1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumTripCountsComputed,
143           "Number of loops with predictable loop counts");
144 STATISTIC(NumTripCountsNotComputed,
145           "Number of loops without predictable loop counts");
146 STATISTIC(NumBruteForceTripCountsComputed,
147           "Number of loops with trip counts computed by force");
148 STATISTIC(NumFoundPhiSCCs,
149           "Number of found Phi-composed strongly connected components");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 static cl::opt<unsigned> MaxPhiSCCAnalysisSize(
237     "scalar-evolution-max-scc-analysis-depth", cl::Hidden,
238     cl::desc("Maximum amount of nodes to process while searching SCEVUnknown "
239              "Phi strongly connected components"),
240     cl::init(8));
241 
242 //===----------------------------------------------------------------------===//
243 //                           SCEV class definitions
244 //===----------------------------------------------------------------------===//
245 
246 //===----------------------------------------------------------------------===//
247 // Implementation of the SCEV class.
248 //
249 
250 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
251 LLVM_DUMP_METHOD void SCEV::dump() const {
252   print(dbgs());
253   dbgs() << '\n';
254 }
255 #endif
256 
257 void SCEV::print(raw_ostream &OS) const {
258   switch (getSCEVType()) {
259   case scConstant:
260     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
261     return;
262   case scPtrToInt: {
263     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
264     const SCEV *Op = PtrToInt->getOperand();
265     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
266        << *PtrToInt->getType() << ")";
267     return;
268   }
269   case scTruncate: {
270     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
271     const SCEV *Op = Trunc->getOperand();
272     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
273        << *Trunc->getType() << ")";
274     return;
275   }
276   case scZeroExtend: {
277     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
278     const SCEV *Op = ZExt->getOperand();
279     OS << "(zext " << *Op->getType() << " " << *Op << " to "
280        << *ZExt->getType() << ")";
281     return;
282   }
283   case scSignExtend: {
284     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
285     const SCEV *Op = SExt->getOperand();
286     OS << "(sext " << *Op->getType() << " " << *Op << " to "
287        << *SExt->getType() << ")";
288     return;
289   }
290   case scAddRecExpr: {
291     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
292     OS << "{" << *AR->getOperand(0);
293     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
294       OS << ",+," << *AR->getOperand(i);
295     OS << "}<";
296     if (AR->hasNoUnsignedWrap())
297       OS << "nuw><";
298     if (AR->hasNoSignedWrap())
299       OS << "nsw><";
300     if (AR->hasNoSelfWrap() &&
301         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
302       OS << "nw><";
303     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
304     OS << ">";
305     return;
306   }
307   case scAddExpr:
308   case scMulExpr:
309   case scUMaxExpr:
310   case scSMaxExpr:
311   case scUMinExpr:
312   case scSMinExpr:
313   case scSequentialUMinExpr: {
314     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
315     const char *OpStr = nullptr;
316     switch (NAry->getSCEVType()) {
317     case scAddExpr: OpStr = " + "; break;
318     case scMulExpr: OpStr = " * "; break;
319     case scUMaxExpr: OpStr = " umax "; break;
320     case scSMaxExpr: OpStr = " smax "; break;
321     case scUMinExpr:
322       OpStr = " umin ";
323       break;
324     case scSMinExpr:
325       OpStr = " smin ";
326       break;
327     case scSequentialUMinExpr:
328       OpStr = " umin_seq ";
329       break;
330     default:
331       llvm_unreachable("There are no other nary expression types.");
332     }
333     OS << "(";
334     ListSeparator LS(OpStr);
335     for (const SCEV *Op : NAry->operands())
336       OS << LS << *Op;
337     OS << ")";
338     switch (NAry->getSCEVType()) {
339     case scAddExpr:
340     case scMulExpr:
341       if (NAry->hasNoUnsignedWrap())
342         OS << "<nuw>";
343       if (NAry->hasNoSignedWrap())
344         OS << "<nsw>";
345       break;
346     default:
347       // Nothing to print for other nary expressions.
348       break;
349     }
350     return;
351   }
352   case scUDivExpr: {
353     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
354     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
355     return;
356   }
357   case scUnknown: {
358     const SCEVUnknown *U = cast<SCEVUnknown>(this);
359     Type *AllocTy;
360     if (U->isSizeOf(AllocTy)) {
361       OS << "sizeof(" << *AllocTy << ")";
362       return;
363     }
364     if (U->isAlignOf(AllocTy)) {
365       OS << "alignof(" << *AllocTy << ")";
366       return;
367     }
368 
369     Type *CTy;
370     Constant *FieldNo;
371     if (U->isOffsetOf(CTy, FieldNo)) {
372       OS << "offsetof(" << *CTy << ", ";
373       FieldNo->printAsOperand(OS, false);
374       OS << ")";
375       return;
376     }
377 
378     // Otherwise just print it normally.
379     U->getValue()->printAsOperand(OS, false);
380     return;
381   }
382   case scCouldNotCompute:
383     OS << "***COULDNOTCOMPUTE***";
384     return;
385   }
386   llvm_unreachable("Unknown SCEV kind!");
387 }
388 
389 Type *SCEV::getType() const {
390   switch (getSCEVType()) {
391   case scConstant:
392     return cast<SCEVConstant>(this)->getType();
393   case scPtrToInt:
394   case scTruncate:
395   case scZeroExtend:
396   case scSignExtend:
397     return cast<SCEVCastExpr>(this)->getType();
398   case scAddRecExpr:
399     return cast<SCEVAddRecExpr>(this)->getType();
400   case scMulExpr:
401     return cast<SCEVMulExpr>(this)->getType();
402   case scUMaxExpr:
403   case scSMaxExpr:
404   case scUMinExpr:
405   case scSMinExpr:
406     return cast<SCEVMinMaxExpr>(this)->getType();
407   case scSequentialUMinExpr:
408     return cast<SCEVSequentialMinMaxExpr>(this)->getType();
409   case scAddExpr:
410     return cast<SCEVAddExpr>(this)->getType();
411   case scUDivExpr:
412     return cast<SCEVUDivExpr>(this)->getType();
413   case scUnknown:
414     return cast<SCEVUnknown>(this)->getType();
415   case scCouldNotCompute:
416     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
417   }
418   llvm_unreachable("Unknown SCEV kind!");
419 }
420 
421 bool SCEV::isZero() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isZero();
424   return false;
425 }
426 
427 bool SCEV::isOne() const {
428   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
429     return SC->getValue()->isOne();
430   return false;
431 }
432 
433 bool SCEV::isAllOnesValue() const {
434   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
435     return SC->getValue()->isMinusOne();
436   return false;
437 }
438 
439 bool SCEV::isNonConstantNegative() const {
440   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
441   if (!Mul) return false;
442 
443   // If there is a constant factor, it will be first.
444   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
445   if (!SC) return false;
446 
447   // Return true if the value is negative, this matches things like (-42 * V).
448   return SC->getAPInt().isNegative();
449 }
450 
451 SCEVCouldNotCompute::SCEVCouldNotCompute() :
452   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
453 
454 bool SCEVCouldNotCompute::classof(const SCEV *S) {
455   return S->getSCEVType() == scCouldNotCompute;
456 }
457 
458 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
459   FoldingSetNodeID ID;
460   ID.AddInteger(scConstant);
461   ID.AddPointer(V);
462   void *IP = nullptr;
463   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
464   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
465   UniqueSCEVs.InsertNode(S, IP);
466   return S;
467 }
468 
469 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
470   return getConstant(ConstantInt::get(getContext(), Val));
471 }
472 
473 const SCEV *
474 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
475   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
476   return getConstant(ConstantInt::get(ITy, V, isSigned));
477 }
478 
479 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
480                            const SCEV *op, Type *ty)
481     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
482   Operands[0] = op;
483 }
484 
485 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
486                                    Type *ITy)
487     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
488   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
489          "Must be a non-bit-width-changing pointer-to-integer cast!");
490 }
491 
492 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
493                                            SCEVTypes SCEVTy, const SCEV *op,
494                                            Type *ty)
495     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
496 
497 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
498                                    Type *ty)
499     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
500   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
501          "Cannot truncate non-integer value!");
502 }
503 
504 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
505                                        const SCEV *op, Type *ty)
506     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
507   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
508          "Cannot zero extend non-integer value!");
509 }
510 
511 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
512                                        const SCEV *op, Type *ty)
513     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
514   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
515          "Cannot sign extend non-integer value!");
516 }
517 
518 void SCEVUnknown::deleted() {
519   // Clear this SCEVUnknown from various maps.
520   SE->forgetMemoizedResults(this);
521 
522   // Remove this SCEVUnknown from the uniquing map.
523   SE->UniqueSCEVs.RemoveNode(this);
524 
525   // Release the value.
526   setValPtr(nullptr);
527 }
528 
529 void SCEVUnknown::allUsesReplacedWith(Value *New) {
530   // Remove this SCEVUnknown from the uniquing map.
531   SE->UniqueSCEVs.RemoveNode(this);
532 
533   // Update this SCEVUnknown to point to the new value. This is needed
534   // because there may still be outstanding SCEVs which still point to
535   // this SCEVUnknown.
536   setValPtr(New);
537 }
538 
539 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
540   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
541     if (VCE->getOpcode() == Instruction::PtrToInt)
542       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
543         if (CE->getOpcode() == Instruction::GetElementPtr &&
544             CE->getOperand(0)->isNullValue() &&
545             CE->getNumOperands() == 2)
546           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
547             if (CI->isOne()) {
548               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
549               return true;
550             }
551 
552   return false;
553 }
554 
555 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
556   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
557     if (VCE->getOpcode() == Instruction::PtrToInt)
558       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
559         if (CE->getOpcode() == Instruction::GetElementPtr &&
560             CE->getOperand(0)->isNullValue()) {
561           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
562           if (StructType *STy = dyn_cast<StructType>(Ty))
563             if (!STy->isPacked() &&
564                 CE->getNumOperands() == 3 &&
565                 CE->getOperand(1)->isNullValue()) {
566               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
567                 if (CI->isOne() &&
568                     STy->getNumElements() == 2 &&
569                     STy->getElementType(0)->isIntegerTy(1)) {
570                   AllocTy = STy->getElementType(1);
571                   return true;
572                 }
573             }
574         }
575 
576   return false;
577 }
578 
579 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
580   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
581     if (VCE->getOpcode() == Instruction::PtrToInt)
582       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
583         if (CE->getOpcode() == Instruction::GetElementPtr &&
584             CE->getNumOperands() == 3 &&
585             CE->getOperand(0)->isNullValue() &&
586             CE->getOperand(1)->isNullValue()) {
587           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
588           // Ignore vector types here so that ScalarEvolutionExpander doesn't
589           // emit getelementptrs that index into vectors.
590           if (Ty->isStructTy() || Ty->isArrayTy()) {
591             CTy = Ty;
592             FieldNo = CE->getOperand(2);
593             return true;
594           }
595         }
596 
597   return false;
598 }
599 
600 //===----------------------------------------------------------------------===//
601 //                               SCEV Utilities
602 //===----------------------------------------------------------------------===//
603 
604 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
605 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
606 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
607 /// have been previously deemed to be "equally complex" by this routine.  It is
608 /// intended to avoid exponential time complexity in cases like:
609 ///
610 ///   %a = f(%x, %y)
611 ///   %b = f(%a, %a)
612 ///   %c = f(%b, %b)
613 ///
614 ///   %d = f(%x, %y)
615 ///   %e = f(%d, %d)
616 ///   %f = f(%e, %e)
617 ///
618 ///   CompareValueComplexity(%f, %c)
619 ///
620 /// Since we do not continue running this routine on expression trees once we
621 /// have seen unequal values, there is no need to track them in the cache.
622 static int
623 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
624                        const LoopInfo *const LI, Value *LV, Value *RV,
625                        unsigned Depth) {
626   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
627     return 0;
628 
629   // Order pointer values after integer values. This helps SCEVExpander form
630   // GEPs.
631   bool LIsPointer = LV->getType()->isPointerTy(),
632        RIsPointer = RV->getType()->isPointerTy();
633   if (LIsPointer != RIsPointer)
634     return (int)LIsPointer - (int)RIsPointer;
635 
636   // Compare getValueID values.
637   unsigned LID = LV->getValueID(), RID = RV->getValueID();
638   if (LID != RID)
639     return (int)LID - (int)RID;
640 
641   // Sort arguments by their position.
642   if (const auto *LA = dyn_cast<Argument>(LV)) {
643     const auto *RA = cast<Argument>(RV);
644     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
645     return (int)LArgNo - (int)RArgNo;
646   }
647 
648   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
649     const auto *RGV = cast<GlobalValue>(RV);
650 
651     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
652       auto LT = GV->getLinkage();
653       return !(GlobalValue::isPrivateLinkage(LT) ||
654                GlobalValue::isInternalLinkage(LT));
655     };
656 
657     // Use the names to distinguish the two values, but only if the
658     // names are semantically important.
659     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
660       return LGV->getName().compare(RGV->getName());
661   }
662 
663   // For instructions, compare their loop depth, and their operand count.  This
664   // is pretty loose.
665   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
666     const auto *RInst = cast<Instruction>(RV);
667 
668     // Compare loop depths.
669     const BasicBlock *LParent = LInst->getParent(),
670                      *RParent = RInst->getParent();
671     if (LParent != RParent) {
672       unsigned LDepth = LI->getLoopDepth(LParent),
673                RDepth = LI->getLoopDepth(RParent);
674       if (LDepth != RDepth)
675         return (int)LDepth - (int)RDepth;
676     }
677 
678     // Compare the number of operands.
679     unsigned LNumOps = LInst->getNumOperands(),
680              RNumOps = RInst->getNumOperands();
681     if (LNumOps != RNumOps)
682       return (int)LNumOps - (int)RNumOps;
683 
684     for (unsigned Idx : seq(0u, LNumOps)) {
685       int Result =
686           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
687                                  RInst->getOperand(Idx), Depth + 1);
688       if (Result != 0)
689         return Result;
690     }
691   }
692 
693   EqCacheValue.unionSets(LV, RV);
694   return 0;
695 }
696 
697 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
698 // than RHS, respectively. A three-way result allows recursive comparisons to be
699 // more efficient.
700 // If the max analysis depth was reached, return None, assuming we do not know
701 // if they are equivalent for sure.
702 static Optional<int>
703 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
704                       EquivalenceClasses<const Value *> &EqCacheValue,
705                       const LoopInfo *const LI, const SCEV *LHS,
706                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
707   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
708   if (LHS == RHS)
709     return 0;
710 
711   // Primarily, sort the SCEVs by their getSCEVType().
712   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
713   if (LType != RType)
714     return (int)LType - (int)RType;
715 
716   if (EqCacheSCEV.isEquivalent(LHS, RHS))
717     return 0;
718 
719   if (Depth > MaxSCEVCompareDepth)
720     return None;
721 
722   // Aside from the getSCEVType() ordering, the particular ordering
723   // isn't very important except that it's beneficial to be consistent,
724   // so that (a + b) and (b + a) don't end up as different expressions.
725   switch (LType) {
726   case scUnknown: {
727     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
728     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
729 
730     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
731                                    RU->getValue(), Depth + 1);
732     if (X == 0)
733       EqCacheSCEV.unionSets(LHS, RHS);
734     return X;
735   }
736 
737   case scConstant: {
738     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
739     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
740 
741     // Compare constant values.
742     const APInt &LA = LC->getAPInt();
743     const APInt &RA = RC->getAPInt();
744     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
745     if (LBitWidth != RBitWidth)
746       return (int)LBitWidth - (int)RBitWidth;
747     return LA.ult(RA) ? -1 : 1;
748   }
749 
750   case scAddRecExpr: {
751     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
752     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
753 
754     // There is always a dominance between two recs that are used by one SCEV,
755     // so we can safely sort recs by loop header dominance. We require such
756     // order in getAddExpr.
757     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
758     if (LLoop != RLoop) {
759       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
760       assert(LHead != RHead && "Two loops share the same header?");
761       if (DT.dominates(LHead, RHead))
762         return 1;
763       else
764         assert(DT.dominates(RHead, LHead) &&
765                "No dominance between recurrences used by one SCEV?");
766       return -1;
767     }
768 
769     // Addrec complexity grows with operand count.
770     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
771     if (LNumOps != RNumOps)
772       return (int)LNumOps - (int)RNumOps;
773 
774     // Lexicographically compare.
775     for (unsigned i = 0; i != LNumOps; ++i) {
776       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
777                                      LA->getOperand(i), RA->getOperand(i), DT,
778                                      Depth + 1);
779       if (X != 0)
780         return X;
781     }
782     EqCacheSCEV.unionSets(LHS, RHS);
783     return 0;
784   }
785 
786   case scAddExpr:
787   case scMulExpr:
788   case scSMaxExpr:
789   case scUMaxExpr:
790   case scSMinExpr:
791   case scUMinExpr:
792   case scSequentialUMinExpr: {
793     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
794     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
795 
796     // Lexicographically compare n-ary expressions.
797     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
798     if (LNumOps != RNumOps)
799       return (int)LNumOps - (int)RNumOps;
800 
801     for (unsigned i = 0; i != LNumOps; ++i) {
802       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
803                                      LC->getOperand(i), RC->getOperand(i), DT,
804                                      Depth + 1);
805       if (X != 0)
806         return X;
807     }
808     EqCacheSCEV.unionSets(LHS, RHS);
809     return 0;
810   }
811 
812   case scUDivExpr: {
813     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
814     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
815 
816     // Lexicographically compare udiv expressions.
817     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
818                                    RC->getLHS(), DT, Depth + 1);
819     if (X != 0)
820       return X;
821     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
822                               RC->getRHS(), DT, Depth + 1);
823     if (X == 0)
824       EqCacheSCEV.unionSets(LHS, RHS);
825     return X;
826   }
827 
828   case scPtrToInt:
829   case scTruncate:
830   case scZeroExtend:
831   case scSignExtend: {
832     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
833     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
834 
835     // Compare cast expressions by operand.
836     auto X =
837         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
838                               RC->getOperand(), DT, Depth + 1);
839     if (X == 0)
840       EqCacheSCEV.unionSets(LHS, RHS);
841     return X;
842   }
843 
844   case scCouldNotCompute:
845     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
846   }
847   llvm_unreachable("Unknown SCEV kind!");
848 }
849 
850 /// Given a list of SCEV objects, order them by their complexity, and group
851 /// objects of the same complexity together by value.  When this routine is
852 /// finished, we know that any duplicates in the vector are consecutive and that
853 /// complexity is monotonically increasing.
854 ///
855 /// Note that we go take special precautions to ensure that we get deterministic
856 /// results from this routine.  In other words, we don't want the results of
857 /// this to depend on where the addresses of various SCEV objects happened to
858 /// land in memory.
859 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
860                               LoopInfo *LI, DominatorTree &DT) {
861   if (Ops.size() < 2) return;  // Noop
862 
863   EquivalenceClasses<const SCEV *> EqCacheSCEV;
864   EquivalenceClasses<const Value *> EqCacheValue;
865 
866   // Whether LHS has provably less complexity than RHS.
867   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
868     auto Complexity =
869         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
870     return Complexity && *Complexity < 0;
871   };
872   if (Ops.size() == 2) {
873     // This is the common case, which also happens to be trivially simple.
874     // Special case it.
875     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
876     if (IsLessComplex(RHS, LHS))
877       std::swap(LHS, RHS);
878     return;
879   }
880 
881   // Do the rough sort by complexity.
882   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
883     return IsLessComplex(LHS, RHS);
884   });
885 
886   // Now that we are sorted by complexity, group elements of the same
887   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
888   // be extremely short in practice.  Note that we take this approach because we
889   // do not want to depend on the addresses of the objects we are grouping.
890   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
891     const SCEV *S = Ops[i];
892     unsigned Complexity = S->getSCEVType();
893 
894     // If there are any objects of the same complexity and same value as this
895     // one, group them.
896     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
897       if (Ops[j] == S) { // Found a duplicate.
898         // Move it to immediately after i'th element.
899         std::swap(Ops[i+1], Ops[j]);
900         ++i;   // no need to rescan it.
901         if (i == e-2) return;  // Done!
902       }
903     }
904   }
905 }
906 
907 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
908 /// least HugeExprThreshold nodes).
909 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
910   return any_of(Ops, [](const SCEV *S) {
911     return S->getExpressionSize() >= HugeExprThreshold;
912   });
913 }
914 
915 //===----------------------------------------------------------------------===//
916 //                      Simple SCEV method implementations
917 //===----------------------------------------------------------------------===//
918 
919 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
920 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
921                                        ScalarEvolution &SE,
922                                        Type *ResultTy) {
923   // Handle the simplest case efficiently.
924   if (K == 1)
925     return SE.getTruncateOrZeroExtend(It, ResultTy);
926 
927   // We are using the following formula for BC(It, K):
928   //
929   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
930   //
931   // Suppose, W is the bitwidth of the return value.  We must be prepared for
932   // overflow.  Hence, we must assure that the result of our computation is
933   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
934   // safe in modular arithmetic.
935   //
936   // However, this code doesn't use exactly that formula; the formula it uses
937   // is something like the following, where T is the number of factors of 2 in
938   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
939   // exponentiation:
940   //
941   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
942   //
943   // This formula is trivially equivalent to the previous formula.  However,
944   // this formula can be implemented much more efficiently.  The trick is that
945   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
946   // arithmetic.  To do exact division in modular arithmetic, all we have
947   // to do is multiply by the inverse.  Therefore, this step can be done at
948   // width W.
949   //
950   // The next issue is how to safely do the division by 2^T.  The way this
951   // is done is by doing the multiplication step at a width of at least W + T
952   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
953   // when we perform the division by 2^T (which is equivalent to a right shift
954   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
955   // truncated out after the division by 2^T.
956   //
957   // In comparison to just directly using the first formula, this technique
958   // is much more efficient; using the first formula requires W * K bits,
959   // but this formula less than W + K bits. Also, the first formula requires
960   // a division step, whereas this formula only requires multiplies and shifts.
961   //
962   // It doesn't matter whether the subtraction step is done in the calculation
963   // width or the input iteration count's width; if the subtraction overflows,
964   // the result must be zero anyway.  We prefer here to do it in the width of
965   // the induction variable because it helps a lot for certain cases; CodeGen
966   // isn't smart enough to ignore the overflow, which leads to much less
967   // efficient code if the width of the subtraction is wider than the native
968   // register width.
969   //
970   // (It's possible to not widen at all by pulling out factors of 2 before
971   // the multiplication; for example, K=2 can be calculated as
972   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
973   // extra arithmetic, so it's not an obvious win, and it gets
974   // much more complicated for K > 3.)
975 
976   // Protection from insane SCEVs; this bound is conservative,
977   // but it probably doesn't matter.
978   if (K > 1000)
979     return SE.getCouldNotCompute();
980 
981   unsigned W = SE.getTypeSizeInBits(ResultTy);
982 
983   // Calculate K! / 2^T and T; we divide out the factors of two before
984   // multiplying for calculating K! / 2^T to avoid overflow.
985   // Other overflow doesn't matter because we only care about the bottom
986   // W bits of the result.
987   APInt OddFactorial(W, 1);
988   unsigned T = 1;
989   for (unsigned i = 3; i <= K; ++i) {
990     APInt Mult(W, i);
991     unsigned TwoFactors = Mult.countTrailingZeros();
992     T += TwoFactors;
993     Mult.lshrInPlace(TwoFactors);
994     OddFactorial *= Mult;
995   }
996 
997   // We need at least W + T bits for the multiplication step
998   unsigned CalculationBits = W + T;
999 
1000   // Calculate 2^T, at width T+W.
1001   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1002 
1003   // Calculate the multiplicative inverse of K! / 2^T;
1004   // this multiplication factor will perform the exact division by
1005   // K! / 2^T.
1006   APInt Mod = APInt::getSignedMinValue(W+1);
1007   APInt MultiplyFactor = OddFactorial.zext(W+1);
1008   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1009   MultiplyFactor = MultiplyFactor.trunc(W);
1010 
1011   // Calculate the product, at width T+W
1012   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1013                                                       CalculationBits);
1014   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1015   for (unsigned i = 1; i != K; ++i) {
1016     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1017     Dividend = SE.getMulExpr(Dividend,
1018                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1019   }
1020 
1021   // Divide by 2^T
1022   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1023 
1024   // Truncate the result, and divide by K! / 2^T.
1025 
1026   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1027                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1028 }
1029 
1030 /// Return the value of this chain of recurrences at the specified iteration
1031 /// number.  We can evaluate this recurrence by multiplying each element in the
1032 /// chain by the binomial coefficient corresponding to it.  In other words, we
1033 /// can evaluate {A,+,B,+,C,+,D} as:
1034 ///
1035 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1036 ///
1037 /// where BC(It, k) stands for binomial coefficient.
1038 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1039                                                 ScalarEvolution &SE) const {
1040   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1041 }
1042 
1043 const SCEV *
1044 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1045                                     const SCEV *It, ScalarEvolution &SE) {
1046   assert(Operands.size() > 0);
1047   const SCEV *Result = Operands[0];
1048   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1049     // The computation is correct in the face of overflow provided that the
1050     // multiplication is performed _after_ the evaluation of the binomial
1051     // coefficient.
1052     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1053     if (isa<SCEVCouldNotCompute>(Coeff))
1054       return Coeff;
1055 
1056     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1057   }
1058   return Result;
1059 }
1060 
1061 //===----------------------------------------------------------------------===//
1062 //                    SCEV Expression folder implementations
1063 //===----------------------------------------------------------------------===//
1064 
1065 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1066                                                      unsigned Depth) {
1067   assert(Depth <= 1 &&
1068          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1069 
1070   // We could be called with an integer-typed operands during SCEV rewrites.
1071   // Since the operand is an integer already, just perform zext/trunc/self cast.
1072   if (!Op->getType()->isPointerTy())
1073     return Op;
1074 
1075   // What would be an ID for such a SCEV cast expression?
1076   FoldingSetNodeID ID;
1077   ID.AddInteger(scPtrToInt);
1078   ID.AddPointer(Op);
1079 
1080   void *IP = nullptr;
1081 
1082   // Is there already an expression for such a cast?
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1084     return S;
1085 
1086   // It isn't legal for optimizations to construct new ptrtoint expressions
1087   // for non-integral pointers.
1088   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1089     return getCouldNotCompute();
1090 
1091   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1092 
1093   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1094   // is sufficiently wide to represent all possible pointer values.
1095   // We could theoretically teach SCEV to truncate wider pointers, but
1096   // that isn't implemented for now.
1097   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1098       getDataLayout().getTypeSizeInBits(IntPtrTy))
1099     return getCouldNotCompute();
1100 
1101   // If not, is this expression something we can't reduce any further?
1102   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1103     // Perform some basic constant folding. If the operand of the ptr2int cast
1104     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1105     // left as-is), but produce a zero constant.
1106     // NOTE: We could handle a more general case, but lack motivational cases.
1107     if (isa<ConstantPointerNull>(U->getValue()))
1108       return getZero(IntPtrTy);
1109 
1110     // Create an explicit cast node.
1111     // We can reuse the existing insert position since if we get here,
1112     // we won't have made any changes which would invalidate it.
1113     SCEV *S = new (SCEVAllocator)
1114         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1115     UniqueSCEVs.InsertNode(S, IP);
1116     registerUser(S, Op);
1117     return S;
1118   }
1119 
1120   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1121                        "non-SCEVUnknown's.");
1122 
1123   // Otherwise, we've got some expression that is more complex than just a
1124   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1125   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1126   // only, and the expressions must otherwise be integer-typed.
1127   // So sink the cast down to the SCEVUnknown's.
1128 
1129   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1130   /// which computes a pointer-typed value, and rewrites the whole expression
1131   /// tree so that *all* the computations are done on integers, and the only
1132   /// pointer-typed operands in the expression are SCEVUnknown.
1133   class SCEVPtrToIntSinkingRewriter
1134       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1135     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1136 
1137   public:
1138     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1139 
1140     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1141       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1142       return Rewriter.visit(Scev);
1143     }
1144 
1145     const SCEV *visit(const SCEV *S) {
1146       Type *STy = S->getType();
1147       // If the expression is not pointer-typed, just keep it as-is.
1148       if (!STy->isPointerTy())
1149         return S;
1150       // Else, recursively sink the cast down into it.
1151       return Base::visit(S);
1152     }
1153 
1154     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1155       SmallVector<const SCEV *, 2> Operands;
1156       bool Changed = false;
1157       for (auto *Op : Expr->operands()) {
1158         Operands.push_back(visit(Op));
1159         Changed |= Op != Operands.back();
1160       }
1161       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1162     }
1163 
1164     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1165       SmallVector<const SCEV *, 2> Operands;
1166       bool Changed = false;
1167       for (auto *Op : Expr->operands()) {
1168         Operands.push_back(visit(Op));
1169         Changed |= Op != Operands.back();
1170       }
1171       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1172     }
1173 
1174     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1175       assert(Expr->getType()->isPointerTy() &&
1176              "Should only reach pointer-typed SCEVUnknown's.");
1177       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1178     }
1179   };
1180 
1181   // And actually perform the cast sinking.
1182   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1183   assert(IntOp->getType()->isIntegerTy() &&
1184          "We must have succeeded in sinking the cast, "
1185          "and ending up with an integer-typed expression!");
1186   return IntOp;
1187 }
1188 
1189 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1190   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1191 
1192   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1193   if (isa<SCEVCouldNotCompute>(IntOp))
1194     return IntOp;
1195 
1196   return getTruncateOrZeroExtend(IntOp, Ty);
1197 }
1198 
1199 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1200                                              unsigned Depth) {
1201   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1202          "This is not a truncating conversion!");
1203   assert(isSCEVable(Ty) &&
1204          "This is not a conversion to a SCEVable type!");
1205   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1206   Ty = getEffectiveSCEVType(Ty);
1207 
1208   FoldingSetNodeID ID;
1209   ID.AddInteger(scTruncate);
1210   ID.AddPointer(Op);
1211   ID.AddPointer(Ty);
1212   void *IP = nullptr;
1213   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1214 
1215   // Fold if the operand is constant.
1216   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1217     return getConstant(
1218       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1219 
1220   // trunc(trunc(x)) --> trunc(x)
1221   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1222     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1223 
1224   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1225   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1226     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1227 
1228   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1229   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1230     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1231 
1232   if (Depth > MaxCastDepth) {
1233     SCEV *S =
1234         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1235     UniqueSCEVs.InsertNode(S, IP);
1236     registerUser(S, Op);
1237     return S;
1238   }
1239 
1240   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1241   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1242   // if after transforming we have at most one truncate, not counting truncates
1243   // that replace other casts.
1244   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1245     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1246     SmallVector<const SCEV *, 4> Operands;
1247     unsigned numTruncs = 0;
1248     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1249          ++i) {
1250       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1251       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1252           isa<SCEVTruncateExpr>(S))
1253         numTruncs++;
1254       Operands.push_back(S);
1255     }
1256     if (numTruncs < 2) {
1257       if (isa<SCEVAddExpr>(Op))
1258         return getAddExpr(Operands);
1259       else if (isa<SCEVMulExpr>(Op))
1260         return getMulExpr(Operands);
1261       else
1262         llvm_unreachable("Unexpected SCEV type for Op.");
1263     }
1264     // Although we checked in the beginning that ID is not in the cache, it is
1265     // possible that during recursion and different modification ID was inserted
1266     // into the cache. So if we find it, just return it.
1267     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1268       return S;
1269   }
1270 
1271   // If the input value is a chrec scev, truncate the chrec's operands.
1272   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1273     SmallVector<const SCEV *, 4> Operands;
1274     for (const SCEV *Op : AddRec->operands())
1275       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1276     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1277   }
1278 
1279   // Return zero if truncating to known zeros.
1280   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1281   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1282     return getZero(Ty);
1283 
1284   // The cast wasn't folded; create an explicit cast node. We can reuse
1285   // the existing insert position since if we get here, we won't have
1286   // made any changes which would invalidate it.
1287   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1288                                                  Op, Ty);
1289   UniqueSCEVs.InsertNode(S, IP);
1290   registerUser(S, Op);
1291   return S;
1292 }
1293 
1294 // Get the limit of a recurrence such that incrementing by Step cannot cause
1295 // signed overflow as long as the value of the recurrence within the
1296 // loop does not exceed this limit before incrementing.
1297 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1298                                                  ICmpInst::Predicate *Pred,
1299                                                  ScalarEvolution *SE) {
1300   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1301   if (SE->isKnownPositive(Step)) {
1302     *Pred = ICmpInst::ICMP_SLT;
1303     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1304                            SE->getSignedRangeMax(Step));
1305   }
1306   if (SE->isKnownNegative(Step)) {
1307     *Pred = ICmpInst::ICMP_SGT;
1308     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1309                            SE->getSignedRangeMin(Step));
1310   }
1311   return nullptr;
1312 }
1313 
1314 // Get the limit of a recurrence such that incrementing by Step cannot cause
1315 // unsigned overflow as long as the value of the recurrence within the loop does
1316 // not exceed this limit before incrementing.
1317 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1318                                                    ICmpInst::Predicate *Pred,
1319                                                    ScalarEvolution *SE) {
1320   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1321   *Pred = ICmpInst::ICMP_ULT;
1322 
1323   return SE->getConstant(APInt::getMinValue(BitWidth) -
1324                          SE->getUnsignedRangeMax(Step));
1325 }
1326 
1327 namespace {
1328 
1329 struct ExtendOpTraitsBase {
1330   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1331                                                           unsigned);
1332 };
1333 
1334 // Used to make code generic over signed and unsigned overflow.
1335 template <typename ExtendOp> struct ExtendOpTraits {
1336   // Members present:
1337   //
1338   // static const SCEV::NoWrapFlags WrapType;
1339   //
1340   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1341   //
1342   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1343   //                                           ICmpInst::Predicate *Pred,
1344   //                                           ScalarEvolution *SE);
1345 };
1346 
1347 template <>
1348 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1349   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1350 
1351   static const GetExtendExprTy GetExtendExpr;
1352 
1353   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1354                                              ICmpInst::Predicate *Pred,
1355                                              ScalarEvolution *SE) {
1356     return getSignedOverflowLimitForStep(Step, Pred, SE);
1357   }
1358 };
1359 
1360 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1361     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1362 
1363 template <>
1364 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1365   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1366 
1367   static const GetExtendExprTy GetExtendExpr;
1368 
1369   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1370                                              ICmpInst::Predicate *Pred,
1371                                              ScalarEvolution *SE) {
1372     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1373   }
1374 };
1375 
1376 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1377     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1378 
1379 } // end anonymous namespace
1380 
1381 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1382 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1383 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1384 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1385 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1386 // expression "Step + sext/zext(PreIncAR)" is congruent with
1387 // "sext/zext(PostIncAR)"
1388 template <typename ExtendOpTy>
1389 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1390                                         ScalarEvolution *SE, unsigned Depth) {
1391   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1392   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1393 
1394   const Loop *L = AR->getLoop();
1395   const SCEV *Start = AR->getStart();
1396   const SCEV *Step = AR->getStepRecurrence(*SE);
1397 
1398   // Check for a simple looking step prior to loop entry.
1399   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1400   if (!SA)
1401     return nullptr;
1402 
1403   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1404   // subtraction is expensive. For this purpose, perform a quick and dirty
1405   // difference, by checking for Step in the operand list.
1406   SmallVector<const SCEV *, 4> DiffOps;
1407   for (const SCEV *Op : SA->operands())
1408     if (Op != Step)
1409       DiffOps.push_back(Op);
1410 
1411   if (DiffOps.size() == SA->getNumOperands())
1412     return nullptr;
1413 
1414   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1415   // `Step`:
1416 
1417   // 1. NSW/NUW flags on the step increment.
1418   auto PreStartFlags =
1419     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1420   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1421   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1422       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1423 
1424   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1425   // "S+X does not sign/unsign-overflow".
1426   //
1427 
1428   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1429   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1430       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1431     return PreStart;
1432 
1433   // 2. Direct overflow check on the step operation's expression.
1434   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1435   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1436   const SCEV *OperandExtendedStart =
1437       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1438                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1439   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1440     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1441       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1442       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1443       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1444       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1445     }
1446     return PreStart;
1447   }
1448 
1449   // 3. Loop precondition.
1450   ICmpInst::Predicate Pred;
1451   const SCEV *OverflowLimit =
1452       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1453 
1454   if (OverflowLimit &&
1455       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1456     return PreStart;
1457 
1458   return nullptr;
1459 }
1460 
1461 // Get the normalized zero or sign extended expression for this AddRec's Start.
1462 template <typename ExtendOpTy>
1463 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1464                                         ScalarEvolution *SE,
1465                                         unsigned Depth) {
1466   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1467 
1468   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1469   if (!PreStart)
1470     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1471 
1472   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1473                                              Depth),
1474                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1475 }
1476 
1477 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1478 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1479 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1480 //
1481 // Formally:
1482 //
1483 //     {S,+,X} == {S-T,+,X} + T
1484 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1485 //
1486 // If ({S-T,+,X} + T) does not overflow  ... (1)
1487 //
1488 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1489 //
1490 // If {S-T,+,X} does not overflow  ... (2)
1491 //
1492 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1493 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1494 //
1495 // If (S-T)+T does not overflow  ... (3)
1496 //
1497 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1498 //      == {Ext(S),+,Ext(X)} == LHS
1499 //
1500 // Thus, if (1), (2) and (3) are true for some T, then
1501 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1502 //
1503 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1504 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1505 // to check for (1) and (2).
1506 //
1507 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1508 // is `Delta` (defined below).
1509 template <typename ExtendOpTy>
1510 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1511                                                 const SCEV *Step,
1512                                                 const Loop *L) {
1513   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1514 
1515   // We restrict `Start` to a constant to prevent SCEV from spending too much
1516   // time here.  It is correct (but more expensive) to continue with a
1517   // non-constant `Start` and do a general SCEV subtraction to compute
1518   // `PreStart` below.
1519   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1520   if (!StartC)
1521     return false;
1522 
1523   APInt StartAI = StartC->getAPInt();
1524 
1525   for (unsigned Delta : {-2, -1, 1, 2}) {
1526     const SCEV *PreStart = getConstant(StartAI - Delta);
1527 
1528     FoldingSetNodeID ID;
1529     ID.AddInteger(scAddRecExpr);
1530     ID.AddPointer(PreStart);
1531     ID.AddPointer(Step);
1532     ID.AddPointer(L);
1533     void *IP = nullptr;
1534     const auto *PreAR =
1535       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1536 
1537     // Give up if we don't already have the add recurrence we need because
1538     // actually constructing an add recurrence is relatively expensive.
1539     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1540       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1541       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1542       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1543           DeltaS, &Pred, this);
1544       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1545         return true;
1546     }
1547   }
1548 
1549   return false;
1550 }
1551 
1552 // Finds an integer D for an expression (C + x + y + ...) such that the top
1553 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1554 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1555 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1556 // the (C + x + y + ...) expression is \p WholeAddExpr.
1557 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1558                                             const SCEVConstant *ConstantTerm,
1559                                             const SCEVAddExpr *WholeAddExpr) {
1560   const APInt &C = ConstantTerm->getAPInt();
1561   const unsigned BitWidth = C.getBitWidth();
1562   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1563   uint32_t TZ = BitWidth;
1564   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1565     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1566   if (TZ) {
1567     // Set D to be as many least significant bits of C as possible while still
1568     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1569     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1570   }
1571   return APInt(BitWidth, 0);
1572 }
1573 
1574 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1575 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1576 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1577 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1578 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1579                                             const APInt &ConstantStart,
1580                                             const SCEV *Step) {
1581   const unsigned BitWidth = ConstantStart.getBitWidth();
1582   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1583   if (TZ)
1584     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1585                          : ConstantStart;
1586   return APInt(BitWidth, 0);
1587 }
1588 
1589 const SCEV *
1590 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1591   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1592          "This is not an extending conversion!");
1593   assert(isSCEVable(Ty) &&
1594          "This is not a conversion to a SCEVable type!");
1595   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1596   Ty = getEffectiveSCEVType(Ty);
1597 
1598   // Fold if the operand is constant.
1599   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1600     return getConstant(
1601       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1602 
1603   // zext(zext(x)) --> zext(x)
1604   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1605     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1606 
1607   // Before doing any expensive analysis, check to see if we've already
1608   // computed a SCEV for this Op and Ty.
1609   FoldingSetNodeID ID;
1610   ID.AddInteger(scZeroExtend);
1611   ID.AddPointer(Op);
1612   ID.AddPointer(Ty);
1613   void *IP = nullptr;
1614   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1615   if (Depth > MaxCastDepth) {
1616     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1617                                                      Op, Ty);
1618     UniqueSCEVs.InsertNode(S, IP);
1619     registerUser(S, Op);
1620     return S;
1621   }
1622 
1623   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1624   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1625     // It's possible the bits taken off by the truncate were all zero bits. If
1626     // so, we should be able to simplify this further.
1627     const SCEV *X = ST->getOperand();
1628     ConstantRange CR = getUnsignedRange(X);
1629     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1630     unsigned NewBits = getTypeSizeInBits(Ty);
1631     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1632             CR.zextOrTrunc(NewBits)))
1633       return getTruncateOrZeroExtend(X, Ty, Depth);
1634   }
1635 
1636   // If the input value is a chrec scev, and we can prove that the value
1637   // did not overflow the old, smaller, value, we can zero extend all of the
1638   // operands (often constants).  This allows analysis of something like
1639   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1640   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1641     if (AR->isAffine()) {
1642       const SCEV *Start = AR->getStart();
1643       const SCEV *Step = AR->getStepRecurrence(*this);
1644       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1645       const Loop *L = AR->getLoop();
1646 
1647       if (!AR->hasNoUnsignedWrap()) {
1648         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1649         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1650       }
1651 
1652       // If we have special knowledge that this addrec won't overflow,
1653       // we don't need to do any further analysis.
1654       if (AR->hasNoUnsignedWrap())
1655         return getAddRecExpr(
1656             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1657             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1658 
1659       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1660       // Note that this serves two purposes: It filters out loops that are
1661       // simply not analyzable, and it covers the case where this code is
1662       // being called from within backedge-taken count analysis, such that
1663       // attempting to ask for the backedge-taken count would likely result
1664       // in infinite recursion. In the later case, the analysis code will
1665       // cope with a conservative value, and it will take care to purge
1666       // that value once it has finished.
1667       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1668       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1669         // Manually compute the final value for AR, checking for overflow.
1670 
1671         // Check whether the backedge-taken count can be losslessly casted to
1672         // the addrec's type. The count is always unsigned.
1673         const SCEV *CastedMaxBECount =
1674             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1675         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1676             CastedMaxBECount, MaxBECount->getType(), Depth);
1677         if (MaxBECount == RecastedMaxBECount) {
1678           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1679           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1680           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1681                                         SCEV::FlagAnyWrap, Depth + 1);
1682           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1683                                                           SCEV::FlagAnyWrap,
1684                                                           Depth + 1),
1685                                                WideTy, Depth + 1);
1686           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1687           const SCEV *WideMaxBECount =
1688             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1689           const SCEV *OperandExtendedAdd =
1690             getAddExpr(WideStart,
1691                        getMulExpr(WideMaxBECount,
1692                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1693                                   SCEV::FlagAnyWrap, Depth + 1),
1694                        SCEV::FlagAnyWrap, Depth + 1);
1695           if (ZAdd == OperandExtendedAdd) {
1696             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1697             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1698             // Return the expression with the addrec on the outside.
1699             return getAddRecExpr(
1700                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1701                                                          Depth + 1),
1702                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1703                 AR->getNoWrapFlags());
1704           }
1705           // Similar to above, only this time treat the step value as signed.
1706           // This covers loops that count down.
1707           OperandExtendedAdd =
1708             getAddExpr(WideStart,
1709                        getMulExpr(WideMaxBECount,
1710                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1711                                   SCEV::FlagAnyWrap, Depth + 1),
1712                        SCEV::FlagAnyWrap, Depth + 1);
1713           if (ZAdd == OperandExtendedAdd) {
1714             // Cache knowledge of AR NW, which is propagated to this AddRec.
1715             // Negative step causes unsigned wrap, but it still can't self-wrap.
1716             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1717             // Return the expression with the addrec on the outside.
1718             return getAddRecExpr(
1719                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1720                                                          Depth + 1),
1721                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1722                 AR->getNoWrapFlags());
1723           }
1724         }
1725       }
1726 
1727       // Normally, in the cases we can prove no-overflow via a
1728       // backedge guarding condition, we can also compute a backedge
1729       // taken count for the loop.  The exceptions are assumptions and
1730       // guards present in the loop -- SCEV is not great at exploiting
1731       // these to compute max backedge taken counts, but can still use
1732       // these to prove lack of overflow.  Use this fact to avoid
1733       // doing extra work that may not pay off.
1734       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1735           !AC.assumptions().empty()) {
1736 
1737         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1738         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1739         if (AR->hasNoUnsignedWrap()) {
1740           // Same as nuw case above - duplicated here to avoid a compile time
1741           // issue.  It's not clear that the order of checks does matter, but
1742           // it's one of two issue possible causes for a change which was
1743           // reverted.  Be conservative for the moment.
1744           return getAddRecExpr(
1745                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1746                                                          Depth + 1),
1747                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1748                 AR->getNoWrapFlags());
1749         }
1750 
1751         // For a negative step, we can extend the operands iff doing so only
1752         // traverses values in the range zext([0,UINT_MAX]).
1753         if (isKnownNegative(Step)) {
1754           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1755                                       getSignedRangeMin(Step));
1756           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1757               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1758             // Cache knowledge of AR NW, which is propagated to this
1759             // AddRec.  Negative step causes unsigned wrap, but it
1760             // still can't self-wrap.
1761             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1762             // Return the expression with the addrec on the outside.
1763             return getAddRecExpr(
1764                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1765                                                          Depth + 1),
1766                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1767                 AR->getNoWrapFlags());
1768           }
1769         }
1770       }
1771 
1772       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1773       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1774       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1775       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1776         const APInt &C = SC->getAPInt();
1777         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1778         if (D != 0) {
1779           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1780           const SCEV *SResidual =
1781               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1782           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1783           return getAddExpr(SZExtD, SZExtR,
1784                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1785                             Depth + 1);
1786         }
1787       }
1788 
1789       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1790         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1791         return getAddRecExpr(
1792             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1793             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1794       }
1795     }
1796 
1797   // zext(A % B) --> zext(A) % zext(B)
1798   {
1799     const SCEV *LHS;
1800     const SCEV *RHS;
1801     if (matchURem(Op, LHS, RHS))
1802       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1803                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1804   }
1805 
1806   // zext(A / B) --> zext(A) / zext(B).
1807   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1808     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1809                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1810 
1811   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1812     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1813     if (SA->hasNoUnsignedWrap()) {
1814       // If the addition does not unsign overflow then we can, by definition,
1815       // commute the zero extension with the addition operation.
1816       SmallVector<const SCEV *, 4> Ops;
1817       for (const auto *Op : SA->operands())
1818         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1819       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1820     }
1821 
1822     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1823     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1824     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1825     //
1826     // Often address arithmetics contain expressions like
1827     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1828     // This transformation is useful while proving that such expressions are
1829     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1830     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1831       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1832       if (D != 0) {
1833         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1834         const SCEV *SResidual =
1835             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1836         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1837         return getAddExpr(SZExtD, SZExtR,
1838                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1839                           Depth + 1);
1840       }
1841     }
1842   }
1843 
1844   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1845     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1846     if (SM->hasNoUnsignedWrap()) {
1847       // If the multiply does not unsign overflow then we can, by definition,
1848       // commute the zero extension with the multiply operation.
1849       SmallVector<const SCEV *, 4> Ops;
1850       for (const auto *Op : SM->operands())
1851         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1852       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1853     }
1854 
1855     // zext(2^K * (trunc X to iN)) to iM ->
1856     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1857     //
1858     // Proof:
1859     //
1860     //     zext(2^K * (trunc X to iN)) to iM
1861     //   = zext((trunc X to iN) << K) to iM
1862     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1863     //     (because shl removes the top K bits)
1864     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1865     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1866     //
1867     if (SM->getNumOperands() == 2)
1868       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1869         if (MulLHS->getAPInt().isPowerOf2())
1870           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1871             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1872                                MulLHS->getAPInt().logBase2();
1873             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1874             return getMulExpr(
1875                 getZeroExtendExpr(MulLHS, Ty),
1876                 getZeroExtendExpr(
1877                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1878                 SCEV::FlagNUW, Depth + 1);
1879           }
1880   }
1881 
1882   // The cast wasn't folded; create an explicit cast node.
1883   // Recompute the insert position, as it may have been invalidated.
1884   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1885   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1886                                                    Op, Ty);
1887   UniqueSCEVs.InsertNode(S, IP);
1888   registerUser(S, Op);
1889   return S;
1890 }
1891 
1892 const SCEV *
1893 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1894   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1895          "This is not an extending conversion!");
1896   assert(isSCEVable(Ty) &&
1897          "This is not a conversion to a SCEVable type!");
1898   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1899   Ty = getEffectiveSCEVType(Ty);
1900 
1901   // Fold if the operand is constant.
1902   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1903     return getConstant(
1904       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1905 
1906   // sext(sext(x)) --> sext(x)
1907   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1908     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1909 
1910   // sext(zext(x)) --> zext(x)
1911   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1912     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1913 
1914   // Before doing any expensive analysis, check to see if we've already
1915   // computed a SCEV for this Op and Ty.
1916   FoldingSetNodeID ID;
1917   ID.AddInteger(scSignExtend);
1918   ID.AddPointer(Op);
1919   ID.AddPointer(Ty);
1920   void *IP = nullptr;
1921   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1922   // Limit recursion depth.
1923   if (Depth > MaxCastDepth) {
1924     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1925                                                      Op, Ty);
1926     UniqueSCEVs.InsertNode(S, IP);
1927     registerUser(S, Op);
1928     return S;
1929   }
1930 
1931   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1932   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1933     // It's possible the bits taken off by the truncate were all sign bits. If
1934     // so, we should be able to simplify this further.
1935     const SCEV *X = ST->getOperand();
1936     ConstantRange CR = getSignedRange(X);
1937     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1938     unsigned NewBits = getTypeSizeInBits(Ty);
1939     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1940             CR.sextOrTrunc(NewBits)))
1941       return getTruncateOrSignExtend(X, Ty, Depth);
1942   }
1943 
1944   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1945     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1946     if (SA->hasNoSignedWrap()) {
1947       // If the addition does not sign overflow then we can, by definition,
1948       // commute the sign extension with the addition operation.
1949       SmallVector<const SCEV *, 4> Ops;
1950       for (const auto *Op : SA->operands())
1951         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1952       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1953     }
1954 
1955     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1956     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1957     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1958     //
1959     // For instance, this will bring two seemingly different expressions:
1960     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1961     //         sext(6 + 20 * %x + 24 * %y)
1962     // to the same form:
1963     //     2 + sext(4 + 20 * %x + 24 * %y)
1964     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1965       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1966       if (D != 0) {
1967         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1968         const SCEV *SResidual =
1969             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1970         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1971         return getAddExpr(SSExtD, SSExtR,
1972                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1973                           Depth + 1);
1974       }
1975     }
1976   }
1977   // If the input value is a chrec scev, and we can prove that the value
1978   // did not overflow the old, smaller, value, we can sign extend all of the
1979   // operands (often constants).  This allows analysis of something like
1980   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1981   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1982     if (AR->isAffine()) {
1983       const SCEV *Start = AR->getStart();
1984       const SCEV *Step = AR->getStepRecurrence(*this);
1985       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1986       const Loop *L = AR->getLoop();
1987 
1988       if (!AR->hasNoSignedWrap()) {
1989         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1990         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1991       }
1992 
1993       // If we have special knowledge that this addrec won't overflow,
1994       // we don't need to do any further analysis.
1995       if (AR->hasNoSignedWrap())
1996         return getAddRecExpr(
1997             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1998             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1999 
2000       // Check whether the backedge-taken count is SCEVCouldNotCompute.
2001       // Note that this serves two purposes: It filters out loops that are
2002       // simply not analyzable, and it covers the case where this code is
2003       // being called from within backedge-taken count analysis, such that
2004       // attempting to ask for the backedge-taken count would likely result
2005       // in infinite recursion. In the later case, the analysis code will
2006       // cope with a conservative value, and it will take care to purge
2007       // that value once it has finished.
2008       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
2009       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
2010         // Manually compute the final value for AR, checking for
2011         // overflow.
2012 
2013         // Check whether the backedge-taken count can be losslessly casted to
2014         // the addrec's type. The count is always unsigned.
2015         const SCEV *CastedMaxBECount =
2016             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2017         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2018             CastedMaxBECount, MaxBECount->getType(), Depth);
2019         if (MaxBECount == RecastedMaxBECount) {
2020           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2021           // Check whether Start+Step*MaxBECount has no signed overflow.
2022           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2023                                         SCEV::FlagAnyWrap, Depth + 1);
2024           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2025                                                           SCEV::FlagAnyWrap,
2026                                                           Depth + 1),
2027                                                WideTy, Depth + 1);
2028           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2029           const SCEV *WideMaxBECount =
2030             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2031           const SCEV *OperandExtendedAdd =
2032             getAddExpr(WideStart,
2033                        getMulExpr(WideMaxBECount,
2034                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2035                                   SCEV::FlagAnyWrap, Depth + 1),
2036                        SCEV::FlagAnyWrap, Depth + 1);
2037           if (SAdd == OperandExtendedAdd) {
2038             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2039             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2040             // Return the expression with the addrec on the outside.
2041             return getAddRecExpr(
2042                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2043                                                          Depth + 1),
2044                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2045                 AR->getNoWrapFlags());
2046           }
2047           // Similar to above, only this time treat the step value as unsigned.
2048           // This covers loops that count up with an unsigned step.
2049           OperandExtendedAdd =
2050             getAddExpr(WideStart,
2051                        getMulExpr(WideMaxBECount,
2052                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2053                                   SCEV::FlagAnyWrap, Depth + 1),
2054                        SCEV::FlagAnyWrap, Depth + 1);
2055           if (SAdd == OperandExtendedAdd) {
2056             // If AR wraps around then
2057             //
2058             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2059             // => SAdd != OperandExtendedAdd
2060             //
2061             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2062             // (SAdd == OperandExtendedAdd => AR is NW)
2063 
2064             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2065 
2066             // Return the expression with the addrec on the outside.
2067             return getAddRecExpr(
2068                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2069                                                          Depth + 1),
2070                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2071                 AR->getNoWrapFlags());
2072           }
2073         }
2074       }
2075 
2076       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2077       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2078       if (AR->hasNoSignedWrap()) {
2079         // Same as nsw case above - duplicated here to avoid a compile time
2080         // issue.  It's not clear that the order of checks does matter, but
2081         // it's one of two issue possible causes for a change which was
2082         // reverted.  Be conservative for the moment.
2083         return getAddRecExpr(
2084             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2085             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2086       }
2087 
2088       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2089       // if D + (C - D + Step * n) could be proven to not signed wrap
2090       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2091       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2092         const APInt &C = SC->getAPInt();
2093         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2094         if (D != 0) {
2095           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2096           const SCEV *SResidual =
2097               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2098           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2099           return getAddExpr(SSExtD, SSExtR,
2100                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2101                             Depth + 1);
2102         }
2103       }
2104 
2105       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2106         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2107         return getAddRecExpr(
2108             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2109             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2110       }
2111     }
2112 
2113   // If the input value is provably positive and we could not simplify
2114   // away the sext build a zext instead.
2115   if (isKnownNonNegative(Op))
2116     return getZeroExtendExpr(Op, Ty, Depth + 1);
2117 
2118   // The cast wasn't folded; create an explicit cast node.
2119   // Recompute the insert position, as it may have been invalidated.
2120   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2121   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2122                                                    Op, Ty);
2123   UniqueSCEVs.InsertNode(S, IP);
2124   registerUser(S, { Op });
2125   return S;
2126 }
2127 
2128 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op,
2129                                          Type *Ty) {
2130   switch (Kind) {
2131   case scTruncate:
2132     return getTruncateExpr(Op, Ty);
2133   case scZeroExtend:
2134     return getZeroExtendExpr(Op, Ty);
2135   case scSignExtend:
2136     return getSignExtendExpr(Op, Ty);
2137   case scPtrToInt:
2138     return getPtrToIntExpr(Op, Ty);
2139   default:
2140     llvm_unreachable("Not a SCEV cast expression!");
2141   }
2142 }
2143 
2144 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2145 /// unspecified bits out to the given type.
