1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallPtrSet.h"
65 #include "llvm/ADT/Statistic.h"
66 #include "llvm/Analysis/AssumptionCache.h"
67 #include "llvm/Analysis/ConstantFolding.h"
68 #include "llvm/Analysis/InstructionSimplify.h"
69 #include "llvm/Analysis/LoopInfo.h"
70 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
71 #include "llvm/Analysis/TargetLibraryInfo.h"
72 #include "llvm/Analysis/ValueTracking.h"
73 #include "llvm/IR/ConstantRange.h"
74 #include "llvm/IR/Constants.h"
75 #include "llvm/IR/DataLayout.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/GetElementPtrTypeIterator.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalVariable.h"
81 #include "llvm/IR/InstIterator.h"
82 #include "llvm/IR/Instructions.h"
83 #include "llvm/IR/LLVMContext.h"
84 #include "llvm/IR/Metadata.h"
85 #include "llvm/IR/Operator.h"
86 #include "llvm/IR/PatternMatch.h"
87 #include "llvm/Support/CommandLine.h"
88 #include "llvm/Support/Debug.h"
89 #include "llvm/Support/ErrorHandling.h"
90 #include "llvm/Support/MathExtras.h"
91 #include "llvm/Support/raw_ostream.h"
92 #include "llvm/Support/SaveAndRestore.h"
93 #include <algorithm>
94 using namespace llvm;
95 
96 #define DEBUG_TYPE "scalar-evolution"
97 
98 STATISTIC(NumArrayLenItCounts,
99           "Number of trip counts computed with array length");
100 STATISTIC(NumTripCountsComputed,
101           "Number of loops with predictable loop counts");
102 STATISTIC(NumTripCountsNotComputed,
103           "Number of loops without predictable loop counts");
104 STATISTIC(NumBruteForceTripCountsComputed,
105           "Number of loops with trip counts computed by force");
106 
107 static cl::opt<unsigned>
108 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
109                         cl::desc("Maximum number of iterations SCEV will "
110                                  "symbolically execute a constant "
111                                  "derived loop"),
112                         cl::init(100));
113 
114 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
115 static cl::opt<bool>
116 VerifySCEV("verify-scev",
117            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
118 static cl::opt<bool>
119     VerifySCEVMap("verify-scev-maps",
120                   cl::desc("Verify no dangling value in ScalarEvolution's "
121                            "ExprValueMap (slow)"));
122 
123 //===----------------------------------------------------------------------===//
124 //                           SCEV class definitions
125 //===----------------------------------------------------------------------===//
126 
127 //===----------------------------------------------------------------------===//
128 // Implementation of the SCEV class.
129 //
130 
131 LLVM_DUMP_METHOD
132 void SCEV::dump() const {
133   print(dbgs());
134   dbgs() << '\n';
135 }
136 
137 void SCEV::print(raw_ostream &OS) const {
138   switch (static_cast<SCEVTypes>(getSCEVType())) {
139   case scConstant:
140     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
141     return;
142   case scTruncate: {
143     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
144     const SCEV *Op = Trunc->getOperand();
145     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
146        << *Trunc->getType() << ")";
147     return;
148   }
149   case scZeroExtend: {
150     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
151     const SCEV *Op = ZExt->getOperand();
152     OS << "(zext " << *Op->getType() << " " << *Op << " to "
153        << *ZExt->getType() << ")";
154     return;
155   }
156   case scSignExtend: {
157     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
158     const SCEV *Op = SExt->getOperand();
159     OS << "(sext " << *Op->getType() << " " << *Op << " to "
160        << *SExt->getType() << ")";
161     return;
162   }
163   case scAddRecExpr: {
164     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
165     OS << "{" << *AR->getOperand(0);
166     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
167       OS << ",+," << *AR->getOperand(i);
168     OS << "}<";
169     if (AR->hasNoUnsignedWrap())
170       OS << "nuw><";
171     if (AR->hasNoSignedWrap())
172       OS << "nsw><";
173     if (AR->hasNoSelfWrap() &&
174         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
175       OS << "nw><";
176     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
177     OS << ">";
178     return;
179   }
180   case scAddExpr:
181   case scMulExpr:
182   case scUMaxExpr:
183   case scSMaxExpr: {
184     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
185     const char *OpStr = nullptr;
186     switch (NAry->getSCEVType()) {
187     case scAddExpr: OpStr = " + "; break;
188     case scMulExpr: OpStr = " * "; break;
189     case scUMaxExpr: OpStr = " umax "; break;
190     case scSMaxExpr: OpStr = " smax "; break;
191     }
192     OS << "(";
193     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
194          I != E; ++I) {
195       OS << **I;
196       if (std::next(I) != E)
197         OS << OpStr;
198     }
199     OS << ")";
200     switch (NAry->getSCEVType()) {
201     case scAddExpr:
202     case scMulExpr:
203       if (NAry->hasNoUnsignedWrap())
204         OS << "<nuw>";
205       if (NAry->hasNoSignedWrap())
206         OS << "<nsw>";
207     }
208     return;
209   }
210   case scUDivExpr: {
211     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
212     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
213     return;
214   }
215   case scUnknown: {
216     const SCEVUnknown *U = cast<SCEVUnknown>(this);
217     Type *AllocTy;
218     if (U->isSizeOf(AllocTy)) {
219       OS << "sizeof(" << *AllocTy << ")";
220       return;
221     }
222     if (U->isAlignOf(AllocTy)) {
223       OS << "alignof(" << *AllocTy << ")";
224       return;
225     }
226 
227     Type *CTy;
228     Constant *FieldNo;
229     if (U->isOffsetOf(CTy, FieldNo)) {
230       OS << "offsetof(" << *CTy << ", ";
231       FieldNo->printAsOperand(OS, false);
232       OS << ")";
233       return;
234     }
235 
236     // Otherwise just print it normally.
237     U->getValue()->printAsOperand(OS, false);
238     return;
239   }
240   case scCouldNotCompute:
241     OS << "***COULDNOTCOMPUTE***";
242     return;
243   }
244   llvm_unreachable("Unknown SCEV kind!");
245 }
246 
247 Type *SCEV::getType() const {
248   switch (static_cast<SCEVTypes>(getSCEVType())) {
249   case scConstant:
250     return cast<SCEVConstant>(this)->getType();
251   case scTruncate:
252   case scZeroExtend:
253   case scSignExtend:
254     return cast<SCEVCastExpr>(this)->getType();
255   case scAddRecExpr:
256   case scMulExpr:
257   case scUMaxExpr:
258   case scSMaxExpr:
259     return cast<SCEVNAryExpr>(this)->getType();
260   case scAddExpr:
261     return cast<SCEVAddExpr>(this)->getType();
262   case scUDivExpr:
263     return cast<SCEVUDivExpr>(this)->getType();
264   case scUnknown:
265     return cast<SCEVUnknown>(this)->getType();
266   case scCouldNotCompute:
267     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
268   }
269   llvm_unreachable("Unknown SCEV kind!");
270 }
271 
272 bool SCEV::isZero() const {
273   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
274     return SC->getValue()->isZero();
275   return false;
276 }
277 
278 bool SCEV::isOne() const {
279   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
280     return SC->getValue()->isOne();
281   return false;
282 }
283 
284 bool SCEV::isAllOnesValue() const {
285   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
286     return SC->getValue()->isAllOnesValue();
287   return false;
288 }
289 
290 /// isNonConstantNegative - Return true if the specified scev is negated, but
291 /// not a constant.
292 bool SCEV::isNonConstantNegative() const {
293   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
294   if (!Mul) return false;
295 
296   // If there is a constant factor, it will be first.
297   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
298   if (!SC) return false;
299 
300   // Return true if the value is negative, this matches things like (-42 * V).
301   return SC->getAPInt().isNegative();
302 }
303 
304 SCEVCouldNotCompute::SCEVCouldNotCompute() :
305   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
306 
307 bool SCEVCouldNotCompute::classof(const SCEV *S) {
308   return S->getSCEVType() == scCouldNotCompute;
309 }
310 
311 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
312   FoldingSetNodeID ID;
313   ID.AddInteger(scConstant);
314   ID.AddPointer(V);
315   void *IP = nullptr;
316   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
317   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
318   UniqueSCEVs.InsertNode(S, IP);
319   return S;
320 }
321 
322 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
323   return getConstant(ConstantInt::get(getContext(), Val));
324 }
325 
326 const SCEV *
327 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
328   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
329   return getConstant(ConstantInt::get(ITy, V, isSigned));
330 }
331 
332 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
333                            unsigned SCEVTy, const SCEV *op, Type *ty)
334   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
335 
336 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
337                                    const SCEV *op, Type *ty)
338   : SCEVCastExpr(ID, scTruncate, op, ty) {
339   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
340          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
341          "Cannot truncate non-integer value!");
342 }
343 
344 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
345                                        const SCEV *op, Type *ty)
346   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
347   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
348          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
349          "Cannot zero extend non-integer value!");
350 }
351 
352 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
353                                        const SCEV *op, Type *ty)
354   : SCEVCastExpr(ID, scSignExtend, op, ty) {
355   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
356          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
357          "Cannot sign extend non-integer value!");
358 }
359 
360 void SCEVUnknown::deleted() {
361   // Clear this SCEVUnknown from various maps.
362   SE->forgetMemoizedResults(this);
363 
364   // Remove this SCEVUnknown from the uniquing map.
365   SE->UniqueSCEVs.RemoveNode(this);
366 
367   // Release the value.
368   setValPtr(nullptr);
369 }
370 
371 void SCEVUnknown::allUsesReplacedWith(Value *New) {
372   // Clear this SCEVUnknown from various maps.
373   SE->forgetMemoizedResults(this);
374 
375   // Remove this SCEVUnknown from the uniquing map.
376   SE->UniqueSCEVs.RemoveNode(this);
377 
378   // Update this SCEVUnknown to point to the new value. This is needed
379   // because there may still be outstanding SCEVs which still point to
380   // this SCEVUnknown.
381   setValPtr(New);
382 }
383 
384 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
385   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
386     if (VCE->getOpcode() == Instruction::PtrToInt)
387       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
388         if (CE->getOpcode() == Instruction::GetElementPtr &&
389             CE->getOperand(0)->isNullValue() &&
390             CE->getNumOperands() == 2)
391           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
392             if (CI->isOne()) {
393               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
394                                  ->getElementType();
395               return true;
396             }
397 
398   return false;
399 }
400 
401 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
402   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
403     if (VCE->getOpcode() == Instruction::PtrToInt)
404       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
405         if (CE->getOpcode() == Instruction::GetElementPtr &&
406             CE->getOperand(0)->isNullValue()) {
407           Type *Ty =
408             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
409           if (StructType *STy = dyn_cast<StructType>(Ty))
410             if (!STy->isPacked() &&
411                 CE->getNumOperands() == 3 &&
412                 CE->getOperand(1)->isNullValue()) {
413               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
414                 if (CI->isOne() &&
415                     STy->getNumElements() == 2 &&
416                     STy->getElementType(0)->isIntegerTy(1)) {
417                   AllocTy = STy->getElementType(1);
418                   return true;
419                 }
420             }
421         }
422 
423   return false;
424 }
425 
426 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
427   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
428     if (VCE->getOpcode() == Instruction::PtrToInt)
429       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
430         if (CE->getOpcode() == Instruction::GetElementPtr &&
431             CE->getNumOperands() == 3 &&
432             CE->getOperand(0)->isNullValue() &&
433             CE->getOperand(1)->isNullValue()) {
434           Type *Ty =
435             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
436           // Ignore vector types here so that ScalarEvolutionExpander doesn't
437           // emit getelementptrs that index into vectors.
438           if (Ty->isStructTy() || Ty->isArrayTy()) {
439             CTy = Ty;
440             FieldNo = CE->getOperand(2);
441             return true;
442           }
443         }
444 
445   return false;
446 }
447 
448 //===----------------------------------------------------------------------===//
449 //                               SCEV Utilities
450 //===----------------------------------------------------------------------===//
451 
452 namespace {
453 /// SCEVComplexityCompare - Return true if the complexity of the LHS is less
454 /// than the complexity of the RHS.  This comparator is used to canonicalize
455 /// expressions.
456 class SCEVComplexityCompare {
457   const LoopInfo *const LI;
458 public:
459   explicit SCEVComplexityCompare(const LoopInfo *li) : LI(li) {}
460 
461   // Return true or false if LHS is less than, or at least RHS, respectively.
462   bool operator()(const SCEV *LHS, const SCEV *RHS) const {
463     return compare(LHS, RHS) < 0;
464   }
465 
466   // Return negative, zero, or positive, if LHS is less than, equal to, or
467   // greater than RHS, respectively. A three-way result allows recursive
468   // comparisons to be more efficient.
469   int compare(const SCEV *LHS, const SCEV *RHS) const {
470     // Fast-path: SCEVs are uniqued so we can do a quick equality check.
471     if (LHS == RHS)
472       return 0;
473 
474     // Primarily, sort the SCEVs by their getSCEVType().
475     unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
476     if (LType != RType)
477       return (int)LType - (int)RType;
478 
479     // Aside from the getSCEVType() ordering, the particular ordering
480     // isn't very important except that it's beneficial to be consistent,
481     // so that (a + b) and (b + a) don't end up as different expressions.
482     switch (static_cast<SCEVTypes>(LType)) {
483     case scUnknown: {
484       const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
485       const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
486 
487       // Sort SCEVUnknown values with some loose heuristics. TODO: This is
488       // not as complete as it could be.
489       const Value *LV = LU->getValue(), *RV = RU->getValue();
490 
491       // Order pointer values after integer values. This helps SCEVExpander
492       // form GEPs.
493       bool LIsPointer = LV->getType()->isPointerTy(),
494         RIsPointer = RV->getType()->isPointerTy();
495       if (LIsPointer != RIsPointer)
496         return (int)LIsPointer - (int)RIsPointer;
497 
498       // Compare getValueID values.
499       unsigned LID = LV->getValueID(),
500         RID = RV->getValueID();
501       if (LID != RID)
502         return (int)LID - (int)RID;
503 
504       // Sort arguments by their position.
505       if (const Argument *LA = dyn_cast<Argument>(LV)) {
506         const Argument *RA = cast<Argument>(RV);
507         unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
508         return (int)LArgNo - (int)RArgNo;
509       }
510 
511       // For instructions, compare their loop depth, and their operand
512       // count.  This is pretty loose.
513       if (const Instruction *LInst = dyn_cast<Instruction>(LV)) {
514         const Instruction *RInst = cast<Instruction>(RV);
515 
516         // Compare loop depths.
517         const BasicBlock *LParent = LInst->getParent(),
518           *RParent = RInst->getParent();
519         if (LParent != RParent) {
520           unsigned LDepth = LI->getLoopDepth(LParent),
521             RDepth = LI->getLoopDepth(RParent);
522           if (LDepth != RDepth)
523             return (int)LDepth - (int)RDepth;
524         }
525 
526         // Compare the number of operands.
527         unsigned LNumOps = LInst->getNumOperands(),
528           RNumOps = RInst->getNumOperands();
529         return (int)LNumOps - (int)RNumOps;
530       }
531 
532       return 0;
533     }
534 
535     case scConstant: {
536       const SCEVConstant *LC = cast<SCEVConstant>(LHS);
537       const SCEVConstant *RC = cast<SCEVConstant>(RHS);
538 
539       // Compare constant values.
540       const APInt &LA = LC->getAPInt();
541       const APInt &RA = RC->getAPInt();
542       unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
543       if (LBitWidth != RBitWidth)
544         return (int)LBitWidth - (int)RBitWidth;
545       return LA.ult(RA) ? -1 : 1;
546     }
547 
548     case scAddRecExpr: {
549       const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
550       const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
551 
552       // Compare addrec loop depths.
553       const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
554       if (LLoop != RLoop) {
555         unsigned LDepth = LLoop->getLoopDepth(),
556           RDepth = RLoop->getLoopDepth();
557         if (LDepth != RDepth)
558           return (int)LDepth - (int)RDepth;
559       }
560 
561       // Addrec complexity grows with operand count.
562       unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
563       if (LNumOps != RNumOps)
564         return (int)LNumOps - (int)RNumOps;
565 
566       // Lexicographically compare.
567       for (unsigned i = 0; i != LNumOps; ++i) {
568         long X = compare(LA->getOperand(i), RA->getOperand(i));
569         if (X != 0)
570           return X;
571       }
572 
573       return 0;
574     }
575 
576     case scAddExpr:
577     case scMulExpr:
578     case scSMaxExpr:
579     case scUMaxExpr: {
580       const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
581       const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
582 
583       // Lexicographically compare n-ary expressions.
584       unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
585       if (LNumOps != RNumOps)
586         return (int)LNumOps - (int)RNumOps;
587 
588       for (unsigned i = 0; i != LNumOps; ++i) {
589         if (i >= RNumOps)
590           return 1;
591         long X = compare(LC->getOperand(i), RC->getOperand(i));
592         if (X != 0)
593           return X;
594       }
595       return (int)LNumOps - (int)RNumOps;
596     }
597 
598     case scUDivExpr: {
599       const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
600       const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
601 
602       // Lexicographically compare udiv expressions.
603       long X = compare(LC->getLHS(), RC->getLHS());
604       if (X != 0)
605         return X;
606       return compare(LC->getRHS(), RC->getRHS());
607     }
608 
609     case scTruncate:
610     case scZeroExtend:
611     case scSignExtend: {
612       const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
613       const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
614 
615       // Compare cast expressions by operand.
616       return compare(LC->getOperand(), RC->getOperand());
617     }
618 
619     case scCouldNotCompute:
620       llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
621     }
622     llvm_unreachable("Unknown SCEV kind!");
623   }
624 };
625 }  // end anonymous namespace
626 
627 /// GroupByComplexity - Given a list of SCEV objects, order them by their
628 /// complexity, and group objects of the same complexity together by value.
629 /// When this routine is finished, we know that any duplicates in the vector are
630 /// consecutive and that complexity is monotonically increasing.
631 ///
632 /// Note that we go take special precautions to ensure that we get deterministic
633 /// results from this routine.  In other words, we don't want the results of
634 /// this to depend on where the addresses of various SCEV objects happened to
635 /// land in memory.
636 ///
637 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
638                               LoopInfo *LI) {
639   if (Ops.size() < 2) return;  // Noop
640   if (Ops.size() == 2) {
641     // This is the common case, which also happens to be trivially simple.
642     // Special case it.
643     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
644     if (SCEVComplexityCompare(LI)(RHS, LHS))
645       std::swap(LHS, RHS);
646     return;
647   }
648 
649   // Do the rough sort by complexity.
650   std::stable_sort(Ops.begin(), Ops.end(), SCEVComplexityCompare(LI));
651 
652   // Now that we are sorted by complexity, group elements of the same
653   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
654   // be extremely short in practice.  Note that we take this approach because we
655   // do not want to depend on the addresses of the objects we are grouping.
656   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
657     const SCEV *S = Ops[i];
658     unsigned Complexity = S->getSCEVType();
659 
660     // If there are any objects of the same complexity and same value as this
661     // one, group them.
662     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
663       if (Ops[j] == S) { // Found a duplicate.
664         // Move it to immediately after i'th element.
665         std::swap(Ops[i+1], Ops[j]);
666         ++i;   // no need to rescan it.
667         if (i == e-2) return;  // Done!
668       }
669     }
670   }
671 }
672 
673 // Returns the size of the SCEV S.
674 static inline int sizeOfSCEV(const SCEV *S) {
675   struct FindSCEVSize {
676     int Size;
677     FindSCEVSize() : Size(0) {}
678 
679     bool follow(const SCEV *S) {
680       ++Size;
681       // Keep looking at all operands of S.
682       return true;
683     }
684     bool isDone() const {
685       return false;
686     }
687   };
688 
689   FindSCEVSize F;
690   SCEVTraversal<FindSCEVSize> ST(F);
691   ST.visitAll(S);
692   return F.Size;
693 }
694 
695 namespace {
696 
697 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
698 public:
699   // Computes the Quotient and Remainder of the division of Numerator by
700   // Denominator.
701   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
702                      const SCEV *Denominator, const SCEV **Quotient,
703                      const SCEV **Remainder) {
704     assert(Numerator && Denominator && "Uninitialized SCEV");
705 
706     SCEVDivision D(SE, Numerator, Denominator);
707 
708     // Check for the trivial case here to avoid having to check for it in the
709     // rest of the code.
710     if (Numerator == Denominator) {
711       *Quotient = D.One;
712       *Remainder = D.Zero;
713       return;
714     }
715 
716     if (Numerator->isZero()) {
717       *Quotient = D.Zero;
718       *Remainder = D.Zero;
719       return;
720     }
721 
722     // A simple case when N/1. The quotient is N.
723     if (Denominator->isOne()) {
724       *Quotient = Numerator;
725       *Remainder = D.Zero;
726       return;
727     }
728 
729     // Split the Denominator when it is a product.
730     if (const SCEVMulExpr *T = dyn_cast<const SCEVMulExpr>(Denominator)) {
731       const SCEV *Q, *R;
732       *Quotient = Numerator;
733       for (const SCEV *Op : T->operands()) {
734         divide(SE, *Quotient, Op, &Q, &R);
735         *Quotient = Q;
736 
737         // Bail out when the Numerator is not divisible by one of the terms of
738         // the Denominator.
739         if (!R->isZero()) {
740           *Quotient = D.Zero;
741           *Remainder = Numerator;
742           return;
743         }
744       }
745       *Remainder = D.Zero;
746       return;
747     }
748 
749     D.visit(Numerator);
750     *Quotient = D.Quotient;
751     *Remainder = D.Remainder;
752   }
753 
754   // Except in the trivial case described above, we do not know how to divide
755   // Expr by Denominator for the following functions with empty implementation.
756   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
757   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
758   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
759   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
760   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
761   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
762   void visitUnknown(const SCEVUnknown *Numerator) {}
763   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
764 
765   void visitConstant(const SCEVConstant *Numerator) {
766     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
767       APInt NumeratorVal = Numerator->getAPInt();
768       APInt DenominatorVal = D->getAPInt();
769       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
770       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
771 
772       if (NumeratorBW > DenominatorBW)
773         DenominatorVal = DenominatorVal.sext(NumeratorBW);
774       else if (NumeratorBW < DenominatorBW)
775         NumeratorVal = NumeratorVal.sext(DenominatorBW);
776 
777       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
778       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
779       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
780       Quotient = SE.getConstant(QuotientVal);
781       Remainder = SE.getConstant(RemainderVal);
782       return;
783     }
784   }
785 
786   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
787     const SCEV *StartQ, *StartR, *StepQ, *StepR;
788     if (!Numerator->isAffine())
789       return cannotDivide(Numerator);
790     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
791     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
792     // Bail out if the types do not match.
793     Type *Ty = Denominator->getType();
794     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
795         Ty != StepQ->getType() || Ty != StepR->getType())
796       return cannotDivide(Numerator);
797     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
798                                 Numerator->getNoWrapFlags());
799     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
800                                  Numerator->getNoWrapFlags());
801   }
802 
803   void visitAddExpr(const SCEVAddExpr *Numerator) {
804     SmallVector<const SCEV *, 2> Qs, Rs;
805     Type *Ty = Denominator->getType();
806 
807     for (const SCEV *Op : Numerator->operands()) {
808       const SCEV *Q, *R;
809       divide(SE, Op, Denominator, &Q, &R);
810 
811       // Bail out if types do not match.
812       if (Ty != Q->getType() || Ty != R->getType())
813         return cannotDivide(Numerator);
814 
815       Qs.push_back(Q);
816       Rs.push_back(R);
817     }
818 
819     if (Qs.size() == 1) {
820       Quotient = Qs[0];
821       Remainder = Rs[0];
822       return;
823     }
824 
825     Quotient = SE.getAddExpr(Qs);
826     Remainder = SE.getAddExpr(Rs);
827   }
828 
829   void visitMulExpr(const SCEVMulExpr *Numerator) {
830     SmallVector<const SCEV *, 2> Qs;
831     Type *Ty = Denominator->getType();
832 
833     bool FoundDenominatorTerm = false;
834     for (const SCEV *Op : Numerator->operands()) {
835       // Bail out if types do not match.
836       if (Ty != Op->getType())
837         return cannotDivide(Numerator);
838 
839       if (FoundDenominatorTerm) {
840         Qs.push_back(Op);
841         continue;
842       }
843 
844       // Check whether Denominator divides one of the product operands.
845       const SCEV *Q, *R;
846       divide(SE, Op, Denominator, &Q, &R);
847       if (!R->isZero()) {
848         Qs.push_back(Op);
849         continue;
850       }
851 
852       // Bail out if types do not match.
853       if (Ty != Q->getType())
854         return cannotDivide(Numerator);
855 
856       FoundDenominatorTerm = true;
857       Qs.push_back(Q);
858     }
859 
860     if (FoundDenominatorTerm) {
861       Remainder = Zero;
862       if (Qs.size() == 1)
863         Quotient = Qs[0];
864       else
865         Quotient = SE.getMulExpr(Qs);
866       return;
867     }
868 
869     if (!isa<SCEVUnknown>(Denominator))
870       return cannotDivide(Numerator);
871 
872     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
873     ValueToValueMap RewriteMap;
874     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
875         cast<SCEVConstant>(Zero)->getValue();
876     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
877 
878     if (Remainder->isZero()) {
879       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
880       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
881           cast<SCEVConstant>(One)->getValue();
882       Quotient =
883           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
884       return;
885     }
886 
887     // Quotient is (Numerator - Remainder) divided by Denominator.
888     const SCEV *Q, *R;
889     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
890     // This SCEV does not seem to simplify: fail the division here.
891     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
892       return cannotDivide(Numerator);
893     divide(SE, Diff, Denominator, &Q, &R);
894     if (R != Zero)
895       return cannotDivide(Numerator);
896     Quotient = Q;
897   }
898 
899 private:
900   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
901                const SCEV *Denominator)
902       : SE(S), Denominator(Denominator) {
903     Zero = SE.getZero(Denominator->getType());
904     One = SE.getOne(Denominator->getType());
905 
906     // We generally do not know how to divide Expr by Denominator. We
907     // initialize the division to a "cannot divide" state to simplify the rest
908     // of the code.
909     cannotDivide(Numerator);
910   }
911 
912   // Convenience function for giving up on the division. We set the quotient to
913   // be equal to zero and the remainder to be equal to the numerator.
914   void cannotDivide(const SCEV *Numerator) {
915     Quotient = Zero;
916     Remainder = Numerator;
917   }
918 
919   ScalarEvolution &SE;
920   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
921 };
922 
923 }
924 
925 //===----------------------------------------------------------------------===//
926 //                      Simple SCEV method implementations
927 //===----------------------------------------------------------------------===//
928 
929 /// BinomialCoefficient - Compute BC(It, K).  The result has width W.
930 /// Assume, K > 0.
931 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
932                                        ScalarEvolution &SE,
933                                        Type *ResultTy) {
934   // Handle the simplest case efficiently.
935   if (K == 1)
936     return SE.getTruncateOrZeroExtend(It, ResultTy);
937 
938   // We are using the following formula for BC(It, K):
939   //
940   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
941   //
942   // Suppose, W is the bitwidth of the return value.  We must be prepared for
943   // overflow.  Hence, we must assure that the result of our computation is
944   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
945   // safe in modular arithmetic.
946   //
947   // However, this code doesn't use exactly that formula; the formula it uses
948   // is something like the following, where T is the number of factors of 2 in
949   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
950   // exponentiation:
951   //
952   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
953   //
954   // This formula is trivially equivalent to the previous formula.  However,
955   // this formula can be implemented much more efficiently.  The trick is that
956   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
957   // arithmetic.  To do exact division in modular arithmetic, all we have
958   // to do is multiply by the inverse.  Therefore, this step can be done at
959   // width W.
960   //
961   // The next issue is how to safely do the division by 2^T.  The way this
962   // is done is by doing the multiplication step at a width of at least W + T
963   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
964   // when we perform the division by 2^T (which is equivalent to a right shift
965   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
966   // truncated out after the division by 2^T.
967   //
968   // In comparison to just directly using the first formula, this technique
969   // is much more efficient; using the first formula requires W * K bits,
970   // but this formula less than W + K bits. Also, the first formula requires
971   // a division step, whereas this formula only requires multiplies and shifts.
972   //
973   // It doesn't matter whether the subtraction step is done in the calculation
974   // width or the input iteration count's width; if the subtraction overflows,
975   // the result must be zero anyway.  We prefer here to do it in the width of
976   // the induction variable because it helps a lot for certain cases; CodeGen
977   // isn't smart enough to ignore the overflow, which leads to much less
978   // efficient code if the width of the subtraction is wider than the native
979   // register width.
980   //
981   // (It's possible to not widen at all by pulling out factors of 2 before
982   // the multiplication; for example, K=2 can be calculated as
983   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
984   // extra arithmetic, so it's not an obvious win, and it gets
985   // much more complicated for K > 3.)
986 
987   // Protection from insane SCEVs; this bound is conservative,
988   // but it probably doesn't matter.
989   if (K > 1000)
990     return SE.getCouldNotCompute();
991 
992   unsigned W = SE.getTypeSizeInBits(ResultTy);
993 
994   // Calculate K! / 2^T and T; we divide out the factors of two before
995   // multiplying for calculating K! / 2^T to avoid overflow.
