBitWidth(); 3278 uint32_t BBW = B.getBitWidth(); 3279 3280 if (ABW > BBW) 3281 B = B.zext(ABW); 3282 else if (ABW < BBW) 3283 A = A.zext(BBW); 3284 3285 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3286 } 3287 3288 /// Get a canonical unsigned division expression, or something simpler if 3289 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3290 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3291 /// it's not exact because the udiv may be clearing bits. 3292 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3293 const SCEV *RHS) { 3294 // TODO: we could try to find factors in all sorts of things, but for now we 3295 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3296 // end of this file for inspiration. 3297 3298 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3299 if (!Mul || !Mul->hasNoUnsignedWrap()) 3300 return getUDivExpr(LHS, RHS); 3301 3302 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3303 // If the mulexpr multiplies by a constant, then that constant must be the 3304 // first element of the mulexpr. 3305 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3306 if (LHSCst == RHSCst) { 3307 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3308 return getMulExpr(Operands); 3309 } 3310 3311 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3312 // that there's a factor provided by one of the other terms. We need to 3313 // check. 3314 APInt Factor = gcd(LHSCst, RHSCst); 3315 if (!Factor.isIntN(1)) { 3316 LHSCst = 3317 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3318 RHSCst = 3319 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3320 SmallVector<const SCEV *, 2> Operands; 3321 Operands.push_back(LHSCst); 3322 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3323 LHS = getMulExpr(Operands); 3324 RHS = RHSCst; 3325 Mul = dyn_cast<SCEVMulExpr>(LHS); 3326 if (!Mul) 3327 return getUDivExactExpr(LHS, RHS); 3328 } 3329 } 3330 } 3331 3332 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3333 if (Mul->getOperand(i) == RHS) { 3334 SmallVector<const SCEV *, 2> Operands; 3335 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3336 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3337 return getMulExpr(Operands); 3338 } 3339 } 3340 3341 return getUDivExpr(LHS, RHS); 3342 } 3343 3344 /// Get an add recurrence expression for the specified loop. Simplify the 3345 /// expression as much as possible. 3346 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3347 const Loop *L, 3348 SCEV::NoWrapFlags Flags) { 3349 SmallVector<const SCEV *, 4> Operands; 3350 Operands.push_back(Start); 3351 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3352 if (StepChrec->getLoop() == L) { 3353 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3354 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3355 } 3356 3357 Operands.push_back(Step); 3358 return getAddRecExpr(Operands, L, Flags); 3359 } 3360 3361 /// Get an add recurrence expression for the specified loop. Simplify the 3362 /// expression as much as possible. 3363 const SCEV * 3364 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3365 const Loop *L, SCEV::NoWrapFlags Flags) { 3366 if (Operands.size() == 1) return Operands[0]; 3367 #ifndef NDEBUG 3368 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3369 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3370 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3371 "SCEVAddRecExpr operand types don't match!"); 3372 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3373 assert(isLoopInvariant(Operands[i], L) && 3374 "SCEVAddRecExpr operand is not loop-invariant!"); 3375 #endif 3376 3377 if (Operands.back()->isZero()) { 3378 Operands.pop_back(); 3379 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3380 } 3381 3382 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3383 // use that information to infer NUW and NSW flags. However, computing a 3384 // BE count requires calling getAddRecExpr, so we may not yet have a 3385 // meaningful BE count at this point (and if we don't, we'd be stuck 3386 // with a SCEVCouldNotCompute as the cached BE count). 3387 3388 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3389 3390 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3391 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3392 const Loop *NestedLoop = NestedAR->getLoop(); 3393 if (L->contains(NestedLoop) 3394 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3395 : (!NestedLoop->contains(L) && 3396 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3397 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3398 Operands[0] = NestedAR->getStart(); 3399 // AddRecs require their operands be loop-invariant with respect to their 3400 // loops. Don't perform this transformation if it would break this 3401 // requirement. 3402 bool AllInvariant = all_of( 3403 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3404 3405 if (AllInvariant) { 3406 // Create a recurrence for the outer loop with the same step size. 3407 // 3408 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3409 // inner recurrence has the same property. 3410 SCEV::NoWrapFlags OuterFlags = 3411 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3412 3413 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3414 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3415 return isLoopInvariant(Op, NestedLoop); 3416 }); 3417 3418 if (AllInvariant) { 3419 // Ok, both add recurrences are valid after the transformation. 3420 // 3421 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3422 // the outer recurrence has the same property. 3423 SCEV::NoWrapFlags InnerFlags = 3424 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3425 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3426 } 3427 } 3428 // Reset Operands to its original state. 3429 Operands[0] = NestedAR; 3430 } 3431 } 3432 3433 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3434 // already have one, otherwise create a new one. 3435 return getOrCreateAddRecExpr(Operands, L, Flags); 3436 } 3437 3438 const SCEV * 3439 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3440 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3441 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3442 // getSCEV(Base)->getType() has the same address space as Base->getType() 3443 // because SCEV::getType() preserves the address space. 3444 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3445 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3446 // instruction to its SCEV, because the Instruction may be guarded by control 3447 // flow and the no-overflow bits may not be valid for the expression in any 3448 // context. This can be fixed similarly to how these flags are handled for 3449 // adds. 3450 SCEV::NoWrapFlags OffsetWrap = 3451 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3452 3453 Type *CurTy = GEP->getType(); 3454 bool FirstIter = true; 3455 SmallVector<const SCEV *, 4> Offsets; 3456 for (const SCEV *IndexExpr : IndexExprs) { 3457 // Compute the (potentially symbolic) offset in bytes for this index. 3458 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3459 // For a struct, add the member offset. 3460 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3461 unsigned FieldNo = Index->getZExtValue(); 3462 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3463 Offsets.push_back(FieldOffset); 3464 3465 // Update CurTy to the type of the field at Index. 3466 CurTy = STy->getTypeAtIndex(Index); 3467 } else { 3468 // Update CurTy to its element type. 3469 if (FirstIter) { 3470 assert(isa<PointerType>(CurTy) && 3471 "The first index of a GEP indexes a pointer"); 3472 CurTy = GEP->getSourceElementType(); 3473 FirstIter = false; 3474 } else { 3475 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3476 } 3477 // For an array, add the element offset, explicitly scaled. 3478 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3479 // Getelementptr indices are signed. 3480 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3481 3482 // Multiply the index by the element size to compute the element offset. 3483 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3484 Offsets.push_back(LocalOffset); 3485 } 3486 } 3487 3488 // Handle degenerate case of GEP without offsets. 3489 if (Offsets.empty()) 3490 return BaseExpr; 3491 3492 // Add the offsets together, assuming nsw if inbounds. 3493 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3494 // Add the base address and the offset. We cannot use the nsw flag, as the 3495 // base address is unsigned. However, if we know that the offset is 3496 // non-negative, we can use nuw. 3497 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3498 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3499 return getAddExpr(BaseExpr, Offset, BaseWrap); 3500 } 3501 3502 std::tuple<SCEV *, FoldingSetNodeID, void *> 3503 ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3504 ArrayRef<const SCEV *> Ops) { 3505 FoldingSetNodeID ID; 3506 void *IP = nullptr; 3507 ID.AddInteger(SCEVType); 3508 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3509 ID.AddPointer(Ops[i]); 3510 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3511 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3512 } 3513 3514 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3515 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3516 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3517 } 3518 3519 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3520 SmallVectorImpl<const SCEV *> &Ops) { 3521 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3522 if (Ops.size() == 1) return Ops[0]; 3523 #ifndef NDEBUG 3524 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3525 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3526 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3527 "Operand types don't match!"); 3528 #endif 3529 3530 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3531 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3532 3533 // Sort by complexity, this groups all similar expression types together. 3534 GroupByComplexity(Ops, &LI, DT); 3535 3536 // Check if we have created the same expression before. 3537 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3538 return S; 3539 } 3540 3541 // If there are any constants, fold them together. 3542 unsigned Idx = 0; 3543 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3544 ++Idx; 3545 assert(Idx < Ops.size()); 3546 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3547 if (Kind == scSMaxExpr) 3548 return APIntOps::smax(LHS, RHS); 3549 else if (Kind == scSMinExpr) 3550 return APIntOps::smin(LHS, RHS); 3551 else if (Kind == scUMaxExpr) 3552 return APIntOps::umax(LHS, RHS); 3553 else if (Kind == scUMinExpr) 3554 return APIntOps::umin(LHS, RHS); 3555 llvm_unreachable("Unknown SCEV min/max opcode"); 3556 }; 3557 3558 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3559 // We found two constants, fold them together! 3560 ConstantInt *Fold = ConstantInt::get( 3561 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3562 Ops[0] = getConstant(Fold); 3563 Ops.erase(Ops.begin()+1); // Erase the folded element 3564 if (Ops.size() == 1) return Ops[0]; 3565 LHSC = cast<SCEVConstant>(Ops[0]); 3566 } 3567 3568 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3569 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3570 3571 if (IsMax ? IsMinV : IsMaxV) { 3572 // If we are left with a constant minimum(/maximum)-int, strip it off. 3573 Ops.erase(Ops.begin()); 3574 --Idx; 3575 } else if (IsMax ? IsMaxV : IsMinV) { 3576 // If we have a max(/min) with a constant maximum(/minimum)-int, 3577 // it will always be the extremum. 3578 return LHSC; 3579 } 3580 3581 if (Ops.size() == 1) return Ops[0]; 3582 } 3583 3584 // Find the first operation of the same kind 3585 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3586 ++Idx; 3587 3588 // Check to see if one of the operands is of the same kind. If so, expand its 3589 // operands onto our operand list, and recurse to simplify. 3590 if (Idx < Ops.size()) { 3591 bool DeletedAny = false; 3592 while (Ops[Idx]->getSCEVType() == Kind) { 3593 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3594 Ops.erase(Ops.begin()+Idx); 3595 Ops.append(SMME->op_begin(), SMME->op_end()); 3596 DeletedAny = true; 3597 } 3598 3599 if (DeletedAny) 3600 return getMinMaxExpr(Kind, Ops); 3601 } 3602 3603 // Okay, check to see if the same value occurs in the operand list twice. If 3604 // so, delete one. Since we sorted the list, these values are required to 3605 // be adjacent. 3606 llvm::CmpInst::Predicate GEPred = 3607 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3608 llvm::CmpInst::Predicate LEPred = 3609 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3610 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3611 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3612 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3613 if (Ops[i] == Ops[i + 1] || 3614 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3615 // X op Y op Y --> X op Y 3616 // X op Y --> X, if we know X, Y are ordered appropriately 3617 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3618 --i; 3619 --e; 3620 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3621 Ops[i + 1])) { 3622 // X op Y --> Y, if we know X, Y are ordered appropriately 3623 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3624 --i; 3625 --e; 3626 } 3627 } 3628 3629 if (Ops.size() == 1) return Ops[0]; 3630 3631 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3632 3633 // Okay, it looks like we really DO need an expr. Check to see if we 3634 // already have one, otherwise create a new one. 3635 const SCEV *ExistingSCEV; 3636 FoldingSetNodeID ID; 3637 void *IP; 3638 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3639 if (ExistingSCEV) 3640 return ExistingSCEV; 3641 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3642 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3643 SCEV *S = new (SCEVAllocator) 3644 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3645 3646 UniqueSCEVs.InsertNode(S, IP); 3647 addToLoopUseLists(S); 3648 return S; 3649 } 3650 3651 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3652 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3653 return getSMaxExpr(Ops); 3654 } 3655 3656 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3657 return getMinMaxExpr(scSMaxExpr, Ops); 3658 } 3659 3660 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3661 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3662 return getUMaxExpr(Ops); 3663 } 3664 3665 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3666 return getMinMaxExpr(scUMaxExpr, Ops); 3667 } 3668 3669 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3670 const SCEV *RHS) { 3671 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3672 return getSMinExpr(Ops); 3673 } 3674 3675 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3676 return getMinMaxExpr(scSMinExpr, Ops); 3677 } 3678 3679 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3680 const SCEV *RHS) { 3681 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3682 return getUMinExpr(Ops); 3683 } 3684 3685 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3686 return getMinMaxExpr(scUMinExpr, Ops); 3687 } 3688 3689 const SCEV * 3690 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3691 ScalableVectorType *ScalableTy) { 3692 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3693 Constant *One = ConstantInt::get(IntTy, 1); 3694 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3695 // Note that the expression we created is the final expression, we don't 3696 // want to simplify it any further Also, if we call a normal getSCEV(), 3697 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3698 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3699 } 3700 3701 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3702 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3703 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3704 // We can bypass creating a target-independent constant expression and then 3705 // folding it back into a ConstantInt. This is just a compile-time 3706 // optimization. 3707 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3708 } 3709 3710 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3711 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3712 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3713 // We can bypass creating a target-independent constant expression and then 3714 // folding it back into a ConstantInt. This is just a compile-time 3715 // optimization. 3716 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3717 } 3718 3719 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3720 StructType *STy, 3721 unsigned FieldNo) { 3722 // We can bypass creating a target-independent constant expression and then 3723 // folding it back into a ConstantInt. This is just a compile-time 3724 // optimization. 3725 return getConstant( 3726 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3727 } 3728 3729 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3730 // Don't attempt to do anything other than create a SCEVUnknown object 3731 // here. createSCEV only calls getUnknown after checking for all other 3732 // interesting possibilities, and any other code that calls getUnknown 3733 // is doing so in order to hide a value from SCEV canonicalization. 3734 3735 FoldingSetNodeID ID; 3736 ID.AddInteger(scUnknown); 3737 ID.AddPointer(V); 3738 void *IP = nullptr; 3739 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3740 assert(cast<SCEVUnknown>(S)->getValue() == V && 3741 "Stale SCEVUnknown in uniquing map!"); 3742 return S; 3743 } 3744 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3745 FirstUnknown); 3746 FirstUnknown = cast<SCEVUnknown>(S); 3747 UniqueSCEVs.InsertNode(S, IP); 3748 return S; 3749 } 3750 3751 //===----------------------------------------------------------------------===// 3752 // Basic SCEV Analysis and PHI Idiom Recognition Code 3753 // 3754 3755 /// Test if values of the given type are analyzable within the SCEV 3756 /// framework. This primarily includes integer types, and it can optionally 3757 /// include pointer types if the ScalarEvolution class has access to 3758 /// target-specific information. 3759 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3760 // Integers and pointers are always SCEVable. 3761 return Ty->isIntOrPtrTy(); 3762 } 3763 3764 /// Return the size in bits of the specified type, for which isSCEVable must 3765 /// return true. 3766 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3767 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3768 if (Ty->isPointerTy()) 3769 return getDataLayout().getIndexTypeSizeInBits(Ty); 3770 return getDataLayout().getTypeSizeInBits(Ty); 3771 } 3772 3773 /// Return a type with the same bitwidth as the given type and which represents 3774 /// how SCEV will treat the given type, for which isSCEVable must return 3775 /// true. For pointer types, this is the pointer index sized integer type. 3776 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3777 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3778 3779 if (Ty->isIntegerTy()) 3780 return Ty; 3781 3782 // The only other support type is pointer. 3783 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3784 return getDataLayout().getIndexType(Ty); 3785 } 3786 3787 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3788 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3789 } 3790 3791 const SCEV *ScalarEvolution::getCouldNotCompute() { 3792 return CouldNotCompute.get(); 3793 } 3794 3795 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3796 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3797 auto *SU = dyn_cast<SCEVUnknown>(S); 3798 return SU && SU->getValue() == nullptr; 3799 }); 3800 3801 return !ContainsNulls; 3802 } 3803 3804 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3805 HasRecMapType::iterator I = HasRecMap.find(S); 3806 if (I != HasRecMap.end()) 3807 return I->second; 3808 3809 bool FoundAddRec = 3810 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3811 HasRecMap.insert({S, FoundAddRec}); 3812 return FoundAddRec; 3813 } 3814 3815 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3816 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3817 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3818 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3819 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3820 if (!Add) 3821 return {S, nullptr}; 3822 3823 if (Add->getNumOperands() != 2) 3824 return {S, nullptr}; 3825 3826 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3827 if (!ConstOp) 3828 return {S, nullptr}; 3829 3830 return {Add->getOperand(1), ConstOp->getValue()}; 3831 } 3832 3833 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3834 /// by the value and offset from any ValueOffsetPair in the set. 3835 SetVector<ScalarEvolution::ValueOffsetPair> * 3836 ScalarEvolution::getSCEVValues(const SCEV *S) { 3837 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3838 if (SI == ExprValueMap.end()) 3839 return nullptr; 3840 #ifndef NDEBUG 3841 if (VerifySCEVMap) { 3842 // Check there is no dangling Value in the set returned. 3843 for (const auto &VE : SI->second) 3844 assert(ValueExprMap.count(VE.first)); 3845 } 3846 #endif 3847 return &SI->second; 3848 } 3849 3850 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3851 /// cannot be used separately. eraseValueFromMap should be used to remove 3852 /// V from ValueExprMap and ExprValueMap at the same time. 3853 void ScalarEvolution::eraseValueFromMap(Value *V) { 3854 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3855 if (I != ValueExprMap.end()) { 3856 const SCEV *S = I->second; 3857 // Remove {V, 0} from the set of ExprValueMap[S] 3858 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3859 SV->remove({V, nullptr}); 3860 3861 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3862 const SCEV *Stripped; 3863 ConstantInt *Offset; 3864 std::tie(Stripped, Offset) = splitAddExpr(S); 3865 if (Offset != nullptr) { 3866 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3867 SV->remove({V, Offset}); 3868 } 3869 ValueExprMap.erase(V); 3870 } 3871 } 3872 3873 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3874 /// TODO: In reality it is better to check the poison recursively 3875 /// but this is better than nothing. 3876 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3877 if (auto *I = dyn_cast<Instruction>(V)) { 3878 if (isa<OverflowingBinaryOperator>(I)) { 3879 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3880 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3881 return true; 3882 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3883 return true; 3884 } 3885 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3886 return true; 3887 } 3888 return false; 3889 } 3890 3891 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3892 /// create a new one. 3893 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3894 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3895 3896 const SCEV *S = getExistingSCEV(V); 3897 if (S == nullptr) { 3898 S = createSCEV(V); 3899 // During PHI resolution, it is possible to create two SCEVs for the same 3900 // V, so it is needed to double check whether V->S is inserted into 3901 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3902 std::pair<ValueExprMapType::iterator, bool> Pair = 3903 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3904 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3905 ExprValueMap[S].insert({V, nullptr}); 3906 3907 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3908 // ExprValueMap. 3909 const SCEV *Stripped = S; 3910 ConstantInt *Offset = nullptr; 3911 std::tie(Stripped, Offset) = splitAddExpr(S); 3912 // If stripped is SCEVUnknown, don't bother to save 3913 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3914 // increase the complexity of the expansion code. 3915 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3916 // because it may generate add/sub instead of GEP in SCEV expansion. 3917 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3918 !isa<GetElementPtrInst>(V)) 3919 ExprValueMap[Stripped].insert({V, Offset}); 3920 } 3921 } 3922 return S; 3923 } 3924 3925 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3926 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3927 3928 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3929 if (I != ValueExprMap.end()) { 3930 const SCEV *S = I->second; 3931 if (checkValidity(S)) 3932 return S; 3933 eraseValueFromMap(V); 3934 forgetMemoizedResults(S); 3935 } 3936 return nullptr; 3937 } 3938 3939 /// Return a SCEV corresponding to -V = -1*V 3940 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3941 SCEV::NoWrapFlags Flags) { 3942 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3943 return getConstant( 3944 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3945 3946 Type *Ty = V->getType(); 3947 Ty = getEffectiveSCEVType(Ty); 3948 return getMulExpr(V, getMinusOne(Ty), Flags); 3949 } 3950 3951 /// If Expr computes ~A, return A else return nullptr 3952 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3953 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3954 if (!Add || Add->getNumOperands() != 2 || 3955 !Add->getOperand(0)->isAllOnesValue()) 3956 return nullptr; 3957 3958 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3959 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3960 !AddRHS->getOperand(0)->isAllOnesValue()) 3961 return nullptr; 3962 3963 return AddRHS->getOperand(1); 3964 } 3965 3966 /// Return a SCEV corresponding to ~V = -1-V 3967 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3968 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3969 return getConstant( 3970 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3971 3972 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3973 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3974 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3975 SmallVector<const SCEV *, 2> MatchedOperands; 3976 for (const SCEV *Operand : MME->operands()) { 3977 const SCEV *Matched = MatchNotExpr(Operand); 3978 if (!Matched) 3979 return (const SCEV *)nullptr; 3980 MatchedOperands.push_back(Matched); 3981 } 3982 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 3983 MatchedOperands); 3984 }; 3985 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3986 return Replaced; 3987 } 3988 3989 Type *Ty = V->getType(); 3990 Ty = getEffectiveSCEVType(Ty); 3991 return getMinusSCEV(getMinusOne(Ty), V); 3992 } 3993 3994 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3995 SCEV::NoWrapFlags Flags, 3996 unsigned Depth) { 3997 // Fast path: X - X --> 0. 3998 if (LHS == RHS) 3999 return getZero(LHS->getType()); 4000 4001 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4002 // makes it so that we cannot make much use of NUW. 4003 auto AddFlags = SCEV::FlagAnyWrap; 4004 const bool RHSIsNotMinSigned = 4005 !getSignedRangeMin(RHS).isMinSignedValue(); 4006 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 4007 // Let M be the minimum representable signed value. Then (-1)*RHS 4008 // signed-wraps if and only if RHS is M. That can happen even for 4009 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4010 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4011 // (-1)*RHS, we need to prove that RHS != M. 4012 // 4013 // If LHS is non-negative and we know that LHS - RHS does not 4014 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4015 // either by proving that RHS > M or that LHS >= 0. 4016 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4017 AddFlags = SCEV::FlagNSW; 4018 } 4019 } 4020 4021 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4022 // RHS is NSW and LHS >= 0. 4023 // 4024 // The difficulty here is that the NSW flag may have been proven 4025 // relative to a loop that is to be found in a recurrence in LHS and 4026 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4027 // larger scope than intended. 4028 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4029 4030 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4031 } 4032 4033 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4034 unsigned Depth) { 4035 Type *SrcTy = V->getType(); 4036 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4037 "Cannot truncate or zero extend with non-integer arguments!"); 4038 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4039 return V; // No conversion 4040 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4041 return getTruncateExpr(V, Ty, Depth); 4042 return getZeroExtendExpr(V, Ty, Depth); 4043 } 4044 4045 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4046 unsigned Depth) { 4047 Type *SrcTy = V->getType(); 4048 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4049 "Cannot truncate or zero extend with non-integer arguments!"); 4050 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4051 return V; // No conversion 4052 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4053 return getTruncateExpr(V, Ty, Depth); 4054 return getSignExtendExpr(V, Ty, Depth); 4055 } 4056 4057 const SCEV * 4058 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4059 Type *SrcTy = V->getType(); 4060 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4061 "Cannot noop or zero extend with non-integer arguments!"); 4062 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4063 "getNoopOrZeroExtend cannot truncate!"); 4064 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4065 return V; // No conversion 4066 return getZeroExtendExpr(V, Ty); 4067 } 4068 4069 const SCEV * 4070 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4071 Type *SrcTy = V->getType(); 4072 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4073 "Cannot noop or sign extend with non-integer arguments!"); 4074 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4075 "getNoopOrSignExtend cannot truncate!"); 4076 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4077 return V; // No conversion 4078 return getSignExtendExpr(V, Ty); 4079 } 4080 4081 const SCEV * 4082 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4083 Type *SrcTy = V->getType(); 4084 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4085 "Cannot noop or any extend with non-integer arguments!"); 4086 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4087 "getNoopOrAnyExtend cannot truncate!"); 4088 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4089 return V; // No conversion 4090 return getAnyExtendExpr(V, Ty); 4091 } 4092 4093 const SCEV * 4094 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4095 Type *SrcTy = V->getType(); 4096 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4097 "Cannot truncate or noop with non-integer arguments!"); 4098 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4099 "getTruncateOrNoop cannot extend!"); 4100 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4101 return V; // No conversion 4102 return getTruncateExpr(V, Ty); 4103 } 4104 4105 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4106 const SCEV *RHS) { 4107 const SCEV *PromotedLHS = LHS; 4108 const SCEV *PromotedRHS = RHS; 4109 4110 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4111 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4112 else 4113 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4114 4115 return getUMaxExpr(PromotedLHS, PromotedRHS); 4116 } 4117 4118 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4119 const SCEV *RHS) { 4120 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4121 return getUMinFromMismatchedTypes(Ops); 4122 } 4123 4124 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4125 SmallVectorImpl<const SCEV *> &Ops) { 4126 assert(!Ops.empty() && "At least one operand must be!"); 4127 // Trivial case. 4128 if (Ops.size() == 1) 4129 return Ops[0]; 4130 4131 // Find the max type first. 4132 Type *MaxType = nullptr; 4133 for (auto *S : Ops) 4134 if (MaxType) 4135 MaxType = getWiderType(MaxType, S->getType()); 4136 else 4137 MaxType = S->getType(); 4138 assert(MaxType && "Failed to find maximum type!"); 4139 4140 // Extend all ops to max type. 4141 SmallVector<const SCEV *, 2> PromotedOps; 4142 for (auto *S : Ops) 4143 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4144 4145 // Generate umin. 4146 return getUMinExpr(PromotedOps); 4147 } 4148 4149 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4150 // A pointer operand may evaluate to a nonpointer expression, such as null. 4151 if (!V->getType()->isPointerTy()) 4152 return V; 4153 4154 while (true) { 4155 if (const SCEVIntegralCastExpr *Cast = dyn_cast<SCEVIntegralCastExpr>(V)) { 4156 V = Cast->getOperand(); 4157 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 4158 const SCEV *PtrOp = nullptr; 4159 for (const SCEV *NAryOp : NAry->operands()) { 4160 if (NAryOp->getType()->isPointerTy()) { 4161 // Cannot find the base of an expression with multiple pointer ops. 4162 if (PtrOp) 4163 return V; 4164 PtrOp = NAryOp; 4165 } 4166 } 4167 if (!PtrOp) // All operands were non-pointer. 4168 return V; 4169 V = PtrOp; 4170 } else // Not something we can look further into. 4171 return V; 4172 } 4173 } 4174 4175 /// Push users of the given Instruction onto the given Worklist. 4176 static void 4177 PushDefUseChildren(Instruction *I, 4178 SmallVectorImpl<Instruction *> &Worklist) { 4179 // Push the def-use children onto the Worklist stack. 4180 for (User *U : I->users()) 4181 Worklist.push_back(cast<Instruction>(U)); 4182 } 4183 4184 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4185 SmallVector<Instruction *, 16> Worklist; 4186 PushDefUseChildren(PN, Worklist); 4187 4188 SmallPtrSet<Instruction *, 8> Visited; 4189 Visited.insert(PN); 4190 while (!Worklist.empty()) { 4191 Instruction *I = Worklist.pop_back_val(); 4192 if (!Visited.insert(I).second) 4193 continue; 4194 4195 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4196 if (It != ValueExprMap.end()) { 4197 const SCEV *Old = It->second; 4198 4199 // Short-circuit the def-use traversal if the symbolic name 4200 // ceases to appear in expressions. 4201 if (Old != SymName && !hasOperand(Old, SymName)) 4202 continue; 4203 4204 // SCEVUnknown for a PHI either means that it has an unrecognized 4205 // structure, it's a PHI that's in the progress of being computed 4206 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4207 // additional loop trip count information isn't going to change anything. 4208 // In the second case, createNodeForPHI will perform the necessary 4209 // updates on its own when it gets to that point. In the third, we do 4210 // want to forget the SCEVUnknown. 4211 if (!isa<PHINode>(I) || 4212 !isa<SCEVUnknown>(Old) || 4213 (I != PN && Old == SymName)) { 4214 eraseValueFromMap(It->first); 4215 forgetMemoizedResults(Old); 4216 } 4217 } 4218 4219 PushDefUseChildren(I, Worklist); 4220 } 4221 } 4222 4223 namespace { 4224 4225 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4226 /// expression in case its Loop is L. If it is not L then 4227 /// if IgnoreOtherLoops is true then use AddRec itself 4228 /// otherwise rewrite cannot be done. 4229 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4230 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4231 public: 4232 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4233 bool IgnoreOtherLoops = true) { 4234 SCEVInitRewriter Rewriter(L, SE); 4235 const SCEV *Result = Rewriter.visit(S); 4236 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4237 return SE.getCouldNotCompute(); 4238 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4239 ? SE.getCouldNotCompute() 4240 : Result; 4241 } 4242 4243 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4244 if (!SE.isLoopInvariant(Expr, L)) 4245 SeenLoopVariantSCEVUnknown = true; 4246 return Expr; 4247 } 4248 4249 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4250 // Only re-write AddRecExprs for this loop. 4251 if (Expr->getLoop() == L) 4252 return Expr->getStart(); 4253 SeenOtherLoops = true; 4254 return Expr; 4255 } 4256 4257 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4258 4259 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4260 4261 private: 4262 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4263 : SCEVRewriteVisitor(SE), L(L) {} 4264 4265 const Loop *L; 4266 bool SeenLoopVariantSCEVUnknown = false; 4267 bool SeenOtherLoops = false; 4268 }; 4269 4270 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4271 /// increment expression in case its Loop is L. If it is not L then 4272 /// use AddRec itself. 4273 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4274 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4275 public: 4276 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4277 SCEVPostIncRewriter Rewriter(L, SE); 4278 const SCEV *Result = Rewriter.visit(S); 4279 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4280 ? SE.getCouldNotCompute() 4281 : Result; 4282 } 4283 4284 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4285 if (!SE.isLoopInvariant(Expr, L)) 4286 SeenLoopVariantSCEVUnknown = true; 4287 return Expr; 4288 } 4289 4290 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4291 // Only re-write AddRecExprs for this loop. 4292 if (Expr->getLoop() == L) 4293 return Expr->getPostIncExpr(SE); 4294 SeenOtherLoops = true; 4295 return Expr; 4296 } 4297 4298 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4299 4300 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4301 4302 private: 4303 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4304 : SCEVRewriteVisitor(SE), L(L) {} 4305 4306 const Loop *L; 4307 bool SeenLoopVariantSCEVUnknown = false; 4308 bool SeenOtherLoops = false; 4309 }; 4310 4311 /// This class evaluates the compare condition by matching it against the 4312 /// condition of loop latch. If there is a match we assume a true value 4313 /// for the condition while building SCEV nodes. 4314 class SCEVBackedgeConditionFolder 4315 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4316 public: 4317 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4318 ScalarEvolution &SE) { 4319 bool IsPosBECond = false; 4320 Value *BECond = nullptr; 4321 if (BasicBlock *Latch = L->getLoopLatch()) { 4322 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4323 if (BI && BI->isConditional()) { 4324 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4325 "Both outgoing branches should not target same header!"); 4326 BECond = BI->getCondition(); 4327 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4328 } else { 4329 return S; 4330 } 4331 } 4332 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4333 return Rewriter.visit(S); 4334 } 4335 4336 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4337 const SCEV *Result = Expr; 4338 bool InvariantF = SE.isLoopInvariant(Expr, L); 4339 4340 if (!InvariantF) { 4341 Instruction *I = cast<Instruction>(Expr->getValue()); 4342 switch (I->getOpcode()) { 4343 case Instruction::Select: { 4344 SelectInst *SI = cast<SelectInst>(I); 4345 Optional<const SCEV *> Res = 4346 compareWithBackedgeCondition(SI->getCondition()); 4347 if (Res.hasValue()) { 4348 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4349 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4350 } 4351 break; 4352 } 4353 default: { 4354 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4355 if (Res.hasValue()) 4356 Result = Res.getValue(); 4357 break; 4358 } 4359 } 4360 } 4361 return Result; 4362 } 4363 4364 private: 4365 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4366 bool IsPosBECond, ScalarEvolution &SE) 4367 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4368 IsPositiveBECond(IsPosBECond) {} 4369 4370 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4371 4372 const Loop *L; 4373 /// Loop back condition. 4374 Value *BackedgeCond = nullptr; 4375 /// Set to true if loop back is on positive branch condition. 4376 bool IsPositiveBECond; 4377 }; 4378 4379 Optional<const SCEV *> 4380 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4381 4382 // If value matches the backedge condition for loop latch, 4383 // then return a constant evolution node based on loopback 4384 // branch taken. 4385 if (BackedgeCond == IC) 4386 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4387 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4388 return None; 4389 } 4390 4391 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4392 public: 4393 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4394 ScalarEvolution &SE) { 4395 SCEVShiftRewriter Rewriter(L, SE); 4396 const SCEV *Result = Rewriter.visit(S); 4397 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4398 } 4399 4400 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4401 // Only allow AddRecExprs for this loop. 4402 if (!SE.isLoopInvariant(Expr, L)) 4403 Valid = false; 4404 return Expr; 4405 } 4406 4407 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4408 if (Expr->getLoop() == L && Expr->isAffine()) 4409 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4410 Valid = false; 4411 return Expr; 4412 } 4413 4414 bool isValid() { return Valid; } 4415 4416 private: 4417 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4418 : SCEVRewriteVisitor(SE), L(L) {} 4419 4420 const Loop *L; 4421 bool Valid = true; 4422 }; 4423 4424 } // end anonymous namespace 4425 4426 SCEV::NoWrapFlags 4427 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4428 if (!AR->isAffine()) 4429 return SCEV::FlagAnyWrap; 4430 4431 using OBO = OverflowingBinaryOperator; 4432 4433 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4434 4435 if (!AR->hasNoSignedWrap()) { 4436 ConstantRange AddRecRange = getSignedRange(AR); 4437 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4438 4439 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4440 Instruction::Add, IncRange, OBO::NoSignedWrap); 4441 if (NSWRegion.contains(AddRecRange)) 4442 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4443 } 4444 4445 if (!AR->hasNoUnsignedWrap()) { 4446 ConstantRange AddRecRange = getUnsignedRange(AR); 4447 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4448 4449 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4450 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4451 if (NUWRegion.contains(AddRecRange)) 4452 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4453 } 4454 4455 return Result; 4456 } 4457 4458 SCEV::NoWrapFlags 4459 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4460 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4461 4462 if (AR->hasNoSignedWrap()) 4463 return Result; 4464 4465 if (!AR->isAffine()) 4466 return Result; 4467 4468 const SCEV *Step = AR->getStepRecurrence(*this); 4469 const Loop *L = AR->getLoop(); 4470 4471 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4472 // Note that this serves two purposes: It filters out loops that are 4473 // simply not analyzable, and it covers the case where this code is 4474 // being called from within backedge-taken count analysis, such that 4475 // attempting to ask for the backedge-taken count would likely result 4476 // in infinite recursion. In the later case, the analysis code will 4477 // cope with a conservative value, and it will take care to purge 4478 // that value once it has finished. 4479 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4480 4481 // Normally, in the cases we can prove no-overflow via a 4482 // backedge guarding condition, we can also compute a backedge 4483 // taken count for the loop. The exceptions are assumptions and 4484 // guards present in the loop -- SCEV is not great at exploiting 4485 // these to compute max backedge taken counts, but can still use 4486 // these to prove lack of overflow. Use this fact to avoid 4487 // doing extra work that may not pay off. 4488 4489 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4490 AC.assumptions().empty()) 4491 return Result; 4492 4493 // If the backedge is guarded by a comparison with the pre-inc value the 4494 // addrec is safe. Also, if the entry is guarded by a comparison with the 4495 // start value and the backedge is guarded by a comparison with the post-inc 4496 // value, the addrec is safe. 4497 ICmpInst::Predicate Pred; 4498 const SCEV *OverflowLimit = 4499 getSignedOverflowLimitForStep(Step, &Pred, this); 4500 if (OverflowLimit && 4501 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4502 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4503 Result = setFlags(Result, SCEV::FlagNSW); 4504 } 4505 return Result; 4506 } 4507 SCEV::NoWrapFlags 4508 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4509 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4510 4511 if (AR->hasNoUnsignedWrap()) 4512 return Result; 4513 4514 if (!AR->isAffine()) 4515 return Result; 4516 4517 const SCEV *Step = AR->getStepRecurrence(*this); 4518 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4519 const Loop *L = AR->getLoop(); 4520 4521 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4522 // Note that this serves two purposes: It filters out loops that are 4523 // simply not analyzable, and it covers the case where this code is 4524 // being called from within backedge-taken count analysis, such that 4525 // attempting to ask for the backedge-taken count would likely result 4526 // in infinite recursion. In the later case, the analysis code will 4527 // cope with a conservative value, and it will take care to purge 4528 // that value once it has finished. 4529 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4530 4531 // Normally, in the cases we can prove no-overflow via a 4532 // backedge guarding condition, we can also compute a backedge 4533 // taken count for the loop. The exceptions are assumptions and 4534 // guards present in the loop -- SCEV is not great at exploiting 4535 // these to compute max backedge taken counts, but can still use 4536 // these to prove lack of overflow. Use this fact to avoid 4537 // doing extra work that may not pay off. 4538 4539 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4540 AC.assumptions().empty()) 4541 return Result; 4542 4543 // If the backedge is guarded by a comparison with the pre-inc value the 4544 // addrec is safe. Also, if the entry is guarded by a comparison with the 4545 // start value and the backedge is guarded by a comparison with the post-inc 4546 // value, the addrec is safe. 4547 if (isKnownPositive(Step)) { 4548 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4549 getUnsignedRangeMax(Step)); 4550 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4551 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4552 Result = setFlags(Result, SCEV::FlagNUW); 4553 } 4554 } 4555 4556 return Result; 4557 } 4558 4559 namespace { 4560 4561 /// Represents an abstract binary operation. This may exist as a 4562 /// normal instruction or constant expression, or may have been 4563 /// derived from an expression tree. 4564 struct BinaryOp { 4565 unsigned Opcode; 4566 Value *LHS; 4567 Value *RHS; 4568 bool IsNSW = false; 4569 bool IsNUW = false; 4570 4571 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4572 /// constant expression. 