2146 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2147                                               Type *Ty) {
2148   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2149          "This is not an extending conversion!");
2150   assert(isSCEVable(Ty) &&
2151          "This is not a conversion to a SCEVable type!");
2152   Ty = getEffectiveSCEVType(Ty);
2153 
2154   // Sign-extend negative constants.
2155   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2156     if (SC->getAPInt().isNegative())
2157       return getSignExtendExpr(Op, Ty);
2158 
2159   // Peel off a truncate cast.
2160   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2161     const SCEV *NewOp = T->getOperand();
2162     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2163       return getAnyExtendExpr(NewOp, Ty);
2164     return getTruncateOrNoop(NewOp, Ty);
2165   }
2166 
2167   // Next try a zext cast. If the cast is folded, use it.
2168   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2169   if (!isa<SCEVZeroExtendExpr>(ZExt))
2170     return ZExt;
2171 
2172   // Next try a sext cast. If the cast is folded, use it.
2173   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2174   if (!isa<SCEVSignExtendExpr>(SExt))
2175     return SExt;
2176 
2177   // Force the cast to be folded into the operands of an addrec.
2178   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2179     SmallVector<const SCEV *, 4> Ops;
2180     for (const SCEV *Op : AR->operands())
2181       Ops.push_back(getAnyExtendExpr(Op, Ty));
2182     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2183   }
2184 
2185   // If the expression is obviously signed, use the sext cast value.
2186   if (isa<SCEVSMaxExpr>(Op))
2187     return SExt;
2188 
2189   // Absent any other information, use the zext cast value.
2190   return ZExt;
2191 }
2192 
2193 /// Process the given Ops list, which is a list of operands to be added under
2194 /// the given scale, update the given map. This is a helper function for
2195 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2196 /// that would form an add expression like this:
2197 ///
2198 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2199 ///
2200 /// where A and B are constants, update the map with these values:
2201 ///
2202 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2203 ///
2204 /// and add 13 + A*B*29 to AccumulatedConstant.
2205 /// This will allow getAddRecExpr to produce this:
2206 ///
2207 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2208 ///
2209 /// This form often exposes folding opportunities that are hidden in
2210 /// the original operand list.
2211 ///
2212 /// Return true iff it appears that any interesting folding opportunities
2213 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2214 /// the common case where no interesting opportunities are present, and
2215 /// is also used as a check to avoid infinite recursion.
2216 static bool
2217 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2218                              SmallVectorImpl<const SCEV *> &NewOps,
2219                              APInt &AccumulatedConstant,
2220                              const SCEV *const *Ops, size_t NumOperands,
2221                              const APInt &Scale,
2222                              ScalarEvolution &SE) {
2223   bool Interesting = false;
2224 
2225   // Iterate over the add operands. They are sorted, with constants first.
2226   unsigned i = 0;
2227   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2228     ++i;
2229     // Pull a buried constant out to the outside.
2230     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2231       Interesting = true;
2232     AccumulatedConstant += Scale * C->getAPInt();
2233   }
2234 
2235   // Next comes everything else. We're especially interested in multiplies
2236   // here, but they're in the middle, so just visit the rest with one loop.
2237   for (; i != NumOperands; ++i) {
2238     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2239     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2240       APInt NewScale =
2241           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2242       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2243         // A multiplication of a constant with another add; recurse.
2244         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2245         Interesting |=
2246           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2247                                        Add->op_begin(), Add->getNumOperands(),
2248                                        NewScale, SE);
2249       } else {
2250         // A multiplication of a constant with some other value. Update
2251         // the map.
2252         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2253         const SCEV *Key = SE.getMulExpr(MulOps);
2254         auto Pair = M.insert({Key, NewScale});
2255         if (Pair.second) {
2256           NewOps.push_back(Pair.first->first);
2257         } else {
2258           Pair.first->second += NewScale;
2259           // The map already had an entry for this value, which may indicate
2260           // a folding opportunity.
2261           Interesting = true;
2262         }
2263       }
2264     } else {
2265       // An ordinary operand. Update the map.
2266       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2267           M.insert({Ops[i], Scale});
2268       if (Pair.second) {
2269         NewOps.push_back(Pair.first->first);
2270       } else {
2271         Pair.first->second += Scale;
2272         // The map already had an entry for this value, which may indicate
2273         // a folding opportunity.
2274         Interesting = true;
2275       }
2276     }
2277   }
2278 
2279   return Interesting;
2280 }
2281 
2282 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2283                                       const SCEV *LHS, const SCEV *RHS) {
2284   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2285                                             SCEV::NoWrapFlags, unsigned);
2286   switch (BinOp) {
2287   default:
2288     llvm_unreachable("Unsupported binary op");
2289   case Instruction::Add:
2290     Operation = &ScalarEvolution::getAddExpr;
2291     break;
2292   case Instruction::Sub:
2293     Operation = &ScalarEvolution::getMinusSCEV;
2294     break;
2295   case Instruction::Mul:
2296     Operation = &ScalarEvolution::getMulExpr;
2297     break;
2298   }
2299 
2300   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2301       Signed ? &ScalarEvolution::getSignExtendExpr
2302              : &ScalarEvolution::getZeroExtendExpr;
2303 
2304   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2305   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2306   auto *WideTy =
2307       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2308 
2309   const SCEV *A = (this->*Extension)(
2310       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2311   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2312                                      (this->*Extension)(RHS, WideTy, 0),
2313                                      SCEV::FlagAnyWrap, 0);
2314   return A == B;
2315 }
2316 
2317 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2318 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2319     const OverflowingBinaryOperator *OBO) {
2320   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2321 
2322   if (OBO->hasNoUnsignedWrap())
2323     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2324   if (OBO->hasNoSignedWrap())
2325     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2326 
2327   bool Deduced = false;
2328 
2329   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2330     return {Flags, Deduced};
2331 
2332   if (OBO->getOpcode() != Instruction::Add &&
2333       OBO->getOpcode() != Instruction::Sub &&
2334       OBO->getOpcode() != Instruction::Mul)
2335     return {Flags, Deduced};
2336 
2337   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2338   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2339 
2340   if (!OBO->hasNoUnsignedWrap() &&
2341       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2342                       /* Signed */ false, LHS, RHS)) {
2343     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2344     Deduced = true;
2345   }
2346 
2347   if (!OBO->hasNoSignedWrap() &&
2348       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2349                       /* Signed */ true, LHS, RHS)) {
2350     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2351     Deduced = true;
2352   }
2353 
2354   return {Flags, Deduced};
2355 }
2356 
2357 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2358 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2359 // can't-overflow flags for the operation if possible.
2360 static SCEV::NoWrapFlags
2361 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2362                       const ArrayRef<const SCEV *> Ops,
2363                       SCEV::NoWrapFlags Flags) {
2364   using namespace std::placeholders;
2365 
2366   using OBO = OverflowingBinaryOperator;
2367 
2368   bool CanAnalyze =
2369       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2370   (void)CanAnalyze;
2371   assert(CanAnalyze && "don't call from other places!");
2372 
2373   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2374   SCEV::NoWrapFlags SignOrUnsignWrap =
2375       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2376 
2377   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2378   auto IsKnownNonNegative = [&](const SCEV *S) {
2379     return SE->isKnownNonNegative(S);
2380   };
2381 
2382   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2383     Flags =
2384         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2385 
2386   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2387 
2388   if (SignOrUnsignWrap != SignOrUnsignMask &&
2389       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2390       isa<SCEVConstant>(Ops[0])) {
2391 
2392     auto Opcode = [&] {
2393       switch (Type) {
2394       case scAddExpr:
2395         return Instruction::Add;
2396       case scMulExpr:
2397         return Instruction::Mul;
2398       default:
2399         llvm_unreachable("Unexpected SCEV op.");
2400       }
2401     }();
2402 
2403     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2404 
2405     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2406     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2407       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2408           Opcode, C, OBO::NoSignedWrap);
2409       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2410         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2411     }
2412 
2413     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2414     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2415       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2416           Opcode, C, OBO::NoUnsignedWrap);
2417       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2418         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2419     }
2420   }
2421 
2422   // <0,+,nonnegative><nw> is also nuw
2423   // TODO: Add corresponding nsw case
2424   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2425       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2426       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2427     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2428 
2429   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2430   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2431       Ops.size() == 2) {
2432     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2433       if (UDiv->getOperand(1) == Ops[1])
2434         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2435     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2436       if (UDiv->getOperand(1) == Ops[0])
2437         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2438   }
2439 
2440   return Flags;
2441 }
2442 
2443 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2444   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2445 }
2446 
2447 /// Get a canonical add expression, or something simpler if possible.
2448 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2449                                         SCEV::NoWrapFlags OrigFlags,
2450                                         unsigned Depth) {
2451   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2452          "only nuw or nsw allowed");
2453   assert(!Ops.empty() && "Cannot get empty add!");
2454   if (Ops.size() == 1) return Ops[0];
2455 #ifndef NDEBUG
2456   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2457   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2458     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2459            "SCEVAddExpr operand types don't match!");
2460   unsigned NumPtrs = count_if(
2461       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2462   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2463 #endif
2464 
2465   // Sort by complexity, this groups all similar expression types together.
2466   GroupByComplexity(Ops, &LI, DT);
2467 
2468   // If there are any constants, fold them together.
2469   unsigned Idx = 0;
2470   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2471     ++Idx;
2472     assert(Idx < Ops.size());
2473     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2474       // We found two constants, fold them together!
2475       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2476       if (Ops.size() == 2) return Ops[0];
2477       Ops.erase(Ops.begin()+1);  // Erase the folded element
2478       LHSC = cast<SCEVConstant>(Ops[0]);
2479     }
2480 
2481     // If we are left with a constant zero being added, strip it off.
2482     if (LHSC->getValue()->isZero()) {
2483       Ops.erase(Ops.begin());
2484       --Idx;
2485     }
2486 
2487     if (Ops.size() == 1) return Ops[0];
2488   }
2489 
2490   // Delay expensive flag strengthening until necessary.
2491   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2492     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2493   };
2494 
2495   // Limit recursion calls depth.
2496   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2497     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2498 
2499   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2500     // Don't strengthen flags if we have no new information.
2501     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2502     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2503       Add->setNoWrapFlags(ComputeFlags(Ops));
2504     return S;
2505   }
2506 
2507   // Okay, check to see if the same value occurs in the operand list more than
2508   // once.  If so, merge them together into an multiply expression.  Since we
2509   // sorted the list, these values are required to be adjacent.
2510   Type *Ty = Ops[0]->getType();
2511   bool FoundMatch = false;
2512   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2513     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2514       // Scan ahead to count how many equal operands there are.
2515       unsigned Count = 2;
2516       while (i+Count != e && Ops[i+Count] == Ops[i])
2517         ++Count;
2518       // Merge the values into a multiply.
2519       const SCEV *Scale = getConstant(Ty, Count);
2520       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2521       if (Ops.size() == Count)
2522         return Mul;
2523       Ops[i] = Mul;
2524       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2525       --i; e -= Count - 1;
2526       FoundMatch = true;
2527     }
2528   if (FoundMatch)
2529     return getAddExpr(Ops, OrigFlags, Depth + 1);
2530 
2531   // Check for truncates. If all the operands are truncated from the same
2532   // type, see if factoring out the truncate would permit the result to be
2533   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2534   // if the contents of the resulting outer trunc fold to something simple.
2535   auto FindTruncSrcType = [&]() -> Type * {
2536     // We're ultimately looking to fold an addrec of truncs and muls of only
2537     // constants and truncs, so if we find any other types of SCEV
2538     // as operands of the addrec then we bail and return nullptr here.
2539     // Otherwise, we return the type of the operand of a trunc that we find.
2540     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2541       return T->getOperand()->getType();
2542     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2543       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2544       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2545         return T->getOperand()->getType();
2546     }
2547     return nullptr;
2548   };
2549   if (auto *SrcType = FindTruncSrcType()) {
2550     SmallVector<const SCEV *, 8> LargeOps;
2551     bool Ok = true;
2552     // Check all the operands to see if they can be represented in the
2553     // source type of the truncate.
2554     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2555       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2556         if (T->getOperand()->getType() != SrcType) {
2557           Ok = false;
2558           break;
2559         }
2560         LargeOps.push_back(T->getOperand());
2561       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2562         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2563       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2564         SmallVector<const SCEV *, 8> LargeMulOps;
2565         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2566           if (const SCEVTruncateExpr *T =
2567                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2568             if (T->getOperand()->getType() != SrcType) {
2569               Ok = false;
2570               break;
2571             }
2572             LargeMulOps.push_back(T->getOperand());
2573           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2574             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2575           } else {
2576             Ok = false;
2577             break;
2578           }
2579         }
2580         if (Ok)
2581           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2582       } else {
2583         Ok = false;
2584         break;
2585       }
2586     }
2587     if (Ok) {
2588       // Evaluate the expression in the larger type.
2589       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2590       // If it folds to something simple, use it. Otherwise, don't.
2591       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2592         return getTruncateExpr(Fold, Ty);
2593     }
2594   }
2595 
2596   if (Ops.size() == 2) {
2597     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2598     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2599     // C1).
2600     const SCEV *A = Ops[0];
2601     const SCEV *B = Ops[1];
2602     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2603     auto *C = dyn_cast<SCEVConstant>(A);
2604     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2605       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2606       auto C2 = C->getAPInt();
2607       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2608 
2609       APInt ConstAdd = C1 + C2;
2610       auto AddFlags = AddExpr->getNoWrapFlags();
2611       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2612       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2613           ConstAdd.ule(C1)) {
2614         PreservedFlags =
2615             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2616       }
2617 
2618       // Adding a constant with the same sign and small magnitude is NSW, if the
2619       // original AddExpr was NSW.
2620       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2621           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2622           ConstAdd.abs().ule(C1.abs())) {
2623         PreservedFlags =
2624             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2625       }
2626 
2627       if (PreservedFlags != SCEV::FlagAnyWrap) {
2628         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2629         NewOps[0] = getConstant(ConstAdd);
2630         return getAddExpr(NewOps, PreservedFlags);
2631       }
2632     }
2633   }
2634 
2635   // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y)
2636   if (Ops.size() == 2) {
2637     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]);
2638     if (Mul && Mul->getNumOperands() == 2 &&
2639         Mul->getOperand(0)->isAllOnesValue()) {
2640       const SCEV *X;
2641       const SCEV *Y;
2642       if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) {
2643         return getMulExpr(Y, getUDivExpr(X, Y));
2644       }
2645     }
2646   }
2647 
2648   // Skip past any other cast SCEVs.
2649   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2650     ++Idx;
2651 
2652   // If there are add operands they would be next.
2653   if (Idx < Ops.size()) {
2654     bool DeletedAdd = false;
2655     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2656     // common NUW flag for expression after inlining. Other flags cannot be
2657     // preserved, because they may depend on the original order of operations.
2658     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2659     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2660       if (Ops.size() > AddOpsInlineThreshold ||
2661           Add->getNumOperands() > AddOpsInlineThreshold)
2662         break;
2663       // If we have an add, expand the add operands onto the end of the operands
2664       // list.
2665       Ops.erase(Ops.begin()+Idx);
2666       Ops.append(Add->op_begin(), Add->op_end());
2667       DeletedAdd = true;
2668       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2669     }
2670 
2671     // If we deleted at least one add, we added operands to the end of the list,
2672     // and they are not necessarily sorted.  Recurse to resort and resimplify
2673     // any operands we just acquired.
2674     if (DeletedAdd)
2675       return getAddExpr(Ops, CommonFlags, Depth + 1);
2676   }
2677 
2678   // Skip over the add expression until we get to a multiply.
2679   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2680     ++Idx;
2681 
2682   // Check to see if there are any folding opportunities present with
2683   // operands multiplied by constant values.
2684   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2685     uint64_t BitWidth = getTypeSizeInBits(Ty);
2686     DenseMap<const SCEV *, APInt> M;
2687     SmallVector<const SCEV *, 8> NewOps;
2688     APInt AccumulatedConstant(BitWidth, 0);
2689     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2690                                      Ops.data(), Ops.size(),
2691                                      APInt(BitWidth, 1), *this)) {
2692       struct APIntCompare {
2693         bool operator()(const APInt &LHS, const APInt &RHS) const {
2694           return LHS.ult(RHS);
2695         }
2696       };
2697 
2698       // Some interesting folding opportunity is present, so its worthwhile to
2699       // re-generate the operands list. Group the operands by constant scale,
2700       // to avoid multiplying by the same constant scale multiple times.
2701       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2702       for (const SCEV *NewOp : NewOps)
2703         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2704       // Re-generate the operands list.
2705       Ops.clear();
2706       if (AccumulatedConstant != 0)
2707         Ops.push_back(getConstant(AccumulatedConstant));
2708       for (auto &MulOp : MulOpLists) {
2709         if (MulOp.first == 1) {
2710           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2711         } else if (MulOp.first != 0) {
2712           Ops.push_back(getMulExpr(
2713               getConstant(MulOp.first),
2714               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2715               SCEV::FlagAnyWrap, Depth + 1));
2716         }
2717       }
2718       if (Ops.empty())
2719         return getZero(Ty);
2720       if (Ops.size() == 1)
2721         return Ops[0];
2722       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2723     }
2724   }
2725 
2726   // If we are adding something to a multiply expression, make sure the
2727   // something is not already an operand of the multiply.  If so, merge it into
2728   // the multiply.
2729   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2730     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2731     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2732       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2733       if (isa<SCEVConstant>(MulOpSCEV))
2734         continue;
2735       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2736         if (MulOpSCEV == Ops[AddOp]) {
2737           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2738           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2739           if (Mul->getNumOperands() != 2) {
2740             // If the multiply has more than two operands, we must get the
2741             // Y*Z term.
2742             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2743                                                 Mul->op_begin()+MulOp);
2744             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2745             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2746           }
2747           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2748           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2750                                             SCEV::FlagAnyWrap, Depth + 1);
2751           if (Ops.size() == 2) return OuterMul;
2752           if (AddOp < Idx) {
2753             Ops.erase(Ops.begin()+AddOp);
2754             Ops.erase(Ops.begin()+Idx-1);
2755           } else {
2756             Ops.erase(Ops.begin()+Idx);
2757             Ops.erase(Ops.begin()+AddOp-1);
2758           }
2759           Ops.push_back(OuterMul);
2760           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2761         }
2762 
2763       // Check this multiply against other multiplies being added together.
2764       for (unsigned OtherMulIdx = Idx+1;
2765            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2766            ++OtherMulIdx) {
2767         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2768         // If MulOp occurs in OtherMul, we can fold the two multiplies
2769         // together.
2770         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2771              OMulOp != e; ++OMulOp)
2772           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2773             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2774             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2775             if (Mul->getNumOperands() != 2) {
2776               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2777                                                   Mul->op_begin()+MulOp);
2778               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2779               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2780             }
2781             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2782             if (OtherMul->getNumOperands() != 2) {
2783               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2784                                                   OtherMul->op_begin()+OMulOp);
2785               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2786               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2787             }
2788             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2789             const SCEV *InnerMulSum =
2790                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2791             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2792                                               SCEV::FlagAnyWrap, Depth + 1);
2793             if (Ops.size() == 2) return OuterMul;
2794             Ops.erase(Ops.begin()+Idx);
2795             Ops.erase(Ops.begin()+OtherMulIdx-1);
2796             Ops.push_back(OuterMul);
2797             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2798           }
2799       }
2800     }
2801   }
2802 
2803   // If there are any add recurrences in the operands list, see if any other
2804   // added values are loop invariant.  If so, we can fold them into the
2805   // recurrence.
2806   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2807     ++Idx;
2808 
2809   // Scan over all recurrences, trying to fold loop invariants into them.
2810   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2811     // Scan all of the other operands to this add and add them to the vector if
2812     // they are loop invariant w.r.t. the recurrence.
2813     SmallVector<const SCEV *, 8> LIOps;
2814     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2815     const Loop *AddRecLoop = AddRec->getLoop();
2816     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2817       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2818         LIOps.push_back(Ops[i]);
2819         Ops.erase(Ops.begin()+i);
2820         --i; --e;
2821       }
2822 
2823     // If we found some loop invariants, fold them into the recurrence.
2824     if (!LIOps.empty()) {
2825       // Compute nowrap flags for the addition of the loop-invariant ops and
2826       // the addrec. Temporarily push it as an operand for that purpose. These
2827       // flags are valid in the scope of the addrec only.
2828       LIOps.push_back(AddRec);
2829       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2830       LIOps.pop_back();
2831 
2832       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2833       LIOps.push_back(AddRec->getStart());
2834 
2835       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2836 
2837       // It is not in general safe to propagate flags valid on an add within
2838       // the addrec scope to one outside it.  We must prove that the inner
2839       // scope is guaranteed to execute if the outer one does to be able to
2840       // safely propagate.  We know the program is undefined if poison is
2841       // produced on the inner scoped addrec.  We also know that *for this use*
2842       // the outer scoped add can't overflow (because of the flags we just
2843       // computed for the inner scoped add) without the program being undefined.
2844       // Proving that entry to the outer scope neccesitates entry to the inner
2845       // scope, thus proves the program undefined if the flags would be violated
2846       // in the outer scope.
2847       SCEV::NoWrapFlags AddFlags = Flags;
2848       if (AddFlags != SCEV::FlagAnyWrap) {
2849         auto *DefI = getDefiningScopeBound(LIOps);
2850         auto *ReachI = &*AddRecLoop->getHeader()->begin();
2851         if (!isGuaranteedToTransferExecutionTo(DefI, ReachI))
2852           AddFlags = SCEV::FlagAnyWrap;
2853       }
2854       AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1);
2855 
2856       // Build the new addrec. Propagate the NUW and NSW flags if both the
2857       // outer add and the inner addrec are guaranteed to have no overflow.
2858       // Always propagate NW.
2859       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2860       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2861 
2862       // If all of the other operands were loop invariant, we are done.
2863       if (Ops.size() == 1) return NewRec;
2864 
2865       // Otherwise, add the folded AddRec by the non-invariant parts.
2866       for (unsigned i = 0;; ++i)
2867         if (Ops[i] == AddRec) {
2868           Ops[i] = NewRec;
2869           break;
2870         }
2871       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2872     }
2873 
2874     // Okay, if there weren't any loop invariants to be folded, check to see if
2875     // there are multiple AddRec's with the same loop induction variable being
2876     // added together.  If so, we can fold them.
2877     for (unsigned OtherIdx = Idx+1;
2878          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2879          ++OtherIdx) {
2880       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2881       // so that the 1st found AddRecExpr is dominated by all others.
2882       assert(DT.dominates(
2883            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2884            AddRec->getLoop()->getHeader()) &&
2885         "AddRecExprs are not sorted in reverse dominance order?");
2886       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2887         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2888         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2889         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2890              ++OtherIdx) {
2891           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2892           if (OtherAddRec->getLoop() == AddRecLoop) {
2893             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2894                  i != e; ++i) {
2895               if (i >= AddRecOps.size()) {
2896                 AddRecOps.append(OtherAddRec->op_begin()+i,
2897                                  OtherAddRec->op_end());
2898                 break;
2899               }
2900               SmallVector<const SCEV *, 2> TwoOps = {
2901                   AddRecOps[i], OtherAddRec->getOperand(i)};
2902               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2903             }
2904             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2905           }
2906         }
2907         // Step size has changed, so we cannot guarantee no self-wraparound.
2908         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2909         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2910       }
2911     }
2912 
2913     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2914     // next one.
2915   }
2916 
2917   // Okay, it looks like we really DO need an add expr.  Check to see if we
2918   // already have one, otherwise create a new one.
2919   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2920 }
2921 
2922 const SCEV *
2923 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2924                                     SCEV::NoWrapFlags Flags) {
2925   FoldingSetNodeID ID;
2926   ID.AddInteger(scAddExpr);
2927   for (const SCEV *Op : Ops)
2928     ID.AddPointer(Op);
2929   void *IP = nullptr;
2930   SCEVAddExpr *S =
2931       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2932   if (!S) {
2933     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2934     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2935     S = new (SCEVAllocator)
2936         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2937     UniqueSCEVs.InsertNode(S, IP);
2938     registerUser(S, Ops);
2939   }
2940   S->setNoWrapFlags(Flags);
2941   return S;
2942 }
2943 
2944 const SCEV *
2945 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2946                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2947   FoldingSetNodeID ID;
2948   ID.AddInteger(scAddRecExpr);
2949   for (const SCEV *Op : Ops)
2950     ID.AddPointer(Op);
2951   ID.AddPointer(L);
2952   void *IP = nullptr;
2953   SCEVAddRecExpr *S =
2954       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2955   if (!S) {
2956     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2957     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2958     S = new (SCEVAllocator)
2959         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2960     UniqueSCEVs.InsertNode(S, IP);
2961     LoopUsers[L].push_back(S);
2962     registerUser(S, Ops);
2963   }
2964   setNoWrapFlags(S, Flags);
2965   return S;
2966 }
2967 
2968 const SCEV *
2969 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2970                                     SCEV::NoWrapFlags Flags) {
2971   FoldingSetNodeID ID;
2972   ID.AddInteger(scMulExpr);
2973   for (const SCEV *Op : Ops)
2974     ID.AddPointer(Op);
2975   void *IP = nullptr;
2976   SCEVMulExpr *S =
2977     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2978   if (!S) {
2979     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2980     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2981     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2982                                         O, Ops.size());
2983     UniqueSCEVs.InsertNode(S, IP);
2984     registerUser(S, Ops);
2985   }
2986   S->setNoWrapFlags(Flags);
2987   return S;
2988 }
2989 
2990 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2991   uint64_t k = i*j;
2992   if (j > 1 && k / j != i) Overflow = true;
2993   return k;
2994 }
2995 
2996 /// Compute the result of "n choose k", the binomial coefficient.  If an
2997 /// intermediate computation overflows, Overflow will be set and the return will
2998 /// be garbage. Overflow is not cleared on absence of overflow.
2999 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
3000   // We use the multiplicative formula:
3001   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
3002   // At each iteration, we take the n-th term of the numeral and divide by the
3003   // (k-n)th term of the denominator.  This division will always produce an
3004   // integral result, and helps reduce the chance of overflow in the
3005   // intermediate computations. However, we can still overflow even when the
3006   // final result would fit.
3007 
3008   if (n == 0 || n == k) return 1;
3009   if (k > n) return 0;
3010 
3011   if (k > n/2)
3012     k = n-k;
3013 
3014   uint64_t r = 1;
3015   for (uint64_t i = 1; i <= k; ++i) {
3016     r = umul_ov(r, n-(i-1), Overflow);
3017     r /= i;
3018   }
3019   return r;
3020 }
3021 
3022 /// Determine if any of the operands in this SCEV are a constant or if
3023 /// any of the add or multiply expressions in this SCEV contain a constant.
3024 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
3025   struct FindConstantInAddMulChain {
3026     bool FoundConstant = false;
3027 
3028     bool follow(const SCEV *S) {
3029       FoundConstant |= isa<SCEVConstant>(S);
3030       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
3031     }
3032 
3033     bool isDone() const {
3034       return FoundConstant;
3035     }
3036   };
3037 
3038   FindConstantInAddMulChain F;
3039   SCEVTraversal<FindConstantInAddMulChain> ST(F);
3040   ST.visitAll(StartExpr);
3041   return F.FoundConstant;
3042 }
3043 
3044 /// Get a canonical multiply expression, or something simpler if possible.
3045 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
3046                                         SCEV::NoWrapFlags OrigFlags,
3047                                         unsigned Depth) {
3048   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
3049          "only nuw or nsw allowed");
3050   assert(!Ops.empty() && "Cannot get empty mul!");
3051   if (Ops.size() == 1) return Ops[0];
3052 #ifndef NDEBUG
3053   Type *ETy = Ops[0]->getType();
3054   assert(!ETy->isPointerTy());
3055   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3056     assert(Ops[i]->getType() == ETy &&
3057            "SCEVMulExpr operand types don't match!");
3058 #endif
3059 
3060   // Sort by complexity, this groups all similar expression types together.
3061   GroupByComplexity(Ops, &LI, DT);
3062 
3063   // If there are any constants, fold them together.
3064   unsigned Idx = 0;
3065   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3066     ++Idx;
3067     assert(Idx < Ops.size());
3068     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3069       // We found two constants, fold them together!
3070       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3071       if (Ops.size() == 2) return Ops[0];
3072       Ops.erase(Ops.begin()+1);  // Erase the folded element
3073       LHSC = cast<SCEVConstant>(Ops[0]);
3074     }
3075 
3076     // If we have a multiply of zero, it will always be zero.
3077     if (LHSC->getValue()->isZero())
3078       return LHSC;
3079 
3080     // If we are left with a constant one being multiplied, strip it off.
3081     if (LHSC->getValue()->isOne()) {
3082       Ops.erase(Ops.begin());
3083       --Idx;
3084     }
3085 
3086     if (Ops.size() == 1)
3087       return Ops[0];
3088   }
3089 
3090   // Delay expensive flag strengthening until necessary.
3091   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3092     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3093   };
3094 
3095   // Limit recursion calls depth.
3096   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3097     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3098 
3099   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3100     // Don't strengthen flags if we have no new information.
3101     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3102     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3103       Mul->setNoWrapFlags(ComputeFlags(Ops));
3104     return S;
3105   }
3106 
3107   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3108     if (Ops.size() == 2) {
3109       // C1*(C2+V) -> C1*C2 + C1*V
3110       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3111         // If any of Add's ops are Adds or Muls with a constant, apply this
3112         // transformation as well.
3113         //
3114         // TODO: There are some cases where this transformation is not
3115         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3116         // this transformation should be narrowed down.
3117         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3118           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3119                                        SCEV::FlagAnyWrap, Depth + 1),
3120                             getMulExpr(LHSC, Add->getOperand(1),
3121                                        SCEV::FlagAnyWrap, Depth + 1),
3122                             SCEV::FlagAnyWrap, Depth + 1);
3123 
3124       if (Ops[0]->isAllOnesValue()) {
3125         // If we have a mul by -1 of an add, try distributing the -1 among the
3126         // add operands.
3127         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3128           SmallVector<const SCEV *, 4> NewOps;
3129           bool AnyFolded = false;
3130           for (const SCEV *AddOp : Add->operands()) {
3131             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3132                                          Depth + 1);
3133             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3134             NewOps.push_back(Mul);
3135           }
3136           if (AnyFolded)
3137             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3138         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3139           // Negation preserves a recurrence's no self-wrap property.
3140           SmallVector<const SCEV *, 4> Operands;
3141           for (const SCEV *AddRecOp : AddRec->operands())
3142             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3143                                           Depth + 1));
3144 
3145           return getAddRecExpr(Operands, AddRec->getLoop(),
3146                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3147         }
3148       }
3149     }
3150   }
3151 
3152   // Skip over the add expression until we get to a multiply.
3153   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3154     ++Idx;
3155 
3156   // If there are mul operands inline them all into this expression.
3157   if (Idx < Ops.size()) {
3158     bool DeletedMul = false;
3159     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3160       if (Ops.size() > MulOpsInlineThreshold)
3161         break;
3162       // If we have an mul, expand the mul operands onto the end of the
3163       // operands list.
3164       Ops.erase(Ops.begin()+Idx);
3165       Ops.append(Mul->op_begin(), Mul->op_end());
3166       DeletedMul = true;
3167     }
3168 
3169     // If we deleted at least one mul, we added operands to the end of the
3170     // list, and they are not necessarily sorted.  Recurse to resort and
3171     // resimplify any operands we just acquired.
3172     if (DeletedMul)
3173       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3174   }
3175 
3176   // If there are any add recurrences in the operands list, see if any other
3177   // added values are loop invariant.  If so, we can fold them into the
3178   // recurrence.
3179   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3180     ++Idx;
3181 
3182   // Scan over all recurrences, trying to fold loop invariants into them.
3183   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3184     // Scan all of the other operands to this mul and add them to the vector
3185     // if they are loop invariant w.r.t. the recurrence.
3186     SmallVector<const SCEV *, 8> LIOps;
3187     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3188     const Loop *AddRecLoop = AddRec->getLoop();
3189     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3190       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3191         LIOps.push_back(Ops[i]);
3192         Ops.erase(Ops.begin()+i);
3193         --i; --e;
3194       }
3195 
3196     // If we found some loop invariants, fold them into the recurrence.
3197     if (!LIOps.empty()) {
3198       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3199       SmallVector<const SCEV *, 4> NewOps;
3200       NewOps.reserve(AddRec->getNumOperands());
3201       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3202       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3203         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3204                                     SCEV::FlagAnyWrap, Depth + 1));
3205 
3206       // Build the new addrec. Propagate the NUW and NSW flags if both the
3207       // outer mul and the inner addrec are guaranteed to have no overflow.
3208       //
3209       // No self-wrap cannot be guaranteed after changing the step size, but
3210       // will be inferred if either NUW or NSW is true.
3211       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3212       const SCEV *NewRec = getAddRecExpr(
3213           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3214 
3215       // If all of the other operands were loop invariant, we are done.
3216       if (Ops.size() == 1) return NewRec;
3217 
3218       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3219       for (unsigned i = 0;; ++i)
3220         if (Ops[i] == AddRec) {
3221           Ops[i] = NewRec;
3222           break;
3223         }
3224       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3225     }
3226 
3227     // Okay, if there weren't any loop invariants to be folded, check to see
3228     // if there are multiple AddRec's with the same loop induction variable
3229     // being multiplied together.  If so, we can fold them.
3230 
3231     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3232     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3233     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3234     //   ]]],+,...up to x=2n}.
3235     // Note that the arguments to choose() are always integers with values
3236     // known at compile time, never SCEV objects.
3237     //
3238     // The implementation avoids pointless extra computations when the two
3239     // addrec's are of different length (mathematically, it's equivalent to
3240     // an infinite stream of zeros on the right).
3241     bool OpsModified = false;
3242     for (unsigned OtherIdx = Idx+1;
3243          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3244          ++OtherIdx) {
3245       const SCEVAddRecExpr *OtherAddRec =
3246         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3247       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3248         continue;
3249 
3250       // Limit max number of arguments to avoid creation of unreasonably big
3251       // SCEVAddRecs with very complex operands.
3252       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3253           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3254         continue;
3255 
3256       bool Overflow = false;
3257       Type *Ty = AddRec->getType();
3258       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3259       SmallVector<const SCEV*, 7> AddRecOps;
3260       for (int x = 0, xe = AddRec->getNumOperands() +
3261              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3262         SmallVector <const SCEV *, 7> SumOps;
3263         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3264           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3265           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3266                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3267                z < ze && !Overflow; ++z) {
3268             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3269             uint64_t Coeff;
3270             if (LargerThan64Bits)
3271               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3272             else
3273               Coeff = Coeff1*Coeff2;
3274             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3275             const SCEV *Term1 = AddRec->getOperand(y-z);
3276             const SCEV *Term2 = OtherAddRec->getOperand(z);
3277             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3278                                         SCEV::FlagAnyWrap, Depth + 1));
3279           }
3280         }
3281         if (SumOps.empty())
3282           SumOps.push_back(getZero(Ty));
3283         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3284       }
3285       if (!Overflow) {
3286         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3287                                               SCEV::FlagAnyWrap);
3288         if (Ops.size() == 2) return NewAddRec;
3289         Ops[Idx] = NewAddRec;
3290         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3291         OpsModified = true;
3292         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3293         if (!AddRec)
3294           break;
3295       }
3296     }
3297     if (OpsModified)
3298       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3299 
3300     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3301     // next one.
3302   }
3303 
3304   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3305   // already have one, otherwise create a new one.
3306   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3307 }
3308 
3309 /// Represents an unsigned remainder expression based on unsigned division.
3310 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3311                                          const SCEV *RHS) {
3312   assert(getEffectiveSCEVType(LHS->getType()) ==
3313          getEffectiveSCEVType(RHS->getType()) &&
3314          "SCEVURemExpr operand types don't match!");
3315 
3316   // Short-circuit easy cases
3317   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3318     // If constant is one, the result is trivial
3319     if (RHSC->getValue()->isOne())
3320       return getZero(LHS->getType()); // X urem 1 --> 0
3321 
3322     // If constant is a power of two, fold into a zext(trunc(LHS)).
3323     if (RHSC->getAPInt().isPowerOf2()) {
3324       Type *FullTy = LHS->getType();
3325       Type *TruncTy =
3326           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3327       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3328     }
3329   }
3330 
3331   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3332   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3333   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3334   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3335 }
3336 
3337 /// Get a canonical unsigned division expression, or something simpler if
3338 /// possible.
3339 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3340                                          const SCEV *RHS) {
3341   assert(!LHS->getType()->isPointerTy() &&
3342          "SCEVUDivExpr operand can't be pointer!");
3343   assert(LHS->getType() == RHS->getType() &&
3344          "SCEVUDivExpr operand types don't match!");
3345 
3346   FoldingSetNodeID ID;
3347   ID.AddInteger(scUDivExpr);
3348   ID.AddPointer(LHS);
3349   ID.AddPointer(RHS);
3350   void *IP = nullptr;
3351   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3352     return S;
3353 
3354   // 0 udiv Y == 0
3355   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3356     if (LHSC->getValue()->isZero())
3357       return LHS;
3358 
3359   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3360     if (RHSC->getValue()->isOne())
3361       return LHS;                               // X udiv 1 --> x
3362     // If the denominator is zero, the result of the udiv is undefined. Don't
3363     // try to analyze it, because the resolution chosen here may differ from
3364     // the resolution chosen in other parts of the compiler.
3365     if (!RHSC->getValue()->isZero()) {
3366       // Determine if the division can be folded into the operands of
3367       // its operands.
3368       // TODO: Generalize this to non-constants by using known-bits information.
3369       Type *Ty = LHS->getType();
3370       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3371       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3372       // For non-power-of-two values, effectively round the value up to the
3373       // nearest power of two.
3374       if (!RHSC->getAPInt().isPowerOf2())
3375         ++MaxShiftAmt;
3376       IntegerType *ExtTy =
3377         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3378       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3379         if (const SCEVConstant *Step =
3380             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3381           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3382           const APInt &StepInt = Step->getAPInt();
3383           const APInt &DivInt = RHSC->getAPInt();
3384           if (!StepInt.urem(DivInt) &&
3385               getZeroExtendExpr(AR, ExtTy) ==
3386               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3387                             getZeroExtendExpr(Step, ExtTy),
3388                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3389             SmallVector<const SCEV *, 4> Operands;
3390             for (const SCEV *Op : AR->operands())
3391               Operands.push_back(getUDivExpr(Op, RHS));
3392             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3393           }
3394           /// Get a canonical UDivExpr for a recurrence.
3395           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3396           // We can currently only fold X%N if X is constant.
3397           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3398           if (StartC && !DivInt.urem(StepInt) &&
3399               getZeroExtendExpr(AR, ExtTy) ==
3400               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3401                             getZeroExtendExpr(Step, ExtTy),
3402                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3403             const APInt &StartInt = StartC->getAPInt();
3404             const APInt &StartRem = StartInt.urem(StepInt);
3405             if (StartRem != 0) {
3406               const SCEV *NewLHS =
3407                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3408                                 AR->getLoop(), SCEV::FlagNW);
3409               if (LHS != NewLHS) {
3410                 LHS = NewLHS;
3411 
3412                 // Reset the ID to include the new LHS, and check if it is
3413                 // already cached.
3414                 ID.clear();
3415                 ID.AddInteger(scUDivExpr);
3416                 ID.AddPointer(LHS);
3417                 ID.AddPointer(RHS);
3418                 IP = nullptr;
3419                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3420                   return S;
3421               }
3422             }
3423           }
3424         }
3425       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3426       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3427         SmallVector<const SCEV *, 4> Operands;
3428         for (const SCEV *Op : M->operands())
3429           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3430         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3431           // Find an operand that's safely divisible.
3432           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3433             const SCEV *Op = M->getOperand(i);
3434             const SCEV *Div = getUDivExpr(Op, RHSC);
3435             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3436               Operands = SmallVector<const SCEV *, 4>(M->operands());
3437               Operands[i] = Div;
3438               return getMulExpr(Operands);
3439             }
3440           }
3441       }
3442 
3443       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3444       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3445         if (auto *DivisorConstant =
3446                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3447           bool Overflow = false;
3448           APInt NewRHS =
3449               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3450           if (Overflow) {
3451             return getConstant(RHSC->getType(), 0, false);
3452           }
3453           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3454         }
3455       }
3456 
3457       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3458       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3459         SmallVector<const SCEV *, 4> Operands;
3460         for (const SCEV *Op : A->operands())
3461           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3462         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3463           Operands.clear();
3464           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3465             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3466             if (isa<SCEVUDivExpr>(Op) ||
3467                 getMulExpr(Op, RHS) != A->getOperand(i))
3468               break;
3469             Operands.push_back(Op);
3470           }
3471           if (Operands.size() == A->getNumOperands())
3472             return getAddExpr(Operands);
3473         }
3474       }
3475 
3476       // Fold if both operands are constant.
3477       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3478         Constant *LHSCV = LHSC->getValue();
3479         Constant *RHSCV = RHSC->getValue();
3480         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3481                                                                    RHSCV)));
3482       }
3483     }
3484   }
3485 
3486   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3487   // changes). Make sure we get a new one.
3488   IP = nullptr;
3489   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3490   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3491                                              LHS, RHS);
3492   UniqueSCEVs.InsertNode(S, IP);
3493   registerUser(S, {LHS, RHS});
3494   return S;
3495 }
3496 
3497 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3498   APInt A = C1->getAPInt().abs();
3499   APInt B = C2->getAPInt().abs();
3500   uint32_t ABW = A.getBitWidth();
3501   uint32_t BBW = B.getBitWidth();
3502 
3503   if (ABW > BBW)
3504     B = B.zext(ABW);
3505   else if (ABW < BBW)
3506     A = A.zext(BBW);
3507 
3508   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3509 }
3510 
3511 /// Get a canonical unsigned division expression, or something simpler if
3512 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3513 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3514 /// it's not exact because the udiv may be clearing bits.
3515 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3516                                               const SCEV *RHS) {
3517   // TODO: we could try to find factors in all sorts of things, but for now we
3518   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3519   // end of this file for inspiration.
3520 
3521   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3522   if (!Mul || !Mul->hasNoUnsignedWrap())
3523     return getUDivExpr(LHS, RHS);
3524 
3525   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3526     // If the mulexpr multiplies by a constant, then that constant must be the
3527     // first element of the mulexpr.
3528     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3529       if (LHSCst == RHSCst) {
3530         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3531         return getMulExpr(Operands);
3532       }
3533 
3534       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3535       // that there's a factor provided by one of the other terms. We need to
3536       // check.
3537       APInt Factor = gcd(LHSCst, RHSCst);
3538       if (!Factor.isIntN(1)) {
3539         LHSCst =
3540             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3541         RHSCst =
3542             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3543         SmallVector<const SCEV *, 2> Operands;
3544         Operands.push_back(LHSCst);
3545         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3546         LHS = getMulExpr(Operands);
3547         RHS = RHSCst;
3548         Mul = dyn_cast<SCEVMulExpr>(LHS);
3549         if (!Mul)
3550           return getUDivExactExpr(LHS, RHS);
3551       }
3552     }
3553   }
3554 
3555   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3556     if (Mul->getOperand(i) == RHS) {
3557       SmallVector<const SCEV *, 2> Operands;
3558       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3559       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3560       return getMulExpr(Operands);
3561     }
3562   }
3563 
3564   return getUDivExpr(LHS, RHS);
3565 }
3566 
3567 /// Get an add recurrence expression for the specified loop.  Simplify the
3568 /// expression as much as possible.
3569 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3570                                            const Loop *L,
3571                                            SCEV::NoWrapFlags Flags) {
3572   SmallVector<const SCEV *, 4> Operands;
3573   Operands.push_back(Start);
3574   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3575     if (StepChrec->getLoop() == L) {
3576       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3577       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3578     }
3579 
3580   Operands.push_back(Step);
3581   return getAddRecExpr(Operands, L, Flags);
3582 }
3583 
3584 /// Get an add recurrence expression for the specified loop.  Simplify the
3585 /// expression as much as possible.
3586 const SCEV *
3587 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3588                                const Loop *L, SCEV::NoWrapFlags Flags) {
3589   if (Operands.size() == 1) return Operands[0];
3590 #ifndef NDEBUG
3591   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3592   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3593     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3594            "SCEVAddRecExpr operand types don't match!");
3595     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3596   }
3597   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3598     assert(isLoopInvariant(Operands[i], L) &&
3599            "SCEVAddRecExpr operand is not loop-invariant!");
3600 #endif
3601 
3602   if (Operands.back()->isZero()) {
3603     Operands.pop_back();
3604     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3605   }
3606 
3607   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3608   // use that information to infer NUW and NSW flags. However, computing a
3609   // BE count requires calling getAddRecExpr, so we may not yet have a
3610   // meaningful BE count at this point (and if we don't, we'd be stuck
3611   // with a SCEVCouldNotCompute as the cached BE count).
3612 
3613   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3614 
3615   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3616   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3617     const Loop *NestedLoop = NestedAR->getLoop();
3618     if (L->contains(NestedLoop)
3619             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3620             : (!NestedLoop->contains(L) &&
3621                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3622       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3623       Operands[0] = NestedAR->getStart();
3624       // AddRecs require their operands be loop-invariant with respect to their
3625       // loops. Don't perform this transformation if it would break this
3626       // requirement.
3627       bool AllInvariant = all_of(
3628           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3629 
3630       if (AllInvariant) {
3631         // Create a recurrence for the outer loop with the same step size.
3632         //
3633         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3634         // inner recurrence has the same property.
3635         SCEV::NoWrapFlags OuterFlags =
3636           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3637 
3638         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3639         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3640           return isLoopInvariant(Op, NestedLoop);
3641         });
3642 
3643         if (AllInvariant) {
3644           // Ok, both add recurrences are valid after the transformation.
3645           //
3646           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3647           // the outer recurrence has the same property.
3648           SCEV::NoWrapFlags InnerFlags =
3649             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3650           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3651         }
3652       }
3653       // Reset Operands to its original state.
3654       Operands[0] = NestedAR;
3655     }
3656   }
3657 
3658   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3659   // already have one, otherwise create a new one.
3660   return getOrCreateAddRecExpr(Operands, L, Flags);
3661 }
3662 
3663 const SCEV *
3664 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3665                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3666   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3667   // getSCEV(Base)->getType() has the same address space as Base->getType()
3668   // because SCEV::getType() preserves the address space.
3669   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3670   const bool AssumeInBoundsFlags = [&]() {
3671     if (!GEP->isInBounds())
3672       return false;
3673 
3674     // We'd like to propagate flags from the IR to the corresponding SCEV nodes,
3675     // but to do that, we have to ensure that said flag is valid in the entire
3676     // defined scope of the SCEV.
3677     auto *GEPI = dyn_cast<Instruction>(GEP);
3678     // TODO: non-instructions have global scope.  We might be able to prove
3679     // some global scope cases
3680     return GEPI && isSCEVExprNeverPoison(GEPI);
3681   }();
3682 
3683   SCEV::NoWrapFlags OffsetWrap =
3684     AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3685 
3686   Type *CurTy = GEP->getType();
3687   bool FirstIter = true;
3688   SmallVector<const SCEV *, 4> Offsets;
3689   for (const SCEV *IndexExpr : IndexExprs) {
3690     // Compute the (potentially symbolic) offset in bytes for this index.
3691     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3692       // For a struct, add the member offset.
3693       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3694       unsigned FieldNo = Index->getZExtValue();
3695       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3696       Offsets.push_back(FieldOffset);
3697 
3698       // Update CurTy to the type of the field at Index.
3699       CurTy = STy->getTypeAtIndex(Index);
3700     } else {
3701       // Update CurTy to its element type.
3702       if (FirstIter) {
3703         assert(isa<PointerType>(CurTy) &&
3704                "The first index of a GEP indexes a pointer");
3705         CurTy = GEP->getSourceElementType();
3706         FirstIter = false;
3707       } else {
3708         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3709       }
3710       // For an array, add the element offset, explicitly scaled.
3711       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3712       // Getelementptr indices are signed.
3713       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3714 
3715       // Multiply the index by the element size to compute the element offset.
3716       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3717       Offsets.push_back(LocalOffset);
3718     }
3719   }
3720 
3721   // Handle degenerate case of GEP without offsets.
3722   if (Offsets.empty())
3723     return BaseExpr;
3724 
3725   // Add the offsets together, assuming nsw if inbounds.
3726   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3727   // Add the base address and the offset. We cannot use the nsw flag, as the
3728   // base address is unsigned. However, if we know that the offset is
3729   // non-negative, we can use nuw.
3730   SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset)
3731                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3732   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3733   assert(BaseExpr->getType() == GEPExpr->getType() &&
3734          "GEP should not change type mid-flight.");
3735   return GEPExpr;
3736 }
3737 
3738 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3739                                                ArrayRef<const SCEV *> Ops) {
3740   FoldingSetNodeID ID;
3741   ID.AddInteger(SCEVType);
3742   for (const SCEV *Op : Ops)
3743     ID.AddPointer(Op);
3744   void *IP = nullptr;
3745   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3746 }
3747 
3748 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3749   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3750   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3751 }
3752 
3753 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3754                                            SmallVectorImpl<const SCEV *> &Ops) {
3755   assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!");
3756   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3757   if (Ops.size() == 1) return Ops[0];
3758 #ifndef NDEBUG
3759   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3760   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3761     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3762            "Operand types don't match!");
3763     assert(Ops[0]->getType()->isPointerTy() ==
3764                Ops[i]->getType()->isPointerTy() &&
3765            "min/max should be consistently pointerish");
3766   }
3767 #endif
3768 
3769   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3770   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3771 
3772   // Sort by complexity, this groups all similar expression types together.
3773   GroupByComplexity(Ops, &LI, DT);
3774 
3775   // Check if we have created the same expression before.
3776   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3777     return S;
3778   }
3779 
3780   // If there are any constants, fold them together.
3781   unsigned Idx = 0;
3782   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3783     ++Idx;
3784     assert(Idx < Ops.size());
3785     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3786       if (Kind == scSMaxExpr)
3787         return APIntOps::smax(LHS, RHS);
3788       else if (Kind == scSMinExpr)
3789         return APIntOps::smin(LHS, RHS);
3790       else if (Kind == scUMaxExpr)
3791         return APIntOps::umax(LHS, RHS);
3792       else if (Kind == scUMinExpr)
3793         return APIntOps::umin(LHS, RHS);
3794       llvm_unreachable("Unknown SCEV min/max opcode");
3795     };
3796 
3797     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3798       // We found two constants, fold them together!
3799       ConstantInt *Fold = ConstantInt::get(
3800           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3801       Ops[0] = getConstant(Fold);
3802       Ops.erase(Ops.begin()+1);  // Erase the folded element
3803       if (Ops.size() == 1) return Ops[0];
3804       LHSC = cast<SCEVConstant>(Ops[0]);
3805     }
3806 
3807     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3808     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3809 
3810     if (IsMax ? IsMinV : IsMaxV) {
3811       // If we are left with a constant minimum(/maximum)-int, strip it off.
3812       Ops.erase(Ops.begin());
3813       --Idx;
3814     } else if (IsMax ? IsMaxV : IsMinV) {
3815       // If we have a max(/min) with a constant maximum(/minimum)-int,
3816       // it will always be the extremum.
3817       return LHSC;
3818     }
3819 
3820     if (Ops.size() == 1) return Ops[0];
3821   }
3822 
3823   // Find the first operation of the same kind
3824   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3825     ++Idx;
3826 
3827   // Check to see if one of the operands is of the same kind. If so, expand its
3828   // operands onto our operand list, and recurse to simplify.
3829   if (Idx < Ops.size()) {
3830     bool DeletedAny = false;
3831     while (Ops[Idx]->getSCEVType() == Kind) {
3832       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3833       Ops.erase(Ops.begin()+Idx);
3834       Ops.append(SMME->op_begin(), SMME->op_end());
3835       DeletedAny = true;
3836     }
3837 
3838     if (DeletedAny)
3839       return getMinMaxExpr(Kind, Ops);
3840   }
3841 
3842   // Okay, check to see if the same value occurs in the operand list twice.  If
3843   // so, delete one.  Since we sorted the list, these values are required to
3844   // be adjacent.
3845   llvm::CmpInst::Predicate GEPred =
3846       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3847   llvm::CmpInst::Predicate LEPred =
3848       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3849   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3850   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3851   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3852     if (Ops[i] == Ops[i + 1] ||
3853         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3854       //  X op Y op Y  -->  X op Y
3855       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3856       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3857       --i;
3858       --e;
3859     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3860                                                Ops[i + 1])) {
3861       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3862       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3863       --i;
3864       --e;
3865     }
3866   }
3867 
3868   if (Ops.size() == 1) return Ops[0];
3869 
3870   assert(!Ops.empty() && "Reduced smax down to nothing!");
3871 
3872   // Okay, it looks like we really DO need an expr.  Check to see if we
3873   // already have one, otherwise create a new one.
3874   FoldingSetNodeID ID;
3875   ID.AddInteger(Kind);
3876   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3877     ID.AddPointer(Ops[i]);
3878   void *IP = nullptr;
3879   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3880   if (ExistingSCEV)
3881     return ExistingSCEV;
3882   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3883   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3884   SCEV *S = new (SCEVAllocator)
3885       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3886 
3887   UniqueSCEVs.InsertNode(S, IP);
3888   registerUser(S, Ops);
3889   return S;
3890 }
3891 
3892 namespace {
3893 
3894 class SCEVSequentialMinMaxDeduplicatingVisitor final
3895     : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor,
3896                          Optional<const SCEV *>> {
3897   using RetVal = Optional<const SCEV *>;
3898   using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>;
3899 
3900   ScalarEvolution &SE;
3901   const SCEVTypes RootKind; // Must be a sequential min/max expression.
3902   const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind.
3903   SmallPtrSet<const SCEV *, 16> SeenOps;
3904 
3905   bool canRecurseInto(SCEVTypes Kind) const {
3906     // We can only recurse into the SCEV expression of the same effective type
3907     // as the type of our root SCEV expression.
3908     return RootKind == Kind || NonSequentialRootKind == Kind;
3909   };
3910 
3911   RetVal visitAnyMinMaxExpr(const SCEV *S) {
3912     assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) &&
3913            "Only for min/max expressions.");
3914     SCEVTypes Kind = S->getSCEVType();
3915 
3916     if (!canRecurseInto(Kind))
3917       return S;
3918 
3919     auto *NAry = cast<SCEVNAryExpr>(S);
3920     SmallVector<const SCEV *> NewOps;
3921     bool Changed =
3922         visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps);
3923 
3924     if (!Changed)
3925       return S;
3926     if (NewOps.empty())
3927       return None;
3928 
3929     return isa<SCEVSequentialMinMaxExpr>(S)
3930                ? SE.getSequentialMinMaxExpr(Kind, NewOps)
3931                : SE.getMinMaxExpr(Kind, NewOps);
3932   }
3933 
3934   RetVal visit(const SCEV *S) {
3935     // Has the whole operand been seen already?
3936     if (!SeenOps.insert(S).second)
3937       return None;
3938     return Base::visit(S);
3939   }
3940 
3941 public:
3942   SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE,
3943                                            SCEVTypes RootKind)
3944       : SE(SE), RootKind(RootKind),
3945         NonSequentialRootKind(
3946             SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
3947                 RootKind)) {}
3948 
3949   bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps,
3950                          SmallVectorImpl<const SCEV *> &NewOps) {
3951     bool Changed = false;
3952     SmallVector<const SCEV *> Ops;
3953     Ops.reserve(OrigOps.size());
3954 
3955     for (const SCEV *Op : OrigOps) {
3956       RetVal NewOp = visit(Op);
3957       if (NewOp != Op)
3958         Changed = true;
3959       if (NewOp)
3960         Ops.emplace_back(*NewOp);
3961     }
3962 
3963     if (Changed)
3964       NewOps = std::move(Ops);
3965     return Changed;
3966   }
3967 
3968   RetVal visitConstant(const SCEVConstant *Constant) { return Constant; }
3969 
3970   RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; }
3971 
3972   RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; }
3973 
3974   RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; }
3975 
3976   RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; }
3977 
3978   RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; }
3979 
3980   RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; }
3981 
3982   RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; }
3983 
3984   RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
3985 
3986   RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) {
3987     return visitAnyMinMaxExpr(Expr);
3988   }
3989 
3990   RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) {
3991     return visitAnyMinMaxExpr(Expr);
3992   }
3993 
3994   RetVal visitSMinExpr(const SCEVSMinExpr *Expr) {
3995     return visitAnyMinMaxExpr(Expr);
3996   }
3997 
3998   RetVal visitUMinExpr(const SCEVUMinExpr *Expr) {
3999     return visitAnyMinMaxExpr(Expr);
4000   }
4001 
4002   RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) {
4003     return visitAnyMinMaxExpr(Expr);
4004   }
4005 
4006   RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; }
4007 
4008   RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; }
4009 };
4010 
4011 } // namespace
4012 
4013 const SCEV *
4014 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind,
4015                                          SmallVectorImpl<const SCEV *> &Ops) {
4016   assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) &&
4017          "Not a SCEVSequentialMinMaxExpr!");
4018   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
4019   if (Ops.size() == 1)
4020     return Ops[0];
4021   if (Ops.size() == 2 &&
4022       any_of(Ops, [](const SCEV *Op) { return isa<SCEVConstant>(Op); }))
4023     return getMinMaxExpr(
4024         SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind),
4025         Ops);
4026 #ifndef NDEBUG
4027   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
4028   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
4029     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
4030            "Operand types don't match!");
4031     assert(Ops[0]->getType()->isPointerTy() ==
4032                Ops[i]->getType()->isPointerTy() &&
4033            "min/max should be consistently pointerish");
4034   }
4035 #endif
4036 
4037   // Note that SCEVSequentialMinMaxExpr is *NOT* commutative,
4038   // so we can *NOT* do any kind of sorting of the expressions!