996   // Other overflow doesn't matter because we only care about the bottom
997   // W bits of the result.
998   APInt OddFactorial(W, 1);
999   unsigned T = 1;
1000   for (unsigned i = 3; i <= K; ++i) {
1001     APInt Mult(W, i);
1002     unsigned TwoFactors = Mult.countTrailingZeros();
1003     T += TwoFactors;
1004     Mult = Mult.lshr(TwoFactors);
1005     OddFactorial *= Mult;
1006   }
1007 
1008   // We need at least W + T bits for the multiplication step
1009   unsigned CalculationBits = W + T;
1010 
1011   // Calculate 2^T, at width T+W.
1012   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1013 
1014   // Calculate the multiplicative inverse of K! / 2^T;
1015   // this multiplication factor will perform the exact division by
1016   // K! / 2^T.
1017   APInt Mod = APInt::getSignedMinValue(W+1);
1018   APInt MultiplyFactor = OddFactorial.zext(W+1);
1019   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1020   MultiplyFactor = MultiplyFactor.trunc(W);
1021 
1022   // Calculate the product, at width T+W
1023   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1024                                                       CalculationBits);
1025   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1026   for (unsigned i = 1; i != K; ++i) {
1027     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1028     Dividend = SE.getMulExpr(Dividend,
1029                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1030   }
1031 
1032   // Divide by 2^T
1033   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1034 
1035   // Truncate the result, and divide by K! / 2^T.
1036 
1037   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1038                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1039 }
1040 
1041 /// evaluateAtIteration - Return the value of this chain of recurrences at
1042 /// the specified iteration number.  We can evaluate this recurrence by
1043 /// multiplying each element in the chain by the binomial coefficient
1044 /// corresponding to it.  In other words, we can evaluate {A,+,B,+,C,+,D} as:
1045 ///
1046 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1047 ///
1048 /// where BC(It, k) stands for binomial coefficient.
1049 ///
1050 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1051                                                 ScalarEvolution &SE) const {
1052   const SCEV *Result = getStart();
1053   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1054     // The computation is correct in the face of overflow provided that the
1055     // multiplication is performed _after_ the evaluation of the binomial
1056     // coefficient.
1057     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1058     if (isa<SCEVCouldNotCompute>(Coeff))
1059       return Coeff;
1060 
1061     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1062   }
1063   return Result;
1064 }
1065 
1066 //===----------------------------------------------------------------------===//
1067 //                    SCEV Expression folder implementations
1068 //===----------------------------------------------------------------------===//
1069 
1070 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1071                                              Type *Ty) {
1072   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1073          "This is not a truncating conversion!");
1074   assert(isSCEVable(Ty) &&
1075          "This is not a conversion to a SCEVable type!");
1076   Ty = getEffectiveSCEVType(Ty);
1077 
1078   FoldingSetNodeID ID;
1079   ID.AddInteger(scTruncate);
1080   ID.AddPointer(Op);
1081   ID.AddPointer(Ty);
1082   void *IP = nullptr;
1083   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1084 
1085   // Fold if the operand is constant.
1086   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1087     return getConstant(
1088       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1089 
1090   // trunc(trunc(x)) --> trunc(x)
1091   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1092     return getTruncateExpr(ST->getOperand(), Ty);
1093 
1094   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1095   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1096     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1097 
1098   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1099   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1100     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1101 
1102   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1103   // eliminate all the truncates, or we replace other casts with truncates.
1104   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1105     SmallVector<const SCEV *, 4> Operands;
1106     bool hasTrunc = false;
1107     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1108       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1109       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1110         hasTrunc = isa<SCEVTruncateExpr>(S);
1111       Operands.push_back(S);
1112     }
1113     if (!hasTrunc)
1114       return getAddExpr(Operands);
1115     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1116   }
1117 
1118   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1119   // eliminate all the truncates, or we replace other casts with truncates.
1120   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1121     SmallVector<const SCEV *, 4> Operands;
1122     bool hasTrunc = false;
1123     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1124       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1125       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1126         hasTrunc = isa<SCEVTruncateExpr>(S);
1127       Operands.push_back(S);
1128     }
1129     if (!hasTrunc)
1130       return getMulExpr(Operands);
1131     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1132   }
1133 
1134   // If the input value is a chrec scev, truncate the chrec's operands.
1135   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1136     SmallVector<const SCEV *, 4> Operands;
1137     for (const SCEV *Op : AddRec->operands())
1138       Operands.push_back(getTruncateExpr(Op, Ty));
1139     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1140   }
1141 
1142   // The cast wasn't folded; create an explicit cast node. We can reuse
1143   // the existing insert position since if we get here, we won't have
1144   // made any changes which would invalidate it.
1145   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1146                                                  Op, Ty);
1147   UniqueSCEVs.InsertNode(S, IP);
1148   return S;
1149 }
1150 
1151 // Get the limit of a recurrence such that incrementing by Step cannot cause
1152 // signed overflow as long as the value of the recurrence within the
1153 // loop does not exceed this limit before incrementing.
1154 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1155                                                  ICmpInst::Predicate *Pred,
1156                                                  ScalarEvolution *SE) {
1157   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1158   if (SE->isKnownPositive(Step)) {
1159     *Pred = ICmpInst::ICMP_SLT;
1160     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1161                            SE->getSignedRange(Step).getSignedMax());
1162   }
1163   if (SE->isKnownNegative(Step)) {
1164     *Pred = ICmpInst::ICMP_SGT;
1165     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1166                            SE->getSignedRange(Step).getSignedMin());
1167   }
1168   return nullptr;
1169 }
1170 
1171 // Get the limit of a recurrence such that incrementing by Step cannot cause
1172 // unsigned overflow as long as the value of the recurrence within the loop does
1173 // not exceed this limit before incrementing.
1174 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1175                                                    ICmpInst::Predicate *Pred,
1176                                                    ScalarEvolution *SE) {
1177   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1178   *Pred = ICmpInst::ICMP_ULT;
1179 
1180   return SE->getConstant(APInt::getMinValue(BitWidth) -
1181                          SE->getUnsignedRange(Step).getUnsignedMax());
1182 }
1183 
1184 namespace {
1185 
1186 struct ExtendOpTraitsBase {
1187   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1188 };
1189 
1190 // Used to make code generic over signed and unsigned overflow.
1191 template <typename ExtendOp> struct ExtendOpTraits {
1192   // Members present:
1193   //
1194   // static const SCEV::NoWrapFlags WrapType;
1195   //
1196   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1197   //
1198   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1199   //                                           ICmpInst::Predicate *Pred,
1200   //                                           ScalarEvolution *SE);
1201 };
1202 
1203 template <>
1204 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1205   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1206 
1207   static const GetExtendExprTy GetExtendExpr;
1208 
1209   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1210                                              ICmpInst::Predicate *Pred,
1211                                              ScalarEvolution *SE) {
1212     return getSignedOverflowLimitForStep(Step, Pred, SE);
1213   }
1214 };
1215 
1216 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1217     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1218 
1219 template <>
1220 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1221   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1222 
1223   static const GetExtendExprTy GetExtendExpr;
1224 
1225   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1226                                              ICmpInst::Predicate *Pred,
1227                                              ScalarEvolution *SE) {
1228     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1229   }
1230 };
1231 
1232 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1233     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1234 }
1235 
1236 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1237 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1238 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1239 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1240 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1241 // expression "Step + sext/zext(PreIncAR)" is congruent with
1242 // "sext/zext(PostIncAR)"
1243 template <typename ExtendOpTy>
1244 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1245                                         ScalarEvolution *SE) {
1246   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1247   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1248 
1249   const Loop *L = AR->getLoop();
1250   const SCEV *Start = AR->getStart();
1251   const SCEV *Step = AR->getStepRecurrence(*SE);
1252 
1253   // Check for a simple looking step prior to loop entry.
1254   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1255   if (!SA)
1256     return nullptr;
1257 
1258   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1259   // subtraction is expensive. For this purpose, perform a quick and dirty
1260   // difference, by checking for Step in the operand list.
1261   SmallVector<const SCEV *, 4> DiffOps;
1262   for (const SCEV *Op : SA->operands())
1263     if (Op != Step)
1264       DiffOps.push_back(Op);
1265 
1266   if (DiffOps.size() == SA->getNumOperands())
1267     return nullptr;
1268 
1269   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1270   // `Step`:
1271 
1272   // 1. NSW/NUW flags on the step increment.
1273   auto PreStartFlags =
1274     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1275   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1276   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1277       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1278 
1279   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1280   // "S+X does not sign/unsign-overflow".
1281   //
1282 
1283   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1284   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1285       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1286     return PreStart;
1287 
1288   // 2. Direct overflow check on the step operation's expression.
1289   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1290   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1291   const SCEV *OperandExtendedStart =
1292       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1293                      (SE->*GetExtendExpr)(Step, WideTy));
1294   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1295     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1296       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1297       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1298       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1299       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1300     }
1301     return PreStart;
1302   }
1303 
1304   // 3. Loop precondition.
1305   ICmpInst::Predicate Pred;
1306   const SCEV *OverflowLimit =
1307       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1308 
1309   if (OverflowLimit &&
1310       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1311     return PreStart;
1312 
1313   return nullptr;
1314 }
1315 
1316 // Get the normalized zero or sign extended expression for this AddRec's Start.
1317 template <typename ExtendOpTy>
1318 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1319                                         ScalarEvolution *SE) {
1320   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1321 
1322   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1323   if (!PreStart)
1324     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1325 
1326   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1327                         (SE->*GetExtendExpr)(PreStart, Ty));
1328 }
1329 
1330 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1331 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1332 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1333 //
1334 // Formally:
1335 //
1336 //     {S,+,X} == {S-T,+,X} + T
1337 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1338 //
1339 // If ({S-T,+,X} + T) does not overflow  ... (1)
1340 //
1341 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1342 //
1343 // If {S-T,+,X} does not overflow  ... (2)
1344 //
1345 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1346 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1347 //
1348 // If (S-T)+T does not overflow  ... (3)
1349 //
1350 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1351 //      == {Ext(S),+,Ext(X)} == LHS
1352 //
1353 // Thus, if (1), (2) and (3) are true for some T, then
1354 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1355 //
1356 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1357 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1358 // to check for (1) and (2).
1359 //
1360 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1361 // is `Delta` (defined below).
1362 //
1363 template <typename ExtendOpTy>
1364 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1365                                                 const SCEV *Step,
1366                                                 const Loop *L) {
1367   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1368 
1369   // We restrict `Start` to a constant to prevent SCEV from spending too much
1370   // time here.  It is correct (but more expensive) to continue with a
1371   // non-constant `Start` and do a general SCEV subtraction to compute
1372   // `PreStart` below.
1373   //
1374   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1375   if (!StartC)
1376     return false;
1377 
1378   APInt StartAI = StartC->getAPInt();
1379 
1380   for (unsigned Delta : {-2, -1, 1, 2}) {
1381     const SCEV *PreStart = getConstant(StartAI - Delta);
1382 
1383     FoldingSetNodeID ID;
1384     ID.AddInteger(scAddRecExpr);
1385     ID.AddPointer(PreStart);
1386     ID.AddPointer(Step);
1387     ID.AddPointer(L);
1388     void *IP = nullptr;
1389     const auto *PreAR =
1390       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1391 
1392     // Give up if we don't already have the add recurrence we need because
1393     // actually constructing an add recurrence is relatively expensive.
1394     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1395       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1396       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1397       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1398           DeltaS, &Pred, this);
1399       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1400         return true;
1401     }
1402   }
1403 
1404   return false;
1405 }
1406 
1407 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1408                                                Type *Ty) {
1409   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1410          "This is not an extending conversion!");
1411   assert(isSCEVable(Ty) &&
1412          "This is not a conversion to a SCEVable type!");
1413   Ty = getEffectiveSCEVType(Ty);
1414 
1415   // Fold if the operand is constant.
1416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1417     return getConstant(
1418       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1419 
1420   // zext(zext(x)) --> zext(x)
1421   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1422     return getZeroExtendExpr(SZ->getOperand(), Ty);
1423 
1424   // Before doing any expensive analysis, check to see if we've already
1425   // computed a SCEV for this Op and Ty.
1426   FoldingSetNodeID ID;
1427   ID.AddInteger(scZeroExtend);
1428   ID.AddPointer(Op);
1429   ID.AddPointer(Ty);
1430   void *IP = nullptr;
1431   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1432 
1433   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1434   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1435     // It's possible the bits taken off by the truncate were all zero bits. If
1436     // so, we should be able to simplify this further.
1437     const SCEV *X = ST->getOperand();
1438     ConstantRange CR = getUnsignedRange(X);
1439     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1440     unsigned NewBits = getTypeSizeInBits(Ty);
1441     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1442             CR.zextOrTrunc(NewBits)))
1443       return getTruncateOrZeroExtend(X, Ty);
1444   }
1445 
1446   // If the input value is a chrec scev, and we can prove that the value
1447   // did not overflow the old, smaller, value, we can zero extend all of the
1448   // operands (often constants).  This allows analysis of something like
1449   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1450   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1451     if (AR->isAffine()) {
1452       const SCEV *Start = AR->getStart();
1453       const SCEV *Step = AR->getStepRecurrence(*this);
1454       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1455       const Loop *L = AR->getLoop();
1456 
1457       if (!AR->hasNoUnsignedWrap()) {
1458         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1459         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1460       }
1461 
1462       // If we have special knowledge that this addrec won't overflow,
1463       // we don't need to do any further analysis.
1464       if (AR->hasNoUnsignedWrap())
1465         return getAddRecExpr(
1466             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1467             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1468 
1469       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1470       // Note that this serves two purposes: It filters out loops that are
1471       // simply not analyzable, and it covers the case where this code is
1472       // being called from within backedge-taken count analysis, such that
1473       // attempting to ask for the backedge-taken count would likely result
1474       // in infinite recursion. In the later case, the analysis code will
1475       // cope with a conservative value, and it will take care to purge
1476       // that value once it has finished.
1477       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1478       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1479         // Manually compute the final value for AR, checking for
1480         // overflow.
1481 
1482         // Check whether the backedge-taken count can be losslessly casted to
1483         // the addrec's type. The count is always unsigned.
1484         const SCEV *CastedMaxBECount =
1485           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1486         const SCEV *RecastedMaxBECount =
1487           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1488         if (MaxBECount == RecastedMaxBECount) {
1489           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1490           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1491           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1492           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1493           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1494           const SCEV *WideMaxBECount =
1495             getZeroExtendExpr(CastedMaxBECount, WideTy);
1496           const SCEV *OperandExtendedAdd =
1497             getAddExpr(WideStart,
1498                        getMulExpr(WideMaxBECount,
1499                                   getZeroExtendExpr(Step, WideTy)));
1500           if (ZAdd == OperandExtendedAdd) {
1501             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1502             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1503             // Return the expression with the addrec on the outside.
1504             return getAddRecExpr(
1505                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1506                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1507           }
1508           // Similar to above, only this time treat the step value as signed.
1509           // This covers loops that count down.
1510           OperandExtendedAdd =
1511             getAddExpr(WideStart,
1512                        getMulExpr(WideMaxBECount,
1513                                   getSignExtendExpr(Step, WideTy)));
1514           if (ZAdd == OperandExtendedAdd) {
1515             // Cache knowledge of AR NW, which is propagated to this AddRec.
1516             // Negative step causes unsigned wrap, but it still can't self-wrap.
1517             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1518             // Return the expression with the addrec on the outside.
1519             return getAddRecExpr(
1520                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1521                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1522           }
1523         }
1524       }
1525 
1526       // Normally, in the cases we can prove no-overflow via a
1527       // backedge guarding condition, we can also compute a backedge
1528       // taken count for the loop.  The exceptions are assumptions and
1529       // guards present in the loop -- SCEV is not great at exploiting
1530       // these to compute max backedge taken counts, but can still use
1531       // these to prove lack of overflow.  Use this fact to avoid
1532       // doing extra work that may not pay off.
1533       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1534           !AC.assumptions().empty()) {
1535         // If the backedge is guarded by a comparison with the pre-inc
1536         // value the addrec is safe. Also, if the entry is guarded by
1537         // a comparison with the start value and the backedge is
1538         // guarded by a comparison with the post-inc value, the addrec
1539         // is safe.
1540         if (isKnownPositive(Step)) {
1541           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1542                                       getUnsignedRange(Step).getUnsignedMax());
1543           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1544               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1545                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1546                                            AR->getPostIncExpr(*this), N))) {
1547             // Cache knowledge of AR NUW, which is propagated to this
1548             // AddRec.
1549             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1550             // Return the expression with the addrec on the outside.
1551             return getAddRecExpr(
1552                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1553                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1554           }
1555         } else if (isKnownNegative(Step)) {
1556           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1557                                       getSignedRange(Step).getSignedMin());
1558           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1559               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1560                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1561                                            AR->getPostIncExpr(*this), N))) {
1562             // Cache knowledge of AR NW, which is propagated to this
1563             // AddRec.  Negative step causes unsigned wrap, but it
1564             // still can't self-wrap.
1565             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1566             // Return the expression with the addrec on the outside.
1567             return getAddRecExpr(
1568                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1569                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1570           }
1571         }
1572       }
1573 
1574       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1575         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1576         return getAddRecExpr(
1577             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1578             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1579       }
1580     }
1581 
1582   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1583     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1584     if (SA->hasNoUnsignedWrap()) {
1585       // If the addition does not unsign overflow then we can, by definition,
1586       // commute the zero extension with the addition operation.
1587       SmallVector<const SCEV *, 4> Ops;
1588       for (const auto *Op : SA->operands())
1589         Ops.push_back(getZeroExtendExpr(Op, Ty));
1590       return getAddExpr(Ops, SCEV::FlagNUW);
1591     }
1592   }
1593 
1594   // The cast wasn't folded; create an explicit cast node.
1595   // Recompute the insert position, as it may have been invalidated.
1596   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1597   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1598                                                    Op, Ty);
1599   UniqueSCEVs.InsertNode(S, IP);
1600   return S;
1601 }
1602 
1603 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1604                                                Type *Ty) {
1605   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1606          "This is not an extending conversion!");
1607   assert(isSCEVable(Ty) &&
1608          "This is not a conversion to a SCEVable type!");
1609   Ty = getEffectiveSCEVType(Ty);
1610 
1611   // Fold if the operand is constant.
1612   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1613     return getConstant(
1614       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1615 
1616   // sext(sext(x)) --> sext(x)
1617   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1618     return getSignExtendExpr(SS->getOperand(), Ty);
1619 
1620   // sext(zext(x)) --> zext(x)
1621   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1622     return getZeroExtendExpr(SZ->getOperand(), Ty);
1623 
1624   // Before doing any expensive analysis, check to see if we've already
1625   // computed a SCEV for this Op and Ty.
1626   FoldingSetNodeID ID;
1627   ID.AddInteger(scSignExtend);
1628   ID.AddPointer(Op);
1629   ID.AddPointer(Ty);
1630   void *IP = nullptr;
1631   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1632 
1633   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1634   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1635     // It's possible the bits taken off by the truncate were all sign bits. If
1636     // so, we should be able to simplify this further.
1637     const SCEV *X = ST->getOperand();
1638     ConstantRange CR = getSignedRange(X);
1639     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1640     unsigned NewBits = getTypeSizeInBits(Ty);
1641     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1642             CR.sextOrTrunc(NewBits)))
1643       return getTruncateOrSignExtend(X, Ty);
1644   }
1645 
1646   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1647   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1648     if (SA->getNumOperands() == 2) {
1649       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1650       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1651       if (SMul && SC1) {
1652         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1653           const APInt &C1 = SC1->getAPInt();
1654           const APInt &C2 = SC2->getAPInt();
1655           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1656               C2.ugt(C1) && C2.isPowerOf2())
1657             return getAddExpr(getSignExtendExpr(SC1, Ty),
1658                               getSignExtendExpr(SMul, Ty));
1659         }
1660       }
1661     }
1662 
1663     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1664     if (SA->hasNoSignedWrap()) {
1665       // If the addition does not sign overflow then we can, by definition,
1666       // commute the sign extension with the addition operation.
1667       SmallVector<const SCEV *, 4> Ops;
1668       for (const auto *Op : SA->operands())
1669         Ops.push_back(getSignExtendExpr(Op, Ty));
1670       return getAddExpr(Ops, SCEV::FlagNSW);
1671     }
1672   }
1673   // If the input value is a chrec scev, and we can prove that the value
1674   // did not overflow the old, smaller, value, we can sign extend all of the
1675   // operands (often constants).  This allows analysis of something like
1676   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1677   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1678     if (AR->isAffine()) {
1679       const SCEV *Start = AR->getStart();
1680       const SCEV *Step = AR->getStepRecurrence(*this);
1681       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1682       const Loop *L = AR->getLoop();
1683 
1684       if (!AR->hasNoSignedWrap()) {
1685         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1686         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1687       }
1688 
1689       // If we have special knowledge that this addrec won't overflow,
1690       // we don't need to do any further analysis.
1691       if (AR->hasNoSignedWrap())
1692         return getAddRecExpr(
1693             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1694             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1695 
1696       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1697       // Note that this serves two purposes: It filters out loops that are
1698       // simply not analyzable, and it covers the case where this code is
1699       // being called from within backedge-taken count analysis, such that
1700       // attempting to ask for the backedge-taken count would likely result
1701       // in infinite recursion. In the later case, the analysis code will
1702       // cope with a conservative value, and it will take care to purge
1703       // that value once it has finished.
1704       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1705       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1706         // Manually compute the final value for AR, checking for
1707         // overflow.
1708 
1709         // Check whether the backedge-taken count can be losslessly casted to
1710         // the addrec's type. The count is always unsigned.
1711         const SCEV *CastedMaxBECount =
1712           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1713         const SCEV *RecastedMaxBECount =
1714           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1715         if (MaxBECount == RecastedMaxBECount) {
1716           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1717           // Check whether Start+Step*MaxBECount has no signed overflow.
1718           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1719           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1720           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1721           const SCEV *WideMaxBECount =
1722             getZeroExtendExpr(CastedMaxBECount, WideTy);
1723           const SCEV *OperandExtendedAdd =
1724             getAddExpr(WideStart,
1725                        getMulExpr(WideMaxBECount,
1726                                   getSignExtendExpr(Step, WideTy)));
1727           if (SAdd == OperandExtendedAdd) {
1728             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1729             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1730             // Return the expression with the addrec on the outside.
1731             return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1733                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1734           }
1735           // Similar to above, only this time treat the step value as unsigned.
1736           // This covers loops that count up with an unsigned step.
1737           OperandExtendedAdd =
1738             getAddExpr(WideStart,
1739                        getMulExpr(WideMaxBECount,
1740                                   getZeroExtendExpr(Step, WideTy)));
1741           if (SAdd == OperandExtendedAdd) {
1742             // If AR wraps around then
1743             //
1744             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1745             // => SAdd != OperandExtendedAdd
1746             //
1747             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1748             // (SAdd == OperandExtendedAdd => AR is NW)
1749 
1750             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1751 
1752             // Return the expression with the addrec on the outside.
1753             return getAddRecExpr(
1754                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1755                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1756           }
1757         }
1758       }
1759 
1760       // Normally, in the cases we can prove no-overflow via a
1761       // backedge guarding condition, we can also compute a backedge
1762       // taken count for the loop.  The exceptions are assumptions and
1763       // guards present in the loop -- SCEV is not great at exploiting
1764       // these to compute max backedge taken counts, but can still use
1765       // these to prove lack of overflow.  Use this fact to avoid
1766       // doing extra work that may not pay off.
1767 
1768       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1769           !AC.assumptions().empty()) {
1770         // If the backedge is guarded by a comparison with the pre-inc
1771         // value the addrec is safe. Also, if the entry is guarded by
1772         // a comparison with the start value and the backedge is
1773         // guarded by a comparison with the post-inc value, the addrec
1774         // is safe.
1775         ICmpInst::Predicate Pred;
1776         const SCEV *OverflowLimit =
1777             getSignedOverflowLimitForStep(Step, &Pred, this);
1778         if (OverflowLimit &&
1779             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1780              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1781               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1782                                           OverflowLimit)))) {
1783           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1784           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1785           return getAddRecExpr(
1786               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1787               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1788         }
1789       }
1790 
1791       // If Start and Step are constants, check if we can apply this
1792       // transformation:
1793       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1794       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1795       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1796       if (SC1 && SC2) {
1797         const APInt &C1 = SC1->getAPInt();
1798         const APInt &C2 = SC2->getAPInt();
1799         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1800             C2.isPowerOf2()) {
1801           Start = getSignExtendExpr(Start, Ty);
1802           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1803                                             AR->getNoWrapFlags());
1804           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1805         }
1806       }
1807 
1808       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1809         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1810         return getAddRecExpr(
1811             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1812             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1813       }
1814     }
1815 
1816   // If the input value is provably positive and we could not simplify
1817   // away the sext build a zext instead.
1818   if (isKnownNonNegative(Op))
1819     return getZeroExtendExpr(Op, Ty);
1820 
1821   // The cast wasn't folded; create an explicit cast node.
1822   // Recompute the insert position, as it may have been invalidated.
1823   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1824   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1825                                                    Op, Ty);
1826   UniqueSCEVs.InsertNode(S, IP);
1827   return S;
1828 }
1829 
1830 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1831 /// unspecified bits out to the given type.
1832 ///
1833 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1834                                               Type *Ty) {
1835   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1836          "This is not an extending conversion!");
1837   assert(isSCEVable(Ty) &&
1838          "This is not a conversion to a SCEVable type!");
1839   Ty = getEffectiveSCEVType(Ty);
1840 
1841   // Sign-extend negative constants.
1842   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1843     if (SC->getAPInt().isNegative())
1844       return getSignExtendExpr(Op, Ty);
1845 
1846   // Peel off a truncate cast.
1847   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1848     const SCEV *NewOp = T->getOperand();
1849     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1850       return getAnyExtendExpr(NewOp, Ty);
1851     return getTruncateOrNoop(NewOp, Ty);
1852   }
1853 
1854   // Next try a zext cast. If the cast is folded, use it.
1855   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1856   if (!isa<SCEVZeroExtendExpr>(ZExt))
1857     return ZExt;
1858 
1859   // Next try a sext cast. If the cast is folded, use it.
1860   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1861   if (!isa<SCEVSignExtendExpr>(SExt))
1862     return SExt;
1863 
1864   // Force the cast to be folded into the operands of an addrec.
1865   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1866     SmallVector<const SCEV *, 4> Ops;
1867     for (const SCEV *Op : AR->operands())
1868       Ops.push_back(getAnyExtendExpr(Op, Ty));
1869     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1870   }
1871 
1872   // If the expression is obviously signed, use the sext cast value.
1873   if (isa<SCEVSMaxExpr>(Op))
1874     return SExt;
1875 
1876   // Absent any other information, use the zext cast value.
1877   return ZExt;
1878 }
1879 
1880 /// CollectAddOperandsWithScales - Process the given Ops list, which is
1881 /// a list of operands to be added under the given scale, update the given
1882 /// map. This is a helper function for getAddRecExpr. As an example of
1883 /// what it does, given a sequence of operands that would form an add
1884 /// expression like this:
1885 ///
1886 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1887 ///
1888 /// where A and B are constants, update the map with these values:
1889 ///
1890 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1891 ///
1892 /// and add 13 + A*B*29 to AccumulatedConstant.
1893 /// This will allow getAddRecExpr to produce this:
1894 ///
1895 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1896 ///
1897 /// This form often exposes folding opportunities that are hidden in
1898 /// the original operand list.
1899 ///
1900 /// Return true iff it appears that any interesting folding opportunities
1901 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1902 /// the common case where no interesting opportunities are present, and
1903 /// is also used as a check to avoid infinite recursion.
1904 ///
1905 static bool
1906 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1907                              SmallVectorImpl<const SCEV *> &NewOps,
1908                              APInt &AccumulatedConstant,
1909                              const SCEV *const *Ops, size_t NumOperands,
1910                              const APInt &Scale,
1911                              ScalarEvolution &SE) {
1912   bool Interesting = false;
1913 
1914   // Iterate over the add operands. They are sorted, with constants first.
1915   unsigned i = 0;
1916   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1917     ++i;
1918     // Pull a buried constant out to the outside.
1919     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1920       Interesting = true;
1921     AccumulatedConstant += Scale * C->getAPInt();
1922   }
1923 
1924   // Next comes everything else. We're especially interested in multiplies
1925   // here, but they're in the middle, so just visit the rest with one loop.
1926   for (; i != NumOperands; ++i) {
1927     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1928     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1929       APInt NewScale =
1930           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
1931       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
1932         // A multiplication of a constant with another add; recurse.
1933         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
1934         Interesting |=
1935           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
1936                                        Add->op_begin(), Add->getNumOperands(),
1937                                        NewScale, SE);
1938       } else {
1939         // A multiplication of a constant with some other value. Update
1940         // the map.
1941         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
1942         const SCEV *Key = SE.getMulExpr(MulOps);
1943         auto Pair = M.insert({Key, NewScale});
1944         if (Pair.second) {
1945           NewOps.push_back(Pair.first->first);
1946         } else {
1947           Pair.first->second += NewScale;
1948           // The map already had an entry for this value, which may indicate
1949           // a folding opportunity.
1950           Interesting = true;
1951         }
1952       }
1953     } else {
1954       // An ordinary operand. Update the map.