4573 Operator *Op = nullptr; 4574 4575 explicit BinaryOp(Operator *Op) 4576 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4577 Op(Op) { 4578 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4579 IsNSW = OBO->hasNoSignedWrap(); 4580 IsNUW = OBO->hasNoUnsignedWrap(); 4581 } 4582 } 4583 4584 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4585 bool IsNUW = false) 4586 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4587 }; 4588 4589 } // end anonymous namespace 4590 4591 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4592 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4593 auto *Op = dyn_cast<Operator>(V); 4594 if (!Op) 4595 return None; 4596 4597 // Implementation detail: all the cleverness here should happen without 4598 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4599 // SCEV expressions when possible, and we should not break that. 4600 4601 switch (Op->getOpcode()) { 4602 case Instruction::Add: 4603 case Instruction::Sub: 4604 case Instruction::Mul: 4605 case Instruction::UDiv: 4606 case Instruction::URem: 4607 case Instruction::And: 4608 case Instruction::Or: 4609 case Instruction::AShr: 4610 case Instruction::Shl: 4611 return BinaryOp(Op); 4612 4613 case Instruction::Xor: 4614 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4615 // If the RHS of the xor is a signmask, then this is just an add. 4616 // Instcombine turns add of signmask into xor as a strength reduction step. 4617 if (RHSC->getValue().isSignMask()) 4618 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4619 return BinaryOp(Op); 4620 4621 case Instruction::LShr: 4622 // Turn logical shift right of a constant into a unsigned divide. 4623 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4624 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4625 4626 // If the shift count is not less than the bitwidth, the result of 4627 // the shift is undefined. Don't try to analyze it, because the 4628 // resolution chosen here may differ from the resolution chosen in 4629 // other parts of the compiler. 4630 if (SA->getValue().ult(BitWidth)) { 4631 Constant *X = 4632 ConstantInt::get(SA->getContext(), 4633 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4634 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4635 } 4636 } 4637 return BinaryOp(Op); 4638 4639 case Instruction::ExtractValue: { 4640 auto *EVI = cast<ExtractValueInst>(Op); 4641 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4642 break; 4643 4644 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4645 if (!WO) 4646 break; 4647 4648 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4649 bool Signed = WO->isSigned(); 4650 // TODO: Should add nuw/nsw flags for mul as well. 4651 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4652 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4653 4654 // Now that we know that all uses of the arithmetic-result component of 4655 // CI are guarded by the overflow check, we can go ahead and pretend 4656 // that the arithmetic is non-overflowing. 4657 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4658 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4659 } 4660 4661 default: 4662 break; 4663 } 4664 4665 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4666 // semantics as a Sub, return a binary sub expression. 4667 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4668 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4669 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4670 4671 return None; 4672 } 4673 4674 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4675 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4676 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4677 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4678 /// follows one of the following patterns: 4679 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4680 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4681 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4682 /// we return the type of the truncation operation, and indicate whether the 4683 /// truncated type should be treated as signed/unsigned by setting 4684 /// \p Signed to true/false, respectively. 4685 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4686 bool &Signed, ScalarEvolution &SE) { 4687 // The case where Op == SymbolicPHI (that is, with no type conversions on 4688 // the way) is handled by the regular add recurrence creating logic and 4689 // would have already been triggered in createAddRecForPHI. Reaching it here 4690 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4691 // because one of the other operands of the SCEVAddExpr updating this PHI is 4692 // not invariant). 4693 // 4694 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4695 // this case predicates that allow us to prove that Op == SymbolicPHI will 4696 // be added. 4697 if (Op == SymbolicPHI) 4698 return nullptr; 4699 4700 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4701 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4702 if (SourceBits != NewBits) 4703 return nullptr; 4704 4705 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4706 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4707 if (!SExt && !ZExt) 4708 return nullptr; 4709 const SCEVTruncateExpr *Trunc = 4710 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4711 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4712 if (!Trunc) 4713 return nullptr; 4714 const SCEV *X = Trunc->getOperand(); 4715 if (X != SymbolicPHI) 4716 return nullptr; 4717 Signed = SExt != nullptr; 4718 return Trunc->getType(); 4719 } 4720 4721 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4722 if (!PN->getType()->isIntegerTy()) 4723 return nullptr; 4724 const Loop *L = LI.getLoopFor(PN->getParent()); 4725 if (!L || L->getHeader() != PN->getParent()) 4726 return nullptr; 4727 return L; 4728 } 4729 4730 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4731 // computation that updates the phi follows the following pattern: 4732 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4733 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4734 // If so, try to see if it can be rewritten as an AddRecExpr under some 4735 // Predicates. If successful, return them as a pair. Also cache the results 4736 // of the analysis. 4737 // 4738 // Example usage scenario: 4739 // Say the Rewriter is called for the following SCEV: 4740 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4741 // where: 4742 // %X = phi i64 (%Start, %BEValue) 4743 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4744 // and call this function with %SymbolicPHI = %X. 4745 // 4746 // The analysis will find that the value coming around the backedge has 4747 // the following SCEV: 4748 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4749 // Upon concluding that this matches the desired pattern, the function 4750 // will return the pair {NewAddRec, SmallPredsVec} where: 4751 // NewAddRec = {%Start,+,%Step} 4752 // SmallPredsVec = {P1, P2, P3} as follows: 4753 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4754 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4755 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4756 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4757 // under the predicates {P1,P2,P3}. 4758 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4759 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4760 // 4761 // TODO's: 4762 // 4763 // 1) Extend the Induction descriptor to also support inductions that involve 4764 // casts: When needed (namely, when we are called in the context of the 4765 // vectorizer induction analysis), a Set of cast instructions will be 4766 // populated by this method, and provided back to isInductionPHI. This is 4767 // needed to allow the vectorizer to properly record them to be ignored by 4768 // the cost model and to avoid vectorizing them (otherwise these casts, 4769 // which are redundant under the runtime overflow checks, will be 4770 // vectorized, which can be costly). 4771 // 4772 // 2) Support additional induction/PHISCEV patterns: We also want to support 4773 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4774 // after the induction update operation (the induction increment): 4775 // 4776 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4777 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4778 // 4779 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4780 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4781 // 4782 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4783 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4784 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4785 SmallVector<const SCEVPredicate *, 3> Predicates; 4786 4787 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4788 // return an AddRec expression under some predicate. 4789 4790 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4791 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4792 assert(L && "Expecting an integer loop header phi"); 4793 4794 // The loop may have multiple entrances or multiple exits; we can analyze 4795 // this phi as an addrec if it has a unique entry value and a unique 4796 // backedge value. 4797 Value *BEValueV = nullptr, *StartValueV = nullptr; 4798 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4799 Value *V = PN->getIncomingValue(i); 4800 if (L->contains(PN->getIncomingBlock(i))) { 4801 if (!BEValueV) { 4802 BEValueV = V; 4803 } else if (BEValueV != V) { 4804 BEValueV = nullptr; 4805 break; 4806 } 4807 } else if (!StartValueV) { 4808 StartValueV = V; 4809 } else if (StartValueV != V) { 4810 StartValueV = nullptr; 4811 break; 4812 } 4813 } 4814 if (!BEValueV || !StartValueV) 4815 return None; 4816 4817 const SCEV *BEValue = getSCEV(BEValueV); 4818 4819 // If the value coming around the backedge is an add with the symbolic 4820 // value we just inserted, possibly with casts that we can ignore under 4821 // an appropriate runtime guard, then we found a simple induction variable! 4822 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4823 if (!Add) 4824 return None; 4825 4826 // If there is a single occurrence of the symbolic value, possibly 4827 // casted, replace it with a recurrence. 4828 unsigned FoundIndex = Add->getNumOperands(); 4829 Type *TruncTy = nullptr; 4830 bool Signed; 4831 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4832 if ((TruncTy = 4833 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4834 if (FoundIndex == e) { 4835 FoundIndex = i; 4836 break; 4837 } 4838 4839 if (FoundIndex == Add->getNumOperands()) 4840 return None; 4841 4842 // Create an add with everything but the specified operand. 4843 SmallVector<const SCEV *, 8> Ops; 4844 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4845 if (i != FoundIndex) 4846 Ops.push_back(Add->getOperand(i)); 4847 const SCEV *Accum = getAddExpr(Ops); 4848 4849 // The runtime checks will not be valid if the step amount is 4850 // varying inside the loop. 4851 if (!isLoopInvariant(Accum, L)) 4852 return None; 4853 4854 // *** Part2: Create the predicates 4855 4856 // Analysis was successful: we have a phi-with-cast pattern for which we 4857 // can return an AddRec expression under the following predicates: 4858 // 4859 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4860 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4861 // P2: An Equal predicate that guarantees that 4862 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4863 // P3: An Equal predicate that guarantees that 4864 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4865 // 4866 // As we next prove, the above predicates guarantee that: 4867 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4868 // 4869 // 4870 // More formally, we want to prove that: 4871 // Expr(i+1) = Start + (i+1) * Accum 4872 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4873 // 4874 // Given that: 4875 // 1) Expr(0) = Start 4876 // 2) Expr(1) = Start + Accum 4877 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4878 // 3) Induction hypothesis (step i): 4879 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4880 // 4881 // Proof: 4882 // Expr(i+1) = 4883 // = Start + (i+1)*Accum 4884 // = (Start + i*Accum) + Accum 4885 // = Expr(i) + Accum 4886 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4887 // :: from step i 4888 // 4889 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4890 // 4891 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4892 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4893 // + Accum :: from P3 4894 // 4895 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4896 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4897 // 4898 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4899 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4900 // 4901 // By induction, the same applies to all iterations 1<=i<n: 4902 // 4903 4904 // Create a truncated addrec for which we will add a no overflow check (P1). 4905 const SCEV *StartVal = getSCEV(StartValueV); 4906 const SCEV *PHISCEV = 4907 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4908 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4909 4910 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4911 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4912 // will be constant. 4913 // 4914 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4915 // add P1. 4916 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4917 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4918 Signed ? SCEVWrapPredicate::IncrementNSSW 4919 : SCEVWrapPredicate::IncrementNUSW; 4920 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4921 Predicates.push_back(AddRecPred); 4922 } 4923 4924 // Create the Equal Predicates P2,P3: 4925 4926 // It is possible that the predicates P2 and/or P3 are computable at 4927 // compile time due to StartVal and/or Accum being constants. 4928 // If either one is, then we can check that now and escape if either P2 4929 // or P3 is false. 4930 4931 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4932 // for each of StartVal and Accum 4933 auto getExtendedExpr = [&](const SCEV *Expr, 4934 bool CreateSignExtend) -> const SCEV * { 4935 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4936 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4937 const SCEV *ExtendedExpr = 4938 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4939 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4940 return ExtendedExpr; 4941 }; 4942 4943 // Given: 4944 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4945 // = getExtendedExpr(Expr) 4946 // Determine whether the predicate P: Expr == ExtendedExpr 4947 // is known to be false at compile time 4948 auto PredIsKnownFalse = [&](const SCEV *Expr, 4949 const SCEV *ExtendedExpr) -> bool { 4950 return Expr != ExtendedExpr && 4951 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4952 }; 4953 4954 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4955 if (PredIsKnownFalse(StartVal, StartExtended)) { 4956 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4957 return None; 4958 } 4959 4960 // The Step is always Signed (because the overflow checks are either 4961 // NSSW or NUSW) 4962 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4963 if (PredIsKnownFalse(Accum, AccumExtended)) { 4964 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4965 return None; 4966 } 4967 4968 auto AppendPredicate = [&](const SCEV *Expr, 4969 const SCEV *ExtendedExpr) -> void { 4970 if (Expr != ExtendedExpr && 4971 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4972 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4973 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4974 Predicates.push_back(Pred); 4975 } 4976 }; 4977 4978 AppendPredicate(StartVal, StartExtended); 4979 AppendPredicate(Accum, AccumExtended); 4980 4981 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4982 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4983 // into NewAR if it will also add the runtime overflow checks specified in 4984 // Predicates. 4985 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4986 4987 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4988 std::make_pair(NewAR, Predicates); 4989 // Remember the result of the analysis for this SCEV at this locayyytion. 4990 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4991 return PredRewrite; 4992 } 4993 4994 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4995 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4996 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4997 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4998 if (!L) 4999 return None; 5000 5001 // Check to see if we already analyzed this PHI. 5002 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5003 if (I != PredicatedSCEVRewrites.end()) { 5004 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5005 I->second; 5006 // Analysis was done before and failed to create an AddRec: 5007 if (Rewrite.first == SymbolicPHI) 5008 return None; 5009 // Analysis was done before and succeeded to create an AddRec under 5010 // a predicate: 5011 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5012 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5013 return Rewrite; 5014 } 5015 5016 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5017 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5018 5019 // Record in the cache that the analysis failed 5020 if (!Rewrite) { 5021 SmallVector<const SCEVPredicate *, 3> Predicates; 5022 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5023 return None; 5024 } 5025 5026 return Rewrite; 5027 } 5028 5029 // FIXME: This utility is currently required because the Rewriter currently 5030 // does not rewrite this expression: 5031 // {0, +, (sext ix (trunc iy to ix) to iy)} 5032 // into {0, +, %step}, 5033 // even when the following Equal predicate exists: 5034 // "%step == (sext ix (trunc iy to ix) to iy)". 5035 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5036 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5037 if (AR1 == AR2) 5038 return true; 5039 5040 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5041 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5042 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5043 return false; 5044 return true; 5045 }; 5046 5047 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5048 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5049 return false; 5050 return true; 5051 } 5052 5053 /// A helper function for createAddRecFromPHI to handle simple cases. 5054 /// 5055 /// This function tries to find an AddRec expression for the simplest (yet most 5056 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5057 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5058 /// technique for finding the AddRec expression. 5059 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5060 Value *BEValueV, 5061 Value *StartValueV) { 5062 const Loop *L = LI.getLoopFor(PN->getParent()); 5063 assert(L && L->getHeader() == PN->getParent()); 5064 assert(BEValueV && StartValueV); 5065 5066 auto BO = MatchBinaryOp(BEValueV, DT); 5067 if (!BO) 5068 return nullptr; 5069 5070 if (BO->Opcode != Instruction::Add) 5071 return nullptr; 5072 5073 const SCEV *Accum = nullptr; 5074 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5075 Accum = getSCEV(BO->RHS); 5076 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5077 Accum = getSCEV(BO->LHS); 5078 5079 if (!Accum) 5080 return nullptr; 5081 5082 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5083 if (BO->IsNUW) 5084 Flags = setFlags(Flags, SCEV::FlagNUW); 5085 if (BO->IsNSW) 5086 Flags = setFlags(Flags, SCEV::FlagNSW); 5087 5088 const SCEV *StartVal = getSCEV(StartValueV); 5089 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5090 5091 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5092 5093 // We can add Flags to the post-inc expression only if we 5094 // know that it is *undefined behavior* for BEValueV to 5095 // overflow. 5096 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5097 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5098 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5099 5100 return PHISCEV; 5101 } 5102 5103 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5104 const Loop *L = LI.getLoopFor(PN->getParent()); 5105 if (!L || L->getHeader() != PN->getParent()) 5106 return nullptr; 5107 5108 // The loop may have multiple entrances or multiple exits; we can analyze 5109 // this phi as an addrec if it has a unique entry value and a unique 5110 // backedge value. 5111 Value *BEValueV = nullptr, *StartValueV = nullptr; 5112 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5113 Value *V = PN->getIncomingValue(i); 5114 if (L->contains(PN->getIncomingBlock(i))) { 5115 if (!BEValueV) { 5116 BEValueV = V; 5117 } else if (BEValueV != V) { 5118 BEValueV = nullptr; 5119 break; 5120 } 5121 } else if (!StartValueV) { 5122 StartValueV = V; 5123 } else if (StartValueV != V) { 5124 StartValueV = nullptr; 5125 break; 5126 } 5127 } 5128 if (!BEValueV || !StartValueV) 5129 return nullptr; 5130 5131 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5132 "PHI node already processed?"); 5133 5134 // First, try to find AddRec expression without creating a fictituos symbolic 5135 // value for PN. 5136 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5137 return S; 5138 5139 // Handle PHI node value symbolically. 5140 const SCEV *SymbolicName = getUnknown(PN); 5141 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5142 5143 // Using this symbolic name for the PHI, analyze the value coming around 5144 // the back-edge. 5145 const SCEV *BEValue = getSCEV(BEValueV); 5146 5147 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5148 // has a special value for the first iteration of the loop. 5149 5150 // If the value coming around the backedge is an add with the symbolic 5151 // value we just inserted, then we found a simple induction variable! 5152 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5153 // If there is a single occurrence of the symbolic value, replace it 5154 // with a recurrence. 5155 unsigned FoundIndex = Add->getNumOperands(); 5156 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5157 if (Add->getOperand(i) == SymbolicName) 5158 if (FoundIndex == e) { 5159 FoundIndex = i; 5160 break; 5161 } 5162 5163 if (FoundIndex != Add->getNumOperands()) { 5164 // Create an add with everything but the specified operand. 5165 SmallVector<const SCEV *, 8> Ops; 5166 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5167 if (i != FoundIndex) 5168 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5169 L, *this)); 5170 const SCEV *Accum = getAddExpr(Ops); 5171 5172 // This is not a valid addrec if the step amount is varying each 5173 // loop iteration, but is not itself an addrec in this loop. 5174 if (isLoopInvariant(Accum, L) || 5175 (isa<SCEVAddRecExpr>(Accum) && 5176 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5177 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5178 5179 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5180 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5181 if (BO->IsNUW) 5182 Flags = setFlags(Flags, SCEV::FlagNUW); 5183 if (BO->IsNSW) 5184 Flags = setFlags(Flags, SCEV::FlagNSW); 5185 } 5186 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5187 // If the increment is an inbounds GEP, then we know the address 5188 // space cannot be wrapped around. We cannot make any guarantee 5189 // about signed or unsigned overflow because pointers are 5190 // unsigned but we may have a negative index from the base 5191 // pointer. We can guarantee that no unsigned wrap occurs if the 5192 // indices form a positive value. 5193 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5194 Flags = setFlags(Flags, SCEV::FlagNW); 5195 5196 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5197 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5198 Flags = setFlags(Flags, SCEV::FlagNUW); 5199 } 5200 5201 // We cannot transfer nuw and nsw flags from subtraction 5202 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5203 // for instance. 5204 } 5205 5206 const SCEV *StartVal = getSCEV(StartValueV); 5207 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5208 5209 // Okay, for the entire analysis of this edge we assumed the PHI 5210 // to be symbolic. We now need to go back and purge all of the 5211 // entries for the scalars that use the symbolic expression. 5212 forgetSymbolicName(PN, SymbolicName); 5213 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5214 5215 // We can add Flags to the post-inc expression only if we 5216 // know that it is *undefined behavior* for BEValueV to 5217 // overflow. 5218 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5219 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5220 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5221 5222 return PHISCEV; 5223 } 5224 } 5225 } else { 5226 // Otherwise, this could be a loop like this: 5227 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5228 // In this case, j = {1,+,1} and BEValue is j. 5229 // Because the other in-value of i (0) fits the evolution of BEValue 5230 // i really is an addrec evolution. 5231 // 5232 // We can generalize this saying that i is the shifted value of BEValue 5233 // by one iteration: 5234 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5235 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5236 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5237 if (Shifted != getCouldNotCompute() && 5238 Start != getCouldNotCompute()) { 5239 const SCEV *StartVal = getSCEV(StartValueV); 5240 if (Start == StartVal) { 5241 // Okay, for the entire analysis of this edge we assumed the PHI 5242 // to be symbolic. We now need to go back and purge all of the 5243 // entries for the scalars that use the symbolic expression. 5244 forgetSymbolicName(PN, SymbolicName); 5245 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5246 return Shifted; 5247 } 5248 } 5249 } 5250 5251 // Remove the temporary PHI node SCEV that has been inserted while intending 5252 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5253 // as it will prevent later (possibly simpler) SCEV expressions to be added 5254 // to the ValueExprMap. 5255 eraseValueFromMap(PN); 5256 5257 return nullptr; 5258 } 5259 5260 // Checks if the SCEV S is available at BB. S is considered available at BB 5261 // if S can be materialized at BB without introducing a fault. 5262 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5263 BasicBlock *BB) { 5264 struct CheckAvailable { 5265 bool TraversalDone = false; 5266 bool Available = true; 5267 5268 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5269 BasicBlock *BB = nullptr; 5270 DominatorTree &DT; 5271 5272 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5273 : L(L), BB(BB), DT(DT) {} 5274 5275 bool setUnavailable() { 5276 TraversalDone = true; 5277 Available = false; 5278 return false; 5279 } 5280 5281 bool follow(const SCEV *S) { 5282 switch (S->getSCEVType()) { 5283 case scConstant: 5284 case scPtrToInt: 5285 case scTruncate: 5286 case scZeroExtend: 5287 case scSignExtend: 5288 case scAddExpr: 5289 case scMulExpr: 5290 case scUMaxExpr: 5291 case scSMaxExpr: 5292 case scUMinExpr: 5293 case scSMinExpr: 5294 // These expressions are available if their operand(s) is/are. 5295 return true; 5296 5297 case scAddRecExpr: { 5298 // We allow add recurrences that are on the loop BB is in, or some 5299 // outer loop. This guarantees availability because the value of the 5300 // add recurrence at BB is simply the "current" value of the induction 5301 // variable. We can relax this in the future; for instance an add 5302 // recurrence on a sibling dominating loop is also available at BB. 5303 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5304 if (L && (ARLoop == L || ARLoop->contains(L))) 5305 return true; 5306 5307 return setUnavailable(); 5308 } 5309 5310 case scUnknown: { 5311 // For SCEVUnknown, we check for simple dominance. 5312 const auto *SU = cast<SCEVUnknown>(S); 5313 Value *V = SU->getValue(); 5314 5315 if (isa<Argument>(V)) 5316 return false; 5317 5318 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5319 return false; 5320 5321 return setUnavailable(); 5322 } 5323 5324 case scUDivExpr: 5325 case scCouldNotCompute: 5326 // We do not try to smart about these at all. 5327 return setUnavailable(); 5328 } 5329 llvm_unreachable("Unknown SCEV kind!"); 5330 } 5331 5332 bool isDone() { return TraversalDone; } 5333 }; 5334 5335 CheckAvailable CA(L, BB, DT); 5336 SCEVTraversal<CheckAvailable> ST(CA); 5337 5338 ST.visitAll(S); 5339 return CA.Available; 5340 } 5341 5342 // Try to match a control flow sequence that branches out at BI and merges back 5343 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5344 // match. 5345 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5346 Value *&C, Value *&LHS, Value *&RHS) { 5347 C = BI->getCondition(); 5348 5349 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5350 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5351 5352 if (!LeftEdge.isSingleEdge()) 5353 return false; 5354 5355 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5356 5357 Use &LeftUse = Merge->getOperandUse(0); 5358 Use &RightUse = Merge->getOperandUse(1); 5359 5360 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5361 LHS = LeftUse; 5362 RHS = RightUse; 5363 return true; 5364 } 5365 5366 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5367 LHS = RightUse; 5368 RHS = LeftUse; 5369 return true; 5370 } 5371 5372 return false; 5373 } 5374 5375 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5376 auto IsReachable = 5377 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5378 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5379 const Loop *L = LI.getLoopFor(PN->getParent()); 5380 5381 // We don't want to break LCSSA, even in a SCEV expression tree. 5382 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5383 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5384 return nullptr; 5385 5386 // Try to match 5387 // 5388 // br %cond, label %left, label %right 5389 // left: 5390 // br label %merge 5391 // right: 5392 // br label %merge 5393 // merge: 5394 // V = phi [ %x, %left ], [ %y, %right ] 5395 // 5396 // as "select %cond, %x, %y" 5397 5398 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5399 assert(IDom && "At least the entry block should dominate PN"); 5400 5401 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5402 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5403 5404 if (BI && BI->isConditional() && 5405 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5406 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5407 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5408 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5409 } 5410 5411 return nullptr; 5412 } 5413 5414 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5415 if (const SCEV *S = createAddRecFromPHI(PN)) 5416 return S; 5417 5418 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5419 return S; 5420 5421 // If the PHI has a single incoming value, follow that value, unless the 5422 // PHI's incoming blocks are in a different loop, in which case doing so 5423 // risks breaking LCSSA form. Instcombine would normally zap these, but 5424 // it doesn't have DominatorTree information, so it may miss cases. 5425 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5426 if (LI.replacementPreservesLCSSAForm(PN, V)) 5427 return getSCEV(V); 5428 5429 // If it's not a loop phi, we can't handle it yet. 5430 return getUnknown(PN); 5431 } 5432 5433 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5434 Value *Cond, 5435 Value *TrueVal, 5436 Value *FalseVal) { 5437 // Handle "constant" branch or select. This can occur for instance when a 5438 // loop pass transforms an inner loop and moves on to process the outer loop. 5439 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5440 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5441 5442 // Try to match some simple smax or umax patterns. 5443 auto *ICI = dyn_cast<ICmpInst>(Cond); 5444 if (!ICI) 5445 return getUnknown(I); 5446 5447 Value *LHS = ICI->getOperand(0); 5448 Value *RHS = ICI->getOperand(1); 5449 5450 switch (ICI->getPredicate()) { 5451 case ICmpInst::ICMP_SLT: 5452 case ICmpInst::ICMP_SLE: 5453 std::swap(LHS, RHS); 5454 LLVM_FALLTHROUGH; 5455 case ICmpInst::ICMP_SGT: 5456 case ICmpInst::ICMP_SGE: 5457 // a >s b ? a+x : b+x -> smax(a, b)+x 5458 // a >s b ? b+x : a+x -> smin(a, b)+x 5459 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5460 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5461 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5462 const SCEV *LA = getSCEV(TrueVal); 5463 const SCEV *RA = getSCEV(FalseVal); 5464 const SCEV *LDiff = getMinusSCEV(LA, LS); 5465 const SCEV *RDiff = getMinusSCEV(RA, RS); 5466 if (LDiff == RDiff) 5467 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5468 LDiff = getMinusSCEV(LA, RS); 5469 RDiff = getMinusSCEV(RA, LS); 5470 if (LDiff == RDiff) 5471 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5472 } 5473 break; 5474 case ICmpInst::ICMP_ULT: 5475 case ICmpInst::ICMP_ULE: 5476 std::swap(LHS, RHS); 5477 LLVM_FALLTHROUGH; 5478 case ICmpInst::ICMP_UGT: 5479 case ICmpInst::ICMP_UGE: 5480 // a >u b ? a+x : b+x -> umax(a, b)+x 5481 // a >u b ? b+x : a+x -> umin(a, b)+x 5482 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5483 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5484 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5485 const SCEV *LA = getSCEV(TrueVal); 5486 const SCEV *RA = getSCEV(FalseVal); 5487 const SCEV *LDiff = getMinusSCEV(LA, LS); 5488 const SCEV *RDiff = getMinusSCEV(RA, RS); 5489 if (LDiff == RDiff) 5490 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5491 LDiff = getMinusSCEV(LA, RS); 5492 RDiff = getMinusSCEV(RA, LS); 5493 if (LDiff == RDiff) 5494 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5495 } 5496 break; 5497 case ICmpInst::ICMP_NE: 5498 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5499 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5500 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5501 const SCEV *One = getOne(I->getType()); 5502 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5503 const SCEV *LA = getSCEV(TrueVal); 5504 const SCEV *RA = getSCEV(FalseVal); 5505 const SCEV *LDiff = getMinusSCEV(LA, LS); 5506 const SCEV *RDiff = getMinusSCEV(RA, One); 5507 if (LDiff == RDiff) 5508 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5509 } 5510 break; 5511 case ICmpInst::ICMP_EQ: 5512 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5513 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5514 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5515 const SCEV *One = getOne(I->getType()); 5516 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5517 const SCEV *LA = getSCEV(TrueVal); 5518 const SCEV *RA = getSCEV(FalseVal); 5519 const SCEV *LDiff = getMinusSCEV(LA, One); 5520 const SCEV *RDiff = getMinusSCEV(RA, LS); 5521 if (LDiff == RDiff) 5522 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5523 } 5524 break; 5525 default: 5526 break; 5527 } 5528 5529 return getUnknown(I); 5530 } 5531 5532 /// Expand GEP instructions into add and multiply operations. This allows them 5533 /// to be analyzed by regular SCEV code. 5534 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5535 // Don't attempt to analyze GEPs over unsized objects. 5536 if (!GEP->getSourceElementType()->isSized()) 5537 return getUnknown(GEP); 5538 5539 SmallVector<const SCEV *, 4> IndexExprs; 5540 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5541 IndexExprs.push_back(getSCEV(*Index)); 5542 return getGEPExpr(GEP, IndexExprs); 5543 } 5544 5545 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5546 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5547 return C->getAPInt().countTrailingZeros(); 5548 5549 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5550 return GetMinTrailingZeros(I->getOperand()); 5551 5552 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5553 return std::min(GetMinTrailingZeros(T->getOperand()), 5554 (uint32_t)getTypeSizeInBits(T->getType())); 5555 5556 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5557 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5558 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5559 ? getTypeSizeInBits(E->getType()) 5560 : OpRes; 5561 } 5562 5563 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5564 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5565 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5566 ? getTypeSizeInBits(E->getType()) 5567 : OpRes; 5568 } 5569 5570 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5571 // The result is the min of all operands results. 5572 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5573 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5574 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5575 return MinOpRes; 5576 } 5577 5578 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5579 // The result is the sum of all operands results. 5580 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5581 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5582 for (unsigned i = 1, e = M->getNumOperands(); 5583 SumOpRes != BitWidth && i != e; ++i) 5584 SumOpRes = 5585 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5586 return SumOpRes; 5587 } 5588 5589 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5590 // The result is the min of all operands results. 5591 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5592 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5593 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5594 return MinOpRes; 5595 } 5596 5597 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5598 // The result is the min of all operands results. 5599 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5600 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5601 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5602 return MinOpRes; 5603 } 5604 5605 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5606 // The result is the min of all operands results. 5607 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5608 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5609 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5610 return MinOpRes; 5611 } 5612 5613 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5614 // For a SCEVUnknown, ask ValueTracking. 5615 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5616 return Known.countMinTrailingZeros(); 5617 } 5618 5619 // SCEVUDivExpr 5620 return 0; 5621 } 5622 5623 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5624 auto I = MinTrailingZerosCache.find(S); 5625 if (I != MinTrailingZerosCache.end()) 5626 return I->second; 5627 5628 uint32_t Result = GetMinTrailingZerosImpl(S); 5629 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5630 assert(InsertPair.second && "Should insert a new key"); 5631 return InsertPair.first->second; 5632 } 5633 5634 /// Helper method to assign a range to V from metadata present in the IR. 5635 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5636 if (Instruction *I = dyn_cast<Instruction>(V)) 5637 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5638 return getConstantRangeFromMetadata(*MD); 5639 5640 return None; 5641 } 5642 5643 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5644 SCEV::NoWrapFlags Flags) { 5645 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5646 AddRec->setNoWrapFlags(Flags); 5647 UnsignedRanges.erase(AddRec); 5648 SignedRanges.erase(AddRec); 5649 } 5650 } 5651 5652 ConstantRange ScalarEvolution:: 5653 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5654 const DataLayout &DL = getDataLayout(); 5655 5656 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5657 ConstantRange CR(BitWidth, /*isFullSet=*/true); 5658 5659 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5660 // use information about the trip count to improve our available range. Note 5661 // that the trip count independent cases are already handled by known bits. 5662 // WARNING: The definition of recurrence used here is subtly different than 5663 // the one used by AddRec (and thus most of this file). Step is allowed to 5664 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5665 // and other addrecs in the same loop (for non-affine addrecs). The code 5666 // below intentionally handles the case where step is not loop invariant. 5667 auto *P = dyn_cast<PHINode>(U->getValue()); 5668 if (!P) 5669 return CR; 5670 5671 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5672 // even the values that are not available in these blocks may come from them, 5673 // and this leads to false-positive recurrence test. 5674 for (auto *Pred : predecessors(P->getParent())) 5675 if (!DT.isReachableFromEntry(Pred)) 5676 return CR; 5677 5678 BinaryOperator *BO; 5679 Value *Start, *Step; 5680 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5681 return CR; 5682 5683 // If we found a recurrence in reachable code, we must be in a loop. Note 5684 // that BO might be in some subloop of L, and that's completely okay. 5685 auto *L = LI.getLoopFor(P->getParent()); 5686 assert(L && L->getHeader() == P->getParent()); 5687 if (!L->contains(BO->getParent())) 5688 // NOTE: This bailout should be an assert instead. However, asserting 5689 // the condition here exposes a case where LoopFusion is querying SCEV 5690 // with malformed loop information during the midst of the transform. 5691 // There doesn't appear to be an obvious fix, so for the moment bailout 5692 // until the caller issue can be fixed. PR49566 tracks the bug. 5693 return CR; 5694 5695 // TODO: Extend to other opcodes such as ashr, mul, and div 5696 switch (BO->getOpcode()) { 5697 default: 5698 return CR; 5699 case Instruction::LShr: 5700 case Instruction::Shl: 5701 break; 5702 }; 5703 5704 if (BO->getOperand(0) != P) 5705 // TODO: Handle the power function forms some day. 5706 return CR; 5707 5708 unsigned TC = getSmallConstantMaxTripCount(L); 5709 if (!TC || TC >= BitWidth) 5710 return CR; 5711 5712 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5713 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5714 assert(KnownStart.getBitWidth() == BitWidth && 5715 KnownStep.getBitWidth() == BitWidth); 5716 5717 // Compute total shift amount, being careful of overflow and bitwidths. 5718 auto MaxShiftAmt = KnownStep.getMaxValue(); 5719 APInt TCAP(BitWidth, TC-1); 5720 bool Overflow = false; 5721 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5722 if (Overflow) 5723 return CR; 5724 5725 switch (BO->getOpcode()) { 5726 default: 5727 llvm_unreachable("filtered out above"); 5728 case Instruction::LShr: { 5729 // For each lshr, three cases: 5730 // shift = 0 => unchanged value 5731 // saturation => 0 5732 // other => a smaller positive number 5733 // Thus, the low end of the unsigned range is the last value produced. 5734 auto KnownEnd = KnownBits::lshr(KnownStart, 5735 KnownBits::makeConstant(TotalShift)); 5736 auto R = ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5737 KnownStart.getMaxValue() + 1); 5738 CR = CR.intersectWith(R); 5739 break; 5740 } 5741 case Instruction::Shl: { 5742 // Iff no bits are shifted out, value increases on every shift. 5743 auto KnownEnd = KnownBits::shl(KnownStart, 5744 KnownBits::makeConstant(TotalShift)); 5745 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5746 CR = CR.intersectWith(ConstantRange(KnownStart.getMinValue(), 5747 KnownEnd.getMaxValue() + 1)); 5748 break; 5749 } 5750 }; 5751 return CR; 5752 } 5753 5754 5755 5756 /// Determine the range for a particular SCEV. If SignHint is 5757 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5758 /// with a "cleaner" unsigned (resp. signed) representation. 5759 const ConstantRange & 5760 ScalarEvolution::getRangeRef(const SCEV *S, 5761 ScalarEvolution::RangeSignHint SignHint) { 5762 DenseMap<const SCEV *, ConstantRange> &Cache = 5763 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5764 : SignedRanges; 5765 ConstantRange::PreferredRangeType RangeType = 5766 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5767 ? ConstantRange::Unsigned : ConstantRange::Signed; 5768 5769 // See if we've computed this range already. 5770 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5771 if (I != Cache.end()) 5772 return I->second; 5773 5774 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5775 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5776 5777 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5778 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5779 using OBO = OverflowingBinaryOperator; 5780 5781 // If the value has known zeros, the maximum value will have those known zeros 5782 // as well. 5783 uint32_t TZ = GetMinTrailingZeros(S); 5784 if (TZ != 0) { 5785 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5786 ConservativeResult = 5787 ConstantRange(APInt::getMinValue(BitWidth), 5788 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5789 else 5790 ConservativeResult = ConstantRange( 5791 APInt::getSignedMinValue(BitWidth), 5792 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5793 } 5794 5795 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5796 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5797 unsigned WrapType = OBO::AnyWrap; 5798 if (Add->hasNoSignedWrap()) 5799 WrapType |= OBO::NoSignedWrap; 5800 if (Add->hasNoUnsignedWrap()) 5801 WrapType |= OBO::NoUnsignedWrap; 5802 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5803 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5804 WrapType, RangeType); 5805 return setRange(Add, SignHint, 5806 ConservativeResult.intersectWith(X, RangeType)); 5807 } 5808 5809 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5810 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5811 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5812 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5813 return setRange(Mul, SignHint, 5814 ConservativeResult.intersectWith(X, RangeType)); 5815 } 5816 5817 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5818 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5819 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5820 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5821 return setRange(SMax, SignHint, 5822 ConservativeResult.intersectWith(X, RangeType)); 5823 } 5824 5825 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5826 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5827 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5828 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5829 return setRange(UMax, SignHint, 5830 ConservativeResult.intersectWith(X, RangeType)); 5831 } 5832 5833 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5834 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5835 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5836 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5837 return setRange(SMin, SignHint, 5838 ConservativeResult.intersectWith(X, RangeType)); 5839 } 5840 5841 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5842 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5843 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5844 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5845 return setRange(UMin, SignHint, 5846 ConservativeResult.intersectWith(X, RangeType)); 5847 } 5848 5849 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5850 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5851 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5852 return setRange(UDiv, SignHint, 5853 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5854 } 5855 5856 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5857 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5858 return setRange(ZExt, SignHint, 5859 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5860 RangeType)); 5861 } 5862 5863 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5864 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5865 return setRange(SExt, SignHint, 5866 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5867 RangeType)); 5868 } 5869 5870 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 5871 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 5872 return setRange(PtrToInt, SignHint, X); 5873 } 5874 5875 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5876 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5877 return setRange(Trunc, SignHint, 5878 ConservativeResult.intersectWith(X.truncate(BitWidth), 5879 RangeType)); 5880 } 5881 5882 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5883 // If there's no unsigned wrap, the value will never be less than its 5884 // initial value. 