4039 
4040   // Check if we have created the same expression before.
4041   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops))
4042     return S;
4043 
4044   // FIXME: there are *some* simplifications that we can do here.
4045 
4046   // Keep only the first instance of an operand.
4047   {
4048     SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind);
4049     bool Changed = Deduplicator.visit(Kind, Ops, Ops);
4050     if (Changed)
4051       return getSequentialMinMaxExpr(Kind, Ops);
4052   }
4053 
4054   // Check to see if one of the operands is of the same kind. If so, expand its
4055   // operands onto our operand list, and recurse to simplify.
4056   {
4057     unsigned Idx = 0;
4058     bool DeletedAny = false;
4059     while (Idx < Ops.size()) {
4060       if (Ops[Idx]->getSCEVType() != Kind) {
4061         ++Idx;
4062         continue;
4063       }
4064       const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]);
4065       Ops.erase(Ops.begin() + Idx);
4066       Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end());
4067       DeletedAny = true;
4068     }
4069 
4070     if (DeletedAny)
4071       return getSequentialMinMaxExpr(Kind, Ops);
4072   }
4073 
4074   // Okay, it looks like we really DO need an expr.  Check to see if we
4075   // already have one, otherwise create a new one.
4076   FoldingSetNodeID ID;
4077   ID.AddInteger(Kind);
4078   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
4079     ID.AddPointer(Ops[i]);
4080   void *IP = nullptr;
4081   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
4082   if (ExistingSCEV)
4083     return ExistingSCEV;
4084 
4085   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
4086   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
4087   SCEV *S = new (SCEVAllocator)
4088       SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
4089 
4090   UniqueSCEVs.InsertNode(S, IP);
4091   registerUser(S, Ops);
4092   return S;
4093 }
4094 
4095 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4096   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4097   return getSMaxExpr(Ops);
4098 }
4099 
4100 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4101   return getMinMaxExpr(scSMaxExpr, Ops);
4102 }
4103 
4104 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
4105   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
4106   return getUMaxExpr(Ops);
4107 }
4108 
4109 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
4110   return getMinMaxExpr(scUMaxExpr, Ops);
4111 }
4112 
4113 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
4114                                          const SCEV *RHS) {
4115   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4116   return getSMinExpr(Ops);
4117 }
4118 
4119 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
4120   return getMinMaxExpr(scSMinExpr, Ops);
4121 }
4122 
4123 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS,
4124                                          bool Sequential) {
4125   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4126   return getUMinExpr(Ops, Sequential);
4127 }
4128 
4129 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops,
4130                                          bool Sequential) {
4131   return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops)
4132                     : getMinMaxExpr(scUMinExpr, Ops);
4133 }
4134 
4135 const SCEV *
4136 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
4137                                              ScalableVectorType *ScalableTy) {
4138   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
4139   Constant *One = ConstantInt::get(IntTy, 1);
4140   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
4141   // Note that the expression we created is the final expression, we don't
4142   // want to simplify it any further Also, if we call a normal getSCEV(),
4143   // we'll end up in an endless recursion. So just create an SCEVUnknown.
4144   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
4145 }
4146 
4147 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
4148   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
4149     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
4150   // We can bypass creating a target-independent constant expression and then
4151   // folding it back into a ConstantInt. This is just a compile-time
4152   // optimization.
4153   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
4154 }
4155 
4156 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
4157   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
4158     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
4159   // We can bypass creating a target-independent constant expression and then
4160   // folding it back into a ConstantInt. This is just a compile-time
4161   // optimization.
4162   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
4163 }
4164 
4165 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
4166                                              StructType *STy,
4167                                              unsigned FieldNo) {
4168   // We can bypass creating a target-independent constant expression and then
4169   // folding it back into a ConstantInt. This is just a compile-time
4170   // optimization.
4171   return getConstant(
4172       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
4173 }
4174 
4175 const SCEV *ScalarEvolution::getUnknown(Value *V) {
4176   // Don't attempt to do anything other than create a SCEVUnknown object
4177   // here.  createSCEV only calls getUnknown after checking for all other
4178   // interesting possibilities, and any other code that calls getUnknown
4179   // is doing so in order to hide a value from SCEV canonicalization.
4180 
4181   FoldingSetNodeID ID;
4182   ID.AddInteger(scUnknown);
4183   ID.AddPointer(V);
4184   void *IP = nullptr;
4185   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
4186     assert(cast<SCEVUnknown>(S)->getValue() == V &&
4187            "Stale SCEVUnknown in uniquing map!");
4188     return S;
4189   }
4190   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
4191                                             FirstUnknown);
4192   FirstUnknown = cast<SCEVUnknown>(S);
4193   UniqueSCEVs.InsertNode(S, IP);
4194   return S;
4195 }
4196 
4197 //===----------------------------------------------------------------------===//
4198 //            Basic SCEV Analysis and PHI Idiom Recognition Code
4199 //
4200 
4201 /// Test if values of the given type are analyzable within the SCEV
4202 /// framework. This primarily includes integer types, and it can optionally
4203 /// include pointer types if the ScalarEvolution class has access to
4204 /// target-specific information.
4205 bool ScalarEvolution::isSCEVable(Type *Ty) const {
4206   // Integers and pointers are always SCEVable.
4207   return Ty->isIntOrPtrTy();
4208 }
4209 
4210 /// Return the size in bits of the specified type, for which isSCEVable must
4211 /// return true.
4212 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
4213   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4214   if (Ty->isPointerTy())
4215     return getDataLayout().getIndexTypeSizeInBits(Ty);
4216   return getDataLayout().getTypeSizeInBits(Ty);
4217 }
4218 
4219 /// Return a type with the same bitwidth as the given type and which represents
4220 /// how SCEV will treat the given type, for which isSCEVable must return
4221 /// true. For pointer types, this is the pointer index sized integer type.
4222 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
4223   assert(isSCEVable(Ty) && "Type is not SCEVable!");
4224 
4225   if (Ty->isIntegerTy())
4226     return Ty;
4227 
4228   // The only other support type is pointer.
4229   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
4230   return getDataLayout().getIndexType(Ty);
4231 }
4232 
4233 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
4234   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
4235 }
4236 
4237 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A,
4238                                                          const SCEV *B) {
4239   /// For a valid use point to exist, the defining scope of one operand
4240   /// must dominate the other.
4241   bool PreciseA, PreciseB;
4242   auto *ScopeA = getDefiningScopeBound({A}, PreciseA);
4243   auto *ScopeB = getDefiningScopeBound({B}, PreciseB);
4244   if (!PreciseA || !PreciseB)
4245     // Can't tell.
4246     return false;
4247   return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) ||
4248     DT.dominates(ScopeB, ScopeA);
4249 }
4250 
4251 
4252 const SCEV *ScalarEvolution::getCouldNotCompute() {
4253   return CouldNotCompute.get();
4254 }
4255 
4256 bool ScalarEvolution::checkValidity(const SCEV *S) const {
4257   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
4258     auto *SU = dyn_cast<SCEVUnknown>(S);
4259     return SU && SU->getValue() == nullptr;
4260   });
4261 
4262   return !ContainsNulls;
4263 }
4264 
4265 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
4266   HasRecMapType::iterator I = HasRecMap.find(S);
4267   if (I != HasRecMap.end())
4268     return I->second;
4269 
4270   bool FoundAddRec =
4271       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
4272   HasRecMap.insert({S, FoundAddRec});
4273   return FoundAddRec;
4274 }
4275 
4276 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
4277 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
4278 /// offset I, then return {S', I}, else return {\p S, nullptr}.
4279 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
4280   const auto *Add = dyn_cast<SCEVAddExpr>(S);
4281   if (!Add)
4282     return {S, nullptr};
4283 
4284   if (Add->getNumOperands() != 2)
4285     return {S, nullptr};
4286 
4287   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4288   if (!ConstOp)
4289     return {S, nullptr};
4290 
4291   return {Add->getOperand(1), ConstOp->getValue()};
4292 }
4293 
4294 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4295 /// by the value and offset from any ValueOffsetPair in the set.
4296 ScalarEvolution::ValueOffsetPairSetVector *
4297 ScalarEvolution::getSCEVValues(const SCEV *S) {
4298   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4299   if (SI == ExprValueMap.end())
4300     return nullptr;
4301 #ifndef NDEBUG
4302   if (VerifySCEVMap) {
4303     // Check there is no dangling Value in the set returned.
4304     for (const auto &VE : SI->second)
4305       assert(ValueExprMap.count(VE.first));
4306   }
4307 #endif
4308   return &SI->second;
4309 }
4310 
4311 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4312 /// cannot be used separately. eraseValueFromMap should be used to remove
4313 /// V from ValueExprMap and ExprValueMap at the same time.
4314 void ScalarEvolution::eraseValueFromMap(Value *V) {
4315   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4316   if (I != ValueExprMap.end()) {
4317     const SCEV *S = I->second;
4318     // Remove {V, 0} from the set of ExprValueMap[S]
4319     if (auto *SV = getSCEVValues(S))
4320       SV->remove({V, nullptr});
4321 
4322     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4323     const SCEV *Stripped;
4324     ConstantInt *Offset;
4325     std::tie(Stripped, Offset) = splitAddExpr(S);
4326     if (Offset != nullptr) {
4327       if (auto *SV = getSCEVValues(Stripped))
4328         SV->remove({V, Offset});
4329     }
4330     ValueExprMap.erase(V);
4331   }
4332 }
4333 
4334 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) {
4335   // A recursive query may have already computed the SCEV. It should be
4336   // equivalent, but may not necessarily be exactly the same, e.g. due to lazily
4337   // inferred nowrap flags.
4338   auto It = ValueExprMap.find_as(V);
4339   if (It == ValueExprMap.end()) {
4340     ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4341     ExprValueMap[S].insert({V, nullptr});
4342   }
4343 }
4344 
4345 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4346 /// create a new one.
4347 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4348   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4349 
4350   const SCEV *S = getExistingSCEV(V);
4351   if (S == nullptr) {
4352     S = createSCEV(V);
4353     // During PHI resolution, it is possible to create two SCEVs for the same
4354     // V, so it is needed to double check whether V->S is inserted into
4355     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4356     std::pair<ValueExprMapType::iterator, bool> Pair =
4357         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4358     if (Pair.second) {
4359       ExprValueMap[S].insert({V, nullptr});
4360 
4361       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4362       // ExprValueMap.
4363       const SCEV *Stripped = S;
4364       ConstantInt *Offset = nullptr;
4365       std::tie(Stripped, Offset) = splitAddExpr(S);
4366       // If stripped is SCEVUnknown, don't bother to save
4367       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4368       // increase the complexity of the expansion code.
4369       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4370       // because it may generate add/sub instead of GEP in SCEV expansion.
4371       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4372           !isa<GetElementPtrInst>(V))
4373         ExprValueMap[Stripped].insert({V, Offset});
4374     }
4375   }
4376   return S;
4377 }
4378 
4379 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4380   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4381 
4382   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4383   if (I != ValueExprMap.end()) {
4384     const SCEV *S = I->second;
4385     assert(checkValidity(S) &&
4386            "existing SCEV has not been properly invalidated");
4387     return S;
4388   }
4389   return nullptr;
4390 }
4391 
4392 /// Return a SCEV corresponding to -V = -1*V
4393 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4394                                              SCEV::NoWrapFlags Flags) {
4395   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4396     return getConstant(
4397                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4398 
4399   Type *Ty = V->getType();
4400   Ty = getEffectiveSCEVType(Ty);
4401   return getMulExpr(V, getMinusOne(Ty), Flags);
4402 }
4403 
4404 /// If Expr computes ~A, return A else return nullptr
4405 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4406   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4407   if (!Add || Add->getNumOperands() != 2 ||
4408       !Add->getOperand(0)->isAllOnesValue())
4409     return nullptr;
4410 
4411   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4412   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4413       !AddRHS->getOperand(0)->isAllOnesValue())
4414     return nullptr;
4415 
4416   return AddRHS->getOperand(1);
4417 }
4418 
4419 /// Return a SCEV corresponding to ~V = -1-V
4420 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4421   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4422 
4423   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4424     return getConstant(
4425                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4426 
4427   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4428   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4429     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4430       SmallVector<const SCEV *, 2> MatchedOperands;
4431       for (const SCEV *Operand : MME->operands()) {
4432         const SCEV *Matched = MatchNotExpr(Operand);
4433         if (!Matched)
4434           return (const SCEV *)nullptr;
4435         MatchedOperands.push_back(Matched);
4436       }
4437       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4438                            MatchedOperands);
4439     };
4440     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4441       return Replaced;
4442   }
4443 
4444   Type *Ty = V->getType();
4445   Ty = getEffectiveSCEVType(Ty);
4446   return getMinusSCEV(getMinusOne(Ty), V);
4447 }
4448 
4449 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4450   assert(P->getType()->isPointerTy());
4451 
4452   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4453     // The base of an AddRec is the first operand.
4454     SmallVector<const SCEV *> Ops{AddRec->operands()};
4455     Ops[0] = removePointerBase(Ops[0]);
4456     // Don't try to transfer nowrap flags for now. We could in some cases
4457     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4458     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4459   }
4460   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4461     // The base of an Add is the pointer operand.
4462     SmallVector<const SCEV *> Ops{Add->operands()};
4463     const SCEV **PtrOp = nullptr;
4464     for (const SCEV *&AddOp : Ops) {
4465       if (AddOp->getType()->isPointerTy()) {
4466         assert(!PtrOp && "Cannot have multiple pointer ops");
4467         PtrOp = &AddOp;
4468       }
4469     }
4470     *PtrOp = removePointerBase(*PtrOp);
4471     // Don't try to transfer nowrap flags for now. We could in some cases
4472     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4473     return getAddExpr(Ops);
4474   }
4475   // Any other expression must be a pointer base.
4476   return getZero(P->getType());
4477 }
4478 
4479 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4480                                           SCEV::NoWrapFlags Flags,
4481                                           unsigned Depth) {
4482   // Fast path: X - X --> 0.
4483   if (LHS == RHS)
4484     return getZero(LHS->getType());
4485 
4486   // If we subtract two pointers with different pointer bases, bail.
4487   // Eventually, we're going to add an assertion to getMulExpr that we
4488   // can't multiply by a pointer.
4489   if (RHS->getType()->isPointerTy()) {
4490     if (!LHS->getType()->isPointerTy() ||
4491         getPointerBase(LHS) != getPointerBase(RHS))
4492       return getCouldNotCompute();
4493     LHS = removePointerBase(LHS);
4494     RHS = removePointerBase(RHS);
4495   }
4496 
4497   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4498   // makes it so that we cannot make much use of NUW.
4499   auto AddFlags = SCEV::FlagAnyWrap;
4500   const bool RHSIsNotMinSigned =
4501       !getSignedRangeMin(RHS).isMinSignedValue();
4502   if (hasFlags(Flags, SCEV::FlagNSW)) {
4503     // Let M be the minimum representable signed value. Then (-1)*RHS
4504     // signed-wraps if and only if RHS is M. That can happen even for
4505     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4506     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4507     // (-1)*RHS, we need to prove that RHS != M.
4508     //
4509     // If LHS is non-negative and we know that LHS - RHS does not
4510     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4511     // either by proving that RHS > M or that LHS >= 0.
4512     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4513       AddFlags = SCEV::FlagNSW;
4514     }
4515   }
4516 
4517   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4518   // RHS is NSW and LHS >= 0.
4519   //
4520   // The difficulty here is that the NSW flag may have been proven
4521   // relative to a loop that is to be found in a recurrence in LHS and
4522   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4523   // larger scope than intended.
4524   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4525 
4526   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4527 }
4528 
4529 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4530                                                      unsigned Depth) {
4531   Type *SrcTy = V->getType();
4532   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4533          "Cannot truncate or zero extend with non-integer arguments!");
4534   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4535     return V;  // No conversion
4536   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4537     return getTruncateExpr(V, Ty, Depth);
4538   return getZeroExtendExpr(V, Ty, Depth);
4539 }
4540 
4541 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4542                                                      unsigned Depth) {
4543   Type *SrcTy = V->getType();
4544   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4545          "Cannot truncate or zero extend with non-integer arguments!");
4546   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4547     return V;  // No conversion
4548   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4549     return getTruncateExpr(V, Ty, Depth);
4550   return getSignExtendExpr(V, Ty, Depth);
4551 }
4552 
4553 const SCEV *
4554 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4555   Type *SrcTy = V->getType();
4556   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4557          "Cannot noop or zero extend with non-integer arguments!");
4558   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4559          "getNoopOrZeroExtend cannot truncate!");
4560   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4561     return V;  // No conversion
4562   return getZeroExtendExpr(V, Ty);
4563 }
4564 
4565 const SCEV *
4566 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4567   Type *SrcTy = V->getType();
4568   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4569          "Cannot noop or sign extend with non-integer arguments!");
4570   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4571          "getNoopOrSignExtend cannot truncate!");
4572   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4573     return V;  // No conversion
4574   return getSignExtendExpr(V, Ty);
4575 }
4576 
4577 const SCEV *
4578 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4579   Type *SrcTy = V->getType();
4580   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4581          "Cannot noop or any extend with non-integer arguments!");
4582   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4583          "getNoopOrAnyExtend cannot truncate!");
4584   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4585     return V;  // No conversion
4586   return getAnyExtendExpr(V, Ty);
4587 }
4588 
4589 const SCEV *
4590 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4591   Type *SrcTy = V->getType();
4592   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4593          "Cannot truncate or noop with non-integer arguments!");
4594   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4595          "getTruncateOrNoop cannot extend!");
4596   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4597     return V;  // No conversion
4598   return getTruncateExpr(V, Ty);
4599 }
4600 
4601 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4602                                                         const SCEV *RHS) {
4603   const SCEV *PromotedLHS = LHS;
4604   const SCEV *PromotedRHS = RHS;
4605 
4606   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4607     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4608   else
4609     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4610 
4611   return getUMaxExpr(PromotedLHS, PromotedRHS);
4612 }
4613 
4614 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4615                                                         const SCEV *RHS,
4616                                                         bool Sequential) {
4617   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4618   return getUMinFromMismatchedTypes(Ops, Sequential);
4619 }
4620 
4621 const SCEV *
4622 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops,
4623                                             bool Sequential) {
4624   assert(!Ops.empty() && "At least one operand must be!");
4625   // Trivial case.
4626   if (Ops.size() == 1)
4627     return Ops[0];
4628 
4629   // Find the max type first.
4630   Type *MaxType = nullptr;
4631   for (auto *S : Ops)
4632     if (MaxType)
4633       MaxType = getWiderType(MaxType, S->getType());
4634     else
4635       MaxType = S->getType();
4636   assert(MaxType && "Failed to find maximum type!");
4637 
4638   // Extend all ops to max type.
4639   SmallVector<const SCEV *, 2> PromotedOps;
4640   for (auto *S : Ops)
4641     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4642 
4643   // Generate umin.
4644   return getUMinExpr(PromotedOps, Sequential);
4645 }
4646 
4647 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4648   // A pointer operand may evaluate to a nonpointer expression, such as null.
4649   if (!V->getType()->isPointerTy())
4650     return V;
4651 
4652   while (true) {
4653     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4654       V = AddRec->getStart();
4655     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4656       const SCEV *PtrOp = nullptr;
4657       for (const SCEV *AddOp : Add->operands()) {
4658         if (AddOp->getType()->isPointerTy()) {
4659           assert(!PtrOp && "Cannot have multiple pointer ops");
4660           PtrOp = AddOp;
4661         }
4662       }
4663       assert(PtrOp && "Must have pointer op");
4664       V = PtrOp;
4665     } else // Not something we can look further into.
4666       return V;
4667   }
4668 }
4669 
4670 /// Push users of the given Instruction onto the given Worklist.
4671 static void PushDefUseChildren(Instruction *I,
4672                                SmallVectorImpl<Instruction *> &Worklist,
4673                                SmallPtrSetImpl<Instruction *> &Visited) {
4674   // Push the def-use children onto the Worklist stack.
4675   for (User *U : I->users()) {
4676     auto *UserInsn = cast<Instruction>(U);
4677     if (Visited.insert(UserInsn).second)
4678       Worklist.push_back(UserInsn);
4679   }
4680 }
4681 
4682 namespace {
4683 
4684 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4685 /// expression in case its Loop is L. If it is not L then
4686 /// if IgnoreOtherLoops is true then use AddRec itself
4687 /// otherwise rewrite cannot be done.
4688 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4689 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4690 public:
4691   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4692                              bool IgnoreOtherLoops = true) {
4693     SCEVInitRewriter Rewriter(L, SE);
4694     const SCEV *Result = Rewriter.visit(S);
4695     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4696       return SE.getCouldNotCompute();
4697     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4698                ? SE.getCouldNotCompute()
4699                : Result;
4700   }
4701 
4702   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4703     if (!SE.isLoopInvariant(Expr, L))
4704       SeenLoopVariantSCEVUnknown = true;
4705     return Expr;
4706   }
4707 
4708   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4709     // Only re-write AddRecExprs for this loop.
4710     if (Expr->getLoop() == L)
4711       return Expr->getStart();
4712     SeenOtherLoops = true;
4713     return Expr;
4714   }
4715 
4716   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4717 
4718   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4719 
4720 private:
4721   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4722       : SCEVRewriteVisitor(SE), L(L) {}
4723 
4724   const Loop *L;
4725   bool SeenLoopVariantSCEVUnknown = false;
4726   bool SeenOtherLoops = false;
4727 };
4728 
4729 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4730 /// increment expression in case its Loop is L. If it is not L then
4731 /// use AddRec itself.
4732 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4733 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4734 public:
4735   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4736     SCEVPostIncRewriter Rewriter(L, SE);
4737     const SCEV *Result = Rewriter.visit(S);
4738     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4739         ? SE.getCouldNotCompute()
4740         : Result;
4741   }
4742 
4743   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4744     if (!SE.isLoopInvariant(Expr, L))
4745       SeenLoopVariantSCEVUnknown = true;
4746     return Expr;
4747   }
4748 
4749   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4750     // Only re-write AddRecExprs for this loop.
4751     if (Expr->getLoop() == L)
4752       return Expr->getPostIncExpr(SE);
4753     SeenOtherLoops = true;
4754     return Expr;
4755   }
4756 
4757   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4758 
4759   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4760 
4761 private:
4762   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4763       : SCEVRewriteVisitor(SE), L(L) {}
4764 
4765   const Loop *L;
4766   bool SeenLoopVariantSCEVUnknown = false;
4767   bool SeenOtherLoops = false;
4768 };
4769 
4770 /// This class evaluates the compare condition by matching it against the
4771 /// condition of loop latch. If there is a match we assume a true value
4772 /// for the condition while building SCEV nodes.
4773 class SCEVBackedgeConditionFolder
4774     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4775 public:
4776   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4777                              ScalarEvolution &SE) {
4778     bool IsPosBECond = false;
4779     Value *BECond = nullptr;
4780     if (BasicBlock *Latch = L->getLoopLatch()) {
4781       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4782       if (BI && BI->isConditional()) {
4783         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4784                "Both outgoing branches should not target same header!");
4785         BECond = BI->getCondition();
4786         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4787       } else {
4788         return S;
4789       }
4790     }
4791     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4792     return Rewriter.visit(S);
4793   }
4794 
4795   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4796     const SCEV *Result = Expr;
4797     bool InvariantF = SE.isLoopInvariant(Expr, L);
4798 
4799     if (!InvariantF) {
4800       Instruction *I = cast<Instruction>(Expr->getValue());
4801       switch (I->getOpcode()) {
4802       case Instruction::Select: {
4803         SelectInst *SI = cast<SelectInst>(I);
4804         Optional<const SCEV *> Res =
4805             compareWithBackedgeCondition(SI->getCondition());
4806         if (Res.hasValue()) {
4807           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4808           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4809         }
4810         break;
4811       }
4812       default: {
4813         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4814         if (Res.hasValue())
4815           Result = Res.getValue();
4816         break;
4817       }
4818       }
4819     }
4820     return Result;
4821   }
4822 
4823 private:
4824   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4825                                        bool IsPosBECond, ScalarEvolution &SE)
4826       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4827         IsPositiveBECond(IsPosBECond) {}
4828 
4829   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4830 
4831   const Loop *L;
4832   /// Loop back condition.
4833   Value *BackedgeCond = nullptr;
4834   /// Set to true if loop back is on positive branch condition.
4835   bool IsPositiveBECond;
4836 };
4837 
4838 Optional<const SCEV *>
4839 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4840 
4841   // If value matches the backedge condition for loop latch,
4842   // then return a constant evolution node based on loopback
4843   // branch taken.
4844   if (BackedgeCond == IC)
4845     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4846                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4847   return None;
4848 }
4849 
4850 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4851 public:
4852   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4853                              ScalarEvolution &SE) {
4854     SCEVShiftRewriter Rewriter(L, SE);
4855     const SCEV *Result = Rewriter.visit(S);
4856     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4857   }
4858 
4859   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4860     // Only allow AddRecExprs for this loop.
4861     if (!SE.isLoopInvariant(Expr, L))
4862       Valid = false;
4863     return Expr;
4864   }
4865 
4866   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4867     if (Expr->getLoop() == L && Expr->isAffine())
4868       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4869     Valid = false;
4870     return Expr;
4871   }
4872 
4873   bool isValid() { return Valid; }
4874 
4875 private:
4876   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4877       : SCEVRewriteVisitor(SE), L(L) {}
4878 
4879   const Loop *L;
4880   bool Valid = true;
4881 };
4882 
4883 } // end anonymous namespace
4884 
4885 SCEV::NoWrapFlags
4886 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4887   if (!AR->isAffine())
4888     return SCEV::FlagAnyWrap;
4889 
4890   using OBO = OverflowingBinaryOperator;
4891 
4892   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4893 
4894   if (!AR->hasNoSignedWrap()) {
4895     ConstantRange AddRecRange = getSignedRange(AR);
4896     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4897 
4898     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4899         Instruction::Add, IncRange, OBO::NoSignedWrap);
4900     if (NSWRegion.contains(AddRecRange))
4901       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4902   }
4903 
4904   if (!AR->hasNoUnsignedWrap()) {
4905     ConstantRange AddRecRange = getUnsignedRange(AR);
4906     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4907 
4908     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4909         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4910     if (NUWRegion.contains(AddRecRange))
4911       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4912   }
4913 
4914   return Result;
4915 }
4916 
4917 SCEV::NoWrapFlags
4918 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4919   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4920 
4921   if (AR->hasNoSignedWrap())
4922     return Result;
4923 
4924   if (!AR->isAffine())
4925     return Result;
4926 
4927   const SCEV *Step = AR->getStepRecurrence(*this);
4928   const Loop *L = AR->getLoop();
4929 
4930   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4931   // Note that this serves two purposes: It filters out loops that are
4932   // simply not analyzable, and it covers the case where this code is
4933   // being called from within backedge-taken count analysis, such that
4934   // attempting to ask for the backedge-taken count would likely result
4935   // in infinite recursion. In the later case, the analysis code will
4936   // cope with a conservative value, and it will take care to purge
4937   // that value once it has finished.
4938   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4939 
4940   // Normally, in the cases we can prove no-overflow via a
4941   // backedge guarding condition, we can also compute a backedge
4942   // taken count for the loop.  The exceptions are assumptions and
4943   // guards present in the loop -- SCEV is not great at exploiting
4944   // these to compute max backedge taken counts, but can still use
4945   // these to prove lack of overflow.  Use this fact to avoid
4946   // doing extra work that may not pay off.
4947 
4948   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4949       AC.assumptions().empty())
4950     return Result;
4951 
4952   // If the backedge is guarded by a comparison with the pre-inc  value the
4953   // addrec is safe. Also, if the entry is guarded by a comparison with the
4954   // start value and the backedge is guarded by a comparison with the post-inc
4955   // value, the addrec is safe.
4956   ICmpInst::Predicate Pred;
4957   const SCEV *OverflowLimit =
4958     getSignedOverflowLimitForStep(Step, &Pred, this);
4959   if (OverflowLimit &&
4960       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4961        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4962     Result = setFlags(Result, SCEV::FlagNSW);
4963   }
4964   return Result;
4965 }
4966 SCEV::NoWrapFlags
4967 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4968   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4969 
4970   if (AR->hasNoUnsignedWrap())
4971     return Result;
4972 
4973   if (!AR->isAffine())
4974     return Result;
4975 
4976   const SCEV *Step = AR->getStepRecurrence(*this);
4977   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4978   const Loop *L = AR->getLoop();
4979 
4980   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4981   // Note that this serves two purposes: It filters out loops that are
4982   // simply not analyzable, and it covers the case where this code is
4983   // being called from within backedge-taken count analysis, such that
4984   // attempting to ask for the backedge-taken count would likely result
4985   // in infinite recursion. In the later case, the analysis code will
4986   // cope with a conservative value, and it will take care to purge
4987   // that value once it has finished.
4988   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4989 
4990   // Normally, in the cases we can prove no-overflow via a
4991   // backedge guarding condition, we can also compute a backedge
4992   // taken count for the loop.  The exceptions are assumptions and
4993   // guards present in the loop -- SCEV is not great at exploiting
4994   // these to compute max backedge taken counts, but can still use
4995   // these to prove lack of overflow.  Use this fact to avoid
4996   // doing extra work that may not pay off.
4997 
4998   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4999       AC.assumptions().empty())
5000     return Result;
5001 
5002   // If the backedge is guarded by a comparison with the pre-inc  value the
5003   // addrec is safe. Also, if the entry is guarded by a comparison with the
5004   // start value and the backedge is guarded by a comparison with the post-inc
5005   // value, the addrec is safe.
5006   if (isKnownPositive(Step)) {
5007     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
5008                                 getUnsignedRangeMax(Step));
5009     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
5010         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
5011       Result = setFlags(Result, SCEV::FlagNUW);
5012     }
5013   }
5014 
5015   return Result;
5016 }
5017 
5018 namespace {
5019 
5020 /// Represents an abstract binary operation.  This may exist as a
5021 /// normal instruction or constant expression, or may have been
5022 /// derived from an expression tree.
5023 struct BinaryOp {
5024   unsigned Opcode;
5025   Value *LHS;
5026   Value *RHS;
5027   bool IsNSW = false;
5028   bool IsNUW = false;
5029 
5030   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
5031   /// constant expression.
5032   Operator *Op = nullptr;
5033 
5034   explicit BinaryOp(Operator *Op)
5035       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
5036         Op(Op) {
5037     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
5038       IsNSW = OBO->hasNoSignedWrap();
5039       IsNUW = OBO->hasNoUnsignedWrap();
5040     }
5041   }
5042 
5043   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
5044                     bool IsNUW = false)
5045       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
5046 };
5047 
5048 } // end anonymous namespace
5049 
5050 /// Try to map \p V into a BinaryOp, and return \c None on failure.
5051 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
5052   auto *Op = dyn_cast<Operator>(V);
5053   if (!Op)
5054     return None;
5055 
5056   // Implementation detail: all the cleverness here should happen without
5057   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
5058   // SCEV expressions when possible, and we should not break that.
5059 
5060   switch (Op->getOpcode()) {
5061   case Instruction::Add:
5062   case Instruction::Sub:
5063   case Instruction::Mul:
5064   case Instruction::UDiv:
5065   case Instruction::URem:
5066   case Instruction::And:
5067   case Instruction::Or:
5068   case Instruction::AShr:
5069   case Instruction::Shl:
5070     return BinaryOp(Op);
5071 
5072   case Instruction::Xor:
5073     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
5074       // If the RHS of the xor is a signmask, then this is just an add.
5075       // Instcombine turns add of signmask into xor as a strength reduction step.
5076       if (RHSC->getValue().isSignMask())
5077         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5078     // Binary `xor` is a bit-wise `add`.
5079     if (V->getType()->isIntegerTy(1))
5080       return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
5081     return BinaryOp(Op);
5082 
5083   case Instruction::LShr:
5084     // Turn logical shift right of a constant into a unsigned divide.
5085     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
5086       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
5087 
5088       // If the shift count is not less than the bitwidth, the result of
5089       // the shift is undefined. Don't try to analyze it, because the
5090       // resolution chosen here may differ from the resolution chosen in
5091       // other parts of the compiler.
5092       if (SA->getValue().ult(BitWidth)) {
5093         Constant *X =
5094             ConstantInt::get(SA->getContext(),
5095                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5096         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
5097       }
5098     }
5099     return BinaryOp(Op);
5100 
5101   case Instruction::ExtractValue: {
5102     auto *EVI = cast<ExtractValueInst>(Op);
5103     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
5104       break;
5105 
5106     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
5107     if (!WO)
5108       break;
5109 
5110     Instruction::BinaryOps BinOp = WO->getBinaryOp();
5111     bool Signed = WO->isSigned();
5112     // TODO: Should add nuw/nsw flags for mul as well.
5113     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
5114       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
5115 
5116     // Now that we know that all uses of the arithmetic-result component of
5117     // CI are guarded by the overflow check, we can go ahead and pretend
5118     // that the arithmetic is non-overflowing.
5119     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
5120                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
5121   }
5122 
5123   default:
5124     break;
5125   }
5126 
5127   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
5128   // semantics as a Sub, return a binary sub expression.
5129   if (auto *II = dyn_cast<IntrinsicInst>(V))
5130     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
5131       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
5132 
5133   return None;
5134 }
5135 
5136 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
5137 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
5138 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
5139 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
5140 /// follows one of the following patterns:
5141 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5142 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
5143 /// If the SCEV expression of \p Op conforms with one of the expected patterns
5144 /// we return the type of the truncation operation, and indicate whether the
5145 /// truncated type should be treated as signed/unsigned by setting
5146 /// \p Signed to true/false, respectively.
5147 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
5148                                bool &Signed, ScalarEvolution &SE) {
5149   // The case where Op == SymbolicPHI (that is, with no type conversions on
5150   // the way) is handled by the regular add recurrence creating logic and
5151   // would have already been triggered in createAddRecForPHI. Reaching it here
5152   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
5153   // because one of the other operands of the SCEVAddExpr updating this PHI is
5154   // not invariant).
5155   //
5156   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
5157   // this case predicates that allow us to prove that Op == SymbolicPHI will
5158   // be added.
5159   if (Op == SymbolicPHI)
5160     return nullptr;
5161 
5162   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
5163   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
5164   if (SourceBits != NewBits)
5165     return nullptr;
5166 
5167   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
5168   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
5169   if (!SExt && !ZExt)
5170     return nullptr;
5171   const SCEVTruncateExpr *Trunc =
5172       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
5173            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
5174   if (!Trunc)
5175     return nullptr;
5176   const SCEV *X = Trunc->getOperand();
5177   if (X != SymbolicPHI)
5178     return nullptr;
5179   Signed = SExt != nullptr;
5180   return Trunc->getType();
5181 }
5182 
5183 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
5184   if (!PN->getType()->isIntegerTy())
5185     return nullptr;
5186   const Loop *L = LI.getLoopFor(PN->getParent());
5187   if (!L || L->getHeader() != PN->getParent())
5188     return nullptr;
5189   return L;
5190 }
5191 
5192 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
5193 // computation that updates the phi follows the following pattern:
5194 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
5195 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
5196 // If so, try to see if it can be rewritten as an AddRecExpr under some
5197 // Predicates. If successful, return them as a pair. Also cache the results
5198 // of the analysis.
5199 //
5200 // Example usage scenario:
5201 //    Say the Rewriter is called for the following SCEV:
5202 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5203 //    where:
5204 //         %X = phi i64 (%Start, %BEValue)
5205 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
5206 //    and call this function with %SymbolicPHI = %X.
5207 //
5208 //    The analysis will find that the value coming around the backedge has
5209 //    the following SCEV:
5210 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
5211 //    Upon concluding that this matches the desired pattern, the function
5212 //    will return the pair {NewAddRec, SmallPredsVec} where:
5213 //         NewAddRec = {%Start,+,%Step}
5214 //         SmallPredsVec = {P1, P2, P3} as follows:
5215 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
5216 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
5217 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
5218 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
5219 //    under the predicates {P1,P2,P3}.
5220 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
5221 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
5222 //
5223 // TODO's:
5224 //
5225 // 1) Extend the Induction descriptor to also support inductions that involve
5226 //    casts: When needed (namely, when we are called in the context of the
5227 //    vectorizer induction analysis), a Set of cast instructions will be
5228 //    populated by this method, and provided back to isInductionPHI. This is
5229 //    needed to allow the vectorizer to properly record them to be ignored by
5230 //    the cost model and to avoid vectorizing them (otherwise these casts,
5231 //    which are redundant under the runtime overflow checks, will be
5232 //    vectorized, which can be costly).
5233 //
5234 // 2) Support additional induction/PHISCEV patterns: We also want to support
5235 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
5236 //    after the induction update operation (the induction increment):
5237 //
5238 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
5239 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
5240 //
5241 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
5242 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
5243 //
5244 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
5245 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5246 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
5247   SmallVector<const SCEVPredicate *, 3> Predicates;
5248 
5249   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5250   // return an AddRec expression under some predicate.
5251 
5252   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5253   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5254   assert(L && "Expecting an integer loop header phi");
5255 
5256   // The loop may have multiple entrances or multiple exits; we can analyze
5257   // this phi as an addrec if it has a unique entry value and a unique
5258   // backedge value.
5259   Value *BEValueV = nullptr, *StartValueV = nullptr;
5260   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5261     Value *V = PN->getIncomingValue(i);
5262     if (L->contains(PN->getIncomingBlock(i))) {
5263       if (!BEValueV) {
5264         BEValueV = V;
5265       } else if (BEValueV != V) {
5266         BEValueV = nullptr;
5267         break;
5268       }
5269     } else if (!StartValueV) {
5270       StartValueV = V;
5271     } else if (StartValueV != V) {
5272       StartValueV = nullptr;
5273       break;
5274     }
5275   }
5276   if (!BEValueV || !StartValueV)
5277     return None;
5278 
5279   const SCEV *BEValue = getSCEV(BEValueV);
5280 
5281   // If the value coming around the backedge is an add with the symbolic
5282   // value we just inserted, possibly with casts that we can ignore under
5283   // an appropriate runtime guard, then we found a simple induction variable!
5284   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5285   if (!Add)
5286     return None;
5287 
5288   // If there is a single occurrence of the symbolic value, possibly
5289   // casted, replace it with a recurrence.
5290   unsigned FoundIndex = Add->getNumOperands();
5291   Type *TruncTy = nullptr;
5292   bool Signed;
5293   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5294     if ((TruncTy =
5295              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5296       if (FoundIndex == e) {
5297         FoundIndex = i;
5298         break;
5299       }
5300 
5301   if (FoundIndex == Add->getNumOperands())
5302     return None;
5303 
5304   // Create an add with everything but the specified operand.
5305   SmallVector<const SCEV *, 8> Ops;
5306   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5307     if (i != FoundIndex)
5308       Ops.push_back(Add->getOperand(i));
5309   const SCEV *Accum = getAddExpr(Ops);
5310 
5311   // The runtime checks will not be valid if the step amount is
5312   // varying inside the loop.
5313   if (!isLoopInvariant(Accum, L))
5314     return None;
5315 
5316   // *** Part2: Create the predicates
5317 
5318   // Analysis was successful: we have a phi-with-cast pattern for which we
5319   // can return an AddRec expression under the following predicates:
5320   //
5321   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5322   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5323   // P2: An Equal predicate that guarantees that
5324   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5325   // P3: An Equal predicate that guarantees that
5326   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5327   //
5328   // As we next prove, the above predicates guarantee that:
5329   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5330   //
5331   //
5332   // More formally, we want to prove that:
5333   //     Expr(i+1) = Start + (i+1) * Accum
5334   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5335   //
5336   // Given that:
5337   // 1) Expr(0) = Start
5338   // 2) Expr(1) = Start + Accum
5339   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5340   // 3) Induction hypothesis (step i):
5341   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5342   //
5343   // Proof:
5344   //  Expr(i+1) =
5345   //   = Start + (i+1)*Accum
5346   //   = (Start + i*Accum) + Accum
5347   //   = Expr(i) + Accum
5348   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5349   //                                                             :: from step i
5350   //
5351   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5352   //
5353   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5354   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5355   //     + Accum                                                     :: from P3
5356   //
5357   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5358   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5359   //
5360   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5361   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5362   //
5363   // By induction, the same applies to all iterations 1<=i<n:
5364   //
5365 
5366   // Create a truncated addrec for which we will add a no overflow check (P1).
5367   const SCEV *StartVal = getSCEV(StartValueV);
5368   const SCEV *PHISCEV =
5369       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5370                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5371 
5372   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5373   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5374   // will be constant.
5375   //
5376   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5377   // add P1.
5378   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5379     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5380         Signed ? SCEVWrapPredicate::IncrementNSSW
5381                : SCEVWrapPredicate::IncrementNUSW;
5382     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5383     Predicates.push_back(AddRecPred);
5384   }
5385 
5386   // Create the Equal Predicates P2,P3:
5387 
5388   // It is possible that the predicates P2 and/or P3 are computable at
5389   // compile time due to StartVal and/or Accum being constants.
5390   // If either one is, then we can check that now and escape if either P2
5391   // or P3 is false.
5392 
5393   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5394   // for each of StartVal and Accum
5395   auto getExtendedExpr = [&](const SCEV *Expr,
5396                              bool CreateSignExtend) -> const SCEV * {
5397     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5398     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5399     const SCEV *ExtendedExpr =
5400         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5401                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5402     return ExtendedExpr;
5403   };
5404 
5405   // Given:
5406   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5407   //               = getExtendedExpr(Expr)
5408   // Determine whether the predicate P: Expr == ExtendedExpr
5409   // is known to be false at compile time
5410   auto PredIsKnownFalse = [&](const SCEV *Expr,
5411                               const SCEV *ExtendedExpr) -> bool {
5412     return Expr != ExtendedExpr &&
5413            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5414   };
5415 
5416   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5417   if (PredIsKnownFalse(StartVal, StartExtended)) {
5418     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5419     return None;
5420   }
5421 
5422   // The Step is always Signed (because the overflow checks are either
5423   // NSSW or NUSW)
5424   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5425   if (PredIsKnownFalse(Accum, AccumExtended)) {
5426     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5427     return None;
5428   }
5429 
5430   auto AppendPredicate = [&](const SCEV *Expr,
5431                              const SCEV *ExtendedExpr) -> void {
5432     if (Expr != ExtendedExpr &&
5433         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5434       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5435       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5436       Predicates.push_back(Pred);
5437     }
5438   };
5439 
5440   AppendPredicate(StartVal, StartExtended);
5441   AppendPredicate(Accum, AccumExtended);
5442 
5443   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5444   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5445   // into NewAR if it will also add the runtime overflow checks specified in
5446   // Predicates.
5447   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5448 
5449   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5450       std::make_pair(NewAR, Predicates);
5451   // Remember the result of the analysis for this SCEV at this locayyytion.
5452   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5453   return PredRewrite;
5454 }
5455 
5456 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5457 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5458   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5459   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5460   if (!L)
5461     return None;
5462 
5463   // Check to see if we already analyzed this PHI.
5464   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5465   if (I != PredicatedSCEVRewrites.end()) {
5466     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5467         I->second;
5468     // Analysis was done before and failed to create an AddRec:
5469     if (Rewrite.first == SymbolicPHI)
5470       return None;
5471     // Analysis was done before and succeeded to create an AddRec under
5472     // a predicate:
5473     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5474     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5475     return Rewrite;
5476   }
5477 
5478   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5479     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5480 
5481   // Record in the cache that the analysis failed
5482   if (!Rewrite) {
5483     SmallVector<const SCEVPredicate *, 3> Predicates;
5484     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5485     return None;
5486   }
5487 
5488   return Rewrite;
5489 }
5490 
5491 // FIXME: This utility is currently required because the Rewriter currently
5492 // does not rewrite this expression:
5493 // {0, +, (sext ix (trunc iy to ix) to iy)}
5494 // into {0, +, %step},
5495 // even when the following Equal predicate exists:
5496 // "%step == (sext ix (trunc iy to ix) to iy)".
5497 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5498     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5499   if (AR1 == AR2)
5500     return true;
5501 
5502   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5503     if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5504         !Preds->implies(SE.getEqualPredicate(Expr2, Expr1)))
5505       return false;
5506     return true;
5507   };
5508 
5509   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5510       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5511     return false;
5512   return true;
5513 }
5514 
5515 /// A helper function for createAddRecFromPHI to handle simple cases.
5516 ///
5517 /// This function tries to find an AddRec expression for the simplest (yet most
5518 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5519 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5520 /// technique for finding the AddRec expression.
5521 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5522                                                       Value *BEValueV,
5523                                                       Value *StartValueV) {
5524   const Loop *L = LI.getLoopFor(PN->getParent());
5525   assert(L && L->getHeader() == PN->getParent());
5526   assert(BEValueV && StartValueV);
5527 
5528   auto BO = MatchBinaryOp(BEValueV, DT);
5529   if (!BO)
5530     return nullptr;
5531 
5532   if (BO->Opcode != Instruction::Add)
5533     return nullptr;
5534 
5535   const SCEV *Accum = nullptr;
5536   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5537     Accum = getSCEV(BO->RHS);
5538   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5539     Accum = getSCEV(BO->LHS);
5540 
5541   if (!Accum)
5542     return nullptr;
5543 
5544   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5545   if (BO->IsNUW)
5546     Flags = setFlags(Flags, SCEV::FlagNUW);
5547   if (BO->IsNSW)
5548     Flags = setFlags(Flags, SCEV::FlagNSW);
5549 
5550   const SCEV *StartVal = getSCEV(StartValueV);
5551   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5552   insertValueToMap(PN, PHISCEV);
5553 
5554   // We can add Flags to the post-inc expression only if we
5555   // know that it is *undefined behavior* for BEValueV to
5556   // overflow.
5557   if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) {
5558     assert(isLoopInvariant(Accum, L) &&
5559            "Accum is defined outside L, but is not invariant?");
5560     if (isAddRecNeverPoison(BEInst, L))
5561       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5562   }
5563 
5564   return PHISCEV;
5565 }
5566 
5567 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5568   const Loop *L = LI.getLoopFor(PN->getParent());
5569   if (!L || L->getHeader() != PN->getParent())
5570     return nullptr;
5571 
5572   // The loop may have multiple entrances or multiple exits; we can analyze
5573   // this phi as an addrec if it has a unique entry value and a unique
5574   // backedge value.
5575   Value *BEValueV = nullptr, *StartValueV = nullptr;
5576   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5577     Value *V = PN->getIncomingValue(i);
5578     if (L->contains(PN->getIncomingBlock(i))) {
5579       if (!BEValueV) {
5580         BEValueV = V;
5581       } else if (BEValueV != V) {
5582         BEValueV = nullptr;
5583         break;
5584       }
5585     } else if (!StartValueV) {
5586       StartValueV = V;
5587     } else if (StartValueV != V) {
5588       StartValueV = nullptr;
5589       break;
5590     }
5591   }
5592   if (!BEValueV || !StartValueV)
5593     return nullptr;
5594 
5595   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5596          "PHI node already processed?");
5597 
5598   // First, try to find AddRec expression without creating a fictituos symbolic
5599   // value for PN.
5600   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5601     return S;
5602 
5603   // Handle PHI node value symbolically.
5604   const SCEV *SymbolicName = getUnknown(PN);
5605   insertValueToMap(PN, SymbolicName);
5606 
5607   // Using this symbolic name for the PHI, analyze the value coming around
5608   // the back-edge.
5609   const SCEV *BEValue = getSCEV(BEValueV);
5610 
5611   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5612   // has a special value for the first iteration of the loop.
5613 
5614   // If the value coming around the backedge is an add with the symbolic
5615   // value we just inserted, then we found a simple induction variable!
5616   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5617     // If there is a single occurrence of the symbolic value, replace it
5618     // with a recurrence.
5619     unsigned FoundIndex = Add->getNumOperands();
5620     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5621       if (Add->getOperand(i) == SymbolicName)
5622         if (FoundIndex == e) {
5623           FoundIndex = i;
5624           break;
5625         }
5626 
5627     if (FoundIndex != Add->getNumOperands()) {
5628       // Create an add with everything but the specified operand.
5629       SmallVector<const SCEV *, 8> Ops;
5630       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5631         if (i != FoundIndex)
5632           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5633                                                              L, *this));
5634       const SCEV *Accum = getAddExpr(Ops);
5635 
5636       // This is not a valid addrec if the step amount is varying each
5637       // loop iteration, but is not itself an addrec in this loop.
5638       if (isLoopInvariant(Accum, L) ||
5639           (isa<SCEVAddRecExpr>(Accum) &&
5640            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5641         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5642 
5643         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5644           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5645             if (BO->IsNUW)
5646               Flags = setFlags(Flags, SCEV::FlagNUW);
5647             if (BO->IsNSW)
5648               Flags = setFlags(Flags, SCEV::FlagNSW);
5649           }
5650         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5651           // If the increment is an inbounds GEP, then we know the address
5652           // space cannot be wrapped around. We cannot make any guarantee
5653           // about signed or unsigned overflow because pointers are
5654           // unsigned but we may have a negative index from the base
5655           // pointer. We can guarantee that no unsigned wrap occurs if the
5656           // indices form a positive value.
5657           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5658             Flags = setFlags(Flags, SCEV::FlagNW);
5659 
5660             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5661             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5662               Flags = setFlags(Flags, SCEV::FlagNUW);
5663           }
5664 
5665           // We cannot transfer nuw and nsw flags from subtraction
5666           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5667           // for instance.
5668         }
5669 
5670         const SCEV *StartVal = getSCEV(StartValueV);
5671         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5672 
5673         // Okay, for the entire analysis of this edge we assumed the PHI
5674         // to be symbolic.  We now need to go back and purge all of the
5675         // entries for the scalars that use the symbolic expression.
5676         forgetMemoizedResults(SymbolicName);
5677         insertValueToMap(PN, PHISCEV);
5678 
5679         // We can add Flags to the post-inc expression only if we
5680         // know that it is *undefined behavior* for BEValueV to
5681         // overflow.
5682         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5683           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5684             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5685 
5686         return PHISCEV;
5687       }
5688     }
5689   } else {
5690     // Otherwise, this could be a loop like this:
5691     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5692     // In this case, j = {1,+,1}  and BEValue is j.
5693     // Because the other in-value of i (0) fits the evolution of BEValue
5694     // i really is an addrec evolution.
5695     //
5696     // We can generalize this saying that i is the shifted value of BEValue
5697     // by one iteration:
5698     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5699     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5700     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5701     if (Shifted != getCouldNotCompute() &&
5702         Start != getCouldNotCompute()) {
5703       const SCEV *StartVal = getSCEV(StartValueV);
5704       if (Start == StartVal) {
5705         // Okay, for the entire analysis of this edge we assumed the PHI
5706         // to be symbolic.  We now need to go back and purge all of the
5707         // entries for the scalars that use the symbolic expression.
5708         forgetMemoizedResults(SymbolicName);
5709         insertValueToMap(PN, Shifted);
5710         return Shifted;
5711       }
5712     }
5713   }
5714 
5715   // Remove the temporary PHI node SCEV that has been inserted while intending
5716   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5717   // as it will prevent later (possibly simpler) SCEV expressions to be added
5718   // to the ValueExprMap.
5719   eraseValueFromMap(PN);
5720 
5721   return nullptr;
5722 }
5723 
5724 // Checks if the SCEV S is available at BB.  S is considered available at BB
5725 // if S can be materialized at BB without introducing a fault.
5726 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5727                                BasicBlock *BB) {
5728   struct CheckAvailable {
5729     bool TraversalDone = false;
5730     bool Available = true;
5731 
5732     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5733     BasicBlock *BB = nullptr;
5734     DominatorTree &DT;
5735 
5736     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5737       : L(L), BB(BB), DT(DT) {}
5738 
5739     bool setUnavailable() {
5740       TraversalDone = true;
5741       Available = false;
5742       return false;
5743     }
5744 
5745     bool follow(const SCEV *S) {
5746       switch (S->getSCEVType()) {
5747       case scConstant:
5748       case scPtrToInt:
5749       case scTruncate:
5750       case scZeroExtend:
5751       case scSignExtend:
5752       case scAddExpr:
5753       case scMulExpr:
5754       case scUMaxExpr:
5755       case scSMaxExpr:
5756       case scUMinExpr:
5757       case scSMinExpr:
5758       case scSequentialUMinExpr:
5759         // These expressions are available if their operand(s) is/are.
5760         return true;
5761 
5762       case scAddRecExpr: {
5763         // We allow add recurrences that are on the loop BB is in, or some
5764         // outer loop.  This guarantees availability because the value of the
5765         // add recurrence at BB is simply the "current" value of the induction
5766         // variable.  We can relax this in the future; for instance an add
5767         // recurrence on a sibling dominating loop is also available at BB.
5768         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5769         if (L && (ARLoop == L || ARLoop->contains(L)))
5770           return true;
5771 
5772         return setUnavailable();
5773       }
5774 
5775       case scUnknown: {
5776         // For SCEVUnknown, we check for simple dominance.
5777         const auto *SU = cast<SCEVUnknown>(S);
5778         Value *V = SU->getValue();
5779 
5780         if (isa<Argument>(V))
5781           return false;
5782 
5783         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5784           return false;
5785 
5786         return setUnavailable();
5787       }
5788 
5789       case scUDivExpr:
5790       case scCouldNotCompute:
5791         // We do not try to smart about these at all.
5792         return setUnavailable();
5793       }
5794       llvm_unreachable("Unknown SCEV kind!");
5795     }
5796 
5797     bool isDone() { return TraversalDone; }
5798   };
5799 
5800   CheckAvailable CA(L, BB, DT);
5801   SCEVTraversal<CheckAvailable> ST(CA);
5802 
5803   ST.visitAll(S);
5804   return CA.Available;
5805 }
5806 
5807 // Try to match a control flow sequence that branches out at BI and merges back
5808 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5809 // match.
5810 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5811                           Value *&C, Value *&LHS, Value *&RHS) {
5812   C = BI->getCondition();
5813 
5814   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5815   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5816 
5817   if (!LeftEdge.isSingleEdge())
5818     return false;
5819 
5820   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5821 
5822   Use &LeftUse = Merge->getOperandUse(0);
5823   Use &RightUse = Merge->getOperandUse(1);
5824 
5825   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5826     LHS = LeftUse;
5827     RHS = RightUse;
5828     return true;
5829   }
5830 
5831   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5832     LHS = RightUse;
5833     RHS = LeftUse;
5834     return true;
5835   }
5836 
5837   return false;
5838 }
5839 
5840 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5841   auto IsReachable =
5842       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5843   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5844     const Loop *L = LI.getLoopFor(PN->getParent());
5845 
5846     // We don't want to break LCSSA, even in a SCEV expression tree.
5847     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5848       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5849         return nullptr;
5850 
5851     // Try to match
5852     //
5853     //  br %cond, label %left, label %right
5854     // left:
5855     //  br label %merge
5856     // right:
5857     //  br label %merge
5858     // merge:
5859     //  V = phi [ %x, %left ], [ %y, %right ]
5860     //
5861     // as "select %cond, %x, %y"
5862 
5863     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5864     assert(IDom && "At least the entry block should dominate PN");
5865 
5866     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5867     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5868 
5869     if (BI && BI->isConditional() &&
5870         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5871         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5872         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5873       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5874   }
5875 
5876   return nullptr;
5877 }
5878 
5879 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5880   if (const SCEV *S = createAddRecFromPHI(PN))
5881     return S;
5882 
5883   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5884     return S;
5885 
5886   // If the PHI has a single incoming value, follow that value, unless the
5887   // PHI's incoming blocks are in a different loop, in which case doing so
5888   // risks breaking LCSSA form. Instcombine would normally zap these, but
5889   // it doesn't have DominatorTree information, so it may miss cases.