1955       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
1956           M.insert({Ops[i], Scale});
1957       if (Pair.second) {
1958         NewOps.push_back(Pair.first->first);
1959       } else {
1960         Pair.first->second += Scale;
1961         // The map already had an entry for this value, which may indicate
1962         // a folding opportunity.
1963         Interesting = true;
1964       }
1965     }
1966   }
1967 
1968   return Interesting;
1969 }
1970 
1971 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
1972 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
1973 // can't-overflow flags for the operation if possible.
1974 static SCEV::NoWrapFlags
1975 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
1976                       const SmallVectorImpl<const SCEV *> &Ops,
1977                       SCEV::NoWrapFlags Flags) {
1978   using namespace std::placeholders;
1979   typedef OverflowingBinaryOperator OBO;
1980 
1981   bool CanAnalyze =
1982       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
1983   (void)CanAnalyze;
1984   assert(CanAnalyze && "don't call from other places!");
1985 
1986   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
1987   SCEV::NoWrapFlags SignOrUnsignWrap =
1988       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
1989 
1990   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
1991   auto IsKnownNonNegative = [&](const SCEV *S) {
1992     return SE->isKnownNonNegative(S);
1993   };
1994 
1995   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
1996     Flags =
1997         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
1998 
1999   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2000 
2001   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2002       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2003 
2004     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2005     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2006 
2007     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2008     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2009       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2010           Instruction::Add, C, OBO::NoSignedWrap);
2011       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2012         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2013     }
2014     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2015       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2016           Instruction::Add, C, OBO::NoUnsignedWrap);
2017       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2018         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2019     }
2020   }
2021 
2022   return Flags;
2023 }
2024 
2025 /// getAddExpr - Get a canonical add expression, or something simpler if
2026 /// possible.
2027 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2028                                         SCEV::NoWrapFlags Flags) {
2029   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2030          "only nuw or nsw allowed");
2031   assert(!Ops.empty() && "Cannot get empty add!");
2032   if (Ops.size() == 1) return Ops[0];
2033 #ifndef NDEBUG
2034   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2035   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2036     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2037            "SCEVAddExpr operand types don't match!");
2038 #endif
2039 
2040   // Sort by complexity, this groups all similar expression types together.
2041   GroupByComplexity(Ops, &LI);
2042 
2043   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2044 
2045   // If there are any constants, fold them together.
2046   unsigned Idx = 0;
2047   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2048     ++Idx;
2049     assert(Idx < Ops.size());
2050     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2051       // We found two constants, fold them together!
2052       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2053       if (Ops.size() == 2) return Ops[0];
2054       Ops.erase(Ops.begin()+1);  // Erase the folded element
2055       LHSC = cast<SCEVConstant>(Ops[0]);
2056     }
2057 
2058     // If we are left with a constant zero being added, strip it off.
2059     if (LHSC->getValue()->isZero()) {
2060       Ops.erase(Ops.begin());
2061       --Idx;
2062     }
2063 
2064     if (Ops.size() == 1) return Ops[0];
2065   }
2066 
2067   // Okay, check to see if the same value occurs in the operand list more than
2068   // once.  If so, merge them together into an multiply expression.  Since we
2069   // sorted the list, these values are required to be adjacent.
2070   Type *Ty = Ops[0]->getType();
2071   bool FoundMatch = false;
2072   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2073     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2074       // Scan ahead to count how many equal operands there are.
2075       unsigned Count = 2;
2076       while (i+Count != e && Ops[i+Count] == Ops[i])
2077         ++Count;
2078       // Merge the values into a multiply.
2079       const SCEV *Scale = getConstant(Ty, Count);
2080       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2081       if (Ops.size() == Count)
2082         return Mul;
2083       Ops[i] = Mul;
2084       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2085       --i; e -= Count - 1;
2086       FoundMatch = true;
2087     }
2088   if (FoundMatch)
2089     return getAddExpr(Ops, Flags);
2090 
2091   // Check for truncates. If all the operands are truncated from the same
2092   // type, see if factoring out the truncate would permit the result to be
2093   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2094   // if the contents of the resulting outer trunc fold to something simple.
2095   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2096     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2097     Type *DstType = Trunc->getType();
2098     Type *SrcType = Trunc->getOperand()->getType();
2099     SmallVector<const SCEV *, 8> LargeOps;
2100     bool Ok = true;
2101     // Check all the operands to see if they can be represented in the
2102     // source type of the truncate.
2103     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2104       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2105         if (T->getOperand()->getType() != SrcType) {
2106           Ok = false;
2107           break;
2108         }
2109         LargeOps.push_back(T->getOperand());
2110       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2111         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2112       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2113         SmallVector<const SCEV *, 8> LargeMulOps;
2114         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2115           if (const SCEVTruncateExpr *T =
2116                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2117             if (T->getOperand()->getType() != SrcType) {
2118               Ok = false;
2119               break;
2120             }
2121             LargeMulOps.push_back(T->getOperand());
2122           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2123             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2124           } else {
2125             Ok = false;
2126             break;
2127           }
2128         }
2129         if (Ok)
2130           LargeOps.push_back(getMulExpr(LargeMulOps));
2131       } else {
2132         Ok = false;
2133         break;
2134       }
2135     }
2136     if (Ok) {
2137       // Evaluate the expression in the larger type.
2138       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2139       // If it folds to something simple, use it. Otherwise, don't.
2140       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2141         return getTruncateExpr(Fold, DstType);
2142     }
2143   }
2144 
2145   // Skip past any other cast SCEVs.
2146   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2147     ++Idx;
2148 
2149   // If there are add operands they would be next.
2150   if (Idx < Ops.size()) {
2151     bool DeletedAdd = false;
2152     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2153       // If we have an add, expand the add operands onto the end of the operands
2154       // list.
2155       Ops.erase(Ops.begin()+Idx);
2156       Ops.append(Add->op_begin(), Add->op_end());
2157       DeletedAdd = true;
2158     }
2159 
2160     // If we deleted at least one add, we added operands to the end of the list,
2161     // and they are not necessarily sorted.  Recurse to resort and resimplify
2162     // any operands we just acquired.
2163     if (DeletedAdd)
2164       return getAddExpr(Ops);
2165   }
2166 
2167   // Skip over the add expression until we get to a multiply.
2168   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2169     ++Idx;
2170 
2171   // Check to see if there are any folding opportunities present with
2172   // operands multiplied by constant values.
2173   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2174     uint64_t BitWidth = getTypeSizeInBits(Ty);
2175     DenseMap<const SCEV *, APInt> M;
2176     SmallVector<const SCEV *, 8> NewOps;
2177     APInt AccumulatedConstant(BitWidth, 0);
2178     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2179                                      Ops.data(), Ops.size(),
2180                                      APInt(BitWidth, 1), *this)) {
2181       struct APIntCompare {
2182         bool operator()(const APInt &LHS, const APInt &RHS) const {
2183           return LHS.ult(RHS);
2184         }
2185       };
2186 
2187       // Some interesting folding opportunity is present, so its worthwhile to
2188       // re-generate the operands list. Group the operands by constant scale,
2189       // to avoid multiplying by the same constant scale multiple times.
2190       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2191       for (const SCEV *NewOp : NewOps)
2192         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2193       // Re-generate the operands list.
2194       Ops.clear();
2195       if (AccumulatedConstant != 0)
2196         Ops.push_back(getConstant(AccumulatedConstant));
2197       for (auto &MulOp : MulOpLists)
2198         if (MulOp.first != 0)
2199           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2200                                    getAddExpr(MulOp.second)));
2201       if (Ops.empty())
2202         return getZero(Ty);
2203       if (Ops.size() == 1)
2204         return Ops[0];
2205       return getAddExpr(Ops);
2206     }
2207   }
2208 
2209   // If we are adding something to a multiply expression, make sure the
2210   // something is not already an operand of the multiply.  If so, merge it into
2211   // the multiply.
2212   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2213     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2214     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2215       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2216       if (isa<SCEVConstant>(MulOpSCEV))
2217         continue;
2218       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2219         if (MulOpSCEV == Ops[AddOp]) {
2220           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2221           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2222           if (Mul->getNumOperands() != 2) {
2223             // If the multiply has more than two operands, we must get the
2224             // Y*Z term.
2225             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2226                                                 Mul->op_begin()+MulOp);
2227             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2228             InnerMul = getMulExpr(MulOps);
2229           }
2230           const SCEV *One = getOne(Ty);
2231           const SCEV *AddOne = getAddExpr(One, InnerMul);
2232           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2233           if (Ops.size() == 2) return OuterMul;
2234           if (AddOp < Idx) {
2235             Ops.erase(Ops.begin()+AddOp);
2236             Ops.erase(Ops.begin()+Idx-1);
2237           } else {
2238             Ops.erase(Ops.begin()+Idx);
2239             Ops.erase(Ops.begin()+AddOp-1);
2240           }
2241           Ops.push_back(OuterMul);
2242           return getAddExpr(Ops);
2243         }
2244 
2245       // Check this multiply against other multiplies being added together.
2246       for (unsigned OtherMulIdx = Idx+1;
2247            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2248            ++OtherMulIdx) {
2249         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2250         // If MulOp occurs in OtherMul, we can fold the two multiplies
2251         // together.
2252         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2253              OMulOp != e; ++OMulOp)
2254           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2255             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2256             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2257             if (Mul->getNumOperands() != 2) {
2258               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2259                                                   Mul->op_begin()+MulOp);
2260               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2261               InnerMul1 = getMulExpr(MulOps);
2262             }
2263             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2264             if (OtherMul->getNumOperands() != 2) {
2265               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2266                                                   OtherMul->op_begin()+OMulOp);
2267               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2268               InnerMul2 = getMulExpr(MulOps);
2269             }
2270             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2271             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2272             if (Ops.size() == 2) return OuterMul;
2273             Ops.erase(Ops.begin()+Idx);
2274             Ops.erase(Ops.begin()+OtherMulIdx-1);
2275             Ops.push_back(OuterMul);
2276             return getAddExpr(Ops);
2277           }
2278       }
2279     }
2280   }
2281 
2282   // If there are any add recurrences in the operands list, see if any other
2283   // added values are loop invariant.  If so, we can fold them into the
2284   // recurrence.
2285   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2286     ++Idx;
2287 
2288   // Scan over all recurrences, trying to fold loop invariants into them.
2289   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2290     // Scan all of the other operands to this add and add them to the vector if
2291     // they are loop invariant w.r.t. the recurrence.
2292     SmallVector<const SCEV *, 8> LIOps;
2293     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2294     const Loop *AddRecLoop = AddRec->getLoop();
2295     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2296       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2297         LIOps.push_back(Ops[i]);
2298         Ops.erase(Ops.begin()+i);
2299         --i; --e;
2300       }
2301 
2302     // If we found some loop invariants, fold them into the recurrence.
2303     if (!LIOps.empty()) {
2304       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2305       LIOps.push_back(AddRec->getStart());
2306 
2307       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2308                                              AddRec->op_end());
2309       // This follows from the fact that the no-wrap flags on the outer add
2310       // expression are applicable on the 0th iteration, when the add recurrence
2311       // will be equal to its start value.
2312       AddRecOps[0] = getAddExpr(LIOps, Flags);
2313 
2314       // Build the new addrec. Propagate the NUW and NSW flags if both the
2315       // outer add and the inner addrec are guaranteed to have no overflow.
2316       // Always propagate NW.
2317       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2318       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2319 
2320       // If all of the other operands were loop invariant, we are done.
2321       if (Ops.size() == 1) return NewRec;
2322 
2323       // Otherwise, add the folded AddRec by the non-invariant parts.
2324       for (unsigned i = 0;; ++i)
2325         if (Ops[i] == AddRec) {
2326           Ops[i] = NewRec;
2327           break;
2328         }
2329       return getAddExpr(Ops);
2330     }
2331 
2332     // Okay, if there weren't any loop invariants to be folded, check to see if
2333     // there are multiple AddRec's with the same loop induction variable being
2334     // added together.  If so, we can fold them.
2335     for (unsigned OtherIdx = Idx+1;
2336          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2337          ++OtherIdx)
2338       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2339         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2340         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2341                                                AddRec->op_end());
2342         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2343              ++OtherIdx)
2344           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2345             if (OtherAddRec->getLoop() == AddRecLoop) {
2346               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2347                    i != e; ++i) {
2348                 if (i >= AddRecOps.size()) {
2349                   AddRecOps.append(OtherAddRec->op_begin()+i,
2350                                    OtherAddRec->op_end());
2351                   break;
2352                 }
2353                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2354                                           OtherAddRec->getOperand(i));
2355               }
2356               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2357             }
2358         // Step size has changed, so we cannot guarantee no self-wraparound.
2359         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2360         return getAddExpr(Ops);
2361       }
2362 
2363     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2364     // next one.
2365   }
2366 
2367   // Okay, it looks like we really DO need an add expr.  Check to see if we
2368   // already have one, otherwise create a new one.
2369   FoldingSetNodeID ID;
2370   ID.AddInteger(scAddExpr);
2371   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2372     ID.AddPointer(Ops[i]);
2373   void *IP = nullptr;
2374   SCEVAddExpr *S =
2375     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2376   if (!S) {
2377     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2378     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2379     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2380                                         O, Ops.size());
2381     UniqueSCEVs.InsertNode(S, IP);
2382   }
2383   S->setNoWrapFlags(Flags);
2384   return S;
2385 }
2386 
2387 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2388   uint64_t k = i*j;
2389   if (j > 1 && k / j != i) Overflow = true;
2390   return k;
2391 }
2392 
2393 /// Compute the result of "n choose k", the binomial coefficient.  If an
2394 /// intermediate computation overflows, Overflow will be set and the return will
2395 /// be garbage. Overflow is not cleared on absence of overflow.
2396 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2397   // We use the multiplicative formula:
2398   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2399   // At each iteration, we take the n-th term of the numeral and divide by the
2400   // (k-n)th term of the denominator.  This division will always produce an
2401   // integral result, and helps reduce the chance of overflow in the
2402   // intermediate computations. However, we can still overflow even when the
2403   // final result would fit.
2404 
2405   if (n == 0 || n == k) return 1;
2406   if (k > n) return 0;
2407 
2408   if (k > n/2)
2409     k = n-k;
2410 
2411   uint64_t r = 1;
2412   for (uint64_t i = 1; i <= k; ++i) {
2413     r = umul_ov(r, n-(i-1), Overflow);
2414     r /= i;
2415   }
2416   return r;
2417 }
2418 
2419 /// Determine if any of the operands in this SCEV are a constant or if
2420 /// any of the add or multiply expressions in this SCEV contain a constant.
2421 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2422   SmallVector<const SCEV *, 4> Ops;
2423   Ops.push_back(StartExpr);
2424   while (!Ops.empty()) {
2425     const SCEV *CurrentExpr = Ops.pop_back_val();
2426     if (isa<SCEVConstant>(*CurrentExpr))
2427       return true;
2428 
2429     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2430       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2431       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2432     }
2433   }
2434   return false;
2435 }
2436 
2437 /// getMulExpr - Get a canonical multiply expression, or something simpler if
2438 /// possible.
2439 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2440                                         SCEV::NoWrapFlags Flags) {
2441   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2442          "only nuw or nsw allowed");
2443   assert(!Ops.empty() && "Cannot get empty mul!");
2444   if (Ops.size() == 1) return Ops[0];
2445 #ifndef NDEBUG
2446   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2447   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2448     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2449            "SCEVMulExpr operand types don't match!");
2450 #endif
2451 
2452   // Sort by complexity, this groups all similar expression types together.
2453   GroupByComplexity(Ops, &LI);
2454 
2455   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2456 
2457   // If there are any constants, fold them together.
2458   unsigned Idx = 0;
2459   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2460 
2461     // C1*(C2+V) -> C1*C2 + C1*V
2462     if (Ops.size() == 2)
2463         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2464           // If any of Add's ops are Adds or Muls with a constant,
2465           // apply this transformation as well.
2466           if (Add->getNumOperands() == 2)
2467             if (containsConstantSomewhere(Add))
2468               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2469                                 getMulExpr(LHSC, Add->getOperand(1)));
2470 
2471     ++Idx;
2472     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2473       // We found two constants, fold them together!
2474       ConstantInt *Fold =
2475           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2476       Ops[0] = getConstant(Fold);
2477       Ops.erase(Ops.begin()+1);  // Erase the folded element
2478       if (Ops.size() == 1) return Ops[0];
2479       LHSC = cast<SCEVConstant>(Ops[0]);
2480     }
2481 
2482     // If we are left with a constant one being multiplied, strip it off.
2483     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2484       Ops.erase(Ops.begin());
2485       --Idx;
2486     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2487       // If we have a multiply of zero, it will always be zero.
2488       return Ops[0];
2489     } else if (Ops[0]->isAllOnesValue()) {
2490       // If we have a mul by -1 of an add, try distributing the -1 among the
2491       // add operands.
2492       if (Ops.size() == 2) {
2493         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2494           SmallVector<const SCEV *, 4> NewOps;
2495           bool AnyFolded = false;
2496           for (const SCEV *AddOp : Add->operands()) {
2497             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2498             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2499             NewOps.push_back(Mul);
2500           }
2501           if (AnyFolded)
2502             return getAddExpr(NewOps);
2503         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2504           // Negation preserves a recurrence's no self-wrap property.
2505           SmallVector<const SCEV *, 4> Operands;
2506           for (const SCEV *AddRecOp : AddRec->operands())
2507             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2508 
2509           return getAddRecExpr(Operands, AddRec->getLoop(),
2510                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2511         }
2512       }
2513     }
2514 
2515     if (Ops.size() == 1)
2516       return Ops[0];
2517   }
2518 
2519   // Skip over the add expression until we get to a multiply.
2520   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2521     ++Idx;
2522 
2523   // If there are mul operands inline them all into this expression.
2524   if (Idx < Ops.size()) {
2525     bool DeletedMul = false;
2526     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2527       // If we have an mul, expand the mul operands onto the end of the operands
2528       // list.
2529       Ops.erase(Ops.begin()+Idx);
2530       Ops.append(Mul->op_begin(), Mul->op_end());
2531       DeletedMul = true;
2532     }
2533 
2534     // If we deleted at least one mul, we added operands to the end of the list,
2535     // and they are not necessarily sorted.  Recurse to resort and resimplify
2536     // any operands we just acquired.
2537     if (DeletedMul)
2538       return getMulExpr(Ops);
2539   }
2540 
2541   // If there are any add recurrences in the operands list, see if any other
2542   // added values are loop invariant.  If so, we can fold them into the
2543   // recurrence.
2544   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2545     ++Idx;
2546 
2547   // Scan over all recurrences, trying to fold loop invariants into them.
2548   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2549     // Scan all of the other operands to this mul and add them to the vector if
2550     // they are loop invariant w.r.t. the recurrence.
2551     SmallVector<const SCEV *, 8> LIOps;
2552     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2553     const Loop *AddRecLoop = AddRec->getLoop();
2554     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2555       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2556         LIOps.push_back(Ops[i]);
2557         Ops.erase(Ops.begin()+i);
2558         --i; --e;
2559       }
2560 
2561     // If we found some loop invariants, fold them into the recurrence.
2562     if (!LIOps.empty()) {
2563       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2564       SmallVector<const SCEV *, 4> NewOps;
2565       NewOps.reserve(AddRec->getNumOperands());
2566       const SCEV *Scale = getMulExpr(LIOps);
2567       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2568         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2569 
2570       // Build the new addrec. Propagate the NUW and NSW flags if both the
2571       // outer mul and the inner addrec are guaranteed to have no overflow.
2572       //
2573       // No self-wrap cannot be guaranteed after changing the step size, but
2574       // will be inferred if either NUW or NSW is true.
2575       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2576       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2577 
2578       // If all of the other operands were loop invariant, we are done.
2579       if (Ops.size() == 1) return NewRec;
2580 
2581       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2582       for (unsigned i = 0;; ++i)
2583         if (Ops[i] == AddRec) {
2584           Ops[i] = NewRec;
2585           break;
2586         }
2587       return getMulExpr(Ops);
2588     }
2589 
2590     // Okay, if there weren't any loop invariants to be folded, check to see if
2591     // there are multiple AddRec's with the same loop induction variable being
2592     // multiplied together.  If so, we can fold them.
2593 
2594     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2595     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2596     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2597     //   ]]],+,...up to x=2n}.
2598     // Note that the arguments to choose() are always integers with values
2599     // known at compile time, never SCEV objects.
2600     //
2601     // The implementation avoids pointless extra computations when the two
2602     // addrec's are of different length (mathematically, it's equivalent to
2603     // an infinite stream of zeros on the right).
2604     bool OpsModified = false;
2605     for (unsigned OtherIdx = Idx+1;
2606          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2607          ++OtherIdx) {
2608       const SCEVAddRecExpr *OtherAddRec =
2609         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2610       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2611         continue;
2612 
2613       bool Overflow = false;
2614       Type *Ty = AddRec->getType();
2615       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2616       SmallVector<const SCEV*, 7> AddRecOps;
2617       for (int x = 0, xe = AddRec->getNumOperands() +
2618              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2619         const SCEV *Term = getZero(Ty);
2620         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2621           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2622           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2623                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2624                z < ze && !Overflow; ++z) {
2625             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2626             uint64_t Coeff;
2627             if (LargerThan64Bits)
2628               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2629             else
2630               Coeff = Coeff1*Coeff2;
2631             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2632             const SCEV *Term1 = AddRec->getOperand(y-z);
2633             const SCEV *Term2 = OtherAddRec->getOperand(z);
2634             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2635           }
2636         }
2637         AddRecOps.push_back(Term);
2638       }
2639       if (!Overflow) {
2640         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2641                                               SCEV::FlagAnyWrap);
2642         if (Ops.size() == 2) return NewAddRec;
2643         Ops[Idx] = NewAddRec;
2644         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2645         OpsModified = true;
2646         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2647         if (!AddRec)
2648           break;
2649       }
2650     }
2651     if (OpsModified)
2652       return getMulExpr(Ops);
2653 
2654     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2655     // next one.
2656   }
2657 
2658   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2659   // already have one, otherwise create a new one.
2660   FoldingSetNodeID ID;
2661   ID.AddInteger(scMulExpr);
2662   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2663     ID.AddPointer(Ops[i]);
2664   void *IP = nullptr;
2665   SCEVMulExpr *S =
2666     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2667   if (!S) {
2668     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2669     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2670     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2671                                         O, Ops.size());
2672     UniqueSCEVs.InsertNode(S, IP);
2673   }
2674   S->setNoWrapFlags(Flags);
2675   return S;
2676 }
2677 
2678 /// getUDivExpr - Get a canonical unsigned division expression, or something
2679 /// simpler if possible.
2680 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2681                                          const SCEV *RHS) {
2682   assert(getEffectiveSCEVType(LHS->getType()) ==
2683          getEffectiveSCEVType(RHS->getType()) &&
2684          "SCEVUDivExpr operand types don't match!");
2685 
2686   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2687     if (RHSC->getValue()->equalsInt(1))
2688       return LHS;                               // X udiv 1 --> x
2689     // If the denominator is zero, the result of the udiv is undefined. Don't
2690     // try to analyze it, because the resolution chosen here may differ from
2691     // the resolution chosen in other parts of the compiler.
2692     if (!RHSC->getValue()->isZero()) {
2693       // Determine if the division can be folded into the operands of
2694       // its operands.
2695       // TODO: Generalize this to non-constants by using known-bits information.
2696       Type *Ty = LHS->getType();
2697       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2698       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2699       // For non-power-of-two values, effectively round the value up to the
2700       // nearest power of two.
2701       if (!RHSC->getAPInt().isPowerOf2())
2702         ++MaxShiftAmt;
2703       IntegerType *ExtTy =
2704         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2705       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2706         if (const SCEVConstant *Step =
2707             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2708           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2709           const APInt &StepInt = Step->getAPInt();
2710           const APInt &DivInt = RHSC->getAPInt();
2711           if (!StepInt.urem(DivInt) &&
2712               getZeroExtendExpr(AR, ExtTy) ==
2713               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2714                             getZeroExtendExpr(Step, ExtTy),
2715                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2716             SmallVector<const SCEV *, 4> Operands;
2717             for (const SCEV *Op : AR->operands())
2718               Operands.push_back(getUDivExpr(Op, RHS));
2719             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2720           }
2721           /// Get a canonical UDivExpr for a recurrence.
2722           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2723           // We can currently only fold X%N if X is constant.
2724           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2725           if (StartC && !DivInt.urem(StepInt) &&
2726               getZeroExtendExpr(AR, ExtTy) ==
2727               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2728                             getZeroExtendExpr(Step, ExtTy),
2729                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2730             const APInt &StartInt = StartC->getAPInt();
2731             const APInt &StartRem = StartInt.urem(StepInt);
2732             if (StartRem != 0)
2733               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2734                                   AR->getLoop(), SCEV::FlagNW);
2735           }
2736         }
2737       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2738       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2739         SmallVector<const SCEV *, 4> Operands;
2740         for (const SCEV *Op : M->operands())
2741           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2742         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2743           // Find an operand that's safely divisible.
2744           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2745             const SCEV *Op = M->getOperand(i);
2746             const SCEV *Div = getUDivExpr(Op, RHSC);
2747             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2748               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2749                                                       M->op_end());
2750               Operands[i] = Div;
2751               return getMulExpr(Operands);
2752             }
2753           }
2754       }
2755       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2756       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2757         SmallVector<const SCEV *, 4> Operands;
2758         for (const SCEV *Op : A->operands())
2759           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2760         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2761           Operands.clear();
2762           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2763             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2764             if (isa<SCEVUDivExpr>(Op) ||
2765                 getMulExpr(Op, RHS) != A->getOperand(i))
2766               break;
2767             Operands.push_back(Op);
2768           }
2769           if (Operands.size() == A->getNumOperands())
2770             return getAddExpr(Operands);
2771         }
2772       }
2773 
2774       // Fold if both operands are constant.
2775       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2776         Constant *LHSCV = LHSC->getValue();
2777         Constant *RHSCV = RHSC->getValue();
2778         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2779                                                                    RHSCV)));
2780       }
2781     }
2782   }
2783 
2784   FoldingSetNodeID ID;
2785   ID.AddInteger(scUDivExpr);
2786   ID.AddPointer(LHS);
2787   ID.AddPointer(RHS);
2788   void *IP = nullptr;
2789   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2790   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2791                                              LHS, RHS);
2792   UniqueSCEVs.InsertNode(S, IP);
2793   return S;
2794 }
2795 
2796 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2797   APInt A = C1->getAPInt().abs();
2798   APInt B = C2->getAPInt().abs();
2799   uint32_t ABW = A.getBitWidth();
2800   uint32_t BBW = B.getBitWidth();
2801 
2802   if (ABW > BBW)
2803     B = B.zext(ABW);
2804   else if (ABW < BBW)
2805     A = A.zext(BBW);
2806 
2807   return APIntOps::GreatestCommonDivisor(A, B);
2808 }
2809 
2810 /// getUDivExactExpr - Get a canonical unsigned division expression, or
2811 /// something simpler if possible. There is no representation for an exact udiv
2812 /// in SCEV IR, but we can attempt to remove factors from the LHS and RHS.
2813 /// We can't do this when it's not exact because the udiv may be clearing bits.
2814 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2815                                               const SCEV *RHS) {
2816   // TODO: we could try to find factors in all sorts of things, but for now we
2817   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2818   // end of this file for inspiration.
2819 
2820   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2821   if (!Mul)
2822     return getUDivExpr(LHS, RHS);
2823 
2824   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2825     // If the mulexpr multiplies by a constant, then that constant must be the
2826     // first element of the mulexpr.
2827     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2828       if (LHSCst == RHSCst) {
2829         SmallVector<const SCEV *, 2> Operands;
2830         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2831         return getMulExpr(Operands);
2832       }
2833 
2834       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2835       // that there's a factor provided by one of the other terms. We need to
2836       // check.
2837       APInt Factor = gcd(LHSCst, RHSCst);
2838       if (!Factor.isIntN(1)) {
2839         LHSCst =
2840             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2841         RHSCst =
2842             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2843         SmallVector<const SCEV *, 2> Operands;
2844         Operands.push_back(LHSCst);
2845         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2846         LHS = getMulExpr(Operands);
2847         RHS = RHSCst;
2848         Mul = dyn_cast<SCEVMulExpr>(LHS);
2849         if (!Mul)
2850           return getUDivExactExpr(LHS, RHS);
2851       }
2852     }
2853   }
2854 
2855   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2856     if (Mul->getOperand(i) == RHS) {
2857       SmallVector<const SCEV *, 2> Operands;
2858       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2859       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2860       return getMulExpr(Operands);
2861     }
2862   }
2863 
2864   return getUDivExpr(LHS, RHS);
2865 }
2866 
2867 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2868 /// Simplify the expression as much as possible.
2869 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2870                                            const Loop *L,
2871                                            SCEV::NoWrapFlags Flags) {
2872   SmallVector<const SCEV *, 4> Operands;
2873   Operands.push_back(Start);
2874   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2875     if (StepChrec->getLoop() == L) {
2876       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2877       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2878     }
2879 
2880   Operands.push_back(Step);
2881   return getAddRecExpr(Operands, L, Flags);
2882 }
2883 
2884 /// getAddRecExpr - Get an add recurrence expression for the specified loop.