5885 if (AddRec->hasNoUnsignedWrap()) { 5886 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5887 if (!UnsignedMinValue.isNullValue()) 5888 ConservativeResult = ConservativeResult.intersectWith( 5889 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5890 } 5891 5892 // If there's no signed wrap, and all the operands except initial value have 5893 // the same sign or zero, the value won't ever be: 5894 // 1: smaller than initial value if operands are non negative, 5895 // 2: bigger than initial value if operands are non positive. 5896 // For both cases, value can not cross signed min/max boundary. 5897 if (AddRec->hasNoSignedWrap()) { 5898 bool AllNonNeg = true; 5899 bool AllNonPos = true; 5900 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5901 if (!isKnownNonNegative(AddRec->getOperand(i))) 5902 AllNonNeg = false; 5903 if (!isKnownNonPositive(AddRec->getOperand(i))) 5904 AllNonPos = false; 5905 } 5906 if (AllNonNeg) 5907 ConservativeResult = ConservativeResult.intersectWith( 5908 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5909 APInt::getSignedMinValue(BitWidth)), 5910 RangeType); 5911 else if (AllNonPos) 5912 ConservativeResult = ConservativeResult.intersectWith( 5913 ConstantRange::getNonEmpty( 5914 APInt::getSignedMinValue(BitWidth), 5915 getSignedRangeMax(AddRec->getStart()) + 1), 5916 RangeType); 5917 } 5918 5919 // TODO: non-affine addrec 5920 if (AddRec->isAffine()) { 5921 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5922 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5923 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5924 auto RangeFromAffine = getRangeForAffineAR( 5925 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5926 BitWidth); 5927 ConservativeResult = 5928 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5929 5930 auto RangeFromFactoring = getRangeViaFactoring( 5931 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5932 BitWidth); 5933 ConservativeResult = 5934 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5935 } 5936 5937 // Now try symbolic BE count and more powerful methods. 5938 if (UseExpensiveRangeSharpening) { 5939 const SCEV *SymbolicMaxBECount = 5940 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 5941 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 5942 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5943 AddRec->hasNoSelfWrap()) { 5944 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 5945 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 5946 ConservativeResult = 5947 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 5948 } 5949 } 5950 } 5951 5952 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5953 } 5954 5955 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5956 5957 // Check if the IR explicitly contains !range metadata. 5958 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5959 if (MDRange.hasValue()) 5960 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5961 RangeType); 5962 5963 // Use facts about recurrences in the underlying IR. Note that add 5964 // recurrences are AddRecExprs and thus don't hit this path. This 5965 // primarily handles shift recurrences. 5966 auto CR = getRangeForUnknownRecurrence(U); 5967 ConservativeResult = ConservativeResult.intersectWith(CR); 5968 5969 // See if ValueTracking can give us a useful range. 5970 const DataLayout &DL = getDataLayout(); 5971 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5972 if (Known.getBitWidth() != BitWidth) 5973 Known = Known.zextOrTrunc(BitWidth); 5974 5975 // ValueTracking may be able to compute a tighter result for the number of 5976 // sign bits than for the value of those sign bits. 5977 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5978 if (U->getType()->isPointerTy()) { 5979 // If the pointer size is larger than the index size type, this can cause 5980 // NS to be larger than BitWidth. So compensate for this. 5981 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5982 int ptrIdxDiff = ptrSize - BitWidth; 5983 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5984 NS -= ptrIdxDiff; 5985 } 5986 5987 if (NS > 1) { 5988 // If we know any of the sign bits, we know all of the sign bits. 5989 if (!Known.Zero.getHiBits(NS).isNullValue()) 5990 Known.Zero.setHighBits(NS); 5991 if (!Known.One.getHiBits(NS).isNullValue()) 5992 Known.One.setHighBits(NS); 5993 } 5994 5995 if (Known.getMinValue() != Known.getMaxValue() + 1) 5996 ConservativeResult = ConservativeResult.intersectWith( 5997 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5998 RangeType); 5999 if (NS > 1) 6000 ConservativeResult = ConservativeResult.intersectWith( 6001 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6002 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6003 RangeType); 6004 6005 // A range of Phi is a subset of union of all ranges of its input. 6006 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6007 // Make sure that we do not run over cycled Phis. 6008 if (PendingPhiRanges.insert(Phi).second) { 6009 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6010 for (auto &Op : Phi->operands()) { 6011 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6012 RangeFromOps = RangeFromOps.unionWith(OpRange); 6013 // No point to continue if we already have a full set. 6014 if (RangeFromOps.isFullSet()) 6015 break; 6016 } 6017 ConservativeResult = 6018 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6019 bool Erased = PendingPhiRanges.erase(Phi); 6020 assert(Erased && "Failed to erase Phi properly?"); 6021 (void) Erased; 6022 } 6023 } 6024 6025 return setRange(U, SignHint, std::move(ConservativeResult)); 6026 } 6027 6028 return setRange(S, SignHint, std::move(ConservativeResult)); 6029 } 6030 6031 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6032 // values that the expression can take. Initially, the expression has a value 6033 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6034 // argument defines if we treat Step as signed or unsigned. 6035 static ConstantRange getRangeForAffineARHelper(APInt Step, 6036 const ConstantRange &StartRange, 6037 const APInt &MaxBECount, 6038 unsigned BitWidth, bool Signed) { 6039 // If either Step or MaxBECount is 0, then the expression won't change, and we 6040 // just need to return the initial range. 6041 if (Step == 0 || MaxBECount == 0) 6042 return StartRange; 6043 6044 // If we don't know anything about the initial value (i.e. StartRange is 6045 // FullRange), then we don't know anything about the final range either. 6046 // Return FullRange. 6047 if (StartRange.isFullSet()) 6048 return ConstantRange::getFull(BitWidth); 6049 6050 // If Step is signed and negative, then we use its absolute value, but we also 6051 // note that we're moving in the opposite direction. 6052 bool Descending = Signed && Step.isNegative(); 6053 6054 if (Signed) 6055 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6056 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6057 // This equations hold true due to the well-defined wrap-around behavior of 6058 // APInt. 6059 Step = Step.abs(); 6060 6061 // Check if Offset is more than full span of BitWidth. If it is, the 6062 // expression is guaranteed to overflow. 6063 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6064 return ConstantRange::getFull(BitWidth); 6065 6066 // Offset is by how much the expression can change. Checks above guarantee no 6067 // overflow here. 6068 APInt Offset = Step * MaxBECount; 6069 6070 // Minimum value of the final range will match the minimal value of StartRange 6071 // if the expression is increasing and will be decreased by Offset otherwise. 6072 // Maximum value of the final range will match the maximal value of StartRange 6073 // if the expression is decreasing and will be increased by Offset otherwise. 6074 APInt StartLower = StartRange.getLower(); 6075 APInt StartUpper = StartRange.getUpper() - 1; 6076 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6077 : (StartUpper + std::move(Offset)); 6078 6079 // It's possible that the new minimum/maximum value will fall into the initial 6080 // range (due to wrap around). This means that the expression can take any 6081 // value in this bitwidth, and we have to return full range. 6082 if (StartRange.contains(MovedBoundary)) 6083 return ConstantRange::getFull(BitWidth); 6084 6085 APInt NewLower = 6086 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6087 APInt NewUpper = 6088 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6089 NewUpper += 1; 6090 6091 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6092 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6093 } 6094 6095 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6096 const SCEV *Step, 6097 const SCEV *MaxBECount, 6098 unsigned BitWidth) { 6099 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6100 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6101 "Precondition!"); 6102 6103 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6104 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6105 6106 // First, consider step signed. 6107 ConstantRange StartSRange = getSignedRange(Start); 6108 ConstantRange StepSRange = getSignedRange(Step); 6109 6110 // If Step can be both positive and negative, we need to find ranges for the 6111 // maximum absolute step values in both directions and union them. 6112 ConstantRange SR = 6113 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6114 MaxBECountValue, BitWidth, /* Signed = */ true); 6115 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6116 StartSRange, MaxBECountValue, 6117 BitWidth, /* Signed = */ true)); 6118 6119 // Next, consider step unsigned. 6120 ConstantRange UR = getRangeForAffineARHelper( 6121 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6122 MaxBECountValue, BitWidth, /* Signed = */ false); 6123 6124 // Finally, intersect signed and unsigned ranges. 6125 return SR.intersectWith(UR, ConstantRange::Smallest); 6126 } 6127 6128 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6129 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6130 ScalarEvolution::RangeSignHint SignHint) { 6131 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6132 assert(AddRec->hasNoSelfWrap() && 6133 "This only works for non-self-wrapping AddRecs!"); 6134 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6135 const SCEV *Step = AddRec->getStepRecurrence(*this); 6136 // Only deal with constant step to save compile time. 6137 if (!isa<SCEVConstant>(Step)) 6138 return ConstantRange::getFull(BitWidth); 6139 // Let's make sure that we can prove that we do not self-wrap during 6140 // MaxBECount iterations. We need this because MaxBECount is a maximum 6141 // iteration count estimate, and we might infer nw from some exit for which we 6142 // do not know max exit count (or any other side reasoning). 6143 // TODO: Turn into assert at some point. 6144 if (getTypeSizeInBits(MaxBECount->getType()) > 6145 getTypeSizeInBits(AddRec->getType())) 6146 return ConstantRange::getFull(BitWidth); 6147 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6148 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6149 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6150 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6151 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6152 MaxItersWithoutWrap)) 6153 return ConstantRange::getFull(BitWidth); 6154 6155 ICmpInst::Predicate LEPred = 6156 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6157 ICmpInst::Predicate GEPred = 6158 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6159 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6160 6161 // We know that there is no self-wrap. Let's take Start and End values and 6162 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6163 // the iteration. They either lie inside the range [Min(Start, End), 6164 // Max(Start, End)] or outside it: 6165 // 6166 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6167 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6168 // 6169 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6170 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6171 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6172 // Start <= End and step is positive, or Start >= End and step is negative. 6173 const SCEV *Start = AddRec->getStart(); 6174 ConstantRange StartRange = getRangeRef(Start, SignHint); 6175 ConstantRange EndRange = getRangeRef(End, SignHint); 6176 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6177 // If they already cover full iteration space, we will know nothing useful 6178 // even if we prove what we want to prove. 6179 if (RangeBetween.isFullSet()) 6180 return RangeBetween; 6181 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6182 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6183 : RangeBetween.isWrappedSet(); 6184 if (IsWrappedSet) 6185 return ConstantRange::getFull(BitWidth); 6186 6187 if (isKnownPositive(Step) && 6188 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6189 return RangeBetween; 6190 else if (isKnownNegative(Step) && 6191 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6192 return RangeBetween; 6193 return ConstantRange::getFull(BitWidth); 6194 } 6195 6196 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6197 const SCEV *Step, 6198 const SCEV *MaxBECount, 6199 unsigned BitWidth) { 6200 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6201 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6202 6203 struct SelectPattern { 6204 Value *Condition = nullptr; 6205 APInt TrueValue; 6206 APInt FalseValue; 6207 6208 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6209 const SCEV *S) { 6210 Optional<unsigned> CastOp; 6211 APInt Offset(BitWidth, 0); 6212 6213 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6214 "Should be!"); 6215 6216 // Peel off a constant offset: 6217 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6218 // In the future we could consider being smarter here and handle 6219 // {Start+Step,+,Step} too. 6220 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6221 return; 6222 6223 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6224 S = SA->getOperand(1); 6225 } 6226 6227 // Peel off a cast operation 6228 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6229 CastOp = SCast->getSCEVType(); 6230 S = SCast->getOperand(); 6231 } 6232 6233 using namespace llvm::PatternMatch; 6234 6235 auto *SU = dyn_cast<SCEVUnknown>(S); 6236 const APInt *TrueVal, *FalseVal; 6237 if (!SU || 6238 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6239 m_APInt(FalseVal)))) { 6240 Condition = nullptr; 6241 return; 6242 } 6243 6244 TrueValue = *TrueVal; 6245 FalseValue = *FalseVal; 6246 6247 // Re-apply the cast we peeled off earlier 6248 if (CastOp.hasValue()) 6249 switch (*CastOp) { 6250 default: 6251 llvm_unreachable("Unknown SCEV cast type!"); 6252 6253 case scTruncate: 6254 TrueValue = TrueValue.trunc(BitWidth); 6255 FalseValue = FalseValue.trunc(BitWidth); 6256 break; 6257 case scZeroExtend: 6258 TrueValue = TrueValue.zext(BitWidth); 6259 FalseValue = FalseValue.zext(BitWidth); 6260 break; 6261 case scSignExtend: 6262 TrueValue = TrueValue.sext(BitWidth); 6263 FalseValue = FalseValue.sext(BitWidth); 6264 break; 6265 } 6266 6267 // Re-apply the constant offset we peeled off earlier 6268 TrueValue += Offset; 6269 FalseValue += Offset; 6270 } 6271 6272 bool isRecognized() { return Condition != nullptr; } 6273 }; 6274 6275 SelectPattern StartPattern(*this, BitWidth, Start); 6276 if (!StartPattern.isRecognized()) 6277 return ConstantRange::getFull(BitWidth); 6278 6279 SelectPattern StepPattern(*this, BitWidth, Step); 6280 if (!StepPattern.isRecognized()) 6281 return ConstantRange::getFull(BitWidth); 6282 6283 if (StartPattern.Condition != StepPattern.Condition) { 6284 // We don't handle this case today; but we could, by considering four 6285 // possibilities below instead of two. I'm not sure if there are cases where 6286 // that will help over what getRange already does, though. 6287 return ConstantRange::getFull(BitWidth); 6288 } 6289 6290 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6291 // construct arbitrary general SCEV expressions here. This function is called 6292 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6293 // say) can end up caching a suboptimal value. 6294 6295 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6296 // C2352 and C2512 (otherwise it isn't needed). 6297 6298 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6299 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6300 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6301 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6302 6303 ConstantRange TrueRange = 6304 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6305 ConstantRange FalseRange = 6306 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6307 6308 return TrueRange.unionWith(FalseRange); 6309 } 6310 6311 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6312 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6313 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6314 6315 // Return early if there are no flags to propagate to the SCEV. 6316 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6317 if (BinOp->hasNoUnsignedWrap()) 6318 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6319 if (BinOp->hasNoSignedWrap()) 6320 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6321 if (Flags == SCEV::FlagAnyWrap) 6322 return SCEV::FlagAnyWrap; 6323 6324 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6325 } 6326 6327 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6328 // Here we check that I is in the header of the innermost loop containing I, 6329 // since we only deal with instructions in the loop header. The actual loop we 6330 // need to check later will come from an add recurrence, but getting that 6331 // requires computing the SCEV of the operands, which can be expensive. This 6332 // check we can do cheaply to rule out some cases early. 6333 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6334 if (InnermostContainingLoop == nullptr || 6335 InnermostContainingLoop->getHeader() != I->getParent()) 6336 return false; 6337 6338 // Only proceed if we can prove that I does not yield poison. 6339 if (!programUndefinedIfPoison(I)) 6340 return false; 6341 6342 // At this point we know that if I is executed, then it does not wrap 6343 // according to at least one of NSW or NUW. If I is not executed, then we do 6344 // not know if the calculation that I represents would wrap. Multiple 6345 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6346 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6347 // derived from other instructions that map to the same SCEV. We cannot make 6348 // that guarantee for cases where I is not executed. So we need to find the 6349 // loop that I is considered in relation to and prove that I is executed for 6350 // every iteration of that loop. That implies that the value that I 6351 // calculates does not wrap anywhere in the loop, so then we can apply the 6352 // flags to the SCEV. 6353 // 6354 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6355 // from different loops, so that we know which loop to prove that I is 6356 // executed in. 6357 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6358 // I could be an extractvalue from a call to an overflow intrinsic. 6359 // TODO: We can do better here in some cases. 6360 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6361 return false; 6362 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6363 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6364 bool AllOtherOpsLoopInvariant = true; 6365 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6366 ++OtherOpIndex) { 6367 if (OtherOpIndex != OpIndex) { 6368 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6369 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6370 AllOtherOpsLoopInvariant = false; 6371 break; 6372 } 6373 } 6374 } 6375 if (AllOtherOpsLoopInvariant && 6376 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6377 return true; 6378 } 6379 } 6380 return false; 6381 } 6382 6383 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6384 // If we know that \c I can never be poison period, then that's enough. 6385 if (isSCEVExprNeverPoison(I)) 6386 return true; 6387 6388 // For an add recurrence specifically, we assume that infinite loops without 6389 // side effects are undefined behavior, and then reason as follows: 6390 // 6391 // If the add recurrence is poison in any iteration, it is poison on all 6392 // future iterations (since incrementing poison yields poison). If the result 6393 // of the add recurrence is fed into the loop latch condition and the loop 6394 // does not contain any throws or exiting blocks other than the latch, we now 6395 // have the ability to "choose" whether the backedge is taken or not (by 6396 // choosing a sufficiently evil value for the poison feeding into the branch) 6397 // for every iteration including and after the one in which \p I first became 6398 // poison. There are two possibilities (let's call the iteration in which \p 6399 // I first became poison as K): 6400 // 6401 // 1. In the set of iterations including and after K, the loop body executes 6402 // no side effects. In this case executing the backege an infinte number 6403 // of times will yield undefined behavior. 6404 // 6405 // 2. In the set of iterations including and after K, the loop body executes 6406 // at least one side effect. In this case, that specific instance of side 6407 // effect is control dependent on poison, which also yields undefined 6408 // behavior. 6409 6410 auto *ExitingBB = L->getExitingBlock(); 6411 auto *LatchBB = L->getLoopLatch(); 6412 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6413 return false; 6414 6415 SmallPtrSet<const Instruction *, 16> Pushed; 6416 SmallVector<const Instruction *, 8> PoisonStack; 6417 6418 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6419 // things that are known to be poison under that assumption go on the 6420 // PoisonStack. 6421 Pushed.insert(I); 6422 PoisonStack.push_back(I); 6423 6424 bool LatchControlDependentOnPoison = false; 6425 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6426 const Instruction *Poison = PoisonStack.pop_back_val(); 6427 6428 for (auto *PoisonUser : Poison->users()) { 6429 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6430 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6431 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6432 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6433 assert(BI->isConditional() && "Only possibility!"); 6434 if (BI->getParent() == LatchBB) { 6435 LatchControlDependentOnPoison = true; 6436 break; 6437 } 6438 } 6439 } 6440 } 6441 6442 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6443 } 6444 6445 ScalarEvolution::LoopProperties 6446 ScalarEvolution::getLoopProperties(const Loop *L) { 6447 using LoopProperties = ScalarEvolution::LoopProperties; 6448 6449 auto Itr = LoopPropertiesCache.find(L); 6450 if (Itr == LoopPropertiesCache.end()) { 6451 auto HasSideEffects = [](Instruction *I) { 6452 if (auto *SI = dyn_cast<StoreInst>(I)) 6453 return !SI->isSimple(); 6454 6455 return I->mayHaveSideEffects(); 6456 }; 6457 6458 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6459 /*HasNoSideEffects*/ true}; 6460 6461 for (auto *BB : L->getBlocks()) 6462 for (auto &I : *BB) { 6463 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6464 LP.HasNoAbnormalExits = false; 6465 if (HasSideEffects(&I)) 6466 LP.HasNoSideEffects = false; 6467 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6468 break; // We're already as pessimistic as we can get. 6469 } 6470 6471 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6472 assert(InsertPair.second && "We just checked!"); 6473 Itr = InsertPair.first; 6474 } 6475 6476 return Itr->second; 6477 } 6478 6479 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6480 if (!isSCEVable(V->getType())) 6481 return getUnknown(V); 6482 6483 if (Instruction *I = dyn_cast<Instruction>(V)) { 6484 // Don't attempt to analyze instructions in blocks that aren't 6485 // reachable. Such instructions don't matter, and they aren't required 6486 // to obey basic rules for definitions dominating uses which this 6487 // analysis depends on. 6488 if (!DT.isReachableFromEntry(I->getParent())) 6489 return getUnknown(UndefValue::get(V->getType())); 6490 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6491 return getConstant(CI); 6492 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6493 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6494 else if (!isa<ConstantExpr>(V)) 6495 return getUnknown(V); 6496 6497 Operator *U = cast<Operator>(V); 6498 if (auto BO = MatchBinaryOp(U, DT)) { 6499 switch (BO->Opcode) { 6500 case Instruction::Add: { 6501 // The simple thing to do would be to just call getSCEV on both operands 6502 // and call getAddExpr with the result. However if we're looking at a 6503 // bunch of things all added together, this can be quite inefficient, 6504 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6505 // Instead, gather up all the operands and make a single getAddExpr call. 6506 // LLVM IR canonical form means we need only traverse the left operands. 6507 SmallVector<const SCEV *, 4> AddOps; 6508 do { 6509 if (BO->Op) { 6510 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6511 AddOps.push_back(OpSCEV); 6512 break; 6513 } 6514 6515 // If a NUW or NSW flag can be applied to the SCEV for this 6516 // addition, then compute the SCEV for this addition by itself 6517 // with a separate call to getAddExpr. We need to do that 6518 // instead of pushing the operands of the addition onto AddOps, 6519 // since the flags are only known to apply to this particular 6520 // addition - they may not apply to other additions that can be 6521 // formed with operands from AddOps. 6522 const SCEV *RHS = getSCEV(BO->RHS); 6523 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6524 if (Flags != SCEV::FlagAnyWrap) { 6525 const SCEV *LHS = getSCEV(BO->LHS); 6526 if (BO->Opcode == Instruction::Sub) 6527 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6528 else 6529 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6530 break; 6531 } 6532 } 6533 6534 if (BO->Opcode == Instruction::Sub) 6535 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6536 else 6537 AddOps.push_back(getSCEV(BO->RHS)); 6538 6539 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6540 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6541 NewBO->Opcode != Instruction::Sub)) { 6542 AddOps.push_back(getSCEV(BO->LHS)); 6543 break; 6544 } 6545 BO = NewBO; 6546 } while (true); 6547 6548 return getAddExpr(AddOps); 6549 } 6550 6551 case Instruction::Mul: { 6552 SmallVector<const SCEV *, 4> MulOps; 6553 do { 6554 if (BO->Op) { 6555 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6556 MulOps.push_back(OpSCEV); 6557 break; 6558 } 6559 6560 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6561 if (Flags != SCEV::FlagAnyWrap) { 6562 MulOps.push_back( 6563 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6564 break; 6565 } 6566 } 6567 6568 MulOps.push_back(getSCEV(BO->RHS)); 6569 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6570 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6571 MulOps.push_back(getSCEV(BO->LHS)); 6572 break; 6573 } 6574 BO = NewBO; 6575 } while (true); 6576 6577 return getMulExpr(MulOps); 6578 } 6579 case Instruction::UDiv: 6580 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6581 case Instruction::URem: 6582 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6583 case Instruction::Sub: { 6584 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6585 if (BO->Op) 6586 Flags = getNoWrapFlagsFromUB(BO->Op); 6587 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6588 } 6589 case Instruction::And: 6590 // For an expression like x&255 that merely masks off the high bits, 6591 // use zext(trunc(x)) as the SCEV expression. 6592 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6593 if (CI->isZero()) 6594 return getSCEV(BO->RHS); 6595 if (CI->isMinusOne()) 6596 return getSCEV(BO->LHS); 6597 const APInt &A = CI->getValue(); 6598 6599 // Instcombine's ShrinkDemandedConstant may strip bits out of 6600 // constants, obscuring what would otherwise be a low-bits mask. 6601 // Use computeKnownBits to compute what ShrinkDemandedConstant 6602 // knew about to reconstruct a low-bits mask value. 6603 unsigned LZ = A.countLeadingZeros(); 6604 unsigned TZ = A.countTrailingZeros(); 6605 unsigned BitWidth = A.getBitWidth(); 6606 KnownBits Known(BitWidth); 6607 computeKnownBits(BO->LHS, Known, getDataLayout(), 6608 0, &AC, nullptr, &DT); 6609 6610 APInt EffectiveMask = 6611 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6612 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6613 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6614 const SCEV *LHS = getSCEV(BO->LHS); 6615 const SCEV *ShiftedLHS = nullptr; 6616 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6617 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6618 // For an expression like (x * 8) & 8, simplify the multiply. 6619 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6620 unsigned GCD = std::min(MulZeros, TZ); 6621 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6622 SmallVector<const SCEV*, 4> MulOps; 6623 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6624 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6625 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6626 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6627 } 6628 } 6629 if (!ShiftedLHS) 6630 ShiftedLHS = getUDivExpr(LHS, MulCount); 6631 return getMulExpr( 6632 getZeroExtendExpr( 6633 getTruncateExpr(ShiftedLHS, 6634 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6635 BO->LHS->getType()), 6636 MulCount); 6637 } 6638 } 6639 break; 6640 6641 case Instruction::Or: 6642 // If the RHS of the Or is a constant, we may have something like: 6643 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6644 // optimizations will transparently handle this case. 6645 // 6646 // In order for this transformation to be safe, the LHS must be of the 6647 // form X*(2^n) and the Or constant must be less than 2^n. 6648 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6649 const SCEV *LHS = getSCEV(BO->LHS); 6650 const APInt &CIVal = CI->getValue(); 6651 if (GetMinTrailingZeros(LHS) >= 6652 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6653 // Build a plain add SCEV. 6654 return getAddExpr(LHS, getSCEV(CI), 6655 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6656 } 6657 } 6658 break; 6659 6660 case Instruction::Xor: 6661 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6662 // If the RHS of xor is -1, then this is a not operation. 6663 if (CI->isMinusOne()) 6664 return getNotSCEV(getSCEV(BO->LHS)); 6665 6666 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6667 // This is a variant of the check for xor with -1, and it handles 6668 // the case where instcombine has trimmed non-demanded bits out 6669 // of an xor with -1. 6670 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6671 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6672 if (LBO->getOpcode() == Instruction::And && 6673 LCI->getValue() == CI->getValue()) 6674 if (const SCEVZeroExtendExpr *Z = 6675 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6676 Type *UTy = BO->LHS->getType(); 6677 const SCEV *Z0 = Z->getOperand(); 6678 Type *Z0Ty = Z0->getType(); 6679 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6680 6681 // If C is a low-bits mask, the zero extend is serving to 6682 // mask off the high bits. Complement the operand and 6683 // re-apply the zext. 6684 if (CI->getValue().isMask(Z0TySize)) 6685 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6686 6687 // If C is a single bit, it may be in the sign-bit position 6688 // before the zero-extend. In this case, represent the xor 6689 // using an add, which is equivalent, and re-apply the zext. 6690 APInt Trunc = CI->getValue().trunc(Z0TySize); 6691 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6692 Trunc.isSignMask()) 6693 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6694 UTy); 6695 } 6696 } 6697 break; 6698 6699 case Instruction::Shl: 6700 // Turn shift left of a constant amount into a multiply. 6701 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6702 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6703 6704 // If the shift count is not less than the bitwidth, the result of 6705 // the shift is undefined. Don't try to analyze it, because the 6706 // resolution chosen here may differ from the resolution chosen in 6707 // other parts of the compiler. 6708 if (SA->getValue().uge(BitWidth)) 6709 break; 6710 6711 // We can safely preserve the nuw flag in all cases. It's also safe to 6712 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6713 // requires special handling. It can be preserved as long as we're not 6714 // left shifting by bitwidth - 1. 6715 auto Flags = SCEV::FlagAnyWrap; 6716 if (BO->Op) { 6717 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6718 if ((MulFlags & SCEV::FlagNSW) && 6719 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6720 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6721 if (MulFlags & SCEV::FlagNUW) 6722 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6723 } 6724 6725 Constant *X = ConstantInt::get( 6726 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6727 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6728 } 6729 break; 6730 6731 case Instruction::AShr: { 6732 // AShr X, C, where C is a constant. 6733 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6734 if (!CI) 6735 break; 6736 6737 Type *OuterTy = BO->LHS->getType(); 6738 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6739 // If the shift count is not less than the bitwidth, the result of 6740 // the shift is undefined. Don't try to analyze it, because the 6741 // resolution chosen here may differ from the resolution chosen in 6742 // other parts of the compiler. 6743 if (CI->getValue().uge(BitWidth)) 6744 break; 6745 6746 if (CI->isZero()) 6747 return getSCEV(BO->LHS); // shift by zero --> noop 6748 6749 uint64_t AShrAmt = CI->getZExtValue(); 6750 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6751 6752 Operator *L = dyn_cast<Operator>(BO->LHS); 6753 if (L && L->getOpcode() == Instruction::Shl) { 6754 // X = Shl A, n 6755 // Y = AShr X, m 6756 // Both n and m are constant. 6757 6758 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6759 if (L->getOperand(1) == BO->RHS) 6760 // For a two-shift sext-inreg, i.e. n = m, 6761 // use sext(trunc(x)) as the SCEV expression. 6762 return getSignExtendExpr( 6763 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6764 6765 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6766 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6767 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6768 if (ShlAmt > AShrAmt) { 6769 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6770 // expression. We already checked that ShlAmt < BitWidth, so 6771 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6772 // ShlAmt - AShrAmt < Amt. 6773 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6774 ShlAmt - AShrAmt); 6775 return getSignExtendExpr( 6776 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6777 getConstant(Mul)), OuterTy); 6778 } 6779 } 6780 } 6781 break; 6782 } 6783 } 6784 } 6785 6786 switch (U->getOpcode()) { 6787 case Instruction::Trunc: 6788 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6789 6790 case Instruction::ZExt: 6791 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6792 6793 case Instruction::SExt: 6794 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6795 // The NSW flag of a subtract does not always survive the conversion to 6796 // A + (-1)*B. By pushing sign extension onto its operands we are much 6797 // more likely to preserve NSW and allow later AddRec optimisations. 6798 // 6799 // NOTE: This is effectively duplicating this logic from getSignExtend: 6800 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6801 // but by that point the NSW information has potentially been lost. 6802 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6803 Type *Ty = U->getType(); 6804 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6805 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6806 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6807 } 6808 } 6809 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6810 6811 case Instruction::BitCast: 6812 // BitCasts are no-op casts so we just eliminate the cast. 6813 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6814 return getSCEV(U->getOperand(0)); 6815 break; 6816 6817 case Instruction::PtrToInt: { 6818 // Pointer to integer cast is straight-forward, so do model it. 6819 const SCEV *Op = getSCEV(U->getOperand(0)); 6820 Type *DstIntTy = U->getType(); 6821 // But only if effective SCEV (integer) type is wide enough to represent 6822 // all possible pointer values. 6823 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 6824 if (isa<SCEVCouldNotCompute>(IntOp)) 6825 return getUnknown(V); 6826 return IntOp; 6827 } 6828 case Instruction::IntToPtr: 6829 // Just don't deal with inttoptr casts. 6830 return getUnknown(V); 6831 6832 case Instruction::SDiv: 6833 // If both operands are non-negative, this is just an udiv. 6834 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6835 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6836 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6837 break; 6838 6839 case Instruction::SRem: 6840 // If both operands are non-negative, this is just an urem. 6841 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 6842 isKnownNonNegative(getSCEV(U->getOperand(1)))) 6843 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 6844 break; 6845 6846 case Instruction::GetElementPtr: 6847 return createNodeForGEP(cast<GEPOperator>(U)); 6848 6849 case Instruction::PHI: 6850 return createNodeForPHI(cast<PHINode>(U)); 6851 6852 case Instruction::Select: 6853 // U can also be a select constant expr, which let fall through. Since 6854 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6855 // constant expressions cannot have instructions as operands, we'd have 6856 // returned getUnknown for a select constant expressions anyway. 6857 if (isa<Instruction>(U)) 6858 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6859 U->getOperand(1), U->getOperand(2)); 6860 break; 6861 6862 case Instruction::Call: 6863 case Instruction::Invoke: 6864 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6865 return getSCEV(RV); 6866 6867 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 6868 switch (II->getIntrinsicID()) { 6869 case Intrinsic::abs: 6870 return getAbsExpr( 6871 getSCEV(II->getArgOperand(0)), 6872 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 6873 case Intrinsic::umax: 6874 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 6875 getSCEV(II->getArgOperand(1))); 6876 case Intrinsic::umin: 6877 return getUMinExpr(getSCEV(II->getArgOperand(0)), 6878 getSCEV(II->getArgOperand(1))); 6879 case Intrinsic::smax: 6880 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 6881 getSCEV(II->getArgOperand(1))); 6882 case Intrinsic::smin: 6883 return getSMinExpr(getSCEV(II->getArgOperand(0)), 6884 getSCEV(II->getArgOperand(1))); 6885 case Intrinsic::usub_sat: { 6886 const SCEV *X = getSCEV(II->getArgOperand(0)); 6887 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6888 const SCEV *ClampedY = getUMinExpr(X, Y); 6889 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 6890 } 6891 case Intrinsic::uadd_sat: { 6892 const SCEV *X = getSCEV(II->getArgOperand(0)); 6893 const SCEV *Y = getSCEV(II->getArgOperand(1)); 6894 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 6895 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 6896 } 6897 case Intrinsic::start_loop_iterations: 6898 // A start_loop_iterations is just equivalent to the first operand for 6899 // SCEV purposes. 6900 return getSCEV(II->getArgOperand(0)); 6901 default: 6902 break; 6903 } 6904 } 6905 break; 6906 } 6907 6908 return getUnknown(V); 6909 } 6910 6911 //===----------------------------------------------------------------------===// 6912 // Iteration Count Computation Code 6913 // 6914 6915 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6916 if (!ExitCount) 6917 return 0; 6918 6919 ConstantInt *ExitConst = ExitCount->getValue(); 6920 6921 // Guard against huge trip counts. 6922 if (ExitConst->getValue().getActiveBits() > 32) 6923 return 0; 6924 6925 // In case of integer overflow, this returns 0, which is correct. 6926 return ((unsigned)ExitConst->getZExtValue()) + 1; 6927 } 6928 6929 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6930 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6931 return getSmallConstantTripCount(L, ExitingBB); 6932 6933 // No trip count information for multiple exits. 6934 return 0; 6935 } 6936 6937 unsigned 6938 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6939 const BasicBlock *ExitingBlock) { 6940 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6941 assert(L->isLoopExiting(ExitingBlock) && 6942 "Exiting block must actually branch out of the loop!"); 6943 const SCEVConstant *ExitCount = 6944 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6945 return getConstantTripCount(ExitCount); 6946 } 6947 6948 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6949 const auto *MaxExitCount = 6950 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6951 return getConstantTripCount(MaxExitCount); 6952 } 6953 6954 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6955 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6956 return getSmallConstantTripMultiple(L, ExitingBB); 6957 6958 // No trip multiple information for multiple exits. 6959 return 0; 6960 } 6961 6962 /// Returns the largest constant divisor of the trip count of this loop as a 6963 /// normal unsigned value, if possible. This means that the actual trip count is 6964 /// always a multiple of the returned value (don't forget the trip count could 6965 /// very well be zero as well!). 6966 /// 6967 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6968 /// multiple of a constant (which is also the case if the trip count is simply 6969 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6970 /// if the trip count is very large (>= 2^32). 6971 /// 6972 /// As explained in the comments for getSmallConstantTripCount, this assumes 6973 /// that control exits the loop via ExitingBlock. 6974 unsigned 6975 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6976 const BasicBlock *ExitingBlock) { 6977 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6978 assert(L->isLoopExiting(ExitingBlock) && 6979 "Exiting block must actually branch out of the loop!"); 6980 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6981 if (ExitCount == getCouldNotCompute()) 6982 return 1; 6983 6984 // Get the trip count from the BE count by adding 1. 6985 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6986 6987 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6988 if (!TC) 6989 // Attempt to factor more general cases. Returns the greatest power of 6990 // two divisor. If overflow happens, the trip count expression is still 6991 // divisible by the greatest power of 2 divisor returned. 6992 return 1U << std::min((uint32_t)31, 6993 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 6994 6995 ConstantInt *Result = TC->getValue(); 6996 6997 // Guard against huge trip counts (this requires checking 6998 // for zero to handle the case where the trip count == -1 and the 6999 // addition wraps). 7000 if (!Result || Result->getValue().getActiveBits() > 32 || 7001 Result->getValue().getActiveBits() == 0) 7002 return 1; 7003 7004 return (unsigned)Result->getZExtValue(); 7005 } 7006 7007 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7008 const BasicBlock *ExitingBlock, 7009 ExitCountKind Kind) { 7010 switch (Kind) { 7011 case Exact: 7012 case SymbolicMaximum: 7013 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7014 case ConstantMaximum: 7015 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7016 }; 7017 llvm_unreachable("Invalid ExitCountKind!"); 7018 } 7019 7020 const SCEV * 7021 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7022 SCEVUnionPredicate &Preds) { 7023 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7024 } 7025 7026 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7027 ExitCountKind Kind) { 7028 switch (Kind) { 7029 case Exact: 7030 return getBackedgeTakenInfo(L).getExact(L, this); 7031 case ConstantMaximum: 7032 return getBackedgeTakenInfo(L).getConstantMax(this); 7033 case SymbolicMaximum: 7034 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7035 }; 7036 llvm_unreachable("Invalid ExitCountKind!"); 7037 } 7038 7039 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7040 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7041 } 7042 7043 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7044 static void 7045 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7046 BasicBlock *Header = L->getHeader(); 7047 7048 // Push all Loop-header PHIs onto the Worklist stack. 7049 for (PHINode &PN : Header->phis()) 7050 Worklist.push_back(&PN); 7051 } 7052 7053 const ScalarEvolution::BackedgeTakenInfo & 7054 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7055 auto &BTI = getBackedgeTakenInfo(L); 7056 if (BTI.hasFullInfo()) 7057 return BTI; 7058 7059 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7060 7061 if (!Pair.second) 7062 return Pair.first->second; 7063 7064 BackedgeTakenInfo Result = 7065 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7066 7067 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7068 } 7069 7070 ScalarEvolution::BackedgeTakenInfo & 7071 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7072 // Initially insert an invalid entry for this loop. If the insertion 7073 // succeeds, proceed to actually compute a backedge-taken count and 7074 // update the value. The temporary CouldNotCompute value tells SCEV 7075 // code elsewhere that it shouldn't attempt to request a new 7076 // backedge-taken count, which could result in infinite recursion. 7077 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7078 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7079 if (!Pair.second) 7080 return Pair.first->second; 7081 7082 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7083 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7084 // must be cleared in this scope. 