5890   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5891     if (LI.replacementPreservesLCSSAForm(PN, V))
5892       return getSCEV(V);
5893 
5894   // If it's not a loop phi, we can't handle it yet.
5895   return getUnknown(PN);
5896 }
5897 
5898 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind,
5899                             SCEVTypes RootKind) {
5900   struct FindClosure {
5901     const SCEV *OperandToFind;
5902     const SCEVTypes RootKind; // Must be a sequential min/max expression.
5903     const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind.
5904 
5905     bool Found = false;
5906 
5907     bool canRecurseInto(SCEVTypes Kind) const {
5908       // We can only recurse into the SCEV expression of the same effective type
5909       // as the type of our root SCEV expression, and into zero-extensions.
5910       return RootKind == Kind || NonSequentialRootKind == Kind ||
5911              scZeroExtend == Kind;
5912     };
5913 
5914     FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind)
5915         : OperandToFind(OperandToFind), RootKind(RootKind),
5916           NonSequentialRootKind(
5917               SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(
5918                   RootKind)) {}
5919 
5920     bool follow(const SCEV *S) {
5921       Found = S == OperandToFind;
5922 
5923       return !isDone() && canRecurseInto(S->getSCEVType());
5924     }
5925 
5926     bool isDone() const { return Found; }
5927   };
5928 
5929   FindClosure FC(OperandToFind, RootKind);
5930   visitAll(Root, FC);
5931   return FC.Found;
5932 }
5933 
5934 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond(
5935     Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) {
5936   // Try to match some simple smax or umax patterns.
5937   auto *ICI = Cond;
5938 
5939   Value *LHS = ICI->getOperand(0);
5940   Value *RHS = ICI->getOperand(1);
5941 
5942   switch (ICI->getPredicate()) {
5943   case ICmpInst::ICMP_SLT:
5944   case ICmpInst::ICMP_SLE:
5945   case ICmpInst::ICMP_ULT:
5946   case ICmpInst::ICMP_ULE:
5947     std::swap(LHS, RHS);
5948     LLVM_FALLTHROUGH;
5949   case ICmpInst::ICMP_SGT:
5950   case ICmpInst::ICMP_SGE:
5951   case ICmpInst::ICMP_UGT:
5952   case ICmpInst::ICMP_UGE:
5953     // a > b ? a+x : b+x  ->  max(a, b)+x
5954     // a > b ? b+x : a+x  ->  min(a, b)+x
5955     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5956       bool Signed = ICI->isSigned();
5957       const SCEV *LA = getSCEV(TrueVal);
5958       const SCEV *RA = getSCEV(FalseVal);
5959       const SCEV *LS = getSCEV(LHS);
5960       const SCEV *RS = getSCEV(RHS);
5961       if (LA->getType()->isPointerTy()) {
5962         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5963         // Need to make sure we can't produce weird expressions involving
5964         // negated pointers.
5965         if (LA == LS && RA == RS)
5966           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5967         if (LA == RS && RA == LS)
5968           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5969       }
5970       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5971         if (Op->getType()->isPointerTy()) {
5972           Op = getLosslessPtrToIntExpr(Op);
5973           if (isa<SCEVCouldNotCompute>(Op))
5974             return Op;
5975         }
5976         if (Signed)
5977           Op = getNoopOrSignExtend(Op, I->getType());
5978         else
5979           Op = getNoopOrZeroExtend(Op, I->getType());
5980         return Op;
5981       };
5982       LS = CoerceOperand(LS);
5983       RS = CoerceOperand(RS);
5984       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5985         break;
5986       const SCEV *LDiff = getMinusSCEV(LA, LS);
5987       const SCEV *RDiff = getMinusSCEV(RA, RS);
5988       if (LDiff == RDiff)
5989         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5990                           LDiff);
5991       LDiff = getMinusSCEV(LA, RS);
5992       RDiff = getMinusSCEV(RA, LS);
5993       if (LDiff == RDiff)
5994         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5995                           LDiff);
5996     }
5997     break;
5998   case ICmpInst::ICMP_NE:
5999     // x != 0 ? x+y : C+y  ->  x == 0 ? C+y : x+y
6000     std::swap(TrueVal, FalseVal);
6001     LLVM_FALLTHROUGH;
6002   case ICmpInst::ICMP_EQ:
6003     // x == 0 ? C+y : x+y  ->  umax(x, C)+y   iff C u<= 1
6004     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
6005         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
6006       const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
6007       const SCEV *TrueValExpr = getSCEV(TrueVal);    // C+y
6008       const SCEV *FalseValExpr = getSCEV(FalseVal);  // x+y
6009       const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x
6010       const SCEV *C = getMinusSCEV(TrueValExpr, Y);  // C = (C+y)-y
6011       if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1))
6012         return getAddExpr(getUMaxExpr(X, C), Y);
6013     }
6014     // x == 0 ? 0 : umin    (..., x, ...)  ->  umin_seq(x, umin    (...))
6015     // x == 0 ? 0 : umin_seq(..., x, ...)  ->  umin_seq(x, umin_seq(...))
6016     // x == 0 ? 0 : umin    (..., umin_seq(..., x, ...), ...)
6017     //                    ->  umin_seq(x, umin (..., umin_seq(...), ...))
6018     if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() &&
6019         isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) {
6020       const SCEV *X = getSCEV(LHS);
6021       while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X))
6022         X = ZExt->getOperand();
6023       if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) {
6024         const SCEV *FalseValExpr = getSCEV(FalseVal);
6025         if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr))
6026           return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr,
6027                              /*Sequential=*/true);
6028       }
6029     }
6030     break;
6031   default:
6032     break;
6033   }
6034 
6035   return getUnknown(I);
6036 }
6037 
6038 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq(
6039     Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) {
6040   // For now, only deal with i1-typed `select`s.
6041   if (!V->getType()->isIntegerTy(1) || !Cond->getType()->isIntegerTy(1) ||
6042       !TrueVal->getType()->isIntegerTy(1) ||
6043       !FalseVal->getType()->isIntegerTy(1))
6044     return getUnknown(V);
6045 
6046   // i1 cond ? i1 x : i1 C  -->  C + (i1  cond ? (i1 x - i1 C) : i1 0)
6047   //                        -->  C + (umin_seq  cond, x - C)
6048   //
6049   // i1 cond ? i1 C : i1 x  -->  C + (i1  cond ? i1 0 : (i1 x - i1 C))
6050   //                        -->  C + (i1 ~cond ? (i1 x - i1 C) : i1 0)
6051   //                        -->  C + (umin_seq ~cond, x - C)
6052   if (isa<ConstantInt>(TrueVal) || isa<ConstantInt>(FalseVal)) {
6053     const SCEV *CondExpr = getSCEV(Cond);
6054     const SCEV *TrueExpr = getSCEV(TrueVal);
6055     const SCEV *FalseExpr = getSCEV(FalseVal);
6056     const SCEV *X, *C;
6057     if (isa<ConstantInt>(TrueVal)) {
6058       CondExpr = getNotSCEV(CondExpr);
6059       X = FalseExpr;
6060       C = TrueExpr;
6061     } else {
6062       X = TrueExpr;
6063       C = FalseExpr;
6064     }
6065     return getAddExpr(
6066         C, getUMinExpr(CondExpr, getMinusSCEV(X, C), /*Sequential=*/true));
6067   }
6068 
6069   return getUnknown(V);
6070 }
6071 
6072 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond,
6073                                                       Value *TrueVal,
6074                                                       Value *FalseVal) {
6075   // Handle "constant" branch or select. This can occur for instance when a
6076   // loop pass transforms an inner loop and moves on to process the outer loop.
6077   if (auto *CI = dyn_cast<ConstantInt>(Cond))
6078     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
6079 
6080   if (auto *I = dyn_cast<Instruction>(V)) {
6081     if (auto *ICI = dyn_cast<ICmpInst>(Cond)) {
6082       const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond(
6083           I, ICI, TrueVal, FalseVal);
6084       if (!isa<SCEVUnknown>(S))
6085         return S;
6086     }
6087   }
6088 
6089   return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal);
6090 }
6091 
6092 /// Expand GEP instructions into add and multiply operations. This allows them
6093 /// to be analyzed by regular SCEV code.
6094 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
6095   // Don't attempt to analyze GEPs over unsized objects.
6096   if (!GEP->getSourceElementType()->isSized())
6097     return getUnknown(GEP);
6098 
6099   SmallVector<const SCEV *, 4> IndexExprs;
6100   for (Value *Index : GEP->indices())
6101     IndexExprs.push_back(getSCEV(Index));
6102   return getGEPExpr(GEP, IndexExprs);
6103 }
6104 
6105 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
6106   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6107     return C->getAPInt().countTrailingZeros();
6108 
6109   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
6110     return GetMinTrailingZeros(I->getOperand());
6111 
6112   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
6113     return std::min(GetMinTrailingZeros(T->getOperand()),
6114                     (uint32_t)getTypeSizeInBits(T->getType()));
6115 
6116   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
6117     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6118     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6119                ? getTypeSizeInBits(E->getType())
6120                : OpRes;
6121   }
6122 
6123   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
6124     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
6125     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
6126                ? getTypeSizeInBits(E->getType())
6127                : OpRes;
6128   }
6129 
6130   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
6131     // The result is the min of all operands results.
6132     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6133     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6134       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6135     return MinOpRes;
6136   }
6137 
6138   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
6139     // The result is the sum of all operands results.
6140     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
6141     uint32_t BitWidth = getTypeSizeInBits(M->getType());
6142     for (unsigned i = 1, e = M->getNumOperands();
6143          SumOpRes != BitWidth && i != e; ++i)
6144       SumOpRes =
6145           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
6146     return SumOpRes;
6147   }
6148 
6149   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
6150     // The result is the min of all operands results.
6151     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
6152     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
6153       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
6154     return MinOpRes;
6155   }
6156 
6157   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
6158     // The result is the min of all operands results.
6159     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6160     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6161       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6162     return MinOpRes;
6163   }
6164 
6165   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
6166     // The result is the min of all operands results.
6167     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
6168     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
6169       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
6170     return MinOpRes;
6171   }
6172 
6173   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6174     // For a SCEVUnknown, ask ValueTracking.
6175     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
6176     return Known.countMinTrailingZeros();
6177   }
6178 
6179   // SCEVUDivExpr
6180   return 0;
6181 }
6182 
6183 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
6184   auto I = MinTrailingZerosCache.find(S);
6185   if (I != MinTrailingZerosCache.end())
6186     return I->second;
6187 
6188   uint32_t Result = GetMinTrailingZerosImpl(S);
6189   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
6190   assert(InsertPair.second && "Should insert a new key");
6191   return InsertPair.first->second;
6192 }
6193 
6194 /// Helper method to assign a range to V from metadata present in the IR.
6195 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
6196   if (Instruction *I = dyn_cast<Instruction>(V))
6197     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
6198       return getConstantRangeFromMetadata(*MD);
6199 
6200   return None;
6201 }
6202 
6203 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
6204                                      SCEV::NoWrapFlags Flags) {
6205   if (AddRec->getNoWrapFlags(Flags) != Flags) {
6206     AddRec->setNoWrapFlags(Flags);
6207     UnsignedRanges.erase(AddRec);
6208     SignedRanges.erase(AddRec);
6209   }
6210 }
6211 
6212 ConstantRange ScalarEvolution::
6213 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
6214   const DataLayout &DL = getDataLayout();
6215 
6216   unsigned BitWidth = getTypeSizeInBits(U->getType());
6217   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
6218 
6219   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
6220   // use information about the trip count to improve our available range.  Note
6221   // that the trip count independent cases are already handled by known bits.
6222   // WARNING: The definition of recurrence used here is subtly different than
6223   // the one used by AddRec (and thus most of this file).  Step is allowed to
6224   // be arbitrarily loop varying here, where AddRec allows only loop invariant
6225   // and other addrecs in the same loop (for non-affine addrecs).  The code
6226   // below intentionally handles the case where step is not loop invariant.
6227   auto *P = dyn_cast<PHINode>(U->getValue());
6228   if (!P)
6229     return FullSet;
6230 
6231   // Make sure that no Phi input comes from an unreachable block. Otherwise,
6232   // even the values that are not available in these blocks may come from them,
6233   // and this leads to false-positive recurrence test.
6234   for (auto *Pred : predecessors(P->getParent()))
6235     if (!DT.isReachableFromEntry(Pred))
6236       return FullSet;
6237 
6238   BinaryOperator *BO;
6239   Value *Start, *Step;
6240   if (!matchSimpleRecurrence(P, BO, Start, Step))
6241     return FullSet;
6242 
6243   // If we found a recurrence in reachable code, we must be in a loop. Note
6244   // that BO might be in some subloop of L, and that's completely okay.
6245   auto *L = LI.getLoopFor(P->getParent());
6246   assert(L && L->getHeader() == P->getParent());
6247   if (!L->contains(BO->getParent()))
6248     // NOTE: This bailout should be an assert instead.  However, asserting
6249     // the condition here exposes a case where LoopFusion is querying SCEV
6250     // with malformed loop information during the midst of the transform.
6251     // There doesn't appear to be an obvious fix, so for the moment bailout
6252     // until the caller issue can be fixed.  PR49566 tracks the bug.
6253     return FullSet;
6254 
6255   // TODO: Extend to other opcodes such as mul, and div
6256   switch (BO->getOpcode()) {
6257   default:
6258     return FullSet;
6259   case Instruction::AShr:
6260   case Instruction::LShr:
6261   case Instruction::Shl:
6262     break;
6263   };
6264 
6265   if (BO->getOperand(0) != P)
6266     // TODO: Handle the power function forms some day.
6267     return FullSet;
6268 
6269   unsigned TC = getSmallConstantMaxTripCount(L);
6270   if (!TC || TC >= BitWidth)
6271     return FullSet;
6272 
6273   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
6274   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
6275   assert(KnownStart.getBitWidth() == BitWidth &&
6276          KnownStep.getBitWidth() == BitWidth);
6277 
6278   // Compute total shift amount, being careful of overflow and bitwidths.
6279   auto MaxShiftAmt = KnownStep.getMaxValue();
6280   APInt TCAP(BitWidth, TC-1);
6281   bool Overflow = false;
6282   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
6283   if (Overflow)
6284     return FullSet;
6285 
6286   switch (BO->getOpcode()) {
6287   default:
6288     llvm_unreachable("filtered out above");
6289   case Instruction::AShr: {
6290     // For each ashr, three cases:
6291     //   shift = 0 => unchanged value
6292     //   saturation => 0 or -1
6293     //   other => a value closer to zero (of the same sign)
6294     // Thus, the end value is closer to zero than the start.
6295     auto KnownEnd = KnownBits::ashr(KnownStart,
6296                                     KnownBits::makeConstant(TotalShift));
6297     if (KnownStart.isNonNegative())
6298       // Analogous to lshr (simply not yet canonicalized)
6299       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6300                                         KnownStart.getMaxValue() + 1);
6301     if (KnownStart.isNegative())
6302       // End >=u Start && End <=s Start
6303       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
6304                                         KnownEnd.getMaxValue() + 1);
6305     break;
6306   }
6307   case Instruction::LShr: {
6308     // For each lshr, three cases:
6309     //   shift = 0 => unchanged value
6310     //   saturation => 0
6311     //   other => a smaller positive number
6312     // Thus, the low end of the unsigned range is the last value produced.
6313     auto KnownEnd = KnownBits::lshr(KnownStart,
6314                                     KnownBits::makeConstant(TotalShift));
6315     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
6316                                       KnownStart.getMaxValue() + 1);
6317   }
6318   case Instruction::Shl: {
6319     // Iff no bits are shifted out, value increases on every shift.
6320     auto KnownEnd = KnownBits::shl(KnownStart,
6321                                    KnownBits::makeConstant(TotalShift));
6322     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
6323       return ConstantRange(KnownStart.getMinValue(),
6324                            KnownEnd.getMaxValue() + 1);
6325     break;
6326   }
6327   };
6328   return FullSet;
6329 }
6330 
6331 /// Determine the range for a particular SCEV.  If SignHint is
6332 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
6333 /// with a "cleaner" unsigned (resp. signed) representation.
6334 const ConstantRange &
6335 ScalarEvolution::getRangeRef(const SCEV *S,
6336                              ScalarEvolution::RangeSignHint SignHint) {
6337   DenseMap<const SCEV *, ConstantRange> &Cache =
6338       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6339                                                        : SignedRanges;
6340   ConstantRange::PreferredRangeType RangeType =
6341       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6342           ? ConstantRange::Unsigned : ConstantRange::Signed;
6343 
6344   // See if we've computed this range already.
6345   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6346   if (I != Cache.end())
6347     return I->second;
6348 
6349   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6350     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6351 
6352   unsigned BitWidth = getTypeSizeInBits(S->getType());
6353   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6354   using OBO = OverflowingBinaryOperator;
6355 
6356   // If the value has known zeros, the maximum value will have those known zeros
6357   // as well.
6358   uint32_t TZ = GetMinTrailingZeros(S);
6359   if (TZ != 0) {
6360     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6361       ConservativeResult =
6362           ConstantRange(APInt::getMinValue(BitWidth),
6363                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6364     else
6365       ConservativeResult = ConstantRange(
6366           APInt::getSignedMinValue(BitWidth),
6367           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6368   }
6369 
6370   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6371     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6372     unsigned WrapType = OBO::AnyWrap;
6373     if (Add->hasNoSignedWrap())
6374       WrapType |= OBO::NoSignedWrap;
6375     if (Add->hasNoUnsignedWrap())
6376       WrapType |= OBO::NoUnsignedWrap;
6377     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6378       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6379                           WrapType, RangeType);
6380     return setRange(Add, SignHint,
6381                     ConservativeResult.intersectWith(X, RangeType));
6382   }
6383 
6384   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6385     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6386     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6387       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6388     return setRange(Mul, SignHint,
6389                     ConservativeResult.intersectWith(X, RangeType));
6390   }
6391 
6392   if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) {
6393     Intrinsic::ID ID;
6394     switch (S->getSCEVType()) {
6395     case scUMaxExpr:
6396       ID = Intrinsic::umax;
6397       break;
6398     case scSMaxExpr:
6399       ID = Intrinsic::smax;
6400       break;
6401     case scUMinExpr:
6402     case scSequentialUMinExpr:
6403       ID = Intrinsic::umin;
6404       break;
6405     case scSMinExpr:
6406       ID = Intrinsic::smin;
6407       break;
6408     default:
6409       llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr.");
6410     }
6411 
6412     const auto *NAry = cast<SCEVNAryExpr>(S);
6413     ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint);
6414     for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i)
6415       X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)});
6416     return setRange(S, SignHint,
6417                     ConservativeResult.intersectWith(X, RangeType));
6418   }
6419 
6420   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6421     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6422     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6423     return setRange(UDiv, SignHint,
6424                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6425   }
6426 
6427   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6428     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6429     return setRange(ZExt, SignHint,
6430                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6431                                                      RangeType));
6432   }
6433 
6434   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6435     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6436     return setRange(SExt, SignHint,
6437                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6438                                                      RangeType));
6439   }
6440 
6441   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6442     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6443     return setRange(PtrToInt, SignHint, X);
6444   }
6445 
6446   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6447     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6448     return setRange(Trunc, SignHint,
6449                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6450                                                      RangeType));
6451   }
6452 
6453   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6454     // If there's no unsigned wrap, the value will never be less than its
6455     // initial value.
6456     if (AddRec->hasNoUnsignedWrap()) {
6457       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6458       if (!UnsignedMinValue.isZero())
6459         ConservativeResult = ConservativeResult.intersectWith(
6460             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6461     }
6462 
6463     // If there's no signed wrap, and all the operands except initial value have
6464     // the same sign or zero, the value won't ever be:
6465     // 1: smaller than initial value if operands are non negative,
6466     // 2: bigger than initial value if operands are non positive.
6467     // For both cases, value can not cross signed min/max boundary.
6468     if (AddRec->hasNoSignedWrap()) {
6469       bool AllNonNeg = true;
6470       bool AllNonPos = true;
6471       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6472         if (!isKnownNonNegative(AddRec->getOperand(i)))
6473           AllNonNeg = false;
6474         if (!isKnownNonPositive(AddRec->getOperand(i)))
6475           AllNonPos = false;
6476       }
6477       if (AllNonNeg)
6478         ConservativeResult = ConservativeResult.intersectWith(
6479             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6480                                        APInt::getSignedMinValue(BitWidth)),
6481             RangeType);
6482       else if (AllNonPos)
6483         ConservativeResult = ConservativeResult.intersectWith(
6484             ConstantRange::getNonEmpty(
6485                 APInt::getSignedMinValue(BitWidth),
6486                 getSignedRangeMax(AddRec->getStart()) + 1),
6487             RangeType);
6488     }
6489 
6490     // TODO: non-affine addrec
6491     if (AddRec->isAffine()) {
6492       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6493       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6494           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6495         auto RangeFromAffine = getRangeForAffineAR(
6496             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6497             BitWidth);
6498         ConservativeResult =
6499             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6500 
6501         auto RangeFromFactoring = getRangeViaFactoring(
6502             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6503             BitWidth);
6504         ConservativeResult =
6505             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6506       }
6507 
6508       // Now try symbolic BE count and more powerful methods.
6509       if (UseExpensiveRangeSharpening) {
6510         const SCEV *SymbolicMaxBECount =
6511             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6512         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6513             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6514             AddRec->hasNoSelfWrap()) {
6515           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6516               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6517           ConservativeResult =
6518               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6519         }
6520       }
6521     }
6522 
6523     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6524   }
6525 
6526   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6527 
6528     // Check if the IR explicitly contains !range metadata.
6529     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6530     if (MDRange.hasValue())
6531       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6532                                                             RangeType);
6533 
6534     // Use facts about recurrences in the underlying IR.  Note that add
6535     // recurrences are AddRecExprs and thus don't hit this path.  This
6536     // primarily handles shift recurrences.
6537     auto CR = getRangeForUnknownRecurrence(U);
6538     ConservativeResult = ConservativeResult.intersectWith(CR);
6539 
6540     // See if ValueTracking can give us a useful range.
6541     const DataLayout &DL = getDataLayout();
6542     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6543     if (Known.getBitWidth() != BitWidth)
6544       Known = Known.zextOrTrunc(BitWidth);
6545 
6546     // ValueTracking may be able to compute a tighter result for the number of
6547     // sign bits than for the value of those sign bits.
6548     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6549     if (U->getType()->isPointerTy()) {
6550       // If the pointer size is larger than the index size type, this can cause
6551       // NS to be larger than BitWidth. So compensate for this.
6552       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6553       int ptrIdxDiff = ptrSize - BitWidth;
6554       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6555         NS -= ptrIdxDiff;
6556     }
6557 
6558     if (NS > 1) {
6559       // If we know any of the sign bits, we know all of the sign bits.
6560       if (!Known.Zero.getHiBits(NS).isZero())
6561         Known.Zero.setHighBits(NS);
6562       if (!Known.One.getHiBits(NS).isZero())
6563         Known.One.setHighBits(NS);
6564     }
6565 
6566     if (Known.getMinValue() != Known.getMaxValue() + 1)
6567       ConservativeResult = ConservativeResult.intersectWith(
6568           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6569           RangeType);
6570     if (NS > 1)
6571       ConservativeResult = ConservativeResult.intersectWith(
6572           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6573                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6574           RangeType);
6575 
6576     // A range of Phi is a subset of union of all ranges of its input.
6577     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue()))
6578       if (!PendingPhiRanges.count(Phi))
6579         sharpenPhiSCCRange(Phi, ConservativeResult, SignHint);
6580 
6581     return setRange(U, SignHint, std::move(ConservativeResult));
6582   }
6583 
6584   return setRange(S, SignHint, std::move(ConservativeResult));
6585 }
6586 
6587 bool ScalarEvolution::collectSCC(const PHINode *Phi,
6588                                  SmallVectorImpl<const PHINode *> &SCC) const {
6589   assert(SCC.empty() && "Precondition: SCC should be empty.");
6590   auto Bail = [&]() {
6591     SCC.clear();
6592     SCC.push_back(Phi);
6593     return false;
6594   };
6595   SmallPtrSet<const PHINode *, 4> Reachable;
6596   {
6597     // First, find all PHI nodes that are reachable from Phi.
6598     SmallVector<const PHINode *, 4> Worklist;
6599     Reachable.insert(Phi);
6600     Worklist.push_back(Phi);
6601     while (!Worklist.empty()) {
6602       if (Reachable.size() > MaxPhiSCCAnalysisSize)
6603         // Too many nodes to process. Assume that SCC is composed of Phi alone.
6604         return Bail();
6605       auto *Curr = Worklist.pop_back_val();
6606       for (auto &Op : Curr->operands()) {
6607         if (auto *PhiOp = dyn_cast<PHINode>(&*Op)) {
6608           if (PendingPhiRanges.count(PhiOp))
6609             // Do not want to deal with this situation, so conservatively bail.
6610             return Bail();
6611           if (Reachable.insert(PhiOp).second)
6612             Worklist.push_back(PhiOp);
6613         }
6614       }
6615     }
6616   }
6617   {
6618     // Out of reachable nodes, find those from which Phi is also reachable. This
6619     // defines a SCC.
6620     SmallVector<const PHINode *, 4> Worklist;
6621     SmallPtrSet<const PHINode *, 4> SCCSet;
6622     SCCSet.insert(Phi);
6623     SCC.push_back(Phi);
6624     Worklist.push_back(Phi);
6625     while (!Worklist.empty()) {
6626       auto *Curr = Worklist.pop_back_val();
6627       for (auto *User : Curr->users())
6628         if (auto *PN = dyn_cast<PHINode>(User))
6629           if (Reachable.count(PN) && SCCSet.insert(PN).second) {
6630             Worklist.push_back(PN);
6631             SCC.push_back(PN);
6632           }
6633     }
6634   }
6635   return true;
6636 }
6637 
6638 void
6639 ScalarEvolution::sharpenPhiSCCRange(const PHINode *Phi,
6640                                     ConstantRange &ConservativeResult,
6641                                     ScalarEvolution::RangeSignHint SignHint) {
6642   // Collect strongly connected component (further on - SCC ) composed of Phis.
6643   // Analyze all values that are incoming to this SCC (we call them roots).
6644   // All SCC elements have range that is not wider than union of ranges of
6645   // roots.
6646   SmallVector<const PHINode *, 8> SCC;
6647   if (collectSCC(Phi, SCC))
6648     ++NumFoundPhiSCCs;
6649 
6650   // Collect roots: inputs of SCC nodes that come from outside of SCC.
6651   SmallPtrSet<Value *, 4> Roots;
6652   const SmallPtrSet<const PHINode *, 8> SCCSet(SCC.begin(), SCC.end());
6653   for (auto *PN : SCC)
6654     for (auto &Op : PN->operands()) {
6655       auto *PhiInput = dyn_cast<PHINode>(Op);
6656       if (!PhiInput || !SCCSet.count(PhiInput))
6657         Roots.insert(Op);
6658     }
6659 
6660   // Mark SCC elements as pending to avoid infinite recursion if there is a
6661   // cyclic dependency through some instruction that is not a PHI.
6662   for (auto *PN : SCC) {
6663     bool Inserted = PendingPhiRanges.insert(PN).second;
6664     assert(Inserted && "PHI is already pending?");
6665     (void)Inserted;
6666   }
6667 
6668   auto BitWidth = ConservativeResult.getBitWidth();
6669   ConstantRange RangeFromRoots(BitWidth, /*isFullSet=*/false);
6670   for (auto *Root : Roots) {
6671     auto OpRange = getRangeRef(getSCEV(Root), SignHint);
6672     RangeFromRoots = RangeFromRoots.unionWith(OpRange);
6673     // No point to continue if we already have a full set.
6674     if (RangeFromRoots.isFullSet())
6675       break;
6676   }
6677   ConstantRange::PreferredRangeType RangeType =
6678       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? ConstantRange::Unsigned
6679                                                        : ConstantRange::Signed;
6680   ConservativeResult =
6681       ConservativeResult.intersectWith(RangeFromRoots, RangeType);
6682 
6683   DenseMap<const SCEV *, ConstantRange> &Cache =
6684       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6685                                                        : SignedRanges;
6686   // Entire SCC has the same range.
6687   for (auto *PN : SCC) {
6688     bool Erased = PendingPhiRanges.erase(PN);
6689     assert(Erased && "Failed to erase Phi properly?");
6690     (void)Erased;
6691     auto *PNSCEV = getSCEV(const_cast<PHINode *>(PN));
6692     auto I = Cache.find(PNSCEV);
6693     if (I == Cache.end())
6694       setRange(PNSCEV, SignHint, ConservativeResult);
6695     else {
6696       auto SharpenedRange =
6697           I->second.intersectWith(ConservativeResult, RangeType);
6698       setRange(PNSCEV, SignHint, SharpenedRange);
6699     }
6700   }
6701 }
6702 
6703 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6704 // values that the expression can take. Initially, the expression has a value
6705 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6706 // argument defines if we treat Step as signed or unsigned.
6707 static ConstantRange getRangeForAffineARHelper(APInt Step,
6708                                                const ConstantRange &StartRange,
6709                                                const APInt &MaxBECount,
6710                                                unsigned BitWidth, bool Signed) {
6711   // If either Step or MaxBECount is 0, then the expression won't change, and we
6712   // just need to return the initial range.
6713   if (Step == 0 || MaxBECount == 0)
6714     return StartRange;
6715 
6716   // If we don't know anything about the initial value (i.e. StartRange is
6717   // FullRange), then we don't know anything about the final range either.
6718   // Return FullRange.
6719   if (StartRange.isFullSet())
6720     return ConstantRange::getFull(BitWidth);
6721 
6722   // If Step is signed and negative, then we use its absolute value, but we also
6723   // note that we're moving in the opposite direction.
6724   bool Descending = Signed && Step.isNegative();
6725 
6726   if (Signed)
6727     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6728     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6729     // This equations hold true due to the well-defined wrap-around behavior of
6730     // APInt.
6731     Step = Step.abs();
6732 
6733   // Check if Offset is more than full span of BitWidth. If it is, the
6734   // expression is guaranteed to overflow.
6735   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6736     return ConstantRange::getFull(BitWidth);
6737 
6738   // Offset is by how much the expression can change. Checks above guarantee no
6739   // overflow here.
6740   APInt Offset = Step * MaxBECount;
6741 
6742   // Minimum value of the final range will match the minimal value of StartRange
6743   // if the expression is increasing and will be decreased by Offset otherwise.
6744   // Maximum value of the final range will match the maximal value of StartRange
6745   // if the expression is decreasing and will be increased by Offset otherwise.
6746   APInt StartLower = StartRange.getLower();
6747   APInt StartUpper = StartRange.getUpper() - 1;
6748   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6749                                    : (StartUpper + std::move(Offset));
6750 
6751   // It's possible that the new minimum/maximum value will fall into the initial
6752   // range (due to wrap around). This means that the expression can take any
6753   // value in this bitwidth, and we have to return full range.
6754   if (StartRange.contains(MovedBoundary))
6755     return ConstantRange::getFull(BitWidth);
6756 
6757   APInt NewLower =
6758       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6759   APInt NewUpper =
6760       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6761   NewUpper += 1;
6762 
6763   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6764   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6765 }
6766 
6767 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6768                                                    const SCEV *Step,
6769                                                    const SCEV *MaxBECount,
6770                                                    unsigned BitWidth) {
6771   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6772          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6773          "Precondition!");
6774 
6775   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6776   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6777 
6778   // First, consider step signed.
6779   ConstantRange StartSRange = getSignedRange(Start);
6780   ConstantRange StepSRange = getSignedRange(Step);
6781 
6782   // If Step can be both positive and negative, we need to find ranges for the
6783   // maximum absolute step values in both directions and union them.
6784   ConstantRange SR =
6785       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6786                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6787   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6788                                               StartSRange, MaxBECountValue,
6789                                               BitWidth, /* Signed = */ true));
6790 
6791   // Next, consider step unsigned.
6792   ConstantRange UR = getRangeForAffineARHelper(
6793       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6794       MaxBECountValue, BitWidth, /* Signed = */ false);
6795 
6796   // Finally, intersect signed and unsigned ranges.
6797   return SR.intersectWith(UR, ConstantRange::Smallest);
6798 }
6799 
6800 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6801     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6802     ScalarEvolution::RangeSignHint SignHint) {
6803   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6804   assert(AddRec->hasNoSelfWrap() &&
6805          "This only works for non-self-wrapping AddRecs!");
6806   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6807   const SCEV *Step = AddRec->getStepRecurrence(*this);
6808   // Only deal with constant step to save compile time.
6809   if (!isa<SCEVConstant>(Step))
6810     return ConstantRange::getFull(BitWidth);
6811   // Let's make sure that we can prove that we do not self-wrap during
6812   // MaxBECount iterations. We need this because MaxBECount is a maximum
6813   // iteration count estimate, and we might infer nw from some exit for which we
6814   // do not know max exit count (or any other side reasoning).
6815   // TODO: Turn into assert at some point.
6816   if (getTypeSizeInBits(MaxBECount->getType()) >
6817       getTypeSizeInBits(AddRec->getType()))
6818     return ConstantRange::getFull(BitWidth);
6819   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6820   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6821   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6822   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6823   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6824                                          MaxItersWithoutWrap))
6825     return ConstantRange::getFull(BitWidth);
6826 
6827   ICmpInst::Predicate LEPred =
6828       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6829   ICmpInst::Predicate GEPred =
6830       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6831   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6832 
6833   // We know that there is no self-wrap. Let's take Start and End values and
6834   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6835   // the iteration. They either lie inside the range [Min(Start, End),
6836   // Max(Start, End)] or outside it:
6837   //
6838   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6839   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6840   //
6841   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6842   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6843   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6844   // Start <= End and step is positive, or Start >= End and step is negative.
6845   const SCEV *Start = AddRec->getStart();
6846   ConstantRange StartRange = getRangeRef(Start, SignHint);
6847   ConstantRange EndRange = getRangeRef(End, SignHint);
6848   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6849   // If they already cover full iteration space, we will know nothing useful
6850   // even if we prove what we want to prove.
6851   if (RangeBetween.isFullSet())
6852     return RangeBetween;
6853   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6854   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6855                                : RangeBetween.isWrappedSet();
6856   if (IsWrappedSet)
6857     return ConstantRange::getFull(BitWidth);
6858 
6859   if (isKnownPositive(Step) &&
6860       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6861     return RangeBetween;
6862   else if (isKnownNegative(Step) &&
6863            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6864     return RangeBetween;
6865   return ConstantRange::getFull(BitWidth);
6866 }
6867 
6868 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6869                                                     const SCEV *Step,
6870                                                     const SCEV *MaxBECount,
6871                                                     unsigned BitWidth) {
6872   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6873   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6874 
6875   struct SelectPattern {
6876     Value *Condition = nullptr;
6877     APInt TrueValue;
6878     APInt FalseValue;
6879 
6880     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6881                            const SCEV *S) {
6882       Optional<unsigned> CastOp;
6883       APInt Offset(BitWidth, 0);
6884 
6885       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6886              "Should be!");
6887 
6888       // Peel off a constant offset:
6889       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6890         // In the future we could consider being smarter here and handle
6891         // {Start+Step,+,Step} too.
6892         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6893           return;
6894 
6895         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6896         S = SA->getOperand(1);
6897       }
6898 
6899       // Peel off a cast operation
6900       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6901         CastOp = SCast->getSCEVType();
6902         S = SCast->getOperand();
6903       }
6904 
6905       using namespace llvm::PatternMatch;
6906 
6907       auto *SU = dyn_cast<SCEVUnknown>(S);
6908       const APInt *TrueVal, *FalseVal;
6909       if (!SU ||
6910           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6911                                           m_APInt(FalseVal)))) {
6912         Condition = nullptr;
6913         return;
6914       }
6915 
6916       TrueValue = *TrueVal;
6917       FalseValue = *FalseVal;
6918 
6919       // Re-apply the cast we peeled off earlier
6920       if (CastOp.hasValue())
6921         switch (*CastOp) {
6922         default:
6923           llvm_unreachable("Unknown SCEV cast type!");
6924 
6925         case scTruncate:
6926           TrueValue = TrueValue.trunc(BitWidth);
6927           FalseValue = FalseValue.trunc(BitWidth);
6928           break;
6929         case scZeroExtend:
6930           TrueValue = TrueValue.zext(BitWidth);
6931           FalseValue = FalseValue.zext(BitWidth);
6932           break;
6933         case scSignExtend:
6934           TrueValue = TrueValue.sext(BitWidth);
6935           FalseValue = FalseValue.sext(BitWidth);
6936           break;
6937         }
6938 
6939       // Re-apply the constant offset we peeled off earlier
6940       TrueValue += Offset;
6941       FalseValue += Offset;
6942     }
6943 
6944     bool isRecognized() { return Condition != nullptr; }
6945   };
6946 
6947   SelectPattern StartPattern(*this, BitWidth, Start);
6948   if (!StartPattern.isRecognized())
6949     return ConstantRange::getFull(BitWidth);
6950 
6951   SelectPattern StepPattern(*this, BitWidth, Step);
6952   if (!StepPattern.isRecognized())
6953     return ConstantRange::getFull(BitWidth);
6954 
6955   if (StartPattern.Condition != StepPattern.Condition) {
6956     // We don't handle this case today; but we could, by considering four
6957     // possibilities below instead of two. I'm not sure if there are cases where
6958     // that will help over what getRange already does, though.
6959     return ConstantRange::getFull(BitWidth);
6960   }
6961 
6962   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6963   // construct arbitrary general SCEV expressions here.  This function is called
6964   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6965   // say) can end up caching a suboptimal value.
6966 
6967   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6968   // C2352 and C2512 (otherwise it isn't needed).
6969 
6970   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6971   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6972   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6973   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6974 
6975   ConstantRange TrueRange =
6976       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6977   ConstantRange FalseRange =
6978       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6979 
6980   return TrueRange.unionWith(FalseRange);
6981 }
6982 
6983 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6984   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6985   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6986 
6987   // Return early if there are no flags to propagate to the SCEV.
6988   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6989   if (BinOp->hasNoUnsignedWrap())
6990     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6991   if (BinOp->hasNoSignedWrap())
6992     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6993   if (Flags == SCEV::FlagAnyWrap)
6994     return SCEV::FlagAnyWrap;
6995 
6996   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6997 }
6998 
6999 const Instruction *
7000 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) {
7001   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S))
7002     return &*AddRec->getLoop()->getHeader()->begin();
7003   if (auto *U = dyn_cast<SCEVUnknown>(S))
7004     if (auto *I = dyn_cast<Instruction>(U->getValue()))
7005       return I;
7006   return nullptr;
7007 }
7008 
7009 /// Fills \p Ops with unique operands of \p S, if it has operands. If not,
7010 /// \p Ops remains unmodified.
7011 static void collectUniqueOps(const SCEV *S,
7012                              SmallVectorImpl<const SCEV *> &Ops) {
7013   SmallPtrSet<const SCEV *, 4> Unique;
7014   auto InsertUnique = [&](const SCEV *S) {
7015     if (Unique.insert(S).second)
7016       Ops.push_back(S);
7017   };
7018   if (auto *S2 = dyn_cast<SCEVCastExpr>(S))
7019     for (auto *Op : S2->operands())
7020       InsertUnique(Op);
7021   else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S))
7022     for (auto *Op : S2->operands())
7023       InsertUnique(Op);
7024   else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S))
7025     for (auto *Op : S2->operands())
7026       InsertUnique(Op);
7027 }
7028 
7029 const Instruction *
7030 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops,
7031                                        bool &Precise) {
7032   Precise = true;
7033   // Do a bounded search of the def relation of the requested SCEVs.
7034   SmallSet<const SCEV *, 16> Visited;
7035   SmallVector<const SCEV *> Worklist;
7036   auto pushOp = [&](const SCEV *S) {
7037     if (!Visited.insert(S).second)
7038       return;
7039     // Threshold of 30 here is arbitrary.
7040     if (Visited.size() > 30) {
7041       Precise = false;
7042       return;
7043     }
7044     Worklist.push_back(S);
7045   };
7046 
7047   for (auto *S : Ops)
7048     pushOp(S);
7049 
7050   const Instruction *Bound = nullptr;
7051   while (!Worklist.empty()) {
7052     auto *S = Worklist.pop_back_val();
7053     if (auto *DefI = getNonTrivialDefiningScopeBound(S)) {
7054       if (!Bound || DT.dominates(Bound, DefI))
7055         Bound = DefI;
7056     } else {
7057       SmallVector<const SCEV *, 4> Ops;
7058       collectUniqueOps(S, Ops);
7059       for (auto *Op : Ops)
7060         pushOp(Op);
7061     }
7062   }
7063   return Bound ? Bound : &*F.getEntryBlock().begin();
7064 }
7065 
7066 const Instruction *
7067 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) {
7068   bool Discard;
7069   return getDefiningScopeBound(Ops, Discard);
7070 }
7071 
7072 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A,
7073                                                         const Instruction *B) {
7074   if (A->getParent() == B->getParent() &&
7075       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7076                                                  B->getIterator()))
7077     return true;
7078 
7079   auto *BLoop = LI.getLoopFor(B->getParent());
7080   if (BLoop && BLoop->getHeader() == B->getParent() &&
7081       BLoop->getLoopPreheader() == A->getParent() &&
7082       isGuaranteedToTransferExecutionToSuccessor(A->getIterator(),
7083                                                  A->getParent()->end()) &&
7084       isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(),
7085                                                  B->getIterator()))
7086     return true;
7087   return false;
7088 }
7089 
7090 
7091 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
7092   // Only proceed if we can prove that I does not yield poison.
7093   if (!programUndefinedIfPoison(I))
7094     return false;
7095 
7096   // At this point we know that if I is executed, then it does not wrap
7097   // according to at least one of NSW or NUW. If I is not executed, then we do
7098   // not know if the calculation that I represents would wrap. Multiple
7099   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
7100   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
7101   // derived from other instructions that map to the same SCEV. We cannot make
7102   // that guarantee for cases where I is not executed. So we need to find a
7103   // upper bound on the defining scope for the SCEV, and prove that I is
7104   // executed every time we enter that scope.  When the bounding scope is a
7105   // loop (the common case), this is equivalent to proving I executes on every
7106   // iteration of that loop.
7107   SmallVector<const SCEV *> SCEVOps;
7108   for (const Use &Op : I->operands()) {
7109     // I could be an extractvalue from a call to an overflow intrinsic.
7110     // TODO: We can do better here in some cases.
7111     if (isSCEVable(Op->getType()))
7112       SCEVOps.push_back(getSCEV(Op));
7113   }
7114   auto *DefI = getDefiningScopeBound(SCEVOps);
7115   return isGuaranteedToTransferExecutionTo(DefI, I);
7116 }
7117 
7118 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
7119   // If we know that \c I can never be poison period, then that's enough.
7120   if (isSCEVExprNeverPoison(I))
7121     return true;
7122 
7123   // For an add recurrence specifically, we assume that infinite loops without
7124   // side effects are undefined behavior, and then reason as follows:
7125   //
7126   // If the add recurrence is poison in any iteration, it is poison on all
7127   // future iterations (since incrementing poison yields poison). If the result
7128   // of the add recurrence is fed into the loop latch condition and the loop
7129   // does not contain any throws or exiting blocks other than the latch, we now
7130   // have the ability to "choose" whether the backedge is taken or not (by
7131   // choosing a sufficiently evil value for the poison feeding into the branch)
7132   // for every iteration including and after the one in which \p I first became
7133   // poison.  There are two possibilities (let's call the iteration in which \p
7134   // I first became poison as K):
7135   //
7136   //  1. In the set of iterations including and after K, the loop body executes
7137   //     no side effects.  In this case executing the backege an infinte number
7138   //     of times will yield undefined behavior.
7139   //
7140   //  2. In the set of iterations including and after K, the loop body executes
7141   //     at least one side effect.  In this case, that specific instance of side
7142   //     effect is control dependent on poison, which also yields undefined
7143   //     behavior.
7144 
7145   auto *ExitingBB = L->getExitingBlock();
7146   auto *LatchBB = L->getLoopLatch();
7147   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
7148     return false;
7149 
7150   SmallPtrSet<const Instruction *, 16> Pushed;
7151   SmallVector<const Instruction *, 8> PoisonStack;
7152 
7153   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
7154   // things that are known to be poison under that assumption go on the
7155   // PoisonStack.
7156   Pushed.insert(I);
7157   PoisonStack.push_back(I);
7158 
7159   bool LatchControlDependentOnPoison = false;
7160   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
7161     const Instruction *Poison = PoisonStack.pop_back_val();
7162 
7163     for (auto *PoisonUser : Poison->users()) {
7164       if (propagatesPoison(cast<Operator>(PoisonUser))) {
7165         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
7166           PoisonStack.push_back(cast<Instruction>(PoisonUser));
7167       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
7168         assert(BI->isConditional() && "Only possibility!");
7169         if (BI->getParent() == LatchBB) {
7170           LatchControlDependentOnPoison = true;
7171           break;
7172         }
7173       }
7174     }
7175   }
7176 
7177   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
7178 }
7179 
7180 ScalarEvolution::LoopProperties
7181 ScalarEvolution::getLoopProperties(const Loop *L) {
7182   using LoopProperties = ScalarEvolution::LoopProperties;
7183 
7184   auto Itr = LoopPropertiesCache.find(L);
7185   if (Itr == LoopPropertiesCache.end()) {
7186     auto HasSideEffects = [](Instruction *I) {
7187       if (auto *SI = dyn_cast<StoreInst>(I))
7188         return !SI->isSimple();
7189 
7190       return I->mayThrow() || I->mayWriteToMemory();
7191     };
7192 
7193     LoopProperties LP = {/* HasNoAbnormalExits */ true,
7194                          /*HasNoSideEffects*/ true};
7195 
7196     for (auto *BB : L->getBlocks())
7197       for (auto &I : *BB) {
7198         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
7199           LP.HasNoAbnormalExits = false;
7200         if (HasSideEffects(&I))
7201           LP.HasNoSideEffects = false;
7202         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
7203           break; // We're already as pessimistic as we can get.
7204       }
7205 
7206     auto InsertPair = LoopPropertiesCache.insert({L, LP});
7207     assert(InsertPair.second && "We just checked!");
7208     Itr = InsertPair.first;
7209   }
7210 
7211   return Itr->second;
7212 }
7213 
7214 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
7215   // A mustprogress loop without side effects must be finite.
7216   // TODO: The check used here is very conservative.  It's only *specific*
7217   // side effects which are well defined in infinite loops.
7218   return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L));
7219 }
7220 
7221 const SCEV *ScalarEvolution::createSCEV(Value *V) {
7222   if (!isSCEVable(V->getType()))
7223     return getUnknown(V);
7224 
7225   if (Instruction *I = dyn_cast<Instruction>(V)) {
7226     // Don't attempt to analyze instructions in blocks that aren't
7227     // reachable. Such instructions don't matter, and they aren't required
7228     // to obey basic rules for definitions dominating uses which this
7229     // analysis depends on.
7230     if (!DT.isReachableFromEntry(I->getParent()))
7231       return getUnknown(UndefValue::get(V->getType()));
7232   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
7233     return getConstant(CI);
7234   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
7235     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
7236   else if (!isa<ConstantExpr>(V))
7237     return getUnknown(V);
7238 
7239   Operator *U = cast<Operator>(V);
7240   if (auto BO = MatchBinaryOp(U, DT)) {
7241     switch (BO->Opcode) {
7242     case Instruction::Add: {
7243       // The simple thing to do would be to just call getSCEV on both operands
7244       // and call getAddExpr with the result. However if we're looking at a
7245       // bunch of things all added together, this can be quite inefficient,
7246       // because it leads to N-1 getAddExpr calls for N ultimate operands.
7247       // Instead, gather up all the operands and make a single getAddExpr call.
7248       // LLVM IR canonical form means we need only traverse the left operands.
7249       SmallVector<const SCEV *, 4> AddOps;
7250       do {
7251         if (BO->Op) {
7252           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7253             AddOps.push_back(OpSCEV);
7254             break;
7255           }
7256 
7257           // If a NUW or NSW flag can be applied to the SCEV for this
7258           // addition, then compute the SCEV for this addition by itself
7259           // with a separate call to getAddExpr. We need to do that
7260           // instead of pushing the operands of the addition onto AddOps,
7261           // since the flags are only known to apply to this particular
7262           // addition - they may not apply to other additions that can be
7263           // formed with operands from AddOps.
7264           const SCEV *RHS = getSCEV(BO->RHS);
7265           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7266           if (Flags != SCEV::FlagAnyWrap) {
7267             const SCEV *LHS = getSCEV(BO->LHS);
7268             if (BO->Opcode == Instruction::Sub)
7269               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
7270             else
7271               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
7272             break;
7273           }
7274         }
7275 
7276         if (BO->Opcode == Instruction::Sub)
7277           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
7278         else
7279           AddOps.push_back(getSCEV(BO->RHS));
7280 
7281         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7282         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
7283                        NewBO->Opcode != Instruction::Sub)) {
7284           AddOps.push_back(getSCEV(BO->LHS));
7285           break;
7286         }
7287         BO = NewBO;
7288       } while (true);
7289 
7290       return getAddExpr(AddOps);
7291     }
7292 
7293     case Instruction::Mul: {
7294       SmallVector<const SCEV *, 4> MulOps;
7295       do {
7296         if (BO->Op) {
7297           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
7298             MulOps.push_back(OpSCEV);
7299             break;
7300           }
7301 
7302           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
7303           if (Flags != SCEV::FlagAnyWrap) {
7304             MulOps.push_back(
7305                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
7306             break;
7307           }
7308         }
7309 
7310         MulOps.push_back(getSCEV(BO->RHS));
7311         auto NewBO = MatchBinaryOp(BO->LHS, DT);
7312         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
7313           MulOps.push_back(getSCEV(BO->LHS));
7314           break;
7315         }
7316         BO = NewBO;
7317       } while (true);
7318 
7319       return getMulExpr(MulOps);
7320     }
7321     case Instruction::UDiv:
7322       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7323     case Instruction::URem:
7324       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7325     case Instruction::Sub: {
7326       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
7327       if (BO->Op)
7328         Flags = getNoWrapFlagsFromUB(BO->Op);
7329       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
7330     }
7331     case Instruction::And:
7332       // For an expression like x&255 that merely masks off the high bits,
7333       // use zext(trunc(x)) as the SCEV expression.
7334       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7335         if (CI->isZero())
7336           return getSCEV(BO->RHS);
7337         if (CI->isMinusOne())
7338           return getSCEV(BO->LHS);
7339         const APInt &A = CI->getValue();
7340 
7341         // Instcombine's ShrinkDemandedConstant may strip bits out of
7342         // constants, obscuring what would otherwise be a low-bits mask.
7343         // Use computeKnownBits to compute what ShrinkDemandedConstant
7344         // knew about to reconstruct a low-bits mask value.
7345         unsigned LZ = A.countLeadingZeros();
7346         unsigned TZ = A.countTrailingZeros();
7347         unsigned BitWidth = A.getBitWidth();
7348         KnownBits Known(BitWidth);
7349         computeKnownBits(BO->LHS, Known, getDataLayout(),
7350                          0, &AC, nullptr, &DT);
7351 
7352         APInt EffectiveMask =
7353             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
7354         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
7355           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
7356           const SCEV *LHS = getSCEV(BO->LHS);
7357           const SCEV *ShiftedLHS = nullptr;
7358           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
7359             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
7360               // For an expression like (x * 8) & 8, simplify the multiply.
7361               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
7362               unsigned GCD = std::min(MulZeros, TZ);
7363               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
7364               SmallVector<const SCEV*, 4> MulOps;
7365               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
7366               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
7367               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
7368               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
7369             }
7370           }
7371           if (!ShiftedLHS)
7372             ShiftedLHS = getUDivExpr(LHS, MulCount);
7373           return getMulExpr(
7374               getZeroExtendExpr(
7375                   getTruncateExpr(ShiftedLHS,
7376                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
7377                   BO->LHS->getType()),
7378               MulCount);
7379         }
7380       }
7381       // Binary `and` is a bit-wise `umin`.
7382       if (BO->LHS->getType()->isIntegerTy(1))
7383         return getUMinExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7384       break;
7385 
7386     case Instruction::Or:
7387       // If the RHS of the Or is a constant, we may have something like:
7388       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
7389       // optimizations will transparently handle this case.
7390       //
7391       // In order for this transformation to be safe, the LHS must be of the
7392       // form X*(2^n) and the Or constant must be less than 2^n.
7393       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7394         const SCEV *LHS = getSCEV(BO->LHS);
7395         const APInt &CIVal = CI->getValue();
7396         if (GetMinTrailingZeros(LHS) >=
7397             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
7398           // Build a plain add SCEV.
7399           return getAddExpr(LHS, getSCEV(CI),
7400                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
7401         }
7402       }
7403       // Binary `or` is a bit-wise `umax`.
7404       if (BO->LHS->getType()->isIntegerTy(1))
7405         return getUMaxExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
7406       break;
7407 
7408     case Instruction::Xor:
7409       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
7410         // If the RHS of xor is -1, then this is a not operation.
7411         if (CI->isMinusOne())
7412           return getNotSCEV(getSCEV(BO->LHS));
7413 
7414         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
7415         // This is a variant of the check for xor with -1, and it handles
7416         // the case where instcombine has trimmed non-demanded bits out
7417         // of an xor with -1.
7418         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
7419           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
7420             if (LBO->getOpcode() == Instruction::And &&
7421                 LCI->getValue() == CI->getValue())
7422               if (const SCEVZeroExtendExpr *Z =
7423                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
7424                 Type *UTy = BO->LHS->getType();
7425                 const SCEV *Z0 = Z->getOperand();
7426                 Type *Z0Ty = Z0->getType();
7427                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
7428 
7429                 // If C is a low-bits mask, the zero extend is serving to
7430                 // mask off the high bits. Complement the operand and
7431                 // re-apply the zext.
7432                 if (CI->getValue().isMask(Z0TySize))
7433                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
7434 
7435                 // If C is a single bit, it may be in the sign-bit position
7436                 // before the zero-extend. In this case, represent the xor
7437                 // using an add, which is equivalent, and re-apply the zext.
7438                 APInt Trunc = CI->getValue().trunc(Z0TySize);
7439                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
7440                     Trunc.isSignMask())
7441                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
7442                                            UTy);
7443               }
7444       }
7445       break;
7446 
7447     case Instruction::Shl:
7448       // Turn shift left of a constant amount into a multiply.
7449       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
7450         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
7451 
7452         // If the shift count is not less than the bitwidth, the result of
7453         // the shift is undefined. Don't try to analyze it, because the
7454         // resolution chosen here may differ from the resolution chosen in
7455         // other parts of the compiler.
7456         if (SA->getValue().uge(BitWidth))
7457           break;
7458 
7459         // We can safely preserve the nuw flag in all cases. It's also safe to
7460         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
7461         // requires special handling. It can be preserved as long as we're not
7462         // left shifting by bitwidth - 1.
7463         auto Flags = SCEV::FlagAnyWrap;
7464         if (BO->Op) {
7465           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
7466           if ((MulFlags & SCEV::FlagNSW) &&
7467               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
7468             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
7469           if (MulFlags & SCEV::FlagNUW)
7470             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
7471         }
7472 
7473         Constant *X = ConstantInt::get(
7474             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
7475         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
7476       }
7477       break;
7478 
7479     case Instruction::AShr: {
7480       // AShr X, C, where C is a constant.
7481       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
7482       if (!CI)
7483         break;
7484 
7485       Type *OuterTy = BO->LHS->getType();
7486       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
7487       // If the shift count is not less than the bitwidth, the result of
7488       // the shift is undefined. Don't try to analyze it, because the
7489       // resolution chosen here may differ from the resolution chosen in
7490       // other parts of the compiler.
7491       if (CI->getValue().uge(BitWidth))
7492         break;
7493 
7494       if (CI->isZero())
7495         return getSCEV(BO->LHS); // shift by zero --> noop
7496 
7497       uint64_t AShrAmt = CI->getZExtValue();
7498       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
7499 
7500       Operator *L = dyn_cast<Operator>(BO->LHS);
7501       if (L && L->getOpcode() == Instruction::Shl) {
7502         // X = Shl A, n
7503         // Y = AShr X, m
7504         // Both n and m are constant.