2885 /// Simplify the expression as much as possible.
2886 const SCEV *
2887 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2888                                const Loop *L, SCEV::NoWrapFlags Flags) {
2889   if (Operands.size() == 1) return Operands[0];
2890 #ifndef NDEBUG
2891   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2892   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2893     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2894            "SCEVAddRecExpr operand types don't match!");
2895   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2896     assert(isLoopInvariant(Operands[i], L) &&
2897            "SCEVAddRecExpr operand is not loop-invariant!");
2898 #endif
2899 
2900   if (Operands.back()->isZero()) {
2901     Operands.pop_back();
2902     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2903   }
2904 
2905   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2906   // use that information to infer NUW and NSW flags. However, computing a
2907   // BE count requires calling getAddRecExpr, so we may not yet have a
2908   // meaningful BE count at this point (and if we don't, we'd be stuck
2909   // with a SCEVCouldNotCompute as the cached BE count).
2910 
2911   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2912 
2913   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2914   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2915     const Loop *NestedLoop = NestedAR->getLoop();
2916     if (L->contains(NestedLoop)
2917             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2918             : (!NestedLoop->contains(L) &&
2919                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2920       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2921                                                   NestedAR->op_end());
2922       Operands[0] = NestedAR->getStart();
2923       // AddRecs require their operands be loop-invariant with respect to their
2924       // loops. Don't perform this transformation if it would break this
2925       // requirement.
2926       bool AllInvariant = all_of(
2927           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2928 
2929       if (AllInvariant) {
2930         // Create a recurrence for the outer loop with the same step size.
2931         //
2932         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
2933         // inner recurrence has the same property.
2934         SCEV::NoWrapFlags OuterFlags =
2935           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
2936 
2937         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
2938         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
2939           return isLoopInvariant(Op, NestedLoop);
2940         });
2941 
2942         if (AllInvariant) {
2943           // Ok, both add recurrences are valid after the transformation.
2944           //
2945           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
2946           // the outer recurrence has the same property.
2947           SCEV::NoWrapFlags InnerFlags =
2948             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
2949           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
2950         }
2951       }
2952       // Reset Operands to its original state.
2953       Operands[0] = NestedAR;
2954     }
2955   }
2956 
2957   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
2958   // already have one, otherwise create a new one.
2959   FoldingSetNodeID ID;
2960   ID.AddInteger(scAddRecExpr);
2961   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2962     ID.AddPointer(Operands[i]);
2963   ID.AddPointer(L);
2964   void *IP = nullptr;
2965   SCEVAddRecExpr *S =
2966     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2967   if (!S) {
2968     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
2969     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
2970     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
2971                                            O, Operands.size(), L);
2972     UniqueSCEVs.InsertNode(S, IP);
2973   }
2974   S->setNoWrapFlags(Flags);
2975   return S;
2976 }
2977 
2978 const SCEV *
2979 ScalarEvolution::getGEPExpr(Type *PointeeType, const SCEV *BaseExpr,
2980                             const SmallVectorImpl<const SCEV *> &IndexExprs,
2981                             bool InBounds) {
2982   // getSCEV(Base)->getType() has the same address space as Base->getType()
2983   // because SCEV::getType() preserves the address space.
2984   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
2985   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
2986   // instruction to its SCEV, because the Instruction may be guarded by control
2987   // flow and the no-overflow bits may not be valid for the expression in any
2988   // context. This can be fixed similarly to how these flags are handled for
2989   // adds.
2990   SCEV::NoWrapFlags Wrap = InBounds ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
2991 
2992   const SCEV *TotalOffset = getZero(IntPtrTy);
2993   // The address space is unimportant. The first thing we do on CurTy is getting
2994   // its element type.
2995   Type *CurTy = PointerType::getUnqual(PointeeType);
2996   for (const SCEV *IndexExpr : IndexExprs) {
2997     // Compute the (potentially symbolic) offset in bytes for this index.
2998     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2999       // For a struct, add the member offset.
3000       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3001       unsigned FieldNo = Index->getZExtValue();
3002       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3003 
3004       // Add the field offset to the running total offset.
3005       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3006 
3007       // Update CurTy to the type of the field at Index.
3008       CurTy = STy->getTypeAtIndex(Index);
3009     } else {
3010       // Update CurTy to its element type.
3011       CurTy = cast<SequentialType>(CurTy)->getElementType();
3012       // For an array, add the element offset, explicitly scaled.
3013       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3014       // Getelementptr indices are signed.
3015       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3016 
3017       // Multiply the index by the element size to compute the element offset.
3018       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3019 
3020       // Add the element offset to the running total offset.
3021       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3022     }
3023   }
3024 
3025   // Add the total offset from all the GEP indices to the base.
3026   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3027 }
3028 
3029 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3030                                          const SCEV *RHS) {
3031   SmallVector<const SCEV *, 2> Ops;
3032   Ops.push_back(LHS);
3033   Ops.push_back(RHS);
3034   return getSMaxExpr(Ops);
3035 }
3036 
3037 const SCEV *
3038 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3039   assert(!Ops.empty() && "Cannot get empty smax!");
3040   if (Ops.size() == 1) return Ops[0];
3041 #ifndef NDEBUG
3042   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3043   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3044     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3045            "SCEVSMaxExpr operand types don't match!");
3046 #endif
3047 
3048   // Sort by complexity, this groups all similar expression types together.
3049   GroupByComplexity(Ops, &LI);
3050 
3051   // If there are any constants, fold them together.
3052   unsigned Idx = 0;
3053   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3054     ++Idx;
3055     assert(Idx < Ops.size());
3056     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3057       // We found two constants, fold them together!
3058       ConstantInt *Fold = ConstantInt::get(
3059           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3060       Ops[0] = getConstant(Fold);
3061       Ops.erase(Ops.begin()+1);  // Erase the folded element
3062       if (Ops.size() == 1) return Ops[0];
3063       LHSC = cast<SCEVConstant>(Ops[0]);
3064     }
3065 
3066     // If we are left with a constant minimum-int, strip it off.
3067     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3068       Ops.erase(Ops.begin());
3069       --Idx;
3070     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3071       // If we have an smax with a constant maximum-int, it will always be
3072       // maximum-int.
3073       return Ops[0];
3074     }
3075 
3076     if (Ops.size() == 1) return Ops[0];
3077   }
3078 
3079   // Find the first SMax
3080   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3081     ++Idx;
3082 
3083   // Check to see if one of the operands is an SMax. If so, expand its operands
3084   // onto our operand list, and recurse to simplify.
3085   if (Idx < Ops.size()) {
3086     bool DeletedSMax = false;
3087     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3088       Ops.erase(Ops.begin()+Idx);
3089       Ops.append(SMax->op_begin(), SMax->op_end());
3090       DeletedSMax = true;
3091     }
3092 
3093     if (DeletedSMax)
3094       return getSMaxExpr(Ops);
3095   }
3096 
3097   // Okay, check to see if the same value occurs in the operand list twice.  If
3098   // so, delete one.  Since we sorted the list, these values are required to
3099   // be adjacent.
3100   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3101     //  X smax Y smax Y  -->  X smax Y
3102     //  X smax Y         -->  X, if X is always greater than Y
3103     if (Ops[i] == Ops[i+1] ||
3104         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3105       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3106       --i; --e;
3107     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3108       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3109       --i; --e;
3110     }
3111 
3112   if (Ops.size() == 1) return Ops[0];
3113 
3114   assert(!Ops.empty() && "Reduced smax down to nothing!");
3115 
3116   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3117   // already have one, otherwise create a new one.
3118   FoldingSetNodeID ID;
3119   ID.AddInteger(scSMaxExpr);
3120   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3121     ID.AddPointer(Ops[i]);
3122   void *IP = nullptr;
3123   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3124   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3125   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3126   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3127                                              O, Ops.size());
3128   UniqueSCEVs.InsertNode(S, IP);
3129   return S;
3130 }
3131 
3132 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3133                                          const SCEV *RHS) {
3134   SmallVector<const SCEV *, 2> Ops;
3135   Ops.push_back(LHS);
3136   Ops.push_back(RHS);
3137   return getUMaxExpr(Ops);
3138 }
3139 
3140 const SCEV *
3141 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3142   assert(!Ops.empty() && "Cannot get empty umax!");
3143   if (Ops.size() == 1) return Ops[0];
3144 #ifndef NDEBUG
3145   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3146   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3147     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3148            "SCEVUMaxExpr operand types don't match!");
3149 #endif
3150 
3151   // Sort by complexity, this groups all similar expression types together.
3152   GroupByComplexity(Ops, &LI);
3153 
3154   // If there are any constants, fold them together.
3155   unsigned Idx = 0;
3156   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3157     ++Idx;
3158     assert(Idx < Ops.size());
3159     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3160       // We found two constants, fold them together!
3161       ConstantInt *Fold = ConstantInt::get(
3162           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3163       Ops[0] = getConstant(Fold);
3164       Ops.erase(Ops.begin()+1);  // Erase the folded element
3165       if (Ops.size() == 1) return Ops[0];
3166       LHSC = cast<SCEVConstant>(Ops[0]);
3167     }
3168 
3169     // If we are left with a constant minimum-int, strip it off.
3170     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3171       Ops.erase(Ops.begin());
3172       --Idx;
3173     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3174       // If we have an umax with a constant maximum-int, it will always be
3175       // maximum-int.
3176       return Ops[0];
3177     }
3178 
3179     if (Ops.size() == 1) return Ops[0];
3180   }
3181 
3182   // Find the first UMax
3183   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3184     ++Idx;
3185 
3186   // Check to see if one of the operands is a UMax. If so, expand its operands
3187   // onto our operand list, and recurse to simplify.
3188   if (Idx < Ops.size()) {
3189     bool DeletedUMax = false;
3190     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3191       Ops.erase(Ops.begin()+Idx);
3192       Ops.append(UMax->op_begin(), UMax->op_end());
3193       DeletedUMax = true;
3194     }
3195 
3196     if (DeletedUMax)
3197       return getUMaxExpr(Ops);
3198   }
3199 
3200   // Okay, check to see if the same value occurs in the operand list twice.  If
3201   // so, delete one.  Since we sorted the list, these values are required to
3202   // be adjacent.
3203   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3204     //  X umax Y umax Y  -->  X umax Y
3205     //  X umax Y         -->  X, if X is always greater than Y
3206     if (Ops[i] == Ops[i+1] ||
3207         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3208       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3209       --i; --e;
3210     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3211       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3212       --i; --e;
3213     }
3214 
3215   if (Ops.size() == 1) return Ops[0];
3216 
3217   assert(!Ops.empty() && "Reduced umax down to nothing!");
3218 
3219   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3220   // already have one, otherwise create a new one.
3221   FoldingSetNodeID ID;
3222   ID.AddInteger(scUMaxExpr);
3223   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3224     ID.AddPointer(Ops[i]);
3225   void *IP = nullptr;
3226   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3227   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3228   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3229   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3230                                              O, Ops.size());
3231   UniqueSCEVs.InsertNode(S, IP);
3232   return S;
3233 }
3234 
3235 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3236                                          const SCEV *RHS) {
3237   // ~smax(~x, ~y) == smin(x, y).
3238   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3239 }
3240 
3241 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3242                                          const SCEV *RHS) {
3243   // ~umax(~x, ~y) == umin(x, y)
3244   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3245 }
3246 
3247 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3248   // We can bypass creating a target-independent
3249   // constant expression and then folding it back into a ConstantInt.
3250   // This is just a compile-time optimization.
3251   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3252 }
3253 
3254 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3255                                              StructType *STy,
3256                                              unsigned FieldNo) {
3257   // We can bypass creating a target-independent
3258   // constant expression and then folding it back into a ConstantInt.
3259   // This is just a compile-time optimization.
3260   return getConstant(
3261       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3262 }
3263 
3264 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3265   // Don't attempt to do anything other than create a SCEVUnknown object
3266   // here.  createSCEV only calls getUnknown after checking for all other
3267   // interesting possibilities, and any other code that calls getUnknown
3268   // is doing so in order to hide a value from SCEV canonicalization.
3269 
3270   FoldingSetNodeID ID;
3271   ID.AddInteger(scUnknown);
3272   ID.AddPointer(V);
3273   void *IP = nullptr;
3274   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3275     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3276            "Stale SCEVUnknown in uniquing map!");
3277     return S;
3278   }
3279   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3280                                             FirstUnknown);
3281   FirstUnknown = cast<SCEVUnknown>(S);
3282   UniqueSCEVs.InsertNode(S, IP);
3283   return S;
3284 }
3285 
3286 //===----------------------------------------------------------------------===//
3287 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3288 //
3289 
3290 /// isSCEVable - Test if values of the given type are analyzable within
3291 /// the SCEV framework. This primarily includes integer types, and it
3292 /// can optionally include pointer types if the ScalarEvolution class
3293 /// has access to target-specific information.
3294 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3295   // Integers and pointers are always SCEVable.
3296   return Ty->isIntegerTy() || Ty->isPointerTy();
3297 }
3298 
3299 /// getTypeSizeInBits - Return the size in bits of the specified type,
3300 /// for which isSCEVable must return true.
3301 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3302   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3303   return getDataLayout().getTypeSizeInBits(Ty);
3304 }
3305 
3306 /// getEffectiveSCEVType - Return a type with the same bitwidth as
3307 /// the given type and which represents how SCEV will treat the given
3308 /// type, for which isSCEVable must return true. For pointer types,
3309 /// this is the pointer-sized integer type.
3310 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3311   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3312 
3313   if (Ty->isIntegerTy())
3314     return Ty;
3315 
3316   // The only other support type is pointer.
3317   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3318   return getDataLayout().getIntPtrType(Ty);
3319 }
3320 
3321 const SCEV *ScalarEvolution::getCouldNotCompute() {
3322   return CouldNotCompute.get();
3323 }
3324 
3325 
3326 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3327   // Helper class working with SCEVTraversal to figure out if a SCEV contains
3328   // a SCEVUnknown with null value-pointer. FindInvalidSCEVUnknown::FindOne
3329   // is set iff if find such SCEVUnknown.
3330   //
3331   struct FindInvalidSCEVUnknown {
3332     bool FindOne;
3333     FindInvalidSCEVUnknown() { FindOne = false; }
3334     bool follow(const SCEV *S) {
3335       switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3336       case scConstant:
3337         return false;
3338       case scUnknown:
3339         if (!cast<SCEVUnknown>(S)->getValue())
3340           FindOne = true;
3341         return false;
3342       default:
3343         return true;
3344       }
3345     }
3346     bool isDone() const { return FindOne; }
3347   };
3348 
3349   FindInvalidSCEVUnknown F;
3350   SCEVTraversal<FindInvalidSCEVUnknown> ST(F);
3351   ST.visitAll(S);
3352 
3353   return !F.FindOne;
3354 }
3355 
3356 namespace {
3357 // Helper class working with SCEVTraversal to figure out if a SCEV contains
3358 // a sub SCEV of scAddRecExpr type.  FindInvalidSCEVUnknown::FoundOne is set
3359 // iff if such sub scAddRecExpr type SCEV is found.
3360 struct FindAddRecurrence {
3361   bool FoundOne;
3362   FindAddRecurrence() : FoundOne(false) {}
3363 
3364   bool follow(const SCEV *S) {
3365     switch (static_cast<SCEVTypes>(S->getSCEVType())) {
3366     case scAddRecExpr:
3367       FoundOne = true;
3368     case scConstant:
3369     case scUnknown:
3370     case scCouldNotCompute:
3371       return false;
3372     default:
3373       return true;
3374     }
3375   }
3376   bool isDone() const { return FoundOne; }
3377 };
3378 }
3379 
3380 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3381   HasRecMapType::iterator I = HasRecMap.find_as(S);
3382   if (I != HasRecMap.end())
3383     return I->second;
3384 
3385   FindAddRecurrence F;
3386   SCEVTraversal<FindAddRecurrence> ST(F);
3387   ST.visitAll(S);
3388   HasRecMap.insert({S, F.FoundOne});
3389   return F.FoundOne;
3390 }
3391 
3392 /// getSCEVValues - Return the Value set from S.
3393 SetVector<Value *> *ScalarEvolution::getSCEVValues(const SCEV *S) {
3394   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3395   if (SI == ExprValueMap.end())
3396     return nullptr;
3397 #ifndef NDEBUG
3398   if (VerifySCEVMap) {
3399     // Check there is no dangling Value in the set returned.
3400     for (const auto &VE : SI->second)
3401       assert(ValueExprMap.count(VE));
3402   }
3403 #endif
3404   return &SI->second;
3405 }
3406 
3407 /// eraseValueFromMap - Erase Value from ValueExprMap and ExprValueMap.
3408 /// If ValueExprMap.erase(V) is not used together with forgetMemoizedResults(S),
3409 /// eraseValueFromMap should be used instead to ensure whenever V->S is removed
3410 /// from ValueExprMap, V is also removed from the set of ExprValueMap[S].
3411 void ScalarEvolution::eraseValueFromMap(Value *V) {
3412   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3413   if (I != ValueExprMap.end()) {
3414     const SCEV *S = I->second;
3415     SetVector<Value *> *SV = getSCEVValues(S);
3416     // Remove V from the set of ExprValueMap[S]
3417     if (SV)
3418       SV->remove(V);
3419     ValueExprMap.erase(V);
3420   }
3421 }
3422 
3423 /// getSCEV - Return an existing SCEV if it exists, otherwise analyze the
3424 /// expression and create a new one.
3425 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3426   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3427 
3428   const SCEV *S = getExistingSCEV(V);
3429   if (S == nullptr) {
3430     S = createSCEV(V);
3431     // During PHI resolution, it is possible to create two SCEVs for the same
3432     // V, so it is needed to double check whether V->S is inserted into
3433     // ValueExprMap before insert S->V into ExprValueMap.
3434     std::pair<ValueExprMapType::iterator, bool> Pair =
3435         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3436     if (Pair.second)
3437       ExprValueMap[S].insert(V);
3438   }
3439   return S;
3440 }
3441 
3442 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3443   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3444 
3445   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3446   if (I != ValueExprMap.end()) {
3447     const SCEV *S = I->second;
3448     if (checkValidity(S))
3449       return S;
3450     forgetMemoizedResults(S);
3451     ValueExprMap.erase(I);
3452   }
3453   return nullptr;
3454 }
3455 
3456 /// getNegativeSCEV - Return a SCEV corresponding to -V = -1*V
3457 ///
3458 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3459                                              SCEV::NoWrapFlags Flags) {
3460   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3461     return getConstant(
3462                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3463 
3464   Type *Ty = V->getType();
3465   Ty = getEffectiveSCEVType(Ty);
3466   return getMulExpr(
3467       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3468 }
3469 
3470 /// getNotSCEV - Return a SCEV corresponding to ~V = -1-V
3471 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3472   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3473     return getConstant(
3474                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3475 
3476   Type *Ty = V->getType();
3477   Ty = getEffectiveSCEVType(Ty);
3478   const SCEV *AllOnes =
3479                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3480   return getMinusSCEV(AllOnes, V);
3481 }
3482 
3483 /// getMinusSCEV - Return LHS-RHS.  Minus is represented in SCEV as A+B*-1.
3484 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3485                                           SCEV::NoWrapFlags Flags) {
3486   // Fast path: X - X --> 0.
3487   if (LHS == RHS)
3488     return getZero(LHS->getType());
3489 
3490   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3491   // makes it so that we cannot make much use of NUW.
3492   auto AddFlags = SCEV::FlagAnyWrap;
3493   const bool RHSIsNotMinSigned =
3494       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3495   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3496     // Let M be the minimum representable signed value. Then (-1)*RHS
3497     // signed-wraps if and only if RHS is M. That can happen even for
3498     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3499     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3500     // (-1)*RHS, we need to prove that RHS != M.
3501     //
3502     // If LHS is non-negative and we know that LHS - RHS does not
3503     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3504     // either by proving that RHS > M or that LHS >= 0.
3505     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3506       AddFlags = SCEV::FlagNSW;
3507     }
3508   }
3509 
3510   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3511   // RHS is NSW and LHS >= 0.
3512   //
3513   // The difficulty here is that the NSW flag may have been proven
3514   // relative to a loop that is to be found in a recurrence in LHS and
3515   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3516   // larger scope than intended.
3517   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3518 
3519   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3520 }
3521 
3522 /// getTruncateOrZeroExtend - Return a SCEV corresponding to a conversion of the
3523 /// input value to the specified type.  If the type must be extended, it is zero
3524 /// extended.
3525 const SCEV *
3526 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3527   Type *SrcTy = V->getType();
3528   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3529          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3530          "Cannot truncate or zero extend with non-integer arguments!");
3531   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3532     return V;  // No conversion
3533   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3534     return getTruncateExpr(V, Ty);
3535   return getZeroExtendExpr(V, Ty);
3536 }
3537 
3538 /// getTruncateOrSignExtend - Return a SCEV corresponding to a conversion of the
3539 /// input value to the specified type.  If the type must be extended, it is sign
3540 /// extended.
3541 const SCEV *
3542 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3543                                          Type *Ty) {
3544   Type *SrcTy = V->getType();
3545   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3546          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3547          "Cannot truncate or zero extend with non-integer arguments!");
3548   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3549     return V;  // No conversion
3550   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3551     return getTruncateExpr(V, Ty);
3552   return getSignExtendExpr(V, Ty);
3553 }
3554 
3555 /// getNoopOrZeroExtend - Return a SCEV corresponding to a conversion of the
3556 /// input value to the specified type.  If the type must be extended, it is zero
3557 /// extended.  The conversion must not be narrowing.
3558 const SCEV *
3559 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3560   Type *SrcTy = V->getType();
3561   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3562          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3563          "Cannot noop or zero extend with non-integer arguments!");
3564   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3565          "getNoopOrZeroExtend cannot truncate!");
3566   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3567     return V;  // No conversion
3568   return getZeroExtendExpr(V, Ty);
3569 }
3570 
3571 /// getNoopOrSignExtend - Return a SCEV corresponding to a conversion of the
3572 /// input value to the specified type.  If the type must be extended, it is sign
3573 /// extended.  The conversion must not be narrowing.
3574 const SCEV *
3575 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3576   Type *SrcTy = V->getType();
3577   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3578          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3579          "Cannot noop or sign extend with non-integer arguments!");
3580   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3581          "getNoopOrSignExtend cannot truncate!");
3582   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3583     return V;  // No conversion
3584   return getSignExtendExpr(V, Ty);
3585 }
3586 
3587 /// getNoopOrAnyExtend - Return a SCEV corresponding to a conversion of
3588 /// the input value to the specified type. If the type must be extended,
3589 /// it is extended with unspecified bits. The conversion must not be
3590 /// narrowing.
3591 const SCEV *
3592 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3593   Type *SrcTy = V->getType();
3594   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3595          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3596          "Cannot noop or any extend with non-integer arguments!");
3597   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3598          "getNoopOrAnyExtend cannot truncate!");
3599   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3600     return V;  // No conversion
3601   return getAnyExtendExpr(V, Ty);
3602 }
3603 
3604 /// getTruncateOrNoop - Return a SCEV corresponding to a conversion of the
3605 /// input value to the specified type.  The conversion must not be widening.
3606 const SCEV *
3607 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3608   Type *SrcTy = V->getType();
3609   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3610          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3611          "Cannot truncate or noop with non-integer arguments!");
3612   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3613          "getTruncateOrNoop cannot extend!");
3614   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3615     return V;  // No conversion
3616   return getTruncateExpr(V, Ty);
3617 }
3618 
3619 /// getUMaxFromMismatchedTypes - Promote the operands to the wider of
3620 /// the types using zero-extension, and then perform a umax operation
3621 /// with them.
3622 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3623                                                         const SCEV *RHS) {
3624   const SCEV *PromotedLHS = LHS;
3625   const SCEV *PromotedRHS = RHS;
3626 
3627   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3628     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3629   else
3630     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3631 
3632   return getUMaxExpr(PromotedLHS, PromotedRHS);
3633 }
3634 
3635 /// getUMinFromMismatchedTypes - Promote the operands to the wider of
3636 /// the types using zero-extension, and then perform a umin operation
3637 /// with them.
3638 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3639                                                         const SCEV *RHS) {
3640   const SCEV *PromotedLHS = LHS;
3641   const SCEV *PromotedRHS = RHS;
3642 
3643   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3644     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3645   else
3646     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3647 
3648   return getUMinExpr(PromotedLHS, PromotedRHS);
3649 }
3650 
3651 /// getPointerBase - Transitively follow the chain of pointer-type operands
3652 /// until reaching a SCEV that does not have a single pointer operand. This
3653 /// returns a SCEVUnknown pointer for well-formed pointer-type expressions,
3654 /// but corner cases do exist.
3655 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3656   // A pointer operand may evaluate to a nonpointer expression, such as null.
3657   if (!V->getType()->isPointerTy())
3658     return V;
3659 
3660   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3661     return getPointerBase(Cast->getOperand());
3662   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3663     const SCEV *PtrOp = nullptr;
3664     for (const SCEV *NAryOp : NAry->operands()) {
3665       if (NAryOp->getType()->isPointerTy()) {
3666         // Cannot find the base of an expression with multiple pointer operands.
3667         if (PtrOp)
3668           return V;
3669         PtrOp = NAryOp;
3670       }
3671     }
3672     if (!PtrOp)
3673       return V;
3674     return getPointerBase(PtrOp);
3675   }
3676   return V;
3677 }
3678 
3679 /// PushDefUseChildren - Push users of the given Instruction
3680 /// onto the given Worklist.
3681 static void
3682 PushDefUseChildren(Instruction *I,
3683                    SmallVectorImpl<Instruction *> &Worklist) {
3684   // Push the def-use children onto the Worklist stack.
3685   for (User *U : I->users())
3686     Worklist.push_back(cast<Instruction>(U));
3687 }
3688 
3689 /// ForgetSymbolicValue - This looks up computed SCEV values for all
3690 /// instructions that depend on the given instruction and removes them from
3691 /// the ValueExprMapType map if they reference SymName. This is used during PHI
3692 /// resolution.
3693 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3694   SmallVector<Instruction *, 16> Worklist;
3695   PushDefUseChildren(PN, Worklist);
3696 
3697   SmallPtrSet<Instruction *, 8> Visited;
3698   Visited.insert(PN);
3699   while (!Worklist.empty()) {
3700     Instruction *I = Worklist.pop_back_val();
3701     if (!Visited.insert(I).second)
3702       continue;
3703 
3704     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3705     if (It != ValueExprMap.end()) {
3706       const SCEV *Old = It->second;
3707 
3708       // Short-circuit the def-use traversal if the symbolic name
3709       // ceases to appear in expressions.
3710       if (Old != SymName && !hasOperand(Old, SymName))
3711         continue;
3712 
3713       // SCEVUnknown for a PHI either means that it has an unrecognized
3714       // structure, it's a PHI that's in the progress of being computed
3715       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3716       // additional loop trip count information isn't going to change anything.
3717       // In the second case, createNodeForPHI will perform the necessary
3718       // updates on its own when it gets to that point. In the third, we do
3719       // want to forget the SCEVUnknown.
3720       if (!isa<PHINode>(I) ||
3721           !isa<SCEVUnknown>(Old) ||
3722           (I != PN && Old == SymName)) {
3723         forgetMemoizedResults(Old);
3724         ValueExprMap.erase(It);
3725       }
3726     }
3727 
3728     PushDefUseChildren(I, Worklist);
3729   }
3730 }
3731 
3732 namespace {
3733 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3734 public:
3735   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3736                              ScalarEvolution &SE) {
3737     SCEVInitRewriter Rewriter(L, SE);
3738     const SCEV *Result = Rewriter.visit(S);
3739     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3740   }
3741 
3742   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3743       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3744 
3745   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3746     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3747       Valid = false;
3748     return Expr;
3749   }
3750 
3751   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3752     // Only allow AddRecExprs for this loop.
3753     if (Expr->getLoop() == L)
3754       return Expr->getStart();
3755     Valid = false;
3756     return Expr;
3757   }
3758 
3759   bool isValid() { return Valid; }
3760 
3761 private:
3762   const Loop *L;
3763   bool Valid;
3764 };
3765 
3766 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3767 public:
3768   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3769                              ScalarEvolution &SE) {
3770     SCEVShiftRewriter Rewriter(L, SE);
3771     const SCEV *Result = Rewriter.visit(S);
3772     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3773   }
3774 
3775   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3776       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3777 
3778   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3779     // Only allow AddRecExprs for this loop.
3780     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3781       Valid = false;
3782     return Expr;
3783   }
3784 
3785   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3786     if (Expr->getLoop() == L && Expr->isAffine())
3787       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3788     Valid = false;
3789     return Expr;
3790   }
3791   bool isValid() { return Valid; }
3792 
3793 private:
3794   const Loop *L;
3795   bool Valid;
3796 };
3797 } // end anonymous namespace
3798 
3799 SCEV::NoWrapFlags
3800 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3801   if (!AR->isAffine())
3802     return SCEV::FlagAnyWrap;
3803 
3804   typedef OverflowingBinaryOperator OBO;
3805   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3806 
3807   if (!AR->hasNoSignedWrap()) {
3808     ConstantRange AddRecRange = getSignedRange(AR);
3809     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3810 
3811     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3812         Instruction::Add, IncRange, OBO::NoSignedWrap);
3813     if (NSWRegion.contains(AddRecRange))
3814       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3815   }
3816 
3817   if (!AR->hasNoUnsignedWrap()) {
3818     ConstantRange AddRecRange = getUnsignedRange(AR);
3819     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3820 
3821     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3822         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3823     if (NUWRegion.contains(AddRecRange))
3824       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3825   }
3826 
3827   return Result;
3828 }
3829 
3830 namespace {
3831 /// Represents an abstract binary operation.  This may exist as a
3832 /// normal instruction or constant expression, or may have been
3833 /// derived from an expression tree.