7085 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7086 7087 // In product build, there are no usage of statistic. 7088 (void)NumTripCountsComputed; 7089 (void)NumTripCountsNotComputed; 7090 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7091 const SCEV *BEExact = Result.getExact(L, this); 7092 if (BEExact != getCouldNotCompute()) { 7093 assert(isLoopInvariant(BEExact, L) && 7094 isLoopInvariant(Result.getConstantMax(this), L) && 7095 "Computed backedge-taken count isn't loop invariant for loop!"); 7096 ++NumTripCountsComputed; 7097 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7098 isa<PHINode>(L->getHeader()->begin())) { 7099 // Only count loops that have phi nodes as not being computable. 7100 ++NumTripCountsNotComputed; 7101 } 7102 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7103 7104 // Now that we know more about the trip count for this loop, forget any 7105 // existing SCEV values for PHI nodes in this loop since they are only 7106 // conservative estimates made without the benefit of trip count 7107 // information. This is similar to the code in forgetLoop, except that 7108 // it handles SCEVUnknown PHI nodes specially. 7109 if (Result.hasAnyInfo()) { 7110 SmallVector<Instruction *, 16> Worklist; 7111 PushLoopPHIs(L, Worklist); 7112 7113 SmallPtrSet<Instruction *, 8> Discovered; 7114 while (!Worklist.empty()) { 7115 Instruction *I = Worklist.pop_back_val(); 7116 7117 ValueExprMapType::iterator It = 7118 ValueExprMap.find_as(static_cast<Value *>(I)); 7119 if (It != ValueExprMap.end()) { 7120 const SCEV *Old = It->second; 7121 7122 // SCEVUnknown for a PHI either means that it has an unrecognized 7123 // structure, or it's a PHI that's in the progress of being computed 7124 // by createNodeForPHI. In the former case, additional loop trip 7125 // count information isn't going to change anything. In the later 7126 // case, createNodeForPHI will perform the necessary updates on its 7127 // own when it gets to that point. 7128 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7129 eraseValueFromMap(It->first); 7130 forgetMemoizedResults(Old); 7131 } 7132 if (PHINode *PN = dyn_cast<PHINode>(I)) 7133 ConstantEvolutionLoopExitValue.erase(PN); 7134 } 7135 7136 // Since we don't need to invalidate anything for correctness and we're 7137 // only invalidating to make SCEV's results more precise, we get to stop 7138 // early to avoid invalidating too much. This is especially important in 7139 // cases like: 7140 // 7141 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7142 // loop0: 7143 // %pn0 = phi 7144 // ... 7145 // loop1: 7146 // %pn1 = phi 7147 // ... 7148 // 7149 // where both loop0 and loop1's backedge taken count uses the SCEV 7150 // expression for %v. If we don't have the early stop below then in cases 7151 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7152 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7153 // count for loop1, effectively nullifying SCEV's trip count cache. 7154 for (auto *U : I->users()) 7155 if (auto *I = dyn_cast<Instruction>(U)) { 7156 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7157 if (LoopForUser && L->contains(LoopForUser) && 7158 Discovered.insert(I).second) 7159 Worklist.push_back(I); 7160 } 7161 } 7162 } 7163 7164 // Re-lookup the insert position, since the call to 7165 // computeBackedgeTakenCount above could result in a 7166 // recusive call to getBackedgeTakenInfo (on a different 7167 // loop), which would invalidate the iterator computed 7168 // earlier. 7169 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7170 } 7171 7172 void ScalarEvolution::forgetAllLoops() { 7173 // This method is intended to forget all info about loops. It should 7174 // invalidate caches as if the following happened: 7175 // - The trip counts of all loops have changed arbitrarily 7176 // - Every llvm::Value has been updated in place to produce a different 7177 // result. 7178 BackedgeTakenCounts.clear(); 7179 PredicatedBackedgeTakenCounts.clear(); 7180 LoopPropertiesCache.clear(); 7181 ConstantEvolutionLoopExitValue.clear(); 7182 ValueExprMap.clear(); 7183 ValuesAtScopes.clear(); 7184 LoopDispositions.clear(); 7185 BlockDispositions.clear(); 7186 UnsignedRanges.clear(); 7187 SignedRanges.clear(); 7188 ExprValueMap.clear(); 7189 HasRecMap.clear(); 7190 MinTrailingZerosCache.clear(); 7191 PredicatedSCEVRewrites.clear(); 7192 } 7193 7194 void ScalarEvolution::forgetLoop(const Loop *L) { 7195 // Drop any stored trip count value. 7196 auto RemoveLoopFromBackedgeMap = 7197 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 7198 auto BTCPos = Map.find(L); 7199 if (BTCPos != Map.end()) { 7200 BTCPos->second.clear(); 7201 Map.erase(BTCPos); 7202 } 7203 }; 7204 7205 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7206 SmallVector<Instruction *, 32> Worklist; 7207 SmallPtrSet<Instruction *, 16> Visited; 7208 7209 // Iterate over all the loops and sub-loops to drop SCEV information. 7210 while (!LoopWorklist.empty()) { 7211 auto *CurrL = LoopWorklist.pop_back_val(); 7212 7213 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 7214 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 7215 7216 // Drop information about predicated SCEV rewrites for this loop. 7217 for (auto I = PredicatedSCEVRewrites.begin(); 7218 I != PredicatedSCEVRewrites.end();) { 7219 std::pair<const SCEV *, const Loop *> Entry = I->first; 7220 if (Entry.second == CurrL) 7221 PredicatedSCEVRewrites.erase(I++); 7222 else 7223 ++I; 7224 } 7225 7226 auto LoopUsersItr = LoopUsers.find(CurrL); 7227 if (LoopUsersItr != LoopUsers.end()) { 7228 for (auto *S : LoopUsersItr->second) 7229 forgetMemoizedResults(S); 7230 LoopUsers.erase(LoopUsersItr); 7231 } 7232 7233 // Drop information about expressions based on loop-header PHIs. 7234 PushLoopPHIs(CurrL, Worklist); 7235 7236 while (!Worklist.empty()) { 7237 Instruction *I = Worklist.pop_back_val(); 7238 if (!Visited.insert(I).second) 7239 continue; 7240 7241 ValueExprMapType::iterator It = 7242 ValueExprMap.find_as(static_cast<Value *>(I)); 7243 if (It != ValueExprMap.end()) { 7244 eraseValueFromMap(It->first); 7245 forgetMemoizedResults(It->second); 7246 if (PHINode *PN = dyn_cast<PHINode>(I)) 7247 ConstantEvolutionLoopExitValue.erase(PN); 7248 } 7249 7250 PushDefUseChildren(I, Worklist); 7251 } 7252 7253 LoopPropertiesCache.erase(CurrL); 7254 // Forget all contained loops too, to avoid dangling entries in the 7255 // ValuesAtScopes map. 7256 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7257 } 7258 } 7259 7260 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7261 while (Loop *Parent = L->getParentLoop()) 7262 L = Parent; 7263 forgetLoop(L); 7264 } 7265 7266 void ScalarEvolution::forgetValue(Value *V) { 7267 Instruction *I = dyn_cast<Instruction>(V); 7268 if (!I) return; 7269 7270 // Drop information about expressions based on loop-header PHIs. 7271 SmallVector<Instruction *, 16> Worklist; 7272 Worklist.push_back(I); 7273 7274 SmallPtrSet<Instruction *, 8> Visited; 7275 while (!Worklist.empty()) { 7276 I = Worklist.pop_back_val(); 7277 if (!Visited.insert(I).second) 7278 continue; 7279 7280 ValueExprMapType::iterator It = 7281 ValueExprMap.find_as(static_cast<Value *>(I)); 7282 if (It != ValueExprMap.end()) { 7283 eraseValueFromMap(It->first); 7284 forgetMemoizedResults(It->second); 7285 if (PHINode *PN = dyn_cast<PHINode>(I)) 7286 ConstantEvolutionLoopExitValue.erase(PN); 7287 } 7288 7289 PushDefUseChildren(I, Worklist); 7290 } 7291 } 7292 7293 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7294 LoopDispositions.clear(); 7295 } 7296 7297 /// Get the exact loop backedge taken count considering all loop exits. A 7298 /// computable result can only be returned for loops with all exiting blocks 7299 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7300 /// is never skipped. This is a valid assumption as long as the loop exits via 7301 /// that test. For precise results, it is the caller's responsibility to specify 7302 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7303 const SCEV * 7304 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7305 SCEVUnionPredicate *Preds) const { 7306 // If any exits were not computable, the loop is not computable. 7307 if (!isComplete() || ExitNotTaken.empty()) 7308 return SE->getCouldNotCompute(); 7309 7310 const BasicBlock *Latch = L->getLoopLatch(); 7311 // All exiting blocks we have collected must dominate the only backedge. 7312 if (!Latch) 7313 return SE->getCouldNotCompute(); 7314 7315 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7316 // count is simply a minimum out of all these calculated exit counts. 7317 SmallVector<const SCEV *, 2> Ops; 7318 for (auto &ENT : ExitNotTaken) { 7319 const SCEV *BECount = ENT.ExactNotTaken; 7320 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7321 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7322 "We should only have known counts for exiting blocks that dominate " 7323 "latch!"); 7324 7325 Ops.push_back(BECount); 7326 7327 if (Preds && !ENT.hasAlwaysTruePredicate()) 7328 Preds->add(ENT.Predicate.get()); 7329 7330 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7331 "Predicate should be always true!"); 7332 } 7333 7334 return SE->getUMinFromMismatchedTypes(Ops); 7335 } 7336 7337 /// Get the exact not taken count for this loop exit. 7338 const SCEV * 7339 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7340 ScalarEvolution *SE) const { 7341 for (auto &ENT : ExitNotTaken) 7342 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7343 return ENT.ExactNotTaken; 7344 7345 return SE->getCouldNotCompute(); 7346 } 7347 7348 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7349 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7350 for (auto &ENT : ExitNotTaken) 7351 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7352 return ENT.MaxNotTaken; 7353 7354 return SE->getCouldNotCompute(); 7355 } 7356 7357 /// getConstantMax - Get the constant max backedge taken count for the loop. 7358 const SCEV * 7359 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7360 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7361 return !ENT.hasAlwaysTruePredicate(); 7362 }; 7363 7364 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7365 return SE->getCouldNotCompute(); 7366 7367 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7368 isa<SCEVConstant>(getConstantMax())) && 7369 "No point in having a non-constant max backedge taken count!"); 7370 return getConstantMax(); 7371 } 7372 7373 const SCEV * 7374 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7375 ScalarEvolution *SE) { 7376 if (!SymbolicMax) 7377 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7378 return SymbolicMax; 7379 } 7380 7381 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7382 ScalarEvolution *SE) const { 7383 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7384 return !ENT.hasAlwaysTruePredicate(); 7385 }; 7386 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7387 } 7388 7389 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 7390 ScalarEvolution *SE) const { 7391 if (getConstantMax() && getConstantMax() != SE->getCouldNotCompute() && 7392 SE->hasOperand(getConstantMax(), S)) 7393 return true; 7394 7395 for (auto &ENT : ExitNotTaken) 7396 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 7397 SE->hasOperand(ENT.ExactNotTaken, S)) 7398 return true; 7399 7400 return false; 7401 } 7402 7403 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7404 : ExactNotTaken(E), MaxNotTaken(E) { 7405 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7406 isa<SCEVConstant>(MaxNotTaken)) && 7407 "No point in having a non-constant max backedge taken count!"); 7408 } 7409 7410 ScalarEvolution::ExitLimit::ExitLimit( 7411 const SCEV *E, const SCEV *M, bool MaxOrZero, 7412 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7413 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7414 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7415 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7416 "Exact is not allowed to be less precise than Max"); 7417 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7418 isa<SCEVConstant>(MaxNotTaken)) && 7419 "No point in having a non-constant max backedge taken count!"); 7420 for (auto *PredSet : PredSetList) 7421 for (auto *P : *PredSet) 7422 addPredicate(P); 7423 } 7424 7425 ScalarEvolution::ExitLimit::ExitLimit( 7426 const SCEV *E, const SCEV *M, bool MaxOrZero, 7427 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7428 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7429 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7430 isa<SCEVConstant>(MaxNotTaken)) && 7431 "No point in having a non-constant max backedge taken count!"); 7432 } 7433 7434 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7435 bool MaxOrZero) 7436 : ExitLimit(E, M, MaxOrZero, None) { 7437 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7438 isa<SCEVConstant>(MaxNotTaken)) && 7439 "No point in having a non-constant max backedge taken count!"); 7440 } 7441 7442 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7443 /// computable exit into a persistent ExitNotTakenInfo array. 7444 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7445 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7446 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7447 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7448 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7449 7450 ExitNotTaken.reserve(ExitCounts.size()); 7451 std::transform( 7452 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7453 [&](const EdgeExitInfo &EEI) { 7454 BasicBlock *ExitBB = EEI.first; 7455 const ExitLimit &EL = EEI.second; 7456 if (EL.Predicates.empty()) 7457 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7458 nullptr); 7459 7460 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7461 for (auto *Pred : EL.Predicates) 7462 Predicate->add(Pred); 7463 7464 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7465 std::move(Predicate)); 7466 }); 7467 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7468 isa<SCEVConstant>(ConstantMax)) && 7469 "No point in having a non-constant max backedge taken count!"); 7470 } 7471 7472 /// Invalidate this result and free the ExitNotTakenInfo array. 7473 void ScalarEvolution::BackedgeTakenInfo::clear() { 7474 ExitNotTaken.clear(); 7475 } 7476 7477 /// Compute the number of times the backedge of the specified loop will execute. 7478 ScalarEvolution::BackedgeTakenInfo 7479 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7480 bool AllowPredicates) { 7481 SmallVector<BasicBlock *, 8> ExitingBlocks; 7482 L->getExitingBlocks(ExitingBlocks); 7483 7484 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7485 7486 SmallVector<EdgeExitInfo, 4> ExitCounts; 7487 bool CouldComputeBECount = true; 7488 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7489 const SCEV *MustExitMaxBECount = nullptr; 7490 const SCEV *MayExitMaxBECount = nullptr; 7491 bool MustExitMaxOrZero = false; 7492 7493 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7494 // and compute maxBECount. 7495 // Do a union of all the predicates here. 7496 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7497 BasicBlock *ExitBB = ExitingBlocks[i]; 7498 7499 // We canonicalize untaken exits to br (constant), ignore them so that 7500 // proving an exit untaken doesn't negatively impact our ability to reason 7501 // about the loop as whole. 7502 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7503 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7504 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7505 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7506 continue; 7507 } 7508 7509 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7510 7511 assert((AllowPredicates || EL.Predicates.empty()) && 7512 "Predicated exit limit when predicates are not allowed!"); 7513 7514 // 1. For each exit that can be computed, add an entry to ExitCounts. 7515 // CouldComputeBECount is true only if all exits can be computed. 7516 if (EL.ExactNotTaken == getCouldNotCompute()) 7517 // We couldn't compute an exact value for this exit, so 7518 // we won't be able to compute an exact value for the loop. 7519 CouldComputeBECount = false; 7520 else 7521 ExitCounts.emplace_back(ExitBB, EL); 7522 7523 // 2. Derive the loop's MaxBECount from each exit's max number of 7524 // non-exiting iterations. Partition the loop exits into two kinds: 7525 // LoopMustExits and LoopMayExits. 7526 // 7527 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7528 // is a LoopMayExit. If any computable LoopMustExit is found, then 7529 // MaxBECount is the minimum EL.MaxNotTaken of computable 7530 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7531 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7532 // computable EL.MaxNotTaken. 7533 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7534 DT.dominates(ExitBB, Latch)) { 7535 if (!MustExitMaxBECount) { 7536 MustExitMaxBECount = EL.MaxNotTaken; 7537 MustExitMaxOrZero = EL.MaxOrZero; 7538 } else { 7539 MustExitMaxBECount = 7540 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7541 } 7542 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7543 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7544 MayExitMaxBECount = EL.MaxNotTaken; 7545 else { 7546 MayExitMaxBECount = 7547 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7548 } 7549 } 7550 } 7551 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7552 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7553 // The loop backedge will be taken the maximum or zero times if there's 7554 // a single exit that must be taken the maximum or zero times. 7555 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7556 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7557 MaxBECount, MaxOrZero); 7558 } 7559 7560 ScalarEvolution::ExitLimit 7561 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7562 bool AllowPredicates) { 7563 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7564 // If our exiting block does not dominate the latch, then its connection with 7565 // loop's exit limit may be far from trivial. 7566 const BasicBlock *Latch = L->getLoopLatch(); 7567 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7568 return getCouldNotCompute(); 7569 7570 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7571 Instruction *Term = ExitingBlock->getTerminator(); 7572 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7573 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7574 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7575 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7576 "It should have one successor in loop and one exit block!"); 7577 // Proceed to the next level to examine the exit condition expression. 7578 return computeExitLimitFromCond( 7579 L, BI->getCondition(), ExitIfTrue, 7580 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7581 } 7582 7583 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7584 // For switch, make sure that there is a single exit from the loop. 7585 BasicBlock *Exit = nullptr; 7586 for (auto *SBB : successors(ExitingBlock)) 7587 if (!L->contains(SBB)) { 7588 if (Exit) // Multiple exit successors. 7589 return getCouldNotCompute(); 7590 Exit = SBB; 7591 } 7592 assert(Exit && "Exiting block must have at least one exit"); 7593 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7594 /*ControlsExit=*/IsOnlyExit); 7595 } 7596 7597 return getCouldNotCompute(); 7598 } 7599 7600 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7601 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7602 bool ControlsExit, bool AllowPredicates) { 7603 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7604 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7605 ControlsExit, AllowPredicates); 7606 } 7607 7608 Optional<ScalarEvolution::ExitLimit> 7609 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7610 bool ExitIfTrue, bool ControlsExit, 7611 bool AllowPredicates) { 7612 (void)this->L; 7613 (void)this->ExitIfTrue; 7614 (void)this->AllowPredicates; 7615 7616 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7617 this->AllowPredicates == AllowPredicates && 7618 "Variance in assumed invariant key components!"); 7619 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7620 if (Itr == TripCountMap.end()) 7621 return None; 7622 return Itr->second; 7623 } 7624 7625 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7626 bool ExitIfTrue, 7627 bool ControlsExit, 7628 bool AllowPredicates, 7629 const ExitLimit &EL) { 7630 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7631 this->AllowPredicates == AllowPredicates && 7632 "Variance in assumed invariant key components!"); 7633 7634 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7635 assert(InsertResult.second && "Expected successful insertion!"); 7636 (void)InsertResult; 7637 (void)ExitIfTrue; 7638 } 7639 7640 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7641 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7642 bool ControlsExit, bool AllowPredicates) { 7643 7644 if (auto MaybeEL = 7645 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7646 return *MaybeEL; 7647 7648 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7649 ControlsExit, AllowPredicates); 7650 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7651 return EL; 7652 } 7653 7654 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7655 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7656 bool ControlsExit, bool AllowPredicates) { 7657 // Handle BinOp conditions (And, Or). 7658 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7659 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7660 return *LimitFromBinOp; 7661 7662 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7663 // Proceed to the next level to examine the icmp. 7664 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7665 ExitLimit EL = 7666 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7667 if (EL.hasFullInfo() || !AllowPredicates) 7668 return EL; 7669 7670 // Try again, but use SCEV predicates this time. 7671 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7672 /*AllowPredicates=*/true); 7673 } 7674 7675 // Check for a constant condition. These are normally stripped out by 7676 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7677 // preserve the CFG and is temporarily leaving constant conditions 7678 // in place. 7679 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7680 if (ExitIfTrue == !CI->getZExtValue()) 7681 // The backedge is always taken. 7682 return getCouldNotCompute(); 7683 else 7684 // The backedge is never taken. 7685 return getZero(CI->getType()); 7686 } 7687 7688 // If it's not an integer or pointer comparison then compute it the hard way. 7689 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7690 } 7691 7692 Optional<ScalarEvolution::ExitLimit> 7693 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7694 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7695 bool ControlsExit, bool AllowPredicates) { 7696 // Check if the controlling expression for this loop is an And or Or. 7697 Value *Op0, *Op1; 7698 bool IsAnd = false; 7699 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7700 IsAnd = true; 7701 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7702 IsAnd = false; 7703 else 7704 return None; 7705 7706 // EitherMayExit is true in these two cases: 7707 // br (and Op0 Op1), loop, exit 7708 // br (or Op0 Op1), exit, loop 7709 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7710 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7711 ControlsExit && !EitherMayExit, 7712 AllowPredicates); 7713 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7714 ControlsExit && !EitherMayExit, 7715 AllowPredicates); 7716 7717 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7718 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7719 if (isa<ConstantInt>(Op1)) 7720 return Op1 == NeutralElement ? EL0 : EL1; 7721 if (isa<ConstantInt>(Op0)) 7722 return Op0 == NeutralElement ? EL1 : EL0; 7723 7724 const SCEV *BECount = getCouldNotCompute(); 7725 const SCEV *MaxBECount = getCouldNotCompute(); 7726 if (EitherMayExit) { 7727 // Both conditions must be same for the loop to continue executing. 7728 // Choose the less conservative count. 7729 // If ExitCond is a short-circuit form (select), using 7730 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7731 // To see the detailed examples, please see 7732 // test/Analysis/ScalarEvolution/exit-count-select.ll 7733 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7734 if (!PoisonSafe) 7735 // Even if ExitCond is select, we can safely derive BECount using both 7736 // EL0 and EL1 in these cases: 7737 // (1) EL0.ExactNotTaken is non-zero 7738 // (2) EL1.ExactNotTaken is non-poison 7739 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7740 // it cannot be umin(0, ..)) 7741 // The PoisonSafe assignment below is simplified and the assertion after 7742 // BECount calculation fully guarantees the condition (3). 7743 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 7744 isa<SCEVConstant>(EL1.ExactNotTaken); 7745 if (EL0.ExactNotTaken != getCouldNotCompute() && 7746 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 7747 BECount = 7748 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7749 7750 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 7751 // it should have been simplified to zero (see the condition (3) above) 7752 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 7753 BECount->isZero()); 7754 } 7755 if (EL0.MaxNotTaken == getCouldNotCompute()) 7756 MaxBECount = EL1.MaxNotTaken; 7757 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7758 MaxBECount = EL0.MaxNotTaken; 7759 else 7760 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7761 } else { 7762 // Both conditions must be same at the same time for the loop to exit. 7763 // For now, be conservative. 7764 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7765 BECount = EL0.ExactNotTaken; 7766 } 7767 7768 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7769 // to be more aggressive when computing BECount than when computing 7770 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7771 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7772 // to not. 7773 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7774 !isa<SCEVCouldNotCompute>(BECount)) 7775 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7776 7777 return ExitLimit(BECount, MaxBECount, false, 7778 { &EL0.Predicates, &EL1.Predicates }); 7779 } 7780 7781 ScalarEvolution::ExitLimit 7782 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7783 ICmpInst *ExitCond, 7784 bool ExitIfTrue, 7785 bool ControlsExit, 7786 bool AllowPredicates) { 7787 // If the condition was exit on true, convert the condition to exit on false 7788 ICmpInst::Predicate Pred; 7789 if (!ExitIfTrue) 7790 Pred = ExitCond->getPredicate(); 7791 else 7792 Pred = ExitCond->getInversePredicate(); 7793 const ICmpInst::Predicate OriginalPred = Pred; 7794 7795 // Handle common loops like: for (X = "string"; *X; ++X) 7796 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7797 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7798 ExitLimit ItCnt = 7799 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7800 if (ItCnt.hasAnyInfo()) 7801 return ItCnt; 7802 } 7803 7804 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7805 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7806 7807 // Try to evaluate any dependencies out of the loop. 7808 LHS = getSCEVAtScope(LHS, L); 7809 RHS = getSCEVAtScope(RHS, L); 7810 7811 // At this point, we would like to compute how many iterations of the 7812 // loop the predicate will return true for these inputs. 7813 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7814 // If there is a loop-invariant, force it into the RHS. 7815 std::swap(LHS, RHS); 7816 Pred = ICmpInst::getSwappedPredicate(Pred); 7817 } 7818 7819 // Simplify the operands before analyzing them. 7820 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7821 7822 // If we have a comparison of a chrec against a constant, try to use value 7823 // ranges to answer this query. 7824 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7825 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7826 if (AddRec->getLoop() == L) { 7827 // Form the constant range. 7828 ConstantRange CompRange = 7829 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7830 7831 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7832 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7833 } 7834 7835 switch (Pred) { 7836 case ICmpInst::ICMP_NE: { // while (X != Y) 7837 // Convert to: while (X-Y != 0) 7838 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7839 AllowPredicates); 7840 if (EL.hasAnyInfo()) return EL; 7841 break; 7842 } 7843 case ICmpInst::ICMP_EQ: { // while (X == Y) 7844 // Convert to: while (X-Y == 0) 7845 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7846 if (EL.hasAnyInfo()) return EL; 7847 break; 7848 } 7849 case ICmpInst::ICMP_SLT: 7850 case ICmpInst::ICMP_ULT: { // while (X < Y) 7851 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7852 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7853 AllowPredicates); 7854 if (EL.hasAnyInfo()) return EL; 7855 break; 7856 } 7857 case ICmpInst::ICMP_SGT: 7858 case ICmpInst::ICMP_UGT: { // while (X > Y) 7859 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7860 ExitLimit EL = 7861 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7862 AllowPredicates); 7863 if (EL.hasAnyInfo()) return EL; 7864 break; 7865 } 7866 default: 7867 break; 7868 } 7869 7870 auto *ExhaustiveCount = 7871 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7872 7873 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7874 return ExhaustiveCount; 7875 7876 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7877 ExitCond->getOperand(1), L, OriginalPred); 7878 } 7879 7880 ScalarEvolution::ExitLimit 7881 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7882 SwitchInst *Switch, 7883 BasicBlock *ExitingBlock, 7884 bool ControlsExit) { 7885 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7886 7887 // Give up if the exit is the default dest of a switch. 7888 if (Switch->getDefaultDest() == ExitingBlock) 7889 return getCouldNotCompute(); 7890 7891 assert(L->contains(Switch->getDefaultDest()) && 7892 "Default case must not exit the loop!"); 7893 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7894 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7895 7896 // while (X != Y) --> while (X-Y != 0) 7897 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7898 if (EL.hasAnyInfo()) 7899 return EL; 7900 7901 return getCouldNotCompute(); 7902 } 7903 7904 static ConstantInt * 7905 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7906 ScalarEvolution &SE) { 7907 const SCEV *InVal = SE.getConstant(C); 7908 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7909 assert(isa<SCEVConstant>(Val) && 7910 "Evaluation of SCEV at constant didn't fold correctly?"); 7911 return cast<SCEVConstant>(Val)->getValue(); 7912 } 7913 7914 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7915 /// compute the backedge execution count. 7916 ScalarEvolution::ExitLimit 7917 ScalarEvolution::computeLoadConstantCompareExitLimit( 7918 LoadInst *LI, 7919 Constant *RHS, 7920 const Loop *L, 7921 ICmpInst::Predicate predicate) { 7922 if (LI->isVolatile()) return getCouldNotCompute(); 7923 7924 // Check to see if the loaded pointer is a getelementptr of a global. 7925 // TODO: Use SCEV instead of manually grubbing with GEPs. 7926 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7927 if (!GEP) return getCouldNotCompute(); 7928 7929 // Make sure that it is really a constant global we are gepping, with an 7930 // initializer, and make sure the first IDX is really 0. 7931 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7932 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7933 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7934 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7935 return getCouldNotCompute(); 7936 7937 // Okay, we allow one non-constant index into the GEP instruction. 7938 Value *VarIdx = nullptr; 7939 std::vector<Constant*> Indexes; 7940 unsigned VarIdxNum = 0; 7941 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7942 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7943 Indexes.push_back(CI); 7944 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7945 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7946 VarIdx = GEP->getOperand(i); 7947 VarIdxNum = i-2; 7948 Indexes.push_back(nullptr); 7949 } 7950 7951 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7952 if (!VarIdx) 7953 return getCouldNotCompute(); 7954 7955 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7956 // Check to see if X is a loop variant variable value now. 7957 const SCEV *Idx = getSCEV(VarIdx); 7958 Idx = getSCEVAtScope(Idx, L); 7959 7960 // We can only recognize very limited forms of loop index expressions, in 7961 // particular, only affine AddRec's like {C1,+,C2}<L>. 7962 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7963 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 7964 isLoopInvariant(IdxExpr, L) || 7965 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7966 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7967 return getCouldNotCompute(); 7968 7969 unsigned MaxSteps = MaxBruteForceIterations; 7970 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7971 ConstantInt *ItCst = ConstantInt::get( 7972 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7973 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7974 7975 // Form the GEP offset. 7976 Indexes[VarIdxNum] = Val; 7977 7978 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7979 Indexes); 7980 if (!Result) break; // Cannot compute! 7981 7982 // Evaluate the condition for this iteration. 7983 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7984 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7985 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7986 ++NumArrayLenItCounts; 7987 return getConstant(ItCst); // Found terminating iteration! 7988 } 7989 } 7990 return getCouldNotCompute(); 7991 } 7992 7993 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7994 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7995 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7996 if (!RHS) 7997 return getCouldNotCompute(); 7998 7999 const BasicBlock *Latch = L->getLoopLatch(); 8000 if (!Latch) 8001 return getCouldNotCompute(); 8002 8003 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8004 if (!Predecessor) 8005 return getCouldNotCompute(); 8006 8007 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8008 // Return LHS in OutLHS and shift_opt in OutOpCode. 8009 auto MatchPositiveShift = 8010 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8011 8012 using namespace PatternMatch; 8013 8014 ConstantInt *ShiftAmt; 8015 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8016 OutOpCode = Instruction::LShr; 8017 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8018 OutOpCode = Instruction::AShr; 8019 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8020 OutOpCode = Instruction::Shl; 8021 else 8022 return false; 8023 8024 return ShiftAmt->getValue().isStrictlyPositive(); 8025 }; 8026 8027 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8028 // 8029 // loop: 8030 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8031 // %iv.shifted = lshr i32 %iv, <positive constant> 8032 // 8033 // Return true on a successful match. Return the corresponding PHI node (%iv 8034 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8035 auto MatchShiftRecurrence = 8036 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8037 Optional<Instruction::BinaryOps> PostShiftOpCode; 8038 8039 { 8040 Instruction::BinaryOps OpC; 8041 Value *V; 8042 8043 // If we encounter a shift instruction, "peel off" the shift operation, 8044 // and remember that we did so. Later when we inspect %iv's backedge 8045 // value, we will make sure that the backedge value uses the same 8046 // operation. 8047 // 8048 // Note: the peeled shift operation does not have to be the same 8049 // instruction as the one feeding into the PHI's backedge value. We only 8050 // really care about it being the same *kind* of shift instruction -- 8051 // that's all that is required for our later inferences to hold. 8052 if (MatchPositiveShift(LHS, V, OpC)) { 8053 PostShiftOpCode = OpC; 8054 LHS = V; 8055 } 8056 } 8057 8058 PNOut = dyn_cast<PHINode>(LHS); 8059 if (!PNOut || PNOut->getParent() != L->getHeader()) 8060 return false; 8061 8062 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8063 Value *OpLHS; 8064 8065 return 8066 // The backedge value for the PHI node must be a shift by a positive 8067 // amount 8068 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8069 8070 // of the PHI node itself 8071 OpLHS == PNOut && 8072 8073 // and the kind of shift should be match the kind of shift we peeled 8074 // off, if any. 8075 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8076 }; 8077 8078 PHINode *PN; 8079 Instruction::BinaryOps OpCode; 8080 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8081 return getCouldNotCompute(); 8082 8083 const DataLayout &DL = getDataLayout(); 8084 8085 // The key rationale for this optimization is that for some kinds of shift 8086 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8087 // within a finite number of iterations. If the condition guarding the 8088 // backedge (in the sense that the backedge is taken if the condition is true) 8089 // is false for the value the shift recurrence stabilizes to, then we know 8090 // that the backedge is taken only a finite number of times. 8091 8092 ConstantInt *StableValue = nullptr; 8093 switch (OpCode) { 8094 default: 8095 llvm_unreachable("Impossible case!"); 8096 8097 case Instruction::AShr: { 8098 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8099 // bitwidth(K) iterations. 8100 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8101 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8102 Predecessor->getTerminator(), &DT); 8103 auto *Ty = cast<IntegerType>(RHS->getType()); 8104 if (Known.isNonNegative()) 8105 StableValue = ConstantInt::get(Ty, 0); 8106 else if (Known.isNegative()) 8107 StableValue = ConstantInt::get(Ty, -1, true); 8108 else 8109 return getCouldNotCompute(); 8110 8111 break; 8112 } 8113 case Instruction::LShr: 8114 case Instruction::Shl: 8115 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8116 // stabilize to 0 in at most bitwidth(K) iterations. 8117 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8118 break; 8119 } 8120 8121 auto *Result = 8122 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8123 assert(Result->getType()->isIntegerTy(1) && 8124 "Otherwise cannot be an operand to a branch instruction"); 8125 8126 if (Result->isZeroValue()) { 8127 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8128 const SCEV *UpperBound = 8129 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8130 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8131 } 8132 8133 return getCouldNotCompute(); 8134 } 8135 8136 /// Return true if we can constant fold an instruction of the specified type, 8137 /// assuming that all operands were constants. 8138 static bool CanConstantFold(const Instruction *I) { 8139 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8140 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8141 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8142 return true; 8143 8144 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8145 if (const Function *F = CI->getCalledFunction()) 8146 return canConstantFoldCallTo(CI, F); 8147 return false; 8148 } 8149 8150 /// Determine whether this instruction can constant evolve within this loop 8151 /// assuming its operands can all constant evolve. 8152 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8153 // An instruction outside of the loop can't be derived from a loop PHI. 8154 if (!L->contains(I)) return false; 8155 8156 if (isa<PHINode>(I)) { 8157 // We don't currently keep track of the control flow needed to evaluate 8158 // PHIs, so we cannot handle PHIs inside of loops. 8159 return L->getHeader() == I->getParent(); 8160 } 8161 8162 // If we won't be able to constant fold this expression even if the operands 8163 // are constants, bail early. 8164 return CanConstantFold(I); 8165 } 8166 8167 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8168 /// recursing through each instruction operand until reaching a loop header phi. 8169 static PHINode * 8170 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8171 DenseMap<Instruction *, PHINode *> &PHIMap, 8172 unsigned Depth) { 8173 if (Depth > MaxConstantEvolvingDepth) 8174 return nullptr; 8175 8176 // Otherwise, we can evaluate this instruction if all of its operands are 8177 // constant or derived from a PHI node themselves. 8178 PHINode *PHI = nullptr; 8179 for (Value *Op : UseInst->operands()) { 8180 if (isa<Constant>(Op)) continue; 8181 8182 Instruction *OpInst = dyn_cast<Instruction>(Op); 8183 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8184 8185 PHINode *P = dyn_cast<PHINode>(OpInst); 8186 if (!P) 8187 // If this operand is already visited, reuse the prior result. 8188 // We may have P != PHI if this is the deepest point at which the 8189 // inconsistent paths meet. 8190 P = PHIMap.lookup(OpInst); 8191 if (!P) { 8192 // Recurse and memoize the results, whether a phi is found or not. 8193 // This recursive call invalidates pointers into PHIMap. 8194 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8195 PHIMap[OpInst] = P; 8196 } 8197 if (!P) 8198 return nullptr; // Not evolving from PHI 8199 if (PHI && PHI != P) 8200 return nullptr; // Evolving from multiple different PHIs. 8201 PHI = P; 8202 } 8203 // This is a expression evolving from a constant PHI! 8204 return PHI; 8205 } 8206 8207 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8208 /// in the loop that V is derived from. We allow arbitrary operations along the 8209 /// way, but the operands of an operation must either be constants or a value 8210 /// derived from a constant PHI. If this expression does not fit with these 8211 /// constraints, return null. 8212 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8213 Instruction *I = dyn_cast<Instruction>(V); 8214 if (!I || !canConstantEvolve(I, L)) return nullptr; 8215 8216 if (PHINode *PN = dyn_cast<PHINode>(I)) 8217 return PN; 8218 8219 // Record non-constant instructions contained by the loop. 8220 DenseMap<Instruction *, PHINode *> PHIMap; 8221 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8222 } 8223 8224 /// EvaluateExpression - Given an expression that passes the 8225 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8226 /// in the loop has the value PHIVal. If we can't fold this expression for some 8227 /// reason, return null. 8228 static Constant *EvaluateExpression(Value *V, const Loop *L, 8229 DenseMap<Instruction *, Constant *> &Vals, 8230 const DataLayout &DL, 8231 const TargetLibraryInfo *TLI) { 8232 // Convenient constant check, but redundant for recursive calls. 8233 if (Constant *C = dyn_cast<Constant>(V)) return C; 8234 Instruction *I = dyn_cast<Instruction>(V); 8235 if (!I) return nullptr; 8236 8237 if (Constant *C = Vals.lookup(I)) return C; 8238 8239 // An instruction inside the loop depends on a value outside the loop that we 8240 // weren't given a mapping for, or a value such as a call inside the loop. 8241 if (!canConstantEvolve(I, L)) return nullptr; 8242 8243 // An unmapped PHI can be due to a branch or another loop inside this loop, 8244 // or due to this not being the initial iteration through a loop where we 8245 // couldn't compute the evolution of this particular PHI last time. 8246 if (isa<PHINode>(I)) return nullptr; 8247 8248 std::vector<Constant*> Operands(I->getNumOperands()); 8249 8250 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8251 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8252 if (!Operand) { 8253 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8254 if (!Operands[i]) return nullptr; 8255 continue; 8256 } 8257 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8258 Vals[Operand] = C; 8259 if (!C) return nullptr; 8260 Operands[i] = C; 8261 } 8262 8263 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8264 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8265 Operands[1], DL, TLI); 8266 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8267 if (!LI->isVolatile()) 8268 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8269 } 8270 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8271 } 8272 8273 8274 // If every incoming value to PN except the one for BB is a specific Constant, 8275 // return that, else return nullptr. 8276 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8277 Constant *IncomingVal = nullptr; 8278 8279 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8280 if (PN->getIncomingBlock(i) == BB) 8281 continue; 8282 8283 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8284 if (!CurrentVal) 8285 return nullptr; 8286 8287 if (IncomingVal != CurrentVal) { 8288 if (IncomingVal) 8289 return nullptr; 8290 IncomingVal = CurrentVal; 8291 } 8292 } 8293 8294 return IncomingVal; 8295 } 8296 8297 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8298 /// in the header of its containing loop, we know the loop executes a 8299 /// constant number of times, and the PHI node is just a recurrence 8300 /// involving constants, fold it. 8301 Constant * 8302 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8303 const APInt &BEs, 8304 const Loop *L) { 8305 auto I = ConstantEvolutionLoopExitValue.find(PN); 8306 if (I != ConstantEvolutionLoopExitValue.end()) 8307 return I->second; 8308 8309 if (BEs.ugt(MaxBruteForceIterations)) 8310 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8311 8312 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8313 8314 DenseMap<Instruction *, Constant *> CurrentIterVals; 8315 BasicBlock *Header = L->getHeader(); 8316 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8317 8318 BasicBlock *Latch = L->getLoopLatch(); 8319 if (!Latch) 8320 return nullptr; 8321 8322 for (PHINode &PHI : Header->phis()) { 8323 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8324 CurrentIterVals[&PHI] = StartCST; 8325 } 8326 if (!CurrentIterVals.count(PN)) 8327 return RetVal = nullptr; 8328 8329 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8330 8331 // Execute the loop symbolically to determine the exit value. 8332 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8333 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8334 8335 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8336 unsigned IterationNum = 0; 8337 const DataLayout &DL = getDataLayout(); 8338 for (; ; ++IterationNum) { 8339 if (IterationNum == NumIterations) 8340 return RetVal = CurrentIterVals[PN]; // Got exit value! 8341 8342 // Compute the value of the PHIs for the next iteration. 8343 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8344 DenseMap<Instruction *, Constant *> NextIterVals; 8345 Constant *NextPHI = 8346 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8347 if (!NextPHI) 8348 return nullptr; // Couldn't evaluate! 