7505 
7506         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7507         if (L->getOperand(1) == BO->RHS)
7508           // For a two-shift sext-inreg, i.e. n = m,
7509           // use sext(trunc(x)) as the SCEV expression.
7510           return getSignExtendExpr(
7511               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7512 
7513         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7514         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7515           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7516           if (ShlAmt > AShrAmt) {
7517             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7518             // expression. We already checked that ShlAmt < BitWidth, so
7519             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7520             // ShlAmt - AShrAmt < Amt.
7521             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7522                                             ShlAmt - AShrAmt);
7523             return getSignExtendExpr(
7524                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7525                 getConstant(Mul)), OuterTy);
7526           }
7527         }
7528       }
7529       break;
7530     }
7531     }
7532   }
7533 
7534   switch (U->getOpcode()) {
7535   case Instruction::Trunc:
7536     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7537 
7538   case Instruction::ZExt:
7539     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7540 
7541   case Instruction::SExt:
7542     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7543       // The NSW flag of a subtract does not always survive the conversion to
7544       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7545       // more likely to preserve NSW and allow later AddRec optimisations.
7546       //
7547       // NOTE: This is effectively duplicating this logic from getSignExtend:
7548       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7549       // but by that point the NSW information has potentially been lost.
7550       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7551         Type *Ty = U->getType();
7552         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7553         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7554         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7555       }
7556     }
7557     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7558 
7559   case Instruction::BitCast:
7560     // BitCasts are no-op casts so we just eliminate the cast.
7561     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7562       return getSCEV(U->getOperand(0));
7563     break;
7564 
7565   case Instruction::PtrToInt: {
7566     // Pointer to integer cast is straight-forward, so do model it.
7567     const SCEV *Op = getSCEV(U->getOperand(0));
7568     Type *DstIntTy = U->getType();
7569     // But only if effective SCEV (integer) type is wide enough to represent
7570     // all possible pointer values.
7571     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7572     if (isa<SCEVCouldNotCompute>(IntOp))
7573       return getUnknown(V);
7574     return IntOp;
7575   }
7576   case Instruction::IntToPtr:
7577     // Just don't deal with inttoptr casts.
7578     return getUnknown(V);
7579 
7580   case Instruction::SDiv:
7581     // If both operands are non-negative, this is just an udiv.
7582     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7583         isKnownNonNegative(getSCEV(U->getOperand(1))))
7584       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7585     break;
7586 
7587   case Instruction::SRem:
7588     // If both operands are non-negative, this is just an urem.
7589     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7590         isKnownNonNegative(getSCEV(U->getOperand(1))))
7591       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7592     break;
7593 
7594   case Instruction::GetElementPtr:
7595     return createNodeForGEP(cast<GEPOperator>(U));
7596 
7597   case Instruction::PHI:
7598     return createNodeForPHI(cast<PHINode>(U));
7599 
7600   case Instruction::Select:
7601     return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1),
7602                                     U->getOperand(2));
7603 
7604   case Instruction::Call:
7605   case Instruction::Invoke:
7606     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7607       return getSCEV(RV);
7608 
7609     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7610       switch (II->getIntrinsicID()) {
7611       case Intrinsic::abs:
7612         return getAbsExpr(
7613             getSCEV(II->getArgOperand(0)),
7614             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7615       case Intrinsic::umax:
7616         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7617                            getSCEV(II->getArgOperand(1)));
7618       case Intrinsic::umin:
7619         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7620                            getSCEV(II->getArgOperand(1)));
7621       case Intrinsic::smax:
7622         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7623                            getSCEV(II->getArgOperand(1)));
7624       case Intrinsic::smin:
7625         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7626                            getSCEV(II->getArgOperand(1)));
7627       case Intrinsic::usub_sat: {
7628         const SCEV *X = getSCEV(II->getArgOperand(0));
7629         const SCEV *Y = getSCEV(II->getArgOperand(1));
7630         const SCEV *ClampedY = getUMinExpr(X, Y);
7631         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7632       }
7633       case Intrinsic::uadd_sat: {
7634         const SCEV *X = getSCEV(II->getArgOperand(0));
7635         const SCEV *Y = getSCEV(II->getArgOperand(1));
7636         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7637         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7638       }
7639       case Intrinsic::start_loop_iterations:
7640         // A start_loop_iterations is just equivalent to the first operand for
7641         // SCEV purposes.
7642         return getSCEV(II->getArgOperand(0));
7643       default:
7644         break;
7645       }
7646     }
7647     break;
7648   }
7649 
7650   return getUnknown(V);
7651 }
7652 
7653 //===----------------------------------------------------------------------===//
7654 //                   Iteration Count Computation Code
7655 //
7656 
7657 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount,
7658                                                        bool Extend) {
7659   if (isa<SCEVCouldNotCompute>(ExitCount))
7660     return getCouldNotCompute();
7661 
7662   auto *ExitCountType = ExitCount->getType();
7663   assert(ExitCountType->isIntegerTy());
7664 
7665   if (!Extend)
7666     return getAddExpr(ExitCount, getOne(ExitCountType));
7667 
7668   auto *WiderType = Type::getIntNTy(ExitCountType->getContext(),
7669                                     1 + ExitCountType->getScalarSizeInBits());
7670   return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType),
7671                     getOne(WiderType));
7672 }
7673 
7674 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7675   if (!ExitCount)
7676     return 0;
7677 
7678   ConstantInt *ExitConst = ExitCount->getValue();
7679 
7680   // Guard against huge trip counts.
7681   if (ExitConst->getValue().getActiveBits() > 32)
7682     return 0;
7683 
7684   // In case of integer overflow, this returns 0, which is correct.
7685   return ((unsigned)ExitConst->getZExtValue()) + 1;
7686 }
7687 
7688 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7689   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7690   return getConstantTripCount(ExitCount);
7691 }
7692 
7693 unsigned
7694 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7695                                            const BasicBlock *ExitingBlock) {
7696   assert(ExitingBlock && "Must pass a non-null exiting block!");
7697   assert(L->isLoopExiting(ExitingBlock) &&
7698          "Exiting block must actually branch out of the loop!");
7699   const SCEVConstant *ExitCount =
7700       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7701   return getConstantTripCount(ExitCount);
7702 }
7703 
7704 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7705   const auto *MaxExitCount =
7706       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7707   return getConstantTripCount(MaxExitCount);
7708 }
7709 
7710 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) {
7711   // We can't infer from Array in Irregular Loop.
7712   // FIXME: It's hard to infer loop bound from array operated in Nested Loop.
7713   if (!L->isLoopSimplifyForm() || !L->isInnermost())
7714     return getCouldNotCompute();
7715 
7716   // FIXME: To make the scene more typical, we only analysis loops that have
7717   // one exiting block and that block must be the latch. To make it easier to
7718   // capture loops that have memory access and memory access will be executed
7719   // in each iteration.
7720   const BasicBlock *LoopLatch = L->getLoopLatch();
7721   assert(LoopLatch && "See defination of simplify form loop.");
7722   if (L->getExitingBlock() != LoopLatch)
7723     return getCouldNotCompute();
7724 
7725   const DataLayout &DL = getDataLayout();
7726   SmallVector<const SCEV *> InferCountColl;
7727   for (auto *BB : L->getBlocks()) {
7728     // Go here, we can know that Loop is a single exiting and simplified form
7729     // loop. Make sure that infer from Memory Operation in those BBs must be
7730     // executed in loop. First step, we can make sure that max execution time
7731     // of MemAccessBB in loop represents latch max excution time.
7732     // If MemAccessBB does not dom Latch, skip.
7733     //            Entry
7734     //              │
7735     //        ┌─────▼─────┐
7736     //        │Loop Header◄─────┐
7737     //        └──┬──────┬─┘     │
7738     //           │      │       │
7739     //  ┌────────▼──┐ ┌─▼─────┐ │
7740     //  │MemAccessBB│ │OtherBB│ │
7741     //  └────────┬──┘ └─┬─────┘ │
7742     //           │      │       │
7743     //         ┌─▼──────▼─┐     │
7744     //         │Loop Latch├─────┘
7745     //         └────┬─────┘
7746     //              ▼
7747     //             Exit
7748     if (!DT.dominates(BB, LoopLatch))
7749       continue;
7750 
7751     for (Instruction &Inst : *BB) {
7752       // Find Memory Operation Instruction.
7753       auto *GEP = getLoadStorePointerOperand(&Inst);
7754       if (!GEP)
7755         continue;
7756 
7757       auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst));
7758       // Do not infer from scalar type, eg."ElemSize = sizeof()".
7759       if (!ElemSize)
7760         continue;
7761 
7762       // Use a existing polynomial recurrence on the trip count.
7763       auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP));
7764       if (!AddRec)
7765         continue;
7766       auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec));
7767       auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this));
7768       if (!ArrBase || !Step)
7769         continue;
7770       assert(isLoopInvariant(ArrBase, L) && "See addrec definition");
7771 
7772       // Only handle { %array + step },
7773       // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here.
7774       if (AddRec->getStart() != ArrBase)
7775         continue;
7776 
7777       // Memory operation pattern which have gaps.
7778       // Or repeat memory opreation.
7779       // And index of GEP wraps arround.
7780       if (Step->getAPInt().getActiveBits() > 32 ||
7781           Step->getAPInt().getZExtValue() !=
7782               ElemSize->getAPInt().getZExtValue() ||
7783           Step->isZero() || Step->getAPInt().isNegative())
7784         continue;
7785 
7786       // Only infer from stack array which has certain size.
7787       // Make sure alloca instruction is not excuted in loop.
7788       AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue());
7789       if (!AllocateInst || L->contains(AllocateInst->getParent()))
7790         continue;
7791 
7792       // Make sure only handle normal array.
7793       auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType());
7794       auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize());
7795       if (!Ty || !ArrSize || !ArrSize->isOne())
7796         continue;
7797 
7798       // FIXME: Since gep indices are silently zext to the indexing type,
7799       // we will have a narrow gep index which wraps around rather than
7800       // increasing strictly, we shoule ensure that step is increasing
7801       // strictly by the loop iteration.
7802       // Now we can infer a max execution time by MemLength/StepLength.
7803       const SCEV *MemSize =
7804           getConstant(Step->getType(), DL.getTypeAllocSize(Ty));
7805       auto *MaxExeCount =
7806           dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step));
7807       if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32)
7808         continue;
7809 
7810       // If the loop reaches the maximum number of executions, we can not
7811       // access bytes starting outside the statically allocated size without
7812       // being immediate UB. But it is allowed to enter loop header one more
7813       // time.
7814       auto *InferCount = dyn_cast<SCEVConstant>(
7815           getAddExpr(MaxExeCount, getOne(MaxExeCount->getType())));
7816       // Discard the maximum number of execution times under 32bits.
7817       if (!InferCount || InferCount->getAPInt().getActiveBits() > 32)
7818         continue;
7819 
7820       InferCountColl.push_back(InferCount);
7821     }
7822   }
7823 
7824   if (InferCountColl.size() == 0)
7825     return getCouldNotCompute();
7826 
7827   return getUMinFromMismatchedTypes(InferCountColl);
7828 }
7829 
7830 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7831   SmallVector<BasicBlock *, 8> ExitingBlocks;
7832   L->getExitingBlocks(ExitingBlocks);
7833 
7834   Optional<unsigned> Res = None;
7835   for (auto *ExitingBB : ExitingBlocks) {
7836     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7837     if (!Res)
7838       Res = Multiple;
7839     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7840   }
7841   return Res.getValueOr(1);
7842 }
7843 
7844 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7845                                                        const SCEV *ExitCount) {
7846   if (ExitCount == getCouldNotCompute())
7847     return 1;
7848 
7849   // Get the trip count
7850   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7851 
7852   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7853   if (!TC)
7854     // Attempt to factor more general cases. Returns the greatest power of
7855     // two divisor. If overflow happens, the trip count expression is still
7856     // divisible by the greatest power of 2 divisor returned.
7857     return 1U << std::min((uint32_t)31,
7858                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7859 
7860   ConstantInt *Result = TC->getValue();
7861 
7862   // Guard against huge trip counts (this requires checking
7863   // for zero to handle the case where the trip count == -1 and the
7864   // addition wraps).
7865   if (!Result || Result->getValue().getActiveBits() > 32 ||
7866       Result->getValue().getActiveBits() == 0)
7867     return 1;
7868 
7869   return (unsigned)Result->getZExtValue();
7870 }
7871 
7872 /// Returns the largest constant divisor of the trip count of this loop as a
7873 /// normal unsigned value, if possible. This means that the actual trip count is
7874 /// always a multiple of the returned value (don't forget the trip count could
7875 /// very well be zero as well!).
7876 ///
7877 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7878 /// multiple of a constant (which is also the case if the trip count is simply
7879 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7880 /// if the trip count is very large (>= 2^32).
7881 ///
7882 /// As explained in the comments for getSmallConstantTripCount, this assumes
7883 /// that control exits the loop via ExitingBlock.
7884 unsigned
7885 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7886                                               const BasicBlock *ExitingBlock) {
7887   assert(ExitingBlock && "Must pass a non-null exiting block!");
7888   assert(L->isLoopExiting(ExitingBlock) &&
7889          "Exiting block must actually branch out of the loop!");
7890   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7891   return getSmallConstantTripMultiple(L, ExitCount);
7892 }
7893 
7894 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7895                                           const BasicBlock *ExitingBlock,
7896                                           ExitCountKind Kind) {
7897   switch (Kind) {
7898   case Exact:
7899   case SymbolicMaximum:
7900     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7901   case ConstantMaximum:
7902     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7903   };
7904   llvm_unreachable("Invalid ExitCountKind!");
7905 }
7906 
7907 const SCEV *
7908 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7909                                                  SmallVector<const SCEVPredicate *, 4> &Preds) {
7910   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7911 }
7912 
7913 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7914                                                    ExitCountKind Kind) {
7915   switch (Kind) {
7916   case Exact:
7917     return getBackedgeTakenInfo(L).getExact(L, this);
7918   case ConstantMaximum:
7919     return getBackedgeTakenInfo(L).getConstantMax(this);
7920   case SymbolicMaximum:
7921     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7922   };
7923   llvm_unreachable("Invalid ExitCountKind!");
7924 }
7925 
7926 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7927   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7928 }
7929 
7930 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7931 static void PushLoopPHIs(const Loop *L,
7932                          SmallVectorImpl<Instruction *> &Worklist,
7933                          SmallPtrSetImpl<Instruction *> &Visited) {
7934   BasicBlock *Header = L->getHeader();
7935 
7936   // Push all Loop-header PHIs onto the Worklist stack.
7937   for (PHINode &PN : Header->phis())
7938     if (Visited.insert(&PN).second)
7939       Worklist.push_back(&PN);
7940 }
7941 
7942 const ScalarEvolution::BackedgeTakenInfo &
7943 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7944   auto &BTI = getBackedgeTakenInfo(L);
7945   if (BTI.hasFullInfo())
7946     return BTI;
7947 
7948   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7949 
7950   if (!Pair.second)
7951     return Pair.first->second;
7952 
7953   BackedgeTakenInfo Result =
7954       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7955 
7956   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7957 }
7958 
7959 ScalarEvolution::BackedgeTakenInfo &
7960 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7961   // Initially insert an invalid entry for this loop. If the insertion
7962   // succeeds, proceed to actually compute a backedge-taken count and
7963   // update the value. The temporary CouldNotCompute value tells SCEV
7964   // code elsewhere that it shouldn't attempt to request a new
7965   // backedge-taken count, which could result in infinite recursion.
7966   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7967       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7968   if (!Pair.second)
7969     return Pair.first->second;
7970 
7971   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7972   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7973   // must be cleared in this scope.
7974   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7975 
7976   // In product build, there are no usage of statistic.
7977   (void)NumTripCountsComputed;
7978   (void)NumTripCountsNotComputed;
7979 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7980   const SCEV *BEExact = Result.getExact(L, this);
7981   if (BEExact != getCouldNotCompute()) {
7982     assert(isLoopInvariant(BEExact, L) &&
7983            isLoopInvariant(Result.getConstantMax(this), L) &&
7984            "Computed backedge-taken count isn't loop invariant for loop!");
7985     ++NumTripCountsComputed;
7986   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7987              isa<PHINode>(L->getHeader()->begin())) {
7988     // Only count loops that have phi nodes as not being computable.
7989     ++NumTripCountsNotComputed;
7990   }
7991 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7992 
7993   // Now that we know more about the trip count for this loop, forget any
7994   // existing SCEV values for PHI nodes in this loop since they are only
7995   // conservative estimates made without the benefit of trip count
7996   // information. This invalidation is not necessary for correctness, and is
7997   // only done to produce more precise results.
7998   if (Result.hasAnyInfo()) {
7999     // Invalidate any expression using an addrec in this loop.
8000     SmallVector<const SCEV *, 8> ToForget;
8001     auto LoopUsersIt = LoopUsers.find(L);
8002     if (LoopUsersIt != LoopUsers.end())
8003       append_range(ToForget, LoopUsersIt->second);
8004     forgetMemoizedResults(ToForget);
8005 
8006     // Invalidate constant-evolved loop header phis.
8007     for (PHINode &PN : L->getHeader()->phis())
8008       ConstantEvolutionLoopExitValue.erase(&PN);
8009   }
8010 
8011   // Re-lookup the insert position, since the call to
8012   // computeBackedgeTakenCount above could result in a
8013   // recusive call to getBackedgeTakenInfo (on a different
8014   // loop), which would invalidate the iterator computed
8015   // earlier.
8016   return BackedgeTakenCounts.find(L)->second = std::move(Result);
8017 }
8018 
8019 void ScalarEvolution::forgetAllLoops() {
8020   // This method is intended to forget all info about loops. It should
8021   // invalidate caches as if the following happened:
8022   // - The trip counts of all loops have changed arbitrarily
8023   // - Every llvm::Value has been updated in place to produce a different
8024   // result.
8025   BackedgeTakenCounts.clear();
8026   PredicatedBackedgeTakenCounts.clear();
8027   BECountUsers.clear();
8028   LoopPropertiesCache.clear();
8029   ConstantEvolutionLoopExitValue.clear();
8030   ValueExprMap.clear();
8031   ValuesAtScopes.clear();
8032   ValuesAtScopesUsers.clear();
8033   LoopDispositions.clear();
8034   BlockDispositions.clear();
8035   UnsignedRanges.clear();
8036   SignedRanges.clear();
8037   ExprValueMap.clear();
8038   HasRecMap.clear();
8039   MinTrailingZerosCache.clear();
8040   PredicatedSCEVRewrites.clear();
8041 }
8042 
8043 void ScalarEvolution::forgetLoop(const Loop *L) {
8044   SmallVector<const Loop *, 16> LoopWorklist(1, L);
8045   SmallVector<Instruction *, 32> Worklist;
8046   SmallPtrSet<Instruction *, 16> Visited;
8047   SmallVector<const SCEV *, 16> ToForget;
8048 
8049   // Iterate over all the loops and sub-loops to drop SCEV information.
8050   while (!LoopWorklist.empty()) {
8051     auto *CurrL = LoopWorklist.pop_back_val();
8052 
8053     // Drop any stored trip count value.
8054     forgetBackedgeTakenCounts(CurrL, /* Predicated */ false);
8055     forgetBackedgeTakenCounts(CurrL, /* Predicated */ true);
8056 
8057     // Drop information about predicated SCEV rewrites for this loop.
8058     for (auto I = PredicatedSCEVRewrites.begin();
8059          I != PredicatedSCEVRewrites.end();) {
8060       std::pair<const SCEV *, const Loop *> Entry = I->first;
8061       if (Entry.second == CurrL)
8062         PredicatedSCEVRewrites.erase(I++);
8063       else
8064         ++I;
8065     }
8066 
8067     auto LoopUsersItr = LoopUsers.find(CurrL);
8068     if (LoopUsersItr != LoopUsers.end()) {
8069       ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(),
8070                 LoopUsersItr->second.end());
8071       LoopUsers.erase(LoopUsersItr);
8072     }
8073 
8074     // Drop information about expressions based on loop-header PHIs.
8075     PushLoopPHIs(CurrL, Worklist, Visited);
8076 
8077     while (!Worklist.empty()) {
8078       Instruction *I = Worklist.pop_back_val();
8079 
8080       ValueExprMapType::iterator It =
8081           ValueExprMap.find_as(static_cast<Value *>(I));
8082       if (It != ValueExprMap.end()) {
8083         eraseValueFromMap(It->first);
8084         ToForget.push_back(It->second);
8085         if (PHINode *PN = dyn_cast<PHINode>(I))
8086           ConstantEvolutionLoopExitValue.erase(PN);
8087       }
8088 
8089       PushDefUseChildren(I, Worklist, Visited);
8090     }
8091 
8092     LoopPropertiesCache.erase(CurrL);
8093     // Forget all contained loops too, to avoid dangling entries in the
8094     // ValuesAtScopes map.
8095     LoopWorklist.append(CurrL->begin(), CurrL->end());
8096   }
8097   forgetMemoizedResults(ToForget);
8098 }
8099 
8100 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
8101   while (Loop *Parent = L->getParentLoop())
8102     L = Parent;
8103   forgetLoop(L);
8104 }
8105 
8106 void ScalarEvolution::forgetValue(Value *V) {
8107   Instruction *I = dyn_cast<Instruction>(V);
8108   if (!I) return;
8109 
8110   // Drop information about expressions based on loop-header PHIs.
8111   SmallVector<Instruction *, 16> Worklist;
8112   SmallPtrSet<Instruction *, 8> Visited;
8113   SmallVector<const SCEV *, 8> ToForget;
8114   Worklist.push_back(I);
8115   Visited.insert(I);
8116 
8117   while (!Worklist.empty()) {
8118     I = Worklist.pop_back_val();
8119     ValueExprMapType::iterator It =
8120       ValueExprMap.find_as(static_cast<Value *>(I));
8121     if (It != ValueExprMap.end()) {
8122       eraseValueFromMap(It->first);
8123       ToForget.push_back(It->second);
8124       if (PHINode *PN = dyn_cast<PHINode>(I))
8125         ConstantEvolutionLoopExitValue.erase(PN);
8126     }
8127 
8128     PushDefUseChildren(I, Worklist, Visited);
8129   }
8130   forgetMemoizedResults(ToForget);
8131 }
8132 
8133 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
8134   LoopDispositions.clear();
8135 }
8136 
8137 /// Get the exact loop backedge taken count considering all loop exits. A
8138 /// computable result can only be returned for loops with all exiting blocks
8139 /// dominating the latch. howFarToZero assumes that the limit of each loop test
8140 /// is never skipped. This is a valid assumption as long as the loop exits via
8141 /// that test. For precise results, it is the caller's responsibility to specify
8142 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
8143 const SCEV *
8144 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
8145                                              SmallVector<const SCEVPredicate *, 4> *Preds) const {
8146   // If any exits were not computable, the loop is not computable.
8147   if (!isComplete() || ExitNotTaken.empty())
8148     return SE->getCouldNotCompute();
8149 
8150   const BasicBlock *Latch = L->getLoopLatch();
8151   // All exiting blocks we have collected must dominate the only backedge.
8152   if (!Latch)
8153     return SE->getCouldNotCompute();
8154 
8155   // All exiting blocks we have gathered dominate loop's latch, so exact trip
8156   // count is simply a minimum out of all these calculated exit counts.
8157   SmallVector<const SCEV *, 2> Ops;
8158   for (auto &ENT : ExitNotTaken) {
8159     const SCEV *BECount = ENT.ExactNotTaken;
8160     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
8161     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
8162            "We should only have known counts for exiting blocks that dominate "
8163            "latch!");
8164 
8165     Ops.push_back(BECount);
8166 
8167     if (Preds)
8168       for (auto *P : ENT.Predicates)
8169         Preds->push_back(P);
8170 
8171     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
8172            "Predicate should be always true!");
8173   }
8174 
8175   return SE->getUMinFromMismatchedTypes(Ops);
8176 }
8177 
8178 /// Get the exact not taken count for this loop exit.
8179 const SCEV *
8180 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
8181                                              ScalarEvolution *SE) const {
8182   for (auto &ENT : ExitNotTaken)
8183     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8184       return ENT.ExactNotTaken;
8185 
8186   return SE->getCouldNotCompute();
8187 }
8188 
8189 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
8190     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
8191   for (auto &ENT : ExitNotTaken)
8192     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
8193       return ENT.MaxNotTaken;
8194 
8195   return SE->getCouldNotCompute();
8196 }
8197 
8198 /// getConstantMax - Get the constant max backedge taken count for the loop.
8199 const SCEV *
8200 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
8201   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8202     return !ENT.hasAlwaysTruePredicate();
8203   };
8204 
8205   if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue))
8206     return SE->getCouldNotCompute();
8207 
8208   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
8209           isa<SCEVConstant>(getConstantMax())) &&
8210          "No point in having a non-constant max backedge taken count!");
8211   return getConstantMax();
8212 }
8213 
8214 const SCEV *
8215 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
8216                                                    ScalarEvolution *SE) {
8217   if (!SymbolicMax)
8218     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
8219   return SymbolicMax;
8220 }
8221 
8222 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
8223     ScalarEvolution *SE) const {
8224   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
8225     return !ENT.hasAlwaysTruePredicate();
8226   };
8227   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
8228 }
8229 
8230 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
8231     : ExitLimit(E, E, false, None) {
8232 }
8233 
8234 ScalarEvolution::ExitLimit::ExitLimit(
8235     const SCEV *E, const SCEV *M, bool MaxOrZero,
8236     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
8237     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
8238   // If we prove the max count is zero, so is the symbolic bound.  This happens
8239   // in practice due to differences in a) how context sensitive we've chosen
8240   // to be and b) how we reason about bounds impied by UB.
8241   if (MaxNotTaken->isZero())
8242     ExactNotTaken = MaxNotTaken;
8243 
8244   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
8245           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
8246          "Exact is not allowed to be less precise than Max");
8247   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
8248           isa<SCEVConstant>(MaxNotTaken)) &&
8249          "No point in having a non-constant max backedge taken count!");
8250   for (auto *PredSet : PredSetList)
8251     for (auto *P : *PredSet)
8252       addPredicate(P);
8253   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
8254          "Backedge count should be int");
8255   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
8256          "Max backedge count should be int");
8257 }
8258 
8259 ScalarEvolution::ExitLimit::ExitLimit(
8260     const SCEV *E, const SCEV *M, bool MaxOrZero,
8261     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
8262     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
8263 }
8264 
8265 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
8266                                       bool MaxOrZero)
8267     : ExitLimit(E, M, MaxOrZero, None) {
8268 }
8269 
8270 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
8271 /// computable exit into a persistent ExitNotTakenInfo array.
8272 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
8273     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
8274     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
8275     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
8276   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8277 
8278   ExitNotTaken.reserve(ExitCounts.size());
8279   std::transform(
8280       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
8281       [&](const EdgeExitInfo &EEI) {
8282         BasicBlock *ExitBB = EEI.first;
8283         const ExitLimit &EL = EEI.second;
8284         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
8285                                 EL.Predicates);
8286       });
8287   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
8288           isa<SCEVConstant>(ConstantMax)) &&
8289          "No point in having a non-constant max backedge taken count!");
8290 }
8291 
8292 /// Compute the number of times the backedge of the specified loop will execute.
8293 ScalarEvolution::BackedgeTakenInfo
8294 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
8295                                            bool AllowPredicates) {
8296   SmallVector<BasicBlock *, 8> ExitingBlocks;
8297   L->getExitingBlocks(ExitingBlocks);
8298 
8299   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
8300 
8301   SmallVector<EdgeExitInfo, 4> ExitCounts;
8302   bool CouldComputeBECount = true;
8303   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
8304   const SCEV *MustExitMaxBECount = nullptr;
8305   const SCEV *MayExitMaxBECount = nullptr;
8306   bool MustExitMaxOrZero = false;
8307 
8308   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
8309   // and compute maxBECount.
8310   // Do a union of all the predicates here.
8311   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
8312     BasicBlock *ExitBB = ExitingBlocks[i];
8313 
8314     // We canonicalize untaken exits to br (constant), ignore them so that
8315     // proving an exit untaken doesn't negatively impact our ability to reason
8316     // about the loop as whole.
8317     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
8318       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
8319         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8320         if (ExitIfTrue == CI->isZero())
8321           continue;
8322       }
8323 
8324     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
8325 
8326     assert((AllowPredicates || EL.Predicates.empty()) &&
8327            "Predicated exit limit when predicates are not allowed!");
8328 
8329     // 1. For each exit that can be computed, add an entry to ExitCounts.
8330     // CouldComputeBECount is true only if all exits can be computed.
8331     if (EL.ExactNotTaken == getCouldNotCompute())
8332       // We couldn't compute an exact value for this exit, so
8333       // we won't be able to compute an exact value for the loop.
8334       CouldComputeBECount = false;
8335     else
8336       ExitCounts.emplace_back(ExitBB, EL);
8337 
8338     // 2. Derive the loop's MaxBECount from each exit's max number of
8339     // non-exiting iterations. Partition the loop exits into two kinds:
8340     // LoopMustExits and LoopMayExits.
8341     //
8342     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
8343     // is a LoopMayExit.  If any computable LoopMustExit is found, then
8344     // MaxBECount is the minimum EL.MaxNotTaken of computable
8345     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
8346     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
8347     // computable EL.MaxNotTaken.
8348     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
8349         DT.dominates(ExitBB, Latch)) {
8350       if (!MustExitMaxBECount) {
8351         MustExitMaxBECount = EL.MaxNotTaken;
8352         MustExitMaxOrZero = EL.MaxOrZero;
8353       } else {
8354         MustExitMaxBECount =
8355             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
8356       }
8357     } else if (MayExitMaxBECount != getCouldNotCompute()) {
8358       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
8359         MayExitMaxBECount = EL.MaxNotTaken;
8360       else {
8361         MayExitMaxBECount =
8362             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
8363       }
8364     }
8365   }
8366   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
8367     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
8368   // The loop backedge will be taken the maximum or zero times if there's
8369   // a single exit that must be taken the maximum or zero times.
8370   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
8371 
8372   // Remember which SCEVs are used in exit limits for invalidation purposes.
8373   // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken
8374   // and MaxBECount, which must be SCEVConstant.
8375   for (const auto &Pair : ExitCounts)
8376     if (!isa<SCEVConstant>(Pair.second.ExactNotTaken))
8377       BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates});
8378   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
8379                            MaxBECount, MaxOrZero);
8380 }
8381 
8382 ScalarEvolution::ExitLimit
8383 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
8384                                       bool AllowPredicates) {
8385   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
8386   // If our exiting block does not dominate the latch, then its connection with
8387   // loop's exit limit may be far from trivial.
8388   const BasicBlock *Latch = L->getLoopLatch();
8389   if (!Latch || !DT.dominates(ExitingBlock, Latch))
8390     return getCouldNotCompute();
8391 
8392   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
8393   Instruction *Term = ExitingBlock->getTerminator();
8394   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
8395     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
8396     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
8397     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
8398            "It should have one successor in loop and one exit block!");
8399     // Proceed to the next level to examine the exit condition expression.
8400     return computeExitLimitFromCond(
8401         L, BI->getCondition(), ExitIfTrue,
8402         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
8403   }
8404 
8405   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
8406     // For switch, make sure that there is a single exit from the loop.
8407     BasicBlock *Exit = nullptr;
8408     for (auto *SBB : successors(ExitingBlock))
8409       if (!L->contains(SBB)) {
8410         if (Exit) // Multiple exit successors.
8411           return getCouldNotCompute();
8412         Exit = SBB;
8413       }
8414     assert(Exit && "Exiting block must have at least one exit");
8415     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
8416                                                 /*ControlsExit=*/IsOnlyExit);
8417   }
8418 
8419   return getCouldNotCompute();
8420 }
8421 
8422 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
8423     const Loop *L, Value *ExitCond, bool ExitIfTrue,
8424     bool ControlsExit, bool AllowPredicates) {
8425   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
8426   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
8427                                         ControlsExit, AllowPredicates);
8428 }
8429 
8430 Optional<ScalarEvolution::ExitLimit>
8431 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
8432                                       bool ExitIfTrue, bool ControlsExit,
8433                                       bool AllowPredicates) {
8434   (void)this->L;
8435   (void)this->ExitIfTrue;
8436   (void)this->AllowPredicates;
8437 
8438   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8439          this->AllowPredicates == AllowPredicates &&
8440          "Variance in assumed invariant key components!");
8441   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
8442   if (Itr == TripCountMap.end())
8443     return None;
8444   return Itr->second;
8445 }
8446 
8447 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
8448                                              bool ExitIfTrue,
8449                                              bool ControlsExit,
8450                                              bool AllowPredicates,
8451                                              const ExitLimit &EL) {
8452   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
8453          this->AllowPredicates == AllowPredicates &&
8454          "Variance in assumed invariant key components!");
8455 
8456   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
8457   assert(InsertResult.second && "Expected successful insertion!");
8458   (void)InsertResult;
8459   (void)ExitIfTrue;
8460 }
8461 
8462 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
8463     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8464     bool ControlsExit, bool AllowPredicates) {
8465 
8466   if (auto MaybeEL =
8467           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8468     return *MaybeEL;
8469 
8470   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
8471                                               ControlsExit, AllowPredicates);
8472   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
8473   return EL;
8474 }
8475 
8476 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
8477     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8478     bool ControlsExit, bool AllowPredicates) {
8479   // Handle BinOp conditions (And, Or).
8480   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
8481           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
8482     return *LimitFromBinOp;
8483 
8484   // With an icmp, it may be feasible to compute an exact backedge-taken count.
8485   // Proceed to the next level to examine the icmp.
8486   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
8487     ExitLimit EL =
8488         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
8489     if (EL.hasFullInfo() || !AllowPredicates)
8490       return EL;
8491 
8492     // Try again, but use SCEV predicates this time.
8493     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
8494                                     /*AllowPredicates=*/true);
8495   }
8496 
8497   // Check for a constant condition. These are normally stripped out by
8498   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
8499   // preserve the CFG and is temporarily leaving constant conditions
8500   // in place.
8501   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
8502     if (ExitIfTrue == !CI->getZExtValue())
8503       // The backedge is always taken.
8504       return getCouldNotCompute();
8505     else
8506       // The backedge is never taken.
8507       return getZero(CI->getType());
8508   }
8509 
8510   // If we're exiting based on the overflow flag of an x.with.overflow intrinsic
8511   // with a constant step, we can form an equivalent icmp predicate and figure
8512   // out how many iterations will be taken before we exit.
8513   const WithOverflowInst *WO;
8514   const APInt *C;
8515   if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) &&
8516       match(WO->getRHS(), m_APInt(C))) {
8517     ConstantRange NWR =
8518       ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C,
8519                                            WO->getNoWrapKind());
8520     CmpInst::Predicate Pred;
8521     APInt NewRHSC, Offset;
8522     NWR.getEquivalentICmp(Pred, NewRHSC, Offset);
8523     if (!ExitIfTrue)
8524       Pred = ICmpInst::getInversePredicate(Pred);
8525     auto *LHS = getSCEV(WO->getLHS());
8526     if (Offset != 0)
8527       LHS = getAddExpr(LHS, getConstant(Offset));
8528     auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC),
8529                                        ControlsExit, AllowPredicates);
8530     if (EL.hasAnyInfo()) return EL;
8531   }
8532 
8533   // If it's not an integer or pointer comparison then compute it the hard way.
8534   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8535 }
8536 
8537 Optional<ScalarEvolution::ExitLimit>
8538 ScalarEvolution::computeExitLimitFromCondFromBinOp(
8539     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
8540     bool ControlsExit, bool AllowPredicates) {
8541   // Check if the controlling expression for this loop is an And or Or.
8542   Value *Op0, *Op1;
8543   bool IsAnd = false;
8544   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
8545     IsAnd = true;
8546   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
8547     IsAnd = false;
8548   else
8549     return None;
8550 
8551   // EitherMayExit is true in these two cases:
8552   //   br (and Op0 Op1), loop, exit
8553   //   br (or  Op0 Op1), exit, loop
8554   bool EitherMayExit = IsAnd ^ ExitIfTrue;
8555   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
8556                                                  ControlsExit && !EitherMayExit,
8557                                                  AllowPredicates);
8558   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
8559                                                  ControlsExit && !EitherMayExit,
8560                                                  AllowPredicates);
8561 
8562   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
8563   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
8564   if (isa<ConstantInt>(Op1))
8565     return Op1 == NeutralElement ? EL0 : EL1;
8566   if (isa<ConstantInt>(Op0))
8567     return Op0 == NeutralElement ? EL1 : EL0;
8568 
8569   const SCEV *BECount = getCouldNotCompute();
8570   const SCEV *MaxBECount = getCouldNotCompute();
8571   if (EitherMayExit) {
8572     // Both conditions must be same for the loop to continue executing.
8573     // Choose the less conservative count.
8574     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8575         EL1.ExactNotTaken != getCouldNotCompute()) {
8576       BECount = getUMinFromMismatchedTypes(
8577           EL0.ExactNotTaken, EL1.ExactNotTaken,
8578           /*Sequential=*/!isa<BinaryOperator>(ExitCond));
8579 
8580       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8581       // it should have been simplified to zero (see the condition (3) above)
8582       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8583              BECount->isZero());
8584     }
8585     if (EL0.MaxNotTaken == getCouldNotCompute())
8586       MaxBECount = EL1.MaxNotTaken;
8587     else if (EL1.MaxNotTaken == getCouldNotCompute())
8588       MaxBECount = EL0.MaxNotTaken;
8589     else
8590       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8591   } else {
8592     // Both conditions must be same at the same time for the loop to exit.
8593     // For now, be conservative.
8594     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8595       BECount = EL0.ExactNotTaken;
8596   }
8597 
8598   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8599   // to be more aggressive when computing BECount than when computing
8600   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8601   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8602   // to not.
8603   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8604       !isa<SCEVCouldNotCompute>(BECount))
8605     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8606 
8607   return ExitLimit(BECount, MaxBECount, false,
8608                    { &EL0.Predicates, &EL1.Predicates });
8609 }
8610 
8611 ScalarEvolution::ExitLimit
8612 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8613                                           ICmpInst *ExitCond,
8614                                           bool ExitIfTrue,
8615                                           bool ControlsExit,
8616                                           bool AllowPredicates) {
8617   // If the condition was exit on true, convert the condition to exit on false
8618   ICmpInst::Predicate Pred;
8619   if (!ExitIfTrue)
8620     Pred = ExitCond->getPredicate();
8621   else
8622     Pred = ExitCond->getInversePredicate();
8623   const ICmpInst::Predicate OriginalPred = Pred;
8624 
8625   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8626   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8627 
8628   ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit,
8629                                           AllowPredicates);
8630   if (EL.hasAnyInfo()) return EL;
8631 
8632   auto *ExhaustiveCount =
8633       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8634 
8635   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8636     return ExhaustiveCount;
8637 
8638   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8639                                       ExitCond->getOperand(1), L, OriginalPred);
8640 }
8641 ScalarEvolution::ExitLimit
8642 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8643                                           ICmpInst::Predicate Pred,
8644                                           const SCEV *LHS, const SCEV *RHS,
8645                                           bool ControlsExit,
8646                                           bool AllowPredicates) {
8647 
8648   // Try to evaluate any dependencies out of the loop.
8649   LHS = getSCEVAtScope(LHS, L);
8650   RHS = getSCEVAtScope(RHS, L);
8651 
8652   // At this point, we would like to compute how many iterations of the
8653   // loop the predicate will return true for these inputs.
8654   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8655     // If there is a loop-invariant, force it into the RHS.
8656     std::swap(LHS, RHS);
8657     Pred = ICmpInst::getSwappedPredicate(Pred);
8658   }
8659 
8660   bool ControllingFiniteLoop =
8661       ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L);
8662   // Simplify the operands before analyzing them.
8663   (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0,
8664                              ControllingFiniteLoop);
8665 
8666   // If we have a comparison of a chrec against a constant, try to use value
8667   // ranges to answer this query.
8668   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8669     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8670       if (AddRec->getLoop() == L) {
8671         // Form the constant range.
8672         ConstantRange CompRange =
8673             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8674 
8675         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8676         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8677       }
8678 
8679   // If this loop must exit based on this condition (or execute undefined
8680   // behaviour), and we can prove the test sequence produced must repeat
8681   // the same values on self-wrap of the IV, then we can infer that IV
8682   // doesn't self wrap because if it did, we'd have an infinite (undefined)
8683   // loop.
8684   if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) {
8685     // TODO: We can peel off any functions which are invertible *in L*.  Loop
8686     // invariant terms are effectively constants for our purposes here.
8687     auto *InnerLHS = LHS;
8688     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS))
8689       InnerLHS = ZExt->getOperand();
8690     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) {
8691       auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
8692       if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() &&
8693           StrideC && StrideC->getAPInt().isPowerOf2()) {
8694         auto Flags = AR->getNoWrapFlags();
8695         Flags = setFlags(Flags, SCEV::FlagNW);
8696         SmallVector<const SCEV*> Operands{AR->operands()};
8697         Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
8698         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
8699       }
8700     }
8701   }
8702 
8703   switch (Pred) {
8704   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8705     // Convert to: while (X-Y != 0)
8706     if (LHS->getType()->isPointerTy()) {
8707       LHS = getLosslessPtrToIntExpr(LHS);
8708       if (isa<SCEVCouldNotCompute>(LHS))
8709         return LHS;
8710     }
8711     if (RHS->getType()->isPointerTy()) {
8712       RHS = getLosslessPtrToIntExpr(RHS);
8713       if (isa<SCEVCouldNotCompute>(RHS))
8714         return RHS;
8715     }
8716     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8717                                 AllowPredicates);
8718     if (EL.hasAnyInfo()) return EL;
8719     break;
8720   }
8721   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8722     // Convert to: while (X-Y == 0)
8723     if (LHS->getType()->isPointerTy()) {
8724       LHS = getLosslessPtrToIntExpr(LHS);
8725       if (isa<SCEVCouldNotCompute>(LHS))
8726         return LHS;
8727     }
8728     if (RHS->getType()->isPointerTy()) {
8729       RHS = getLosslessPtrToIntExpr(RHS);
8730       if (isa<SCEVCouldNotCompute>(RHS))
8731         return RHS;
8732     }
8733     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8734     if (EL.hasAnyInfo()) return EL;
8735     break;
8736   }
8737   case ICmpInst::ICMP_SLT:
8738   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8739     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8740     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8741                                     AllowPredicates);
8742     if (EL.hasAnyInfo()) return EL;
8743     break;
8744   }
8745   case ICmpInst::ICMP_SGT:
8746   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8747     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8748     ExitLimit EL =
8749         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8750                             AllowPredicates);
8751     if (EL.hasAnyInfo()) return EL;
8752     break;
8753   }
8754   default:
8755     break;
8756   }
8757 
8758   return getCouldNotCompute();
8759 }
8760 
8761 ScalarEvolution::ExitLimit
8762 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8763                                                       SwitchInst *Switch,
8764                                                       BasicBlock *ExitingBlock,
8765                                                       bool ControlsExit) {
8766   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8767 
8768   // Give up if the exit is the default dest of a switch.
8769   if (Switch->getDefaultDest() == ExitingBlock)
8770     return getCouldNotCompute();
8771 
8772   assert(L->contains(Switch->getDefaultDest()) &&
8773          "Default case must not exit the loop!");
8774   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8775   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8776 
8777   // while (X != Y) --> while (X-Y != 0)
8778   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8779   if (EL.hasAnyInfo())
8780     return EL;
8781 
8782   return getCouldNotCompute();
8783 }
8784 
8785 static ConstantInt *
8786 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8787                                 ScalarEvolution &SE) {
8788   const SCEV *InVal = SE.getConstant(C);
8789   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8790   assert(isa<SCEVConstant>(Val) &&
8791          "Evaluation of SCEV at constant didn't fold correctly?");
8792   return cast<SCEVConstant>(Val)->getValue();
8793 }
8794 
8795 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8796     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8797   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8798   if (!RHS)
8799     return getCouldNotCompute();
8800 
8801   const BasicBlock *Latch = L->getLoopLatch();
8802   if (!Latch)
8803     return getCouldNotCompute();
8804 
8805   const BasicBlock *Predecessor = L->getLoopPredecessor();
8806   if (!Predecessor)
8807     return getCouldNotCompute();
8808 
8809   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8810   // Return LHS in OutLHS and shift_opt in OutOpCode.
8811   auto MatchPositiveShift =
8812       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8813 
8814     using namespace PatternMatch;
8815 
8816     ConstantInt *ShiftAmt;
8817     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8818       OutOpCode = Instruction::LShr;
8819     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8820       OutOpCode = Instruction::AShr;
8821     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8822       OutOpCode = Instruction::Shl;
8823     else
8824       return false;
8825 
8826     return ShiftAmt->getValue().isStrictlyPositive();
8827   };
8828 
8829   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8830   //
8831   // loop:
8832   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8833   //   %iv.shifted = lshr i32 %iv, <positive constant>
8834   //
8835   // Return true on a successful match.  Return the corresponding PHI node (%iv
8836   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8837   auto MatchShiftRecurrence =
8838       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8839     Optional<Instruction::BinaryOps> PostShiftOpCode;
8840 
8841     {
8842       Instruction::BinaryOps OpC;
8843       Value *V;
8844 
8845       // If we encounter a shift instruction, "peel off" the shift operation,
8846       // and remember that we did so.  Later when we inspect %iv's backedge
8847       // value, we will make sure that the backedge value uses the same
8848       // operation.
8849       //
8850       // Note: the peeled shift operation does not have to be the same
8851       // instruction as the one feeding into the PHI's backedge value.  We only
8852       // really care about it being the same *kind* of shift instruction --
8853       // that's all that is required for our later inferences to hold.
8854       if (MatchPositiveShift(LHS, V, OpC)) {
8855         PostShiftOpCode = OpC;
8856         LHS = V;
8857       }
8858     }
8859 
8860     PNOut = dyn_cast<PHINode>(LHS);
8861     if (!PNOut || PNOut->getParent() != L->getHeader())
8862       return false;
8863 
8864     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8865     Value *OpLHS;
8866 
8867     return
8868         // The backedge value for the PHI node must be a shift by a positive
8869         // amount
8870         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8871 
8872         // of the PHI node itself
8873         OpLHS == PNOut &&
8874 
8875         // and the kind of shift should be match the kind of shift we peeled
8876         // off, if any.
8877         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8878   };
8879 
8880   PHINode *PN;
8881   Instruction::BinaryOps OpCode;
8882   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8883     return getCouldNotCompute();
8884 
8885   const DataLayout &DL = getDataLayout();
8886 
8887   // The key rationale for this optimization is that for some kinds of shift
8888   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8889   // within a finite number of iterations.  If the condition guarding the
8890   // backedge (in the sense that the backedge is taken if the condition is true)
8891   // is false for the value the shift recurrence stabilizes to, then we know
8892   // that the backedge is taken only a finite number of times.
8893 
8894   ConstantInt *StableValue = nullptr;
8895   switch (OpCode) {
8896   default:
8897     llvm_unreachable("Impossible case!");
8898 
8899   case Instruction::AShr: {
8900     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8901     // bitwidth(K) iterations.
8902     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8903     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8904                                        Predecessor->getTerminator(), &DT);
8905     auto *Ty = cast<IntegerType>(RHS->getType());
8906     if (Known.isNonNegative())
8907       StableValue = ConstantInt::get(Ty, 0);
8908     else if (Known.isNegative())
8909       StableValue = ConstantInt::get(Ty, -1, true);
8910     else
8911       return getCouldNotCompute();
8912 
8913     break;
8914   }
8915   case Instruction::LShr:
8916   case Instruction::Shl:
8917     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8918     // stabilize to 0 in at most bitwidth(K) iterations.
8919     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8920     break;
8921   }
8922 
8923   auto *Result =
8924       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8925   assert(Result->getType()->isIntegerTy(1) &&
8926          "Otherwise cannot be an operand to a branch instruction");
8927 
8928   if (Result->isZeroValue()) {
8929     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8930     const SCEV *UpperBound =
8931         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8932     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8933   }
8934 
8935   return getCouldNotCompute();
8936 }
8937 
8938 /// Return true if we can constant fold an instruction of the specified type,
8939 /// assuming that all operands were constants.
8940 static bool CanConstantFold(const Instruction *I) {
8941   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8942       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8943       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8944     return true;
8945 
8946   if (const CallInst *CI = dyn_cast<CallInst>(I))
8947     if (const Function *F = CI->getCalledFunction())
8948       return canConstantFoldCallTo(CI, F);
8949   return false;
8950 }
8951 
8952 /// Determine whether this instruction can constant evolve within this loop
8953 /// assuming its operands can all constant evolve.
8954 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8955   // An instruction outside of the loop can't be derived from a loop PHI.
8956   if (!L->contains(I)) return false;
8957 
8958   if (isa<PHINode>(I)) {
8959     // We don't currently keep track of the control flow needed to evaluate
8960     // PHIs, so we cannot handle PHIs inside of loops.
8961     return L->getHeader() == I->getParent();
8962   }
8963 
8964   // If we won't be able to constant fold this expression even if the operands
8965   // are constants, bail early.
8966   return CanConstantFold(I);
8967 }
8968 
8969 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8970 /// recursing through each instruction operand until reaching a loop header phi.
8971 static PHINode *
8972 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8973                                DenseMap<Instruction *, PHINode *> &PHIMap,
8974                                unsigned Depth) {
8975   if (Depth > MaxConstantEvolvingDepth)
8976     return nullptr;
8977 
8978   // Otherwise, we can evaluate this instruction if all of its operands are
8979   // constant or derived from a PHI node themselves.
8980   PHINode *PHI = nullptr;
8981   for (Value *Op : UseInst->operands()) {
8982     if (isa<Constant>(Op)) continue;
8983 
8984     Instruction *OpInst = dyn_cast<Instruction>(Op);
8985     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8986 
8987     PHINode *P = dyn_cast<PHINode>(OpInst);
8988     if (!P)
8989       // If this operand is already visited, reuse the prior result.
8990       // We may have P != PHI if this is the deepest point at which the
8991       // inconsistent paths meet.
8992       P = PHIMap.lookup(OpInst);
8993     if (!P) {
8994       // Recurse and memoize the results, whether a phi is found or not.
8995       // This recursive call invalidates pointers into PHIMap.
8996       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8997       PHIMap[OpInst] = P;
8998     }
8999     if (!P)
9000       return nullptr;  // Not evolving from PHI
9001     if (PHI && PHI != P)
9002       return nullptr;  // Evolving from multiple different PHIs.
9003     PHI = P;
9004   }
9005   // This is a expression evolving from a constant PHI!
9006   return PHI;
9007 }
9008 
9009 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
9010 /// in the loop that V is derived from.  We allow arbitrary operations along the
9011 /// way, but the operands of an operation must either be constants or a value
9012 /// derived from a constant PHI.  If this expression does not fit with these
9013 /// constraints, return null.
9014 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
9015   Instruction *I = dyn_cast<Instruction>(V);
9016   if (!I || !canConstantEvolve(I, L)) return nullptr;
9017 
9018   if (PHINode *PN = dyn_cast<PHINode>(I))
9019     return PN;
9020 
9021   // Record non-constant instructions contained by the loop.
9022   DenseMap<Instruction *, PHINode *> PHIMap;
9023   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
9024 }
9025 
9026 /// EvaluateExpression - Given an expression that passes the
9027 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
9028 /// in the loop has the value PHIVal.  If we can't fold this expression for some
9029 /// reason, return null.
9030 static Constant *EvaluateExpression(Value *V, const Loop *L,
9031                                     DenseMap<Instruction *, Constant *> &Vals,
9032                                     const DataLayout &DL,
9033                                     const TargetLibraryInfo *TLI) {
9034   // Convenient constant check, but redundant for recursive calls.
9035   if (Constant *C = dyn_cast<Constant>(V)) return C;
9036   Instruction *I = dyn_cast<Instruction>(V);
9037   if (!I) return nullptr;
9038 
9039   if (Constant *C = Vals.lookup(I)) return C;
9040 
9041   // An instruction inside the loop depends on a value outside the loop that we
9042   // weren't given a mapping for, or a value such as a call inside the loop.
9043   if (!canConstantEvolve(I, L)) return nullptr;
9044 
9045   // An unmapped PHI can be due to a branch or another loop inside this loop,
9046   // or due to this not being the initial iteration through a loop where we
9047   // couldn't compute the evolution of this particular PHI last time.
9048   if (isa<PHINode>(I)) return nullptr;
9049 
9050   std::vector<Constant*> Operands(I->getNumOperands());
9051 
9052   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
9053     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
9054     if (!Operand) {
9055       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
9056       if (!Operands[i]) return nullptr;
9057       continue;
9058     }
9059     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
9060     Vals[Operand] = C;
9061     if (!C) return nullptr;
9062     Operands[i] = C;
9063   }
9064 
9065   if (CmpInst *CI = dyn_cast<CmpInst>(I))
9066     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9067                                            Operands[1], DL, TLI);
9068   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
9069     if (!LI->isVolatile())
9070       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
9071   }
9072   return ConstantFoldInstOperands(I, Operands, DL, TLI);
9073 }
9074 
9075 
9076 // If every incoming value to PN except the one for BB is a specific Constant,
9077 // return that, else return nullptr.
9078 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
9079   Constant *IncomingVal = nullptr;
9080 
9081   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
9082     if (PN->getIncomingBlock(i) == BB)
9083       continue;
9084 
9085     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
9086     if (!CurrentVal)
9087       return nullptr;
9088 
9089     if (IncomingVal != CurrentVal) {
9090       if (IncomingVal)
9091         return nullptr;
9092       IncomingVal = CurrentVal;
9093     }
9094   }
9095 
9096   return IncomingVal;
9097 }
9098 
9099 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
9100 /// in the header of its containing loop, we know the loop executes a
9101 /// constant number of times, and the PHI node is just a recurrence
9102 /// involving constants, fold it.
9103 Constant *
9104 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
9105                                                    const APInt &BEs,
9106                                                    const Loop *L) {
9107   auto I = ConstantEvolutionLoopExitValue.find(PN);
9108   if (I != ConstantEvolutionLoopExitValue.end())
9109     return I->second;
9110 
9111   if (BEs.ugt(MaxBruteForceIterations))
9112     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
9113 
9114   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
9115 
9116   DenseMap<Instruction *, Constant *> CurrentIterVals;
9117   BasicBlock *Header = L->getHeader();
9118   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9119 
9120   BasicBlock *Latch = L->getLoopLatch();
9121   if (!Latch)
9122     return nullptr;
9123 
9124   for (PHINode &PHI : Header->phis()) {
9125     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9126       CurrentIterVals[&PHI] = StartCST;
9127   }
9128   if (!CurrentIterVals.count(PN))
9129     return RetVal = nullptr;
9130 
9131   Value *BEValue = PN->getIncomingValueForBlock(Latch);
9132 
9133   // Execute the loop symbolically to determine the exit value.
9134   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
9135          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
9136 
9137   unsigned NumIterations = BEs.getZExtValue(); // must be in range
9138   unsigned IterationNum = 0;
9139   const DataLayout &DL = getDataLayout();
9140   for (; ; ++IterationNum) {
9141     if (IterationNum == NumIterations)
9142       return RetVal = CurrentIterVals[PN];  // Got exit value!
9143 
9144     // Compute the value of the PHIs for the next iteration.
9145     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
9146     DenseMap<Instruction *, Constant *> NextIterVals;
9147     Constant *NextPHI =
9148         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9149     if (!NextPHI)
9150       return nullptr;        // Couldn't evaluate!
9151     NextIterVals[PN] = NextPHI;
9152 
9153     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
9154 
9155     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
9156     // cease to be able to evaluate one of them or if they stop evolving,
9157     // because that doesn't necessarily prevent us from computing PN.
9158     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
9159     for (const auto &I : CurrentIterVals) {
9160       PHINode *PHI = dyn_cast<PHINode>(I.first);
9161       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
9162       PHIsToCompute.emplace_back(PHI, I.second);
9163     }
9164     // We use two distinct loops because EvaluateExpression may invalidate any
9165     // iterators into CurrentIterVals.
9166     for (const auto &I : PHIsToCompute) {
9167       PHINode *PHI = I.first;
9168       Constant *&NextPHI = NextIterVals[PHI];
9169       if (!NextPHI) {   // Not already computed.
9170         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9171         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9172       }
9173       if (NextPHI != I.second)
9174         StoppedEvolving = false;
9175     }
9176 
9177     // If all entries in CurrentIterVals == NextIterVals then we can stop
9178     // iterating, the loop can't continue to change.