3834 struct BinaryOp {
3835   unsigned Opcode;
3836   Value *LHS;
3837   Value *RHS;
3838   bool IsNSW;
3839   bool IsNUW;
3840 
3841   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3842   /// constant expression.
3843   Operator *Op;
3844 
3845   explicit BinaryOp(Operator *Op)
3846       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3847         IsNSW(false), IsNUW(false), Op(Op) {
3848     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3849       IsNSW = OBO->hasNoSignedWrap();
3850       IsNUW = OBO->hasNoUnsignedWrap();
3851     }
3852   }
3853 
3854   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3855                     bool IsNUW = false)
3856       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3857         Op(nullptr) {}
3858 };
3859 }
3860 
3861 
3862 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3863 static Optional<BinaryOp> MatchBinaryOp(Value *V) {
3864   auto *Op = dyn_cast<Operator>(V);
3865   if (!Op)
3866     return None;
3867 
3868   // Implementation detail: all the cleverness here should happen without
3869   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3870   // SCEV expressions when possible, and we should not break that.
3871 
3872   switch (Op->getOpcode()) {
3873   case Instruction::Add:
3874   case Instruction::Sub:
3875   case Instruction::Mul:
3876   case Instruction::UDiv:
3877   case Instruction::And:
3878   case Instruction::Or:
3879   case Instruction::AShr:
3880   case Instruction::Shl:
3881     return BinaryOp(Op);
3882 
3883   case Instruction::Xor:
3884     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3885       // If the RHS of the xor is a signbit, then this is just an add.
3886       // Instcombine turns add of signbit into xor as a strength reduction step.
3887       if (RHSC->getValue().isSignBit())
3888         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3889     return BinaryOp(Op);
3890 
3891   case Instruction::LShr:
3892     // Turn logical shift right of a constant into a unsigned divide.
3893     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3894       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3895 
3896       // If the shift count is not less than the bitwidth, the result of
3897       // the shift is undefined. Don't try to analyze it, because the
3898       // resolution chosen here may differ from the resolution chosen in
3899       // other parts of the compiler.
3900       if (SA->getValue().ult(BitWidth)) {
3901         Constant *X =
3902             ConstantInt::get(SA->getContext(),
3903                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3904         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3905       }
3906     }
3907     return BinaryOp(Op);
3908 
3909   default:
3910     break;
3911   }
3912 
3913   return None;
3914 }
3915 
3916 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3917   const Loop *L = LI.getLoopFor(PN->getParent());
3918   if (!L || L->getHeader() != PN->getParent())
3919     return nullptr;
3920 
3921   // The loop may have multiple entrances or multiple exits; we can analyze
3922   // this phi as an addrec if it has a unique entry value and a unique
3923   // backedge value.
3924   Value *BEValueV = nullptr, *StartValueV = nullptr;
3925   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3926     Value *V = PN->getIncomingValue(i);
3927     if (L->contains(PN->getIncomingBlock(i))) {
3928       if (!BEValueV) {
3929         BEValueV = V;
3930       } else if (BEValueV != V) {
3931         BEValueV = nullptr;
3932         break;
3933       }
3934     } else if (!StartValueV) {
3935       StartValueV = V;
3936     } else if (StartValueV != V) {
3937       StartValueV = nullptr;
3938       break;
3939     }
3940   }
3941   if (BEValueV && StartValueV) {
3942     // While we are analyzing this PHI node, handle its value symbolically.
3943     const SCEV *SymbolicName = getUnknown(PN);
3944     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
3945            "PHI node already processed?");
3946     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
3947 
3948     // Using this symbolic name for the PHI, analyze the value coming around
3949     // the back-edge.
3950     const SCEV *BEValue = getSCEV(BEValueV);
3951 
3952     // NOTE: If BEValue is loop invariant, we know that the PHI node just
3953     // has a special value for the first iteration of the loop.
3954 
3955     // If the value coming around the backedge is an add with the symbolic
3956     // value we just inserted, then we found a simple induction variable!
3957     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
3958       // If there is a single occurrence of the symbolic value, replace it
3959       // with a recurrence.
3960       unsigned FoundIndex = Add->getNumOperands();
3961       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3962         if (Add->getOperand(i) == SymbolicName)
3963           if (FoundIndex == e) {
3964             FoundIndex = i;
3965             break;
3966           }
3967 
3968       if (FoundIndex != Add->getNumOperands()) {
3969         // Create an add with everything but the specified operand.
3970         SmallVector<const SCEV *, 8> Ops;
3971         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
3972           if (i != FoundIndex)
3973             Ops.push_back(Add->getOperand(i));
3974         const SCEV *Accum = getAddExpr(Ops);
3975 
3976         // This is not a valid addrec if the step amount is varying each
3977         // loop iteration, but is not itself an addrec in this loop.
3978         if (isLoopInvariant(Accum, L) ||
3979             (isa<SCEVAddRecExpr>(Accum) &&
3980              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
3981           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
3982 
3983           // If the increment doesn't overflow, then neither the addrec nor
3984           // the post-increment will overflow.
3985           if (auto BO = MatchBinaryOp(BEValueV)) {
3986             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
3987               if (BO->IsNUW)
3988                 Flags = setFlags(Flags, SCEV::FlagNUW);
3989               if (BO->IsNSW)
3990                 Flags = setFlags(Flags, SCEV::FlagNSW);
3991             }
3992           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
3993             // If the increment is an inbounds GEP, then we know the address
3994             // space cannot be wrapped around. We cannot make any guarantee
3995             // about signed or unsigned overflow because pointers are
3996             // unsigned but we may have a negative index from the base
3997             // pointer. We can guarantee that no unsigned wrap occurs if the
3998             // indices form a positive value.
3999             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4000               Flags = setFlags(Flags, SCEV::FlagNW);
4001 
4002               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4003               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4004                 Flags = setFlags(Flags, SCEV::FlagNUW);
4005             }
4006 
4007             // We cannot transfer nuw and nsw flags from subtraction
4008             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4009             // for instance.
4010           }
4011 
4012           const SCEV *StartVal = getSCEV(StartValueV);
4013           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4014 
4015           // Since the no-wrap flags are on the increment, they apply to the
4016           // post-incremented value as well.
4017           if (isLoopInvariant(Accum, L))
4018             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4019 
4020           // Okay, for the entire analysis of this edge we assumed the PHI
4021           // to be symbolic.  We now need to go back and purge all of the
4022           // entries for the scalars that use the symbolic expression.
4023           forgetSymbolicName(PN, SymbolicName);
4024           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4025           return PHISCEV;
4026         }
4027       }
4028     } else {
4029       // Otherwise, this could be a loop like this:
4030       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4031       // In this case, j = {1,+,1}  and BEValue is j.
4032       // Because the other in-value of i (0) fits the evolution of BEValue
4033       // i really is an addrec evolution.
4034       //
4035       // We can generalize this saying that i is the shifted value of BEValue
4036       // by one iteration:
4037       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4038       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4039       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4040       if (Shifted != getCouldNotCompute() &&
4041           Start != getCouldNotCompute()) {
4042         const SCEV *StartVal = getSCEV(StartValueV);
4043         if (Start == StartVal) {
4044           // Okay, for the entire analysis of this edge we assumed the PHI
4045           // to be symbolic.  We now need to go back and purge all of the
4046           // entries for the scalars that use the symbolic expression.
4047           forgetSymbolicName(PN, SymbolicName);
4048           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4049           return Shifted;
4050         }
4051       }
4052     }
4053 
4054     // Remove the temporary PHI node SCEV that has been inserted while intending
4055     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4056     // as it will prevent later (possibly simpler) SCEV expressions to be added
4057     // to the ValueExprMap.
4058     ValueExprMap.erase(PN);
4059   }
4060 
4061   return nullptr;
4062 }
4063 
4064 // Checks if the SCEV S is available at BB.  S is considered available at BB
4065 // if S can be materialized at BB without introducing a fault.
4066 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4067                                BasicBlock *BB) {
4068   struct CheckAvailable {
4069     bool TraversalDone = false;
4070     bool Available = true;
4071 
4072     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4073     BasicBlock *BB = nullptr;
4074     DominatorTree &DT;
4075 
4076     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4077       : L(L), BB(BB), DT(DT) {}
4078 
4079     bool setUnavailable() {
4080       TraversalDone = true;
4081       Available = false;
4082       return false;
4083     }
4084 
4085     bool follow(const SCEV *S) {
4086       switch (S->getSCEVType()) {
4087       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4088       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4089         // These expressions are available if their operand(s) is/are.
4090         return true;
4091 
4092       case scAddRecExpr: {
4093         // We allow add recurrences that are on the loop BB is in, or some
4094         // outer loop.  This guarantees availability because the value of the
4095         // add recurrence at BB is simply the "current" value of the induction
4096         // variable.  We can relax this in the future; for instance an add
4097         // recurrence on a sibling dominating loop is also available at BB.
4098         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4099         if (L && (ARLoop == L || ARLoop->contains(L)))
4100           return true;
4101 
4102         return setUnavailable();
4103       }
4104 
4105       case scUnknown: {
4106         // For SCEVUnknown, we check for simple dominance.
4107         const auto *SU = cast<SCEVUnknown>(S);
4108         Value *V = SU->getValue();
4109 
4110         if (isa<Argument>(V))
4111           return false;
4112 
4113         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4114           return false;
4115 
4116         return setUnavailable();
4117       }
4118 
4119       case scUDivExpr:
4120       case scCouldNotCompute:
4121         // We do not try to smart about these at all.
4122         return setUnavailable();
4123       }
4124       llvm_unreachable("switch should be fully covered!");
4125     }
4126 
4127     bool isDone() { return TraversalDone; }
4128   };
4129 
4130   CheckAvailable CA(L, BB, DT);
4131   SCEVTraversal<CheckAvailable> ST(CA);
4132 
4133   ST.visitAll(S);
4134   return CA.Available;
4135 }
4136 
4137 // Try to match a control flow sequence that branches out at BI and merges back
4138 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4139 // match.
4140 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4141                           Value *&C, Value *&LHS, Value *&RHS) {
4142   C = BI->getCondition();
4143 
4144   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4145   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4146 
4147   if (!LeftEdge.isSingleEdge())
4148     return false;
4149 
4150   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4151 
4152   Use &LeftUse = Merge->getOperandUse(0);
4153   Use &RightUse = Merge->getOperandUse(1);
4154 
4155   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4156     LHS = LeftUse;
4157     RHS = RightUse;
4158     return true;
4159   }
4160 
4161   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4162     LHS = RightUse;
4163     RHS = LeftUse;
4164     return true;
4165   }
4166 
4167   return false;
4168 }
4169 
4170 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4171   if (PN->getNumIncomingValues() == 2) {
4172     const Loop *L = LI.getLoopFor(PN->getParent());
4173 
4174     // We don't want to break LCSSA, even in a SCEV expression tree.
4175     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4176       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4177         return nullptr;
4178 
4179     // Try to match
4180     //
4181     //  br %cond, label %left, label %right
4182     // left:
4183     //  br label %merge
4184     // right:
4185     //  br label %merge
4186     // merge:
4187     //  V = phi [ %x, %left ], [ %y, %right ]
4188     //
4189     // as "select %cond, %x, %y"
4190 
4191     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4192     assert(IDom && "At least the entry block should dominate PN");
4193 
4194     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4195     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4196 
4197     if (BI && BI->isConditional() &&
4198         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4199         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4200         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4201       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4202   }
4203 
4204   return nullptr;
4205 }
4206 
4207 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4208   if (const SCEV *S = createAddRecFromPHI(PN))
4209     return S;
4210 
4211   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4212     return S;
4213 
4214   // If the PHI has a single incoming value, follow that value, unless the
4215   // PHI's incoming blocks are in a different loop, in which case doing so
4216   // risks breaking LCSSA form. Instcombine would normally zap these, but
4217   // it doesn't have DominatorTree information, so it may miss cases.
4218   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4219     if (LI.replacementPreservesLCSSAForm(PN, V))
4220       return getSCEV(V);
4221 
4222   // If it's not a loop phi, we can't handle it yet.
4223   return getUnknown(PN);
4224 }
4225 
4226 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4227                                                       Value *Cond,
4228                                                       Value *TrueVal,
4229                                                       Value *FalseVal) {
4230   // Handle "constant" branch or select. This can occur for instance when a
4231   // loop pass transforms an inner loop and moves on to process the outer loop.
4232   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4233     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4234 
4235   // Try to match some simple smax or umax patterns.
4236   auto *ICI = dyn_cast<ICmpInst>(Cond);
4237   if (!ICI)
4238     return getUnknown(I);
4239 
4240   Value *LHS = ICI->getOperand(0);
4241   Value *RHS = ICI->getOperand(1);
4242 
4243   switch (ICI->getPredicate()) {
4244   case ICmpInst::ICMP_SLT:
4245   case ICmpInst::ICMP_SLE:
4246     std::swap(LHS, RHS);
4247   // fall through
4248   case ICmpInst::ICMP_SGT:
4249   case ICmpInst::ICMP_SGE:
4250     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4251     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4252     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4253       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4254       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4255       const SCEV *LA = getSCEV(TrueVal);
4256       const SCEV *RA = getSCEV(FalseVal);
4257       const SCEV *LDiff = getMinusSCEV(LA, LS);
4258       const SCEV *RDiff = getMinusSCEV(RA, RS);
4259       if (LDiff == RDiff)
4260         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4261       LDiff = getMinusSCEV(LA, RS);
4262       RDiff = getMinusSCEV(RA, LS);
4263       if (LDiff == RDiff)
4264         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4265     }
4266     break;
4267   case ICmpInst::ICMP_ULT:
4268   case ICmpInst::ICMP_ULE:
4269     std::swap(LHS, RHS);
4270   // fall through
4271   case ICmpInst::ICMP_UGT:
4272   case ICmpInst::ICMP_UGE:
4273     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4274     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4275     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4276       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4277       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4278       const SCEV *LA = getSCEV(TrueVal);
4279       const SCEV *RA = getSCEV(FalseVal);
4280       const SCEV *LDiff = getMinusSCEV(LA, LS);
4281       const SCEV *RDiff = getMinusSCEV(RA, RS);
4282       if (LDiff == RDiff)
4283         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4284       LDiff = getMinusSCEV(LA, RS);
4285       RDiff = getMinusSCEV(RA, LS);
4286       if (LDiff == RDiff)
4287         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4288     }
4289     break;
4290   case ICmpInst::ICMP_NE:
4291     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4292     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4293         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4294       const SCEV *One = getOne(I->getType());
4295       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4296       const SCEV *LA = getSCEV(TrueVal);
4297       const SCEV *RA = getSCEV(FalseVal);
4298       const SCEV *LDiff = getMinusSCEV(LA, LS);
4299       const SCEV *RDiff = getMinusSCEV(RA, One);
4300       if (LDiff == RDiff)
4301         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4302     }
4303     break;
4304   case ICmpInst::ICMP_EQ:
4305     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4306     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4307         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4308       const SCEV *One = getOne(I->getType());
4309       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4310       const SCEV *LA = getSCEV(TrueVal);
4311       const SCEV *RA = getSCEV(FalseVal);
4312       const SCEV *LDiff = getMinusSCEV(LA, One);
4313       const SCEV *RDiff = getMinusSCEV(RA, LS);
4314       if (LDiff == RDiff)
4315         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4316     }
4317     break;
4318   default:
4319     break;
4320   }
4321 
4322   return getUnknown(I);
4323 }
4324 
4325 /// createNodeForGEP - Expand GEP instructions into add and multiply
4326 /// operations. This allows them to be analyzed by regular SCEV code.
4327 ///
4328 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4329   // Don't attempt to analyze GEPs over unsized objects.
4330   if (!GEP->getSourceElementType()->isSized())
4331     return getUnknown(GEP);
4332 
4333   SmallVector<const SCEV *, 4> IndexExprs;
4334   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4335     IndexExprs.push_back(getSCEV(*Index));
4336   return getGEPExpr(GEP->getSourceElementType(),
4337                     getSCEV(GEP->getPointerOperand()),
4338                     IndexExprs, GEP->isInBounds());
4339 }
4340 
4341 /// GetMinTrailingZeros - Determine the minimum number of zero bits that S is
4342 /// guaranteed to end in (at every loop iteration).  It is, at the same time,
4343 /// the minimum number of times S is divisible by 2.  For example, given {4,+,8}
4344 /// it returns 2.  If S is guaranteed to be 0, it returns the bitwidth of S.
4345 uint32_t
4346 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4347   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4348     return C->getAPInt().countTrailingZeros();
4349 
4350   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4351     return std::min(GetMinTrailingZeros(T->getOperand()),
4352                     (uint32_t)getTypeSizeInBits(T->getType()));
4353 
4354   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4355     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4356     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4357              getTypeSizeInBits(E->getType()) : OpRes;
4358   }
4359 
4360   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4361     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4362     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4363              getTypeSizeInBits(E->getType()) : OpRes;
4364   }
4365 
4366   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4367     // The result is the min of all operands results.
4368     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4369     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4370       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4371     return MinOpRes;
4372   }
4373 
4374   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4375     // The result is the sum of all operands results.
4376     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4377     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4378     for (unsigned i = 1, e = M->getNumOperands();
4379          SumOpRes != BitWidth && i != e; ++i)
4380       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4381                           BitWidth);
4382     return SumOpRes;
4383   }
4384 
4385   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4386     // The result is the min of all operands results.
4387     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4388     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4389       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4390     return MinOpRes;
4391   }
4392 
4393   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4394     // The result is the min of all operands results.
4395     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4396     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4397       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4398     return MinOpRes;
4399   }
4400 
4401   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4402     // The result is the min of all operands results.
4403     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4404     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4405       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4406     return MinOpRes;
4407   }
4408 
4409   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4410     // For a SCEVUnknown, ask ValueTracking.
4411     unsigned BitWidth = getTypeSizeInBits(U->getType());
4412     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4413     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4414                      nullptr, &DT);
4415     return Zeros.countTrailingOnes();
4416   }
4417 
4418   // SCEVUDivExpr
4419   return 0;
4420 }
4421 
4422 /// GetRangeFromMetadata - Helper method to assign a range to V from
4423 /// metadata present in the IR.
4424 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4425   if (Instruction *I = dyn_cast<Instruction>(V))
4426     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4427       return getConstantRangeFromMetadata(*MD);
4428 
4429   return None;
4430 }
4431 
4432 /// getRange - Determine the range for a particular SCEV.  If SignHint is
4433 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4434 /// with a "cleaner" unsigned (resp. signed) representation.
4435 ///
4436 ConstantRange
4437 ScalarEvolution::getRange(const SCEV *S,
4438                           ScalarEvolution::RangeSignHint SignHint) {
4439   DenseMap<const SCEV *, ConstantRange> &Cache =
4440       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4441                                                        : SignedRanges;
4442 
4443   // See if we've computed this range already.
4444   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4445   if (I != Cache.end())
4446     return I->second;
4447 
4448   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4449     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4450 
4451   unsigned BitWidth = getTypeSizeInBits(S->getType());
4452   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4453 
4454   // If the value has known zeros, the maximum value will have those known zeros
4455   // as well.
4456   uint32_t TZ = GetMinTrailingZeros(S);
4457   if (TZ != 0) {
4458     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4459       ConservativeResult =
4460           ConstantRange(APInt::getMinValue(BitWidth),
4461                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4462     else
4463       ConservativeResult = ConstantRange(
4464           APInt::getSignedMinValue(BitWidth),
4465           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4466   }
4467 
4468   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4469     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4470     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4471       X = X.add(getRange(Add->getOperand(i), SignHint));
4472     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4473   }
4474 
4475   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4476     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4477     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4478       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4479     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4480   }
4481 
4482   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4483     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4484     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4485       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4486     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4487   }
4488 
4489   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4490     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4491     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4492       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4493     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4494   }
4495 
4496   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4497     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4498     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4499     return setRange(UDiv, SignHint,
4500                     ConservativeResult.intersectWith(X.udiv(Y)));
4501   }
4502 
4503   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4504     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4505     return setRange(ZExt, SignHint,
4506                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4507   }
4508 
4509   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4510     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4511     return setRange(SExt, SignHint,
4512                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4513   }
4514 
4515   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4516     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4517     return setRange(Trunc, SignHint,
4518                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4519   }
4520 
4521   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4522     // If there's no unsigned wrap, the value will never be less than its
4523     // initial value.
4524     if (AddRec->hasNoUnsignedWrap())
4525       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4526         if (!C->getValue()->isZero())
4527           ConservativeResult = ConservativeResult.intersectWith(
4528               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4529 
4530     // If there's no signed wrap, and all the operands have the same sign or
4531     // zero, the value won't ever change sign.
4532     if (AddRec->hasNoSignedWrap()) {
4533       bool AllNonNeg = true;
4534       bool AllNonPos = true;
4535       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4536         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4537         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4538       }
4539       if (AllNonNeg)
4540         ConservativeResult = ConservativeResult.intersectWith(
4541           ConstantRange(APInt(BitWidth, 0),
4542                         APInt::getSignedMinValue(BitWidth)));
4543       else if (AllNonPos)
4544         ConservativeResult = ConservativeResult.intersectWith(
4545           ConstantRange(APInt::getSignedMinValue(BitWidth),
4546                         APInt(BitWidth, 1)));
4547     }
4548 
4549     // TODO: non-affine addrec
4550     if (AddRec->isAffine()) {
4551       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4552       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4553           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4554         auto RangeFromAffine = getRangeForAffineAR(
4555             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4556             BitWidth);
4557         if (!RangeFromAffine.isFullSet())
4558           ConservativeResult =
4559               ConservativeResult.intersectWith(RangeFromAffine);
4560 
4561         auto RangeFromFactoring = getRangeViaFactoring(
4562             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4563             BitWidth);
4564         if (!RangeFromFactoring.isFullSet())
4565           ConservativeResult =
4566               ConservativeResult.intersectWith(RangeFromFactoring);
4567       }
4568     }
4569 
4570     return setRange(AddRec, SignHint, ConservativeResult);
4571   }
4572 
4573   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4574     // Check if the IR explicitly contains !range metadata.
4575     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4576     if (MDRange.hasValue())
4577       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4578 
4579     // Split here to avoid paying the compile-time cost of calling both
4580     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4581     // if needed.
4582     const DataLayout &DL = getDataLayout();
4583     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4584       // For a SCEVUnknown, ask ValueTracking.
4585       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4586       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4587       if (Ones != ~Zeros + 1)
4588         ConservativeResult =
4589             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4590     } else {
4591       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4592              "generalize as needed!");
4593       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4594       if (NS > 1)
4595         ConservativeResult = ConservativeResult.intersectWith(
4596             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4597                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4598     }
4599 
4600     return setRange(U, SignHint, ConservativeResult);
4601   }
4602 
4603   return setRange(S, SignHint, ConservativeResult);
4604 }
4605 
4606 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4607                                                    const SCEV *Step,
4608                                                    const SCEV *MaxBECount,
4609                                                    unsigned BitWidth) {
4610   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4611          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4612          "Precondition!");
4613 
4614   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4615 
4616   // Check for overflow.  This must be done with ConstantRange arithmetic
4617   // because we could be called from within the ScalarEvolution overflow
4618   // checking code.
4619 
4620   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4621   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4622   ConstantRange ZExtMaxBECountRange =
4623       MaxBECountRange.zextOrTrunc(BitWidth * 2 + 1);
4624 
4625   ConstantRange StepSRange = getSignedRange(Step);
4626   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2 + 1);
4627 
4628   ConstantRange StartURange = getUnsignedRange(Start);
4629   ConstantRange EndURange =
4630       StartURange.add(MaxBECountRange.multiply(StepSRange));
4631 
4632   // Check for unsigned overflow.
4633   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2 + 1);
4634   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2 + 1);
4635   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4636       ZExtEndURange) {
4637     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4638                                EndURange.getUnsignedMin());
4639     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4640                                EndURange.getUnsignedMax());
4641     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4642     if (!IsFullRange)
4643       Result =
4644           Result.intersectWith(ConstantRange(Min, Max + 1));
4645   }
4646 
4647   ConstantRange StartSRange = getSignedRange(Start);
4648   ConstantRange EndSRange =
4649       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4650 
4651   // Check for signed overflow. This must be done with ConstantRange
4652   // arithmetic because we could be called from within the ScalarEvolution
4653   // overflow checking code.
4654   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2 + 1);
4655   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2 + 1);
4656   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4657       SExtEndSRange) {
4658     APInt Min =
4659         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4660     APInt Max =
4661         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4662     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4663     if (!IsFullRange)
4664       Result =
4665           Result.intersectWith(ConstantRange(Min, Max + 1));
4666   }
4667 
4668   return Result;
4669 }
4670 
4671 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4672                                                     const SCEV *Step,
4673                                                     const SCEV *MaxBECount,
4674                                                     unsigned BitWidth) {
4675   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4676   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4677 
4678   struct SelectPattern {
4679     Value *Condition = nullptr;
4680     APInt TrueValue;
4681     APInt FalseValue;
4682 
4683     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4684                            const SCEV *S) {
4685       Optional<unsigned> CastOp;
4686       APInt Offset(BitWidth, 0);
4687 
4688       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4689              "Should be!");
4690 
4691       // Peel off a constant offset:
4692       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4693         // In the future we could consider being smarter here and handle
4694         // {Start+Step,+,Step} too.
4695         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4696           return;
4697 
4698         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4699         S = SA->getOperand(1);
4700       }
4701 
4702       // Peel off a cast operation
4703       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4704         CastOp = SCast->getSCEVType();
4705         S = SCast->getOperand();
4706       }
4707 
4708       using namespace llvm::PatternMatch;
4709 
4710       auto *SU = dyn_cast<SCEVUnknown>(S);
4711       const APInt *TrueVal, *FalseVal;
4712       if (!SU ||
4713           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4714                                           m_APInt(FalseVal)))) {
4715         Condition = nullptr;
4716         return;
4717       }
4718 
4719       TrueValue = *TrueVal;
4720       FalseValue = *FalseVal;
4721 
4722       // Re-apply the cast we peeled off earlier
4723       if (CastOp.hasValue())
4724         switch (*CastOp) {
4725         default:
4726           llvm_unreachable("Unknown SCEV cast type!");
4727 
4728         case scTruncate:
4729           TrueValue = TrueValue.trunc(BitWidth);
4730           FalseValue = FalseValue.trunc(BitWidth);
4731           break;
4732         case scZeroExtend:
4733           TrueValue = TrueValue.zext(BitWidth);
4734           FalseValue = FalseValue.zext(BitWidth);
4735           break;
4736         case scSignExtend:
4737           TrueValue = TrueValue.sext(BitWidth);
4738           FalseValue = FalseValue.sext(BitWidth);
4739           break;
4740         }
4741 
4742       // Re-apply the constant offset we peeled off earlier
4743       TrueValue += Offset;
4744       FalseValue += Offset;
4745     }
4746 
4747     bool isRecognized() { return Condition != nullptr; }
4748   };
4749 
4750   SelectPattern StartPattern(*this, BitWidth, Start);
4751   if (!StartPattern.isRecognized())
4752     return ConstantRange(BitWidth, /* isFullSet = */ true);
4753 
4754   SelectPattern StepPattern(*this, BitWidth, Step);
4755   if (!StepPattern.isRecognized())
4756     return ConstantRange(BitWidth, /* isFullSet = */ true);
4757 
4758   if (StartPattern.Condition != StepPattern.Condition) {
4759     // We don't handle this case today; but we could, by considering four
4760     // possibilities below instead of two. I'm not sure if there are cases where
4761     // that will help over what getRange already does, though.
4762     return ConstantRange(BitWidth, /* isFullSet = */ true);
4763   }
4764 
4765   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4766   // construct arbitrary general SCEV expressions here.  This function is called
4767   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4768   // say) can end up caching a suboptimal value.
4769 
4770   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4771   // C2352 and C2512 (otherwise it isn't needed).
4772 
4773   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4774   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4775   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4776   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4777 
4778   ConstantRange TrueRange =
4779       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4780   ConstantRange FalseRange =
4781       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4782 
4783   return TrueRange.unionWith(FalseRange);
4784 }
4785 
4786 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4787   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4788   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4789 
4790   // Return early if there are no flags to propagate to the SCEV.
4791   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4792   if (BinOp->hasNoUnsignedWrap())
4793     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4794   if (BinOp->hasNoSignedWrap())
4795     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4796   if (Flags == SCEV::FlagAnyWrap)
4797     return SCEV::FlagAnyWrap;
4798 
4799   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4800 }
4801 
4802 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4803   // Here we check that I is in the header of the innermost loop containing I,
4804   // since we only deal with instructions in the loop header. The actual loop we
4805   // need to check later will come from an add recurrence, but getting that
4806   // requires computing the SCEV of the operands, which can be expensive. This
4807   // check we can do cheaply to rule out some cases early.