8349 NextIterVals[PN] = NextPHI; 8350 8351 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8352 8353 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8354 // cease to be able to evaluate one of them or if they stop evolving, 8355 // because that doesn't necessarily prevent us from computing PN. 8356 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8357 for (const auto &I : CurrentIterVals) { 8358 PHINode *PHI = dyn_cast<PHINode>(I.first); 8359 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8360 PHIsToCompute.emplace_back(PHI, I.second); 8361 } 8362 // We use two distinct loops because EvaluateExpression may invalidate any 8363 // iterators into CurrentIterVals. 8364 for (const auto &I : PHIsToCompute) { 8365 PHINode *PHI = I.first; 8366 Constant *&NextPHI = NextIterVals[PHI]; 8367 if (!NextPHI) { // Not already computed. 8368 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8369 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8370 } 8371 if (NextPHI != I.second) 8372 StoppedEvolving = false; 8373 } 8374 8375 // If all entries in CurrentIterVals == NextIterVals then we can stop 8376 // iterating, the loop can't continue to change. 8377 if (StoppedEvolving) 8378 return RetVal = CurrentIterVals[PN]; 8379 8380 CurrentIterVals.swap(NextIterVals); 8381 } 8382 } 8383 8384 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8385 Value *Cond, 8386 bool ExitWhen) { 8387 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8388 if (!PN) return getCouldNotCompute(); 8389 8390 // If the loop is canonicalized, the PHI will have exactly two entries. 8391 // That's the only form we support here. 8392 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8393 8394 DenseMap<Instruction *, Constant *> CurrentIterVals; 8395 BasicBlock *Header = L->getHeader(); 8396 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8397 8398 BasicBlock *Latch = L->getLoopLatch(); 8399 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8400 8401 for (PHINode &PHI : Header->phis()) { 8402 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8403 CurrentIterVals[&PHI] = StartCST; 8404 } 8405 if (!CurrentIterVals.count(PN)) 8406 return getCouldNotCompute(); 8407 8408 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8409 // the loop symbolically to determine when the condition gets a value of 8410 // "ExitWhen". 8411 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8412 const DataLayout &DL = getDataLayout(); 8413 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8414 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8415 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8416 8417 // Couldn't symbolically evaluate. 8418 if (!CondVal) return getCouldNotCompute(); 8419 8420 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8421 ++NumBruteForceTripCountsComputed; 8422 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8423 } 8424 8425 // Update all the PHI nodes for the next iteration. 8426 DenseMap<Instruction *, Constant *> NextIterVals; 8427 8428 // Create a list of which PHIs we need to compute. We want to do this before 8429 // calling EvaluateExpression on them because that may invalidate iterators 8430 // into CurrentIterVals. 8431 SmallVector<PHINode *, 8> PHIsToCompute; 8432 for (const auto &I : CurrentIterVals) { 8433 PHINode *PHI = dyn_cast<PHINode>(I.first); 8434 if (!PHI || PHI->getParent() != Header) continue; 8435 PHIsToCompute.push_back(PHI); 8436 } 8437 for (PHINode *PHI : PHIsToCompute) { 8438 Constant *&NextPHI = NextIterVals[PHI]; 8439 if (NextPHI) continue; // Already computed! 8440 8441 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8442 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8443 } 8444 CurrentIterVals.swap(NextIterVals); 8445 } 8446 8447 // Too many iterations were needed to evaluate. 8448 return getCouldNotCompute(); 8449 } 8450 8451 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8452 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8453 ValuesAtScopes[V]; 8454 // Check to see if we've folded this expression at this loop before. 8455 for (auto &LS : Values) 8456 if (LS.first == L) 8457 return LS.second ? LS.second : V; 8458 8459 Values.emplace_back(L, nullptr); 8460 8461 // Otherwise compute it. 8462 const SCEV *C = computeSCEVAtScope(V, L); 8463 for (auto &LS : reverse(ValuesAtScopes[V])) 8464 if (LS.first == L) { 8465 LS.second = C; 8466 break; 8467 } 8468 return C; 8469 } 8470 8471 /// This builds up a Constant using the ConstantExpr interface. That way, we 8472 /// will return Constants for objects which aren't represented by a 8473 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8474 /// Returns NULL if the SCEV isn't representable as a Constant. 8475 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8476 switch (V->getSCEVType()) { 8477 case scCouldNotCompute: 8478 case scAddRecExpr: 8479 return nullptr; 8480 case scConstant: 8481 return cast<SCEVConstant>(V)->getValue(); 8482 case scUnknown: 8483 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8484 case scSignExtend: { 8485 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8486 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8487 return ConstantExpr::getSExt(CastOp, SS->getType()); 8488 return nullptr; 8489 } 8490 case scZeroExtend: { 8491 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8492 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8493 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8494 return nullptr; 8495 } 8496 case scPtrToInt: { 8497 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8498 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8499 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8500 8501 return nullptr; 8502 } 8503 case scTruncate: { 8504 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8505 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8506 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8507 return nullptr; 8508 } 8509 case scAddExpr: { 8510 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8511 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8512 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8513 unsigned AS = PTy->getAddressSpace(); 8514 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8515 C = ConstantExpr::getBitCast(C, DestPtrTy); 8516 } 8517 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8518 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8519 if (!C2) 8520 return nullptr; 8521 8522 // First pointer! 8523 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8524 unsigned AS = C2->getType()->getPointerAddressSpace(); 8525 std::swap(C, C2); 8526 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8527 // The offsets have been converted to bytes. We can add bytes to an 8528 // i8* by GEP with the byte count in the first index. 8529 C = ConstantExpr::getBitCast(C, DestPtrTy); 8530 } 8531 8532 // Don't bother trying to sum two pointers. We probably can't 8533 // statically compute a load that results from it anyway. 8534 if (C2->getType()->isPointerTy()) 8535 return nullptr; 8536 8537 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8538 if (PTy->getElementType()->isStructTy()) 8539 C2 = ConstantExpr::getIntegerCast( 8540 C2, Type::getInt32Ty(C->getContext()), true); 8541 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 8542 } else 8543 C = ConstantExpr::getAdd(C, C2); 8544 } 8545 return C; 8546 } 8547 return nullptr; 8548 } 8549 case scMulExpr: { 8550 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8551 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8552 // Don't bother with pointers at all. 8553 if (C->getType()->isPointerTy()) 8554 return nullptr; 8555 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8556 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8557 if (!C2 || C2->getType()->isPointerTy()) 8558 return nullptr; 8559 C = ConstantExpr::getMul(C, C2); 8560 } 8561 return C; 8562 } 8563 return nullptr; 8564 } 8565 case scUDivExpr: { 8566 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8567 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8568 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8569 if (LHS->getType() == RHS->getType()) 8570 return ConstantExpr::getUDiv(LHS, RHS); 8571 return nullptr; 8572 } 8573 case scSMaxExpr: 8574 case scUMaxExpr: 8575 case scSMinExpr: 8576 case scUMinExpr: 8577 return nullptr; // TODO: smax, umax, smin, umax. 8578 } 8579 llvm_unreachable("Unknown SCEV kind!"); 8580 } 8581 8582 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8583 if (isa<SCEVConstant>(V)) return V; 8584 8585 // If this instruction is evolved from a constant-evolving PHI, compute the 8586 // exit value from the loop without using SCEVs. 8587 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8588 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8589 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8590 const Loop *CurrLoop = this->LI[I->getParent()]; 8591 // Looking for loop exit value. 8592 if (CurrLoop && CurrLoop->getParentLoop() == L && 8593 PN->getParent() == CurrLoop->getHeader()) { 8594 // Okay, there is no closed form solution for the PHI node. Check 8595 // to see if the loop that contains it has a known backedge-taken 8596 // count. If so, we may be able to force computation of the exit 8597 // value. 8598 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8599 // This trivial case can show up in some degenerate cases where 8600 // the incoming IR has not yet been fully simplified. 8601 if (BackedgeTakenCount->isZero()) { 8602 Value *InitValue = nullptr; 8603 bool MultipleInitValues = false; 8604 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8605 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8606 if (!InitValue) 8607 InitValue = PN->getIncomingValue(i); 8608 else if (InitValue != PN->getIncomingValue(i)) { 8609 MultipleInitValues = true; 8610 break; 8611 } 8612 } 8613 } 8614 if (!MultipleInitValues && InitValue) 8615 return getSCEV(InitValue); 8616 } 8617 // Do we have a loop invariant value flowing around the backedge 8618 // for a loop which must execute the backedge? 8619 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8620 isKnownPositive(BackedgeTakenCount) && 8621 PN->getNumIncomingValues() == 2) { 8622 8623 unsigned InLoopPred = 8624 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8625 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8626 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8627 return getSCEV(BackedgeVal); 8628 } 8629 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8630 // Okay, we know how many times the containing loop executes. If 8631 // this is a constant evolving PHI node, get the final value at 8632 // the specified iteration number. 8633 Constant *RV = getConstantEvolutionLoopExitValue( 8634 PN, BTCC->getAPInt(), CurrLoop); 8635 if (RV) return getSCEV(RV); 8636 } 8637 } 8638 8639 // If there is a single-input Phi, evaluate it at our scope. If we can 8640 // prove that this replacement does not break LCSSA form, use new value. 8641 if (PN->getNumOperands() == 1) { 8642 const SCEV *Input = getSCEV(PN->getOperand(0)); 8643 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8644 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8645 // for the simplest case just support constants. 8646 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8647 } 8648 } 8649 8650 // Okay, this is an expression that we cannot symbolically evaluate 8651 // into a SCEV. Check to see if it's possible to symbolically evaluate 8652 // the arguments into constants, and if so, try to constant propagate the 8653 // result. This is particularly useful for computing loop exit values. 8654 if (CanConstantFold(I)) { 8655 SmallVector<Constant *, 4> Operands; 8656 bool MadeImprovement = false; 8657 for (Value *Op : I->operands()) { 8658 if (Constant *C = dyn_cast<Constant>(Op)) { 8659 Operands.push_back(C); 8660 continue; 8661 } 8662 8663 // If any of the operands is non-constant and if they are 8664 // non-integer and non-pointer, don't even try to analyze them 8665 // with scev techniques. 8666 if (!isSCEVable(Op->getType())) 8667 return V; 8668 8669 const SCEV *OrigV = getSCEV(Op); 8670 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8671 MadeImprovement |= OrigV != OpV; 8672 8673 Constant *C = BuildConstantFromSCEV(OpV); 8674 if (!C) return V; 8675 if (C->getType() != Op->getType()) 8676 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8677 Op->getType(), 8678 false), 8679 C, Op->getType()); 8680 Operands.push_back(C); 8681 } 8682 8683 // Check to see if getSCEVAtScope actually made an improvement. 8684 if (MadeImprovement) { 8685 Constant *C = nullptr; 8686 const DataLayout &DL = getDataLayout(); 8687 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8688 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8689 Operands[1], DL, &TLI); 8690 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8691 if (!Load->isVolatile()) 8692 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8693 DL); 8694 } else 8695 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8696 if (!C) return V; 8697 return getSCEV(C); 8698 } 8699 } 8700 } 8701 8702 // This is some other type of SCEVUnknown, just return it. 8703 return V; 8704 } 8705 8706 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8707 // Avoid performing the look-up in the common case where the specified 8708 // expression has no loop-variant portions. 8709 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8710 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8711 if (OpAtScope != Comm->getOperand(i)) { 8712 // Okay, at least one of these operands is loop variant but might be 8713 // foldable. Build a new instance of the folded commutative expression. 8714 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8715 Comm->op_begin()+i); 8716 NewOps.push_back(OpAtScope); 8717 8718 for (++i; i != e; ++i) { 8719 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8720 NewOps.push_back(OpAtScope); 8721 } 8722 if (isa<SCEVAddExpr>(Comm)) 8723 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8724 if (isa<SCEVMulExpr>(Comm)) 8725 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8726 if (isa<SCEVMinMaxExpr>(Comm)) 8727 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8728 llvm_unreachable("Unknown commutative SCEV type!"); 8729 } 8730 } 8731 // If we got here, all operands are loop invariant. 8732 return Comm; 8733 } 8734 8735 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8736 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8737 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8738 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8739 return Div; // must be loop invariant 8740 return getUDivExpr(LHS, RHS); 8741 } 8742 8743 // If this is a loop recurrence for a loop that does not contain L, then we 8744 // are dealing with the final value computed by the loop. 8745 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8746 // First, attempt to evaluate each operand. 8747 // Avoid performing the look-up in the common case where the specified 8748 // expression has no loop-variant portions. 8749 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8750 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8751 if (OpAtScope == AddRec->getOperand(i)) 8752 continue; 8753 8754 // Okay, at least one of these operands is loop variant but might be 8755 // foldable. Build a new instance of the folded commutative expression. 8756 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8757 AddRec->op_begin()+i); 8758 NewOps.push_back(OpAtScope); 8759 for (++i; i != e; ++i) 8760 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8761 8762 const SCEV *FoldedRec = 8763 getAddRecExpr(NewOps, AddRec->getLoop(), 8764 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8765 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8766 // The addrec may be folded to a nonrecurrence, for example, if the 8767 // induction variable is multiplied by zero after constant folding. Go 8768 // ahead and return the folded value. 8769 if (!AddRec) 8770 return FoldedRec; 8771 break; 8772 } 8773 8774 // If the scope is outside the addrec's loop, evaluate it by using the 8775 // loop exit value of the addrec. 8776 if (!AddRec->getLoop()->contains(L)) { 8777 // To evaluate this recurrence, we need to know how many times the AddRec 8778 // loop iterates. Compute this now. 8779 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8780 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8781 8782 // Then, evaluate the AddRec. 8783 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8784 } 8785 8786 return AddRec; 8787 } 8788 8789 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8790 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8791 if (Op == Cast->getOperand()) 8792 return Cast; // must be loop invariant 8793 return getZeroExtendExpr(Op, Cast->getType()); 8794 } 8795 8796 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8797 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8798 if (Op == Cast->getOperand()) 8799 return Cast; // must be loop invariant 8800 return getSignExtendExpr(Op, Cast->getType()); 8801 } 8802 8803 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8804 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8805 if (Op == Cast->getOperand()) 8806 return Cast; // must be loop invariant 8807 return getTruncateExpr(Op, Cast->getType()); 8808 } 8809 8810 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 8811 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8812 if (Op == Cast->getOperand()) 8813 return Cast; // must be loop invariant 8814 return getPtrToIntExpr(Op, Cast->getType()); 8815 } 8816 8817 llvm_unreachable("Unknown SCEV type!"); 8818 } 8819 8820 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8821 return getSCEVAtScope(getSCEV(V), L); 8822 } 8823 8824 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8825 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8826 return stripInjectiveFunctions(ZExt->getOperand()); 8827 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8828 return stripInjectiveFunctions(SExt->getOperand()); 8829 return S; 8830 } 8831 8832 /// Finds the minimum unsigned root of the following equation: 8833 /// 8834 /// A * X = B (mod N) 8835 /// 8836 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8837 /// A and B isn't important. 8838 /// 8839 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8840 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8841 ScalarEvolution &SE) { 8842 uint32_t BW = A.getBitWidth(); 8843 assert(BW == SE.getTypeSizeInBits(B->getType())); 8844 assert(A != 0 && "A must be non-zero."); 8845 8846 // 1. D = gcd(A, N) 8847 // 8848 // The gcd of A and N may have only one prime factor: 2. The number of 8849 // trailing zeros in A is its multiplicity 8850 uint32_t Mult2 = A.countTrailingZeros(); 8851 // D = 2^Mult2 8852 8853 // 2. Check if B is divisible by D. 8854 // 8855 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8856 // is not less than multiplicity of this prime factor for D. 8857 if (SE.GetMinTrailingZeros(B) < Mult2) 8858 return SE.getCouldNotCompute(); 8859 8860 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8861 // modulo (N / D). 8862 // 8863 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8864 // (N / D) in general. The inverse itself always fits into BW bits, though, 8865 // so we immediately truncate it. 8866 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8867 APInt Mod(BW + 1, 0); 8868 Mod.setBit(BW - Mult2); // Mod = N / D 8869 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8870 8871 // 4. Compute the minimum unsigned root of the equation: 8872 // I * (B / D) mod (N / D) 8873 // To simplify the computation, we factor out the divide by D: 8874 // (I * B mod N) / D 8875 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8876 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8877 } 8878 8879 /// For a given quadratic addrec, generate coefficients of the corresponding 8880 /// quadratic equation, multiplied by a common value to ensure that they are 8881 /// integers. 8882 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8883 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8884 /// were multiplied by, and BitWidth is the bit width of the original addrec 8885 /// coefficients. 8886 /// This function returns None if the addrec coefficients are not compile- 8887 /// time constants. 8888 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8889 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8890 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8891 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8892 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8893 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8894 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8895 << *AddRec << '\n'); 8896 8897 // We currently can only solve this if the coefficients are constants. 8898 if (!LC || !MC || !NC) { 8899 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8900 return None; 8901 } 8902 8903 APInt L = LC->getAPInt(); 8904 APInt M = MC->getAPInt(); 8905 APInt N = NC->getAPInt(); 8906 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8907 8908 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8909 unsigned NewWidth = BitWidth + 1; 8910 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8911 << BitWidth << '\n'); 8912 // The sign-extension (as opposed to a zero-extension) here matches the 8913 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8914 N = N.sext(NewWidth); 8915 M = M.sext(NewWidth); 8916 L = L.sext(NewWidth); 8917 8918 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8919 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8920 // L+M, L+2M+N, L+3M+3N, ... 8921 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8922 // 8923 // The equation Acc = 0 is then 8924 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8925 // In a quadratic form it becomes: 8926 // N n^2 + (2M-N) n + 2L = 0. 8927 8928 APInt A = N; 8929 APInt B = 2 * M - A; 8930 APInt C = 2 * L; 8931 APInt T = APInt(NewWidth, 2); 8932 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8933 << "x + " << C << ", coeff bw: " << NewWidth 8934 << ", multiplied by " << T << '\n'); 8935 return std::make_tuple(A, B, C, T, BitWidth); 8936 } 8937 8938 /// Helper function to compare optional APInts: 8939 /// (a) if X and Y both exist, return min(X, Y), 8940 /// (b) if neither X nor Y exist, return None, 8941 /// (c) if exactly one of X and Y exists, return that value. 8942 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8943 if (X.hasValue() && Y.hasValue()) { 8944 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8945 APInt XW = X->sextOrSelf(W); 8946 APInt YW = Y->sextOrSelf(W); 8947 return XW.slt(YW) ? *X : *Y; 8948 } 8949 if (!X.hasValue() && !Y.hasValue()) 8950 return None; 8951 return X.hasValue() ? *X : *Y; 8952 } 8953 8954 /// Helper function to truncate an optional APInt to a given BitWidth. 8955 /// When solving addrec-related equations, it is preferable to return a value 8956 /// that has the same bit width as the original addrec's coefficients. If the 8957 /// solution fits in the original bit width, truncate it (except for i1). 8958 /// Returning a value of a different bit width may inhibit some optimizations. 8959 /// 8960 /// In general, a solution to a quadratic equation generated from an addrec 8961 /// may require BW+1 bits, where BW is the bit width of the addrec's 8962 /// coefficients. The reason is that the coefficients of the quadratic 8963 /// equation are BW+1 bits wide (to avoid truncation when converting from 8964 /// the addrec to the equation). 8965 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8966 if (!X.hasValue()) 8967 return None; 8968 unsigned W = X->getBitWidth(); 8969 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8970 return X->trunc(BitWidth); 8971 return X; 8972 } 8973 8974 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8975 /// iterations. The values L, M, N are assumed to be signed, and they 8976 /// should all have the same bit widths. 8977 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8978 /// where BW is the bit width of the addrec's coefficients. 8979 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8980 /// returned as such, otherwise the bit width of the returned value may 8981 /// be greater than BW. 8982 /// 8983 /// This function returns None if 8984 /// (a) the addrec coefficients are not constant, or 8985 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8986 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8987 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8988 static Optional<APInt> 8989 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8990 APInt A, B, C, M; 8991 unsigned BitWidth; 8992 auto T = GetQuadraticEquation(AddRec); 8993 if (!T.hasValue()) 8994 return None; 8995 8996 std::tie(A, B, C, M, BitWidth) = *T; 8997 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8998 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8999 if (!X.hasValue()) 9000 return None; 9001 9002 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9003 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9004 if (!V->isZero()) 9005 return None; 9006 9007 return TruncIfPossible(X, BitWidth); 9008 } 9009 9010 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9011 /// iterations. The values M, N are assumed to be signed, and they 9012 /// should all have the same bit widths. 9013 /// Find the least n such that c(n) does not belong to the given range, 9014 /// while c(n-1) does. 9015 /// 9016 /// This function returns None if 9017 /// (a) the addrec coefficients are not constant, or 9018 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9019 /// bounds of the range. 9020 static Optional<APInt> 9021 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9022 const ConstantRange &Range, ScalarEvolution &SE) { 9023 assert(AddRec->getOperand(0)->isZero() && 9024 "Starting value of addrec should be 0"); 9025 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9026 << Range << ", addrec " << *AddRec << '\n'); 9027 // This case is handled in getNumIterationsInRange. Here we can assume that 9028 // we start in the range. 9029 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9030 "Addrec's initial value should be in range"); 9031 9032 APInt A, B, C, M; 9033 unsigned BitWidth; 9034 auto T = GetQuadraticEquation(AddRec); 9035 if (!T.hasValue()) 9036 return None; 9037 9038 // Be careful about the return value: there can be two reasons for not 9039 // returning an actual number. First, if no solutions to the equations 9040 // were found, and second, if the solutions don't leave the given range. 9041 // The first case means that the actual solution is "unknown", the second 9042 // means that it's known, but not valid. If the solution is unknown, we 9043 // cannot make any conclusions. 9044 // Return a pair: the optional solution and a flag indicating if the 9045 // solution was found. 9046 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9047 // Solve for signed overflow and unsigned overflow, pick the lower 9048 // solution. 9049 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9050 << Bound << " (before multiplying by " << M << ")\n"); 9051 Bound *= M; // The quadratic equation multiplier. 9052 9053 Optional<APInt> SO = None; 9054 if (BitWidth > 1) { 9055 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9056 "signed overflow\n"); 9057 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9058 } 9059 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9060 "unsigned overflow\n"); 9061 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9062 BitWidth+1); 9063 9064 auto LeavesRange = [&] (const APInt &X) { 9065 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9066 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9067 if (Range.contains(V0->getValue())) 9068 return false; 9069 // X should be at least 1, so X-1 is non-negative. 9070 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9071 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9072 if (Range.contains(V1->getValue())) 9073 return true; 9074 return false; 9075 }; 9076 9077 // If SolveQuadraticEquationWrap returns None, it means that there can 9078 // be a solution, but the function failed to find it. We cannot treat it 9079 // as "no solution". 9080 if (!SO.hasValue() || !UO.hasValue()) 9081 return { None, false }; 9082 9083 // Check the smaller value first to see if it leaves the range. 9084 // At this point, both SO and UO must have values. 9085 Optional<APInt> Min = MinOptional(SO, UO); 9086 if (LeavesRange(*Min)) 9087 return { Min, true }; 9088 Optional<APInt> Max = Min == SO ? UO : SO; 9089 if (LeavesRange(*Max)) 9090 return { Max, true }; 9091 9092 // Solutions were found, but were eliminated, hence the "true". 9093 return { None, true }; 9094 }; 9095 9096 std::tie(A, B, C, M, BitWidth) = *T; 9097 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9098 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9099 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9100 auto SL = SolveForBoundary(Lower); 9101 auto SU = SolveForBoundary(Upper); 9102 // If any of the solutions was unknown, no meaninigful conclusions can 9103 // be made. 9104 if (!SL.second || !SU.second) 9105 return None; 9106 9107 // Claim: The correct solution is not some value between Min and Max. 9108 // 9109 // Justification: Assuming that Min and Max are different values, one of 9110 // them is when the first signed overflow happens, the other is when the 9111 // first unsigned overflow happens. Crossing the range boundary is only 9112 // possible via an overflow (treating 0 as a special case of it, modeling 9113 // an overflow as crossing k*2^W for some k). 9114 // 9115 // The interesting case here is when Min was eliminated as an invalid 9116 // solution, but Max was not. The argument is that if there was another 9117 // overflow between Min and Max, it would also have been eliminated if 9118 // it was considered. 9119 // 9120 // For a given boundary, it is possible to have two overflows of the same 9121 // type (signed/unsigned) without having the other type in between: this 9122 // can happen when the vertex of the parabola is between the iterations 9123 // corresponding to the overflows. This is only possible when the two 9124 // overflows cross k*2^W for the same k. In such case, if the second one 9125 // left the range (and was the first one to do so), the first overflow 9126 // would have to enter the range, which would mean that either we had left 9127 // the range before or that we started outside of it. Both of these cases 9128 // are contradictions. 9129 // 9130 // Claim: In the case where SolveForBoundary returns None, the correct 9131 // solution is not some value between the Max for this boundary and the 9132 // Min of the other boundary. 9133 // 9134 // Justification: Assume that we had such Max_A and Min_B corresponding 9135 // to range boundaries A and B and such that Max_A < Min_B. If there was 9136 // a solution between Max_A and Min_B, it would have to be caused by an 9137 // overflow corresponding to either A or B. It cannot correspond to B, 9138 // since Min_B is the first occurrence of such an overflow. If it 9139 // corresponded to A, it would have to be either a signed or an unsigned 9140 // overflow that is larger than both eliminated overflows for A. But 9141 // between the eliminated overflows and this overflow, the values would 9142 // cover the entire value space, thus crossing the other boundary, which 9143 // is a contradiction. 9144 9145 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9146 } 9147 9148 ScalarEvolution::ExitLimit 9149 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9150 bool AllowPredicates) { 9151 9152 // This is only used for loops with a "x != y" exit test. The exit condition 9153 // is now expressed as a single expression, V = x-y. So the exit test is 9154 // effectively V != 0. We know and take advantage of the fact that this 9155 // expression only being used in a comparison by zero context. 9156 9157 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9158 // If the value is a constant 9159 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9160 // If the value is already zero, the branch will execute zero times. 9161 if (C->getValue()->isZero()) return C; 9162 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9163 } 9164 9165 const SCEVAddRecExpr *AddRec = 9166 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9167 9168 if (!AddRec && AllowPredicates) 9169 // Try to make this an AddRec using runtime tests, in the first X 9170 // iterations of this loop, where X is the SCEV expression found by the 9171 // algorithm below. 9172 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9173 9174 if (!AddRec || AddRec->getLoop() != L) 9175 return getCouldNotCompute(); 9176 9177 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9178 // the quadratic equation to solve it. 9179 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9180 // We can only use this value if the chrec ends up with an exact zero 9181 // value at this index. When solving for "X*X != 5", for example, we 9182 // should not accept a root of 2. 9183 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9184 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9185 return ExitLimit(R, R, false, Predicates); 9186 } 9187 return getCouldNotCompute(); 9188 } 9189 9190 // Otherwise we can only handle this if it is affine. 9191 if (!AddRec->isAffine()) 9192 return getCouldNotCompute(); 9193 9194 // If this is an affine expression, the execution count of this branch is 9195 // the minimum unsigned root of the following equation: 9196 // 9197 // Start + Step*N = 0 (mod 2^BW) 9198 // 9199 // equivalent to: 9200 // 9201 // Step*N = -Start (mod 2^BW) 9202 // 9203 // where BW is the common bit width of Start and Step. 9204 9205 // Get the initial value for the loop. 9206 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9207 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9208 9209 // For now we handle only constant steps. 9210 // 9211 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9212 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9213 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9214 // We have not yet seen any such cases. 9215 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9216 if (!StepC || StepC->getValue()->isZero()) 9217 return getCouldNotCompute(); 9218 9219 // For positive steps (counting up until unsigned overflow): 9220 // N = -Start/Step (as unsigned) 9221 // For negative steps (counting down to zero): 9222 // N = Start/-Step 9223 // First compute the unsigned distance from zero in the direction of Step. 9224 bool CountDown = StepC->getAPInt().isNegative(); 9225 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9226 9227 // Handle unitary steps, which cannot wraparound. 9228 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9229 // N = Distance (as unsigned) 9230 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9231 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9232 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9233 if (MaxBECountBase.ult(MaxBECount)) 9234 MaxBECount = MaxBECountBase; 9235 9236 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9237 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9238 // case, and see if we can improve the bound. 9239 // 9240 // Explicitly handling this here is necessary because getUnsignedRange 9241 // isn't context-sensitive; it doesn't know that we only care about the 9242 // range inside the loop. 9243 const SCEV *Zero = getZero(Distance->getType()); 9244 const SCEV *One = getOne(Distance->getType()); 9245 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9246 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9247 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9248 // as "unsigned_max(Distance + 1) - 1". 9249 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9250 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9251 } 9252 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9253 } 9254 9255 // If the condition controls loop exit (the loop exits only if the expression 9256 // is true) and the addition is no-wrap we can use unsigned divide to 9257 // compute the backedge count. In this case, the step may not divide the 9258 // distance, but we don't care because if the condition is "missed" the loop 9259 // will have undefined behavior due to wrapping. 9260 if (ControlsExit && AddRec->hasNoSelfWrap() && 9261 loopHasNoAbnormalExits(AddRec->getLoop())) { 9262 const SCEV *Exact = 9263 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9264 const SCEV *Max = 9265 Exact == getCouldNotCompute() 9266 ? Exact 9267 : getConstant(getUnsignedRangeMax(Exact)); 9268 return ExitLimit(Exact, Max, false, Predicates); 9269 } 9270 9271 // Solve the general equation. 9272 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9273 getNegativeSCEV(Start), *this); 9274 const SCEV *M = E == getCouldNotCompute() 9275 ? E 9276 : getConstant(getUnsignedRangeMax(E)); 9277 return ExitLimit(E, M, false, Predicates); 9278 } 9279 9280 ScalarEvolution::ExitLimit 9281 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9282 // Loops that look like: while (X == 0) are very strange indeed. We don't 9283 // handle them yet except for the trivial case. This could be expanded in the 9284 // future as needed. 9285 9286 // If the value is a constant, check to see if it is known to be non-zero 9287 // already. If so, the backedge will execute zero times. 9288 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9289 if (!C->getValue()->isZero()) 9290 return getZero(C->getType()); 9291 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9292 } 9293 9294 // We could implement others, but I really doubt anyone writes loops like 9295 // this, and if they did, they would already be constant folded. 9296 return getCouldNotCompute(); 9297 } 9298 9299 std::pair<const BasicBlock *, const BasicBlock *> 9300 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9301 const { 9302 // If the block has a unique predecessor, then there is no path from the 9303 // predecessor to the block that does not go through the direct edge 9304 // from the predecessor to the block. 9305 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9306 return {Pred, BB}; 9307 9308 // A loop's header is defined to be a block that dominates the loop. 9309 // If the header has a unique predecessor outside the loop, it must be 9310 // a block that has exactly one successor that can reach the loop. 9311 if (const Loop *L = LI.getLoopFor(BB)) 9312 return {L->getLoopPredecessor(), L->getHeader()}; 9313 9314 return {nullptr, nullptr}; 9315 } 9316 9317 /// SCEV structural equivalence is usually sufficient for testing whether two 9318 /// expressions are equal, however for the purposes of looking for a condition 9319 /// guarding a loop, it can be useful to be a little more general, since a 9320 /// front-end may have replicated the controlling expression. 9321 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9322 // Quick check to see if they are the same SCEV. 9323 if (A == B) return true; 9324 9325 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9326 // Not all instructions that are "identical" compute the same value. For 9327 // instance, two distinct alloca instructions allocating the same type are 9328 // identical and do not read memory; but compute distinct values. 9329 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9330 }; 9331 9332 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9333 // two different instructions with the same value. Check for this case. 9334 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9335 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9336 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9337 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9338 if (ComputesEqualValues(AI, BI)) 9339 return true; 9340 9341 // Otherwise assume they may have a different value. 9342 return false; 9343 } 9344 9345 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9346 const SCEV *&LHS, const SCEV *&RHS, 9347 unsigned Depth) { 9348 bool Changed = false; 9349 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9350 // '0 != 0'. 9351 auto TrivialCase = [&](bool TriviallyTrue) { 9352 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9353 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9354 return true; 9355 }; 9356 // If we hit the max recursion limit bail out. 9357 if (Depth >= 3) 9358 return false; 9359 9360 // Canonicalize a constant to the right side. 9361 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9362 // Check for both operands constant. 9363 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9364 if (ConstantExpr::getICmp(Pred, 9365 LHSC->getValue(), 9366 RHSC->getValue())->isNullValue()) 9367 return TrivialCase(false); 9368 else 9369 return TrivialCase(true); 9370 } 9371 // Otherwise swap the operands to put the constant on the right. 9372 std::swap(LHS, RHS); 9373 Pred = ICmpInst::getSwappedPredicate(Pred); 9374 Changed = true; 9375 } 9376 9377 // If we're comparing an addrec with a value which is loop-invariant in the 9378 // addrec's loop, put the addrec on the left. Also make a dominance check, 9379 // as both operands could be addrecs loop-invariant in each other's loop. 9380 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9381 const Loop *L = AR->getLoop(); 9382 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9383 std::swap(LHS, RHS); 9384 Pred = ICmpInst::getSwappedPredicate(Pred); 9385 Changed = true; 9386 } 9387 } 9388 9389 // If there's a constant operand, canonicalize comparisons with boundary 9390 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9391 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9392 const APInt &RA = RC->getAPInt(); 9393 9394 bool SimplifiedByConstantRange = false; 9395 9396 if (!ICmpInst::isEquality(Pred)) { 9397 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9398 if (ExactCR.isFullSet()) 9399 return TrivialCase(true); 9400 else if (ExactCR.isEmptySet()) 9401 return TrivialCase(false); 9402 9403 APInt NewRHS; 9404 CmpInst::Predicate NewPred; 9405 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9406 ICmpInst::isEquality(NewPred)) { 9407 // We were able to convert an inequality to an equality. 9408 Pred = NewPred; 9409 RHS = getConstant(NewRHS); 9410 Changed = SimplifiedByConstantRange = true; 9411 } 9412 } 9413 9414 if (!SimplifiedByConstantRange) { 9415 switch (Pred) { 9416 default: 9417 break; 9418 case ICmpInst::ICMP_EQ: 9419 case ICmpInst::ICMP_NE: 9420 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9421 if (!RA) 9422 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9423 if (const SCEVMulExpr *ME = 9424 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9425 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9426 ME->getOperand(0)->isAllOnesValue()) { 9427 RHS = AE->getOperand(1); 9428 LHS = ME->getOperand(1); 9429 Changed = true; 9430 } 9431 break; 9432 9433 9434 // The "Should have been caught earlier!" messages refer to the fact 9435 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9436 // should have fired on the corresponding cases, and canonicalized the 9437 // check to trivial case. 9438 9439 case ICmpInst::ICMP_UGE: 9440 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9441 Pred = ICmpInst::ICMP_UGT; 9442 RHS = getConstant(RA - 1); 9443 Changed = true; 9444 break; 9445 case ICmpInst::ICMP_ULE: 9446 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9447 Pred = ICmpInst::ICMP_ULT; 9448 RHS = getConstant(RA + 1); 9449 Changed = true; 9450 break; 9451 case ICmpInst::ICMP_SGE: 9452 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9453 Pred = ICmpInst::ICMP_SGT; 9454 RHS = getConstant(RA - 1); 9455 Changed = true; 9456 break; 9457 case ICmpInst::ICMP_SLE: 9458 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9459 Pred = ICmpInst::ICMP_SLT; 9460 RHS = getConstant(RA + 1); 9461 Changed = true; 9462 break; 9463 } 9464 } 9465 } 9466 9467 // Check for obvious equality. 9468 if (HasSameValue(LHS, RHS)) { 9469 if (ICmpInst::isTrueWhenEqual(Pred)) 9470 return TrivialCase(true); 9471 if (ICmpInst::isFalseWhenEqual(Pred)) 9472 return TrivialCase(false); 9473 } 9474 9475 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9476 // adding or subtracting 1 from one of the operands. 9477 switch (Pred) { 9478 case ICmpInst::ICMP_SLE: 9479 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9480 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9481 SCEV::FlagNSW); 9482 Pred = ICmpInst::ICMP_SLT; 9483 Changed = true; 9484 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9485 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9486 SCEV::FlagNSW); 9487 Pred = ICmpInst::ICMP_SLT; 9488 Changed = true; 9489 } 9490 break; 9491 case ICmpInst::ICMP_SGE: 9492 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9493 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9494 SCEV::FlagNSW); 9495 Pred = ICmpInst::ICMP_SGT; 9496 Changed = true; 9497 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9498 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9499 SCEV::FlagNSW); 9500 Pred = ICmpInst::ICMP_SGT; 9501 Changed = true; 9502 } 9503 break; 9504 case ICmpInst::ICMP_ULE: 9505 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9506 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9507 SCEV::FlagNUW); 9508 Pred = ICmpInst::ICMP_ULT; 9509 Changed = true; 9510 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9511 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9512 Pred = ICmpInst::ICMP_ULT; 9513 Changed = true; 9514 } 9515 break; 9516 case ICmpInst::ICMP_UGE: 9517 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9518 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9519 Pred = ICmpInst::ICMP_UGT; 9520 Changed = true; 9521 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9522 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9523 SCEV::FlagNUW); 9524 Pred = ICmpInst::ICMP_UGT; 9525 Changed = true; 9526 } 9527 break; 9528 default: 9529 break; 9530 } 9531 9532 // TODO: More simplifications are possible here. 9533 9534 // Recursively simplify until we either hit a recursion limit or nothing 9535 // changes. 9536 if (Changed) 9537 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9538 9539 return Changed; 9540 } 9541 9542 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9543 return getSignedRangeMax(S).isNegative(); 9544 } 9545 9546 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9547 return getSignedRangeMin(S).isStrictlyPositive(); 9548 } 9549 9550 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9551 return !getSignedRangeMin(S).isNegative(); 9552 } 9553 9554 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9555 return !getSignedRangeMax(S).isStrictlyPositive(); 9556 } 9557 9558 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9559 return isKnownNegative(S) || isKnownPositive(S); 9560 } 9561 9562 std::pair<const SCEV *, const SCEV *> 9563 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9564 // Compute SCEV on entry of loop L. 9565 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9566 if (Start == getCouldNotCompute()) 9567 return { Start, Start }; 9568 // Compute post increment SCEV for loop L. 9569 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9570 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9571 return { Start, PostInc }; 9572 } 9573 9574 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9575 const SCEV *LHS, const SCEV *RHS) { 9576 // First collect all loops. 