9179     if (StoppedEvolving)
9180       return RetVal = CurrentIterVals[PN];
9181 
9182     CurrentIterVals.swap(NextIterVals);
9183   }
9184 }
9185 
9186 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
9187                                                           Value *Cond,
9188                                                           bool ExitWhen) {
9189   PHINode *PN = getConstantEvolvingPHI(Cond, L);
9190   if (!PN) return getCouldNotCompute();
9191 
9192   // If the loop is canonicalized, the PHI will have exactly two entries.
9193   // That's the only form we support here.
9194   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
9195 
9196   DenseMap<Instruction *, Constant *> CurrentIterVals;
9197   BasicBlock *Header = L->getHeader();
9198   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
9199 
9200   BasicBlock *Latch = L->getLoopLatch();
9201   assert(Latch && "Should follow from NumIncomingValues == 2!");
9202 
9203   for (PHINode &PHI : Header->phis()) {
9204     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
9205       CurrentIterVals[&PHI] = StartCST;
9206   }
9207   if (!CurrentIterVals.count(PN))
9208     return getCouldNotCompute();
9209 
9210   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
9211   // the loop symbolically to determine when the condition gets a value of
9212   // "ExitWhen".
9213   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
9214   const DataLayout &DL = getDataLayout();
9215   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
9216     auto *CondVal = dyn_cast_or_null<ConstantInt>(
9217         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
9218 
9219     // Couldn't symbolically evaluate.
9220     if (!CondVal) return getCouldNotCompute();
9221 
9222     if (CondVal->getValue() == uint64_t(ExitWhen)) {
9223       ++NumBruteForceTripCountsComputed;
9224       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
9225     }
9226 
9227     // Update all the PHI nodes for the next iteration.
9228     DenseMap<Instruction *, Constant *> NextIterVals;
9229 
9230     // Create a list of which PHIs we need to compute. We want to do this before
9231     // calling EvaluateExpression on them because that may invalidate iterators
9232     // into CurrentIterVals.
9233     SmallVector<PHINode *, 8> PHIsToCompute;
9234     for (const auto &I : CurrentIterVals) {
9235       PHINode *PHI = dyn_cast<PHINode>(I.first);
9236       if (!PHI || PHI->getParent() != Header) continue;
9237       PHIsToCompute.push_back(PHI);
9238     }
9239     for (PHINode *PHI : PHIsToCompute) {
9240       Constant *&NextPHI = NextIterVals[PHI];
9241       if (NextPHI) continue;    // Already computed!
9242 
9243       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
9244       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
9245     }
9246     CurrentIterVals.swap(NextIterVals);
9247   }
9248 
9249   // Too many iterations were needed to evaluate.
9250   return getCouldNotCompute();
9251 }
9252 
9253 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
9254   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
9255       ValuesAtScopes[V];
9256   // Check to see if we've folded this expression at this loop before.
9257   for (auto &LS : Values)
9258     if (LS.first == L)
9259       return LS.second ? LS.second : V;
9260 
9261   Values.emplace_back(L, nullptr);
9262 
9263   // Otherwise compute it.
9264   const SCEV *C = computeSCEVAtScope(V, L);
9265   for (auto &LS : reverse(ValuesAtScopes[V]))
9266     if (LS.first == L) {
9267       LS.second = C;
9268       if (!isa<SCEVConstant>(C))
9269         ValuesAtScopesUsers[C].push_back({L, V});
9270       break;
9271     }
9272   return C;
9273 }
9274 
9275 /// This builds up a Constant using the ConstantExpr interface.  That way, we
9276 /// will return Constants for objects which aren't represented by a
9277 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
9278 /// Returns NULL if the SCEV isn't representable as a Constant.
9279 static Constant *BuildConstantFromSCEV(const SCEV *V) {
9280   switch (V->getSCEVType()) {
9281   case scCouldNotCompute:
9282   case scAddRecExpr:
9283     return nullptr;
9284   case scConstant:
9285     return cast<SCEVConstant>(V)->getValue();
9286   case scUnknown:
9287     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
9288   case scSignExtend: {
9289     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
9290     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
9291       return ConstantExpr::getSExt(CastOp, SS->getType());
9292     return nullptr;
9293   }
9294   case scZeroExtend: {
9295     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
9296     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
9297       return ConstantExpr::getZExt(CastOp, SZ->getType());
9298     return nullptr;
9299   }
9300   case scPtrToInt: {
9301     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
9302     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
9303       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
9304 
9305     return nullptr;
9306   }
9307   case scTruncate: {
9308     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
9309     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
9310       return ConstantExpr::getTrunc(CastOp, ST->getType());
9311     return nullptr;
9312   }
9313   case scAddExpr: {
9314     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
9315     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
9316       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
9317         unsigned AS = PTy->getAddressSpace();
9318         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9319         C = ConstantExpr::getBitCast(C, DestPtrTy);
9320       }
9321       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
9322         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
9323         if (!C2)
9324           return nullptr;
9325 
9326         // First pointer!
9327         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
9328           unsigned AS = C2->getType()->getPointerAddressSpace();
9329           std::swap(C, C2);
9330           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
9331           // The offsets have been converted to bytes.  We can add bytes to an
9332           // i8* by GEP with the byte count in the first index.
9333           C = ConstantExpr::getBitCast(C, DestPtrTy);
9334         }
9335 
9336         // Don't bother trying to sum two pointers. We probably can't
9337         // statically compute a load that results from it anyway.
9338         if (C2->getType()->isPointerTy())
9339           return nullptr;
9340 
9341         if (C->getType()->isPointerTy()) {
9342           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
9343                                              C, C2);
9344         } else {
9345           C = ConstantExpr::getAdd(C, C2);
9346         }
9347       }
9348       return C;
9349     }
9350     return nullptr;
9351   }
9352   case scMulExpr: {
9353     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
9354     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
9355       // Don't bother with pointers at all.
9356       if (C->getType()->isPointerTy())
9357         return nullptr;
9358       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
9359         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
9360         if (!C2 || C2->getType()->isPointerTy())
9361           return nullptr;
9362         C = ConstantExpr::getMul(C, C2);
9363       }
9364       return C;
9365     }
9366     return nullptr;
9367   }
9368   case scUDivExpr: {
9369     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
9370     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
9371       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
9372         if (LHS->getType() == RHS->getType())
9373           return ConstantExpr::getUDiv(LHS, RHS);
9374     return nullptr;
9375   }
9376   case scSMaxExpr:
9377   case scUMaxExpr:
9378   case scSMinExpr:
9379   case scUMinExpr:
9380   case scSequentialUMinExpr:
9381     return nullptr; // TODO: smax, umax, smin, umax, umin_seq.
9382   }
9383   llvm_unreachable("Unknown SCEV kind!");
9384 }
9385 
9386 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
9387   if (isa<SCEVConstant>(V)) return V;
9388 
9389   // If this instruction is evolved from a constant-evolving PHI, compute the
9390   // exit value from the loop without using SCEVs.
9391   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
9392     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
9393       if (PHINode *PN = dyn_cast<PHINode>(I)) {
9394         const Loop *CurrLoop = this->LI[I->getParent()];
9395         // Looking for loop exit value.
9396         if (CurrLoop && CurrLoop->getParentLoop() == L &&
9397             PN->getParent() == CurrLoop->getHeader()) {
9398           // Okay, there is no closed form solution for the PHI node.  Check
9399           // to see if the loop that contains it has a known backedge-taken
9400           // count.  If so, we may be able to force computation of the exit
9401           // value.
9402           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
9403           // This trivial case can show up in some degenerate cases where
9404           // the incoming IR has not yet been fully simplified.
9405           if (BackedgeTakenCount->isZero()) {
9406             Value *InitValue = nullptr;
9407             bool MultipleInitValues = false;
9408             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
9409               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
9410                 if (!InitValue)
9411                   InitValue = PN->getIncomingValue(i);
9412                 else if (InitValue != PN->getIncomingValue(i)) {
9413                   MultipleInitValues = true;
9414                   break;
9415                 }
9416               }
9417             }
9418             if (!MultipleInitValues && InitValue)
9419               return getSCEV(InitValue);
9420           }
9421           // Do we have a loop invariant value flowing around the backedge
9422           // for a loop which must execute the backedge?
9423           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
9424               isKnownPositive(BackedgeTakenCount) &&
9425               PN->getNumIncomingValues() == 2) {
9426 
9427             unsigned InLoopPred =
9428                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
9429             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
9430             if (CurrLoop->isLoopInvariant(BackedgeVal))
9431               return getSCEV(BackedgeVal);
9432           }
9433           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
9434             // Okay, we know how many times the containing loop executes.  If
9435             // this is a constant evolving PHI node, get the final value at
9436             // the specified iteration number.
9437             Constant *RV = getConstantEvolutionLoopExitValue(
9438                 PN, BTCC->getAPInt(), CurrLoop);
9439             if (RV) return getSCEV(RV);
9440           }
9441         }
9442 
9443         // If there is a single-input Phi, evaluate it at our scope. If we can
9444         // prove that this replacement does not break LCSSA form, use new value.
9445         if (PN->getNumOperands() == 1) {
9446           const SCEV *Input = getSCEV(PN->getOperand(0));
9447           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
9448           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
9449           // for the simplest case just support constants.
9450           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
9451         }
9452       }
9453 
9454       // Okay, this is an expression that we cannot symbolically evaluate
9455       // into a SCEV.  Check to see if it's possible to symbolically evaluate
9456       // the arguments into constants, and if so, try to constant propagate the
9457       // result.  This is particularly useful for computing loop exit values.
9458       if (CanConstantFold(I)) {
9459         SmallVector<Constant *, 4> Operands;
9460         bool MadeImprovement = false;
9461         for (Value *Op : I->operands()) {
9462           if (Constant *C = dyn_cast<Constant>(Op)) {
9463             Operands.push_back(C);
9464             continue;
9465           }
9466 
9467           // If any of the operands is non-constant and if they are
9468           // non-integer and non-pointer, don't even try to analyze them
9469           // with scev techniques.
9470           if (!isSCEVable(Op->getType()))
9471             return V;
9472 
9473           const SCEV *OrigV = getSCEV(Op);
9474           const SCEV *OpV = getSCEVAtScope(OrigV, L);
9475           MadeImprovement |= OrigV != OpV;
9476 
9477           Constant *C = BuildConstantFromSCEV(OpV);
9478           if (!C) return V;
9479           if (C->getType() != Op->getType())
9480             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
9481                                                               Op->getType(),
9482                                                               false),
9483                                       C, Op->getType());
9484           Operands.push_back(C);
9485         }
9486 
9487         // Check to see if getSCEVAtScope actually made an improvement.
9488         if (MadeImprovement) {
9489           Constant *C = nullptr;
9490           const DataLayout &DL = getDataLayout();
9491           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
9492             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
9493                                                 Operands[1], DL, &TLI);
9494           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
9495             if (!Load->isVolatile())
9496               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
9497                                                DL);
9498           } else
9499             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
9500           if (!C) return V;
9501           return getSCEV(C);
9502         }
9503       }
9504     }
9505 
9506     // This is some other type of SCEVUnknown, just return it.
9507     return V;
9508   }
9509 
9510   if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) {
9511     const auto *Comm = cast<SCEVNAryExpr>(V);
9512     // Avoid performing the look-up in the common case where the specified
9513     // expression has no loop-variant portions.
9514     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
9515       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9516       if (OpAtScope != Comm->getOperand(i)) {
9517         // Okay, at least one of these operands is loop variant but might be
9518         // foldable.  Build a new instance of the folded commutative expression.
9519         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
9520                                             Comm->op_begin()+i);
9521         NewOps.push_back(OpAtScope);
9522 
9523         for (++i; i != e; ++i) {
9524           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
9525           NewOps.push_back(OpAtScope);
9526         }
9527         if (isa<SCEVAddExpr>(Comm))
9528           return getAddExpr(NewOps, Comm->getNoWrapFlags());
9529         if (isa<SCEVMulExpr>(Comm))
9530           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9531         if (isa<SCEVMinMaxExpr>(Comm))
9532           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9533         if (isa<SCEVSequentialMinMaxExpr>(Comm))
9534           return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps);
9535         llvm_unreachable("Unknown commutative / sequential min/max SCEV type!");
9536       }
9537     }
9538     // If we got here, all operands are loop invariant.
9539     return Comm;
9540   }
9541 
9542   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9543     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9544     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9545     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9546       return Div;   // must be loop invariant
9547     return getUDivExpr(LHS, RHS);
9548   }
9549 
9550   // If this is a loop recurrence for a loop that does not contain L, then we
9551   // are dealing with the final value computed by the loop.
9552   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9553     // First, attempt to evaluate each operand.
9554     // Avoid performing the look-up in the common case where the specified
9555     // expression has no loop-variant portions.
9556     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9557       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9558       if (OpAtScope == AddRec->getOperand(i))
9559         continue;
9560 
9561       // Okay, at least one of these operands is loop variant but might be
9562       // foldable.  Build a new instance of the folded commutative expression.
9563       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9564                                           AddRec->op_begin()+i);
9565       NewOps.push_back(OpAtScope);
9566       for (++i; i != e; ++i)
9567         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9568 
9569       const SCEV *FoldedRec =
9570         getAddRecExpr(NewOps, AddRec->getLoop(),
9571                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9572       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9573       // The addrec may be folded to a nonrecurrence, for example, if the
9574       // induction variable is multiplied by zero after constant folding. Go
9575       // ahead and return the folded value.
9576       if (!AddRec)
9577         return FoldedRec;
9578       break;
9579     }
9580 
9581     // If the scope is outside the addrec's loop, evaluate it by using the
9582     // loop exit value of the addrec.
9583     if (!AddRec->getLoop()->contains(L)) {
9584       // To evaluate this recurrence, we need to know how many times the AddRec
9585       // loop iterates.  Compute this now.
9586       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9587       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9588 
9589       // Then, evaluate the AddRec.
9590       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9591     }
9592 
9593     return AddRec;
9594   }
9595 
9596   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
9597     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9598     if (Op == Cast->getOperand())
9599       return Cast;  // must be loop invariant
9600     return getCastExpr(Cast->getSCEVType(), Op, Cast->getType());
9601   }
9602 
9603   llvm_unreachable("Unknown SCEV type!");
9604 }
9605 
9606 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9607   return getSCEVAtScope(getSCEV(V), L);
9608 }
9609 
9610 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9611   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9612     return stripInjectiveFunctions(ZExt->getOperand());
9613   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9614     return stripInjectiveFunctions(SExt->getOperand());
9615   return S;
9616 }
9617 
9618 /// Finds the minimum unsigned root of the following equation:
9619 ///
9620 ///     A * X = B (mod N)
9621 ///
9622 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9623 /// A and B isn't important.
9624 ///
9625 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9626 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9627                                                ScalarEvolution &SE) {
9628   uint32_t BW = A.getBitWidth();
9629   assert(BW == SE.getTypeSizeInBits(B->getType()));
9630   assert(A != 0 && "A must be non-zero.");
9631 
9632   // 1. D = gcd(A, N)
9633   //
9634   // The gcd of A and N may have only one prime factor: 2. The number of
9635   // trailing zeros in A is its multiplicity
9636   uint32_t Mult2 = A.countTrailingZeros();
9637   // D = 2^Mult2
9638 
9639   // 2. Check if B is divisible by D.
9640   //
9641   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9642   // is not less than multiplicity of this prime factor for D.
9643   if (SE.GetMinTrailingZeros(B) < Mult2)
9644     return SE.getCouldNotCompute();
9645 
9646   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9647   // modulo (N / D).
9648   //
9649   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9650   // (N / D) in general. The inverse itself always fits into BW bits, though,
9651   // so we immediately truncate it.
9652   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9653   APInt Mod(BW + 1, 0);
9654   Mod.setBit(BW - Mult2);  // Mod = N / D
9655   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9656 
9657   // 4. Compute the minimum unsigned root of the equation:
9658   // I * (B / D) mod (N / D)
9659   // To simplify the computation, we factor out the divide by D:
9660   // (I * B mod N) / D
9661   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9662   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9663 }
9664 
9665 /// For a given quadratic addrec, generate coefficients of the corresponding
9666 /// quadratic equation, multiplied by a common value to ensure that they are
9667 /// integers.
9668 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9669 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9670 /// were multiplied by, and BitWidth is the bit width of the original addrec
9671 /// coefficients.
9672 /// This function returns None if the addrec coefficients are not compile-
9673 /// time constants.
9674 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9675 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9676   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9677   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9678   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9679   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9680   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9681                     << *AddRec << '\n');
9682 
9683   // We currently can only solve this if the coefficients are constants.
9684   if (!LC || !MC || !NC) {
9685     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9686     return None;
9687   }
9688 
9689   APInt L = LC->getAPInt();
9690   APInt M = MC->getAPInt();
9691   APInt N = NC->getAPInt();
9692   assert(!N.isZero() && "This is not a quadratic addrec");
9693 
9694   unsigned BitWidth = LC->getAPInt().getBitWidth();
9695   unsigned NewWidth = BitWidth + 1;
9696   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9697                     << BitWidth << '\n');
9698   // The sign-extension (as opposed to a zero-extension) here matches the
9699   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9700   N = N.sext(NewWidth);
9701   M = M.sext(NewWidth);
9702   L = L.sext(NewWidth);
9703 
9704   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9705   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9706   //   L+M, L+2M+N, L+3M+3N, ...
9707   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9708   //
9709   // The equation Acc = 0 is then
9710   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9711   // In a quadratic form it becomes:
9712   //   N n^2 + (2M-N) n + 2L = 0.
9713 
9714   APInt A = N;
9715   APInt B = 2 * M - A;
9716   APInt C = 2 * L;
9717   APInt T = APInt(NewWidth, 2);
9718   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9719                     << "x + " << C << ", coeff bw: " << NewWidth
9720                     << ", multiplied by " << T << '\n');
9721   return std::make_tuple(A, B, C, T, BitWidth);
9722 }
9723 
9724 /// Helper function to compare optional APInts:
9725 /// (a) if X and Y both exist, return min(X, Y),
9726 /// (b) if neither X nor Y exist, return None,
9727 /// (c) if exactly one of X and Y exists, return that value.
9728 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9729   if (X.hasValue() && Y.hasValue()) {
9730     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9731     APInt XW = X->sextOrSelf(W);
9732     APInt YW = Y->sextOrSelf(W);
9733     return XW.slt(YW) ? *X : *Y;
9734   }
9735   if (!X.hasValue() && !Y.hasValue())
9736     return None;
9737   return X.hasValue() ? *X : *Y;
9738 }
9739 
9740 /// Helper function to truncate an optional APInt to a given BitWidth.
9741 /// When solving addrec-related equations, it is preferable to return a value
9742 /// that has the same bit width as the original addrec's coefficients. If the
9743 /// solution fits in the original bit width, truncate it (except for i1).
9744 /// Returning a value of a different bit width may inhibit some optimizations.
9745 ///
9746 /// In general, a solution to a quadratic equation generated from an addrec
9747 /// may require BW+1 bits, where BW is the bit width of the addrec's
9748 /// coefficients. The reason is that the coefficients of the quadratic
9749 /// equation are BW+1 bits wide (to avoid truncation when converting from
9750 /// the addrec to the equation).
9751 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9752   if (!X.hasValue())
9753     return None;
9754   unsigned W = X->getBitWidth();
9755   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9756     return X->trunc(BitWidth);
9757   return X;
9758 }
9759 
9760 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9761 /// iterations. The values L, M, N are assumed to be signed, and they
9762 /// should all have the same bit widths.
9763 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9764 /// where BW is the bit width of the addrec's coefficients.
9765 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9766 /// returned as such, otherwise the bit width of the returned value may
9767 /// be greater than BW.
9768 ///
9769 /// This function returns None if
9770 /// (a) the addrec coefficients are not constant, or
9771 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9772 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9773 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9774 static Optional<APInt>
9775 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9776   APInt A, B, C, M;
9777   unsigned BitWidth;
9778   auto T = GetQuadraticEquation(AddRec);
9779   if (!T.hasValue())
9780     return None;
9781 
9782   std::tie(A, B, C, M, BitWidth) = *T;
9783   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9784   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9785   if (!X.hasValue())
9786     return None;
9787 
9788   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9789   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9790   if (!V->isZero())
9791     return None;
9792 
9793   return TruncIfPossible(X, BitWidth);
9794 }
9795 
9796 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9797 /// iterations. The values M, N are assumed to be signed, and they
9798 /// should all have the same bit widths.
9799 /// Find the least n such that c(n) does not belong to the given range,
9800 /// while c(n-1) does.
9801 ///
9802 /// This function returns None if
9803 /// (a) the addrec coefficients are not constant, or
9804 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9805 ///     bounds of the range.
9806 static Optional<APInt>
9807 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9808                           const ConstantRange &Range, ScalarEvolution &SE) {
9809   assert(AddRec->getOperand(0)->isZero() &&
9810          "Starting value of addrec should be 0");
9811   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9812                     << Range << ", addrec " << *AddRec << '\n');
9813   // This case is handled in getNumIterationsInRange. Here we can assume that
9814   // we start in the range.
9815   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9816          "Addrec's initial value should be in range");
9817 
9818   APInt A, B, C, M;
9819   unsigned BitWidth;
9820   auto T = GetQuadraticEquation(AddRec);
9821   if (!T.hasValue())
9822     return None;
9823 
9824   // Be careful about the return value: there can be two reasons for not
9825   // returning an actual number. First, if no solutions to the equations
9826   // were found, and second, if the solutions don't leave the given range.
9827   // The first case means that the actual solution is "unknown", the second
9828   // means that it's known, but not valid. If the solution is unknown, we
9829   // cannot make any conclusions.
9830   // Return a pair: the optional solution and a flag indicating if the
9831   // solution was found.
9832   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9833     // Solve for signed overflow and unsigned overflow, pick the lower
9834     // solution.
9835     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9836                       << Bound << " (before multiplying by " << M << ")\n");
9837     Bound *= M; // The quadratic equation multiplier.
9838 
9839     Optional<APInt> SO = None;
9840     if (BitWidth > 1) {
9841       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9842                            "signed overflow\n");
9843       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9844     }
9845     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9846                          "unsigned overflow\n");
9847     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9848                                                               BitWidth+1);
9849 
9850     auto LeavesRange = [&] (const APInt &X) {
9851       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9852       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9853       if (Range.contains(V0->getValue()))
9854         return false;
9855       // X should be at least 1, so X-1 is non-negative.
9856       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9857       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9858       if (Range.contains(V1->getValue()))
9859         return true;
9860       return false;
9861     };
9862 
9863     // If SolveQuadraticEquationWrap returns None, it means that there can
9864     // be a solution, but the function failed to find it. We cannot treat it
9865     // as "no solution".
9866     if (!SO.hasValue() || !UO.hasValue())
9867       return { None, false };
9868 
9869     // Check the smaller value first to see if it leaves the range.
9870     // At this point, both SO and UO must have values.
9871     Optional<APInt> Min = MinOptional(SO, UO);
9872     if (LeavesRange(*Min))
9873       return { Min, true };
9874     Optional<APInt> Max = Min == SO ? UO : SO;
9875     if (LeavesRange(*Max))
9876       return { Max, true };
9877 
9878     // Solutions were found, but were eliminated, hence the "true".
9879     return { None, true };
9880   };
9881 
9882   std::tie(A, B, C, M, BitWidth) = *T;
9883   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9884   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9885   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9886   auto SL = SolveForBoundary(Lower);
9887   auto SU = SolveForBoundary(Upper);
9888   // If any of the solutions was unknown, no meaninigful conclusions can
9889   // be made.
9890   if (!SL.second || !SU.second)
9891     return None;
9892 
9893   // Claim: The correct solution is not some value between Min and Max.
9894   //
9895   // Justification: Assuming that Min and Max are different values, one of
9896   // them is when the first signed overflow happens, the other is when the
9897   // first unsigned overflow happens. Crossing the range boundary is only
9898   // possible via an overflow (treating 0 as a special case of it, modeling
9899   // an overflow as crossing k*2^W for some k).
9900   //
9901   // The interesting case here is when Min was eliminated as an invalid
9902   // solution, but Max was not. The argument is that if there was another
9903   // overflow between Min and Max, it would also have been eliminated if
9904   // it was considered.
9905   //
9906   // For a given boundary, it is possible to have two overflows of the same
9907   // type (signed/unsigned) without having the other type in between: this
9908   // can happen when the vertex of the parabola is between the iterations
9909   // corresponding to the overflows. This is only possible when the two
9910   // overflows cross k*2^W for the same k. In such case, if the second one
9911   // left the range (and was the first one to do so), the first overflow
9912   // would have to enter the range, which would mean that either we had left
9913   // the range before or that we started outside of it. Both of these cases
9914   // are contradictions.
9915   //
9916   // Claim: In the case where SolveForBoundary returns None, the correct
9917   // solution is not some value between the Max for this boundary and the
9918   // Min of the other boundary.
9919   //
9920   // Justification: Assume that we had such Max_A and Min_B corresponding
9921   // to range boundaries A and B and such that Max_A < Min_B. If there was
9922   // a solution between Max_A and Min_B, it would have to be caused by an
9923   // overflow corresponding to either A or B. It cannot correspond to B,
9924   // since Min_B is the first occurrence of such an overflow. If it
9925   // corresponded to A, it would have to be either a signed or an unsigned
9926   // overflow that is larger than both eliminated overflows for A. But
9927   // between the eliminated overflows and this overflow, the values would
9928   // cover the entire value space, thus crossing the other boundary, which
9929   // is a contradiction.
9930 
9931   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9932 }
9933 
9934 ScalarEvolution::ExitLimit
9935 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9936                               bool AllowPredicates) {
9937 
9938   // This is only used for loops with a "x != y" exit test. The exit condition
9939   // is now expressed as a single expression, V = x-y. So the exit test is
9940   // effectively V != 0.  We know and take advantage of the fact that this
9941   // expression only being used in a comparison by zero context.
9942 
9943   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9944   // If the value is a constant
9945   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9946     // If the value is already zero, the branch will execute zero times.
9947     if (C->getValue()->isZero()) return C;
9948     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9949   }
9950 
9951   const SCEVAddRecExpr *AddRec =
9952       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9953 
9954   if (!AddRec && AllowPredicates)
9955     // Try to make this an AddRec using runtime tests, in the first X
9956     // iterations of this loop, where X is the SCEV expression found by the
9957     // algorithm below.
9958     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9959 
9960   if (!AddRec || AddRec->getLoop() != L)
9961     return getCouldNotCompute();
9962 
9963   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9964   // the quadratic equation to solve it.
9965   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9966     // We can only use this value if the chrec ends up with an exact zero
9967     // value at this index.  When solving for "X*X != 5", for example, we
9968     // should not accept a root of 2.
9969     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9970       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9971       return ExitLimit(R, R, false, Predicates);
9972     }
9973     return getCouldNotCompute();
9974   }
9975 
9976   // Otherwise we can only handle this if it is affine.
9977   if (!AddRec->isAffine())
9978     return getCouldNotCompute();
9979 
9980   // If this is an affine expression, the execution count of this branch is
9981   // the minimum unsigned root of the following equation:
9982   //
9983   //     Start + Step*N = 0 (mod 2^BW)
9984   //
9985   // equivalent to:
9986   //
9987   //             Step*N = -Start (mod 2^BW)
9988   //
9989   // where BW is the common bit width of Start and Step.
9990 
9991   // Get the initial value for the loop.
9992   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9993   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9994 
9995   // For now we handle only constant steps.
9996   //
9997   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9998   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9999   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
10000   // We have not yet seen any such cases.
10001   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
10002   if (!StepC || StepC->getValue()->isZero())
10003     return getCouldNotCompute();
10004 
10005   // For positive steps (counting up until unsigned overflow):
10006   //   N = -Start/Step (as unsigned)
10007   // For negative steps (counting down to zero):
10008   //   N = Start/-Step
10009   // First compute the unsigned distance from zero in the direction of Step.
10010   bool CountDown = StepC->getAPInt().isNegative();
10011   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
10012 
10013   // Handle unitary steps, which cannot wraparound.
10014   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
10015   //   N = Distance (as unsigned)
10016   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
10017     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
10018     MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance));
10019 
10020     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
10021     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
10022     // case, and see if we can improve the bound.
10023     //
10024     // Explicitly handling this here is necessary because getUnsignedRange
10025     // isn't context-sensitive; it doesn't know that we only care about the
10026     // range inside the loop.
10027     const SCEV *Zero = getZero(Distance->getType());
10028     const SCEV *One = getOne(Distance->getType());
10029     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
10030     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
10031       // If Distance + 1 doesn't overflow, we can compute the maximum distance
10032       // as "unsigned_max(Distance + 1) - 1".
10033       ConstantRange CR = getUnsignedRange(DistancePlusOne);
10034       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
10035     }
10036     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
10037   }
10038 
10039   // If the condition controls loop exit (the loop exits only if the expression
10040   // is true) and the addition is no-wrap we can use unsigned divide to
10041   // compute the backedge count.  In this case, the step may not divide the
10042   // distance, but we don't care because if the condition is "missed" the loop
10043   // will have undefined behavior due to wrapping.
10044   if (ControlsExit && AddRec->hasNoSelfWrap() &&
10045       loopHasNoAbnormalExits(AddRec->getLoop())) {
10046     const SCEV *Exact =
10047         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
10048     const SCEV *Max = getCouldNotCompute();
10049     if (Exact != getCouldNotCompute()) {
10050       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
10051       Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact)));
10052     }
10053     return ExitLimit(Exact, Max, false, Predicates);
10054   }
10055 
10056   // Solve the general equation.
10057   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
10058                                                getNegativeSCEV(Start), *this);
10059 
10060   const SCEV *M = E;
10061   if (E != getCouldNotCompute()) {
10062     APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L));
10063     M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E)));
10064   }
10065   return ExitLimit(E, M, false, Predicates);
10066 }
10067 
10068 ScalarEvolution::ExitLimit
10069 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
10070   // Loops that look like: while (X == 0) are very strange indeed.  We don't
10071   // handle them yet except for the trivial case.  This could be expanded in the
10072   // future as needed.
10073 
10074   // If the value is a constant, check to see if it is known to be non-zero
10075   // already.  If so, the backedge will execute zero times.
10076   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
10077     if (!C->getValue()->isZero())
10078       return getZero(C->getType());
10079     return getCouldNotCompute();  // Otherwise it will loop infinitely.
10080   }
10081 
10082   // We could implement others, but I really doubt anyone writes loops like
10083   // this, and if they did, they would already be constant folded.
10084   return getCouldNotCompute();
10085 }
10086 
10087 std::pair<const BasicBlock *, const BasicBlock *>
10088 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
10089     const {
10090   // If the block has a unique predecessor, then there is no path from the
10091   // predecessor to the block that does not go through the direct edge
10092   // from the predecessor to the block.
10093   if (const BasicBlock *Pred = BB->getSinglePredecessor())
10094     return {Pred, BB};
10095 
10096   // A loop's header is defined to be a block that dominates the loop.
10097   // If the header has a unique predecessor outside the loop, it must be
10098   // a block that has exactly one successor that can reach the loop.
10099   if (const Loop *L = LI.getLoopFor(BB))
10100     return {L->getLoopPredecessor(), L->getHeader()};
10101 
10102   return {nullptr, nullptr};
10103 }
10104 
10105 /// SCEV structural equivalence is usually sufficient for testing whether two
10106 /// expressions are equal, however for the purposes of looking for a condition
10107 /// guarding a loop, it can be useful to be a little more general, since a
10108 /// front-end may have replicated the controlling expression.
10109 static bool HasSameValue(const SCEV *A, const SCEV *B) {
10110   // Quick check to see if they are the same SCEV.
10111   if (A == B) return true;
10112 
10113   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
10114     // Not all instructions that are "identical" compute the same value.  For
10115     // instance, two distinct alloca instructions allocating the same type are
10116     // identical and do not read memory; but compute distinct values.
10117     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
10118   };
10119 
10120   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
10121   // two different instructions with the same value. Check for this case.
10122   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
10123     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
10124       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
10125         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
10126           if (ComputesEqualValues(AI, BI))
10127             return true;
10128 
10129   // Otherwise assume they may have a different value.
10130   return false;
10131 }
10132 
10133 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
10134                                            const SCEV *&LHS, const SCEV *&RHS,
10135                                            unsigned Depth,
10136                                            bool ControllingFiniteLoop) {
10137   bool Changed = false;
10138   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
10139   // '0 != 0'.
10140   auto TrivialCase = [&](bool TriviallyTrue) {
10141     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
10142     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
10143     return true;
10144   };
10145   // If we hit the max recursion limit bail out.
10146   if (Depth >= 3)
10147     return false;
10148 
10149   // Canonicalize a constant to the right side.
10150   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
10151     // Check for both operands constant.
10152     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
10153       if (ConstantExpr::getICmp(Pred,
10154                                 LHSC->getValue(),
10155                                 RHSC->getValue())->isNullValue())
10156         return TrivialCase(false);
10157       else
10158         return TrivialCase(true);
10159     }
10160     // Otherwise swap the operands to put the constant on the right.
10161     std::swap(LHS, RHS);
10162     Pred = ICmpInst::getSwappedPredicate(Pred);
10163     Changed = true;
10164   }
10165 
10166   // If we're comparing an addrec with a value which is loop-invariant in the
10167   // addrec's loop, put the addrec on the left. Also make a dominance check,
10168   // as both operands could be addrecs loop-invariant in each other's loop.
10169   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
10170     const Loop *L = AR->getLoop();
10171     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
10172       std::swap(LHS, RHS);
10173       Pred = ICmpInst::getSwappedPredicate(Pred);
10174       Changed = true;
10175     }
10176   }
10177 
10178   // If there's a constant operand, canonicalize comparisons with boundary
10179   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
10180   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
10181     const APInt &RA = RC->getAPInt();
10182 
10183     bool SimplifiedByConstantRange = false;
10184 
10185     if (!ICmpInst::isEquality(Pred)) {
10186       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
10187       if (ExactCR.isFullSet())
10188         return TrivialCase(true);
10189       else if (ExactCR.isEmptySet())
10190         return TrivialCase(false);
10191 
10192       APInt NewRHS;
10193       CmpInst::Predicate NewPred;
10194       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
10195           ICmpInst::isEquality(NewPred)) {
10196         // We were able to convert an inequality to an equality.
10197         Pred = NewPred;
10198         RHS = getConstant(NewRHS);
10199         Changed = SimplifiedByConstantRange = true;
10200       }
10201     }
10202 
10203     if (!SimplifiedByConstantRange) {
10204       switch (Pred) {
10205       default:
10206         break;
10207       case ICmpInst::ICMP_EQ:
10208       case ICmpInst::ICMP_NE:
10209         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
10210         if (!RA)
10211           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
10212             if (const SCEVMulExpr *ME =
10213                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
10214               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
10215                   ME->getOperand(0)->isAllOnesValue()) {
10216                 RHS = AE->getOperand(1);
10217                 LHS = ME->getOperand(1);
10218                 Changed = true;
10219               }
10220         break;
10221 
10222 
10223         // The "Should have been caught earlier!" messages refer to the fact
10224         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
10225         // should have fired on the corresponding cases, and canonicalized the
10226         // check to trivial case.
10227 
10228       case ICmpInst::ICMP_UGE:
10229         assert(!RA.isMinValue() && "Should have been caught earlier!");
10230         Pred = ICmpInst::ICMP_UGT;
10231         RHS = getConstant(RA - 1);
10232         Changed = true;
10233         break;
10234       case ICmpInst::ICMP_ULE:
10235         assert(!RA.isMaxValue() && "Should have been caught earlier!");
10236         Pred = ICmpInst::ICMP_ULT;
10237         RHS = getConstant(RA + 1);
10238         Changed = true;
10239         break;
10240       case ICmpInst::ICMP_SGE:
10241         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
10242         Pred = ICmpInst::ICMP_SGT;
10243         RHS = getConstant(RA - 1);
10244         Changed = true;
10245         break;
10246       case ICmpInst::ICMP_SLE:
10247         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
10248         Pred = ICmpInst::ICMP_SLT;
10249         RHS = getConstant(RA + 1);
10250         Changed = true;
10251         break;
10252       }
10253     }
10254   }
10255 
10256   // Check for obvious equality.
10257   if (HasSameValue(LHS, RHS)) {
10258     if (ICmpInst::isTrueWhenEqual(Pred))
10259       return TrivialCase(true);
10260     if (ICmpInst::isFalseWhenEqual(Pred))
10261       return TrivialCase(false);
10262   }
10263 
10264   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
10265   // adding or subtracting 1 from one of the operands. This can be done for
10266   // one of two reasons:
10267   // 1) The range of the RHS does not include the (signed/unsigned) boundaries
10268   // 2) The loop is finite, with this comparison controlling the exit. Since the
10269   // loop is finite, the bound cannot include the corresponding boundary
10270   // (otherwise it would loop forever).
10271   switch (Pred) {
10272   case ICmpInst::ICMP_SLE:
10273     if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) {
10274       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10275                        SCEV::FlagNSW);
10276       Pred = ICmpInst::ICMP_SLT;
10277       Changed = true;
10278     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
10279       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
10280                        SCEV::FlagNSW);
10281       Pred = ICmpInst::ICMP_SLT;
10282       Changed = true;
10283     }
10284     break;
10285   case ICmpInst::ICMP_SGE:
10286     if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) {
10287       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
10288                        SCEV::FlagNSW);
10289       Pred = ICmpInst::ICMP_SGT;
10290       Changed = true;
10291     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
10292       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10293                        SCEV::FlagNSW);
10294       Pred = ICmpInst::ICMP_SGT;
10295       Changed = true;
10296     }
10297     break;
10298   case ICmpInst::ICMP_ULE:
10299     if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) {
10300       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
10301                        SCEV::FlagNUW);
10302       Pred = ICmpInst::ICMP_ULT;
10303       Changed = true;
10304     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
10305       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
10306       Pred = ICmpInst::ICMP_ULT;
10307       Changed = true;
10308     }
10309     break;
10310   case ICmpInst::ICMP_UGE:
10311     if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) {
10312       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
10313       Pred = ICmpInst::ICMP_UGT;
10314       Changed = true;
10315     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
10316       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
10317                        SCEV::FlagNUW);
10318       Pred = ICmpInst::ICMP_UGT;
10319       Changed = true;
10320     }
10321     break;
10322   default:
10323     break;
10324   }
10325 
10326   // TODO: More simplifications are possible here.
10327 
10328   // Recursively simplify until we either hit a recursion limit or nothing
10329   // changes.
10330   if (Changed)
10331     return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1,
10332                                 ControllingFiniteLoop);
10333 
10334   return Changed;
10335 }
10336 
10337 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
10338   return getSignedRangeMax(S).isNegative();
10339 }
10340 
10341 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
10342   return getSignedRangeMin(S).isStrictlyPositive();
10343 }
10344 
10345 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
10346   return !getSignedRangeMin(S).isNegative();
10347 }
10348 
10349 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
10350   return !getSignedRangeMax(S).isStrictlyPositive();
10351 }
10352 
10353 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
10354   return getUnsignedRangeMin(S) != 0;
10355 }
10356 
10357 std::pair<const SCEV *, const SCEV *>
10358 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
10359   // Compute SCEV on entry of loop L.
10360   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
10361   if (Start == getCouldNotCompute())
10362     return { Start, Start };
10363   // Compute post increment SCEV for loop L.
10364   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
10365   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
10366   return { Start, PostInc };
10367 }
10368 
10369 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
10370                                           const SCEV *LHS, const SCEV *RHS) {
10371   // First collect all loops.
10372   SmallPtrSet<const Loop *, 8> LoopsUsed;
10373   getUsedLoops(LHS, LoopsUsed);
10374   getUsedLoops(RHS, LoopsUsed);
10375 
10376   if (LoopsUsed.empty())
10377     return false;
10378 
10379   // Domination relationship must be a linear order on collected loops.
10380 #ifndef NDEBUG
10381   for (auto *L1 : LoopsUsed)
10382     for (auto *L2 : LoopsUsed)
10383       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
10384               DT.dominates(L2->getHeader(), L1->getHeader())) &&
10385              "Domination relationship is not a linear order");
10386 #endif
10387 
10388   const Loop *MDL =
10389       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
10390                         [&](const Loop *L1, const Loop *L2) {
10391          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
10392        });
10393 
10394   // Get init and post increment value for LHS.
10395   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
10396   // if LHS contains unknown non-invariant SCEV then bail out.
10397   if (SplitLHS.first == getCouldNotCompute())
10398     return false;
10399   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
10400   // Get init and post increment value for RHS.
10401   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
10402   // if RHS contains unknown non-invariant SCEV then bail out.
10403   if (SplitRHS.first == getCouldNotCompute())
10404     return false;
10405   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
10406   // It is possible that init SCEV contains an invariant load but it does
10407   // not dominate MDL and is not available at MDL loop entry, so we should
10408   // check it here.
10409   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
10410       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
10411     return false;
10412 
10413   // It seems backedge guard check is faster than entry one so in some cases
10414   // it can speed up whole estimation by short circuit
10415   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
10416                                      SplitRHS.second) &&
10417          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
10418 }
10419 
10420 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
10421                                        const SCEV *LHS, const SCEV *RHS) {
10422   // Canonicalize the inputs first.
10423   (void)SimplifyICmpOperands(Pred, LHS, RHS);
10424 
10425   if (isKnownViaInduction(Pred, LHS, RHS))
10426     return true;
10427 
10428   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
10429     return true;
10430 
10431   // Otherwise see what can be done with some simple reasoning.
10432   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
10433 }
10434 
10435 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
10436                                                   const SCEV *LHS,
10437                                                   const SCEV *RHS) {
10438   if (isKnownPredicate(Pred, LHS, RHS))
10439     return true;
10440   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
10441     return false;
10442   return None;
10443 }
10444 
10445 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
10446                                          const SCEV *LHS, const SCEV *RHS,
10447                                          const Instruction *CtxI) {
10448   // TODO: Analyze guards and assumes from Context's block.
10449   return isKnownPredicate(Pred, LHS, RHS) ||
10450          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
10451 }
10452 
10453 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
10454                                                     const SCEV *LHS,
10455                                                     const SCEV *RHS,
10456                                                     const Instruction *CtxI) {
10457   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
10458   if (KnownWithoutContext)
10459     return KnownWithoutContext;
10460 
10461   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
10462     return true;
10463   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
10464                                           ICmpInst::getInversePredicate(Pred),
10465                                           LHS, RHS))
10466     return false;
10467   return None;
10468 }
10469 
10470 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
10471                                               const SCEVAddRecExpr *LHS,
10472                                               const SCEV *RHS) {
10473   const Loop *L = LHS->getLoop();
10474   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
10475          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
10476 }
10477 
10478 Optional<ScalarEvolution::MonotonicPredicateType>
10479 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
10480                                            ICmpInst::Predicate Pred) {
10481   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
10482 
10483 #ifndef NDEBUG
10484   // Verify an invariant: inverting the predicate should turn a monotonically
10485   // increasing change to a monotonically decreasing one, and vice versa.
10486   if (Result) {
10487     auto ResultSwapped =
10488         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
10489 
10490     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
10491     assert(ResultSwapped.getValue() != Result.getValue() &&
10492            "monotonicity should flip as we flip the predicate");
10493   }
10494 #endif
10495 
10496   return Result;
10497 }
10498 
10499 Optional<ScalarEvolution::MonotonicPredicateType>
10500 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
10501                                                ICmpInst::Predicate Pred) {
10502   // A zero step value for LHS means the induction variable is essentially a
10503   // loop invariant value. We don't really depend on the predicate actually
10504   // flipping from false to true (for increasing predicates, and the other way
10505   // around for decreasing predicates), all we care about is that *if* the
10506   // predicate changes then it only changes from false to true.
10507   //
10508   // A zero step value in itself is not very useful, but there may be places
10509   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
10510   // as general as possible.
10511 
10512   // Only handle LE/LT/GE/GT predicates.
10513   if (!ICmpInst::isRelational(Pred))
10514     return None;
10515 
10516   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10517   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10518          "Should be greater or less!");
10519 
10520   // Check that AR does not wrap.
10521   if (ICmpInst::isUnsigned(Pred)) {
10522     if (!LHS->hasNoUnsignedWrap())
10523       return None;
10524     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10525   } else {
10526     assert(ICmpInst::isSigned(Pred) &&
10527            "Relational predicate is either signed or unsigned!");
10528     if (!LHS->hasNoSignedWrap())
10529       return None;
10530 
10531     const SCEV *Step = LHS->getStepRecurrence(*this);
10532 
10533     if (isKnownNonNegative(Step))
10534       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10535 
10536     if (isKnownNonPositive(Step))
10537       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10538 
10539     return None;
10540   }
10541 }
10542 
10543 Optional<ScalarEvolution::LoopInvariantPredicate>
10544 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10545                                            const SCEV *LHS, const SCEV *RHS,
10546                                            const Loop *L) {
10547 
10548   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10549   if (!isLoopInvariant(RHS, L)) {
10550     if (!isLoopInvariant(LHS, L))
10551       return None;
10552 
10553     std::swap(LHS, RHS);
10554     Pred = ICmpInst::getSwappedPredicate(Pred);
10555   }
10556 
10557   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10558   if (!ArLHS || ArLHS->getLoop() != L)
10559     return None;
10560 
10561   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10562   if (!MonotonicType)
10563     return None;
10564   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10565   // true as the loop iterates, and the backedge is control dependent on
10566   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10567   //
10568   //   * if the predicate was false in the first iteration then the predicate
10569   //     is never evaluated again, since the loop exits without taking the
10570   //     backedge.
10571   //   * if the predicate was true in the first iteration then it will
10572   //     continue to be true for all future iterations since it is
10573   //     monotonically increasing.
10574   //
10575   // For both the above possibilities, we can replace the loop varying
10576   // predicate with its value on the first iteration of the loop (which is
10577   // loop invariant).
10578   //
10579   // A similar reasoning applies for a monotonically decreasing predicate, by
10580   // replacing true with false and false with true in the above two bullets.
10581   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10582   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10583 
10584   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10585     return None;
10586 
10587   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10588 }
10589 
10590 Optional<ScalarEvolution::LoopInvariantPredicate>
10591 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10592     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10593     const Instruction *CtxI, const SCEV *MaxIter) {
10594   // Try to prove the following set of facts:
10595   // - The predicate is monotonic in the iteration space.
10596   // - If the check does not fail on the 1st iteration:
10597   //   - No overflow will happen during first MaxIter iterations;
10598   //   - It will not fail on the MaxIter'th iteration.
10599   // If the check does fail on the 1st iteration, we leave the loop and no
10600   // other checks matter.
10601 
10602   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10603   if (!isLoopInvariant(RHS, L)) {
10604     if (!isLoopInvariant(LHS, L))
10605       return None;
10606 
10607     std::swap(LHS, RHS);
10608     Pred = ICmpInst::getSwappedPredicate(Pred);
10609   }
10610 
10611   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10612   if (!AR || AR->getLoop() != L)
10613     return None;
10614 
10615   // The predicate must be relational (i.e. <, <=, >=, >).
10616   if (!ICmpInst::isRelational(Pred))
10617     return None;
10618 
10619   // TODO: Support steps other than +/- 1.
10620   const SCEV *Step = AR->getStepRecurrence(*this);
10621   auto *One = getOne(Step->getType());
10622   auto *MinusOne = getNegativeSCEV(One);
10623   if (Step != One && Step != MinusOne)
10624     return None;
10625 
10626   // Type mismatch here means that MaxIter is potentially larger than max
10627   // unsigned value in start type, which mean we cannot prove no wrap for the
10628   // indvar.
10629   if (AR->getType() != MaxIter->getType())
10630     return None;
10631 
10632   // Value of IV on suggested last iteration.
10633   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10634   // Does it still meet the requirement?
10635   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10636     return None;
10637   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10638   // not exceed max unsigned value of this type), this effectively proves
10639   // that there is no wrap during the iteration. To prove that there is no
10640   // signed/unsigned wrap, we need to check that
10641   // Start <= Last for step = 1 or Start >= Last for step = -1.
10642   ICmpInst::Predicate NoOverflowPred =
10643       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10644   if (Step == MinusOne)
10645     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10646   const SCEV *Start = AR->getStart();
10647   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10648     return None;
10649 
10650   // Everything is fine.
10651   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10652 }
10653 
10654 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10655     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10656   if (HasSameValue(LHS, RHS))
10657     return ICmpInst::isTrueWhenEqual(Pred);
10658 
10659   // This code is split out from isKnownPredicate because it is called from
10660   // within isLoopEntryGuardedByCond.
10661 
10662   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10663                          const ConstantRange &RangeRHS) {
10664     return RangeLHS.icmp(Pred, RangeRHS);
10665   };
10666 
10667   // The check at the top of the function catches the case where the values are
10668   // known to be equal.
10669   if (Pred == CmpInst::ICMP_EQ)
10670     return false;
10671 
10672   if (Pred == CmpInst::ICMP_NE) {
10673     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10674         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10675       return true;
10676     auto *Diff = getMinusSCEV(LHS, RHS);
10677     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10678   }
10679 
10680   if (CmpInst::isSigned(Pred))
10681     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10682 
10683   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10684 }
10685 
10686 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10687                                                     const SCEV *LHS,
10688                                                     const SCEV *RHS) {
10689   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10690   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10691   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10692   // OutC1 and OutC2.
10693   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10694                                       APInt &OutC1, APInt &OutC2,
10695                                       SCEV::NoWrapFlags ExpectedFlags) {
10696     const SCEV *XNonConstOp, *XConstOp;
10697     const SCEV *YNonConstOp, *YConstOp;
10698     SCEV::NoWrapFlags XFlagsPresent;
10699     SCEV::NoWrapFlags YFlagsPresent;
10700 
10701     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10702       XConstOp = getZero(X->getType());
10703       XNonConstOp = X;
10704       XFlagsPresent = ExpectedFlags;
10705     }
10706     if (!isa<SCEVConstant>(XConstOp) ||
10707         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10708       return false;
10709 
10710     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10711       YConstOp = getZero(Y->getType());
10712       YNonConstOp = Y;
10713       YFlagsPresent = ExpectedFlags;
10714     }
10715 
10716     if (!isa<SCEVConstant>(YConstOp) ||
10717         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10718       return false;
10719 
10720     if (YNonConstOp != XNonConstOp)
10721       return false;
10722 
10723     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10724     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10725 
10726     return true;
10727   };
10728 
10729   APInt C1;
10730   APInt C2;
10731 
10732   switch (Pred) {
10733   default:
10734     break;
10735 
10736   case ICmpInst::ICMP_SGE:
10737     std::swap(LHS, RHS);
10738     LLVM_FALLTHROUGH;
10739   case ICmpInst::ICMP_SLE:
10740     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10741     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10742       return true;
10743 
10744     break;
10745 
10746   case ICmpInst::ICMP_SGT:
10747     std::swap(LHS, RHS);
10748     LLVM_FALLTHROUGH;
10749   case ICmpInst::ICMP_SLT:
10750     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10751     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10752       return true;
10753 
10754     break;
10755 
10756   case ICmpInst::ICMP_UGE:
10757     std::swap(LHS, RHS);
10758     LLVM_FALLTHROUGH;
10759   case ICmpInst::ICMP_ULE:
10760     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10761     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10762       return true;
10763 
10764     break;
10765 
10766   case ICmpInst::ICMP_UGT:
10767     std::swap(LHS, RHS);
10768     LLVM_FALLTHROUGH;
10769   case ICmpInst::ICMP_ULT:
10770     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10771     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10772       return true;
10773     break;
10774   }
10775 
10776   return false;
10777 }
10778 
10779 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10780                                                    const SCEV *LHS,
10781                                                    const SCEV *RHS) {
10782   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10783     return false;
10784 
10785   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10786   // the stack can result in exponential time complexity.
10787   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10788 
10789   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10790   //
10791   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10792   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10793   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10794   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10795   // use isKnownPredicate later if needed.
10796   return isKnownNonNegative(RHS) &&
10797          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10798          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10799 }
10800 
10801 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10802                                         ICmpInst::Predicate Pred,
10803                                         const SCEV *LHS, const SCEV *RHS) {
10804   // No need to even try if we know the module has no guards.
10805   if (!HasGuards)
10806     return false;
10807 
10808   return any_of(*BB, [&](const Instruction &I) {
10809     using namespace llvm::PatternMatch;
10810 
10811     Value *Condition;
10812     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10813                          m_Value(Condition))) &&
10814            isImpliedCond(Pred, LHS, RHS, Condition, false);
10815   });
10816 }
10817 
10818 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10819 /// protected by a conditional between LHS and RHS.  This is used to
10820 /// to eliminate casts.
10821 bool
10822 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10823                                              ICmpInst::Predicate Pred,
10824                                              const SCEV *LHS, const SCEV *RHS) {
10825   // Interpret a null as meaning no loop, where there is obviously no guard
10826   // (interprocedural conditions notwithstanding).
10827   if (!L) return true;
10828 
10829   if (VerifyIR)
10830     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10831            "This cannot be done on broken IR!");
10832 
10833 
10834   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10835     return true;
10836 
10837   BasicBlock *Latch = L->getLoopLatch();
10838   if (!Latch)
10839     return false;
10840 
10841   BranchInst *LoopContinuePredicate =
10842     dyn_cast<BranchInst>(Latch->getTerminator());
10843   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10844       isImpliedCond(Pred, LHS, RHS,
10845                     LoopContinuePredicate->getCondition(),
10846                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10847     return true;
10848 
10849   // We don't want more than one activation of the following loops on the stack
10850   // -- that can lead to O(n!) time complexity.
10851   if (WalkingBEDominatingConds)
10852     return false;
10853 
10854   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10855 
10856   // See if we can exploit a trip count to prove the predicate.
10857   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10858   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10859   if (LatchBECount != getCouldNotCompute()) {
10860     // We know that Latch branches back to the loop header exactly
10861     // LatchBECount times.  This means the backdege condition at Latch is
10862     // equivalent to  "{0,+,1} u< LatchBECount".
10863     Type *Ty = LatchBECount->getType();
10864     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10865     const SCEV *LoopCounter =
10866       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10867     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10868                       LatchBECount))
10869       return true;
10870   }
10871 
10872   // Check conditions due to any @llvm.assume intrinsics.
10873   for (auto &AssumeVH : AC.assumptions()) {
10874     if (!AssumeVH)
10875       continue;
10876     auto *CI = cast<CallInst>(AssumeVH);
10877     if (!DT.dominates(CI, Latch->getTerminator()))
10878       continue;
10879 
10880     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10881       return true;
10882   }
10883 
10884   // If the loop is not reachable from the entry block, we risk running into an
10885   // infinite loop as we walk up into the dom tree.  These loops do not matter
10886   // anyway, so we just return a conservative answer when we see them.
10887   if (!DT.isReachableFromEntry(L->getHeader()))
10888     return false;
10889 
10890   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10891     return true;
10892 
10893   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10894        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10895     assert(DTN && "should reach the loop header before reaching the root!");
10896 
10897     BasicBlock *BB = DTN->getBlock();
10898     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10899       return true;
10900 
10901     BasicBlock *PBB = BB->getSinglePredecessor();
10902     if (!PBB)
10903       continue;
10904 
10905     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10906     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10907       continue;
10908 
10909     Value *Condition = ContinuePredicate->getCondition();
10910 
10911     // If we have an edge `E` within the loop body that dominates the only
10912     // latch, the condition guarding `E` also guards the backedge.  This
10913     // reasoning works only for loops with a single latch.
10914 
10915     BasicBlockEdge DominatingEdge(PBB, BB);
10916     if (DominatingEdge.isSingleEdge()) {
10917       // We're constructively (and conservatively) enumerating edges within the
10918       // loop body that dominate the latch.  The dominator tree better agree
10919       // with us on this:
10920       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10921 
10922       if (isImpliedCond(Pred, LHS, RHS, Condition,
10923                         BB != ContinuePredicate->getSuccessor(0)))
10924         return true;
10925     }
10926   }
10927 
10928   return false;
10929 }
10930 
10931 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10932                                                      ICmpInst::Predicate Pred,
10933                                                      const SCEV *LHS,
10934                                                      const SCEV *RHS) {
10935   if (VerifyIR)
10936     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10937            "This cannot be done on broken IR!");
10938 
10939   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10940   // the facts (a >= b && a != b) separately. A typical situation is when the
10941   // non-strict comparison is known from ranges and non-equality is known from
10942   // dominating predicates. If we are proving strict comparison, we always try
10943   // to prove non-equality and non-strict comparison separately.