4808   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4809   if (InnermostContainingLoop == nullptr ||
4810       InnermostContainingLoop->getHeader() != I->getParent())
4811     return false;
4812 
4813   // Only proceed if we can prove that I does not yield poison.
4814   if (!isKnownNotFullPoison(I)) return false;
4815 
4816   // At this point we know that if I is executed, then it does not wrap
4817   // according to at least one of NSW or NUW. If I is not executed, then we do
4818   // not know if the calculation that I represents would wrap. Multiple
4819   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4820   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4821   // derived from other instructions that map to the same SCEV. We cannot make
4822   // that guarantee for cases where I is not executed. So we need to find the
4823   // loop that I is considered in relation to and prove that I is executed for
4824   // every iteration of that loop. That implies that the value that I
4825   // calculates does not wrap anywhere in the loop, so then we can apply the
4826   // flags to the SCEV.
4827   //
4828   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4829   // from different loops, so that we know which loop to prove that I is
4830   // executed in.
4831   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4832     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4833     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4834       bool AllOtherOpsLoopInvariant = true;
4835       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4836            ++OtherOpIndex) {
4837         if (OtherOpIndex != OpIndex) {
4838           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4839           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4840             AllOtherOpsLoopInvariant = false;
4841             break;
4842           }
4843         }
4844       }
4845       if (AllOtherOpsLoopInvariant &&
4846           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4847         return true;
4848     }
4849   }
4850   return false;
4851 }
4852 
4853 /// createSCEV - We know that there is no SCEV for the specified value.  Analyze
4854 /// the expression.
4855 ///
4856 const SCEV *ScalarEvolution::createSCEV(Value *V) {
4857   if (!isSCEVable(V->getType()))
4858     return getUnknown(V);
4859 
4860   if (Instruction *I = dyn_cast<Instruction>(V)) {
4861     // Don't attempt to analyze instructions in blocks that aren't
4862     // reachable. Such instructions don't matter, and they aren't required
4863     // to obey basic rules for definitions dominating uses which this
4864     // analysis depends on.
4865     if (!DT.isReachableFromEntry(I->getParent()))
4866       return getUnknown(V);
4867   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
4868     return getConstant(CI);
4869   else if (isa<ConstantPointerNull>(V))
4870     return getZero(V->getType());
4871   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
4872     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
4873   else if (!isa<ConstantExpr>(V))
4874     return getUnknown(V);
4875 
4876   Operator *U = cast<Operator>(V);
4877   if (auto BO = MatchBinaryOp(U)) {
4878     switch (BO->Opcode) {
4879     case Instruction::Add: {
4880       // The simple thing to do would be to just call getSCEV on both operands
4881       // and call getAddExpr with the result. However if we're looking at a
4882       // bunch of things all added together, this can be quite inefficient,
4883       // because it leads to N-1 getAddExpr calls for N ultimate operands.
4884       // Instead, gather up all the operands and make a single getAddExpr call.
4885       // LLVM IR canonical form means we need only traverse the left operands.
4886       SmallVector<const SCEV *, 4> AddOps;
4887       do {
4888         if (BO->Op) {
4889           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4890             AddOps.push_back(OpSCEV);
4891             break;
4892           }
4893 
4894           // If a NUW or NSW flag can be applied to the SCEV for this
4895           // addition, then compute the SCEV for this addition by itself
4896           // with a separate call to getAddExpr. We need to do that
4897           // instead of pushing the operands of the addition onto AddOps,
4898           // since the flags are only known to apply to this particular
4899           // addition - they may not apply to other additions that can be
4900           // formed with operands from AddOps.
4901           const SCEV *RHS = getSCEV(BO->RHS);
4902           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4903           if (Flags != SCEV::FlagAnyWrap) {
4904             const SCEV *LHS = getSCEV(BO->LHS);
4905             if (BO->Opcode == Instruction::Sub)
4906               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
4907             else
4908               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
4909             break;
4910           }
4911         }
4912 
4913         if (BO->Opcode == Instruction::Sub)
4914           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
4915         else
4916           AddOps.push_back(getSCEV(BO->RHS));
4917 
4918         auto NewBO = MatchBinaryOp(BO->LHS);
4919         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
4920                        NewBO->Opcode != Instruction::Sub)) {
4921           AddOps.push_back(getSCEV(BO->LHS));
4922           break;
4923         }
4924         BO = NewBO;
4925       } while (true);
4926 
4927       return getAddExpr(AddOps);
4928     }
4929 
4930     case Instruction::Mul: {
4931       SmallVector<const SCEV *, 4> MulOps;
4932       do {
4933         if (BO->Op) {
4934           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
4935             MulOps.push_back(OpSCEV);
4936             break;
4937           }
4938 
4939           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
4940           if (Flags != SCEV::FlagAnyWrap) {
4941             MulOps.push_back(
4942                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
4943             break;
4944           }
4945         }
4946 
4947         MulOps.push_back(getSCEV(BO->RHS));
4948         auto NewBO = MatchBinaryOp(BO->LHS);
4949         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
4950           MulOps.push_back(getSCEV(BO->LHS));
4951           break;
4952         }
4953 	BO = NewBO;
4954       } while (true);
4955 
4956       return getMulExpr(MulOps);
4957     }
4958     case Instruction::UDiv:
4959       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
4960     case Instruction::Sub: {
4961       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4962       if (BO->Op)
4963         Flags = getNoWrapFlagsFromUB(BO->Op);
4964       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
4965     }
4966     case Instruction::And:
4967       // For an expression like x&255 that merely masks off the high bits,
4968       // use zext(trunc(x)) as the SCEV expression.
4969       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
4970         if (CI->isNullValue())
4971           return getSCEV(BO->RHS);
4972         if (CI->isAllOnesValue())
4973           return getSCEV(BO->LHS);
4974         const APInt &A = CI->getValue();
4975 
4976         // Instcombine's ShrinkDemandedConstant may strip bits out of
4977         // constants, obscuring what would otherwise be a low-bits mask.
4978         // Use computeKnownBits to compute what ShrinkDemandedConstant
4979         // knew about to reconstruct a low-bits mask value.
4980         unsigned LZ = A.countLeadingZeros();
4981         unsigned TZ = A.countTrailingZeros();
4982         unsigned BitWidth = A.getBitWidth();
4983         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4984         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
4985                          0, &AC, nullptr, &DT);
4986 
4987         APInt EffectiveMask =
4988             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
4989         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
4990           const SCEV *MulCount = getConstant(ConstantInt::get(
4991               getContext(), APInt::getOneBitSet(BitWidth, TZ)));
4992           return getMulExpr(
4993               getZeroExtendExpr(
4994                   getTruncateExpr(
4995                       getUDivExactExpr(getSCEV(BO->LHS), MulCount),
4996                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
4997                   BO->LHS->getType()),
4998               MulCount);
4999         }
5000       }
5001       break;
5002 
5003     case Instruction::Or:
5004       // If the RHS of the Or is a constant, we may have something like:
5005       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5006       // optimizations will transparently handle this case.
5007       //
5008       // In order for this transformation to be safe, the LHS must be of the
5009       // form X*(2^n) and the Or constant must be less than 2^n.
5010       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5011         const SCEV *LHS = getSCEV(BO->LHS);
5012         const APInt &CIVal = CI->getValue();
5013         if (GetMinTrailingZeros(LHS) >=
5014             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5015           // Build a plain add SCEV.
5016           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5017           // If the LHS of the add was an addrec and it has no-wrap flags,
5018           // transfer the no-wrap flags, since an or won't introduce a wrap.
5019           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5020             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5021             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5022                 OldAR->getNoWrapFlags());
5023           }
5024           return S;
5025         }
5026       }
5027       break;
5028 
5029     case Instruction::Xor:
5030       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5031         // If the RHS of xor is -1, then this is a not operation.
5032         if (CI->isAllOnesValue())
5033           return getNotSCEV(getSCEV(BO->LHS));
5034 
5035         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5036         // This is a variant of the check for xor with -1, and it handles
5037         // the case where instcombine has trimmed non-demanded bits out
5038         // of an xor with -1.
5039         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5040           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5041             if (LBO->getOpcode() == Instruction::And &&
5042                 LCI->getValue() == CI->getValue())
5043               if (const SCEVZeroExtendExpr *Z =
5044                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5045                 Type *UTy = BO->LHS->getType();
5046                 const SCEV *Z0 = Z->getOperand();
5047                 Type *Z0Ty = Z0->getType();
5048                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5049 
5050                 // If C is a low-bits mask, the zero extend is serving to
5051                 // mask off the high bits. Complement the operand and
5052                 // re-apply the zext.
5053                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5054                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5055 
5056                 // If C is a single bit, it may be in the sign-bit position
5057                 // before the zero-extend. In this case, represent the xor
5058                 // using an add, which is equivalent, and re-apply the zext.
5059                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5060                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5061                     Trunc.isSignBit())
5062                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5063                                            UTy);
5064               }
5065       }
5066       break;
5067 
5068   case Instruction::Shl:
5069     // Turn shift left of a constant amount into a multiply.
5070     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5071       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5072 
5073       // If the shift count is not less than the bitwidth, the result of
5074       // the shift is undefined. Don't try to analyze it, because the
5075       // resolution chosen here may differ from the resolution chosen in
5076       // other parts of the compiler.
5077       if (SA->getValue().uge(BitWidth))
5078         break;
5079 
5080       // It is currently not resolved how to interpret NSW for left
5081       // shift by BitWidth - 1, so we avoid applying flags in that
5082       // case. Remove this check (or this comment) once the situation
5083       // is resolved. See
5084       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5085       // and http://reviews.llvm.org/D8890 .
5086       auto Flags = SCEV::FlagAnyWrap;
5087       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5088         Flags = getNoWrapFlagsFromUB(BO->Op);
5089 
5090       Constant *X = ConstantInt::get(getContext(),
5091         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5092       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5093     }
5094     break;
5095 
5096     case Instruction::AShr:
5097       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5098       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5099         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5100           if (L->getOpcode() == Instruction::Shl &&
5101               L->getOperand(1) == BO->RHS) {
5102             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5103 
5104             // If the shift count is not less than the bitwidth, the result of
5105             // the shift is undefined. Don't try to analyze it, because the
5106             // resolution chosen here may differ from the resolution chosen in
5107             // other parts of the compiler.
5108             if (CI->getValue().uge(BitWidth))
5109               break;
5110 
5111             uint64_t Amt = BitWidth - CI->getZExtValue();
5112             if (Amt == BitWidth)
5113               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5114             return getSignExtendExpr(
5115                 getTruncateExpr(getSCEV(L->getOperand(0)),
5116                                 IntegerType::get(getContext(), Amt)),
5117                 BO->LHS->getType());
5118           }
5119       break;
5120     }
5121   }
5122 
5123   switch (U->getOpcode()) {
5124   case Instruction::Trunc:
5125     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5126 
5127   case Instruction::ZExt:
5128     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5129 
5130   case Instruction::SExt:
5131     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5132 
5133   case Instruction::BitCast:
5134     // BitCasts are no-op casts so we just eliminate the cast.
5135     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5136       return getSCEV(U->getOperand(0));
5137     break;
5138 
5139   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5140   // lead to pointer expressions which cannot safely be expanded to GEPs,
5141   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5142   // simplifying integer expressions.
5143 
5144   case Instruction::GetElementPtr:
5145     return createNodeForGEP(cast<GEPOperator>(U));
5146 
5147   case Instruction::PHI:
5148     return createNodeForPHI(cast<PHINode>(U));
5149 
5150   case Instruction::Select:
5151     // U can also be a select constant expr, which let fall through.  Since
5152     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5153     // constant expressions cannot have instructions as operands, we'd have
5154     // returned getUnknown for a select constant expressions anyway.
5155     if (isa<Instruction>(U))
5156       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5157                                       U->getOperand(1), U->getOperand(2));
5158   }
5159 
5160   return getUnknown(V);
5161 }
5162 
5163 
5164 
5165 //===----------------------------------------------------------------------===//
5166 //                   Iteration Count Computation Code
5167 //
5168 
5169 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5170   if (BasicBlock *ExitingBB = L->getExitingBlock())
5171     return getSmallConstantTripCount(L, ExitingBB);
5172 
5173   // No trip count information for multiple exits.
5174   return 0;
5175 }
5176 
5177 /// getSmallConstantTripCount - Returns the maximum trip count of this loop as a
5178 /// normal unsigned value. Returns 0 if the trip count is unknown or not
5179 /// constant. Will also return 0 if the maximum trip count is very large (>=
5180 /// 2^32).
5181 ///
5182 /// This "trip count" assumes that control exits via ExitingBlock. More
5183 /// precisely, it is the number of times that control may reach ExitingBlock
5184 /// before taking the branch. For loops with multiple exits, it may not be the
5185 /// number times that the loop header executes because the loop may exit
5186 /// prematurely via another branch.
5187 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5188                                                     BasicBlock *ExitingBlock) {
5189   assert(ExitingBlock && "Must pass a non-null exiting block!");
5190   assert(L->isLoopExiting(ExitingBlock) &&
5191          "Exiting block must actually branch out of the loop!");
5192   const SCEVConstant *ExitCount =
5193       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5194   if (!ExitCount)
5195     return 0;
5196 
5197   ConstantInt *ExitConst = ExitCount->getValue();
5198 
5199   // Guard against huge trip counts.
5200   if (ExitConst->getValue().getActiveBits() > 32)
5201     return 0;
5202 
5203   // In case of integer overflow, this returns 0, which is correct.
5204   return ((unsigned)ExitConst->getZExtValue()) + 1;
5205 }
5206 
5207 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5208   if (BasicBlock *ExitingBB = L->getExitingBlock())
5209     return getSmallConstantTripMultiple(L, ExitingBB);
5210 
5211   // No trip multiple information for multiple exits.
5212   return 0;
5213 }
5214 
5215 /// getSmallConstantTripMultiple - Returns the largest constant divisor of the
5216 /// trip count of this loop as a normal unsigned value, if possible. This
5217 /// means that the actual trip count is always a multiple of the returned
5218 /// value (don't forget the trip count could very well be zero as well!).
5219 ///
5220 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5221 /// multiple of a constant (which is also the case if the trip count is simply
5222 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5223 /// if the trip count is very large (>= 2^32).
5224 ///
5225 /// As explained in the comments for getSmallConstantTripCount, this assumes
5226 /// that control exits the loop via ExitingBlock.
5227 unsigned
5228 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5229                                               BasicBlock *ExitingBlock) {
5230   assert(ExitingBlock && "Must pass a non-null exiting block!");
5231   assert(L->isLoopExiting(ExitingBlock) &&
5232          "Exiting block must actually branch out of the loop!");
5233   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5234   if (ExitCount == getCouldNotCompute())
5235     return 1;
5236 
5237   // Get the trip count from the BE count by adding 1.
5238   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5239   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5240   // to factor simple cases.
5241   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5242     TCMul = Mul->getOperand(0);
5243 
5244   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5245   if (!MulC)
5246     return 1;
5247 
5248   ConstantInt *Result = MulC->getValue();
5249 
5250   // Guard against huge trip counts (this requires checking
5251   // for zero to handle the case where the trip count == -1 and the
5252   // addition wraps).
5253   if (!Result || Result->getValue().getActiveBits() > 32 ||
5254       Result->getValue().getActiveBits() == 0)
5255     return 1;
5256 
5257   return (unsigned)Result->getZExtValue();
5258 }
5259 
5260 // getExitCount - Get the expression for the number of loop iterations for which
5261 // this loop is guaranteed not to exit via ExitingBlock. Otherwise return
5262 // SCEVCouldNotCompute.
5263 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5264   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5265 }
5266 
5267 const SCEV *
5268 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5269                                                  SCEVUnionPredicate &Preds) {
5270   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5271 }
5272 
5273 /// getBackedgeTakenCount - If the specified loop has a predictable
5274 /// backedge-taken count, return it, otherwise return a SCEVCouldNotCompute
5275 /// object. The backedge-taken count is the number of times the loop header
5276 /// will be branched to from within the loop. This is one less than the
5277 /// trip count of the loop, since it doesn't count the first iteration,
5278 /// when the header is branched to from outside the loop.
5279 ///
5280 /// Note that it is not valid to call this method on a loop without a
5281 /// loop-invariant backedge-taken count (see
5282 /// hasLoopInvariantBackedgeTakenCount).
5283 ///
5284 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5285   return getBackedgeTakenInfo(L).getExact(this);
5286 }
5287 
5288 /// getMaxBackedgeTakenCount - Similar to getBackedgeTakenCount, except
5289 /// return the least SCEV value that is known never to be less than the
5290 /// actual backedge taken count.
5291 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5292   return getBackedgeTakenInfo(L).getMax(this);
5293 }
5294 
5295 /// PushLoopPHIs - Push PHI nodes in the header of the given loop
5296 /// onto the given Worklist.
5297 static void
5298 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5299   BasicBlock *Header = L->getHeader();
5300 
5301   // Push all Loop-header PHIs onto the Worklist stack.
5302   for (BasicBlock::iterator I = Header->begin();
5303        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5304     Worklist.push_back(PN);
5305 }
5306 
5307 const ScalarEvolution::BackedgeTakenInfo &
5308 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5309   auto &BTI = getBackedgeTakenInfo(L);
5310   if (BTI.hasFullInfo())
5311     return BTI;
5312 
5313   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5314 
5315   if (!Pair.second)
5316     return Pair.first->second;
5317 
5318   BackedgeTakenInfo Result =
5319       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5320 
5321   return PredicatedBackedgeTakenCounts.find(L)->second = Result;
5322 }
5323 
5324 const ScalarEvolution::BackedgeTakenInfo &
5325 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5326   // Initially insert an invalid entry for this loop. If the insertion
5327   // succeeds, proceed to actually compute a backedge-taken count and
5328   // update the value. The temporary CouldNotCompute value tells SCEV
5329   // code elsewhere that it shouldn't attempt to request a new
5330   // backedge-taken count, which could result in infinite recursion.
5331   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5332       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5333   if (!Pair.second)
5334     return Pair.first->second;
5335 
5336   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5337   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5338   // must be cleared in this scope.
5339   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5340 
5341   if (Result.getExact(this) != getCouldNotCompute()) {
5342     assert(isLoopInvariant(Result.getExact(this), L) &&
5343            isLoopInvariant(Result.getMax(this), L) &&
5344            "Computed backedge-taken count isn't loop invariant for loop!");
5345     ++NumTripCountsComputed;
5346   }
5347   else if (Result.getMax(this) == getCouldNotCompute() &&
5348            isa<PHINode>(L->getHeader()->begin())) {
5349     // Only count loops that have phi nodes as not being computable.
5350     ++NumTripCountsNotComputed;
5351   }
5352 
5353   // Now that we know more about the trip count for this loop, forget any
5354   // existing SCEV values for PHI nodes in this loop since they are only
5355   // conservative estimates made without the benefit of trip count
5356   // information. This is similar to the code in forgetLoop, except that
5357   // it handles SCEVUnknown PHI nodes specially.
5358   if (Result.hasAnyInfo()) {
5359     SmallVector<Instruction *, 16> Worklist;
5360     PushLoopPHIs(L, Worklist);
5361 
5362     SmallPtrSet<Instruction *, 8> Visited;
5363     while (!Worklist.empty()) {
5364       Instruction *I = Worklist.pop_back_val();
5365       if (!Visited.insert(I).second)
5366         continue;
5367 
5368       ValueExprMapType::iterator It =
5369         ValueExprMap.find_as(static_cast<Value *>(I));
5370       if (It != ValueExprMap.end()) {
5371         const SCEV *Old = It->second;
5372 
5373         // SCEVUnknown for a PHI either means that it has an unrecognized
5374         // structure, or it's a PHI that's in the progress of being computed
5375         // by createNodeForPHI.  In the former case, additional loop trip
5376         // count information isn't going to change anything. In the later
5377         // case, createNodeForPHI will perform the necessary updates on its
5378         // own when it gets to that point.
5379         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5380           forgetMemoizedResults(Old);
5381           ValueExprMap.erase(It);
5382         }
5383         if (PHINode *PN = dyn_cast<PHINode>(I))
5384           ConstantEvolutionLoopExitValue.erase(PN);
5385       }
5386 
5387       PushDefUseChildren(I, Worklist);
5388     }
5389   }
5390 
5391   // Re-lookup the insert position, since the call to
5392   // computeBackedgeTakenCount above could result in a
5393   // recusive call to getBackedgeTakenInfo (on a different
5394   // loop), which would invalidate the iterator computed
5395   // earlier.
5396   return BackedgeTakenCounts.find(L)->second = Result;
5397 }
5398 
5399 /// forgetLoop - This method should be called by the client when it has
5400 /// changed a loop in a way that may effect ScalarEvolution's ability to
5401 /// compute a trip count, or if the loop is deleted.
5402 void ScalarEvolution::forgetLoop(const Loop *L) {
5403   // Drop any stored trip count value.
5404   auto RemoveLoopFromBackedgeMap =
5405       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5406         auto BTCPos = Map.find(L);
5407         if (BTCPos != Map.end()) {
5408           BTCPos->second.clear();
5409           Map.erase(BTCPos);
5410         }
5411       };
5412 
5413   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5414   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5415 
5416   // Drop information about expressions based on loop-header PHIs.
5417   SmallVector<Instruction *, 16> Worklist;
5418   PushLoopPHIs(L, Worklist);
5419 
5420   SmallPtrSet<Instruction *, 8> Visited;
5421   while (!Worklist.empty()) {
5422     Instruction *I = Worklist.pop_back_val();
5423     if (!Visited.insert(I).second)
5424       continue;
5425 
5426     ValueExprMapType::iterator It =
5427       ValueExprMap.find_as(static_cast<Value *>(I));
5428     if (It != ValueExprMap.end()) {
5429       forgetMemoizedResults(It->second);
5430       ValueExprMap.erase(It);
5431       if (PHINode *PN = dyn_cast<PHINode>(I))
5432         ConstantEvolutionLoopExitValue.erase(PN);
5433     }
5434 
5435     PushDefUseChildren(I, Worklist);
5436   }
5437 
5438   // Forget all contained loops too, to avoid dangling entries in the
5439   // ValuesAtScopes map.
5440   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
5441     forgetLoop(*I);
5442 }
5443 
5444 /// forgetValue - This method should be called by the client when it has
5445 /// changed a value in a way that may effect its value, or which may
5446 /// disconnect it from a def-use chain linking it to a loop.
5447 void ScalarEvolution::forgetValue(Value *V) {
5448   Instruction *I = dyn_cast<Instruction>(V);
5449   if (!I) return;
5450 
5451   // Drop information about expressions based on loop-header PHIs.
5452   SmallVector<Instruction *, 16> Worklist;
5453   Worklist.push_back(I);
5454 
5455   SmallPtrSet<Instruction *, 8> Visited;
5456   while (!Worklist.empty()) {
5457     I = Worklist.pop_back_val();
5458     if (!Visited.insert(I).second)
5459       continue;
5460 
5461     ValueExprMapType::iterator It =
5462       ValueExprMap.find_as(static_cast<Value *>(I));
5463     if (It != ValueExprMap.end()) {
5464       forgetMemoizedResults(It->second);
5465       ValueExprMap.erase(It);
5466       if (PHINode *PN = dyn_cast<PHINode>(I))
5467         ConstantEvolutionLoopExitValue.erase(PN);
5468     }
5469 
5470     PushDefUseChildren(I, Worklist);
5471   }
5472 }
5473 
5474 /// getExact - Get the exact loop backedge taken count considering all loop
5475 /// exits. A computable result can only be returned for loops with a single
5476 /// exit.  Returning the minimum taken count among all exits is incorrect
5477 /// because one of the loop's exit limit's may have been skipped. HowFarToZero
5478 /// assumes that the limit of each loop test is never skipped. This is a valid
5479 /// assumption as long as the loop exits via that test. For precise results, it
5480 /// is the caller's responsibility to specify the relevant loop exit using
5481 /// getExact(ExitingBlock, SE).
5482 const SCEV *
5483 ScalarEvolution::BackedgeTakenInfo::getExact(
5484     ScalarEvolution *SE, SCEVUnionPredicate *Preds) const {
5485   // If any exits were not computable, the loop is not computable.
5486   if (!ExitNotTaken.isCompleteList()) return SE->getCouldNotCompute();
5487 
5488   // We need exactly one computable exit.
5489   if (!ExitNotTaken.ExitingBlock) return SE->getCouldNotCompute();
5490   assert(ExitNotTaken.ExactNotTaken && "uninitialized not-taken info");
5491 
5492   const SCEV *BECount = nullptr;
5493   for (auto &ENT : ExitNotTaken) {
5494     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5495 
5496     if (!BECount)
5497       BECount = ENT.ExactNotTaken;
5498     else if (BECount != ENT.ExactNotTaken)
5499       return SE->getCouldNotCompute();
5500     if (Preds && ENT.getPred())
5501       Preds->add(ENT.getPred());
5502 
5503     assert((Preds || ENT.hasAlwaysTruePred()) &&
5504            "Predicate should be always true!");
5505   }
5506 
5507   assert(BECount && "Invalid not taken count for loop exit");
5508   return BECount;
5509 }
5510 
5511 /// getExact - Get the exact not taken count for this loop exit.
5512 const SCEV *
5513 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5514                                              ScalarEvolution *SE) const {
5515   for (auto &ENT : ExitNotTaken)
5516     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePred())
5517       return ENT.ExactNotTaken;
5518 
5519   return SE->getCouldNotCompute();
5520 }
5521 
5522 /// getMax - Get the max backedge taken count for the loop.
5523 const SCEV *
5524 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5525   for (auto &ENT : ExitNotTaken)
5526     if (!ENT.hasAlwaysTruePred())
5527       return SE->getCouldNotCompute();
5528 
5529   return Max ? Max : SE->getCouldNotCompute();
5530 }
5531 
5532 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5533                                                     ScalarEvolution *SE) const {
5534   if (Max && Max != SE->getCouldNotCompute() && SE->hasOperand(Max, S))
5535     return true;
5536 
5537   if (!ExitNotTaken.ExitingBlock)
5538     return false;
5539 
5540   for (auto &ENT : ExitNotTaken)
5541     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5542         SE->hasOperand(ENT.ExactNotTaken, S))
5543       return true;
5544 
5545   return false;
5546 }
5547 
5548 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5549 /// computable exit into a persistent ExitNotTakenInfo array.
5550 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5551     SmallVectorImpl<EdgeInfo> &ExitCounts, bool Complete, const SCEV *MaxCount)
5552     : Max(MaxCount) {
5553 
5554   if (!Complete)
5555     ExitNotTaken.setIncomplete();
5556 
5557   unsigned NumExits = ExitCounts.size();
5558   if (NumExits == 0) return;
5559 
5560   ExitNotTaken.ExitingBlock = ExitCounts[0].ExitBlock;
5561   ExitNotTaken.ExactNotTaken = ExitCounts[0].Taken;
5562 
5563   // Determine the number of ExitNotTakenExtras structures that we need.
5564   unsigned ExtraInfoSize = 0;
5565   if (NumExits > 1)
5566     ExtraInfoSize = 1 + std::count_if(std::next(ExitCounts.begin()),
5567                                       ExitCounts.end(), [](EdgeInfo &Entry) {
5568                                         return !Entry.Pred.isAlwaysTrue();
5569                                       });
5570   else if (!ExitCounts[0].Pred.isAlwaysTrue())
5571     ExtraInfoSize = 1;
5572 
5573   ExitNotTakenExtras *ENT = nullptr;
5574 
5575   // Allocate the ExitNotTakenExtras structures and initialize the first
5576   // element (ExitNotTaken).
5577   if (ExtraInfoSize > 0) {
5578     ENT = new ExitNotTakenExtras[ExtraInfoSize];
5579     ExitNotTaken.ExtraInfo = &ENT[0];
5580     *ExitNotTaken.getPred() = std::move(ExitCounts[0].Pred);
5581   }
5582 
5583   if (NumExits == 1)
5584     return;
5585 
5586   assert(ENT && "ExitNotTakenExtras is NULL while having more than one exit");
5587 
5588   auto &Exits = ExitNotTaken.ExtraInfo->Exits;
5589 
5590   // Handle the rare case of multiple computable exits.
5591   for (unsigned i = 1, PredPos = 1; i < NumExits; ++i) {
5592     ExitNotTakenExtras *Ptr = nullptr;
5593     if (!ExitCounts[i].Pred.isAlwaysTrue()) {
5594       Ptr = &ENT[PredPos++];
5595       Ptr->Pred = std::move(ExitCounts[i].Pred);
5596     }
5597 
5598     Exits.emplace_back(ExitCounts[i].ExitBlock, ExitCounts[i].Taken, Ptr);
5599   }
5600 }
5601 
5602 /// clear - Invalidate this result and free the ExitNotTakenInfo array.
5603 void ScalarEvolution::BackedgeTakenInfo::clear() {
5604   ExitNotTaken.ExitingBlock = nullptr;
5605   ExitNotTaken.ExactNotTaken = nullptr;
5606   delete[] ExitNotTaken.ExtraInfo;
5607 }
5608 
5609 /// computeBackedgeTakenCount - Compute the number of times the backedge
5610 /// of the specified loop will execute.