9577 SmallPtrSet<const Loop *, 8> LoopsUsed; 9578 getUsedLoops(LHS, LoopsUsed); 9579 getUsedLoops(RHS, LoopsUsed); 9580 9581 if (LoopsUsed.empty()) 9582 return false; 9583 9584 // Domination relationship must be a linear order on collected loops. 9585 #ifndef NDEBUG 9586 for (auto *L1 : LoopsUsed) 9587 for (auto *L2 : LoopsUsed) 9588 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9589 DT.dominates(L2->getHeader(), L1->getHeader())) && 9590 "Domination relationship is not a linear order"); 9591 #endif 9592 9593 const Loop *MDL = 9594 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9595 [&](const Loop *L1, const Loop *L2) { 9596 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9597 }); 9598 9599 // Get init and post increment value for LHS. 9600 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9601 // if LHS contains unknown non-invariant SCEV then bail out. 9602 if (SplitLHS.first == getCouldNotCompute()) 9603 return false; 9604 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9605 // Get init and post increment value for RHS. 9606 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9607 // if RHS contains unknown non-invariant SCEV then bail out. 9608 if (SplitRHS.first == getCouldNotCompute()) 9609 return false; 9610 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9611 // It is possible that init SCEV contains an invariant load but it does 9612 // not dominate MDL and is not available at MDL loop entry, so we should 9613 // check it here. 9614 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9615 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9616 return false; 9617 9618 // It seems backedge guard check is faster than entry one so in some cases 9619 // it can speed up whole estimation by short circuit 9620 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9621 SplitRHS.second) && 9622 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9623 } 9624 9625 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9626 const SCEV *LHS, const SCEV *RHS) { 9627 // Canonicalize the inputs first. 9628 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9629 9630 if (isKnownViaInduction(Pred, LHS, RHS)) 9631 return true; 9632 9633 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9634 return true; 9635 9636 // Otherwise see what can be done with some simple reasoning. 9637 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9638 } 9639 9640 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9641 const SCEV *LHS, 9642 const SCEV *RHS) { 9643 if (isKnownPredicate(Pred, LHS, RHS)) 9644 return true; 9645 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9646 return false; 9647 return None; 9648 } 9649 9650 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9651 const SCEV *LHS, const SCEV *RHS, 9652 const Instruction *Context) { 9653 // TODO: Analyze guards and assumes from Context's block. 9654 return isKnownPredicate(Pred, LHS, RHS) || 9655 isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS); 9656 } 9657 9658 Optional<bool> 9659 ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, const SCEV *LHS, 9660 const SCEV *RHS, 9661 const Instruction *Context) { 9662 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9663 if (KnownWithoutContext) 9664 return KnownWithoutContext; 9665 9666 if (isBasicBlockEntryGuardedByCond(Context->getParent(), Pred, LHS, RHS)) 9667 return true; 9668 else if (isBasicBlockEntryGuardedByCond(Context->getParent(), 9669 ICmpInst::getInversePredicate(Pred), 9670 LHS, RHS)) 9671 return false; 9672 return None; 9673 } 9674 9675 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9676 const SCEVAddRecExpr *LHS, 9677 const SCEV *RHS) { 9678 const Loop *L = LHS->getLoop(); 9679 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9680 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9681 } 9682 9683 Optional<ScalarEvolution::MonotonicPredicateType> 9684 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9685 ICmpInst::Predicate Pred) { 9686 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9687 9688 #ifndef NDEBUG 9689 // Verify an invariant: inverting the predicate should turn a monotonically 9690 // increasing change to a monotonically decreasing one, and vice versa. 9691 if (Result) { 9692 auto ResultSwapped = 9693 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9694 9695 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9696 assert(ResultSwapped.getValue() != Result.getValue() && 9697 "monotonicity should flip as we flip the predicate"); 9698 } 9699 #endif 9700 9701 return Result; 9702 } 9703 9704 Optional<ScalarEvolution::MonotonicPredicateType> 9705 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9706 ICmpInst::Predicate Pred) { 9707 // A zero step value for LHS means the induction variable is essentially a 9708 // loop invariant value. We don't really depend on the predicate actually 9709 // flipping from false to true (for increasing predicates, and the other way 9710 // around for decreasing predicates), all we care about is that *if* the 9711 // predicate changes then it only changes from false to true. 9712 // 9713 // A zero step value in itself is not very useful, but there may be places 9714 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9715 // as general as possible. 9716 9717 // Only handle LE/LT/GE/GT predicates. 9718 if (!ICmpInst::isRelational(Pred)) 9719 return None; 9720 9721 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 9722 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 9723 "Should be greater or less!"); 9724 9725 // Check that AR does not wrap. 9726 if (ICmpInst::isUnsigned(Pred)) { 9727 if (!LHS->hasNoUnsignedWrap()) 9728 return None; 9729 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9730 } else { 9731 assert(ICmpInst::isSigned(Pred) && 9732 "Relational predicate is either signed or unsigned!"); 9733 if (!LHS->hasNoSignedWrap()) 9734 return None; 9735 9736 const SCEV *Step = LHS->getStepRecurrence(*this); 9737 9738 if (isKnownNonNegative(Step)) 9739 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9740 9741 if (isKnownNonPositive(Step)) 9742 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 9743 9744 return None; 9745 } 9746 } 9747 9748 Optional<ScalarEvolution::LoopInvariantPredicate> 9749 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 9750 const SCEV *LHS, const SCEV *RHS, 9751 const Loop *L) { 9752 9753 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9754 if (!isLoopInvariant(RHS, L)) { 9755 if (!isLoopInvariant(LHS, L)) 9756 return None; 9757 9758 std::swap(LHS, RHS); 9759 Pred = ICmpInst::getSwappedPredicate(Pred); 9760 } 9761 9762 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9763 if (!ArLHS || ArLHS->getLoop() != L) 9764 return None; 9765 9766 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 9767 if (!MonotonicType) 9768 return None; 9769 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9770 // true as the loop iterates, and the backedge is control dependent on 9771 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9772 // 9773 // * if the predicate was false in the first iteration then the predicate 9774 // is never evaluated again, since the loop exits without taking the 9775 // backedge. 9776 // * if the predicate was true in the first iteration then it will 9777 // continue to be true for all future iterations since it is 9778 // monotonically increasing. 9779 // 9780 // For both the above possibilities, we can replace the loop varying 9781 // predicate with its value on the first iteration of the loop (which is 9782 // loop invariant). 9783 // 9784 // A similar reasoning applies for a monotonically decreasing predicate, by 9785 // replacing true with false and false with true in the above two bullets. 9786 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 9787 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9788 9789 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9790 return None; 9791 9792 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 9793 } 9794 9795 Optional<ScalarEvolution::LoopInvariantPredicate> 9796 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 9797 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9798 const Instruction *Context, const SCEV *MaxIter) { 9799 // Try to prove the following set of facts: 9800 // - The predicate is monotonic in the iteration space. 9801 // - If the check does not fail on the 1st iteration: 9802 // - No overflow will happen during first MaxIter iterations; 9803 // - It will not fail on the MaxIter'th iteration. 9804 // If the check does fail on the 1st iteration, we leave the loop and no 9805 // other checks matter. 9806 9807 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9808 if (!isLoopInvariant(RHS, L)) { 9809 if (!isLoopInvariant(LHS, L)) 9810 return None; 9811 9812 std::swap(LHS, RHS); 9813 Pred = ICmpInst::getSwappedPredicate(Pred); 9814 } 9815 9816 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 9817 if (!AR || AR->getLoop() != L) 9818 return None; 9819 9820 // The predicate must be relational (i.e. <, <=, >=, >). 9821 if (!ICmpInst::isRelational(Pred)) 9822 return None; 9823 9824 // TODO: Support steps other than +/- 1. 9825 const SCEV *Step = AR->getStepRecurrence(*this); 9826 auto *One = getOne(Step->getType()); 9827 auto *MinusOne = getNegativeSCEV(One); 9828 if (Step != One && Step != MinusOne) 9829 return None; 9830 9831 // Type mismatch here means that MaxIter is potentially larger than max 9832 // unsigned value in start type, which mean we cannot prove no wrap for the 9833 // indvar. 9834 if (AR->getType() != MaxIter->getType()) 9835 return None; 9836 9837 // Value of IV on suggested last iteration. 9838 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 9839 // Does it still meet the requirement? 9840 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 9841 return None; 9842 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 9843 // not exceed max unsigned value of this type), this effectively proves 9844 // that there is no wrap during the iteration. To prove that there is no 9845 // signed/unsigned wrap, we need to check that 9846 // Start <= Last for step = 1 or Start >= Last for step = -1. 9847 ICmpInst::Predicate NoOverflowPred = 9848 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 9849 if (Step == MinusOne) 9850 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 9851 const SCEV *Start = AR->getStart(); 9852 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, Context)) 9853 return None; 9854 9855 // Everything is fine. 9856 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 9857 } 9858 9859 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9860 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9861 if (HasSameValue(LHS, RHS)) 9862 return ICmpInst::isTrueWhenEqual(Pred); 9863 9864 // This code is split out from isKnownPredicate because it is called from 9865 // within isLoopEntryGuardedByCond. 9866 9867 auto CheckRanges = [&](const ConstantRange &RangeLHS, 9868 const ConstantRange &RangeRHS) { 9869 return RangeLHS.icmp(Pred, RangeRHS); 9870 }; 9871 9872 // The check at the top of the function catches the case where the values are 9873 // known to be equal. 9874 if (Pred == CmpInst::ICMP_EQ) 9875 return false; 9876 9877 if (Pred == CmpInst::ICMP_NE) 9878 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9879 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9880 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9881 9882 if (CmpInst::isSigned(Pred)) 9883 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9884 9885 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9886 } 9887 9888 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9889 const SCEV *LHS, 9890 const SCEV *RHS) { 9891 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9892 // Return Y via OutY. 9893 auto MatchBinaryAddToConst = 9894 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9895 SCEV::NoWrapFlags ExpectedFlags) { 9896 const SCEV *NonConstOp, *ConstOp; 9897 SCEV::NoWrapFlags FlagsPresent; 9898 9899 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9900 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9901 return false; 9902 9903 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9904 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9905 }; 9906 9907 APInt C; 9908 9909 switch (Pred) { 9910 default: 9911 break; 9912 9913 case ICmpInst::ICMP_SGE: 9914 std::swap(LHS, RHS); 9915 LLVM_FALLTHROUGH; 9916 case ICmpInst::ICMP_SLE: 9917 // X s<= (X + C)<nsw> if C >= 0 9918 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9919 return true; 9920 9921 // (X + C)<nsw> s<= X if C <= 0 9922 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9923 !C.isStrictlyPositive()) 9924 return true; 9925 break; 9926 9927 case ICmpInst::ICMP_SGT: 9928 std::swap(LHS, RHS); 9929 LLVM_FALLTHROUGH; 9930 case ICmpInst::ICMP_SLT: 9931 // X s< (X + C)<nsw> if C > 0 9932 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9933 C.isStrictlyPositive()) 9934 return true; 9935 9936 // (X + C)<nsw> s< X if C < 0 9937 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9938 return true; 9939 break; 9940 9941 case ICmpInst::ICMP_UGE: 9942 std::swap(LHS, RHS); 9943 LLVM_FALLTHROUGH; 9944 case ICmpInst::ICMP_ULE: 9945 // X u<= (X + C)<nuw> for any C 9946 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW)) 9947 return true; 9948 break; 9949 9950 case ICmpInst::ICMP_UGT: 9951 std::swap(LHS, RHS); 9952 LLVM_FALLTHROUGH; 9953 case ICmpInst::ICMP_ULT: 9954 // X u< (X + C)<nuw> if C != 0 9955 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNUW) && !C.isNullValue()) 9956 return true; 9957 break; 9958 } 9959 9960 return false; 9961 } 9962 9963 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9964 const SCEV *LHS, 9965 const SCEV *RHS) { 9966 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9967 return false; 9968 9969 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9970 // the stack can result in exponential time complexity. 9971 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9972 9973 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9974 // 9975 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9976 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9977 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9978 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9979 // use isKnownPredicate later if needed. 9980 return isKnownNonNegative(RHS) && 9981 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9982 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9983 } 9984 9985 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 9986 ICmpInst::Predicate Pred, 9987 const SCEV *LHS, const SCEV *RHS) { 9988 // No need to even try if we know the module has no guards. 9989 if (!HasGuards) 9990 return false; 9991 9992 return any_of(*BB, [&](const Instruction &I) { 9993 using namespace llvm::PatternMatch; 9994 9995 Value *Condition; 9996 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9997 m_Value(Condition))) && 9998 isImpliedCond(Pred, LHS, RHS, Condition, false); 9999 }); 10000 } 10001 10002 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10003 /// protected by a conditional between LHS and RHS. This is used to 10004 /// to eliminate casts. 10005 bool 10006 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10007 ICmpInst::Predicate Pred, 10008 const SCEV *LHS, const SCEV *RHS) { 10009 // Interpret a null as meaning no loop, where there is obviously no guard 10010 // (interprocedural conditions notwithstanding). 10011 if (!L) return true; 10012 10013 if (VerifyIR) 10014 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10015 "This cannot be done on broken IR!"); 10016 10017 10018 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10019 return true; 10020 10021 BasicBlock *Latch = L->getLoopLatch(); 10022 if (!Latch) 10023 return false; 10024 10025 BranchInst *LoopContinuePredicate = 10026 dyn_cast<BranchInst>(Latch->getTerminator()); 10027 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10028 isImpliedCond(Pred, LHS, RHS, 10029 LoopContinuePredicate->getCondition(), 10030 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10031 return true; 10032 10033 // We don't want more than one activation of the following loops on the stack 10034 // -- that can lead to O(n!) time complexity. 10035 if (WalkingBEDominatingConds) 10036 return false; 10037 10038 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10039 10040 // See if we can exploit a trip count to prove the predicate. 10041 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10042 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10043 if (LatchBECount != getCouldNotCompute()) { 10044 // We know that Latch branches back to the loop header exactly 10045 // LatchBECount times. This means the backdege condition at Latch is 10046 // equivalent to "{0,+,1} u< LatchBECount". 10047 Type *Ty = LatchBECount->getType(); 10048 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10049 const SCEV *LoopCounter = 10050 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10051 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10052 LatchBECount)) 10053 return true; 10054 } 10055 10056 // Check conditions due to any @llvm.assume intrinsics. 10057 for (auto &AssumeVH : AC.assumptions()) { 10058 if (!AssumeVH) 10059 continue; 10060 auto *CI = cast<CallInst>(AssumeVH); 10061 if (!DT.dominates(CI, Latch->getTerminator())) 10062 continue; 10063 10064 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10065 return true; 10066 } 10067 10068 // If the loop is not reachable from the entry block, we risk running into an 10069 // infinite loop as we walk up into the dom tree. These loops do not matter 10070 // anyway, so we just return a conservative answer when we see them. 10071 if (!DT.isReachableFromEntry(L->getHeader())) 10072 return false; 10073 10074 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10075 return true; 10076 10077 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10078 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10079 assert(DTN && "should reach the loop header before reaching the root!"); 10080 10081 BasicBlock *BB = DTN->getBlock(); 10082 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10083 return true; 10084 10085 BasicBlock *PBB = BB->getSinglePredecessor(); 10086 if (!PBB) 10087 continue; 10088 10089 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10090 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10091 continue; 10092 10093 Value *Condition = ContinuePredicate->getCondition(); 10094 10095 // If we have an edge `E` within the loop body that dominates the only 10096 // latch, the condition guarding `E` also guards the backedge. This 10097 // reasoning works only for loops with a single latch. 10098 10099 BasicBlockEdge DominatingEdge(PBB, BB); 10100 if (DominatingEdge.isSingleEdge()) { 10101 // We're constructively (and conservatively) enumerating edges within the 10102 // loop body that dominate the latch. The dominator tree better agree 10103 // with us on this: 10104 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10105 10106 if (isImpliedCond(Pred, LHS, RHS, Condition, 10107 BB != ContinuePredicate->getSuccessor(0))) 10108 return true; 10109 } 10110 } 10111 10112 return false; 10113 } 10114 10115 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10116 ICmpInst::Predicate Pred, 10117 const SCEV *LHS, 10118 const SCEV *RHS) { 10119 if (VerifyIR) 10120 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10121 "This cannot be done on broken IR!"); 10122 10123 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10124 // the facts (a >= b && a != b) separately. A typical situation is when the 10125 // non-strict comparison is known from ranges and non-equality is known from 10126 // dominating predicates. If we are proving strict comparison, we always try 10127 // to prove non-equality and non-strict comparison separately. 10128 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10129 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10130 bool ProvedNonStrictComparison = false; 10131 bool ProvedNonEquality = false; 10132 10133 auto SplitAndProve = 10134 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10135 if (!ProvedNonStrictComparison) 10136 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10137 if (!ProvedNonEquality) 10138 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10139 if (ProvedNonStrictComparison && ProvedNonEquality) 10140 return true; 10141 return false; 10142 }; 10143 10144 if (ProvingStrictComparison) { 10145 auto ProofFn = [&](ICmpInst::Predicate P) { 10146 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10147 }; 10148 if (SplitAndProve(ProofFn)) 10149 return true; 10150 } 10151 10152 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10153 auto ProveViaGuard = [&](const BasicBlock *Block) { 10154 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10155 return true; 10156 if (ProvingStrictComparison) { 10157 auto ProofFn = [&](ICmpInst::Predicate P) { 10158 return isImpliedViaGuard(Block, P, LHS, RHS); 10159 }; 10160 if (SplitAndProve(ProofFn)) 10161 return true; 10162 } 10163 return false; 10164 }; 10165 10166 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10167 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10168 const Instruction *Context = &BB->front(); 10169 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, Context)) 10170 return true; 10171 if (ProvingStrictComparison) { 10172 auto ProofFn = [&](ICmpInst::Predicate P) { 10173 return isImpliedCond(P, LHS, RHS, Condition, Inverse, Context); 10174 }; 10175 if (SplitAndProve(ProofFn)) 10176 return true; 10177 } 10178 return false; 10179 }; 10180 10181 // Starting at the block's predecessor, climb up the predecessor chain, as long 10182 // as there are predecessors that can be found that have unique successors 10183 // leading to the original block. 10184 const Loop *ContainingLoop = LI.getLoopFor(BB); 10185 const BasicBlock *PredBB; 10186 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10187 PredBB = ContainingLoop->getLoopPredecessor(); 10188 else 10189 PredBB = BB->getSinglePredecessor(); 10190 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10191 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10192 if (ProveViaGuard(Pair.first)) 10193 return true; 10194 10195 const BranchInst *LoopEntryPredicate = 10196 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10197 if (!LoopEntryPredicate || 10198 LoopEntryPredicate->isUnconditional()) 10199 continue; 10200 10201 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10202 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10203 return true; 10204 } 10205 10206 // Check conditions due to any @llvm.assume intrinsics. 10207 for (auto &AssumeVH : AC.assumptions()) { 10208 if (!AssumeVH) 10209 continue; 10210 auto *CI = cast<CallInst>(AssumeVH); 10211 if (!DT.dominates(CI, BB)) 10212 continue; 10213 10214 if (ProveViaCond(CI->getArgOperand(0), false)) 10215 return true; 10216 } 10217 10218 return false; 10219 } 10220 10221 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10222 ICmpInst::Predicate Pred, 10223 const SCEV *LHS, 10224 const SCEV *RHS) { 10225 // Interpret a null as meaning no loop, where there is obviously no guard 10226 // (interprocedural conditions notwithstanding). 10227 if (!L) 10228 return false; 10229 10230 // Both LHS and RHS must be available at loop entry. 10231 assert(isAvailableAtLoopEntry(LHS, L) && 10232 "LHS is not available at Loop Entry"); 10233 assert(isAvailableAtLoopEntry(RHS, L) && 10234 "RHS is not available at Loop Entry"); 10235 10236 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10237 return true; 10238 10239 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10240 } 10241 10242 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10243 const SCEV *RHS, 10244 const Value *FoundCondValue, bool Inverse, 10245 const Instruction *Context) { 10246 // False conditions implies anything. Do not bother analyzing it further. 10247 if (FoundCondValue == 10248 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10249 return true; 10250 10251 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10252 return false; 10253 10254 auto ClearOnExit = 10255 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10256 10257 // Recursively handle And and Or conditions. 10258 const Value *Op0, *Op1; 10259 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10260 if (!Inverse) 10261 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10262 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10263 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10264 if (Inverse) 10265 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, Context) || 10266 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, Context); 10267 } 10268 10269 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10270 if (!ICI) return false; 10271 10272 // Now that we found a conditional branch that dominates the loop or controls 10273 // the loop latch. Check to see if it is the comparison we are looking for. 10274 ICmpInst::Predicate FoundPred; 10275 if (Inverse) 10276 FoundPred = ICI->getInversePredicate(); 10277 else 10278 FoundPred = ICI->getPredicate(); 10279 10280 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10281 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10282 10283 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, Context); 10284 } 10285 10286 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10287 const SCEV *RHS, 10288 ICmpInst::Predicate FoundPred, 10289 const SCEV *FoundLHS, const SCEV *FoundRHS, 10290 const Instruction *Context) { 10291 // Balance the types. 10292 if (getTypeSizeInBits(LHS->getType()) < 10293 getTypeSizeInBits(FoundLHS->getType())) { 10294 // For unsigned and equality predicates, try to prove that both found 10295 // operands fit into narrow unsigned range. If so, try to prove facts in 10296 // narrow types. 10297 if (!CmpInst::isSigned(FoundPred)) { 10298 auto *NarrowType = LHS->getType(); 10299 auto *WideType = FoundLHS->getType(); 10300 auto BitWidth = getTypeSizeInBits(NarrowType); 10301 const SCEV *MaxValue = getZeroExtendExpr( 10302 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10303 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10304 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10305 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10306 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10307 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10308 TruncFoundRHS, Context)) 10309 return true; 10310 } 10311 } 10312 10313 if (CmpInst::isSigned(Pred)) { 10314 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10315 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10316 } else { 10317 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10318 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10319 } 10320 } else if (getTypeSizeInBits(LHS->getType()) > 10321 getTypeSizeInBits(FoundLHS->getType())) { 10322 if (CmpInst::isSigned(FoundPred)) { 10323 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10324 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10325 } else { 10326 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10327 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10328 } 10329 } 10330 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10331 FoundRHS, Context); 10332 } 10333 10334 bool ScalarEvolution::isImpliedCondBalancedTypes( 10335 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10336 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10337 const Instruction *Context) { 10338 assert(getTypeSizeInBits(LHS->getType()) == 10339 getTypeSizeInBits(FoundLHS->getType()) && 10340 "Types should be balanced!"); 10341 // Canonicalize the query to match the way instcombine will have 10342 // canonicalized the comparison. 10343 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10344 if (LHS == RHS) 10345 return CmpInst::isTrueWhenEqual(Pred); 10346 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10347 if (FoundLHS == FoundRHS) 10348 return CmpInst::isFalseWhenEqual(FoundPred); 10349 10350 // Check to see if we can make the LHS or RHS match. 10351 if (LHS == FoundRHS || RHS == FoundLHS) { 10352 if (isa<SCEVConstant>(RHS)) { 10353 std::swap(FoundLHS, FoundRHS); 10354 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10355 } else { 10356 std::swap(LHS, RHS); 10357 Pred = ICmpInst::getSwappedPredicate(Pred); 10358 } 10359 } 10360 10361 // Check whether the found predicate is the same as the desired predicate. 10362 if (FoundPred == Pred) 10363 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10364 10365 // Check whether swapping the found predicate makes it the same as the 10366 // desired predicate. 10367 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10368 // We can write the implication 10369 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10370 // using one of the following ways: 10371 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10372 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10373 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10374 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10375 // Forms 1. and 2. require swapping the operands of one condition. Don't 10376 // do this if it would break canonical constant/addrec ordering. 10377 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10378 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10379 Context); 10380 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10381 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, Context); 10382 10383 // There's no clear preference between forms 3. and 4., try both. 10384 return isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10385 FoundLHS, FoundRHS, Context) || 10386 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10387 getNotSCEV(FoundRHS), Context); 10388 } 10389 10390 // Unsigned comparison is the same as signed comparison when both the operands 10391 // are non-negative. 10392 if (CmpInst::isUnsigned(FoundPred) && 10393 CmpInst::getSignedPredicate(FoundPred) == Pred && 10394 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 10395 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context); 10396 10397 // Check if we can make progress by sharpening ranges. 10398 if (FoundPred == ICmpInst::ICMP_NE && 10399 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10400 10401 const SCEVConstant *C = nullptr; 10402 const SCEV *V = nullptr; 10403 10404 if (isa<SCEVConstant>(FoundLHS)) { 10405 C = cast<SCEVConstant>(FoundLHS); 10406 V = FoundRHS; 10407 } else { 10408 C = cast<SCEVConstant>(FoundRHS); 10409 V = FoundLHS; 10410 } 10411 10412 // The guarding predicate tells us that C != V. If the known range 10413 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10414 // range we consider has to correspond to same signedness as the 10415 // predicate we're interested in folding. 10416 10417 APInt Min = ICmpInst::isSigned(Pred) ? 10418 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10419 10420 if (Min == C->getAPInt()) { 10421 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10422 // This is true even if (Min + 1) wraps around -- in case of 10423 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10424 10425 APInt SharperMin = Min + 1; 10426 10427 switch (Pred) { 10428 case ICmpInst::ICMP_SGE: 10429 case ICmpInst::ICMP_UGE: 10430 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10431 // RHS, we're done. 10432 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10433 Context)) 10434 return true; 10435 LLVM_FALLTHROUGH; 10436 10437 case ICmpInst::ICMP_SGT: 10438 case ICmpInst::ICMP_UGT: 10439 // We know from the range information that (V `Pred` Min || 10440 // V == Min). We know from the guarding condition that !(V 10441 // == Min). This gives us 10442 // 10443 // V `Pred` Min || V == Min && !(V == Min) 10444 // => V `Pred` Min 10445 // 10446 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10447 10448 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), 10449 Context)) 10450 return true; 10451 break; 10452 10453 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10454 case ICmpInst::ICMP_SLE: 10455 case ICmpInst::ICMP_ULE: 10456 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10457 LHS, V, getConstant(SharperMin), Context)) 10458 return true; 10459 LLVM_FALLTHROUGH; 10460 10461 case ICmpInst::ICMP_SLT: 10462 case ICmpInst::ICMP_ULT: 10463 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10464 LHS, V, getConstant(Min), Context)) 10465 return true; 10466 break; 10467 10468 default: 10469 // No change 10470 break; 10471 } 10472 } 10473 } 10474 10475 // Check whether the actual condition is beyond sufficient. 10476 if (FoundPred == ICmpInst::ICMP_EQ) 10477 if (ICmpInst::isTrueWhenEqual(Pred)) 10478 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, Context)) 10479 return true; 10480 if (Pred == ICmpInst::ICMP_NE) 10481 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10482 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, 10483 Context)) 10484 return true; 10485 10486 // Otherwise assume the worst. 10487 return false; 10488 } 10489 10490 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10491 const SCEV *&L, const SCEV *&R, 10492 SCEV::NoWrapFlags &Flags) { 10493 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10494 if (!AE || AE->getNumOperands() != 2) 10495 return false; 10496 10497 L = AE->getOperand(0); 10498 R = AE->getOperand(1); 10499 Flags = AE->getNoWrapFlags(); 10500 return true; 10501 } 10502 10503 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10504 const SCEV *Less) { 10505 // We avoid subtracting expressions here because this function is usually 10506 // fairly deep in the call stack (i.e. is called many times). 10507 10508 // X - X = 0. 10509 if (More == Less) 10510 return APInt(getTypeSizeInBits(More->getType()), 0); 10511 10512 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10513 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10514 const auto *MAR = cast<SCEVAddRecExpr>(More); 10515 10516 if (LAR->getLoop() != MAR->getLoop()) 10517 return None; 10518 10519 // We look at affine expressions only; not for correctness but to keep 10520 // getStepRecurrence cheap. 10521 if (!LAR->isAffine() || !MAR->isAffine()) 10522 return None; 10523 10524 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10525 return None; 10526 10527 Less = LAR->getStart(); 10528 More = MAR->getStart(); 10529 10530 // fall through 10531 } 10532 10533 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10534 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10535 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10536 return M - L; 10537 } 10538 10539 SCEV::NoWrapFlags Flags; 10540 const SCEV *LLess = nullptr, *RLess = nullptr; 10541 const SCEV *LMore = nullptr, *RMore = nullptr; 10542 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10543 // Compare (X + C1) vs X. 10544 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10545 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10546 if (RLess == More) 10547 return -(C1->getAPInt()); 10548 10549 // Compare X vs (X + C2). 10550 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10551 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10552 if (RMore == Less) 10553 return C2->getAPInt(); 10554 10555 // Compare (X + C1) vs (X + C2). 10556 if (C1 && C2 && RLess == RMore) 10557 return C2->getAPInt() - C1->getAPInt(); 10558 10559 return None; 10560 } 10561 10562 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10563 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10564 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *Context) { 10565 // Try to recognize the following pattern: 10566 // 10567 // FoundRHS = ... 10568 // ... 10569 // loop: 10570 // FoundLHS = {Start,+,W} 10571 // context_bb: // Basic block from the same loop 10572 // known(Pred, FoundLHS, FoundRHS) 10573 // 10574 // If some predicate is known in the context of a loop, it is also known on 10575 // each iteration of this loop, including the first iteration. Therefore, in 10576 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10577 // prove the original pred using this fact. 10578 if (!Context) 10579 return false; 10580 const BasicBlock *ContextBB = Context->getParent(); 10581 // Make sure AR varies in the context block. 10582 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10583 const Loop *L = AR->getLoop(); 10584 // Make sure that context belongs to the loop and executes on 1st iteration 10585 // (if it ever executes at all). 10586 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10587 return false; 10588 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10589 return false; 10590 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10591 } 10592 10593 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10594 const Loop *L = AR->getLoop(); 10595 // Make sure that context belongs to the loop and executes on 1st iteration 10596 // (if it ever executes at all). 10597 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10598 return false; 10599 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10600 return false; 10601 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10602 } 10603 10604 return false; 10605 } 10606 10607 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10608 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10609 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10610 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10611 return false; 10612 10613 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10614 if (!AddRecLHS) 10615 return false; 10616 10617 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10618 if (!AddRecFoundLHS) 10619 return false; 10620 10621 // We'd like to let SCEV reason about control dependencies, so we constrain 10622 // both the inequalities to be about add recurrences on the same loop. This 10623 // way we can use isLoopEntryGuardedByCond later. 10624 10625 const Loop *L = AddRecFoundLHS->getLoop(); 10626 if (L != AddRecLHS->getLoop()) 10627 return false; 10628 10629 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10630 // 10631 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10632 // ... (2) 10633 // 10634 // Informal proof for (2), assuming (1) [*]: 10635 // 10636 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10637 // 10638 // Then 10639 // 10640 // FoundLHS s< FoundRHS s< INT_MIN - C 10641 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10642 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10643 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10644 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10645 // <=> FoundLHS + C s< FoundRHS + C 10646 // 10647 // [*]: (1) can be proved by ruling out overflow. 10648 // 10649 // [**]: This can be proved by analyzing all the four possibilities: 10650 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10651 // (A s>= 0, B s>= 0). 10652 // 10653 // Note: 10654 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10655 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10656 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10657 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10658 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10659 // C)". 10660 10661 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10662 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10663 if (!LDiff || !RDiff || *LDiff != *RDiff) 10664 return false; 10665 10666 if (LDiff->isMinValue()) 10667 return true; 10668 10669 APInt FoundRHSLimit; 10670 10671 if (Pred == CmpInst::ICMP_ULT) { 10672 FoundRHSLimit = -(*RDiff); 10673 } else { 10674 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10675 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10676 } 10677 10678 // Try to prove (1) or (2), as needed. 10679 return isAvailableAtLoopEntry(FoundRHS, L) && 10680 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 10681 getConstant(FoundRHSLimit)); 10682 } 10683 10684 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 10685 const SCEV *LHS, const SCEV *RHS, 10686 const SCEV *FoundLHS, 10687 const SCEV *FoundRHS, unsigned Depth) { 10688 const PHINode *LPhi = nullptr, *RPhi = nullptr; 10689 10690 auto ClearOnExit = make_scope_exit([&]() { 10691 if (LPhi) { 10692 bool Erased = PendingMerges.erase(LPhi); 10693 assert(Erased && "Failed to erase LPhi!"); 10694 (void)Erased; 10695 } 10696 if (RPhi) { 10697 bool Erased = PendingMerges.erase(RPhi); 10698 assert(Erased && "Failed to erase RPhi!"); 10699 (void)Erased; 10700 } 10701 }); 10702 10703 // Find respective Phis and check that they are not being pending. 10704 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 10705 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 10706 if (!PendingMerges.insert(Phi).second) 10707 return false; 10708 LPhi = Phi; 10709 } 10710 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 10711 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 10712 // If we detect a loop of Phi nodes being processed by this method, for 10713 // example: 10714 // 10715 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 10716 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 10717 // 10718 // we don't want to deal with a case that complex, so return conservative 10719 // answer false. 10720 if (!PendingMerges.insert(Phi).second) 10721 return false; 10722 RPhi = Phi; 10723 } 10724 10725 // If none of LHS, RHS is a Phi, nothing to do here. 10726 if (!LPhi && !RPhi) 10727 return false; 10728 10729 // If there is a SCEVUnknown Phi we are interested in, make it left. 10730 if (!LPhi) { 10731 std::swap(LHS, RHS); 10732 std::swap(FoundLHS, FoundRHS); 10733 std::swap(LPhi, RPhi); 10734 Pred = ICmpInst::getSwappedPredicate(Pred); 10735 } 10736 10737 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 10738 const BasicBlock *LBB = LPhi->getParent(); 10739 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10740 10741 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 10742 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 10743 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 10744 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 10745 }; 10746 10747 if (RPhi && RPhi->getParent() == LBB) { 10748 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 10749 // If we compare two Phis from the same block, and for each entry block 10750 // the predicate is true for incoming values from this block, then the 10751 // predicate is also true for the Phis. 10752 for (const BasicBlock *IncBB : predecessors(LBB)) { 10753 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10754 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 10755 if (!ProvedEasily(L, R)) 10756 return false; 10757 } 10758 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 10759 // Case two: RHS is also a Phi from the same basic block, and it is an 10760 // AddRec. It means that there is a loop which has both AddRec and Unknown 10761 // PHIs, for it we can compare incoming values of AddRec from above the loop 10762 // and latch with their respective incoming values of LPhi. 10763 // TODO: Generalize to handle loops with many inputs in a header. 10764 if (LPhi->getNumIncomingValues() != 2) return false; 10765 10766 auto *RLoop = RAR->getLoop(); 10767 auto *Predecessor = RLoop->getLoopPredecessor(); 10768 assert(Predecessor && "Loop with AddRec with no predecessor?"); 10769 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 10770 if (!ProvedEasily(L1, RAR->getStart())) 10771 return false; 10772 auto *Latch = RLoop->getLoopLatch(); 10773 assert(Latch && "Loop with AddRec with no latch?"); 10774 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 10775 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 10776 return false; 10777 } else { 10778 // In all other cases go over inputs of LHS and compare each of them to RHS, 10779 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 10780 // At this point RHS is either a non-Phi, or it is a Phi from some block 10781 // different from LBB. 10782 for (const BasicBlock *IncBB : predecessors(LBB)) { 10783 // Check that RHS is available in this block. 10784 if (!dominates(RHS, IncBB)) 10785 return false; 10786 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 10787 if (!ProvedEasily(L, RHS)) 10788 return false; 10789 } 10790 } 10791 return true; 10792 } 10793 10794 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 10795 const SCEV *LHS, const SCEV *RHS, 10796 const SCEV *FoundLHS, 10797 const SCEV *FoundRHS, 10798 const Instruction *Context) { 10799 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10800 return true; 10801 10802 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10803 return true; 10804 10805 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 10806 Context)) 10807 return true; 10808 10809 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 10810 FoundLHS, FoundRHS); 10811 } 10812 10813 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 10814 template <typename MinMaxExprType> 10815 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 10816 const SCEV *Candidate) { 10817 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 10818 if (!MinMaxExpr) 10819 return false; 10820 10821 return is_contained(MinMaxExpr->operands(), Candidate); 10822 } 10823 10824 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10825 ICmpInst::Predicate Pred, 10826 const SCEV *LHS, const SCEV *RHS) { 10827 // If both sides are affine addrecs for the same loop, with equal 10828 // steps, and we know the recurrences don't wrap, then we only 10829 // need to check the predicate on the starting values. 10830 10831 if (!ICmpInst::isRelational(Pred)) 10832 return false; 10833 10834 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10835 if (!LAR) 10836 return false; 10837 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10838 if (!RAR) 10839 return false; 10840 if (LAR->getLoop() != RAR->getLoop()) 10841 return false; 10842 if (!LAR->isAffine() || !RAR->isAffine()) 10843 return false; 10844 10845 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10846 return false; 10847 10848 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10849 SCEV::FlagNSW : SCEV::FlagNUW; 10850 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10851 return false; 10852 10853 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10854 } 10855 10856 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10857 /// expression? 10858 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10859 ICmpInst::Predicate Pred, 10860 const SCEV *LHS, const SCEV *RHS) { 10861 switch (Pred) { 10862 default: 10863 return false; 10864 10865 case ICmpInst::ICMP_SGE: 10866 std::swap(LHS, RHS); 10867 LLVM_FALLTHROUGH; 10868 case ICmpInst::ICMP_SLE: 10869 return 10870 // min(A, ...) <= A 10871 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10872 // A <= max(A, ...) 10873 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10874 10875 case ICmpInst::ICMP_UGE: 10876 std::swap(LHS, RHS); 10877 LLVM_FALLTHROUGH; 10878 case ICmpInst::ICMP_ULE: 10879 return 10880 // min(A, ...) <= A 10881 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10882 // A <= max(A, ...) 