10944   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10945   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10946   bool ProvedNonStrictComparison = false;
10947   bool ProvedNonEquality = false;
10948 
10949   auto SplitAndProve =
10950     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10951     if (!ProvedNonStrictComparison)
10952       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10953     if (!ProvedNonEquality)
10954       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10955     if (ProvedNonStrictComparison && ProvedNonEquality)
10956       return true;
10957     return false;
10958   };
10959 
10960   if (ProvingStrictComparison) {
10961     auto ProofFn = [&](ICmpInst::Predicate P) {
10962       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10963     };
10964     if (SplitAndProve(ProofFn))
10965       return true;
10966   }
10967 
10968   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10969   auto ProveViaGuard = [&](const BasicBlock *Block) {
10970     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10971       return true;
10972     if (ProvingStrictComparison) {
10973       auto ProofFn = [&](ICmpInst::Predicate P) {
10974         return isImpliedViaGuard(Block, P, LHS, RHS);
10975       };
10976       if (SplitAndProve(ProofFn))
10977         return true;
10978     }
10979     return false;
10980   };
10981 
10982   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10983   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10984     const Instruction *CtxI = &BB->front();
10985     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10986       return true;
10987     if (ProvingStrictComparison) {
10988       auto ProofFn = [&](ICmpInst::Predicate P) {
10989         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10990       };
10991       if (SplitAndProve(ProofFn))
10992         return true;
10993     }
10994     return false;
10995   };
10996 
10997   // Starting at the block's predecessor, climb up the predecessor chain, as long
10998   // as there are predecessors that can be found that have unique successors
10999   // leading to the original block.
11000   const Loop *ContainingLoop = LI.getLoopFor(BB);
11001   const BasicBlock *PredBB;
11002   if (ContainingLoop && ContainingLoop->getHeader() == BB)
11003     PredBB = ContainingLoop->getLoopPredecessor();
11004   else
11005     PredBB = BB->getSinglePredecessor();
11006   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
11007        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
11008     if (ProveViaGuard(Pair.first))
11009       return true;
11010 
11011     const BranchInst *LoopEntryPredicate =
11012         dyn_cast<BranchInst>(Pair.first->getTerminator());
11013     if (!LoopEntryPredicate ||
11014         LoopEntryPredicate->isUnconditional())
11015       continue;
11016 
11017     if (ProveViaCond(LoopEntryPredicate->getCondition(),
11018                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
11019       return true;
11020   }
11021 
11022   // Check conditions due to any @llvm.assume intrinsics.
11023   for (auto &AssumeVH : AC.assumptions()) {
11024     if (!AssumeVH)
11025       continue;
11026     auto *CI = cast<CallInst>(AssumeVH);
11027     if (!DT.dominates(CI, BB))
11028       continue;
11029 
11030     if (ProveViaCond(CI->getArgOperand(0), false))
11031       return true;
11032   }
11033 
11034   return false;
11035 }
11036 
11037 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
11038                                                ICmpInst::Predicate Pred,
11039                                                const SCEV *LHS,
11040                                                const SCEV *RHS) {
11041   // Interpret a null as meaning no loop, where there is obviously no guard
11042   // (interprocedural conditions notwithstanding).
11043   if (!L)
11044     return false;
11045 
11046   // Both LHS and RHS must be available at loop entry.
11047   assert(isAvailableAtLoopEntry(LHS, L) &&
11048          "LHS is not available at Loop Entry");
11049   assert(isAvailableAtLoopEntry(RHS, L) &&
11050          "RHS is not available at Loop Entry");
11051 
11052   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
11053     return true;
11054 
11055   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
11056 }
11057 
11058 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11059                                     const SCEV *RHS,
11060                                     const Value *FoundCondValue, bool Inverse,
11061                                     const Instruction *CtxI) {
11062   // False conditions implies anything. Do not bother analyzing it further.
11063   if (FoundCondValue ==
11064       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
11065     return true;
11066 
11067   if (!PendingLoopPredicates.insert(FoundCondValue).second)
11068     return false;
11069 
11070   auto ClearOnExit =
11071       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
11072 
11073   // Recursively handle And and Or conditions.
11074   const Value *Op0, *Op1;
11075   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
11076     if (!Inverse)
11077       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11078              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11079   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
11080     if (Inverse)
11081       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
11082              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
11083   }
11084 
11085   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
11086   if (!ICI) return false;
11087 
11088   // Now that we found a conditional branch that dominates the loop or controls
11089   // the loop latch. Check to see if it is the comparison we are looking for.
11090   ICmpInst::Predicate FoundPred;
11091   if (Inverse)
11092     FoundPred = ICI->getInversePredicate();
11093   else
11094     FoundPred = ICI->getPredicate();
11095 
11096   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
11097   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
11098 
11099   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
11100 }
11101 
11102 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
11103                                     const SCEV *RHS,
11104                                     ICmpInst::Predicate FoundPred,
11105                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
11106                                     const Instruction *CtxI) {
11107   // Balance the types.
11108   if (getTypeSizeInBits(LHS->getType()) <
11109       getTypeSizeInBits(FoundLHS->getType())) {
11110     // For unsigned and equality predicates, try to prove that both found
11111     // operands fit into narrow unsigned range. If so, try to prove facts in
11112     // narrow types.
11113     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() &&
11114         !FoundRHS->getType()->isPointerTy()) {
11115       auto *NarrowType = LHS->getType();
11116       auto *WideType = FoundLHS->getType();
11117       auto BitWidth = getTypeSizeInBits(NarrowType);
11118       const SCEV *MaxValue = getZeroExtendExpr(
11119           getConstant(APInt::getMaxValue(BitWidth)), WideType);
11120       if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS,
11121                                           MaxValue) &&
11122           isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS,
11123                                           MaxValue)) {
11124         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
11125         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
11126         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
11127                                        TruncFoundRHS, CtxI))
11128           return true;
11129       }
11130     }
11131 
11132     if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy())
11133       return false;
11134     if (CmpInst::isSigned(Pred)) {
11135       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
11136       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
11137     } else {
11138       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
11139       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
11140     }
11141   } else if (getTypeSizeInBits(LHS->getType()) >
11142       getTypeSizeInBits(FoundLHS->getType())) {
11143     if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy())
11144       return false;
11145     if (CmpInst::isSigned(FoundPred)) {
11146       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
11147       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
11148     } else {
11149       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
11150       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
11151     }
11152   }
11153   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
11154                                     FoundRHS, CtxI);
11155 }
11156 
11157 bool ScalarEvolution::isImpliedCondBalancedTypes(
11158     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11159     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
11160     const Instruction *CtxI) {
11161   assert(getTypeSizeInBits(LHS->getType()) ==
11162              getTypeSizeInBits(FoundLHS->getType()) &&
11163          "Types should be balanced!");
11164   // Canonicalize the query to match the way instcombine will have
11165   // canonicalized the comparison.
11166   if (SimplifyICmpOperands(Pred, LHS, RHS))
11167     if (LHS == RHS)
11168       return CmpInst::isTrueWhenEqual(Pred);
11169   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
11170     if (FoundLHS == FoundRHS)
11171       return CmpInst::isFalseWhenEqual(FoundPred);
11172 
11173   // Check to see if we can make the LHS or RHS match.
11174   if (LHS == FoundRHS || RHS == FoundLHS) {
11175     if (isa<SCEVConstant>(RHS)) {
11176       std::swap(FoundLHS, FoundRHS);
11177       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
11178     } else {
11179       std::swap(LHS, RHS);
11180       Pred = ICmpInst::getSwappedPredicate(Pred);
11181     }
11182   }
11183 
11184   // Check whether the found predicate is the same as the desired predicate.
11185   if (FoundPred == Pred)
11186     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11187 
11188   // Check whether swapping the found predicate makes it the same as the
11189   // desired predicate.
11190   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
11191     // We can write the implication
11192     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
11193     // using one of the following ways:
11194     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
11195     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
11196     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
11197     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
11198     // Forms 1. and 2. require swapping the operands of one condition. Don't
11199     // do this if it would break canonical constant/addrec ordering.
11200     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
11201       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
11202                                    CtxI);
11203     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
11204       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
11205 
11206     // There's no clear preference between forms 3. and 4., try both.  Avoid
11207     // forming getNotSCEV of pointer values as the resulting subtract is
11208     // not legal.
11209     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
11210         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
11211                               FoundLHS, FoundRHS, CtxI))
11212       return true;
11213 
11214     if (!FoundLHS->getType()->isPointerTy() &&
11215         !FoundRHS->getType()->isPointerTy() &&
11216         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
11217                               getNotSCEV(FoundRHS), CtxI))
11218       return true;
11219 
11220     return false;
11221   }
11222 
11223   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
11224                                    CmpInst::Predicate P2) {
11225     assert(P1 != P2 && "Handled earlier!");
11226     return CmpInst::isRelational(P2) &&
11227            P1 == CmpInst::getFlippedSignednessPredicate(P2);
11228   };
11229   if (IsSignFlippedPredicate(Pred, FoundPred)) {
11230     // Unsigned comparison is the same as signed comparison when both the
11231     // operands are non-negative or negative.
11232     if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
11233         (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))
11234       return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
11235     // Create local copies that we can freely swap and canonicalize our
11236     // conditions to "le/lt".
11237     ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred;
11238     const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS,
11239                *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS;
11240     if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) {
11241       CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred);
11242       CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred);
11243       std::swap(CanonicalLHS, CanonicalRHS);
11244       std::swap(CanonicalFoundLHS, CanonicalFoundRHS);
11245     }
11246     assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) &&
11247            "Must be!");
11248     assert((ICmpInst::isLT(CanonicalFoundPred) ||
11249             ICmpInst::isLE(CanonicalFoundPred)) &&
11250            "Must be!");
11251     if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS))
11252       // Use implication:
11253       // x <u y && y >=s 0 --> x <s y.
11254       // If we can prove the left part, the right part is also proven.
11255       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11256                                    CanonicalRHS, CanonicalFoundLHS,
11257                                    CanonicalFoundRHS);
11258     if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS))
11259       // Use implication:
11260       // x <s y && y <s 0 --> x <u y.
11261       // If we can prove the left part, the right part is also proven.
11262       return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS,
11263                                    CanonicalRHS, CanonicalFoundLHS,
11264                                    CanonicalFoundRHS);
11265   }
11266 
11267   // Check if we can make progress by sharpening ranges.
11268   if (FoundPred == ICmpInst::ICMP_NE &&
11269       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
11270 
11271     const SCEVConstant *C = nullptr;
11272     const SCEV *V = nullptr;
11273 
11274     if (isa<SCEVConstant>(FoundLHS)) {
11275       C = cast<SCEVConstant>(FoundLHS);
11276       V = FoundRHS;
11277     } else {
11278       C = cast<SCEVConstant>(FoundRHS);
11279       V = FoundLHS;
11280     }
11281 
11282     // The guarding predicate tells us that C != V. If the known range
11283     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
11284     // range we consider has to correspond to same signedness as the
11285     // predicate we're interested in folding.
11286 
11287     APInt Min = ICmpInst::isSigned(Pred) ?
11288         getSignedRangeMin(V) : getUnsignedRangeMin(V);
11289 
11290     if (Min == C->getAPInt()) {
11291       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
11292       // This is true even if (Min + 1) wraps around -- in case of
11293       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
11294 
11295       APInt SharperMin = Min + 1;
11296 
11297       switch (Pred) {
11298         case ICmpInst::ICMP_SGE:
11299         case ICmpInst::ICMP_UGE:
11300           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
11301           // RHS, we're done.
11302           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
11303                                     CtxI))
11304             return true;
11305           LLVM_FALLTHROUGH;
11306 
11307         case ICmpInst::ICMP_SGT:
11308         case ICmpInst::ICMP_UGT:
11309           // We know from the range information that (V `Pred` Min ||
11310           // V == Min).  We know from the guarding condition that !(V
11311           // == Min).  This gives us
11312           //
11313           //       V `Pred` Min || V == Min && !(V == Min)
11314           //   =>  V `Pred` Min
11315           //
11316           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
11317 
11318           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
11319             return true;
11320           break;
11321 
11322         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
11323         case ICmpInst::ICMP_SLE:
11324         case ICmpInst::ICMP_ULE:
11325           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11326                                     LHS, V, getConstant(SharperMin), CtxI))
11327             return true;
11328           LLVM_FALLTHROUGH;
11329 
11330         case ICmpInst::ICMP_SLT:
11331         case ICmpInst::ICMP_ULT:
11332           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
11333                                     LHS, V, getConstant(Min), CtxI))
11334             return true;
11335           break;
11336 
11337         default:
11338           // No change
11339           break;
11340       }
11341     }
11342   }
11343 
11344   // Check whether the actual condition is beyond sufficient.
11345   if (FoundPred == ICmpInst::ICMP_EQ)
11346     if (ICmpInst::isTrueWhenEqual(Pred))
11347       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11348         return true;
11349   if (Pred == ICmpInst::ICMP_NE)
11350     if (!ICmpInst::isTrueWhenEqual(FoundPred))
11351       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
11352         return true;
11353 
11354   // Otherwise assume the worst.
11355   return false;
11356 }
11357 
11358 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
11359                                      const SCEV *&L, const SCEV *&R,
11360                                      SCEV::NoWrapFlags &Flags) {
11361   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
11362   if (!AE || AE->getNumOperands() != 2)
11363     return false;
11364 
11365   L = AE->getOperand(0);
11366   R = AE->getOperand(1);
11367   Flags = AE->getNoWrapFlags();
11368   return true;
11369 }
11370 
11371 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
11372                                                            const SCEV *Less) {
11373   // We avoid subtracting expressions here because this function is usually
11374   // fairly deep in the call stack (i.e. is called many times).
11375 
11376   // X - X = 0.
11377   if (More == Less)
11378     return APInt(getTypeSizeInBits(More->getType()), 0);
11379 
11380   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
11381     const auto *LAR = cast<SCEVAddRecExpr>(Less);
11382     const auto *MAR = cast<SCEVAddRecExpr>(More);
11383 
11384     if (LAR->getLoop() != MAR->getLoop())
11385       return None;
11386 
11387     // We look at affine expressions only; not for correctness but to keep
11388     // getStepRecurrence cheap.
11389     if (!LAR->isAffine() || !MAR->isAffine())
11390       return None;
11391 
11392     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
11393       return None;
11394 
11395     Less = LAR->getStart();
11396     More = MAR->getStart();
11397 
11398     // fall through
11399   }
11400 
11401   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
11402     const auto &M = cast<SCEVConstant>(More)->getAPInt();
11403     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
11404     return M - L;
11405   }
11406 
11407   SCEV::NoWrapFlags Flags;
11408   const SCEV *LLess = nullptr, *RLess = nullptr;
11409   const SCEV *LMore = nullptr, *RMore = nullptr;
11410   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
11411   // Compare (X + C1) vs X.
11412   if (splitBinaryAdd(Less, LLess, RLess, Flags))
11413     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
11414       if (RLess == More)
11415         return -(C1->getAPInt());
11416 
11417   // Compare X vs (X + C2).
11418   if (splitBinaryAdd(More, LMore, RMore, Flags))
11419     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
11420       if (RMore == Less)
11421         return C2->getAPInt();
11422 
11423   // Compare (X + C1) vs (X + C2).
11424   if (C1 && C2 && RLess == RMore)
11425     return C2->getAPInt() - C1->getAPInt();
11426 
11427   return None;
11428 }
11429 
11430 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
11431     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11432     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
11433   // Try to recognize the following pattern:
11434   //
11435   //   FoundRHS = ...
11436   // ...
11437   // loop:
11438   //   FoundLHS = {Start,+,W}
11439   // context_bb: // Basic block from the same loop
11440   //   known(Pred, FoundLHS, FoundRHS)
11441   //
11442   // If some predicate is known in the context of a loop, it is also known on
11443   // each iteration of this loop, including the first iteration. Therefore, in
11444   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
11445   // prove the original pred using this fact.
11446   if (!CtxI)
11447     return false;
11448   const BasicBlock *ContextBB = CtxI->getParent();
11449   // Make sure AR varies in the context block.
11450   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
11451     const Loop *L = AR->getLoop();
11452     // Make sure that context belongs to the loop and executes on 1st iteration
11453     // (if it ever executes at all).
11454     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11455       return false;
11456     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
11457       return false;
11458     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
11459   }
11460 
11461   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
11462     const Loop *L = AR->getLoop();
11463     // Make sure that context belongs to the loop and executes on 1st iteration
11464     // (if it ever executes at all).
11465     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
11466       return false;
11467     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
11468       return false;
11469     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
11470   }
11471 
11472   return false;
11473 }
11474 
11475 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
11476     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
11477     const SCEV *FoundLHS, const SCEV *FoundRHS) {
11478   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
11479     return false;
11480 
11481   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
11482   if (!AddRecLHS)
11483     return false;
11484 
11485   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
11486   if (!AddRecFoundLHS)
11487     return false;
11488 
11489   // We'd like to let SCEV reason about control dependencies, so we constrain
11490   // both the inequalities to be about add recurrences on the same loop.  This
11491   // way we can use isLoopEntryGuardedByCond later.
11492 
11493   const Loop *L = AddRecFoundLHS->getLoop();
11494   if (L != AddRecLHS->getLoop())
11495     return false;
11496 
11497   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
11498   //
11499   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
11500   //                                                                  ... (2)
11501   //
11502   // Informal proof for (2), assuming (1) [*]:
11503   //
11504   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
11505   //
11506   // Then
11507   //
11508   //       FoundLHS s< FoundRHS s< INT_MIN - C
11509   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
11510   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
11511   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
11512   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
11513   // <=>  FoundLHS + C s< FoundRHS + C
11514   //
11515   // [*]: (1) can be proved by ruling out overflow.
11516   //
11517   // [**]: This can be proved by analyzing all the four possibilities:
11518   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
11519   //    (A s>= 0, B s>= 0).
11520   //
11521   // Note:
11522   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
11523   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
11524   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
11525   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
11526   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
11527   // C)".
11528 
11529   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
11530   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
11531   if (!LDiff || !RDiff || *LDiff != *RDiff)
11532     return false;
11533 
11534   if (LDiff->isMinValue())
11535     return true;
11536 
11537   APInt FoundRHSLimit;
11538 
11539   if (Pred == CmpInst::ICMP_ULT) {
11540     FoundRHSLimit = -(*RDiff);
11541   } else {
11542     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
11543     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
11544   }
11545 
11546   // Try to prove (1) or (2), as needed.
11547   return isAvailableAtLoopEntry(FoundRHS, L) &&
11548          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11549                                   getConstant(FoundRHSLimit));
11550 }
11551 
11552 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11553                                         const SCEV *LHS, const SCEV *RHS,
11554                                         const SCEV *FoundLHS,
11555                                         const SCEV *FoundRHS, unsigned Depth) {
11556   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11557 
11558   auto ClearOnExit = make_scope_exit([&]() {
11559     if (LPhi) {
11560       bool Erased = PendingMerges.erase(LPhi);
11561       assert(Erased && "Failed to erase LPhi!");
11562       (void)Erased;
11563     }
11564     if (RPhi) {
11565       bool Erased = PendingMerges.erase(RPhi);
11566       assert(Erased && "Failed to erase RPhi!");
11567       (void)Erased;
11568     }
11569   });
11570 
11571   // Find respective Phis and check that they are not being pending.
11572   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11573     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11574       if (!PendingMerges.insert(Phi).second)
11575         return false;
11576       LPhi = Phi;
11577     }
11578   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11579     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11580       // If we detect a loop of Phi nodes being processed by this method, for
11581       // example:
11582       //
11583       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11584       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11585       //
11586       // we don't want to deal with a case that complex, so return conservative
11587       // answer false.
11588       if (!PendingMerges.insert(Phi).second)
11589         return false;
11590       RPhi = Phi;
11591     }
11592 
11593   // If none of LHS, RHS is a Phi, nothing to do here.
11594   if (!LPhi && !RPhi)
11595     return false;
11596 
11597   // If there is a SCEVUnknown Phi we are interested in, make it left.
11598   if (!LPhi) {
11599     std::swap(LHS, RHS);
11600     std::swap(FoundLHS, FoundRHS);
11601     std::swap(LPhi, RPhi);
11602     Pred = ICmpInst::getSwappedPredicate(Pred);
11603   }
11604 
11605   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11606   const BasicBlock *LBB = LPhi->getParent();
11607   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11608 
11609   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11610     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11611            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11612            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11613   };
11614 
11615   if (RPhi && RPhi->getParent() == LBB) {
11616     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11617     // If we compare two Phis from the same block, and for each entry block
11618     // the predicate is true for incoming values from this block, then the
11619     // predicate is also true for the Phis.
11620     for (const BasicBlock *IncBB : predecessors(LBB)) {
11621       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11622       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11623       if (!ProvedEasily(L, R))
11624         return false;
11625     }
11626   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11627     // Case two: RHS is also a Phi from the same basic block, and it is an
11628     // AddRec. It means that there is a loop which has both AddRec and Unknown
11629     // PHIs, for it we can compare incoming values of AddRec from above the loop
11630     // and latch with their respective incoming values of LPhi.
11631     // TODO: Generalize to handle loops with many inputs in a header.
11632     if (LPhi->getNumIncomingValues() != 2) return false;
11633 
11634     auto *RLoop = RAR->getLoop();
11635     auto *Predecessor = RLoop->getLoopPredecessor();
11636     assert(Predecessor && "Loop with AddRec with no predecessor?");
11637     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11638     if (!ProvedEasily(L1, RAR->getStart()))
11639       return false;
11640     auto *Latch = RLoop->getLoopLatch();
11641     assert(Latch && "Loop with AddRec with no latch?");
11642     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11643     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11644       return false;
11645   } else {
11646     // In all other cases go over inputs of LHS and compare each of them to RHS,
11647     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11648     // At this point RHS is either a non-Phi, or it is a Phi from some block
11649     // different from LBB.
11650     for (const BasicBlock *IncBB : predecessors(LBB)) {
11651       // Check that RHS is available in this block.
11652       if (!dominates(RHS, IncBB))
11653         return false;
11654       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11655       // Make sure L does not refer to a value from a potentially previous
11656       // iteration of a loop.
11657       if (!properlyDominates(L, IncBB))
11658         return false;
11659       if (!ProvedEasily(L, RHS))
11660         return false;
11661     }
11662   }
11663   return true;
11664 }
11665 
11666 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred,
11667                                                     const SCEV *LHS,
11668                                                     const SCEV *RHS,
11669                                                     const SCEV *FoundLHS,
11670                                                     const SCEV *FoundRHS) {
11671   // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue).  First, make
11672   // sure that we are dealing with same LHS.
11673   if (RHS == FoundRHS) {
11674     std::swap(LHS, RHS);
11675     std::swap(FoundLHS, FoundRHS);
11676     Pred = ICmpInst::getSwappedPredicate(Pred);
11677   }
11678   if (LHS != FoundLHS)
11679     return false;
11680 
11681   auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS);
11682   if (!SUFoundRHS)
11683     return false;
11684 
11685   Value *Shiftee, *ShiftValue;
11686 
11687   using namespace PatternMatch;
11688   if (match(SUFoundRHS->getValue(),
11689             m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) {
11690     auto *ShifteeS = getSCEV(Shiftee);
11691     // Prove one of the following:
11692     // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS
11693     // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS
11694     // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11695     //   ---> LHS <s RHS
11696     // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0
11697     //   ---> LHS <=s RHS
11698     if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE)
11699       return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS);
11700     if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
11701       if (isKnownNonNegative(ShifteeS))
11702         return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS);
11703   }
11704 
11705   return false;
11706 }
11707 
11708 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11709                                             const SCEV *LHS, const SCEV *RHS,
11710                                             const SCEV *FoundLHS,
11711                                             const SCEV *FoundRHS,
11712                                             const Instruction *CtxI) {
11713   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11714     return true;
11715 
11716   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11717     return true;
11718 
11719   if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS))
11720     return true;
11721 
11722   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11723                                           CtxI))
11724     return true;
11725 
11726   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11727                                      FoundLHS, FoundRHS);
11728 }
11729 
11730 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11731 template <typename MinMaxExprType>
11732 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11733                                  const SCEV *Candidate) {
11734   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11735   if (!MinMaxExpr)
11736     return false;
11737 
11738   return is_contained(MinMaxExpr->operands(), Candidate);
11739 }
11740 
11741 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11742                                            ICmpInst::Predicate Pred,
11743                                            const SCEV *LHS, const SCEV *RHS) {
11744   // If both sides are affine addrecs for the same loop, with equal
11745   // steps, and we know the recurrences don't wrap, then we only
11746   // need to check the predicate on the starting values.
11747 
11748   if (!ICmpInst::isRelational(Pred))
11749     return false;
11750 
11751   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11752   if (!LAR)
11753     return false;
11754   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11755   if (!RAR)
11756     return false;
11757   if (LAR->getLoop() != RAR->getLoop())
11758     return false;
11759   if (!LAR->isAffine() || !RAR->isAffine())
11760     return false;
11761 
11762   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11763     return false;
11764 
11765   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11766                          SCEV::FlagNSW : SCEV::FlagNUW;
11767   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11768     return false;
11769 
11770   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11771 }
11772 
11773 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11774 /// expression?
11775 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11776                                         ICmpInst::Predicate Pred,
11777                                         const SCEV *LHS, const SCEV *RHS) {
11778   switch (Pred) {
11779   default:
11780     return false;
11781 
11782   case ICmpInst::ICMP_SGE:
11783     std::swap(LHS, RHS);
11784     LLVM_FALLTHROUGH;
11785   case ICmpInst::ICMP_SLE:
11786     return
11787         // min(A, ...) <= A
11788         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11789         // A <= max(A, ...)
11790         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11791 
11792   case ICmpInst::ICMP_UGE:
11793     std::swap(LHS, RHS);
11794     LLVM_FALLTHROUGH;
11795   case ICmpInst::ICMP_ULE:
11796     return
11797         // min(A, ...) <= A
11798         // FIXME: what about umin_seq?
11799         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11800         // A <= max(A, ...)
11801         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11802   }
11803 
11804   llvm_unreachable("covered switch fell through?!");
11805 }
11806 
11807 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11808                                              const SCEV *LHS, const SCEV *RHS,
11809                                              const SCEV *FoundLHS,
11810                                              const SCEV *FoundRHS,
11811                                              unsigned Depth) {
11812   assert(getTypeSizeInBits(LHS->getType()) ==
11813              getTypeSizeInBits(RHS->getType()) &&
11814          "LHS and RHS have different sizes?");
11815   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11816              getTypeSizeInBits(FoundRHS->getType()) &&
11817          "FoundLHS and FoundRHS have different sizes?");
11818   // We want to avoid hurting the compile time with analysis of too big trees.
11819   if (Depth > MaxSCEVOperationsImplicationDepth)
11820     return false;
11821 
11822   // We only want to work with GT comparison so far.
11823   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11824     Pred = CmpInst::getSwappedPredicate(Pred);
11825     std::swap(LHS, RHS);
11826     std::swap(FoundLHS, FoundRHS);
11827   }
11828 
11829   // For unsigned, try to reduce it to corresponding signed comparison.
11830   if (Pred == ICmpInst::ICMP_UGT)
11831     // We can replace unsigned predicate with its signed counterpart if all
11832     // involved values are non-negative.
11833     // TODO: We could have better support for unsigned.
11834     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11835       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11836       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11837       // use this fact to prove that LHS and RHS are non-negative.
11838       const SCEV *MinusOne = getMinusOne(LHS->getType());
11839       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11840                                 FoundRHS) &&
11841           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11842                                 FoundRHS))
11843         Pred = ICmpInst::ICMP_SGT;
11844     }
11845 
11846   if (Pred != ICmpInst::ICMP_SGT)
11847     return false;
11848 
11849   auto GetOpFromSExt = [&](const SCEV *S) {
11850     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11851       return Ext->getOperand();
11852     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11853     // the constant in some cases.
11854     return S;
11855   };
11856 
11857   // Acquire values from extensions.
11858   auto *OrigLHS = LHS;
11859   auto *OrigFoundLHS = FoundLHS;
11860   LHS = GetOpFromSExt(LHS);
11861   FoundLHS = GetOpFromSExt(FoundLHS);
11862 
11863   // Is the SGT predicate can be proved trivially or using the found context.
11864   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11865     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11866            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11867                                   FoundRHS, Depth + 1);
11868   };
11869 
11870   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11871     // We want to avoid creation of any new non-constant SCEV. Since we are
11872     // going to compare the operands to RHS, we should be certain that we don't
11873     // need any size extensions for this. So let's decline all cases when the
11874     // sizes of types of LHS and RHS do not match.
11875     // TODO: Maybe try to get RHS from sext to catch more cases?
11876     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11877       return false;
11878 
11879     // Should not overflow.
11880     if (!LHSAddExpr->hasNoSignedWrap())
11881       return false;
11882 
11883     auto *LL = LHSAddExpr->getOperand(0);
11884     auto *LR = LHSAddExpr->getOperand(1);
11885     auto *MinusOne = getMinusOne(RHS->getType());
11886 
11887     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11888     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11889       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11890     };
11891     // Try to prove the following rule:
11892     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11893     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11894     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11895       return true;
11896   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11897     Value *LL, *LR;
11898     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11899 
11900     using namespace llvm::PatternMatch;
11901 
11902     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11903       // Rules for division.
11904       // We are going to perform some comparisons with Denominator and its
11905       // derivative expressions. In general case, creating a SCEV for it may
11906       // lead to a complex analysis of the entire graph, and in particular it
11907       // can request trip count recalculation for the same loop. This would
11908       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11909       // this, we only want to create SCEVs that are constants in this section.
11910       // So we bail if Denominator is not a constant.
11911       if (!isa<ConstantInt>(LR))
11912         return false;
11913 
11914       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11915 
11916       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11917       // then a SCEV for the numerator already exists and matches with FoundLHS.
11918       auto *Numerator = getExistingSCEV(LL);
11919       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11920         return false;
11921 
11922       // Make sure that the numerator matches with FoundLHS and the denominator
11923       // is positive.
11924       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11925         return false;
11926 
11927       auto *DTy = Denominator->getType();
11928       auto *FRHSTy = FoundRHS->getType();
11929       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11930         // One of types is a pointer and another one is not. We cannot extend
11931         // them properly to a wider type, so let us just reject this case.
11932         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11933         // to avoid this check.
11934         return false;
11935 
11936       // Given that:
11937       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11938       auto *WTy = getWiderType(DTy, FRHSTy);
11939       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11940       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11941 
11942       // Try to prove the following rule:
11943       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11944       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11945       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11946       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11947       if (isKnownNonPositive(RHS) &&
11948           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11949         return true;
11950 
11951       // Try to prove the following rule:
11952       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11953       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11954       // If we divide it by Denominator > 2, then:
11955       // 1. If FoundLHS is negative, then the result is 0.
11956       // 2. If FoundLHS is non-negative, then the result is non-negative.
11957       // Anyways, the result is non-negative.
11958       auto *MinusOne = getMinusOne(WTy);
11959       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11960       if (isKnownNegative(RHS) &&
11961           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11962         return true;
11963     }
11964   }
11965 
11966   // If our expression contained SCEVUnknown Phis, and we split it down and now
11967   // need to prove something for them, try to prove the predicate for every
11968   // possible incoming values of those Phis.
11969   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11970     return true;
11971 
11972   return false;
11973 }
11974 
11975 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11976                                         const SCEV *LHS, const SCEV *RHS) {
11977   // zext x u<= sext x, sext x s<= zext x
11978   switch (Pred) {
11979   case ICmpInst::ICMP_SGE:
11980     std::swap(LHS, RHS);
11981     LLVM_FALLTHROUGH;
11982   case ICmpInst::ICMP_SLE: {
11983     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11984     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11985     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11986     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11987       return true;
11988     break;
11989   }
11990   case ICmpInst::ICMP_UGE:
11991     std::swap(LHS, RHS);
11992     LLVM_FALLTHROUGH;
11993   case ICmpInst::ICMP_ULE: {
11994     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11995     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11996     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11997     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11998       return true;
11999     break;
12000   }
12001   default:
12002     break;
12003   };
12004   return false;
12005 }
12006 
12007 bool
12008 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
12009                                            const SCEV *LHS, const SCEV *RHS) {
12010   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
12011          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
12012          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
12013          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
12014          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
12015 }
12016 
12017 bool
12018 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
12019                                              const SCEV *LHS, const SCEV *RHS,
12020                                              const SCEV *FoundLHS,
12021                                              const SCEV *FoundRHS) {
12022   switch (Pred) {
12023   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
12024   case ICmpInst::ICMP_EQ:
12025   case ICmpInst::ICMP_NE:
12026     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
12027       return true;
12028     break;
12029   case ICmpInst::ICMP_SLT:
12030   case ICmpInst::ICMP_SLE:
12031     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
12032         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
12033       return true;
12034     break;
12035   case ICmpInst::ICMP_SGT:
12036   case ICmpInst::ICMP_SGE:
12037     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
12038         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
12039       return true;
12040     break;
12041   case ICmpInst::ICMP_ULT:
12042   case ICmpInst::ICMP_ULE:
12043     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
12044         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
12045       return true;
12046     break;
12047   case ICmpInst::ICMP_UGT:
12048   case ICmpInst::ICMP_UGE:
12049     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
12050         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
12051       return true;
12052     break;
12053   }
12054 
12055   // Maybe it can be proved via operations?
12056   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
12057     return true;
12058 
12059   return false;
12060 }
12061 
12062 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
12063                                                      const SCEV *LHS,
12064                                                      const SCEV *RHS,
12065                                                      const SCEV *FoundLHS,
12066                                                      const SCEV *FoundRHS) {
12067   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
12068     // The restriction on `FoundRHS` be lifted easily -- it exists only to
12069     // reduce the compile time impact of this optimization.
12070     return false;
12071 
12072   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
12073   if (!Addend)
12074     return false;
12075 
12076   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
12077 
12078   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
12079   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
12080   ConstantRange FoundLHSRange =
12081       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
12082 
12083   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
12084   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
12085 
12086   // We can also compute the range of values for `LHS` that satisfy the
12087   // consequent, "`LHS` `Pred` `RHS`":
12088   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
12089   // The antecedent implies the consequent if every value of `LHS` that
12090   // satisfies the antecedent also satisfies the consequent.
12091   return LHSRange.icmp(Pred, ConstRHS);
12092 }
12093 
12094 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
12095                                         bool IsSigned) {
12096   assert(isKnownPositive(Stride) && "Positive stride expected!");
12097 
12098   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12099   const SCEV *One = getOne(Stride->getType());
12100 
12101   if (IsSigned) {
12102     APInt MaxRHS = getSignedRangeMax(RHS);
12103     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
12104     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12105 
12106     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
12107     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
12108   }
12109 
12110   APInt MaxRHS = getUnsignedRangeMax(RHS);
12111   APInt MaxValue = APInt::getMaxValue(BitWidth);
12112   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12113 
12114   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
12115   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
12116 }
12117 
12118 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
12119                                         bool IsSigned) {
12120 
12121   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
12122   const SCEV *One = getOne(Stride->getType());
12123 
12124   if (IsSigned) {
12125     APInt MinRHS = getSignedRangeMin(RHS);
12126     APInt MinValue = APInt::getSignedMinValue(BitWidth);
12127     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
12128 
12129     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
12130     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
12131   }
12132 
12133   APInt MinRHS = getUnsignedRangeMin(RHS);
12134   APInt MinValue = APInt::getMinValue(BitWidth);
12135   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
12136 
12137   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
12138   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
12139 }
12140 
12141 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
12142   // umin(N, 1) + floor((N - umin(N, 1)) / D)
12143   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
12144   // expression fixes the case of N=0.
12145   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
12146   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
12147   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
12148 }
12149 
12150 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
12151                                                     const SCEV *Stride,
12152                                                     const SCEV *End,
12153                                                     unsigned BitWidth,
12154                                                     bool IsSigned) {
12155   // The logic in this function assumes we can represent a positive stride.
12156   // If we can't, the backedge-taken count must be zero.
12157   if (IsSigned && BitWidth == 1)
12158     return getZero(Stride->getType());
12159 
12160   // This code has only been closely audited for negative strides in the
12161   // unsigned comparison case, it may be correct for signed comparison, but
12162   // that needs to be established.
12163   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
12164          "Stride is expected strictly positive for signed case!");
12165 
12166   // Calculate the maximum backedge count based on the range of values
12167   // permitted by Start, End, and Stride.
12168   APInt MinStart =
12169       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
12170 
12171   APInt MinStride =
12172       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
12173 
12174   // We assume either the stride is positive, or the backedge-taken count
12175   // is zero. So force StrideForMaxBECount to be at least one.
12176   APInt One(BitWidth, 1);
12177   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
12178                                        : APIntOps::umax(One, MinStride);
12179 
12180   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
12181                             : APInt::getMaxValue(BitWidth);
12182   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
12183 
12184   // Although End can be a MAX expression we estimate MaxEnd considering only
12185   // the case End = RHS of the loop termination condition. This is safe because
12186   // in the other case (End - Start) is zero, leading to a zero maximum backedge
12187   // taken count.
12188   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
12189                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
12190 
12191   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
12192   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
12193                     : APIntOps::umax(MaxEnd, MinStart);
12194 
12195   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
12196                          getConstant(StrideForMaxBECount) /* Step */);
12197 }
12198 
12199 ScalarEvolution::ExitLimit
12200 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
12201                                   const Loop *L, bool IsSigned,
12202                                   bool ControlsExit, bool AllowPredicates) {
12203   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12204 
12205   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12206   bool PredicatedIV = false;
12207 
12208   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
12209     // Can we prove this loop *must* be UB if overflow of IV occurs?
12210     // Reasoning goes as follows:
12211     // * Suppose the IV did self wrap.
12212     // * If Stride evenly divides the iteration space, then once wrap
12213     //   occurs, the loop must revisit the same values.
12214     // * We know that RHS is invariant, and that none of those values
12215     //   caused this exit to be taken previously.  Thus, this exit is
12216     //   dynamically dead.
12217     // * If this is the sole exit, then a dead exit implies the loop
12218     //   must be infinite if there are no abnormal exits.
12219     // * If the loop were infinite, then it must either not be mustprogress
12220     //   or have side effects. Otherwise, it must be UB.
12221     // * It can't (by assumption), be UB so we have contradicted our
12222     //   premise and can conclude the IV did not in fact self-wrap.
12223     if (!isLoopInvariant(RHS, L))
12224       return false;
12225 
12226     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
12227     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
12228       return false;
12229 
12230     if (!ControlsExit || !loopHasNoAbnormalExits(L))
12231       return false;
12232 
12233     return loopIsFiniteByAssumption(L);
12234   };
12235 
12236   if (!IV) {
12237     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
12238       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
12239       if (AR && AR->getLoop() == L && AR->isAffine()) {
12240         auto canProveNUW = [&]() {
12241           if (!isLoopInvariant(RHS, L))
12242             return false;
12243 
12244           if (!isKnownNonZero(AR->getStepRecurrence(*this)))
12245             // We need the sequence defined by AR to strictly increase in the
12246             // unsigned integer domain for the logic below to hold.
12247             return false;
12248 
12249           const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType());
12250           const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType());
12251           // If RHS <=u Limit, then there must exist a value V in the sequence
12252           // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and
12253           // V <=u UINT_MAX.  Thus, we must exit the loop before unsigned
12254           // overflow occurs.  This limit also implies that a signed comparison
12255           // (in the wide bitwidth) is equivalent to an unsigned comparison as
12256           // the high bits on both sides must be zero.
12257           APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this));
12258           APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1);
12259           Limit = Limit.zext(OuterBitWidth);
12260           return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit);
12261         };
12262         auto Flags = AR->getNoWrapFlags();
12263         if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW())
12264           Flags = setFlags(Flags, SCEV::FlagNUW);
12265 
12266         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
12267         if (AR->hasNoUnsignedWrap()) {
12268           // Emulate what getZeroExtendExpr would have done during construction
12269           // if we'd been able to infer the fact just above at that time.
12270           const SCEV *Step = AR->getStepRecurrence(*this);
12271           Type *Ty = ZExt->getType();
12272           auto *S = getAddRecExpr(
12273             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
12274             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
12275           IV = dyn_cast<SCEVAddRecExpr>(S);
12276         }
12277       }
12278     }
12279   }
12280 
12281 
12282   if (!IV && AllowPredicates) {
12283     // Try to make this an AddRec using runtime tests, in the first X
12284     // iterations of this loop, where X is the SCEV expression found by the
12285     // algorithm below.
12286     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12287     PredicatedIV = true;
12288   }
12289 
12290   // Avoid weird loops
12291   if (!IV || IV->getLoop() != L || !IV->isAffine())
12292     return getCouldNotCompute();
12293 
12294   // A precondition of this method is that the condition being analyzed
12295   // reaches an exiting branch which dominates the latch.  Given that, we can
12296   // assume that an increment which violates the nowrap specification and
12297   // produces poison must cause undefined behavior when the resulting poison
12298   // value is branched upon and thus we can conclude that the backedge is
12299   // taken no more often than would be required to produce that poison value.
12300   // Note that a well defined loop can exit on the iteration which violates
12301   // the nowrap specification if there is another exit (either explicit or
12302   // implicit/exceptional) which causes the loop to execute before the
12303   // exiting instruction we're analyzing would trigger UB.
12304   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12305   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12306   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
12307 
12308   const SCEV *Stride = IV->getStepRecurrence(*this);
12309 
12310   bool PositiveStride = isKnownPositive(Stride);
12311 
12312   // Avoid negative or zero stride values.
12313   if (!PositiveStride) {
12314     // We can compute the correct backedge taken count for loops with unknown
12315     // strides if we can prove that the loop is not an infinite loop with side
12316     // effects. Here's the loop structure we are trying to handle -
12317     //
12318     // i = start
12319     // do {
12320     //   A[i] = i;
12321     //   i += s;
12322     // } while (i < end);
12323     //
12324     // The backedge taken count for such loops is evaluated as -
12325     // (max(end, start + stride) - start - 1) /u stride
12326     //
12327     // The additional preconditions that we need to check to prove correctness
12328     // of the above formula is as follows -
12329     //
12330     // a) IV is either nuw or nsw depending upon signedness (indicated by the
12331     //    NoWrap flag).
12332     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
12333     //    no side effects within the loop)
12334     // c) loop has a single static exit (with no abnormal exits)
12335     //
12336     // Precondition a) implies that if the stride is negative, this is a single
12337     // trip loop. The backedge taken count formula reduces to zero in this case.
12338     //
12339     // Precondition b) and c) combine to imply that if rhs is invariant in L,
12340     // then a zero stride means the backedge can't be taken without executing
12341     // undefined behavior.
12342     //
12343     // The positive stride case is the same as isKnownPositive(Stride) returning
12344     // true (original behavior of the function).
12345     //
12346     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
12347         !loopHasNoAbnormalExits(L))
12348       return getCouldNotCompute();
12349 
12350     // This bailout is protecting the logic in computeMaxBECountForLT which
12351     // has not yet been sufficiently auditted or tested with negative strides.
12352     // We used to filter out all known-non-positive cases here, we're in the
12353     // process of being less restrictive bit by bit.
12354     if (IsSigned && isKnownNonPositive(Stride))
12355       return getCouldNotCompute();
12356 
12357     if (!isKnownNonZero(Stride)) {
12358       // If we have a step of zero, and RHS isn't invariant in L, we don't know
12359       // if it might eventually be greater than start and if so, on which
12360       // iteration.  We can't even produce a useful upper bound.
12361       if (!isLoopInvariant(RHS, L))
12362         return getCouldNotCompute();
12363 
12364       // We allow a potentially zero stride, but we need to divide by stride
12365       // below.  Since the loop can't be infinite and this check must control
12366       // the sole exit, we can infer the exit must be taken on the first
12367       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
12368       // we know the numerator in the divides below must be zero, so we can
12369       // pick an arbitrary non-zero value for the denominator (e.g. stride)
12370       // and produce the right result.
12371       // FIXME: Handle the case where Stride is poison?
12372       auto wouldZeroStrideBeUB = [&]() {
12373         // Proof by contradiction.  Suppose the stride were zero.  If we can
12374         // prove that the backedge *is* taken on the first iteration, then since
12375         // we know this condition controls the sole exit, we must have an
12376         // infinite loop.  We can't have a (well defined) infinite loop per
12377         // check just above.
12378         // Note: The (Start - Stride) term is used to get the start' term from
12379         // (start' + stride,+,stride). Remember that we only care about the
12380         // result of this expression when stride == 0 at runtime.
12381         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
12382         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
12383       };
12384       if (!wouldZeroStrideBeUB()) {
12385         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
12386       }
12387     }
12388   } else if (!Stride->isOne() && !NoWrap) {
12389     auto isUBOnWrap = [&]() {
12390       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
12391       // follows trivially from the fact that every (un)signed-wrapped, but
12392       // not self-wrapped value must be LT than the last value before
12393       // (un)signed wrap.  Since we know that last value didn't exit, nor
12394       // will any smaller one.
12395       return canAssumeNoSelfWrap(IV);
12396     };
12397 
12398     // Avoid proven overflow cases: this will ensure that the backedge taken
12399     // count will not generate any unsigned overflow. Relaxed no-overflow
12400     // conditions exploit NoWrapFlags, allowing to optimize in presence of
12401     // undefined behaviors like the case of C language.
12402     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
12403       return getCouldNotCompute();
12404   }
12405 
12406   // On all paths just preceeding, we established the following invariant:
12407   //   IV can be assumed not to overflow up to and including the exiting
12408   //   iteration.  We proved this in one of two ways:
12409   //   1) We can show overflow doesn't occur before the exiting iteration
12410   //      1a) canIVOverflowOnLT, and b) step of one
12411   //   2) We can show that if overflow occurs, the loop must execute UB
12412   //      before any possible exit.
12413   // Note that we have not yet proved RHS invariant (in general).
12414 
12415   const SCEV *Start = IV->getStart();
12416 
12417   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
12418   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
12419   // Use integer-typed versions for actual computation; we can't subtract
12420   // pointers in general.
12421   const SCEV *OrigStart = Start;
12422   const SCEV *OrigRHS = RHS;
12423   if (Start->getType()->isPointerTy()) {
12424     Start = getLosslessPtrToIntExpr(Start);
12425     if (isa<SCEVCouldNotCompute>(Start))
12426       return Start;
12427   }
12428   if (RHS->getType()->isPointerTy()) {
12429     RHS = getLosslessPtrToIntExpr(RHS);
12430     if (isa<SCEVCouldNotCompute>(RHS))
12431       return RHS;
12432   }
12433 
12434   // When the RHS is not invariant, we do not know the end bound of the loop and
12435   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
12436   // calculate the MaxBECount, given the start, stride and max value for the end
12437   // bound of the loop (RHS), and the fact that IV does not overflow (which is
12438   // checked above).
12439   if (!isLoopInvariant(RHS, L)) {
12440     const SCEV *MaxBECount = computeMaxBECountForLT(
12441         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12442     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
12443                      false /*MaxOrZero*/, Predicates);
12444   }
12445 
12446   // We use the expression (max(End,Start)-Start)/Stride to describe the
12447   // backedge count, as if the backedge is taken at least once max(End,Start)
12448   // is End and so the result is as above, and if not max(End,Start) is Start
12449   // so we get a backedge count of zero.
12450   const SCEV *BECount = nullptr;
12451   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
12452   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
12453   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
12454   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
12455   // Can we prove (max(RHS,Start) > Start - Stride?
12456   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
12457       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
12458     // In this case, we can use a refined formula for computing backedge taken
12459     // count.  The general formula remains:
12460     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
12461     // We want to use the alternate formula:
12462     //   "((End - 1) - (Start - Stride)) /u Stride"
12463     // Let's do a quick case analysis to show these are equivalent under
12464     // our precondition that max(RHS,Start) > Start - Stride.
12465     // * For RHS <= Start, the backedge-taken count must be zero.
12466     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12467     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
12468     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
12469     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
12470     //     this to the stride of 1 case.
12471     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
12472     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
12473     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
12474     //   "((RHS - (Start - Stride) - 1) /u Stride".
12475     //   Our preconditions trivially imply no overflow in that form.
12476     const SCEV *MinusOne = getMinusOne(Stride->getType());
12477     const SCEV *Numerator =
12478         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
12479     BECount = getUDivExpr(Numerator, Stride);
12480   }
12481 
12482   const SCEV *BECountIfBackedgeTaken = nullptr;
12483   if (!BECount) {
12484     auto canProveRHSGreaterThanEqualStart = [&]() {
12485       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
12486       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
12487         return true;
12488 
12489       // (RHS > Start - 1) implies RHS >= Start.
12490       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
12491       //   "Start - 1" doesn't overflow.
12492       // * For signed comparison, if Start - 1 does overflow, it's equal
12493       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
12494       // * For unsigned comparison, if Start - 1 does overflow, it's equal
12495       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
12496       //
12497       // FIXME: Should isLoopEntryGuardedByCond do this for us?
12498       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12499       auto *StartMinusOne = getAddExpr(OrigStart,
12500                                        getMinusOne(OrigStart->getType()));
12501       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
12502     };
12503 
12504     // If we know that RHS >= Start in the context of loop, then we know that
12505     // max(RHS, Start) = RHS at this point.
12506     const SCEV *End;
12507     if (canProveRHSGreaterThanEqualStart()) {
12508       End = RHS;
12509     } else {
12510       // If RHS < Start, the backedge will be taken zero times.  So in
12511       // general, we can write the backedge-taken count as:
12512       //
12513       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
12514       //
12515       // We convert it to the following to make it more convenient for SCEV:
12516       //
12517       //     ceil(max(RHS, Start) - Start) / Stride
12518       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
12519 
12520       // See what would happen if we assume the backedge is taken. This is
12521       // used to compute MaxBECount.
12522       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
12523     }
12524 
12525     // At this point, we know:
12526     //
12527     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
12528     // 2. The index variable doesn't overflow.
12529     //
12530     // Therefore, we know N exists such that
12531     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
12532     // doesn't overflow.
12533     //
12534     // Using this information, try to prove whether the addition in
12535     // "(Start - End) + (Stride - 1)" has unsigned overflow.
12536     const SCEV *One = getOne(Stride->getType());
12537     bool MayAddOverflow = [&] {
12538       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
12539         if (StrideC->getAPInt().isPowerOf2()) {
12540           // Suppose Stride is a power of two, and Start/End are unsigned
12541           // integers.  Let UMAX be the largest representable unsigned
12542           // integer.
12543           //
12544           // By the preconditions of this function, we know
12545           // "(Start + Stride * N) >= End", and this doesn't overflow.
12546           // As a formula:
12547           //
12548           //   End <= (Start + Stride * N) <= UMAX
12549           //
12550           // Subtracting Start from all the terms:
12551           //
12552           //   End - Start <= Stride * N <= UMAX - Start
12553           //
12554           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
12555           //
12556           //   End - Start <= Stride * N <= UMAX
12557           //
12558           // Stride * N is a multiple of Stride. Therefore,
12559           //
12560           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
12561           //
12562           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
12563           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
12564           //
12565           //   End - Start <= Stride * N <= UMAX - Stride - 1
12566           //
12567           // Dropping the middle term:
12568           //
12569           //   End - Start <= UMAX - Stride - 1
12570           //
12571           // Adding Stride - 1 to both sides:
12572           //
12573           //   (End - Start) + (Stride - 1) <= UMAX
12574           //
12575           // In other words, the addition doesn't have unsigned overflow.
12576           //
12577           // A similar proof works if we treat Start/End as signed values.
12578           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
12579           // use signed max instead of unsigned max. Note that we're trying
12580           // to prove a lack of unsigned overflow in either case.
12581           return false;
12582         }
12583       }
12584       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
12585         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
12586         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
12587         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
12588         //
12589         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
12590         return false;
12591       }
12592       return true;
12593     }();
12594 
12595     const SCEV *Delta = getMinusSCEV(End, Start);
12596     if (!MayAddOverflow) {
12597       // floor((D + (S - 1)) / S)
12598       // We prefer this formulation if it's legal because it's fewer operations.
12599       BECount =
12600           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
12601     } else {
12602       BECount = getUDivCeilSCEV(Delta, Stride);
12603     }
12604   }
12605 
12606   const SCEV *MaxBECount;
12607   bool MaxOrZero = false;
12608   if (isa<SCEVConstant>(BECount)) {
12609     MaxBECount = BECount;
12610   } else if (BECountIfBackedgeTaken &&
12611              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
12612     // If we know exactly how many times the backedge will be taken if it's
12613     // taken at least once, then the backedge count will either be that or
12614     // zero.
12615     MaxBECount = BECountIfBackedgeTaken;
12616     MaxOrZero = true;
12617   } else {
12618     MaxBECount = computeMaxBECountForLT(
12619         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12620   }
12621 
12622   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12623       !isa<SCEVCouldNotCompute>(BECount))
12624     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12625 
12626   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12627 }
12628 
12629 ScalarEvolution::ExitLimit
12630 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12631                                      const Loop *L, bool IsSigned,
12632                                      bool ControlsExit, bool AllowPredicates) {
12633   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12634   // We handle only IV > Invariant
12635   if (!isLoopInvariant(RHS, L))
12636     return getCouldNotCompute();
12637 
12638   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12639   if (!IV && AllowPredicates)
12640     // Try to make this an AddRec using runtime tests, in the first X
12641     // iterations of this loop, where X is the SCEV expression found by the
12642     // algorithm below.
12643     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12644 
12645   // Avoid weird loops
12646   if (!IV || IV->getLoop() != L || !IV->isAffine())
12647     return getCouldNotCompute();
12648 
12649   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12650   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12651   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12652 
12653   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12654 
12655   // Avoid negative or zero stride values
12656   if (!isKnownPositive(Stride))
12657     return getCouldNotCompute();
12658 
12659   // Avoid proven overflow cases: this will ensure that the backedge taken count
12660   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12661   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12662   // behaviors like the case of C language.
12663   if (!Stride->isOne() && !NoWrap)
12664     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12665       return getCouldNotCompute();
12666 
12667   const SCEV *Start = IV->getStart();
12668   const SCEV *End = RHS;
12669   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12670     // If we know that Start >= RHS in the context of loop, then we know that
12671     // min(RHS, Start) = RHS at this point.
12672     if (isLoopEntryGuardedByCond(
12673             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12674       End = RHS;
12675     else
12676       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12677   }
12678 
12679   if (Start->getType()->isPointerTy()) {
12680     Start = getLosslessPtrToIntExpr(Start);
12681     if (isa<SCEVCouldNotCompute>(Start))
12682       return Start;
12683   }
12684   if (End->getType()->isPointerTy()) {
12685     End = getLosslessPtrToIntExpr(End);
12686     if (isa<SCEVCouldNotCompute>(End))
12687       return End;
12688   }
12689 
12690   // Compute ((Start - End) + (Stride - 1)) / Stride.
12691   // FIXME: This can overflow. Holding off on fixing this for now;
12692   // howManyGreaterThans will hopefully be gone soon.
12693   const SCEV *One = getOne(Stride->getType());
12694   const SCEV *BECount = getUDivExpr(
12695       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12696 
12697   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12698                             : getUnsignedRangeMax(Start);
12699 
12700   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12701                              : getUnsignedRangeMin(Stride);
12702 
12703   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12704   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12705                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12706 
12707   // Although End can be a MIN expression we estimate MinEnd considering only
12708   // the case End = RHS. This is safe because in the other case (Start - End)
12709   // is zero, leading to a zero maximum backedge taken count.
12710   APInt MinEnd =
12711     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12712              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12713 
12714   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12715                                ? BECount
12716                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12717                                                  getConstant(MinStride));
12718 
12719   if (isa<SCEVCouldNotCompute>(MaxBECount))
12720     MaxBECount = BECount;
12721 
12722   return ExitLimit(BECount, MaxBECount, false, Predicates);
12723 }
12724 
12725 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12726                                                     ScalarEvolution &SE) const {
12727   if (Range.isFullSet())  // Infinite loop.
12728     return SE.getCouldNotCompute();
12729 
12730   // If the start is a non-zero constant, shift the range to simplify things.
12731   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12732     if (!SC->getValue()->isZero()) {
12733       SmallVector<const SCEV *, 4> Operands(operands());
12734       Operands[0] = SE.getZero(SC->getType());
12735       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12736                                              getNoWrapFlags(FlagNW));
12737       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12738         return ShiftedAddRec->getNumIterationsInRange(
12739             Range.subtract(SC->getAPInt()), SE);
12740       // This is strange and shouldn't happen.
12741       return SE.getCouldNotCompute();
12742     }
12743 
12744   // The only time we can solve this is when we have all constant indices.
12745   // Otherwise, we cannot determine the overflow conditions.