5611 ScalarEvolution::BackedgeTakenInfo
5612 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5613                                            bool AllowPredicates) {
5614   SmallVector<BasicBlock *, 8> ExitingBlocks;
5615   L->getExitingBlocks(ExitingBlocks);
5616 
5617   SmallVector<EdgeInfo, 4> ExitCounts;
5618   bool CouldComputeBECount = true;
5619   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5620   const SCEV *MustExitMaxBECount = nullptr;
5621   const SCEV *MayExitMaxBECount = nullptr;
5622 
5623   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5624   // and compute maxBECount.
5625   // Do a union of all the predicates here.
5626   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5627     BasicBlock *ExitBB = ExitingBlocks[i];
5628     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5629 
5630     assert((AllowPredicates || EL.Pred.isAlwaysTrue()) &&
5631            "Predicated exit limit when predicates are not allowed!");
5632 
5633     // 1. For each exit that can be computed, add an entry to ExitCounts.
5634     // CouldComputeBECount is true only if all exits can be computed.
5635     if (EL.Exact == getCouldNotCompute())
5636       // We couldn't compute an exact value for this exit, so
5637       // we won't be able to compute an exact value for the loop.
5638       CouldComputeBECount = false;
5639     else
5640       ExitCounts.emplace_back(EdgeInfo(ExitBB, EL.Exact, EL.Pred));
5641 
5642     // 2. Derive the loop's MaxBECount from each exit's max number of
5643     // non-exiting iterations. Partition the loop exits into two kinds:
5644     // LoopMustExits and LoopMayExits.
5645     //
5646     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5647     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5648     // MaxBECount is the minimum EL.Max of computable LoopMustExits. Otherwise,
5649     // MaxBECount is conservatively the maximum EL.Max, where CouldNotCompute is
5650     // considered greater than any computable EL.Max.
5651     if (EL.Max != getCouldNotCompute() && Latch &&
5652         DT.dominates(ExitBB, Latch)) {
5653       if (!MustExitMaxBECount)
5654         MustExitMaxBECount = EL.Max;
5655       else {
5656         MustExitMaxBECount =
5657           getUMinFromMismatchedTypes(MustExitMaxBECount, EL.Max);
5658       }
5659     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5660       if (!MayExitMaxBECount || EL.Max == getCouldNotCompute())
5661         MayExitMaxBECount = EL.Max;
5662       else {
5663         MayExitMaxBECount =
5664           getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.Max);
5665       }
5666     }
5667   }
5668   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5669     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5670   return BackedgeTakenInfo(ExitCounts, CouldComputeBECount, MaxBECount);
5671 }
5672 
5673 ScalarEvolution::ExitLimit
5674 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5675                                   bool AllowPredicates) {
5676 
5677   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5678   // at this block and remember the exit block and whether all other targets
5679   // lead to the loop header.
5680   bool MustExecuteLoopHeader = true;
5681   BasicBlock *Exit = nullptr;
5682   for (auto *SBB : successors(ExitingBlock))
5683     if (!L->contains(SBB)) {
5684       if (Exit) // Multiple exit successors.
5685         return getCouldNotCompute();
5686       Exit = SBB;
5687     } else if (SBB != L->getHeader()) {
5688       MustExecuteLoopHeader = false;
5689     }
5690 
5691   // At this point, we know we have a conditional branch that determines whether
5692   // the loop is exited.  However, we don't know if the branch is executed each
5693   // time through the loop.  If not, then the execution count of the branch will
5694   // not be equal to the trip count of the loop.
5695   //
5696   // Currently we check for this by checking to see if the Exit branch goes to
5697   // the loop header.  If so, we know it will always execute the same number of
5698   // times as the loop.  We also handle the case where the exit block *is* the
5699   // loop header.  This is common for un-rotated loops.
5700   //
5701   // If both of those tests fail, walk up the unique predecessor chain to the
5702   // header, stopping if there is an edge that doesn't exit the loop. If the
5703   // header is reached, the execution count of the branch will be equal to the
5704   // trip count of the loop.
5705   //
5706   //  More extensive analysis could be done to handle more cases here.
5707   //
5708   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5709     // The simple checks failed, try climbing the unique predecessor chain
5710     // up to the header.
5711     bool Ok = false;
5712     for (BasicBlock *BB = ExitingBlock; BB; ) {
5713       BasicBlock *Pred = BB->getUniquePredecessor();
5714       if (!Pred)
5715         return getCouldNotCompute();
5716       TerminatorInst *PredTerm = Pred->getTerminator();
5717       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5718         if (PredSucc == BB)
5719           continue;
5720         // If the predecessor has a successor that isn't BB and isn't
5721         // outside the loop, assume the worst.
5722         if (L->contains(PredSucc))
5723           return getCouldNotCompute();
5724       }
5725       if (Pred == L->getHeader()) {
5726         Ok = true;
5727         break;
5728       }
5729       BB = Pred;
5730     }
5731     if (!Ok)
5732       return getCouldNotCompute();
5733   }
5734 
5735   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5736   TerminatorInst *Term = ExitingBlock->getTerminator();
5737   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5738     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5739     // Proceed to the next level to examine the exit condition expression.
5740     return computeExitLimitFromCond(
5741         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5742         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5743   }
5744 
5745   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5746     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5747                                                 /*ControlsExit=*/IsOnlyExit);
5748 
5749   return getCouldNotCompute();
5750 }
5751 
5752 /// computeExitLimitFromCond - Compute the number of times the
5753 /// backedge of the specified loop will execute if its exit condition
5754 /// were a conditional branch of ExitCond, TBB, and FBB.
5755 ///
5756 /// @param ControlsExit is true if ExitCond directly controls the exit
5757 /// branch. In this case, we can assume that the loop exits only if the
5758 /// condition is true and can infer that failing to meet the condition prior to
5759 /// integer wraparound results in undefined behavior.
5760 ScalarEvolution::ExitLimit
5761 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5762                                           Value *ExitCond,
5763                                           BasicBlock *TBB,
5764                                           BasicBlock *FBB,
5765                                           bool ControlsExit,
5766                                           bool AllowPredicates) {
5767   // Check if the controlling expression for this loop is an And or Or.
5768   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5769     if (BO->getOpcode() == Instruction::And) {
5770       // Recurse on the operands of the and.
5771       bool EitherMayExit = L->contains(TBB);
5772       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5773                                                ControlsExit && !EitherMayExit,
5774                                                AllowPredicates);
5775       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5776                                                ControlsExit && !EitherMayExit,
5777                                                AllowPredicates);
5778       const SCEV *BECount = getCouldNotCompute();
5779       const SCEV *MaxBECount = getCouldNotCompute();
5780       if (EitherMayExit) {
5781         // Both conditions must be true for the loop to continue executing.
5782         // Choose the less conservative count.
5783         if (EL0.Exact == getCouldNotCompute() ||
5784             EL1.Exact == getCouldNotCompute())
5785           BECount = getCouldNotCompute();
5786         else
5787           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5788         if (EL0.Max == getCouldNotCompute())
5789           MaxBECount = EL1.Max;
5790         else if (EL1.Max == getCouldNotCompute())
5791           MaxBECount = EL0.Max;
5792         else
5793           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5794       } else {
5795         // Both conditions must be true at the same time for the loop to exit.
5796         // For now, be conservative.
5797         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5798         if (EL0.Max == EL1.Max)
5799           MaxBECount = EL0.Max;
5800         if (EL0.Exact == EL1.Exact)
5801           BECount = EL0.Exact;
5802       }
5803 
5804       SCEVUnionPredicate NP;
5805       NP.add(&EL0.Pred);
5806       NP.add(&EL1.Pred);
5807       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5808       // to be more aggressive when computing BECount than when computing
5809       // MaxBECount.  In these cases it is possible for EL0.Exact and EL1.Exact
5810       // to match, but for EL0.Max and EL1.Max to not.
5811       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5812           !isa<SCEVCouldNotCompute>(BECount))
5813         MaxBECount = BECount;
5814 
5815       return ExitLimit(BECount, MaxBECount, NP);
5816     }
5817     if (BO->getOpcode() == Instruction::Or) {
5818       // Recurse on the operands of the or.
5819       bool EitherMayExit = L->contains(FBB);
5820       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5821                                                ControlsExit && !EitherMayExit,
5822                                                AllowPredicates);
5823       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5824                                                ControlsExit && !EitherMayExit,
5825                                                AllowPredicates);
5826       const SCEV *BECount = getCouldNotCompute();
5827       const SCEV *MaxBECount = getCouldNotCompute();
5828       if (EitherMayExit) {
5829         // Both conditions must be false for the loop to continue executing.
5830         // Choose the less conservative count.
5831         if (EL0.Exact == getCouldNotCompute() ||
5832             EL1.Exact == getCouldNotCompute())
5833           BECount = getCouldNotCompute();
5834         else
5835           BECount = getUMinFromMismatchedTypes(EL0.Exact, EL1.Exact);
5836         if (EL0.Max == getCouldNotCompute())
5837           MaxBECount = EL1.Max;
5838         else if (EL1.Max == getCouldNotCompute())
5839           MaxBECount = EL0.Max;
5840         else
5841           MaxBECount = getUMinFromMismatchedTypes(EL0.Max, EL1.Max);
5842       } else {
5843         // Both conditions must be false at the same time for the loop to exit.
5844         // For now, be conservative.
5845         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5846         if (EL0.Max == EL1.Max)
5847           MaxBECount = EL0.Max;
5848         if (EL0.Exact == EL1.Exact)
5849           BECount = EL0.Exact;
5850       }
5851 
5852       SCEVUnionPredicate NP;
5853       NP.add(&EL0.Pred);
5854       NP.add(&EL1.Pred);
5855       return ExitLimit(BECount, MaxBECount, NP);
5856     }
5857   }
5858 
5859   // With an icmp, it may be feasible to compute an exact backedge-taken count.
5860   // Proceed to the next level to examine the icmp.
5861   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
5862     ExitLimit EL =
5863         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
5864     if (EL.hasFullInfo() || !AllowPredicates)
5865       return EL;
5866 
5867     // Try again, but use SCEV predicates this time.
5868     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
5869                                     /*AllowPredicates=*/true);
5870   }
5871 
5872   // Check for a constant condition. These are normally stripped out by
5873   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
5874   // preserve the CFG and is temporarily leaving constant conditions
5875   // in place.
5876   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
5877     if (L->contains(FBB) == !CI->getZExtValue())
5878       // The backedge is always taken.
5879       return getCouldNotCompute();
5880     else
5881       // The backedge is never taken.
5882       return getZero(CI->getType());
5883   }
5884 
5885   // If it's not an integer or pointer comparison then compute it the hard way.
5886   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5887 }
5888 
5889 ScalarEvolution::ExitLimit
5890 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
5891                                           ICmpInst *ExitCond,
5892                                           BasicBlock *TBB,
5893                                           BasicBlock *FBB,
5894                                           bool ControlsExit,
5895                                           bool AllowPredicates) {
5896 
5897   // If the condition was exit on true, convert the condition to exit on false
5898   ICmpInst::Predicate Cond;
5899   if (!L->contains(FBB))
5900     Cond = ExitCond->getPredicate();
5901   else
5902     Cond = ExitCond->getInversePredicate();
5903 
5904   // Handle common loops like: for (X = "string"; *X; ++X)
5905   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
5906     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
5907       ExitLimit ItCnt =
5908         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
5909       if (ItCnt.hasAnyInfo())
5910         return ItCnt;
5911     }
5912 
5913   ExitLimit ShiftEL = computeShiftCompareExitLimit(
5914       ExitCond->getOperand(0), ExitCond->getOperand(1), L, Cond);
5915   if (ShiftEL.hasAnyInfo())
5916     return ShiftEL;
5917 
5918   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
5919   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
5920 
5921   // Try to evaluate any dependencies out of the loop.
5922   LHS = getSCEVAtScope(LHS, L);
5923   RHS = getSCEVAtScope(RHS, L);
5924 
5925   // At this point, we would like to compute how many iterations of the
5926   // loop the predicate will return true for these inputs.
5927   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
5928     // If there is a loop-invariant, force it into the RHS.
5929     std::swap(LHS, RHS);
5930     Cond = ICmpInst::getSwappedPredicate(Cond);
5931   }
5932 
5933   // Simplify the operands before analyzing them.
5934   (void)SimplifyICmpOperands(Cond, LHS, RHS);
5935 
5936   // If we have a comparison of a chrec against a constant, try to use value
5937   // ranges to answer this query.
5938   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
5939     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
5940       if (AddRec->getLoop() == L) {
5941         // Form the constant range.
5942         ConstantRange CompRange(
5943             ICmpInst::makeConstantRange(Cond, RHSC->getAPInt()));
5944 
5945         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
5946         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
5947       }
5948 
5949   switch (Cond) {
5950   case ICmpInst::ICMP_NE: {                     // while (X != Y)
5951     // Convert to: while (X-Y != 0)
5952     ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
5953                                 AllowPredicates);
5954     if (EL.hasAnyInfo()) return EL;
5955     break;
5956   }
5957   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
5958     // Convert to: while (X-Y == 0)
5959     ExitLimit EL = HowFarToNonZero(getMinusSCEV(LHS, RHS), L);
5960     if (EL.hasAnyInfo()) return EL;
5961     break;
5962   }
5963   case ICmpInst::ICMP_SLT:
5964   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
5965     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
5966     ExitLimit EL = HowManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
5967                                     AllowPredicates);
5968     if (EL.hasAnyInfo()) return EL;
5969     break;
5970   }
5971   case ICmpInst::ICMP_SGT:
5972   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
5973     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
5974     ExitLimit EL =
5975         HowManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
5976                             AllowPredicates);
5977     if (EL.hasAnyInfo()) return EL;
5978     break;
5979   }
5980   default:
5981     break;
5982   }
5983   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
5984 }
5985 
5986 ScalarEvolution::ExitLimit
5987 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
5988                                                       SwitchInst *Switch,
5989                                                       BasicBlock *ExitingBlock,
5990                                                       bool ControlsExit) {
5991   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
5992 
5993   // Give up if the exit is the default dest of a switch.
5994   if (Switch->getDefaultDest() == ExitingBlock)
5995     return getCouldNotCompute();
5996 
5997   assert(L->contains(Switch->getDefaultDest()) &&
5998          "Default case must not exit the loop!");
5999   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6000   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6001 
6002   // while (X != Y) --> while (X-Y != 0)
6003   ExitLimit EL = HowFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6004   if (EL.hasAnyInfo())
6005     return EL;
6006 
6007   return getCouldNotCompute();
6008 }
6009 
6010 static ConstantInt *
6011 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6012                                 ScalarEvolution &SE) {
6013   const SCEV *InVal = SE.getConstant(C);
6014   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6015   assert(isa<SCEVConstant>(Val) &&
6016          "Evaluation of SCEV at constant didn't fold correctly?");
6017   return cast<SCEVConstant>(Val)->getValue();
6018 }
6019 
6020 /// computeLoadConstantCompareExitLimit - Given an exit condition of
6021 /// 'icmp op load X, cst', try to see if we can compute the backedge
6022 /// execution count.
6023 ScalarEvolution::ExitLimit
6024 ScalarEvolution::computeLoadConstantCompareExitLimit(
6025   LoadInst *LI,
6026   Constant *RHS,
6027   const Loop *L,
6028   ICmpInst::Predicate predicate) {
6029 
6030   if (LI->isVolatile()) return getCouldNotCompute();
6031 
6032   // Check to see if the loaded pointer is a getelementptr of a global.
6033   // TODO: Use SCEV instead of manually grubbing with GEPs.
6034   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6035   if (!GEP) return getCouldNotCompute();
6036 
6037   // Make sure that it is really a constant global we are gepping, with an
6038   // initializer, and make sure the first IDX is really 0.
6039   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6040   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6041       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6042       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6043     return getCouldNotCompute();
6044 
6045   // Okay, we allow one non-constant index into the GEP instruction.
6046   Value *VarIdx = nullptr;
6047   std::vector<Constant*> Indexes;
6048   unsigned VarIdxNum = 0;
6049   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6050     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6051       Indexes.push_back(CI);
6052     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6053       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6054       VarIdx = GEP->getOperand(i);
6055       VarIdxNum = i-2;
6056       Indexes.push_back(nullptr);
6057     }
6058 
6059   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6060   if (!VarIdx)
6061     return getCouldNotCompute();
6062 
6063   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6064   // Check to see if X is a loop variant variable value now.
6065   const SCEV *Idx = getSCEV(VarIdx);
6066   Idx = getSCEVAtScope(Idx, L);
6067 
6068   // We can only recognize very limited forms of loop index expressions, in
6069   // particular, only affine AddRec's like {C1,+,C2}.
6070   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6071   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6072       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6073       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6074     return getCouldNotCompute();
6075 
6076   unsigned MaxSteps = MaxBruteForceIterations;
6077   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6078     ConstantInt *ItCst = ConstantInt::get(
6079                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6080     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6081 
6082     // Form the GEP offset.
6083     Indexes[VarIdxNum] = Val;
6084 
6085     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6086                                                          Indexes);
6087     if (!Result) break;  // Cannot compute!
6088 
6089     // Evaluate the condition for this iteration.
6090     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6091     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6092     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6093       ++NumArrayLenItCounts;
6094       return getConstant(ItCst);   // Found terminating iteration!
6095     }
6096   }
6097   return getCouldNotCompute();
6098 }
6099 
6100 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6101     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6102   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6103   if (!RHS)
6104     return getCouldNotCompute();
6105 
6106   const BasicBlock *Latch = L->getLoopLatch();
6107   if (!Latch)
6108     return getCouldNotCompute();
6109 
6110   const BasicBlock *Predecessor = L->getLoopPredecessor();
6111   if (!Predecessor)
6112     return getCouldNotCompute();
6113 
6114   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6115   // Return LHS in OutLHS and shift_opt in OutOpCode.
6116   auto MatchPositiveShift =
6117       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6118 
6119     using namespace PatternMatch;
6120 
6121     ConstantInt *ShiftAmt;
6122     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6123       OutOpCode = Instruction::LShr;
6124     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6125       OutOpCode = Instruction::AShr;
6126     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6127       OutOpCode = Instruction::Shl;
6128     else
6129       return false;
6130 
6131     return ShiftAmt->getValue().isStrictlyPositive();
6132   };
6133 
6134   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6135   //
6136   // loop:
6137   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6138   //   %iv.shifted = lshr i32 %iv, <positive constant>
6139   //
6140   // Return true on a succesful match.  Return the corresponding PHI node (%iv
6141   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6142   auto MatchShiftRecurrence =
6143       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6144     Optional<Instruction::BinaryOps> PostShiftOpCode;
6145 
6146     {
6147       Instruction::BinaryOps OpC;
6148       Value *V;
6149 
6150       // If we encounter a shift instruction, "peel off" the shift operation,
6151       // and remember that we did so.  Later when we inspect %iv's backedge
6152       // value, we will make sure that the backedge value uses the same
6153       // operation.
6154       //
6155       // Note: the peeled shift operation does not have to be the same
6156       // instruction as the one feeding into the PHI's backedge value.  We only
6157       // really care about it being the same *kind* of shift instruction --
6158       // that's all that is required for our later inferences to hold.
6159       if (MatchPositiveShift(LHS, V, OpC)) {
6160         PostShiftOpCode = OpC;
6161         LHS = V;
6162       }
6163     }
6164 
6165     PNOut = dyn_cast<PHINode>(LHS);
6166     if (!PNOut || PNOut->getParent() != L->getHeader())
6167       return false;
6168 
6169     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6170     Value *OpLHS;
6171 
6172     return
6173         // The backedge value for the PHI node must be a shift by a positive
6174         // amount
6175         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6176 
6177         // of the PHI node itself
6178         OpLHS == PNOut &&
6179 
6180         // and the kind of shift should be match the kind of shift we peeled
6181         // off, if any.
6182         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6183   };
6184 
6185   PHINode *PN;
6186   Instruction::BinaryOps OpCode;
6187   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6188     return getCouldNotCompute();
6189 
6190   const DataLayout &DL = getDataLayout();
6191 
6192   // The key rationale for this optimization is that for some kinds of shift
6193   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6194   // within a finite number of iterations.  If the condition guarding the
6195   // backedge (in the sense that the backedge is taken if the condition is true)
6196   // is false for the value the shift recurrence stabilizes to, then we know
6197   // that the backedge is taken only a finite number of times.
6198 
6199   ConstantInt *StableValue = nullptr;
6200   switch (OpCode) {
6201   default:
6202     llvm_unreachable("Impossible case!");
6203 
6204   case Instruction::AShr: {
6205     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6206     // bitwidth(K) iterations.
6207     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6208     bool KnownZero, KnownOne;
6209     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6210                    Predecessor->getTerminator(), &DT);
6211     auto *Ty = cast<IntegerType>(RHS->getType());
6212     if (KnownZero)
6213       StableValue = ConstantInt::get(Ty, 0);
6214     else if (KnownOne)
6215       StableValue = ConstantInt::get(Ty, -1, true);
6216     else
6217       return getCouldNotCompute();
6218 
6219     break;
6220   }
6221   case Instruction::LShr:
6222   case Instruction::Shl:
6223     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6224     // stabilize to 0 in at most bitwidth(K) iterations.
6225     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6226     break;
6227   }
6228 
6229   auto *Result =
6230       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6231   assert(Result->getType()->isIntegerTy(1) &&
6232          "Otherwise cannot be an operand to a branch instruction");
6233 
6234   if (Result->isZeroValue()) {
6235     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6236     const SCEV *UpperBound =
6237         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6238     SCEVUnionPredicate P;
6239     return ExitLimit(getCouldNotCompute(), UpperBound, P);
6240   }
6241 
6242   return getCouldNotCompute();
6243 }
6244 
6245 /// CanConstantFold - Return true if we can constant fold an instruction of the
6246 /// specified type, assuming that all operands were constants.
6247 static bool CanConstantFold(const Instruction *I) {
6248   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6249       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6250       isa<LoadInst>(I))
6251     return true;
6252 
6253   if (const CallInst *CI = dyn_cast<CallInst>(I))
6254     if (const Function *F = CI->getCalledFunction())
6255       return canConstantFoldCallTo(F);
6256   return false;
6257 }
6258 
6259 /// Determine whether this instruction can constant evolve within this loop
6260 /// assuming its operands can all constant evolve.
6261 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6262   // An instruction outside of the loop can't be derived from a loop PHI.
6263   if (!L->contains(I)) return false;
6264 
6265   if (isa<PHINode>(I)) {
6266     // We don't currently keep track of the control flow needed to evaluate
6267     // PHIs, so we cannot handle PHIs inside of loops.
6268     return L->getHeader() == I->getParent();
6269   }
6270 
6271   // If we won't be able to constant fold this expression even if the operands
6272   // are constants, bail early.
6273   return CanConstantFold(I);
6274 }
6275 
6276 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6277 /// recursing through each instruction operand until reaching a loop header phi.
6278 static PHINode *
6279 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6280                                DenseMap<Instruction *, PHINode *> &PHIMap) {
6281 
6282   // Otherwise, we can evaluate this instruction if all of its operands are
6283   // constant or derived from a PHI node themselves.
6284   PHINode *PHI = nullptr;
6285   for (Value *Op : UseInst->operands()) {
6286     if (isa<Constant>(Op)) continue;
6287 
6288     Instruction *OpInst = dyn_cast<Instruction>(Op);
6289     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6290 
6291     PHINode *P = dyn_cast<PHINode>(OpInst);
6292     if (!P)
6293       // If this operand is already visited, reuse the prior result.
6294       // We may have P != PHI if this is the deepest point at which the
6295       // inconsistent paths meet.
6296       P = PHIMap.lookup(OpInst);
6297     if (!P) {
6298       // Recurse and memoize the results, whether a phi is found or not.
6299       // This recursive call invalidates pointers into PHIMap.
6300       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap);
6301       PHIMap[OpInst] = P;
6302     }
6303     if (!P)
6304       return nullptr;  // Not evolving from PHI
6305     if (PHI && PHI != P)
6306       return nullptr;  // Evolving from multiple different PHIs.
6307     PHI = P;
6308   }
6309   // This is a expression evolving from a constant PHI!
6310   return PHI;
6311 }
6312 
6313 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6314 /// in the loop that V is derived from.  We allow arbitrary operations along the
6315 /// way, but the operands of an operation must either be constants or a value
6316 /// derived from a constant PHI.  If this expression does not fit with these
6317 /// constraints, return null.
6318 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6319   Instruction *I = dyn_cast<Instruction>(V);
6320   if (!I || !canConstantEvolve(I, L)) return nullptr;
6321 
6322   if (PHINode *PN = dyn_cast<PHINode>(I))
6323     return PN;
6324 
6325   // Record non-constant instructions contained by the loop.
6326   DenseMap<Instruction *, PHINode *> PHIMap;
6327   return getConstantEvolvingPHIOperands(I, L, PHIMap);
6328 }
6329 
6330 /// EvaluateExpression - Given an expression that passes the
6331 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6332 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6333 /// reason, return null.
6334 static Constant *EvaluateExpression(Value *V, const Loop *L,
6335                                     DenseMap<Instruction *, Constant *> &Vals,
6336                                     const DataLayout &DL,
6337                                     const TargetLibraryInfo *TLI) {
6338   // Convenient constant check, but redundant for recursive calls.
6339   if (Constant *C = dyn_cast<Constant>(V)) return C;
6340   Instruction *I = dyn_cast<Instruction>(V);
6341   if (!I) return nullptr;
6342 
6343   if (Constant *C = Vals.lookup(I)) return C;
6344 
6345   // An instruction inside the loop depends on a value outside the loop that we
6346   // weren't given a mapping for, or a value such as a call inside the loop.
6347   if (!canConstantEvolve(I, L)) return nullptr;
6348 
6349   // An unmapped PHI can be due to a branch or another loop inside this loop,
6350   // or due to this not being the initial iteration through a loop where we
6351   // couldn't compute the evolution of this particular PHI last time.
6352   if (isa<PHINode>(I)) return nullptr;
6353 
6354   std::vector<Constant*> Operands(I->getNumOperands());
6355 
6356   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6357     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6358     if (!Operand) {
6359       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6360       if (!Operands[i]) return nullptr;
6361       continue;
6362     }
6363     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6364     Vals[Operand] = C;
6365     if (!C) return nullptr;
6366     Operands[i] = C;
6367   }
6368 
6369   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6370     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6371                                            Operands[1], DL, TLI);
6372   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6373     if (!LI->isVolatile())
6374       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6375   }
6376   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6377 }
6378 
6379 
6380 // If every incoming value to PN except the one for BB is a specific Constant,
6381 // return that, else return nullptr.
6382 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6383   Constant *IncomingVal = nullptr;
6384 
6385   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6386     if (PN->getIncomingBlock(i) == BB)
6387       continue;
6388 
6389     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6390     if (!CurrentVal)
6391       return nullptr;
6392 
6393     if (IncomingVal != CurrentVal) {
6394       if (IncomingVal)
6395         return nullptr;
6396       IncomingVal = CurrentVal;
6397     }
6398   }
6399 
6400   return IncomingVal;
6401 }
6402 
6403 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6404 /// in the header of its containing loop, we know the loop executes a
6405 /// constant number of times, and the PHI node is just a recurrence
6406 /// involving constants, fold it.
6407 Constant *
6408 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6409                                                    const APInt &BEs,
6410                                                    const Loop *L) {
6411   auto I = ConstantEvolutionLoopExitValue.find(PN);
6412   if (I != ConstantEvolutionLoopExitValue.end())
6413     return I->second;
6414 
6415   if (BEs.ugt(MaxBruteForceIterations))
6416     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6417 
6418   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6419 
6420   DenseMap<Instruction *, Constant *> CurrentIterVals;
6421   BasicBlock *Header = L->getHeader();
6422   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6423 
6424   BasicBlock *Latch = L->getLoopLatch();
6425   if (!Latch)
6426     return nullptr;
6427 
6428   for (auto &I : *Header) {
6429     PHINode *PHI = dyn_cast<PHINode>(&I);
6430     if (!PHI) break;
6431     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6432     if (!StartCST) continue;
6433     CurrentIterVals[PHI] = StartCST;
6434   }
6435   if (!CurrentIterVals.count(PN))
6436     return RetVal = nullptr;
6437 
6438   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6439 
6440   // Execute the loop symbolically to determine the exit value.
6441   if (BEs.getActiveBits() >= 32)
6442     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6443 
6444   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6445   unsigned IterationNum = 0;
6446   const DataLayout &DL = getDataLayout();
6447   for (; ; ++IterationNum) {
6448     if (IterationNum == NumIterations)
6449       return RetVal = CurrentIterVals[PN];  // Got exit value!
6450 
6451     // Compute the value of the PHIs for the next iteration.
6452     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6453     DenseMap<Instruction *, Constant *> NextIterVals;
6454     Constant *NextPHI =
6455         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6456     if (!NextPHI)
6457       return nullptr;        // Couldn't evaluate!
6458     NextIterVals[PN] = NextPHI;
6459 
6460     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6461 
6462     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6463     // cease to be able to evaluate one of them or if they stop evolving,
6464     // because that doesn't necessarily prevent us from computing PN.
6465     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6466     for (const auto &I : CurrentIterVals) {
6467       PHINode *PHI = dyn_cast<PHINode>(I.first);
6468       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6469       PHIsToCompute.emplace_back(PHI, I.second);
6470     }
6471     // We use two distinct loops because EvaluateExpression may invalidate any
6472     // iterators into CurrentIterVals.