10883 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10884 } 10885 10886 llvm_unreachable("covered switch fell through?!"); 10887 } 10888 10889 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10890 const SCEV *LHS, const SCEV *RHS, 10891 const SCEV *FoundLHS, 10892 const SCEV *FoundRHS, 10893 unsigned Depth) { 10894 assert(getTypeSizeInBits(LHS->getType()) == 10895 getTypeSizeInBits(RHS->getType()) && 10896 "LHS and RHS have different sizes?"); 10897 assert(getTypeSizeInBits(FoundLHS->getType()) == 10898 getTypeSizeInBits(FoundRHS->getType()) && 10899 "FoundLHS and FoundRHS have different sizes?"); 10900 // We want to avoid hurting the compile time with analysis of too big trees. 10901 if (Depth > MaxSCEVOperationsImplicationDepth) 10902 return false; 10903 10904 // We only want to work with GT comparison so far. 10905 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 10906 Pred = CmpInst::getSwappedPredicate(Pred); 10907 std::swap(LHS, RHS); 10908 std::swap(FoundLHS, FoundRHS); 10909 } 10910 10911 // For unsigned, try to reduce it to corresponding signed comparison. 10912 if (Pred == ICmpInst::ICMP_UGT) 10913 // We can replace unsigned predicate with its signed counterpart if all 10914 // involved values are non-negative. 10915 // TODO: We could have better support for unsigned. 10916 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 10917 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 10918 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 10919 // use this fact to prove that LHS and RHS are non-negative. 10920 const SCEV *MinusOne = getMinusOne(LHS->getType()); 10921 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 10922 FoundRHS) && 10923 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 10924 FoundRHS)) 10925 Pred = ICmpInst::ICMP_SGT; 10926 } 10927 10928 if (Pred != ICmpInst::ICMP_SGT) 10929 return false; 10930 10931 auto GetOpFromSExt = [&](const SCEV *S) { 10932 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10933 return Ext->getOperand(); 10934 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10935 // the constant in some cases. 10936 return S; 10937 }; 10938 10939 // Acquire values from extensions. 10940 auto *OrigLHS = LHS; 10941 auto *OrigFoundLHS = FoundLHS; 10942 LHS = GetOpFromSExt(LHS); 10943 FoundLHS = GetOpFromSExt(FoundLHS); 10944 10945 // Is the SGT predicate can be proved trivially or using the found context. 10946 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10947 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10948 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10949 FoundRHS, Depth + 1); 10950 }; 10951 10952 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10953 // We want to avoid creation of any new non-constant SCEV. Since we are 10954 // going to compare the operands to RHS, we should be certain that we don't 10955 // need any size extensions for this. So let's decline all cases when the 10956 // sizes of types of LHS and RHS do not match. 10957 // TODO: Maybe try to get RHS from sext to catch more cases? 10958 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10959 return false; 10960 10961 // Should not overflow. 10962 if (!LHSAddExpr->hasNoSignedWrap()) 10963 return false; 10964 10965 auto *LL = LHSAddExpr->getOperand(0); 10966 auto *LR = LHSAddExpr->getOperand(1); 10967 auto *MinusOne = getMinusOne(RHS->getType()); 10968 10969 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10970 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10971 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10972 }; 10973 // Try to prove the following rule: 10974 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10975 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10976 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10977 return true; 10978 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10979 Value *LL, *LR; 10980 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10981 10982 using namespace llvm::PatternMatch; 10983 10984 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10985 // Rules for division. 10986 // We are going to perform some comparisons with Denominator and its 10987 // derivative expressions. In general case, creating a SCEV for it may 10988 // lead to a complex analysis of the entire graph, and in particular it 10989 // can request trip count recalculation for the same loop. This would 10990 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10991 // this, we only want to create SCEVs that are constants in this section. 10992 // So we bail if Denominator is not a constant. 10993 if (!isa<ConstantInt>(LR)) 10994 return false; 10995 10996 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10997 10998 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10999 // then a SCEV for the numerator already exists and matches with FoundLHS. 11000 auto *Numerator = getExistingSCEV(LL); 11001 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11002 return false; 11003 11004 // Make sure that the numerator matches with FoundLHS and the denominator 11005 // is positive. 11006 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11007 return false; 11008 11009 auto *DTy = Denominator->getType(); 11010 auto *FRHSTy = FoundRHS->getType(); 11011 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11012 // One of types is a pointer and another one is not. We cannot extend 11013 // them properly to a wider type, so let us just reject this case. 11014 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11015 // to avoid this check. 11016 return false; 11017 11018 // Given that: 11019 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11020 auto *WTy = getWiderType(DTy, FRHSTy); 11021 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11022 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11023 11024 // Try to prove the following rule: 11025 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11026 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11027 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11028 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11029 if (isKnownNonPositive(RHS) && 11030 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11031 return true; 11032 11033 // Try to prove the following rule: 11034 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11035 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11036 // If we divide it by Denominator > 2, then: 11037 // 1. If FoundLHS is negative, then the result is 0. 11038 // 2. If FoundLHS is non-negative, then the result is non-negative. 11039 // Anyways, the result is non-negative. 11040 auto *MinusOne = getMinusOne(WTy); 11041 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11042 if (isKnownNegative(RHS) && 11043 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11044 return true; 11045 } 11046 } 11047 11048 // If our expression contained SCEVUnknown Phis, and we split it down and now 11049 // need to prove something for them, try to prove the predicate for every 11050 // possible incoming values of those Phis. 11051 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11052 return true; 11053 11054 return false; 11055 } 11056 11057 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11058 const SCEV *LHS, const SCEV *RHS) { 11059 // zext x u<= sext x, sext x s<= zext x 11060 switch (Pred) { 11061 case ICmpInst::ICMP_SGE: 11062 std::swap(LHS, RHS); 11063 LLVM_FALLTHROUGH; 11064 case ICmpInst::ICMP_SLE: { 11065 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11066 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11067 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11068 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11069 return true; 11070 break; 11071 } 11072 case ICmpInst::ICMP_UGE: 11073 std::swap(LHS, RHS); 11074 LLVM_FALLTHROUGH; 11075 case ICmpInst::ICMP_ULE: { 11076 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11077 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11078 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11079 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11080 return true; 11081 break; 11082 } 11083 default: 11084 break; 11085 }; 11086 return false; 11087 } 11088 11089 bool 11090 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11091 const SCEV *LHS, const SCEV *RHS) { 11092 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11093 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11094 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11095 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11096 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11097 } 11098 11099 bool 11100 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11101 const SCEV *LHS, const SCEV *RHS, 11102 const SCEV *FoundLHS, 11103 const SCEV *FoundRHS) { 11104 switch (Pred) { 11105 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11106 case ICmpInst::ICMP_EQ: 11107 case ICmpInst::ICMP_NE: 11108 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11109 return true; 11110 break; 11111 case ICmpInst::ICMP_SLT: 11112 case ICmpInst::ICMP_SLE: 11113 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11114 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11115 return true; 11116 break; 11117 case ICmpInst::ICMP_SGT: 11118 case ICmpInst::ICMP_SGE: 11119 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11120 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11121 return true; 11122 break; 11123 case ICmpInst::ICMP_ULT: 11124 case ICmpInst::ICMP_ULE: 11125 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11126 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11127 return true; 11128 break; 11129 case ICmpInst::ICMP_UGT: 11130 case ICmpInst::ICMP_UGE: 11131 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11132 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11133 return true; 11134 break; 11135 } 11136 11137 // Maybe it can be proved via operations? 11138 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11139 return true; 11140 11141 return false; 11142 } 11143 11144 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11145 const SCEV *LHS, 11146 const SCEV *RHS, 11147 const SCEV *FoundLHS, 11148 const SCEV *FoundRHS) { 11149 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11150 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11151 // reduce the compile time impact of this optimization. 11152 return false; 11153 11154 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11155 if (!Addend) 11156 return false; 11157 11158 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11159 11160 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11161 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11162 ConstantRange FoundLHSRange = 11163 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 11164 11165 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11166 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11167 11168 // We can also compute the range of values for `LHS` that satisfy the 11169 // consequent, "`LHS` `Pred` `RHS`": 11170 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11171 // The antecedent implies the consequent if every value of `LHS` that 11172 // satisfies the antecedent also satisfies the consequent. 11173 return LHSRange.icmp(Pred, ConstRHS); 11174 } 11175 11176 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11177 bool IsSigned, bool NoWrap) { 11178 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11179 11180 if (NoWrap) return false; 11181 11182 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11183 const SCEV *One = getOne(Stride->getType()); 11184 11185 if (IsSigned) { 11186 APInt MaxRHS = getSignedRangeMax(RHS); 11187 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11188 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11189 11190 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11191 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11192 } 11193 11194 APInt MaxRHS = getUnsignedRangeMax(RHS); 11195 APInt MaxValue = APInt::getMaxValue(BitWidth); 11196 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11197 11198 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11199 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11200 } 11201 11202 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11203 bool IsSigned, bool NoWrap) { 11204 if (NoWrap) return false; 11205 11206 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11207 const SCEV *One = getOne(Stride->getType()); 11208 11209 if (IsSigned) { 11210 APInt MinRHS = getSignedRangeMin(RHS); 11211 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11212 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11213 11214 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11215 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11216 } 11217 11218 APInt MinRHS = getUnsignedRangeMin(RHS); 11219 APInt MinValue = APInt::getMinValue(BitWidth); 11220 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11221 11222 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11223 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11224 } 11225 11226 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 11227 bool Equality) { 11228 const SCEV *One = getOne(Step->getType()); 11229 Delta = Equality ? getAddExpr(Delta, Step) 11230 : getAddExpr(Delta, getMinusSCEV(Step, One)); 11231 return getUDivExpr(Delta, Step); 11232 } 11233 11234 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11235 const SCEV *Stride, 11236 const SCEV *End, 11237 unsigned BitWidth, 11238 bool IsSigned) { 11239 11240 assert(!isKnownNonPositive(Stride) && 11241 "Stride is expected strictly positive!"); 11242 // Calculate the maximum backedge count based on the range of values 11243 // permitted by Start, End, and Stride. 11244 const SCEV *MaxBECount; 11245 APInt MinStart = 11246 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11247 11248 APInt StrideForMaxBECount = 11249 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11250 11251 // We already know that the stride is positive, so we paper over conservatism 11252 // in our range computation by forcing StrideForMaxBECount to be at least one. 11253 // In theory this is unnecessary, but we expect MaxBECount to be a 11254 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 11255 // is nothing to constant fold it to). 11256 APInt One(BitWidth, 1, IsSigned); 11257 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 11258 11259 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11260 : APInt::getMaxValue(BitWidth); 11261 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11262 11263 // Although End can be a MAX expression we estimate MaxEnd considering only 11264 // the case End = RHS of the loop termination condition. This is safe because 11265 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11266 // taken count. 11267 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11268 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11269 11270 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 11271 getConstant(StrideForMaxBECount) /* Step */, 11272 false /* Equality */); 11273 11274 return MaxBECount; 11275 } 11276 11277 ScalarEvolution::ExitLimit 11278 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11279 const Loop *L, bool IsSigned, 11280 bool ControlsExit, bool AllowPredicates) { 11281 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11282 11283 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11284 bool PredicatedIV = false; 11285 11286 if (!IV && AllowPredicates) { 11287 // Try to make this an AddRec using runtime tests, in the first X 11288 // iterations of this loop, where X is the SCEV expression found by the 11289 // algorithm below. 11290 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11291 PredicatedIV = true; 11292 } 11293 11294 // Avoid weird loops 11295 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11296 return getCouldNotCompute(); 11297 11298 bool NoWrap = ControlsExit && 11299 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11300 11301 const SCEV *Stride = IV->getStepRecurrence(*this); 11302 11303 bool PositiveStride = isKnownPositive(Stride); 11304 11305 // Avoid negative or zero stride values. 11306 if (!PositiveStride) { 11307 // We can compute the correct backedge taken count for loops with unknown 11308 // strides if we can prove that the loop is not an infinite loop with side 11309 // effects. Here's the loop structure we are trying to handle - 11310 // 11311 // i = start 11312 // do { 11313 // A[i] = i; 11314 // i += s; 11315 // } while (i < end); 11316 // 11317 // The backedge taken count for such loops is evaluated as - 11318 // (max(end, start + stride) - start - 1) /u stride 11319 // 11320 // The additional preconditions that we need to check to prove correctness 11321 // of the above formula is as follows - 11322 // 11323 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11324 // NoWrap flag). 11325 // b) loop is single exit with no side effects. 11326 // 11327 // 11328 // Precondition a) implies that if the stride is negative, this is a single 11329 // trip loop. The backedge taken count formula reduces to zero in this case. 11330 // 11331 // Precondition b) implies that the unknown stride cannot be zero otherwise 11332 // we have UB. 11333 // 11334 // The positive stride case is the same as isKnownPositive(Stride) returning 11335 // true (original behavior of the function). 11336 // 11337 // We want to make sure that the stride is truly unknown as there are edge 11338 // cases where ScalarEvolution propagates no wrap flags to the 11339 // post-increment/decrement IV even though the increment/decrement operation 11340 // itself is wrapping. The computed backedge taken count may be wrong in 11341 // such cases. This is prevented by checking that the stride is not known to 11342 // be either positive or non-positive. For example, no wrap flags are 11343 // propagated to the post-increment IV of this loop with a trip count of 2 - 11344 // 11345 // unsigned char i; 11346 // for(i=127; i<128; i+=129) 11347 // A[i] = i; 11348 // 11349 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 11350 !loopHasNoSideEffects(L)) 11351 return getCouldNotCompute(); 11352 } else if (!Stride->isOne() && 11353 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 11354 // Avoid proven overflow cases: this will ensure that the backedge taken 11355 // count will not generate any unsigned overflow. Relaxed no-overflow 11356 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11357 // undefined behaviors like the case of C language. 11358 return getCouldNotCompute(); 11359 11360 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 11361 : ICmpInst::ICMP_ULT; 11362 const SCEV *Start = IV->getStart(); 11363 const SCEV *End = RHS; 11364 // When the RHS is not invariant, we do not know the end bound of the loop and 11365 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11366 // calculate the MaxBECount, given the start, stride and max value for the end 11367 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11368 // checked above). 11369 if (!isLoopInvariant(RHS, L)) { 11370 const SCEV *MaxBECount = computeMaxBECountForLT( 11371 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11372 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11373 false /*MaxOrZero*/, Predicates); 11374 } 11375 // If the backedge is taken at least once, then it will be taken 11376 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 11377 // is the LHS value of the less-than comparison the first time it is evaluated 11378 // and End is the RHS. 11379 const SCEV *BECountIfBackedgeTaken = 11380 computeBECount(getMinusSCEV(End, Start), Stride, false); 11381 // If the loop entry is guarded by the result of the backedge test of the 11382 // first loop iteration, then we know the backedge will be taken at least 11383 // once and so the backedge taken count is as above. If not then we use the 11384 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 11385 // as if the backedge is taken at least once max(End,Start) is End and so the 11386 // result is as above, and if not max(End,Start) is Start so we get a backedge 11387 // count of zero. 11388 const SCEV *BECount; 11389 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 11390 BECount = BECountIfBackedgeTaken; 11391 else { 11392 // If we know that RHS >= Start in the context of loop, then we know that 11393 // max(RHS, Start) = RHS at this point. 11394 if (isLoopEntryGuardedByCond( 11395 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, RHS, Start)) 11396 End = RHS; 11397 else 11398 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11399 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 11400 } 11401 11402 const SCEV *MaxBECount; 11403 bool MaxOrZero = false; 11404 if (isa<SCEVConstant>(BECount)) 11405 MaxBECount = BECount; 11406 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11407 // If we know exactly how many times the backedge will be taken if it's 11408 // taken at least once, then the backedge count will either be that or 11409 // zero. 11410 MaxBECount = BECountIfBackedgeTaken; 11411 MaxOrZero = true; 11412 } else { 11413 MaxBECount = computeMaxBECountForLT( 11414 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11415 } 11416 11417 if (isa<SCEVCouldNotCompute>(MaxBECount) && 11418 !isa<SCEVCouldNotCompute>(BECount)) 11419 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 11420 11421 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 11422 } 11423 11424 ScalarEvolution::ExitLimit 11425 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 11426 const Loop *L, bool IsSigned, 11427 bool ControlsExit, bool AllowPredicates) { 11428 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11429 // We handle only IV > Invariant 11430 if (!isLoopInvariant(RHS, L)) 11431 return getCouldNotCompute(); 11432 11433 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11434 if (!IV && AllowPredicates) 11435 // Try to make this an AddRec using runtime tests, in the first X 11436 // iterations of this loop, where X is the SCEV expression found by the 11437 // algorithm below. 11438 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11439 11440 // Avoid weird loops 11441 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11442 return getCouldNotCompute(); 11443 11444 bool NoWrap = ControlsExit && 11445 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 11446 11447 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 11448 11449 // Avoid negative or zero stride values 11450 if (!isKnownPositive(Stride)) 11451 return getCouldNotCompute(); 11452 11453 // Avoid proven overflow cases: this will ensure that the backedge taken count 11454 // will not generate any unsigned overflow. Relaxed no-overflow conditions 11455 // exploit NoWrapFlags, allowing to optimize in presence of undefined 11456 // behaviors like the case of C language. 11457 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 11458 return getCouldNotCompute(); 11459 11460 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 11461 : ICmpInst::ICMP_UGT; 11462 11463 const SCEV *Start = IV->getStart(); 11464 const SCEV *End = RHS; 11465 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 11466 // If we know that Start >= RHS in the context of loop, then we know that 11467 // min(RHS, Start) = RHS at this point. 11468 if (isLoopEntryGuardedByCond( 11469 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 11470 End = RHS; 11471 else 11472 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 11473 } 11474 11475 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 11476 11477 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 11478 : getUnsignedRangeMax(Start); 11479 11480 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 11481 : getUnsignedRangeMin(Stride); 11482 11483 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 11484 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 11485 : APInt::getMinValue(BitWidth) + (MinStride - 1); 11486 11487 // Although End can be a MIN expression we estimate MinEnd considering only 11488 // the case End = RHS. This is safe because in the other case (Start - End) 11489 // is zero, leading to a zero maximum backedge taken count. 11490 APInt MinEnd = 11491 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 11492 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 11493 11494 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 11495 ? BECount 11496 : computeBECount(getConstant(MaxStart - MinEnd), 11497 getConstant(MinStride), false); 11498 11499 if (isa<SCEVCouldNotCompute>(MaxBECount)) 11500 MaxBECount = BECount; 11501 11502 return ExitLimit(BECount, MaxBECount, false, Predicates); 11503 } 11504 11505 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 11506 ScalarEvolution &SE) const { 11507 if (Range.isFullSet()) // Infinite loop. 11508 return SE.getCouldNotCompute(); 11509 11510 // If the start is a non-zero constant, shift the range to simplify things. 11511 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 11512 if (!SC->getValue()->isZero()) { 11513 SmallVector<const SCEV *, 4> Operands(operands()); 11514 Operands[0] = SE.getZero(SC->getType()); 11515 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 11516 getNoWrapFlags(FlagNW)); 11517 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 11518 return ShiftedAddRec->getNumIterationsInRange( 11519 Range.subtract(SC->getAPInt()), SE); 11520 // This is strange and shouldn't happen. 11521 return SE.getCouldNotCompute(); 11522 } 11523 11524 // The only time we can solve this is when we have all constant indices. 11525 // Otherwise, we cannot determine the overflow conditions. 11526 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 11527 return SE.getCouldNotCompute(); 11528 11529 // Okay at this point we know that all elements of the chrec are constants and 11530 // that the start element is zero. 11531 11532 // First check to see if the range contains zero. If not, the first 11533 // iteration exits. 11534 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 11535 if (!Range.contains(APInt(BitWidth, 0))) 11536 return SE.getZero(getType()); 11537 11538 if (isAffine()) { 11539 // If this is an affine expression then we have this situation: 11540 // Solve {0,+,A} in Range === Ax in Range 11541 11542 // We know that zero is in the range. If A is positive then we know that 11543 // the upper value of the range must be the first possible exit value. 11544 // If A is negative then the lower of the range is the last possible loop 11545 // value. Also note that we already checked for a full range. 11546 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 11547 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 11548 11549 // The exit value should be (End+A)/A. 11550 APInt ExitVal = (End + A).udiv(A); 11551 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 11552 11553 // Evaluate at the exit value. If we really did fall out of the valid 11554 // range, then we computed our trip count, otherwise wrap around or other 11555 // things must have happened. 11556 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 11557 if (Range.contains(Val->getValue())) 11558 return SE.getCouldNotCompute(); // Something strange happened 11559 11560 // Ensure that the previous value is in the range. This is a sanity check. 11561 assert(Range.contains( 11562 EvaluateConstantChrecAtConstant(this, 11563 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 11564 "Linear scev computation is off in a bad way!"); 11565 return SE.getConstant(ExitValue); 11566 } 11567 11568 if (isQuadratic()) { 11569 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 11570 return SE.getConstant(S.getValue()); 11571 } 11572 11573 return SE.getCouldNotCompute(); 11574 } 11575 11576 const SCEVAddRecExpr * 11577 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 11578 assert(getNumOperands() > 1 && "AddRec with zero step?"); 11579 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 11580 // but in this case we cannot guarantee that the value returned will be an 11581 // AddRec because SCEV does not have a fixed point where it stops 11582 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 11583 // may happen if we reach arithmetic depth limit while simplifying. So we 11584 // construct the returned value explicitly. 11585 SmallVector<const SCEV *, 3> Ops; 11586 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 11587 // (this + Step) is {A+B,+,B+C,+...,+,N}. 11588 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 11589 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 11590 // We know that the last operand is not a constant zero (otherwise it would 11591 // have been popped out earlier). This guarantees us that if the result has 11592 // the same last operand, then it will also not be popped out, meaning that 11593 // the returned value will be an AddRec. 11594 const SCEV *Last = getOperand(getNumOperands() - 1); 11595 assert(!Last->isZero() && "Recurrency with zero step?"); 11596 Ops.push_back(Last); 11597 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 11598 SCEV::FlagAnyWrap)); 11599 } 11600 11601 // Return true when S contains at least an undef value. 11602 static inline bool containsUndefs(const SCEV *S) { 11603 return SCEVExprContains(S, [](const SCEV *S) { 11604 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 11605 return isa<UndefValue>(SU->getValue()); 11606 return false; 11607 }); 11608 } 11609 11610 namespace { 11611 11612 // Collect all steps of SCEV expressions. 11613 struct SCEVCollectStrides { 11614 ScalarEvolution &SE; 11615 SmallVectorImpl<const SCEV *> &Strides; 11616 11617 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 11618 : SE(SE), Strides(S) {} 11619 11620 bool follow(const SCEV *S) { 11621 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 11622 Strides.push_back(AR->getStepRecurrence(SE)); 11623 return true; 11624 } 11625 11626 bool isDone() const { return false; } 11627 }; 11628 11629 // Collect all SCEVUnknown and SCEVMulExpr expressions. 11630 struct SCEVCollectTerms { 11631 SmallVectorImpl<const SCEV *> &Terms; 11632 11633 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 11634 11635 bool follow(const SCEV *S) { 11636 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 11637 isa<SCEVSignExtendExpr>(S)) { 11638 if (!containsUndefs(S)) 11639 Terms.push_back(S); 11640 11641 // Stop recursion: once we collected a term, do not walk its operands. 11642 return false; 11643 } 11644 11645 // Keep looking. 11646 return true; 11647 } 11648 11649 bool isDone() const { return false; } 11650 }; 11651 11652 // Check if a SCEV contains an AddRecExpr. 11653 struct SCEVHasAddRec { 11654 bool &ContainsAddRec; 11655 11656 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 11657 ContainsAddRec = false; 11658 } 11659 11660 bool follow(const SCEV *S) { 11661 if (isa<SCEVAddRecExpr>(S)) { 11662 ContainsAddRec = true; 11663 11664 // Stop recursion: once we collected a term, do not walk its operands. 11665 return false; 11666 } 11667 11668 // Keep looking. 11669 return true; 11670 } 11671 11672 bool isDone() const { return false; } 11673 }; 11674 11675 // Find factors that are multiplied with an expression that (possibly as a 11676 // subexpression) contains an AddRecExpr. In the expression: 11677 // 11678 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 11679 // 11680 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 11681 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 11682 // parameters as they form a product with an induction variable. 11683 // 11684 // This collector expects all array size parameters to be in the same MulExpr. 11685 // It might be necessary to later add support for collecting parameters that are 11686 // spread over different nested MulExpr. 11687 struct SCEVCollectAddRecMultiplies { 11688 SmallVectorImpl<const SCEV *> &Terms; 11689 ScalarEvolution &SE; 11690 11691 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 11692 : Terms(T), SE(SE) {} 11693 11694 bool follow(const SCEV *S) { 11695 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 11696 bool HasAddRec = false; 11697 SmallVector<const SCEV *, 0> Operands; 11698 for (auto Op : Mul->operands()) { 11699 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 11700 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 11701 Operands.push_back(Op); 11702 } else if (Unknown) { 11703 HasAddRec = true; 11704 } else { 11705 bool ContainsAddRec = false; 11706 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 11707 visitAll(Op, ContiansAddRec); 11708 HasAddRec |= ContainsAddRec; 11709 } 11710 } 11711 if (Operands.size() == 0) 11712 return true; 11713 11714 if (!HasAddRec) 11715 return false; 11716 11717 Terms.push_back(SE.getMulExpr(Operands)); 11718 // Stop recursion: once we collected a term, do not walk its operands. 11719 return false; 11720 } 11721 11722 // Keep looking. 11723 return true; 11724 } 11725 11726 bool isDone() const { return false; } 11727 }; 11728 11729 } // end anonymous namespace 11730 11731 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 11732 /// two places: 11733 /// 1) The strides of AddRec expressions. 11734 /// 2) Unknowns that are multiplied with AddRec expressions. 11735 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 11736 SmallVectorImpl<const SCEV *> &Terms) { 11737 SmallVector<const SCEV *, 4> Strides; 11738 SCEVCollectStrides StrideCollector(*this, Strides); 11739 visitAll(Expr, StrideCollector); 11740 11741 LLVM_DEBUG({ 11742 dbgs() << "Strides:\n"; 11743 for (const SCEV *S : Strides) 11744 dbgs() << *S << "\n"; 11745 }); 11746 11747 for (const SCEV *S : Strides) { 11748 SCEVCollectTerms TermCollector(Terms); 11749 visitAll(S, TermCollector); 11750 } 11751 11752 LLVM_DEBUG({ 11753 dbgs() << "Terms:\n"; 11754 for (const SCEV *T : Terms) 11755 dbgs() << *T << "\n"; 11756 }); 11757 11758 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 11759 visitAll(Expr, MulCollector); 11760 } 11761 11762 static bool findArrayDimensionsRec(ScalarEvolution &SE, 11763 SmallVectorImpl<const SCEV *> &Terms, 11764 SmallVectorImpl<const SCEV *> &Sizes) { 11765 int Last = Terms.size() - 1; 11766 const SCEV *Step = Terms[Last]; 11767 11768 // End of recursion. 11769 if (Last == 0) { 11770 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 11771 SmallVector<const SCEV *, 2> Qs; 11772 for (const SCEV *Op : M->operands()) 11773 if (!isa<SCEVConstant>(Op)) 11774 Qs.push_back(Op); 11775 11776 Step = SE.getMulExpr(Qs); 11777 } 11778 11779 Sizes.push_back(Step); 11780 return true; 11781 } 11782 11783 for (const SCEV *&Term : Terms) { 11784 // Normalize the terms before the next call to findArrayDimensionsRec. 11785 const SCEV *Q, *R; 11786 SCEVDivision::divide(SE, Term, Step, &Q, &R); 11787 11788 // Bail out when GCD does not evenly divide one of the terms. 11789 if (!R->isZero()) 11790 return false; 11791 11792 Term = Q; 11793 } 11794 11795 // Remove all SCEVConstants. 11796 erase_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }); 11797 11798 if (Terms.size() > 0) 11799 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 11800 return false; 11801 11802 Sizes.push_back(Step); 11803 return true; 11804 } 11805 11806 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 11807 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 11808 for (const SCEV *T : Terms) 11809 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 11810 return true; 11811 11812 return false; 11813 } 11814 11815 // Return the number of product terms in S. 11816 static inline int numberOfTerms(const SCEV *S) { 11817 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 11818 return Expr->getNumOperands(); 11819 return 1; 11820 } 11821 11822 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 11823 if (isa<SCEVConstant>(T)) 11824 return nullptr; 11825 11826 if (isa<SCEVUnknown>(T)) 11827 return T; 11828 11829 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 11830 SmallVector<const SCEV *, 2> Factors; 11831 for (const SCEV *Op : M->operands()) 11832 if (!isa<SCEVConstant>(Op)) 11833 Factors.push_back(Op); 11834 11835 return SE.getMulExpr(Factors); 11836 } 11837 11838 return T; 11839 } 11840 11841 /// Return the size of an element read or written by Inst. 11842 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 11843 Type *Ty; 11844 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 11845 Ty = Store->getValueOperand()->getType(); 11846 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 11847 Ty = Load->getType(); 11848 else 11849 return nullptr; 11850 11851 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11852 return getSizeOfExpr(ETy, Ty); 11853 } 11854 11855 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11856 SmallVectorImpl<const SCEV *> &Sizes, 11857 const SCEV *ElementSize) { 11858 if (Terms.size() < 1 || !ElementSize) 11859 return; 11860 11861 // Early return when Terms do not contain parameters: we do not delinearize 11862 // non parametric SCEVs. 11863 if (!containsParameters(Terms)) 11864 return; 11865 11866 LLVM_DEBUG({ 11867 dbgs() << "Terms:\n"; 11868 for (const SCEV *T : Terms) 11869 dbgs() << *T << "\n"; 11870 }); 11871 11872 // Remove duplicates. 11873 array_pod_sort(Terms.begin(), Terms.end()); 11874 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11875 11876 // Put larger terms first. 11877 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11878 return numberOfTerms(LHS) > numberOfTerms(RHS); 11879 }); 11880 11881 // Try to divide all terms by the element size. If term is not divisible by 11882 // element size, proceed with the original term. 11883 for (const SCEV *&Term : Terms) { 11884 const SCEV *Q, *R; 11885 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11886 if (!Q->isZero()) 11887 Term = Q; 11888 } 11889 11890 SmallVector<const SCEV *, 4> NewTerms; 11891 11892 // Remove constant factors. 11893 for (const SCEV *T : Terms) 11894 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11895 NewTerms.push_back(NewT); 11896 11897 LLVM_DEBUG({ 11898 dbgs() << "Terms after sorting:\n"; 11899 for (const SCEV *T : NewTerms) 11900 dbgs() << *T << "\n"; 11901 }); 11902 11903 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11904 Sizes.clear(); 11905 return; 11906 } 11907 11908 // The last element to be pushed into Sizes is the size of an element. 11909 Sizes.push_back(ElementSize); 11910 11911 LLVM_DEBUG({ 11912 dbgs() << "Sizes:\n"; 11913 for (const SCEV *S : Sizes) 11914 dbgs() << *S << "\n"; 11915 }); 11916 } 11917 11918 void ScalarEvolution::computeAccessFunctions( 11919 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11920 SmallVectorImpl<const SCEV *> &Sizes) { 11921 // Early exit in case this SCEV is not an affine multivariate function. 11922 if (Sizes.empty()) 11923 return; 11924 11925 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11926 if (!AR->isAffine()) 11927 return; 11928 11929 const SCEV *Res = Expr; 11930 int Last = Sizes.size() - 1; 11931 for (int i = Last; i >= 0; i--) { 11932 const SCEV *Q, *R; 11933 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11934 11935 LLVM_DEBUG({ 11936 dbgs() << "Res: " << *Res << "\n"; 11937 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11938 dbgs() << "Res divided by Sizes[i]:\n"; 11939 dbgs() << "Quotient: " << *Q << "\n"; 11940 dbgs() << "Remainder: " << *R << "\n"; 11941 }); 11942 11943 Res = Q; 11944 11945 // Do not record the last subscript corresponding to the size of elements in 11946 // the array. 11947 if (i == Last) { 11948 11949 // Bail out if the remainder is too complex. 11950 if (isa<SCEVAddRecExpr>(R)) { 11951 Subscripts.clear(); 11952 Sizes.clear(); 11953 return; 11954 } 11955 11956 continue; 11957 } 11958 11959 // Record the access function for the current subscript. 11960 Subscripts.push_back(R); 11961 } 11962 11963 // Also push in last position the remainder of the last division: it will be 11964 // the access function of the innermost dimension. 11965 Subscripts.push_back(Res); 11966 11967 std::reverse(Subscripts.begin(), Subscripts.end()); 11968 11969 LLVM_DEBUG({ 11970 dbgs() << "Subscripts:\n"; 11971 for (const SCEV *S : Subscripts) 11972 dbgs() << *S << "\n"; 11973 }); 11974 } 11975 11976 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11977 /// sizes of an array access. Returns the remainder of the delinearization that 11978 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11979 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11980 /// expressions in the stride and base of a SCEV corresponding to the 11981 /// computation of a GCD (greatest common divisor) of base and stride. When 11982 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11983 /// 11984 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11985 /// 11986 /// void foo(long n, long m, long o, double A[n][m][o]) { 11987 /// 11988 /// for (long i = 0; i < n; i++) 11989 /// for (long j = 0; j < m; j++) 11990 /// for (long k = 0; k < o; k++) 11991 /// A[i][j][k] = 1.0; 11992 /// } 11993 /// 11994 /// the delinearization input is the following AddRec SCEV: 11995 /// 11996 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11997 /// 11998 /// From this SCEV, we are able to say that the base offset of the access is %A 11999 /// because it appears as an offset that does not divide any of the strides in 12000 /// the loops: 12001 /// 12002 /// CHECK: Base offset: %A 12003 /// 12004 /// and then SCEV->delinearize determines the size of some of the dimensions of 12005 /// the array as these are the multiples by which the strides are happening: 12006 /// 12007 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 12008 /// 12009 /// Note that the outermost dimension remains of UnknownSize because there are 12010 /// no strides that would help identifying the size of the last dimension: when 12011 /// the array has been statically allocated, one could compute the size of that 12012 /// dimension by dividing the overall size of the array by the size of the known 12013 /// dimensions: %m * %o * 8. 12014 /// 12015 /// Finally delinearize provides the access functions for the array reference 12016 /// that does correspond to A[i][j][k] of the above C testcase: 12017 /// 12018 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 12019 /// 12020 /// The testcases are checking the output of a function pass: 12021 /// DelinearizationPass that walks through all loads and stores of a function 12022 /// asking for the SCEV of the memory access with respect to all enclosing 12023 /// loops, calling SCEV->delinearize on that and printing the results. 12024 void ScalarEvolution::delinearize(const SCEV *Expr, 12025 SmallVectorImpl<const SCEV *> &Subscripts, 12026 SmallVectorImpl<const SCEV *> &Sizes, 12027 const SCEV *ElementSize) { 12028 // First step: collect parametric terms. 12029 SmallVector<const SCEV *, 4> Terms; 12030 collectParametricTerms(Expr, Terms); 12031 12032 if (Terms.empty()) 12033 return; 12034 12035 // Second step: find subscript sizes. 12036 findArrayDimensions(Terms, Sizes, ElementSize); 12037 12038 if (Sizes.empty()) 12039 return; 12040 12041 // Third step: compute the access functions for each subscript. 12042 computeAccessFunctions(Expr, Subscripts, Sizes); 12043 12044 if (Subscripts.empty()) 12045 return; 12046 12047 LLVM_DEBUG({ 12048 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 12049 dbgs() << "ArrayDecl[UnknownSize]"; 12050 for (const SCEV *S : Sizes) 12051 dbgs() << "[" << *S << "]"; 12052 12053 dbgs() << "\nArrayRef"; 12054 for (const SCEV *S : Subscripts) 12055 dbgs() << "[" << *S << "]"; 12056 dbgs() << "\n"; 12057 }); 12058 } 12059 12060 bool ScalarEvolution::getIndexExpressionsFromGEP( 12061 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 12062 SmallVectorImpl<int> &Sizes) { 12063 assert(Subscripts.empty() && Sizes.empty() && 12064 "Expected output lists to be empty on entry to this function."); 12065 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 12066 Type *Ty = GEP->getPointerOperandType(); 12067 bool DroppedFirstDim = false; 12068 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 12069 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 12070 if (i == 1) { 12071 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 12072 Ty = PtrTy->getElementType(); 12073 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 12074 Ty = ArrayTy->getElementType(); 12075 } else { 12076 Subscripts.clear(); 12077 Sizes.clear(); 12078 return false; 12079 } 12080 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 12081 if (Const->getValue()->isZero()) { 12082 DroppedFirstDim = true; 12083 continue; 12084 } 12085 Subscripts.push_back(Expr); 12086 continue; 12087 } 12088 12089 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 12090 if (!ArrayTy) { 12091 Subscripts.clear(); 12092 Sizes.clear(); 12093 return false; 12094 } 12095 12096 Subscripts.push_back(Expr); 12097 if (!(DroppedFirstDim && i == 2)) 12098 Sizes.push_back(ArrayTy->getNumElements()); 12099 12100 Ty = ArrayTy->getElementType(); 12101 } 12102 return !Subscripts.empty(); 12103 } 12104 12105 //===----------------------------------------------------------------------===// 12106 // SCEVCallbackVH Class Implementation 12107 //===----------------------------------------------------------------------===// 12108 12109 void ScalarEvolution::SCEVCallbackVH::deleted() { 12110 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12111 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12112 SE->ConstantEvolutionLoopExitValue.erase(PN); 12113 SE->eraseValueFromMap(getValPtr()); 12114 // this now dangles! 12115 } 12116 12117 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12118 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12119 12120 // Forget all the expressions associated with users of the old value, 12121 // so that future queries will recompute the expressions using the new 12122 // value. 12123 Value *Old = getValPtr(); 12124 SmallVector<User *, 16> Worklist(Old->users()); 12125 SmallPtrSet<User *, 8> Visited; 12126 while (!Worklist.empty()) { 12127 User *U = Worklist.pop_back_val(); 12128 // Deleting the Old value will cause this to dangle. Postpone 12129 // that until everything else is done. 12130 if (U == Old) 12131 continue; 12132 if (!Visited.insert(U).second) 12133 continue; 12134 if (PHINode *PN = dyn_cast<PHINode>(U)) 12135 SE->ConstantEvolutionLoopExitValue.erase(PN); 12136 SE->eraseValueFromMap(U); 12137 llvm::append_range(Worklist, U->users()); 12138 } 12139 // Delete the Old value. 12140 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12141 SE->ConstantEvolutionLoopExitValue.erase(PN); 12142 SE->eraseValueFromMap(Old); 12143 // this now dangles! 