12746   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12747     return SE.getCouldNotCompute();
12748 
12749   // Okay at this point we know that all elements of the chrec are constants and
12750   // that the start element is zero.
12751 
12752   // First check to see if the range contains zero.  If not, the first
12753   // iteration exits.
12754   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12755   if (!Range.contains(APInt(BitWidth, 0)))
12756     return SE.getZero(getType());
12757 
12758   if (isAffine()) {
12759     // If this is an affine expression then we have this situation:
12760     //   Solve {0,+,A} in Range  ===  Ax in Range
12761 
12762     // We know that zero is in the range.  If A is positive then we know that
12763     // the upper value of the range must be the first possible exit value.
12764     // If A is negative then the lower of the range is the last possible loop
12765     // value.  Also note that we already checked for a full range.
12766     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12767     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12768 
12769     // The exit value should be (End+A)/A.
12770     APInt ExitVal = (End + A).udiv(A);
12771     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12772 
12773     // Evaluate at the exit value.  If we really did fall out of the valid
12774     // range, then we computed our trip count, otherwise wrap around or other
12775     // things must have happened.
12776     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12777     if (Range.contains(Val->getValue()))
12778       return SE.getCouldNotCompute();  // Something strange happened
12779 
12780     // Ensure that the previous value is in the range.
12781     assert(Range.contains(
12782            EvaluateConstantChrecAtConstant(this,
12783            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12784            "Linear scev computation is off in a bad way!");
12785     return SE.getConstant(ExitValue);
12786   }
12787 
12788   if (isQuadratic()) {
12789     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12790       return SE.getConstant(S.getValue());
12791   }
12792 
12793   return SE.getCouldNotCompute();
12794 }
12795 
12796 const SCEVAddRecExpr *
12797 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12798   assert(getNumOperands() > 1 && "AddRec with zero step?");
12799   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12800   // but in this case we cannot guarantee that the value returned will be an
12801   // AddRec because SCEV does not have a fixed point where it stops
12802   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12803   // may happen if we reach arithmetic depth limit while simplifying. So we
12804   // construct the returned value explicitly.
12805   SmallVector<const SCEV *, 3> Ops;
12806   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12807   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12808   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12809     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12810   // We know that the last operand is not a constant zero (otherwise it would
12811   // have been popped out earlier). This guarantees us that if the result has
12812   // the same last operand, then it will also not be popped out, meaning that
12813   // the returned value will be an AddRec.
12814   const SCEV *Last = getOperand(getNumOperands() - 1);
12815   assert(!Last->isZero() && "Recurrency with zero step?");
12816   Ops.push_back(Last);
12817   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12818                                                SCEV::FlagAnyWrap));
12819 }
12820 
12821 // Return true when S contains at least an undef value.
12822 bool ScalarEvolution::containsUndefs(const SCEV *S) const {
12823   return SCEVExprContains(S, [](const SCEV *S) {
12824     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12825       return isa<UndefValue>(SU->getValue());
12826     return false;
12827   });
12828 }
12829 
12830 /// Return the size of an element read or written by Inst.
12831 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12832   Type *Ty;
12833   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12834     Ty = Store->getValueOperand()->getType();
12835   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12836     Ty = Load->getType();
12837   else
12838     return nullptr;
12839 
12840   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12841   return getSizeOfExpr(ETy, Ty);
12842 }
12843 
12844 //===----------------------------------------------------------------------===//
12845 //                   SCEVCallbackVH Class Implementation
12846 //===----------------------------------------------------------------------===//
12847 
12848 void ScalarEvolution::SCEVCallbackVH::deleted() {
12849   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12850   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12851     SE->ConstantEvolutionLoopExitValue.erase(PN);
12852   SE->eraseValueFromMap(getValPtr());
12853   // this now dangles!
12854 }
12855 
12856 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12857   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12858 
12859   // Forget all the expressions associated with users of the old value,
12860   // so that future queries will recompute the expressions using the new
12861   // value.
12862   Value *Old = getValPtr();
12863   SmallVector<User *, 16> Worklist(Old->users());
12864   SmallPtrSet<User *, 8> Visited;
12865   while (!Worklist.empty()) {
12866     User *U = Worklist.pop_back_val();
12867     // Deleting the Old value will cause this to dangle. Postpone
12868     // that until everything else is done.
12869     if (U == Old)
12870       continue;
12871     if (!Visited.insert(U).second)
12872       continue;
12873     if (PHINode *PN = dyn_cast<PHINode>(U))
12874       SE->ConstantEvolutionLoopExitValue.erase(PN);
12875     SE->eraseValueFromMap(U);
12876     llvm::append_range(Worklist, U->users());
12877   }
12878   // Delete the Old value.
12879   if (PHINode *PN = dyn_cast<PHINode>(Old))
12880     SE->ConstantEvolutionLoopExitValue.erase(PN);
12881   SE->eraseValueFromMap(Old);
12882   // this now dangles!
12883 }
12884 
12885 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12886   : CallbackVH(V), SE(se) {}
12887 
12888 //===----------------------------------------------------------------------===//
12889 //                   ScalarEvolution Class Implementation
12890 //===----------------------------------------------------------------------===//
12891 
12892 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12893                                  AssumptionCache &AC, DominatorTree &DT,
12894                                  LoopInfo &LI)
12895     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12896       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12897       LoopDispositions(64), BlockDispositions(64) {
12898   // To use guards for proving predicates, we need to scan every instruction in
12899   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12900   // time if the IR does not actually contain any calls to
12901   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12902   //
12903   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12904   // to _add_ guards to the module when there weren't any before, and wants
12905   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12906   // efficient in lieu of being smart in that rather obscure case.
12907 
12908   auto *GuardDecl = F.getParent()->getFunction(
12909       Intrinsic::getName(Intrinsic::experimental_guard));
12910   HasGuards = GuardDecl && !GuardDecl->use_empty();
12911 }
12912 
12913 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12914     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12915       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12916       ValueExprMap(std::move(Arg.ValueExprMap)),
12917       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12918       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12919       PendingMerges(std::move(Arg.PendingMerges)),
12920       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12921       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12922       PredicatedBackedgeTakenCounts(
12923           std::move(Arg.PredicatedBackedgeTakenCounts)),
12924       BECountUsers(std::move(Arg.BECountUsers)),
12925       ConstantEvolutionLoopExitValue(
12926           std::move(Arg.ConstantEvolutionLoopExitValue)),
12927       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12928       ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)),
12929       LoopDispositions(std::move(Arg.LoopDispositions)),
12930       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12931       BlockDispositions(std::move(Arg.BlockDispositions)),
12932       SCEVUsers(std::move(Arg.SCEVUsers)),
12933       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12934       SignedRanges(std::move(Arg.SignedRanges)),
12935       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12936       UniquePreds(std::move(Arg.UniquePreds)),
12937       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12938       LoopUsers(std::move(Arg.LoopUsers)),
12939       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12940       FirstUnknown(Arg.FirstUnknown) {
12941   Arg.FirstUnknown = nullptr;
12942 }
12943 
12944 ScalarEvolution::~ScalarEvolution() {
12945   // Iterate through all the SCEVUnknown instances and call their
12946   // destructors, so that they release their references to their values.
12947   for (SCEVUnknown *U = FirstUnknown; U;) {
12948     SCEVUnknown *Tmp = U;
12949     U = U->Next;
12950     Tmp->~SCEVUnknown();
12951   }
12952   FirstUnknown = nullptr;
12953 
12954   ExprValueMap.clear();
12955   ValueExprMap.clear();
12956   HasRecMap.clear();
12957   BackedgeTakenCounts.clear();
12958   PredicatedBackedgeTakenCounts.clear();
12959 
12960   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12961   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12962   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12963   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12964   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12965 }
12966 
12967 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12968   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12969 }
12970 
12971 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12972                           const Loop *L) {
12973   // Print all inner loops first
12974   for (Loop *I : *L)
12975     PrintLoopInfo(OS, SE, I);
12976 
12977   OS << "Loop ";
12978   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12979   OS << ": ";
12980 
12981   SmallVector<BasicBlock *, 8> ExitingBlocks;
12982   L->getExitingBlocks(ExitingBlocks);
12983   if (ExitingBlocks.size() != 1)
12984     OS << "<multiple exits> ";
12985 
12986   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12987     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12988   else
12989     OS << "Unpredictable backedge-taken count.\n";
12990 
12991   if (ExitingBlocks.size() > 1)
12992     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12993       OS << "  exit count for " << ExitingBlock->getName() << ": "
12994          << *SE->getExitCount(L, ExitingBlock) << "\n";
12995     }
12996 
12997   OS << "Loop ";
12998   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12999   OS << ": ";
13000 
13001   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
13002     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
13003     if (SE->isBackedgeTakenCountMaxOrZero(L))
13004       OS << ", actual taken count either this or zero.";
13005   } else {
13006     OS << "Unpredictable max backedge-taken count. ";
13007   }
13008 
13009   OS << "\n"
13010         "Loop ";
13011   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13012   OS << ": ";
13013 
13014   SmallVector<const SCEVPredicate *, 4> Preds;
13015   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds);
13016   if (!isa<SCEVCouldNotCompute>(PBT)) {
13017     OS << "Predicated backedge-taken count is " << *PBT << "\n";
13018     OS << " Predicates:\n";
13019     for (auto *P : Preds)
13020       P->print(OS, 4);
13021   } else {
13022     OS << "Unpredictable predicated backedge-taken count. ";
13023   }
13024   OS << "\n";
13025 
13026   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
13027     OS << "Loop ";
13028     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13029     OS << ": ";
13030     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
13031   }
13032 }
13033 
13034 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
13035   switch (LD) {
13036   case ScalarEvolution::LoopVariant:
13037     return "Variant";
13038   case ScalarEvolution::LoopInvariant:
13039     return "Invariant";
13040   case ScalarEvolution::LoopComputable:
13041     return "Computable";
13042   }
13043   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
13044 }
13045 
13046 void ScalarEvolution::print(raw_ostream &OS) const {
13047   // ScalarEvolution's implementation of the print method is to print
13048   // out SCEV values of all instructions that are interesting. Doing
13049   // this potentially causes it to create new SCEV objects though,
13050   // which technically conflicts with the const qualifier. This isn't
13051   // observable from outside the class though, so casting away the
13052   // const isn't dangerous.
13053   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13054 
13055   if (ClassifyExpressions) {
13056     OS << "Classifying expressions for: ";
13057     F.printAsOperand(OS, /*PrintType=*/false);
13058     OS << "\n";
13059     for (Instruction &I : instructions(F))
13060       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
13061         OS << I << '\n';
13062         OS << "  -->  ";
13063         const SCEV *SV = SE.getSCEV(&I);
13064         SV->print(OS);
13065         if (!isa<SCEVCouldNotCompute>(SV)) {
13066           OS << " U: ";
13067           SE.getUnsignedRange(SV).print(OS);
13068           OS << " S: ";
13069           SE.getSignedRange(SV).print(OS);
13070         }
13071 
13072         const Loop *L = LI.getLoopFor(I.getParent());
13073 
13074         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
13075         if (AtUse != SV) {
13076           OS << "  -->  ";
13077           AtUse->print(OS);
13078           if (!isa<SCEVCouldNotCompute>(AtUse)) {
13079             OS << " U: ";
13080             SE.getUnsignedRange(AtUse).print(OS);
13081             OS << " S: ";
13082             SE.getSignedRange(AtUse).print(OS);
13083           }
13084         }
13085 
13086         if (L) {
13087           OS << "\t\t" "Exits: ";
13088           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
13089           if (!SE.isLoopInvariant(ExitValue, L)) {
13090             OS << "<<Unknown>>";
13091           } else {
13092             OS << *ExitValue;
13093           }
13094 
13095           bool First = true;
13096           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
13097             if (First) {
13098               OS << "\t\t" "LoopDispositions: { ";
13099               First = false;
13100             } else {
13101               OS << ", ";
13102             }
13103 
13104             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13105             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
13106           }
13107 
13108           for (auto *InnerL : depth_first(L)) {
13109             if (InnerL == L)
13110               continue;
13111             if (First) {
13112               OS << "\t\t" "LoopDispositions: { ";
13113               First = false;
13114             } else {
13115               OS << ", ";
13116             }
13117 
13118             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
13119             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
13120           }
13121 
13122           OS << " }";
13123         }
13124 
13125         OS << "\n";
13126       }
13127   }
13128 
13129   OS << "Determining loop execution counts for: ";
13130   F.printAsOperand(OS, /*PrintType=*/false);
13131   OS << "\n";
13132   for (Loop *I : LI)
13133     PrintLoopInfo(OS, &SE, I);
13134 }
13135 
13136 ScalarEvolution::LoopDisposition
13137 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
13138   auto &Values = LoopDispositions[S];
13139   for (auto &V : Values) {
13140     if (V.getPointer() == L)
13141       return V.getInt();
13142   }
13143   Values.emplace_back(L, LoopVariant);
13144   LoopDisposition D = computeLoopDisposition(S, L);
13145   auto &Values2 = LoopDispositions[S];
13146   for (auto &V : llvm::reverse(Values2)) {
13147     if (V.getPointer() == L) {
13148       V.setInt(D);
13149       break;
13150     }
13151   }
13152   return D;
13153 }
13154 
13155 ScalarEvolution::LoopDisposition
13156 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
13157   switch (S->getSCEVType()) {
13158   case scConstant:
13159     return LoopInvariant;
13160   case scPtrToInt:
13161   case scTruncate:
13162   case scZeroExtend:
13163   case scSignExtend:
13164     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
13165   case scAddRecExpr: {
13166     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13167 
13168     // If L is the addrec's loop, it's computable.
13169     if (AR->getLoop() == L)
13170       return LoopComputable;
13171 
13172     // Add recurrences are never invariant in the function-body (null loop).
13173     if (!L)
13174       return LoopVariant;
13175 
13176     // Everything that is not defined at loop entry is variant.
13177     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
13178       return LoopVariant;
13179     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
13180            " dominate the contained loop's header?");
13181 
13182     // This recurrence is invariant w.r.t. L if AR's loop contains L.
13183     if (AR->getLoop()->contains(L))
13184       return LoopInvariant;
13185 
13186     // This recurrence is variant w.r.t. L if any of its operands
13187     // are variant.
13188     for (auto *Op : AR->operands())
13189       if (!isLoopInvariant(Op, L))
13190         return LoopVariant;
13191 
13192     // Otherwise it's loop-invariant.
13193     return LoopInvariant;
13194   }
13195   case scAddExpr:
13196   case scMulExpr:
13197   case scUMaxExpr:
13198   case scSMaxExpr:
13199   case scUMinExpr:
13200   case scSMinExpr:
13201   case scSequentialUMinExpr: {
13202     bool HasVarying = false;
13203     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
13204       LoopDisposition D = getLoopDisposition(Op, L);
13205       if (D == LoopVariant)
13206         return LoopVariant;
13207       if (D == LoopComputable)
13208         HasVarying = true;
13209     }
13210     return HasVarying ? LoopComputable : LoopInvariant;
13211   }
13212   case scUDivExpr: {
13213     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13214     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
13215     if (LD == LoopVariant)
13216       return LoopVariant;
13217     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
13218     if (RD == LoopVariant)
13219       return LoopVariant;
13220     return (LD == LoopInvariant && RD == LoopInvariant) ?
13221            LoopInvariant : LoopComputable;
13222   }
13223   case scUnknown:
13224     // All non-instruction values are loop invariant.  All instructions are loop
13225     // invariant if they are not contained in the specified loop.
13226     // Instructions are never considered invariant in the function body
13227     // (null loop) because they are defined within the "loop".
13228     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
13229       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
13230     return LoopInvariant;
13231   case scCouldNotCompute:
13232     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13233   }
13234   llvm_unreachable("Unknown SCEV kind!");
13235 }
13236 
13237 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
13238   return getLoopDisposition(S, L) == LoopInvariant;
13239 }
13240 
13241 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
13242   return getLoopDisposition(S, L) == LoopComputable;
13243 }
13244 
13245 ScalarEvolution::BlockDisposition
13246 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13247   auto &Values = BlockDispositions[S];
13248   for (auto &V : Values) {
13249     if (V.getPointer() == BB)
13250       return V.getInt();
13251   }
13252   Values.emplace_back(BB, DoesNotDominateBlock);
13253   BlockDisposition D = computeBlockDisposition(S, BB);
13254   auto &Values2 = BlockDispositions[S];
13255   for (auto &V : llvm::reverse(Values2)) {
13256     if (V.getPointer() == BB) {
13257       V.setInt(D);
13258       break;
13259     }
13260   }
13261   return D;
13262 }
13263 
13264 ScalarEvolution::BlockDisposition
13265 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
13266   switch (S->getSCEVType()) {
13267   case scConstant:
13268     return ProperlyDominatesBlock;
13269   case scPtrToInt:
13270   case scTruncate:
13271   case scZeroExtend:
13272   case scSignExtend:
13273     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
13274   case scAddRecExpr: {
13275     // This uses a "dominates" query instead of "properly dominates" query
13276     // to test for proper dominance too, because the instruction which
13277     // produces the addrec's value is a PHI, and a PHI effectively properly
13278     // dominates its entire containing block.
13279     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
13280     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
13281       return DoesNotDominateBlock;
13282 
13283     // Fall through into SCEVNAryExpr handling.
13284     LLVM_FALLTHROUGH;
13285   }
13286   case scAddExpr:
13287   case scMulExpr:
13288   case scUMaxExpr:
13289   case scSMaxExpr:
13290   case scUMinExpr:
13291   case scSMinExpr:
13292   case scSequentialUMinExpr: {
13293     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
13294     bool Proper = true;
13295     for (const SCEV *NAryOp : NAry->operands()) {
13296       BlockDisposition D = getBlockDisposition(NAryOp, BB);
13297       if (D == DoesNotDominateBlock)
13298         return DoesNotDominateBlock;
13299       if (D == DominatesBlock)
13300         Proper = false;
13301     }
13302     return Proper ? ProperlyDominatesBlock : DominatesBlock;
13303   }
13304   case scUDivExpr: {
13305     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
13306     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
13307     BlockDisposition LD = getBlockDisposition(LHS, BB);
13308     if (LD == DoesNotDominateBlock)
13309       return DoesNotDominateBlock;
13310     BlockDisposition RD = getBlockDisposition(RHS, BB);
13311     if (RD == DoesNotDominateBlock)
13312       return DoesNotDominateBlock;
13313     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
13314       ProperlyDominatesBlock : DominatesBlock;
13315   }
13316   case scUnknown:
13317     if (Instruction *I =
13318           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
13319       if (I->getParent() == BB)
13320         return DominatesBlock;
13321       if (DT.properlyDominates(I->getParent(), BB))
13322         return ProperlyDominatesBlock;
13323       return DoesNotDominateBlock;
13324     }
13325     return ProperlyDominatesBlock;
13326   case scCouldNotCompute:
13327     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
13328   }
13329   llvm_unreachable("Unknown SCEV kind!");
13330 }
13331 
13332 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
13333   return getBlockDisposition(S, BB) >= DominatesBlock;
13334 }
13335 
13336 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
13337   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
13338 }
13339 
13340 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
13341   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
13342 }
13343 
13344 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L,
13345                                                 bool Predicated) {
13346   auto &BECounts =
13347       Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13348   auto It = BECounts.find(L);
13349   if (It != BECounts.end()) {
13350     for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) {
13351       if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13352         auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13353         assert(UserIt != BECountUsers.end());
13354         UserIt->second.erase({L, Predicated});
13355       }
13356     }
13357     BECounts.erase(It);
13358   }
13359 }
13360 
13361 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) {
13362   SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end());
13363   SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end());
13364 
13365   while (!Worklist.empty()) {
13366     const SCEV *Curr = Worklist.pop_back_val();
13367     auto Users = SCEVUsers.find(Curr);
13368     if (Users != SCEVUsers.end())
13369       for (auto *User : Users->second)
13370         if (ToForget.insert(User).second)
13371           Worklist.push_back(User);
13372   }
13373 
13374   for (auto *S : ToForget)
13375     forgetMemoizedResultsImpl(S);
13376 
13377   for (auto I = PredicatedSCEVRewrites.begin();
13378        I != PredicatedSCEVRewrites.end();) {
13379     std::pair<const SCEV *, const Loop *> Entry = I->first;
13380     if (ToForget.count(Entry.first))
13381       PredicatedSCEVRewrites.erase(I++);
13382     else
13383       ++I;
13384   }
13385 }
13386 
13387 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) {
13388   LoopDispositions.erase(S);
13389   BlockDispositions.erase(S);
13390   UnsignedRanges.erase(S);
13391   SignedRanges.erase(S);
13392   HasRecMap.erase(S);
13393   MinTrailingZerosCache.erase(S);
13394 
13395   auto ExprIt = ExprValueMap.find(S);
13396   if (ExprIt != ExprValueMap.end()) {
13397     for (auto &ValueAndOffset : ExprIt->second) {
13398       if (ValueAndOffset.second == nullptr) {
13399         auto ValueIt = ValueExprMap.find_as(ValueAndOffset.first);
13400         if (ValueIt != ValueExprMap.end())
13401           ValueExprMap.erase(ValueIt);
13402       }
13403     }
13404     ExprValueMap.erase(ExprIt);
13405   }
13406 
13407   auto ScopeIt = ValuesAtScopes.find(S);
13408   if (ScopeIt != ValuesAtScopes.end()) {
13409     for (const auto &Pair : ScopeIt->second)
13410       if (!isa_and_nonnull<SCEVConstant>(Pair.second))
13411         erase_value(ValuesAtScopesUsers[Pair.second],
13412                     std::make_pair(Pair.first, S));
13413     ValuesAtScopes.erase(ScopeIt);
13414   }
13415 
13416   auto ScopeUserIt = ValuesAtScopesUsers.find(S);
13417   if (ScopeUserIt != ValuesAtScopesUsers.end()) {
13418     for (const auto &Pair : ScopeUserIt->second)
13419       erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S));
13420     ValuesAtScopesUsers.erase(ScopeUserIt);
13421   }
13422 
13423   auto BEUsersIt = BECountUsers.find(S);
13424   if (BEUsersIt != BECountUsers.end()) {
13425     // Work on a copy, as forgetBackedgeTakenCounts() will modify the original.
13426     auto Copy = BEUsersIt->second;
13427     for (const auto &Pair : Copy)
13428       forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt());
13429     BECountUsers.erase(BEUsersIt);
13430   }
13431 }
13432 
13433 void
13434 ScalarEvolution::getUsedLoops(const SCEV *S,
13435                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
13436   struct FindUsedLoops {
13437     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
13438         : LoopsUsed(LoopsUsed) {}
13439     SmallPtrSetImpl<const Loop *> &LoopsUsed;
13440     bool follow(const SCEV *S) {
13441       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
13442         LoopsUsed.insert(AR->getLoop());
13443       return true;
13444     }
13445 
13446     bool isDone() const { return false; }
13447   };
13448 
13449   FindUsedLoops F(LoopsUsed);
13450   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
13451 }
13452 
13453 void ScalarEvolution::verify() const {
13454   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
13455   ScalarEvolution SE2(F, TLI, AC, DT, LI);
13456 
13457   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
13458 
13459   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
13460   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
13461     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
13462 
13463     const SCEV *visitConstant(const SCEVConstant *Constant) {
13464       return SE.getConstant(Constant->getAPInt());
13465     }
13466 
13467     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13468       return SE.getUnknown(Expr->getValue());
13469     }
13470 
13471     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
13472       return SE.getCouldNotCompute();
13473     }
13474   };
13475 
13476   SCEVMapper SCM(SE2);
13477 
13478   while (!LoopStack.empty()) {
13479     auto *L = LoopStack.pop_back_val();
13480     llvm::append_range(LoopStack, *L);
13481 
13482     auto *CurBECount = SCM.visit(
13483         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
13484     auto *NewBECount = SE2.getBackedgeTakenCount(L);
13485 
13486     if (CurBECount == SE2.getCouldNotCompute() ||
13487         NewBECount == SE2.getCouldNotCompute()) {
13488       // NB! This situation is legal, but is very suspicious -- whatever pass
13489       // change the loop to make a trip count go from could not compute to
13490       // computable or vice-versa *should have* invalidated SCEV.  However, we
13491       // choose not to assert here (for now) since we don't want false
13492       // positives.
13493       continue;
13494     }
13495 
13496     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
13497       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
13498       // not propagate undef aggressively).  This means we can (and do) fail
13499       // verification in cases where a transform makes the trip count of a loop
13500       // go from "undef" to "undef+1" (say).  The transform is fine, since in
13501       // both cases the loop iterates "undef" times, but SCEV thinks we
13502       // increased the trip count of the loop by 1 incorrectly.
13503       continue;
13504     }
13505 
13506     if (SE.getTypeSizeInBits(CurBECount->getType()) >
13507         SE.getTypeSizeInBits(NewBECount->getType()))
13508       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
13509     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
13510              SE.getTypeSizeInBits(NewBECount->getType()))
13511       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
13512 
13513     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
13514 
13515     // Unless VerifySCEVStrict is set, we only compare constant deltas.
13516     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
13517       dbgs() << "Trip Count for " << *L << " Changed!\n";
13518       dbgs() << "Old: " << *CurBECount << "\n";
13519       dbgs() << "New: " << *NewBECount << "\n";
13520       dbgs() << "Delta: " << *Delta << "\n";
13521       std::abort();
13522     }
13523   }
13524 
13525   // Collect all valid loops currently in LoopInfo.
13526   SmallPtrSet<Loop *, 32> ValidLoops;
13527   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
13528   while (!Worklist.empty()) {
13529     Loop *L = Worklist.pop_back_val();
13530     if (ValidLoops.contains(L))
13531       continue;
13532     ValidLoops.insert(L);
13533     Worklist.append(L->begin(), L->end());
13534   }
13535   for (auto &KV : ValueExprMap) {
13536 #ifndef NDEBUG
13537     // Check for SCEV expressions referencing invalid/deleted loops.
13538     if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) {
13539       assert(ValidLoops.contains(AR->getLoop()) &&
13540              "AddRec references invalid loop");
13541     }
13542 #endif
13543 
13544     // Check that the value is also part of the reverse map.
13545     auto It = ExprValueMap.find(KV.second);
13546     if (It == ExprValueMap.end() || !It->second.contains({KV.first, nullptr})) {
13547       dbgs() << "Value " << *KV.first
13548              << " is in ValueExprMap but not in ExprValueMap\n";
13549       std::abort();
13550     }
13551   }
13552 
13553   for (const auto &KV : ExprValueMap) {
13554     for (const auto &ValueAndOffset : KV.second) {
13555       if (ValueAndOffset.second != nullptr)
13556         continue;
13557 
13558       auto It = ValueExprMap.find_as(ValueAndOffset.first);
13559       if (It == ValueExprMap.end()) {
13560         dbgs() << "Value " << *ValueAndOffset.first
13561                << " is in ExprValueMap but not in ValueExprMap\n";
13562         std::abort();
13563       }
13564       if (It->second != KV.first) {
13565         dbgs() << "Value " << *ValueAndOffset.first
13566                << " mapped to " << *It->second
13567                << " rather than " << *KV.first << "\n";
13568         std::abort();
13569       }
13570     }
13571   }
13572 
13573   // Verify integrity of SCEV users.
13574   for (const auto &S : UniqueSCEVs) {
13575     SmallVector<const SCEV *, 4> Ops;
13576     collectUniqueOps(&S, Ops);
13577     for (const auto *Op : Ops) {
13578       // We do not store dependencies of constants.
13579       if (isa<SCEVConstant>(Op))
13580         continue;
13581       auto It = SCEVUsers.find(Op);
13582       if (It != SCEVUsers.end() && It->second.count(&S))
13583         continue;
13584       dbgs() << "Use of operand  " << *Op << " by user " << S
13585              << " is not being tracked!\n";
13586       std::abort();
13587     }
13588   }
13589 
13590   // Verify integrity of ValuesAtScopes users.
13591   for (const auto &ValueAndVec : ValuesAtScopes) {
13592     const SCEV *Value = ValueAndVec.first;
13593     for (const auto &LoopAndValueAtScope : ValueAndVec.second) {
13594       const Loop *L = LoopAndValueAtScope.first;
13595       const SCEV *ValueAtScope = LoopAndValueAtScope.second;
13596       if (!isa<SCEVConstant>(ValueAtScope)) {
13597         auto It = ValuesAtScopesUsers.find(ValueAtScope);
13598         if (It != ValuesAtScopesUsers.end() &&
13599             is_contained(It->second, std::make_pair(L, Value)))
13600           continue;
13601         dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13602                << *ValueAtScope << " missing in ValuesAtScopesUsers\n";
13603         std::abort();
13604       }
13605     }
13606   }
13607 
13608   for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) {
13609     const SCEV *ValueAtScope = ValueAtScopeAndVec.first;
13610     for (const auto &LoopAndValue : ValueAtScopeAndVec.second) {
13611       const Loop *L = LoopAndValue.first;
13612       const SCEV *Value = LoopAndValue.second;
13613       assert(!isa<SCEVConstant>(Value));
13614       auto It = ValuesAtScopes.find(Value);
13615       if (It != ValuesAtScopes.end() &&
13616           is_contained(It->second, std::make_pair(L, ValueAtScope)))
13617         continue;
13618       dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: "
13619              << *ValueAtScope << " missing in ValuesAtScopes\n";
13620       std::abort();
13621     }
13622   }
13623 
13624   // Verify integrity of BECountUsers.
13625   auto VerifyBECountUsers = [&](bool Predicated) {
13626     auto &BECounts =
13627         Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts;
13628     for (const auto &LoopAndBEInfo : BECounts) {
13629       for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) {
13630         if (!isa<SCEVConstant>(ENT.ExactNotTaken)) {
13631           auto UserIt = BECountUsers.find(ENT.ExactNotTaken);
13632           if (UserIt != BECountUsers.end() &&
13633               UserIt->second.contains({ LoopAndBEInfo.first, Predicated }))
13634             continue;
13635           dbgs() << "Value " << *ENT.ExactNotTaken << " for loop "
13636                  << *LoopAndBEInfo.first << " missing from BECountUsers\n";
13637           std::abort();
13638         }
13639       }
13640     }
13641   };
13642   VerifyBECountUsers(/* Predicated */ false);
13643   VerifyBECountUsers(/* Predicated */ true);
13644 }
13645 
13646 bool ScalarEvolution::invalidate(
13647     Function &F, const PreservedAnalyses &PA,
13648     FunctionAnalysisManager::Invalidator &Inv) {
13649   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
13650   // of its dependencies is invalidated.
13651   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
13652   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
13653          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
13654          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
13655          Inv.invalidate<LoopAnalysis>(F, PA);
13656 }
13657 
13658 AnalysisKey ScalarEvolutionAnalysis::Key;
13659 
13660 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
13661                                              FunctionAnalysisManager &AM) {
13662   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
13663                          AM.getResult<AssumptionAnalysis>(F),
13664                          AM.getResult<DominatorTreeAnalysis>(F),
13665                          AM.getResult<LoopAnalysis>(F));
13666 }
13667 
13668 PreservedAnalyses
13669 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
13670   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
13671   return PreservedAnalyses::all();
13672 }
13673 
13674 PreservedAnalyses
13675 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
13676   // For compatibility with opt's -analyze feature under legacy pass manager
13677   // which was not ported to NPM. This keeps tests using
13678   // update_analyze_test_checks.py working.
13679   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
13680      << F.getName() << "':\n";
13681   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
13682   return PreservedAnalyses::all();
13683 }
13684 
13685 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
13686                       "Scalar Evolution Analysis", false, true)
13687 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
13688 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
13689 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
13690 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
13691 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
13692                     "Scalar Evolution Analysis", false, true)
13693 
13694 char ScalarEvolutionWrapperPass::ID = 0;
13695 
13696 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
13697   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
13698 }
13699 
13700 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
13701   SE.reset(new ScalarEvolution(
13702       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
13703       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
13704       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
13705       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
13706   return false;
13707 }
13708 
13709 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
13710 
13711 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
13712   SE->print(OS);
13713 }
13714 
13715 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
13716   if (!VerifySCEV)
13717     return;
13718 
13719   SE->verify();
13720 }
13721 
13722 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
13723   AU.setPreservesAll();
13724   AU.addRequiredTransitive<AssumptionCacheTracker>();
13725   AU.addRequiredTransitive<LoopInfoWrapperPass>();
13726   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
13727   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
13728 }
13729 
13730 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
13731                                                         const SCEV *RHS) {
13732   return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS);
13733 }
13734 
13735 const SCEVPredicate *
13736 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred,
13737                                      const SCEV *LHS, const SCEV *RHS) {
13738   FoldingSetNodeID ID;
13739   assert(LHS->getType() == RHS->getType() &&
13740          "Type mismatch between LHS and RHS");
13741   // Unique this node based on the arguments
13742   ID.AddInteger(SCEVPredicate::P_Compare);
13743   ID.AddInteger(Pred);
13744   ID.AddPointer(LHS);
13745   ID.AddPointer(RHS);
13746   void *IP = nullptr;
13747   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13748     return S;
13749   SCEVComparePredicate *Eq = new (SCEVAllocator)
13750     SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS);
13751   UniquePreds.InsertNode(Eq, IP);
13752   return Eq;
13753 }
13754 
13755 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
13756     const SCEVAddRecExpr *AR,
13757     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13758   FoldingSetNodeID ID;
13759   // Unique this node based on the arguments
13760   ID.AddInteger(SCEVPredicate::P_Wrap);
13761   ID.AddPointer(AR);
13762   ID.AddInteger(AddedFlags);
13763   void *IP = nullptr;
13764   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
13765     return S;
13766   auto *OF = new (SCEVAllocator)
13767       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
13768   UniquePreds.InsertNode(OF, IP);
13769   return OF;
13770 }
13771 
13772 namespace {
13773 
13774 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13775 public:
13776 
13777   /// Rewrites \p S in the context of a loop L and the SCEV predication
13778   /// infrastructure.
13779   ///
13780   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13781   /// equivalences present in \p Pred.
13782   ///
13783   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13784   /// \p NewPreds such that the result will be an AddRecExpr.
13785   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13786                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13787                              const SCEVPredicate *Pred) {
13788     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13789     return Rewriter.visit(S);
13790   }
13791 
13792   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13793     if (Pred) {
13794       if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) {
13795         for (auto *Pred : U->getPredicates())
13796           if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred))
13797             if (IPred->getLHS() == Expr &&
13798                 IPred->getPredicate() == ICmpInst::ICMP_EQ)
13799               return IPred->getRHS();
13800       } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) {
13801         if (IPred->getLHS() == Expr &&
13802             IPred->getPredicate() == ICmpInst::ICMP_EQ)
13803           return IPred->getRHS();
13804       }
13805     }
13806     return convertToAddRecWithPreds(Expr);
13807   }
13808 
13809   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13810     const SCEV *Operand = visit(Expr->getOperand());
13811     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13812     if (AR && AR->getLoop() == L && AR->isAffine()) {
13813       // This couldn't be folded because the operand didn't have the nuw
13814       // flag. Add the nusw flag as an assumption that we could make.
13815       const SCEV *Step = AR->getStepRecurrence(SE);
13816       Type *Ty = Expr->getType();
13817       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13818         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13819                                 SE.getSignExtendExpr(Step, Ty), L,
13820                                 AR->getNoWrapFlags());
13821     }
13822     return SE.getZeroExtendExpr(Operand, Expr->getType());
13823   }
13824 
13825   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13826     const SCEV *Operand = visit(Expr->getOperand());
13827     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13828     if (AR && AR->getLoop() == L && AR->isAffine()) {
13829       // This couldn't be folded because the operand didn't have the nsw
13830       // flag. Add the nssw flag as an assumption that we could make.
13831       const SCEV *Step = AR->getStepRecurrence(SE);
13832       Type *Ty = Expr->getType();
13833       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13834         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13835                                 SE.getSignExtendExpr(Step, Ty), L,
13836                                 AR->getNoWrapFlags());
13837     }
13838     return SE.getSignExtendExpr(Operand, Expr->getType());
13839   }
13840 
13841 private:
13842   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13843                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13844                         const SCEVPredicate *Pred)
13845       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13846 
13847   bool addOverflowAssumption(const SCEVPredicate *P) {
13848     if (!NewPreds) {
13849       // Check if we've already made this assumption.
13850       return Pred && Pred->implies(P);
13851     }
13852     NewPreds->insert(P);
13853     return true;
13854   }
13855 
13856   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13857                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13858     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13859     return addOverflowAssumption(A);
13860   }
13861 
13862   // If \p Expr represents a PHINode, we try to see if it can be represented
13863   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13864   // to add this predicate as a runtime overflow check, we return the AddRec.
13865   // If \p Expr does not meet these conditions (is not a PHI node, or we
13866   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13867   // return \p Expr.
13868   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13869     if (!isa<PHINode>(Expr->getValue()))
13870       return Expr;
13871     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13872     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13873     if (!PredicatedRewrite)
13874       return Expr;
13875     for (auto *P : PredicatedRewrite->second){
13876       // Wrap predicates from outer loops are not supported.
13877       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13878         if (L != WP->getExpr()->getLoop())
13879           return Expr;
13880       }
13881       if (!addOverflowAssumption(P))
13882         return Expr;
13883     }
13884     return PredicatedRewrite->first;
13885   }
13886 
13887   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13888   const SCEVPredicate *Pred;
13889   const Loop *L;
13890 };
13891 
13892 } // end anonymous namespace
13893 
13894 const SCEV *
13895 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13896                                        const SCEVPredicate &Preds) {
13897   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13898 }
13899 
13900 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13901     const SCEV *S, const Loop *L,
13902     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13903   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13904   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13905   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13906 
13907   if (!AddRec)
13908     return nullptr;
13909 
13910   // Since the transformation was successful, we can now transfer the SCEV
13911   // predicates.
13912   for (auto *P : TransformPreds)
13913     Preds.insert(P);
13914 
13915   return AddRec;
13916 }
13917 
13918 /// SCEV predicates
13919 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13920                              SCEVPredicateKind Kind)
13921     : FastID(ID), Kind(Kind) {}
13922 
13923 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID,
13924                                    const ICmpInst::Predicate Pred,
13925                                    const SCEV *LHS, const SCEV *RHS)
13926   : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) {
13927   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13928   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13929 }
13930 
13931 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const {
13932   const auto *Op = dyn_cast<SCEVComparePredicate>(N);
13933 
13934   if (!Op)
13935     return false;
13936 
13937   if (Pred != ICmpInst::ICMP_EQ)
13938     return false;
13939 
13940   return Op->LHS == LHS && Op->RHS == RHS;
13941 }
13942 
13943 bool SCEVComparePredicate::isAlwaysTrue() const { return false; }
13944 
13945 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const {
13946   if (Pred == ICmpInst::ICMP_EQ)
13947     OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13948   else
13949     OS.indent(Depth) << "Compare predicate: " << *LHS
13950                      << " " << CmpInst::getPredicateName(Pred) << ") "
13951                      << *RHS << "\n";
13952 
13953 }
13954 
13955 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13956                                      const SCEVAddRecExpr *AR,
13957                                      IncrementWrapFlags Flags)
13958     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13959 
13960 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; }
13961 
13962 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13963   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13964 
13965   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13966 }
13967 
13968 bool SCEVWrapPredicate::isAlwaysTrue() const {
13969   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13970   IncrementWrapFlags IFlags = Flags;
13971 
13972   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13973     IFlags = clearFlags(IFlags, IncrementNSSW);
13974 
13975   return IFlags == IncrementAnyWrap;
13976 }
13977 
13978 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13979   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13980   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13981     OS << "<nusw>";
13982   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13983     OS << "<nssw>";
13984   OS << "\n";
13985 }
13986 
13987 SCEVWrapPredicate::IncrementWrapFlags
13988 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13989                                    ScalarEvolution &SE) {
13990   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13991   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13992 
13993   // We can safely transfer the NSW flag as NSSW.
13994   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13995     ImpliedFlags = IncrementNSSW;
13996 
13997   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13998     // If the increment is positive, the SCEV NUW flag will also imply the
13999     // WrapPredicate NUSW flag.
14000     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
14001       if (Step->getValue()->getValue().isNonNegative())
14002         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
14003   }
14004 
14005   return ImpliedFlags;
14006 }
14007 
14008 /// Union predicates don't get cached so create a dummy set ID for it.
14009 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds)
14010   : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {
14011   for (auto *P : Preds)
14012     add(P);
14013 }
14014 
14015 bool SCEVUnionPredicate::isAlwaysTrue() const {
14016   return all_of(Preds,
14017                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
14018 }
14019 
14020 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
14021   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
14022     return all_of(Set->Preds,
14023                   [this](const SCEVPredicate *I) { return this->implies(I); });
14024 
14025   return any_of(Preds,
14026                 [N](const SCEVPredicate *I) { return I->implies(N); });
14027 }
14028 
14029 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
14030   for (auto Pred : Preds)
14031     Pred->print(OS, Depth);
14032 }
14033 
14034 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
14035   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
14036     for (auto Pred : Set->Preds)
14037       add(Pred);
14038     return;
14039   }
14040 
14041   Preds.push_back(N);
14042 }
14043 
14044 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
14045                                                      Loop &L)
14046     : SE(SE), L(L) {
14047   SmallVector<const SCEVPredicate*, 4> Empty;
14048   Preds = std::make_unique<SCEVUnionPredicate>(Empty);
14049 }
14050 
14051 void ScalarEvolution::registerUser(const SCEV *User,
14052                                    ArrayRef<const SCEV *> Ops) {
14053   for (auto *Op : Ops)
14054     // We do not expect that forgetting cached data for SCEVConstants will ever
14055     // open any prospects for sharpening or introduce any correctness issues,
14056     // so we don't bother storing their dependencies.
14057     if (!isa<SCEVConstant>(Op))
14058       SCEVUsers[Op].insert(User);
14059 }
14060 
14061 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
14062   const SCEV *Expr = SE.getSCEV(V);
14063   RewriteEntry &Entry = RewriteMap[Expr];
14064 
14065   // If we already have an entry and the version matches, return it.
14066   if (Entry.second && Generation == Entry.first)
14067     return Entry.second;
14068 
14069   // We found an entry but it's stale. Rewrite the stale entry
14070   // according to the current predicate.
14071   if (Entry.second)
14072     Expr = Entry.second;
14073 
14074   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds);
14075   Entry = {Generation, NewSCEV};
14076 
14077   return NewSCEV;
14078 }
14079 
14080 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
14081   if (!BackedgeCount) {
14082     SmallVector<const SCEVPredicate *, 4> Preds;
14083     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds);
14084     for (auto *P : Preds)
14085       addPredicate(*P);
14086   }
14087   return BackedgeCount;
14088 }
14089 
14090 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
14091   if (Preds->implies(&Pred))
14092     return;
14093 
14094   auto &OldPreds = Preds->getPredicates();
14095   SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end());
14096   NewPreds.push_back(&Pred);
14097   Preds = std::make_unique<SCEVUnionPredicate>(NewPreds);
14098   updateGeneration();
14099 }
14100 
14101 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const {
14102   return *Preds;
14103 }
14104 
14105 void PredicatedScalarEvolution::updateGeneration() {
14106   // If the generation number wrapped recompute everything.
14107   if (++Generation == 0) {
14108     for (auto &II : RewriteMap) {
14109       const SCEV *Rewritten = II.second.second;
14110       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)};
14111     }
14112   }
14113 }
14114 
14115 void PredicatedScalarEvolution::setNoOverflow(
14116     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14117   const SCEV *Expr = getSCEV(V);
14118   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14119 
14120   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
14121 
14122   // Clear the statically implied flags.
14123   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
14124   addPredicate(*SE.getWrapPredicate(AR, Flags));
14125 
14126   auto II = FlagsMap.insert({V, Flags});
14127   if (!II.second)
14128     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
14129 }
14130 
14131 bool PredicatedScalarEvolution::hasNoOverflow(
14132     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
14133   const SCEV *Expr = getSCEV(V);
14134   const auto *AR = cast<SCEVAddRecExpr>(Expr);
14135 
14136   Flags = SCEVWrapPredicate::clearFlags(
14137       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
14138 
14139   auto II = FlagsMap.find(V);
14140 
14141   if (II != FlagsMap.end())
14142     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
14143 
14144   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
14145 }
14146 
14147 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
14148   const SCEV *Expr = this->getSCEV(V);
14149   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
14150   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
14151 
14152   if (!New)
14153     return nullptr;
14154 
14155   for (auto *P : NewPreds)
14156     addPredicate(*P);
14157 
14158   RewriteMap[SE.getSCEV(V)] = {Generation, New};
14159   return New;
14160 }
14161 
14162 PredicatedScalarEvolution::PredicatedScalarEvolution(
14163     const PredicatedScalarEvolution &Init)
14164   : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L),
14165     Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())),
14166     Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
14167   for (auto I : Init.FlagsMap)
14168     FlagsMap.insert(I);
14169 }
14170 
14171 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
14172   // For each block.
14173   for (auto *BB : L.getBlocks())
14174     for (auto &I : *BB) {
14175       if (!SE.isSCEVable(I.getType()))
14176         continue;
14177 
14178       auto *Expr = SE.getSCEV(&I);
14179       auto II = RewriteMap.find(Expr);
14180 
14181       if (II == RewriteMap.end())
14182         continue;
14183 
14184       // Don't print things that are not interesting.
14185       if (II->second.second == Expr)
14186         continue;
14187 
14188       OS.indent(Depth) << "[PSE]" << I << ":\n";
14189       OS.indent(Depth + 2) << *Expr << "\n";
14190       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
14191     }
14192 }
14193 
14194 // Match the mathematical pattern A - (A / B) * B, where A and B can be
14195 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
14196 // for URem with constant power-of-2 second operands.
14197 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
14198 // 4, A / B becomes X / 8).
14199 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
14200                                 const SCEV *&RHS) {
14201   // Try to match 'zext (trunc A to iB) to iY', which is used
14202   // for URem with constant power-of-2 second operands. Make sure the size of
14203   // the operand A matches the size of the whole expressions.
14204   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
14205     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
14206       LHS = Trunc->getOperand();
14207       // Bail out if the type of the LHS is larger than the type of the
14208       // expression for now.
14209       if (getTypeSizeInBits(LHS->getType()) >
14210           getTypeSizeInBits(Expr->getType()))
14211         return false;
14212       if (LHS->getType() != Expr->getType())
14213         LHS = getZeroExtendExpr(LHS, Expr->getType());
14214       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
14215                         << getTypeSizeInBits(Trunc->getType()));
14216       return true;
14217     }
14218   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
14219   if (Add == nullptr || Add->getNumOperands() != 2)
14220     return false;
14221 
14222   const SCEV *A = Add->getOperand(1);
14223   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
14224 
14225   if (Mul == nullptr)
14226     return false;
14227 
14228   const auto MatchURemWithDivisor = [&](const SCEV *B) {
14229     // (SomeExpr + (-(SomeExpr / B) * B)).
14230     if (Expr == getURemExpr(A, B)) {
14231       LHS = A;
14232       RHS = B;
14233       return true;
14234     }
14235     return false;
14236   };
14237 
14238   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
14239   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
14240     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14241            MatchURemWithDivisor(Mul->getOperand(2));
14242 
14243   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
14244   if (Mul->getNumOperands() == 2)
14245     return MatchURemWithDivisor(Mul->getOperand(1)) ||
14246            MatchURemWithDivisor(Mul->getOperand(0)) ||
14247            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
14248            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
14249   return false;
14250 }
14251 
14252 const SCEV *
14253 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
14254   SmallVector<BasicBlock*, 16> ExitingBlocks;
14255   L->getExitingBlocks(ExitingBlocks);
14256 
14257   // Form an expression for the maximum exit count possible for this loop. We
14258   // merge the max and exact information to approximate a version of
14259   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
14260   SmallVector<const SCEV*, 4> ExitCounts;
14261   for (BasicBlock *ExitingBB : ExitingBlocks) {
14262     const SCEV *ExitCount = getExitCount(L, ExitingBB);
14263     if (isa<SCEVCouldNotCompute>(ExitCount))
14264       ExitCount = getExitCount(L, ExitingBB,
14265                                   ScalarEvolution::ConstantMaximum);
14266     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
14267       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
14268              "We should only have known counts for exiting blocks that "
14269              "dominate latch!");
14270       ExitCounts.push_back(ExitCount);
14271     }
14272   }
14273   if (ExitCounts.empty())
14274     return getCouldNotCompute();
14275   return getUMinFromMismatchedTypes(ExitCounts);
14276 }
14277 
14278 /// A rewriter to replace SCEV expressions in Map with the corresponding entry
14279 /// in the map. It skips AddRecExpr because we cannot guarantee that the
14280 /// replacement is loop invariant in the loop of the AddRec.
14281 ///
14282 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is
14283 /// supported.
14284 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
14285   const DenseMap<const SCEV *, const SCEV *> &Map;
14286 
14287 public:
14288   SCEVLoopGuardRewriter(ScalarEvolution &SE,
14289                         DenseMap<const SCEV *, const SCEV *> &M)
14290       : SCEVRewriteVisitor(SE), Map(M) {}
14291 
14292   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
14293 
14294   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
14295     auto I = Map.find(Expr);
14296     if (I == Map.end())
14297       return Expr;
14298     return I->second;
14299   }
14300 
14301   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
14302     auto I = Map.find(Expr);
14303     if (I == Map.end())
14304       return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr(
14305           Expr);
14306     return I->second;
14307   }
14308 };
14309 
14310 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
14311   SmallVector<const SCEV *> ExprsToRewrite;
14312   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
14313                               const SCEV *RHS,
14314                               DenseMap<const SCEV *, const SCEV *>
14315                                   &RewriteMap) {
14316     // WARNING: It is generally unsound to apply any wrap flags to the proposed
14317     // replacement SCEV which isn't directly implied by the structure of that
14318     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
14319     // legal.  See the scoping rules for flags in the header to understand why.
14320 
14321     // If LHS is a constant, apply information to the other expression.
14322     if (isa<SCEVConstant>(LHS)) {
14323       std::swap(LHS, RHS);
14324       Predicate = CmpInst::getSwappedPredicate(Predicate);
14325     }
14326 
14327     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
14328     // create this form when combining two checks of the form (X u< C2 + C1) and
14329     // (X >=u C1).
14330     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap,
14331                                  &ExprsToRewrite]() {
14332       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
14333       if (!AddExpr || AddExpr->getNumOperands() != 2)
14334         return false;
14335 
14336       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
14337       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
14338       auto *C2 = dyn_cast<SCEVConstant>(RHS);
14339       if (!C1 || !C2 || !LHSUnknown)
14340         return false;
14341 
14342       auto ExactRegion =
14343           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
14344               .sub(C1->getAPInt());
14345 
14346       // Bail out, unless we have a non-wrapping, monotonic range.
14347       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
14348         return false;
14349       auto I = RewriteMap.find(LHSUnknown);
14350       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
14351       RewriteMap[LHSUnknown] = getUMaxExpr(
14352           getConstant(ExactRegion.getUnsignedMin()),
14353           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
14354       ExprsToRewrite.push_back(LHSUnknown);
14355       return true;
14356     };
14357     if (MatchRangeCheckIdiom())
14358       return;
14359 
14360     // If we have LHS == 0, check if LHS is computing a property of some unknown
14361     // SCEV %v which we can rewrite %v to express explicitly.
14362     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
14363     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
14364         RHSC->getValue()->isNullValue()) {
14365       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
14366       // explicitly express that.
14367       const SCEV *URemLHS = nullptr;
14368       const SCEV *URemRHS = nullptr;
14369       if (matchURem(LHS, URemLHS, URemRHS)) {
14370         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
14371           auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
14372           RewriteMap[LHSUnknown] = Multiple;
14373           ExprsToRewrite.push_back(LHSUnknown);
14374           return;
14375         }
14376       }
14377     }
14378 
14379     // Do not apply information for constants or if RHS contains an AddRec.
14380     if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS))
14381       return;
14382 
14383     // If RHS is SCEVUnknown, make sure the information is applied to it.
14384     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
14385       std::swap(LHS, RHS);
14386       Predicate = CmpInst::getSwappedPredicate(Predicate);
14387     }
14388 
14389     // Limit to expressions that can be rewritten.
14390     if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS))
14391       return;
14392 
14393     // Check whether LHS has already been rewritten. In that case we want to
14394     // chain further rewrites onto the already rewritten value.
14395     auto I = RewriteMap.find(LHS);
14396     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
14397 
14398     const SCEV *RewrittenRHS = nullptr;
14399     switch (Predicate) {
14400     case CmpInst::ICMP_ULT:
14401       RewrittenRHS =
14402           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14403       break;
14404     case CmpInst::ICMP_SLT:
14405       RewrittenRHS =
14406           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
14407       break;
14408     case CmpInst::ICMP_ULE:
14409       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
14410       break;
14411     case CmpInst::ICMP_SLE:
14412       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
14413       break;
14414     case CmpInst::ICMP_UGT:
14415       RewrittenRHS =
14416           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14417       break;
14418     case CmpInst::ICMP_SGT:
14419       RewrittenRHS =
14420           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
14421       break;
14422     case CmpInst::ICMP_UGE:
14423       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
14424       break;
14425     case CmpInst::ICMP_SGE:
14426       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
14427       break;
14428     case CmpInst::ICMP_EQ:
14429       if (isa<SCEVConstant>(RHS))
14430         RewrittenRHS = RHS;
14431       break;
14432     case CmpInst::ICMP_NE:
14433       if (isa<SCEVConstant>(RHS) &&
14434           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
14435         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
14436       break;
14437     default:
14438       break;
14439     }
14440 
14441     if (RewrittenRHS) {
14442       RewriteMap[LHS] = RewrittenRHS;
14443       if (LHS == RewrittenLHS)
14444         ExprsToRewrite.push_back(LHS);
14445     }
14446   };
14447   // First, collect conditions from dominating branches. Starting at the loop
14448   // predecessor, climb up the predecessor chain, as long as there are
14449   // predecessors that can be found that have unique successors leading to the
14450   // original header.
14451   // TODO: share this logic with isLoopEntryGuardedByCond.
14452   SmallVector<std::pair<Value *, bool>> Terms;
14453   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
14454            L->getLoopPredecessor(), L->getHeader());
14455        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
14456 
14457     const BranchInst *LoopEntryPredicate =
14458         dyn_cast<BranchInst>(Pair.first->getTerminator());
14459     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
14460       continue;
14461 
14462     Terms.emplace_back(LoopEntryPredicate->getCondition(),
14463                        LoopEntryPredicate->getSuccessor(0) == Pair.second);
14464   }
14465 
14466   // Now apply the information from the collected conditions to RewriteMap.
14467   // Conditions are processed in reverse order, so the earliest conditions is
14468   // processed first. This ensures the SCEVs with the shortest dependency chains
14469   // are constructed first.
14470   DenseMap<const SCEV *, const SCEV *> RewriteMap;
14471   for (auto &E : reverse(Terms)) {
14472     bool EnterIfTrue = E.second;
14473     SmallVector<Value *, 8> Worklist;
14474     SmallPtrSet<Value *, 8> Visited;
14475     Worklist.push_back(E.first);
14476     while (!Worklist.empty()) {
14477       Value *Cond = Worklist.pop_back_val();
14478       if (!Visited.insert(Cond).second)
14479         continue;
14480 
14481       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
14482         auto Predicate =
14483             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
14484         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
14485                          getSCEV(Cmp->getOperand(1)), RewriteMap);
14486         continue;
14487       }
14488 
14489       Value *L, *R;
14490       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
14491                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
14492         Worklist.push_back(L);
14493         Worklist.push_back(R);
14494       }
14495     }
14496   }
14497 
14498   // Also collect information from assumptions dominating the loop.
14499   for (auto &AssumeVH : AC.assumptions()) {
14500     if (!AssumeVH)
14501       continue;
14502     auto *AssumeI = cast<CallInst>(AssumeVH);
14503     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
14504     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
14505       continue;
14506     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
14507                      getSCEV(Cmp->getOperand(1)), RewriteMap);
14508   }
14509 
14510   if (RewriteMap.empty())
14511     return Expr;
14512 
14513   // Now that all rewrite information is collect, rewrite the collected
14514   // expressions with the information in the map. This applies information to
14515   // sub-expressions.
14516   if (ExprsToRewrite.size() > 1) {
14517     for (const SCEV *Expr : ExprsToRewrite) {
14518       const SCEV *RewriteTo = RewriteMap[Expr];
14519       RewriteMap.erase(Expr);
14520       SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14521       RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)});
14522     }
14523   }
14524 
14525   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
14526   return Rewriter.visit(Expr);
14527 }
14528