12144 } 12145 12146 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12147 : CallbackVH(V), SE(se) {} 12148 12149 //===----------------------------------------------------------------------===// 12150 // ScalarEvolution Class Implementation 12151 //===----------------------------------------------------------------------===// 12152 12153 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12154 AssumptionCache &AC, DominatorTree &DT, 12155 LoopInfo &LI) 12156 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12157 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12158 LoopDispositions(64), BlockDispositions(64) { 12159 // To use guards for proving predicates, we need to scan every instruction in 12160 // relevant basic blocks, and not just terminators. Doing this is a waste of 12161 // time if the IR does not actually contain any calls to 12162 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12163 // 12164 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12165 // to _add_ guards to the module when there weren't any before, and wants 12166 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12167 // efficient in lieu of being smart in that rather obscure case. 12168 12169 auto *GuardDecl = F.getParent()->getFunction( 12170 Intrinsic::getName(Intrinsic::experimental_guard)); 12171 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12172 } 12173 12174 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12175 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12176 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12177 ValueExprMap(std::move(Arg.ValueExprMap)), 12178 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12179 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12180 PendingMerges(std::move(Arg.PendingMerges)), 12181 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12182 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12183 PredicatedBackedgeTakenCounts( 12184 std::move(Arg.PredicatedBackedgeTakenCounts)), 12185 ConstantEvolutionLoopExitValue( 12186 std::move(Arg.ConstantEvolutionLoopExitValue)), 12187 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12188 LoopDispositions(std::move(Arg.LoopDispositions)), 12189 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12190 BlockDispositions(std::move(Arg.BlockDispositions)), 12191 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12192 SignedRanges(std::move(Arg.SignedRanges)), 12193 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12194 UniquePreds(std::move(Arg.UniquePreds)), 12195 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12196 LoopUsers(std::move(Arg.LoopUsers)), 12197 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12198 FirstUnknown(Arg.FirstUnknown) { 12199 Arg.FirstUnknown = nullptr; 12200 } 12201 12202 ScalarEvolution::~ScalarEvolution() { 12203 // Iterate through all the SCEVUnknown instances and call their 12204 // destructors, so that they release their references to their values. 12205 for (SCEVUnknown *U = FirstUnknown; U;) { 12206 SCEVUnknown *Tmp = U; 12207 U = U->Next; 12208 Tmp->~SCEVUnknown(); 12209 } 12210 FirstUnknown = nullptr; 12211 12212 ExprValueMap.clear(); 12213 ValueExprMap.clear(); 12214 HasRecMap.clear(); 12215 12216 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 12217 // that a loop had multiple computable exits. 12218 for (auto &BTCI : BackedgeTakenCounts) 12219 BTCI.second.clear(); 12220 for (auto &BTCI : PredicatedBackedgeTakenCounts) 12221 BTCI.second.clear(); 12222 12223 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12224 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12225 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12226 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12227 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12228 } 12229 12230 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12231 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12232 } 12233 12234 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12235 const Loop *L) { 12236 // Print all inner loops first 12237 for (Loop *I : *L) 12238 PrintLoopInfo(OS, SE, I); 12239 12240 OS << "Loop "; 12241 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12242 OS << ": "; 12243 12244 SmallVector<BasicBlock *, 8> ExitingBlocks; 12245 L->getExitingBlocks(ExitingBlocks); 12246 if (ExitingBlocks.size() != 1) 12247 OS << "<multiple exits> "; 12248 12249 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12250 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12251 else 12252 OS << "Unpredictable backedge-taken count.\n"; 12253 12254 if (ExitingBlocks.size() > 1) 12255 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12256 OS << " exit count for " << ExitingBlock->getName() << ": " 12257 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12258 } 12259 12260 OS << "Loop "; 12261 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12262 OS << ": "; 12263 12264 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12265 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12266 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12267 OS << ", actual taken count either this or zero."; 12268 } else { 12269 OS << "Unpredictable max backedge-taken count. "; 12270 } 12271 12272 OS << "\n" 12273 "Loop "; 12274 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12275 OS << ": "; 12276 12277 SCEVUnionPredicate Pred; 12278 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12279 if (!isa<SCEVCouldNotCompute>(PBT)) { 12280 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12281 OS << " Predicates:\n"; 12282 Pred.print(OS, 4); 12283 } else { 12284 OS << "Unpredictable predicated backedge-taken count. "; 12285 } 12286 OS << "\n"; 12287 12288 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12289 OS << "Loop "; 12290 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12291 OS << ": "; 12292 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12293 } 12294 } 12295 12296 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12297 switch (LD) { 12298 case ScalarEvolution::LoopVariant: 12299 return "Variant"; 12300 case ScalarEvolution::LoopInvariant: 12301 return "Invariant"; 12302 case ScalarEvolution::LoopComputable: 12303 return "Computable"; 12304 } 12305 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12306 } 12307 12308 void ScalarEvolution::print(raw_ostream &OS) const { 12309 // ScalarEvolution's implementation of the print method is to print 12310 // out SCEV values of all instructions that are interesting. Doing 12311 // this potentially causes it to create new SCEV objects though, 12312 // which technically conflicts with the const qualifier. This isn't 12313 // observable from outside the class though, so casting away the 12314 // const isn't dangerous. 12315 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12316 12317 if (ClassifyExpressions) { 12318 OS << "Classifying expressions for: "; 12319 F.printAsOperand(OS, /*PrintType=*/false); 12320 OS << "\n"; 12321 for (Instruction &I : instructions(F)) 12322 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12323 OS << I << '\n'; 12324 OS << " --> "; 12325 const SCEV *SV = SE.getSCEV(&I); 12326 SV->print(OS); 12327 if (!isa<SCEVCouldNotCompute>(SV)) { 12328 OS << " U: "; 12329 SE.getUnsignedRange(SV).print(OS); 12330 OS << " S: "; 12331 SE.getSignedRange(SV).print(OS); 12332 } 12333 12334 const Loop *L = LI.getLoopFor(I.getParent()); 12335 12336 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12337 if (AtUse != SV) { 12338 OS << " --> "; 12339 AtUse->print(OS); 12340 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12341 OS << " U: "; 12342 SE.getUnsignedRange(AtUse).print(OS); 12343 OS << " S: "; 12344 SE.getSignedRange(AtUse).print(OS); 12345 } 12346 } 12347 12348 if (L) { 12349 OS << "\t\t" "Exits: "; 12350 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12351 if (!SE.isLoopInvariant(ExitValue, L)) { 12352 OS << "<<Unknown>>"; 12353 } else { 12354 OS << *ExitValue; 12355 } 12356 12357 bool First = true; 12358 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12359 if (First) { 12360 OS << "\t\t" "LoopDispositions: { "; 12361 First = false; 12362 } else { 12363 OS << ", "; 12364 } 12365 12366 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12367 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12368 } 12369 12370 for (auto *InnerL : depth_first(L)) { 12371 if (InnerL == L) 12372 continue; 12373 if (First) { 12374 OS << "\t\t" "LoopDispositions: { "; 12375 First = false; 12376 } else { 12377 OS << ", "; 12378 } 12379 12380 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12381 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12382 } 12383 12384 OS << " }"; 12385 } 12386 12387 OS << "\n"; 12388 } 12389 } 12390 12391 OS << "Determining loop execution counts for: "; 12392 F.printAsOperand(OS, /*PrintType=*/false); 12393 OS << "\n"; 12394 for (Loop *I : LI) 12395 PrintLoopInfo(OS, &SE, I); 12396 } 12397 12398 ScalarEvolution::LoopDisposition 12399 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12400 auto &Values = LoopDispositions[S]; 12401 for (auto &V : Values) { 12402 if (V.getPointer() == L) 12403 return V.getInt(); 12404 } 12405 Values.emplace_back(L, LoopVariant); 12406 LoopDisposition D = computeLoopDisposition(S, L); 12407 auto &Values2 = LoopDispositions[S]; 12408 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12409 if (V.getPointer() == L) { 12410 V.setInt(D); 12411 break; 12412 } 12413 } 12414 return D; 12415 } 12416 12417 ScalarEvolution::LoopDisposition 12418 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12419 switch (S->getSCEVType()) { 12420 case scConstant: 12421 return LoopInvariant; 12422 case scPtrToInt: 12423 case scTruncate: 12424 case scZeroExtend: 12425 case scSignExtend: 12426 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12427 case scAddRecExpr: { 12428 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12429 12430 // If L is the addrec's loop, it's computable. 12431 if (AR->getLoop() == L) 12432 return LoopComputable; 12433 12434 // Add recurrences are never invariant in the function-body (null loop). 12435 if (!L) 12436 return LoopVariant; 12437 12438 // Everything that is not defined at loop entry is variant. 12439 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12440 return LoopVariant; 12441 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12442 " dominate the contained loop's header?"); 12443 12444 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12445 if (AR->getLoop()->contains(L)) 12446 return LoopInvariant; 12447 12448 // This recurrence is variant w.r.t. L if any of its operands 12449 // are variant. 12450 for (auto *Op : AR->operands()) 12451 if (!isLoopInvariant(Op, L)) 12452 return LoopVariant; 12453 12454 // Otherwise it's loop-invariant. 12455 return LoopInvariant; 12456 } 12457 case scAddExpr: 12458 case scMulExpr: 12459 case scUMaxExpr: 12460 case scSMaxExpr: 12461 case scUMinExpr: 12462 case scSMinExpr: { 12463 bool HasVarying = false; 12464 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12465 LoopDisposition D = getLoopDisposition(Op, L); 12466 if (D == LoopVariant) 12467 return LoopVariant; 12468 if (D == LoopComputable) 12469 HasVarying = true; 12470 } 12471 return HasVarying ? LoopComputable : LoopInvariant; 12472 } 12473 case scUDivExpr: { 12474 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12475 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12476 if (LD == LoopVariant) 12477 return LoopVariant; 12478 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12479 if (RD == LoopVariant) 12480 return LoopVariant; 12481 return (LD == LoopInvariant && RD == LoopInvariant) ? 12482 LoopInvariant : LoopComputable; 12483 } 12484 case scUnknown: 12485 // All non-instruction values are loop invariant. All instructions are loop 12486 // invariant if they are not contained in the specified loop. 12487 // Instructions are never considered invariant in the function body 12488 // (null loop) because they are defined within the "loop". 12489 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12490 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12491 return LoopInvariant; 12492 case scCouldNotCompute: 12493 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12494 } 12495 llvm_unreachable("Unknown SCEV kind!"); 12496 } 12497 12498 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12499 return getLoopDisposition(S, L) == LoopInvariant; 12500 } 12501 12502 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12503 return getLoopDisposition(S, L) == LoopComputable; 12504 } 12505 12506 ScalarEvolution::BlockDisposition 12507 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12508 auto &Values = BlockDispositions[S]; 12509 for (auto &V : Values) { 12510 if (V.getPointer() == BB) 12511 return V.getInt(); 12512 } 12513 Values.emplace_back(BB, DoesNotDominateBlock); 12514 BlockDisposition D = computeBlockDisposition(S, BB); 12515 auto &Values2 = BlockDispositions[S]; 12516 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12517 if (V.getPointer() == BB) { 12518 V.setInt(D); 12519 break; 12520 } 12521 } 12522 return D; 12523 } 12524 12525 ScalarEvolution::BlockDisposition 12526 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12527 switch (S->getSCEVType()) { 12528 case scConstant: 12529 return ProperlyDominatesBlock; 12530 case scPtrToInt: 12531 case scTruncate: 12532 case scZeroExtend: 12533 case scSignExtend: 12534 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12535 case scAddRecExpr: { 12536 // This uses a "dominates" query instead of "properly dominates" query 12537 // to test for proper dominance too, because the instruction which 12538 // produces the addrec's value is a PHI, and a PHI effectively properly 12539 // dominates its entire containing block. 12540 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12541 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12542 return DoesNotDominateBlock; 12543 12544 // Fall through into SCEVNAryExpr handling. 12545 LLVM_FALLTHROUGH; 12546 } 12547 case scAddExpr: 12548 case scMulExpr: 12549 case scUMaxExpr: 12550 case scSMaxExpr: 12551 case scUMinExpr: 12552 case scSMinExpr: { 12553 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12554 bool Proper = true; 12555 for (const SCEV *NAryOp : NAry->operands()) { 12556 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12557 if (D == DoesNotDominateBlock) 12558 return DoesNotDominateBlock; 12559 if (D == DominatesBlock) 12560 Proper = false; 12561 } 12562 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12563 } 12564 case scUDivExpr: { 12565 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12566 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12567 BlockDisposition LD = getBlockDisposition(LHS, BB); 12568 if (LD == DoesNotDominateBlock) 12569 return DoesNotDominateBlock; 12570 BlockDisposition RD = getBlockDisposition(RHS, BB); 12571 if (RD == DoesNotDominateBlock) 12572 return DoesNotDominateBlock; 12573 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12574 ProperlyDominatesBlock : DominatesBlock; 12575 } 12576 case scUnknown: 12577 if (Instruction *I = 12578 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12579 if (I->getParent() == BB) 12580 return DominatesBlock; 12581 if (DT.properlyDominates(I->getParent(), BB)) 12582 return ProperlyDominatesBlock; 12583 return DoesNotDominateBlock; 12584 } 12585 return ProperlyDominatesBlock; 12586 case scCouldNotCompute: 12587 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12588 } 12589 llvm_unreachable("Unknown SCEV kind!"); 12590 } 12591 12592 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12593 return getBlockDisposition(S, BB) >= DominatesBlock; 12594 } 12595 12596 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12597 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12598 } 12599 12600 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12601 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12602 } 12603 12604 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 12605 auto IsS = [&](const SCEV *X) { return S == X; }; 12606 auto ContainsS = [&](const SCEV *X) { 12607 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 12608 }; 12609 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 12610 } 12611 12612 void 12613 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12614 ValuesAtScopes.erase(S); 12615 LoopDispositions.erase(S); 12616 BlockDispositions.erase(S); 12617 UnsignedRanges.erase(S); 12618 SignedRanges.erase(S); 12619 ExprValueMap.erase(S); 12620 HasRecMap.erase(S); 12621 MinTrailingZerosCache.erase(S); 12622 12623 for (auto I = PredicatedSCEVRewrites.begin(); 12624 I != PredicatedSCEVRewrites.end();) { 12625 std::pair<const SCEV *, const Loop *> Entry = I->first; 12626 if (Entry.first == S) 12627 PredicatedSCEVRewrites.erase(I++); 12628 else 12629 ++I; 12630 } 12631 12632 auto RemoveSCEVFromBackedgeMap = 12633 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12634 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12635 BackedgeTakenInfo &BEInfo = I->second; 12636 if (BEInfo.hasOperand(S, this)) { 12637 BEInfo.clear(); 12638 Map.erase(I++); 12639 } else 12640 ++I; 12641 } 12642 }; 12643 12644 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12645 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12646 } 12647 12648 void 12649 ScalarEvolution::getUsedLoops(const SCEV *S, 12650 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12651 struct FindUsedLoops { 12652 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12653 : LoopsUsed(LoopsUsed) {} 12654 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12655 bool follow(const SCEV *S) { 12656 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12657 LoopsUsed.insert(AR->getLoop()); 12658 return true; 12659 } 12660 12661 bool isDone() const { return false; } 12662 }; 12663 12664 FindUsedLoops F(LoopsUsed); 12665 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12666 } 12667 12668 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12669 SmallPtrSet<const Loop *, 8> LoopsUsed; 12670 getUsedLoops(S, LoopsUsed); 12671 for (auto *L : LoopsUsed) 12672 LoopUsers[L].push_back(S); 12673 } 12674 12675 void ScalarEvolution::verify() const { 12676 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12677 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12678 12679 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12680 12681 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12682 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12683 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12684 12685 const SCEV *visitConstant(const SCEVConstant *Constant) { 12686 return SE.getConstant(Constant->getAPInt()); 12687 } 12688 12689 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12690 return SE.getUnknown(Expr->getValue()); 12691 } 12692 12693 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12694 return SE.getCouldNotCompute(); 12695 } 12696 }; 12697 12698 SCEVMapper SCM(SE2); 12699 12700 while (!LoopStack.empty()) { 12701 auto *L = LoopStack.pop_back_val(); 12702 llvm::append_range(LoopStack, *L); 12703 12704 auto *CurBECount = SCM.visit( 12705 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12706 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12707 12708 if (CurBECount == SE2.getCouldNotCompute() || 12709 NewBECount == SE2.getCouldNotCompute()) { 12710 // NB! This situation is legal, but is very suspicious -- whatever pass 12711 // change the loop to make a trip count go from could not compute to 12712 // computable or vice-versa *should have* invalidated SCEV. However, we 12713 // choose not to assert here (for now) since we don't want false 12714 // positives. 12715 continue; 12716 } 12717 12718 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12719 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12720 // not propagate undef aggressively). This means we can (and do) fail 12721 // verification in cases where a transform makes the trip count of a loop 12722 // go from "undef" to "undef+1" (say). The transform is fine, since in 12723 // both cases the loop iterates "undef" times, but SCEV thinks we 12724 // increased the trip count of the loop by 1 incorrectly. 12725 continue; 12726 } 12727 12728 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12729 SE.getTypeSizeInBits(NewBECount->getType())) 12730 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12731 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12732 SE.getTypeSizeInBits(NewBECount->getType())) 12733 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12734 12735 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12736 12737 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12738 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12739 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12740 dbgs() << "Old: " << *CurBECount << "\n"; 12741 dbgs() << "New: " << *NewBECount << "\n"; 12742 dbgs() << "Delta: " << *Delta << "\n"; 12743 std::abort(); 12744 } 12745 } 12746 12747 // Collect all valid loops currently in LoopInfo. 12748 SmallPtrSet<Loop *, 32> ValidLoops; 12749 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12750 while (!Worklist.empty()) { 12751 Loop *L = Worklist.pop_back_val(); 12752 if (ValidLoops.contains(L)) 12753 continue; 12754 ValidLoops.insert(L); 12755 Worklist.append(L->begin(), L->end()); 12756 } 12757 // Check for SCEV expressions referencing invalid/deleted loops. 12758 for (auto &KV : ValueExprMap) { 12759 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12760 if (!AR) 12761 continue; 12762 assert(ValidLoops.contains(AR->getLoop()) && 12763 "AddRec references invalid loop"); 12764 } 12765 } 12766 12767 bool ScalarEvolution::invalidate( 12768 Function &F, const PreservedAnalyses &PA, 12769 FunctionAnalysisManager::Invalidator &Inv) { 12770 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12771 // of its dependencies is invalidated. 12772 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12773 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12774 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12775 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12776 Inv.invalidate<LoopAnalysis>(F, PA); 12777 } 12778 12779 AnalysisKey ScalarEvolutionAnalysis::Key; 12780 12781 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12782 FunctionAnalysisManager &AM) { 12783 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12784 AM.getResult<AssumptionAnalysis>(F), 12785 AM.getResult<DominatorTreeAnalysis>(F), 12786 AM.getResult<LoopAnalysis>(F)); 12787 } 12788 12789 PreservedAnalyses 12790 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12791 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12792 return PreservedAnalyses::all(); 12793 } 12794 12795 PreservedAnalyses 12796 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12797 // For compatibility with opt's -analyze feature under legacy pass manager 12798 // which was not ported to NPM. This keeps tests using 12799 // update_analyze_test_checks.py working. 12800 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12801 << F.getName() << "':\n"; 12802 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12803 return PreservedAnalyses::all(); 12804 } 12805 12806 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12807 "Scalar Evolution Analysis", false, true) 12808 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12809 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12810 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12811 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12812 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12813 "Scalar Evolution Analysis", false, true) 12814 12815 char ScalarEvolutionWrapperPass::ID = 0; 12816 12817 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12818 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12819 } 12820 12821 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12822 SE.reset(new ScalarEvolution( 12823 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12824 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12825 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12826 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12827 return false; 12828 } 12829 12830 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12831 12832 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12833 SE->print(OS); 12834 } 12835 12836 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12837 if (!VerifySCEV) 12838 return; 12839 12840 SE->verify(); 12841 } 12842 12843 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12844 AU.setPreservesAll(); 12845 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12846 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12847 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12848 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12849 } 12850 12851 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12852 const SCEV *RHS) { 12853 FoldingSetNodeID ID; 12854 assert(LHS->getType() == RHS->getType() && 12855 "Type mismatch between LHS and RHS"); 12856 // Unique this node based on the arguments 12857 ID.AddInteger(SCEVPredicate::P_Equal); 12858 ID.AddPointer(LHS); 12859 ID.AddPointer(RHS); 12860 void *IP = nullptr; 12861 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12862 return S; 12863 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12864 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12865 UniquePreds.InsertNode(Eq, IP); 12866 return Eq; 12867 } 12868 12869 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12870 const SCEVAddRecExpr *AR, 12871 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12872 FoldingSetNodeID ID; 12873 // Unique this node based on the arguments 12874 ID.AddInteger(SCEVPredicate::P_Wrap); 12875 ID.AddPointer(AR); 12876 ID.AddInteger(AddedFlags); 12877 void *IP = nullptr; 12878 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12879 return S; 12880 auto *OF = new (SCEVAllocator) 12881 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12882 UniquePreds.InsertNode(OF, IP); 12883 return OF; 12884 } 12885 12886 namespace { 12887 12888 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12889 public: 12890 12891 /// Rewrites \p S in the context of a loop L and the SCEV predication 12892 /// infrastructure. 12893 /// 12894 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12895 /// equivalences present in \p Pred. 12896 /// 12897 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12898 /// \p NewPreds such that the result will be an AddRecExpr. 12899 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12900 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12901 SCEVUnionPredicate *Pred) { 12902 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12903 return Rewriter.visit(S); 12904 } 12905 12906 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12907 if (Pred) { 12908 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12909 for (auto *Pred : ExprPreds) 12910 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12911 if (IPred->getLHS() == Expr) 12912 return IPred->getRHS(); 12913 } 12914 return convertToAddRecWithPreds(Expr); 12915 } 12916 12917 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12918 const SCEV *Operand = visit(Expr->getOperand()); 12919 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12920 if (AR && AR->getLoop() == L && AR->isAffine()) { 12921 // This couldn't be folded because the operand didn't have the nuw 12922 // flag. Add the nusw flag as an assumption that we could make. 12923 const SCEV *Step = AR->getStepRecurrence(SE); 12924 Type *Ty = Expr->getType(); 12925 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12926 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12927 SE.getSignExtendExpr(Step, Ty), L, 12928 AR->getNoWrapFlags()); 12929 } 12930 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12931 } 12932 12933 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12934 const SCEV *Operand = visit(Expr->getOperand()); 12935 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12936 if (AR && AR->getLoop() == L && AR->isAffine()) { 12937 // This couldn't be folded because the operand didn't have the nsw 12938 // flag. Add the nssw flag as an assumption that we could make. 12939 const SCEV *Step = AR->getStepRecurrence(SE); 12940 Type *Ty = Expr->getType(); 12941 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12942 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12943 SE.getSignExtendExpr(Step, Ty), L, 12944 AR->getNoWrapFlags()); 12945 } 12946 return SE.getSignExtendExpr(Operand, Expr->getType()); 12947 } 12948 12949 private: 12950 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12951 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12952 SCEVUnionPredicate *Pred) 12953 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12954 12955 bool addOverflowAssumption(const SCEVPredicate *P) { 12956 if (!NewPreds) { 12957 // Check if we've already made this assumption. 12958 return Pred && Pred->implies(P); 12959 } 12960 NewPreds->insert(P); 12961 return true; 12962 } 12963 12964 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12965 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12966 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12967 return addOverflowAssumption(A); 12968 } 12969 12970 // If \p Expr represents a PHINode, we try to see if it can be represented 12971 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12972 // to add this predicate as a runtime overflow check, we return the AddRec. 12973 // If \p Expr does not meet these conditions (is not a PHI node, or we 12974 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12975 // return \p Expr. 12976 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12977 if (!isa<PHINode>(Expr->getValue())) 12978 return Expr; 12979 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12980 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12981 if (!PredicatedRewrite) 12982 return Expr; 12983 for (auto *P : PredicatedRewrite->second){ 12984 // Wrap predicates from outer loops are not supported. 12985 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12986 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12987 if (L != AR->getLoop()) 12988 return Expr; 12989 } 12990 if (!addOverflowAssumption(P)) 12991 return Expr; 12992 } 12993 return PredicatedRewrite->first; 12994 } 12995 12996 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12997 SCEVUnionPredicate *Pred; 12998 const Loop *L; 12999 }; 13000 13001 } // end anonymous namespace 13002 13003 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13004 SCEVUnionPredicate &Preds) { 13005 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13006 } 13007 13008 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13009 const SCEV *S, const Loop *L, 13010 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13011 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13012 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13013 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13014 13015 if (!AddRec) 13016 return nullptr; 13017 13018 // Since the transformation was successful, we can now transfer the SCEV 13019 // predicates. 13020 for (auto *P : TransformPreds) 13021 Preds.insert(P); 13022 13023 return AddRec; 13024 } 13025 13026 /// SCEV predicates 13027 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13028 SCEVPredicateKind Kind) 13029 : FastID(ID), Kind(Kind) {} 13030 13031 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13032 const SCEV *LHS, const SCEV *RHS) 13033 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13034 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13035 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13036 } 13037 13038 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13039 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13040 13041 if (!Op) 13042 return false; 13043 13044 return Op->LHS == LHS && Op->RHS == RHS; 13045 } 13046 13047 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13048 13049 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13050 13051 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13052 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13053 } 13054 13055 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13056 const SCEVAddRecExpr *AR, 13057 IncrementWrapFlags Flags) 13058 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13059 13060 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13061 13062 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13063 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13064 13065 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13066 } 13067 13068 bool SCEVWrapPredicate::isAlwaysTrue() const { 13069 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13070 IncrementWrapFlags IFlags = Flags; 13071 13072 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13073 IFlags = clearFlags(IFlags, IncrementNSSW); 13074 13075 return IFlags == IncrementAnyWrap; 13076 } 13077 13078 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13079 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13080 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13081 OS << "<nusw>"; 13082 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13083 OS << "<nssw>"; 13084 OS << "\n"; 13085 } 13086 13087 SCEVWrapPredicate::IncrementWrapFlags 13088 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13089 ScalarEvolution &SE) { 13090 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13091 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13092 13093 // We can safely transfer the NSW flag as NSSW. 13094 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13095 ImpliedFlags = IncrementNSSW; 13096 13097 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13098 // If the increment is positive, the SCEV NUW flag will also imply the 13099 // WrapPredicate NUSW flag. 13100 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13101 if (Step->getValue()->getValue().isNonNegative()) 13102 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13103 } 13104 13105 return ImpliedFlags; 13106 } 13107 13108 /// Union predicates don't get cached so create a dummy set ID for it. 13109 SCEVUnionPredicate::SCEVUnionPredicate() 13110 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13111 13112 bool SCEVUnionPredicate::isAlwaysTrue() const { 13113 return all_of(Preds, 13114 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13115 } 13116 13117 ArrayRef<const SCEVPredicate *> 13118 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13119 auto I = SCEVToPreds.find(Expr); 13120 if (I == SCEVToPreds.end()) 13121 return ArrayRef<const SCEVPredicate *>(); 13122 return I->second; 13123 } 13124 13125 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13126 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13127 return all_of(Set->Preds, 13128 [this](const SCEVPredicate *I) { return this->implies(I); }); 13129 13130 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13131 if (ScevPredsIt == SCEVToPreds.end()) 13132 return false; 13133 auto &SCEVPreds = ScevPredsIt->second; 13134 13135 return any_of(SCEVPreds, 13136 [N](const SCEVPredicate *I) { return I->implies(N); }); 13137 } 13138 13139 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13140 13141 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13142 for (auto Pred : Preds) 13143 Pred->print(OS, Depth); 13144 } 13145 13146 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13147 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13148 for (auto Pred : Set->Preds) 13149 add(Pred); 13150 return; 13151 } 13152 13153 if (implies(N)) 13154 return; 13155 13156 const SCEV *Key = N->getExpr(); 13157 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13158 " associated expression!"); 13159 13160 SCEVToPreds[Key].push_back(N); 13161 Preds.push_back(N); 13162 } 13163 13164 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13165 Loop &L) 13166 : SE(SE), L(L) {} 13167 13168 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13169 const SCEV *Expr = SE.getSCEV(V); 13170 RewriteEntry &Entry = RewriteMap[Expr]; 13171 13172 // If we already have an entry and the version matches, return it. 13173 if (Entry.second && Generation == Entry.first) 13174 return Entry.second; 13175 13176 // We found an entry but it's stale. Rewrite the stale entry 13177 // according to the current predicate. 13178 if (Entry.second) 13179 Expr = Entry.second; 13180 13181 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13182 Entry = {Generation, NewSCEV}; 13183 13184 return NewSCEV; 13185 } 13186 13187 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13188 if (!BackedgeCount) { 13189 SCEVUnionPredicate BackedgePred; 13190 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13191 addPredicate(BackedgePred); 13192 } 13193 return BackedgeCount; 13194 } 13195 13196 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13197 if (Preds.implies(&Pred)) 13198 return; 13199 Preds.add(&Pred); 13200 updateGeneration(); 13201 } 13202 13203 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13204 return Preds; 13205 } 13206 13207 void PredicatedScalarEvolution::updateGeneration() { 13208 // If the generation number wrapped recompute everything. 13209 if (++Generation == 0) { 13210 for (auto &II : RewriteMap) { 13211 const SCEV *Rewritten = II.second.second; 13212 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13213 } 13214 } 13215 } 13216 13217 void PredicatedScalarEvolution::setNoOverflow( 13218 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13219 const SCEV *Expr = getSCEV(V); 13220 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13221 13222 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13223 13224 // Clear the statically implied flags. 13225 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13226 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13227 13228 auto II = FlagsMap.insert({V, Flags}); 13229 if (!II.second) 13230 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13231 } 13232 13233 bool PredicatedScalarEvolution::hasNoOverflow( 13234 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13235 const SCEV *Expr = getSCEV(V); 13236 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13237 13238 Flags = SCEVWrapPredicate::clearFlags( 13239 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13240 13241 auto II = FlagsMap.find(V); 13242 13243 if (II != FlagsMap.end()) 13244 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13245 13246 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13247 } 13248 13249 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13250 const SCEV *Expr = this->getSCEV(V); 13251 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13252 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13253 13254 if (!New) 13255 return nullptr; 13256 13257 for (auto *P : NewPreds) 13258 Preds.add(P); 13259 13260 updateGeneration(); 13261 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13262 return New; 13263 } 13264 13265 PredicatedScalarEvolution::PredicatedScalarEvolution( 13266 const PredicatedScalarEvolution &Init) 13267 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13268 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13269 for (auto I : Init.FlagsMap) 13270 FlagsMap.insert(I); 13271 } 13272 13273 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13274 // For each block. 13275 for (auto *BB : L.getBlocks()) 13276 for (auto &I : *BB) { 13277 if (!SE.isSCEVable(I.getType())) 13278 continue; 13279 13280 auto *Expr = SE.getSCEV(&I); 13281 auto II = RewriteMap.find(Expr); 13282 13283 if (II == RewriteMap.end()) 13284 continue; 13285 13286 // Don't print things that are not interesting. 13287 if (II->second.second == Expr) 13288 continue; 13289 13290 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13291 OS.indent(Depth + 2) << *Expr << "\n"; 13292 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13293 } 13294 } 13295 13296 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13297 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13298 // for URem with constant power-of-2 second operands. 13299 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13300 // 4, A / B becomes X / 8). 13301 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13302 const SCEV *&RHS) { 13303 // Try to match 'zext (trunc A to iB) to iY', which is used 13304 // for URem with constant power-of-2 second operands. Make sure the size of 13305 // the operand A matches the size of the whole expressions. 13306 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13307 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13308 LHS = Trunc->getOperand(); 13309 // Bail out if the type of the LHS is larger than the type of the 13310 // expression for now. 13311 if (getTypeSizeInBits(LHS->getType()) > 13312 getTypeSizeInBits(Expr->getType())) 13313 return false; 13314 if (LHS->getType() != Expr->getType()) 13315 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13316 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13317 << getTypeSizeInBits(Trunc->getType())); 13318 return true; 13319 } 13320 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13321 if (Add == nullptr || Add->getNumOperands() != 2) 13322 return false; 13323 13324 const SCEV *A = Add->getOperand(1); 13325 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13326 13327 if (Mul == nullptr) 13328 return false; 13329 13330 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13331 // (SomeExpr + (-(SomeExpr / B) * B)). 13332 if (Expr == getURemExpr(A, B)) { 13333 LHS = A; 13334 RHS = B; 13335 return true; 13336 } 13337 return false; 13338 }; 13339 13340 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13341 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13342 return MatchURemWithDivisor(Mul->getOperand(1)) || 13343 MatchURemWithDivisor(Mul->getOperand(2)); 13344 13345 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13346 if (Mul->getNumOperands() == 2) 13347 return MatchURemWithDivisor(Mul->getOperand(1)) || 13348 MatchURemWithDivisor(Mul->getOperand(0)) || 13349 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13350 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13351 return false; 13352 } 13353 13354 const SCEV * 13355 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13356 SmallVector<BasicBlock*, 16> ExitingBlocks; 13357 L->getExitingBlocks(ExitingBlocks); 13358 13359 // Form an expression for the maximum exit count possible for this loop. We 13360 // merge the max and exact information to approximate a version of 13361 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13362 SmallVector<const SCEV*, 4> ExitCounts; 13363 for (BasicBlock *ExitingBB : ExitingBlocks) { 13364 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13365 if (isa<SCEVCouldNotCompute>(ExitCount)) 13366 ExitCount = getExitCount(L, ExitingBB, 13367 ScalarEvolution::ConstantMaximum); 13368 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13369 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13370 "We should only have known counts for exiting blocks that " 13371 "dominate latch!"); 13372 ExitCounts.push_back(ExitCount); 13373 } 13374 } 13375 if (ExitCounts.empty()) 13376 return getCouldNotCompute(); 13377 return getUMinFromMismatchedTypes(ExitCounts); 13378 } 13379 13380 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13381 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13382 /// we cannot guarantee that the replacement is loop invariant in the loop of 13383 /// the AddRec. 13384 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13385 ValueToSCEVMapTy ⤅ 13386 13387 public: 13388 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13389 : SCEVRewriteVisitor(SE), Map(M) {} 13390 13391 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13392 13393 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13394 auto I = Map.find(Expr->getValue()); 13395 if (I == Map.end()) 13396 return Expr; 13397 return I->second; 13398 } 13399 }; 13400 13401 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13402 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13403 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13404 // If we have LHS == 0, check if LHS is computing a property of some unknown 13405 // SCEV %v which we can rewrite %v to express explicitly. 13406 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13407 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13408 RHSC->getValue()->isNullValue()) { 13409 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13410 // explicitly express that. 13411 const SCEV *URemLHS = nullptr; 13412 const SCEV *URemRHS = nullptr; 13413 if (matchURem(LHS, URemLHS, URemRHS)) { 13414 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13415 Value *V = LHSUnknown->getValue(); 13416 auto Multiple = 13417 getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS, 13418 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 13419 RewriteMap[V] = Multiple; 13420 return; 13421 } 13422 } 13423 } 13424 13425 if (!isa<SCEVUnknown>(LHS)) { 13426 std::swap(LHS, RHS); 13427 Predicate = CmpInst::getSwappedPredicate(Predicate); 13428 } 13429 13430 // For now, limit to conditions that provide information about unknown 13431 // expressions. 13432 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13433 if (!LHSUnknown) 13434 return; 13435 13436 // TODO: use information from more predicates. 13437 switch (Predicate) { 13438 case CmpInst::ICMP_ULT: { 13439 if (!containsAddRecurrence(RHS)) { 13440 const SCEV *Base = LHS; 13441 auto I = RewriteMap.find(LHSUnknown->getValue()); 13442 if (I != RewriteMap.end()) 13443 Base = I->second; 13444 13445 RewriteMap[LHSUnknown->getValue()] = 13446 getUMinExpr(Base, getMinusSCEV(RHS, getOne(RHS->getType()))); 13447 } 13448 break; 13449 } 13450 case CmpInst::ICMP_ULE: { 13451 if (!containsAddRecurrence(RHS)) { 13452 const SCEV *Base = LHS; 13453 auto I = RewriteMap.find(LHSUnknown->getValue()); 13454 if (I != RewriteMap.end()) 13455 Base = I->second; 13456 RewriteMap[LHSUnknown->getValue()] = getUMinExpr(Base, RHS); 13457 } 13458 break; 13459 } 13460 case CmpInst::ICMP_EQ: 13461 if (isa<SCEVConstant>(RHS)) 13462 RewriteMap[LHSUnknown->getValue()] = RHS; 13463 break; 13464 case CmpInst::ICMP_NE: 13465 if (isa<SCEVConstant>(RHS) && 13466 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13467 RewriteMap[LHSUnknown->getValue()] = 13468 getUMaxExpr(LHS, getOne(RHS->getType())); 13469 break; 13470 default: 13471 break; 13472 } 13473 }; 13474 // Starting at the loop predecessor, climb up the predecessor chain, as long 13475 // as there are predecessors that can be found that have unique successors 13476 // leading to the original header. 13477 // TODO: share this logic with isLoopEntryGuardedByCond. 13478 ValueToSCEVMapTy RewriteMap; 13479 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13480 L->getLoopPredecessor(), L->getHeader()); 13481 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13482 13483 const BranchInst *LoopEntryPredicate = 13484 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13485 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13486 continue; 13487 13488 // TODO: use information from more complex conditions, e.g. AND expressions. 13489 auto *Cmp = dyn_cast<ICmpInst>(LoopEntryPredicate->getCondition()); 13490 if (!Cmp) 13491 continue; 13492 13493 auto Predicate = Cmp->getPredicate(); 13494 if (LoopEntryPredicate->getSuccessor(1) == Pair.second) 13495 Predicate = CmpInst::getInversePredicate(Predicate); 13496 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13497 getSCEV(Cmp->getOperand(1)), RewriteMap); 13498 } 13499 13500 // Also collect information from assumptions dominating the loop. 13501 for (auto &AssumeVH : AC.assumptions()) { 13502 if (!AssumeVH) 13503 continue; 13504 auto *AssumeI = cast<CallInst>(AssumeVH); 13505 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13506 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13507 continue; 13508 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13509 getSCEV(Cmp->getOperand(1)), RewriteMap); 13510 } 13511 13512 if (RewriteMap.empty()) 13513 return Expr; 13514 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13515 return Rewriter.visit(Expr); 13516 } 13517