6473     for (const auto &I : PHIsToCompute) {
6474       PHINode *PHI = I.first;
6475       Constant *&NextPHI = NextIterVals[PHI];
6476       if (!NextPHI) {   // Not already computed.
6477         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6478         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6479       }
6480       if (NextPHI != I.second)
6481         StoppedEvolving = false;
6482     }
6483 
6484     // If all entries in CurrentIterVals == NextIterVals then we can stop
6485     // iterating, the loop can't continue to change.
6486     if (StoppedEvolving)
6487       return RetVal = CurrentIterVals[PN];
6488 
6489     CurrentIterVals.swap(NextIterVals);
6490   }
6491 }
6492 
6493 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6494                                                           Value *Cond,
6495                                                           bool ExitWhen) {
6496   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6497   if (!PN) return getCouldNotCompute();
6498 
6499   // If the loop is canonicalized, the PHI will have exactly two entries.
6500   // That's the only form we support here.
6501   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6502 
6503   DenseMap<Instruction *, Constant *> CurrentIterVals;
6504   BasicBlock *Header = L->getHeader();
6505   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6506 
6507   BasicBlock *Latch = L->getLoopLatch();
6508   assert(Latch && "Should follow from NumIncomingValues == 2!");
6509 
6510   for (auto &I : *Header) {
6511     PHINode *PHI = dyn_cast<PHINode>(&I);
6512     if (!PHI)
6513       break;
6514     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6515     if (!StartCST) continue;
6516     CurrentIterVals[PHI] = StartCST;
6517   }
6518   if (!CurrentIterVals.count(PN))
6519     return getCouldNotCompute();
6520 
6521   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6522   // the loop symbolically to determine when the condition gets a value of
6523   // "ExitWhen".
6524   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6525   const DataLayout &DL = getDataLayout();
6526   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6527     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6528         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6529 
6530     // Couldn't symbolically evaluate.
6531     if (!CondVal) return getCouldNotCompute();
6532 
6533     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6534       ++NumBruteForceTripCountsComputed;
6535       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6536     }
6537 
6538     // Update all the PHI nodes for the next iteration.
6539     DenseMap<Instruction *, Constant *> NextIterVals;
6540 
6541     // Create a list of which PHIs we need to compute. We want to do this before
6542     // calling EvaluateExpression on them because that may invalidate iterators
6543     // into CurrentIterVals.
6544     SmallVector<PHINode *, 8> PHIsToCompute;
6545     for (const auto &I : CurrentIterVals) {
6546       PHINode *PHI = dyn_cast<PHINode>(I.first);
6547       if (!PHI || PHI->getParent() != Header) continue;
6548       PHIsToCompute.push_back(PHI);
6549     }
6550     for (PHINode *PHI : PHIsToCompute) {
6551       Constant *&NextPHI = NextIterVals[PHI];
6552       if (NextPHI) continue;    // Already computed!
6553 
6554       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6555       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6556     }
6557     CurrentIterVals.swap(NextIterVals);
6558   }
6559 
6560   // Too many iterations were needed to evaluate.
6561   return getCouldNotCompute();
6562 }
6563 
6564 /// getSCEVAtScope - Return a SCEV expression for the specified value
6565 /// at the specified scope in the program.  The L value specifies a loop
6566 /// nest to evaluate the expression at, where null is the top-level or a
6567 /// specified loop is immediately inside of the loop.
6568 ///
6569 /// This method can be used to compute the exit value for a variable defined
6570 /// in a loop by querying what the value will hold in the parent loop.
6571 ///
6572 /// In the case that a relevant loop exit value cannot be computed, the
6573 /// original value V is returned.
6574 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6575   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6576       ValuesAtScopes[V];
6577   // Check to see if we've folded this expression at this loop before.
6578   for (auto &LS : Values)
6579     if (LS.first == L)
6580       return LS.second ? LS.second : V;
6581 
6582   Values.emplace_back(L, nullptr);
6583 
6584   // Otherwise compute it.
6585   const SCEV *C = computeSCEVAtScope(V, L);
6586   for (auto &LS : reverse(ValuesAtScopes[V]))
6587     if (LS.first == L) {
6588       LS.second = C;
6589       break;
6590     }
6591   return C;
6592 }
6593 
6594 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6595 /// will return Constants for objects which aren't represented by a
6596 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6597 /// Returns NULL if the SCEV isn't representable as a Constant.
6598 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6599   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6600     case scCouldNotCompute:
6601     case scAddRecExpr:
6602       break;
6603     case scConstant:
6604       return cast<SCEVConstant>(V)->getValue();
6605     case scUnknown:
6606       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6607     case scSignExtend: {
6608       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6609       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6610         return ConstantExpr::getSExt(CastOp, SS->getType());
6611       break;
6612     }
6613     case scZeroExtend: {
6614       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6615       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6616         return ConstantExpr::getZExt(CastOp, SZ->getType());
6617       break;
6618     }
6619     case scTruncate: {
6620       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6621       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6622         return ConstantExpr::getTrunc(CastOp, ST->getType());
6623       break;
6624     }
6625     case scAddExpr: {
6626       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6627       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6628         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6629           unsigned AS = PTy->getAddressSpace();
6630           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6631           C = ConstantExpr::getBitCast(C, DestPtrTy);
6632         }
6633         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6634           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6635           if (!C2) return nullptr;
6636 
6637           // First pointer!
6638           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6639             unsigned AS = C2->getType()->getPointerAddressSpace();
6640             std::swap(C, C2);
6641             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6642             // The offsets have been converted to bytes.  We can add bytes to an
6643             // i8* by GEP with the byte count in the first index.
6644             C = ConstantExpr::getBitCast(C, DestPtrTy);
6645           }
6646 
6647           // Don't bother trying to sum two pointers. We probably can't
6648           // statically compute a load that results from it anyway.
6649           if (C2->getType()->isPointerTy())
6650             return nullptr;
6651 
6652           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6653             if (PTy->getElementType()->isStructTy())
6654               C2 = ConstantExpr::getIntegerCast(
6655                   C2, Type::getInt32Ty(C->getContext()), true);
6656             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6657           } else
6658             C = ConstantExpr::getAdd(C, C2);
6659         }
6660         return C;
6661       }
6662       break;
6663     }
6664     case scMulExpr: {
6665       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6666       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6667         // Don't bother with pointers at all.
6668         if (C->getType()->isPointerTy()) return nullptr;
6669         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6670           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6671           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6672           C = ConstantExpr::getMul(C, C2);
6673         }
6674         return C;
6675       }
6676       break;
6677     }
6678     case scUDivExpr: {
6679       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6680       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6681         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6682           if (LHS->getType() == RHS->getType())
6683             return ConstantExpr::getUDiv(LHS, RHS);
6684       break;
6685     }
6686     case scSMaxExpr:
6687     case scUMaxExpr:
6688       break; // TODO: smax, umax.
6689   }
6690   return nullptr;
6691 }
6692 
6693 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6694   if (isa<SCEVConstant>(V)) return V;
6695 
6696   // If this instruction is evolved from a constant-evolving PHI, compute the
6697   // exit value from the loop without using SCEVs.
6698   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6699     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6700       const Loop *LI = this->LI[I->getParent()];
6701       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6702         if (PHINode *PN = dyn_cast<PHINode>(I))
6703           if (PN->getParent() == LI->getHeader()) {
6704             // Okay, there is no closed form solution for the PHI node.  Check
6705             // to see if the loop that contains it has a known backedge-taken
6706             // count.  If so, we may be able to force computation of the exit
6707             // value.
6708             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6709             if (const SCEVConstant *BTCC =
6710                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6711               // Okay, we know how many times the containing loop executes.  If
6712               // this is a constant evolving PHI node, get the final value at
6713               // the specified iteration number.
6714               Constant *RV =
6715                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6716               if (RV) return getSCEV(RV);
6717             }
6718           }
6719 
6720       // Okay, this is an expression that we cannot symbolically evaluate
6721       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6722       // the arguments into constants, and if so, try to constant propagate the
6723       // result.  This is particularly useful for computing loop exit values.
6724       if (CanConstantFold(I)) {
6725         SmallVector<Constant *, 4> Operands;
6726         bool MadeImprovement = false;
6727         for (Value *Op : I->operands()) {
6728           if (Constant *C = dyn_cast<Constant>(Op)) {
6729             Operands.push_back(C);
6730             continue;
6731           }
6732 
6733           // If any of the operands is non-constant and if they are
6734           // non-integer and non-pointer, don't even try to analyze them
6735           // with scev techniques.
6736           if (!isSCEVable(Op->getType()))
6737             return V;
6738 
6739           const SCEV *OrigV = getSCEV(Op);
6740           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6741           MadeImprovement |= OrigV != OpV;
6742 
6743           Constant *C = BuildConstantFromSCEV(OpV);
6744           if (!C) return V;
6745           if (C->getType() != Op->getType())
6746             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6747                                                               Op->getType(),
6748                                                               false),
6749                                       C, Op->getType());
6750           Operands.push_back(C);
6751         }
6752 
6753         // Check to see if getSCEVAtScope actually made an improvement.
6754         if (MadeImprovement) {
6755           Constant *C = nullptr;
6756           const DataLayout &DL = getDataLayout();
6757           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6758             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6759                                                 Operands[1], DL, &TLI);
6760           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6761             if (!LI->isVolatile())
6762               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6763           } else
6764             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6765           if (!C) return V;
6766           return getSCEV(C);
6767         }
6768       }
6769     }
6770 
6771     // This is some other type of SCEVUnknown, just return it.
6772     return V;
6773   }
6774 
6775   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6776     // Avoid performing the look-up in the common case where the specified
6777     // expression has no loop-variant portions.
6778     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6779       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6780       if (OpAtScope != Comm->getOperand(i)) {
6781         // Okay, at least one of these operands is loop variant but might be
6782         // foldable.  Build a new instance of the folded commutative expression.
6783         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6784                                             Comm->op_begin()+i);
6785         NewOps.push_back(OpAtScope);
6786 
6787         for (++i; i != e; ++i) {
6788           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6789           NewOps.push_back(OpAtScope);
6790         }
6791         if (isa<SCEVAddExpr>(Comm))
6792           return getAddExpr(NewOps);
6793         if (isa<SCEVMulExpr>(Comm))
6794           return getMulExpr(NewOps);
6795         if (isa<SCEVSMaxExpr>(Comm))
6796           return getSMaxExpr(NewOps);
6797         if (isa<SCEVUMaxExpr>(Comm))
6798           return getUMaxExpr(NewOps);
6799         llvm_unreachable("Unknown commutative SCEV type!");
6800       }
6801     }
6802     // If we got here, all operands are loop invariant.
6803     return Comm;
6804   }
6805 
6806   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6807     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6808     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6809     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6810       return Div;   // must be loop invariant
6811     return getUDivExpr(LHS, RHS);
6812   }
6813 
6814   // If this is a loop recurrence for a loop that does not contain L, then we
6815   // are dealing with the final value computed by the loop.
6816   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6817     // First, attempt to evaluate each operand.
6818     // Avoid performing the look-up in the common case where the specified
6819     // expression has no loop-variant portions.
6820     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6821       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6822       if (OpAtScope == AddRec->getOperand(i))
6823         continue;
6824 
6825       // Okay, at least one of these operands is loop variant but might be
6826       // foldable.  Build a new instance of the folded commutative expression.
6827       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6828                                           AddRec->op_begin()+i);
6829       NewOps.push_back(OpAtScope);
6830       for (++i; i != e; ++i)
6831         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6832 
6833       const SCEV *FoldedRec =
6834         getAddRecExpr(NewOps, AddRec->getLoop(),
6835                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6836       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6837       // The addrec may be folded to a nonrecurrence, for example, if the
6838       // induction variable is multiplied by zero after constant folding. Go
6839       // ahead and return the folded value.
6840       if (!AddRec)
6841         return FoldedRec;
6842       break;
6843     }
6844 
6845     // If the scope is outside the addrec's loop, evaluate it by using the
6846     // loop exit value of the addrec.
6847     if (!AddRec->getLoop()->contains(L)) {
6848       // To evaluate this recurrence, we need to know how many times the AddRec
6849       // loop iterates.  Compute this now.
6850       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6851       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6852 
6853       // Then, evaluate the AddRec.
6854       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6855     }
6856 
6857     return AddRec;
6858   }
6859 
6860   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6861     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6862     if (Op == Cast->getOperand())
6863       return Cast;  // must be loop invariant
6864     return getZeroExtendExpr(Op, Cast->getType());
6865   }
6866 
6867   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
6868     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6869     if (Op == Cast->getOperand())
6870       return Cast;  // must be loop invariant
6871     return getSignExtendExpr(Op, Cast->getType());
6872   }
6873 
6874   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
6875     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
6876     if (Op == Cast->getOperand())
6877       return Cast;  // must be loop invariant
6878     return getTruncateExpr(Op, Cast->getType());
6879   }
6880 
6881   llvm_unreachable("Unknown SCEV type!");
6882 }
6883 
6884 /// getSCEVAtScope - This is a convenience function which does
6885 /// getSCEVAtScope(getSCEV(V), L).
6886 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
6887   return getSCEVAtScope(getSCEV(V), L);
6888 }
6889 
6890 /// SolveLinEquationWithOverflow - Finds the minimum unsigned root of the
6891 /// following equation:
6892 ///
6893 ///     A * X = B (mod N)
6894 ///
6895 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
6896 /// A and B isn't important.
6897 ///
6898 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
6899 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
6900                                                ScalarEvolution &SE) {
6901   uint32_t BW = A.getBitWidth();
6902   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
6903   assert(A != 0 && "A must be non-zero.");
6904 
6905   // 1. D = gcd(A, N)
6906   //
6907   // The gcd of A and N may have only one prime factor: 2. The number of
6908   // trailing zeros in A is its multiplicity
6909   uint32_t Mult2 = A.countTrailingZeros();
6910   // D = 2^Mult2
6911 
6912   // 2. Check if B is divisible by D.
6913   //
6914   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
6915   // is not less than multiplicity of this prime factor for D.
6916   if (B.countTrailingZeros() < Mult2)
6917     return SE.getCouldNotCompute();
6918 
6919   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
6920   // modulo (N / D).
6921   //
6922   // (N / D) may need BW+1 bits in its representation.  Hence, we'll use this
6923   // bit width during computations.
6924   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
6925   APInt Mod(BW + 1, 0);
6926   Mod.setBit(BW - Mult2);  // Mod = N / D
6927   APInt I = AD.multiplicativeInverse(Mod);
6928 
6929   // 4. Compute the minimum unsigned root of the equation:
6930   // I * (B / D) mod (N / D)
6931   APInt Result = (I * B.lshr(Mult2).zext(BW + 1)).urem(Mod);
6932 
6933   // The result is guaranteed to be less than 2^BW so we may truncate it to BW
6934   // bits.
6935   return SE.getConstant(Result.trunc(BW));
6936 }
6937 
6938 /// SolveQuadraticEquation - Find the roots of the quadratic equation for the
6939 /// given quadratic chrec {L,+,M,+,N}.  This returns either the two roots (which
6940 /// might be the same) or two SCEVCouldNotCompute objects.
6941 ///
6942 static std::pair<const SCEV *,const SCEV *>
6943 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
6944   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
6945   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
6946   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
6947   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
6948 
6949   // We currently can only solve this if the coefficients are constants.
6950   if (!LC || !MC || !NC) {
6951     const SCEV *CNC = SE.getCouldNotCompute();
6952     return {CNC, CNC};
6953   }
6954 
6955   uint32_t BitWidth = LC->getAPInt().getBitWidth();
6956   const APInt &L = LC->getAPInt();
6957   const APInt &M = MC->getAPInt();
6958   const APInt &N = NC->getAPInt();
6959   APInt Two(BitWidth, 2);
6960   APInt Four(BitWidth, 4);
6961 
6962   {
6963     using namespace APIntOps;
6964     const APInt& C = L;
6965     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
6966     // The B coefficient is M-N/2
6967     APInt B(M);
6968     B -= sdiv(N,Two);
6969 
6970     // The A coefficient is N/2
6971     APInt A(N.sdiv(Two));
6972 
6973     // Compute the B^2-4ac term.
6974     APInt SqrtTerm(B);
6975     SqrtTerm *= B;
6976     SqrtTerm -= Four * (A * C);
6977 
6978     if (SqrtTerm.isNegative()) {
6979       // The loop is provably infinite.
6980       const SCEV *CNC = SE.getCouldNotCompute();
6981       return {CNC, CNC};
6982     }
6983 
6984     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
6985     // integer value or else APInt::sqrt() will assert.
6986     APInt SqrtVal(SqrtTerm.sqrt());
6987 
6988     // Compute the two solutions for the quadratic formula.
6989     // The divisions must be performed as signed divisions.
6990     APInt NegB(-B);
6991     APInt TwoA(A << 1);
6992     if (TwoA.isMinValue()) {
6993       const SCEV *CNC = SE.getCouldNotCompute();
6994       return {CNC, CNC};
6995     }
6996 
6997     LLVMContext &Context = SE.getContext();
6998 
6999     ConstantInt *Solution1 =
7000       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7001     ConstantInt *Solution2 =
7002       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7003 
7004     return {SE.getConstant(Solution1), SE.getConstant(Solution2)};
7005   } // end APIntOps namespace
7006 }
7007 
7008 /// HowFarToZero - Return the number of times a backedge comparing the specified
7009 /// value to zero will execute.  If not computable, return CouldNotCompute.
7010 ///
7011 /// This is only used for loops with a "x != y" exit test. The exit condition is
7012 /// now expressed as a single expression, V = x-y. So the exit test is
7013 /// effectively V != 0.  We know and take advantage of the fact that this
7014 /// expression only being used in a comparison by zero context.
7015 ScalarEvolution::ExitLimit
7016 ScalarEvolution::HowFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7017                               bool AllowPredicates) {
7018   SCEVUnionPredicate P;
7019   // If the value is a constant
7020   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7021     // If the value is already zero, the branch will execute zero times.
7022     if (C->getValue()->isZero()) return C;
7023     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7024   }
7025 
7026   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7027   if (!AddRec && AllowPredicates)
7028     // Try to make this an AddRec using runtime tests, in the first X
7029     // iterations of this loop, where X is the SCEV expression found by the
7030     // algorithm below.
7031     AddRec = convertSCEVToAddRecWithPredicates(V, L, P);
7032 
7033   if (!AddRec || AddRec->getLoop() != L)
7034     return getCouldNotCompute();
7035 
7036   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7037   // the quadratic equation to solve it.
7038   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7039     std::pair<const SCEV *,const SCEV *> Roots =
7040       SolveQuadraticEquation(AddRec, *this);
7041     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
7042     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
7043     if (R1 && R2) {
7044       // Pick the smallest positive root value.
7045       if (ConstantInt *CB =
7046           dyn_cast<ConstantInt>(ConstantExpr::getICmp(CmpInst::ICMP_ULT,
7047                                                       R1->getValue(),
7048                                                       R2->getValue()))) {
7049         if (!CB->getZExtValue())
7050           std::swap(R1, R2);   // R1 is the minimum root now.
7051 
7052         // We can only use this value if the chrec ends up with an exact zero
7053         // value at this index.  When solving for "X*X != 5", for example, we
7054         // should not accept a root of 2.
7055         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7056         if (Val->isZero())
7057           return ExitLimit(R1, R1, P); // We found a quadratic root!
7058       }
7059     }
7060     return getCouldNotCompute();
7061   }
7062 
7063   // Otherwise we can only handle this if it is affine.
7064   if (!AddRec->isAffine())
7065     return getCouldNotCompute();
7066 
7067   // If this is an affine expression, the execution count of this branch is
7068   // the minimum unsigned root of the following equation:
7069   //
7070   //     Start + Step*N = 0 (mod 2^BW)
7071   //
7072   // equivalent to:
7073   //
7074   //             Step*N = -Start (mod 2^BW)
7075   //
7076   // where BW is the common bit width of Start and Step.
7077 
7078   // Get the initial value for the loop.
7079   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7080   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7081 
7082   // For now we handle only constant steps.
7083   //
7084   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7085   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7086   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7087   // We have not yet seen any such cases.
7088   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7089   if (!StepC || StepC->getValue()->equalsInt(0))
7090     return getCouldNotCompute();
7091 
7092   // For positive steps (counting up until unsigned overflow):
7093   //   N = -Start/Step (as unsigned)
7094   // For negative steps (counting down to zero):
7095   //   N = Start/-Step
7096   // First compute the unsigned distance from zero in the direction of Step.
7097   bool CountDown = StepC->getAPInt().isNegative();
7098   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7099 
7100   // Handle unitary steps, which cannot wraparound.
7101   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7102   //   N = Distance (as unsigned)
7103   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7104     ConstantRange CR = getUnsignedRange(Start);
7105     const SCEV *MaxBECount;
7106     if (!CountDown && CR.getUnsignedMin().isMinValue())
7107       // When counting up, the worst starting value is 1, not 0.
7108       MaxBECount = CR.getUnsignedMax().isMinValue()
7109         ? getConstant(APInt::getMinValue(CR.getBitWidth()))
7110         : getConstant(APInt::getMaxValue(CR.getBitWidth()));
7111     else
7112       MaxBECount = getConstant(CountDown ? CR.getUnsignedMax()
7113                                          : -CR.getUnsignedMin());
7114     return ExitLimit(Distance, MaxBECount, P);
7115   }
7116 
7117   // As a special case, handle the instance where Step is a positive power of
7118   // two. In this case, determining whether Step divides Distance evenly can be
7119   // done by counting and comparing the number of trailing zeros of Step and
7120   // Distance.
7121   if (!CountDown) {
7122     const APInt &StepV = StepC->getAPInt();
7123     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7124     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7125     // case is not handled as this code is guarded by !CountDown.
7126     if (StepV.isPowerOf2() &&
7127         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7128       // Here we've constrained the equation to be of the form
7129       //
7130       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7131       //
7132       // where we're operating on a W bit wide integer domain and k is
7133       // non-negative.  The smallest unsigned solution for X is the trip count.
7134       //
7135       // (0) is equivalent to:
7136       //
7137       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7138       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7139       // <=>  2^k * Distance' - X = L * 2^(W - N)
7140       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7141       //
7142       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7143       // by 2^(W - N).
7144       //
7145       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7146       //
7147       // E.g. say we're solving
7148       //
7149       //   2 * Val = 2 * X  (in i8)   ... (3)
7150       //
7151       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7152       //
7153       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7154       // necessarily the smallest unsigned value of X that satisfies (3).
7155       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7156       // is i8 1, not i8 -127
7157 
7158       const auto *ModuloResult = getUDivExactExpr(Distance, Step);
7159 
7160       // Since SCEV does not have a URem node, we construct one using a truncate
7161       // and a zero extend.
7162 
7163       unsigned NarrowWidth = StepV.getBitWidth() - StepV.countTrailingZeros();
7164       auto *NarrowTy = IntegerType::get(getContext(), NarrowWidth);
7165       auto *WideTy = Distance->getType();
7166 
7167       const SCEV *Limit =
7168           getZeroExtendExpr(getTruncateExpr(ModuloResult, NarrowTy), WideTy);
7169       return ExitLimit(Limit, Limit, P);
7170     }
7171   }
7172 
7173   // If the condition controls loop exit (the loop exits only if the expression
7174   // is true) and the addition is no-wrap we can use unsigned divide to
7175   // compute the backedge count.  In this case, the step may not divide the
7176   // distance, but we don't care because if the condition is "missed" the loop
7177   // will have undefined behavior due to wrapping.
7178   if (ControlsExit && AddRec->hasNoSelfWrap()) {
7179     const SCEV *Exact =
7180         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7181     return ExitLimit(Exact, Exact, P);
7182   }
7183 
7184   // Then, try to solve the above equation provided that Start is constant.
7185   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7186     const SCEV *E = SolveLinEquationWithOverflow(
7187         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7188     return ExitLimit(E, E, P);
7189   }
7190   return getCouldNotCompute();
7191 }
7192 
7193 /// HowFarToNonZero - Return the number of times a backedge checking the
7194 /// specified value for nonzero will execute.  If not computable, return
7195 /// CouldNotCompute
7196 ScalarEvolution::ExitLimit
7197 ScalarEvolution::HowFarToNonZero(const SCEV *V, const Loop *L) {
7198   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7199   // handle them yet except for the trivial case.  This could be expanded in the
7200   // future as needed.
7201 
7202   // If the value is a constant, check to see if it is known to be non-zero
7203   // already.  If so, the backedge will execute zero times.
7204   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7205     if (!C->getValue()->isNullValue())
7206       return getZero(C->getType());
7207     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7208   }
7209 
7210   // We could implement others, but I really doubt anyone writes loops like
7211   // this, and if they did, they would already be constant folded.
7212   return getCouldNotCompute();
7213 }
7214 
7215 /// getPredecessorWithUniqueSuccessorForBB - Return a predecessor of BB
7216 /// (which may not be an immediate predecessor) which has exactly one
7217 /// successor from which BB is reachable, or null if no such block is
7218 /// found.
7219 ///
7220 std::pair<BasicBlock *, BasicBlock *>
7221 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7222   // If the block has a unique predecessor, then there is no path from the
7223   // predecessor to the block that does not go through the direct edge
7224   // from the predecessor to the block.
7225   if (BasicBlock *Pred = BB->getSinglePredecessor())
7226     return {Pred, BB};
7227 
7228   // A loop's header is defined to be a block that dominates the loop.
7229   // If the header has a unique predecessor outside the loop, it must be
7230   // a block that has exactly one successor that can reach the loop.
7231   if (Loop *L = LI.getLoopFor(BB))
7232     return {L->getLoopPredecessor(), L->getHeader()};
7233 
7234   return {nullptr, nullptr};
7235 }
7236 
7237 /// HasSameValue - SCEV structural equivalence is usually sufficient for
7238 /// testing whether two expressions are equal, however for the purposes of
7239 /// looking for a condition guarding a loop, it can be useful to be a little
7240 /// more general, since a front-end may have replicated the controlling
7241 /// expression.
7242 ///
7243 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7244   // Quick check to see if they are the same SCEV.
7245   if (A == B) return true;
7246 
7247   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7248     // Not all instructions that are "identical" compute the same value.  For
7249     // instance, two distinct alloca instructions allocating the same type are
7250     // identical and do not read memory; but compute distinct values.
7251     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7252   };
7253 
7254   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7255   // two different instructions with the same value. Check for this case.
7256   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7257     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7258       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7259         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7260           if (ComputesEqualValues(AI, BI))
7261             return true;
7262 
7263   // Otherwise assume they may have a different value.
7264   return false;
7265 }
7266 
7267 /// SimplifyICmpOperands - Simplify LHS and RHS in a comparison with
7268 /// predicate Pred. Return true iff any changes were made.
7269 ///
7270 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7271                                            const SCEV *&LHS, const SCEV *&RHS,
7272                                            unsigned Depth) {
7273   bool Changed = false;
7274 
7275   // If we hit the max recursion limit bail out.
7276   if (Depth >= 3)
7277     return false;
7278 
7279   // Canonicalize a constant to the right side.
7280   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7281     // Check for both operands constant.
7282     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7283       if (ConstantExpr::getICmp(Pred,
7284                                 LHSC->getValue(),
7285                                 RHSC->getValue())->isNullValue())
7286         goto trivially_false;
7287       else
7288         goto trivially_true;
7289     }
7290     // Otherwise swap the operands to put the constant on the right.
7291     std::swap(LHS, RHS);
7292     Pred = ICmpInst::getSwappedPredicate(Pred);
7293     Changed = true;
7294   }
7295 
7296   // If we're comparing an addrec with a value which is loop-invariant in the
7297   // addrec's loop, put the addrec on the left. Also make a dominance check,
7298   // as both operands could be addrecs loop-invariant in each other's loop.
7299   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7300     const Loop *L = AR->getLoop();
7301     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7302       std::swap(LHS, RHS);
7303       Pred = ICmpInst::getSwappedPredicate(Pred);
7304       Changed = true;
7305     }
7306   }
7307 
7308   // If there's a constant operand, canonicalize comparisons with boundary
7309   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7310   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7311     const APInt &RA = RC->getAPInt();
7312     switch (Pred) {
7313     default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
7314     case ICmpInst::ICMP_EQ:
7315     case ICmpInst::ICMP_NE:
7316       // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7317       if (!RA)
7318         if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7319           if (const SCEVMulExpr *ME = dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7320             if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7321                 ME->getOperand(0)->isAllOnesValue()) {
7322               RHS = AE->getOperand(1);
7323               LHS = ME->getOperand(1);
7324               Changed = true;
7325             }
7326       break;
7327     case ICmpInst::ICMP_UGE:
7328       if ((RA - 1).isMinValue()) {
7329         Pred = ICmpInst::ICMP_NE;
7330         RHS = getConstant(RA - 1);
7331         Changed = true;
7332         break;
7333       }
7334       if (RA.isMaxValue()) {
7335         Pred = ICmpInst::ICMP_EQ;
7336         Changed = true;
7337         break;
7338       }
7339       if (RA.isMinValue()) goto trivially_true;
7340 
7341       Pred = ICmpInst::ICMP_UGT;
7342       RHS = getConstant(RA - 1);
7343       Changed = true;
7344       break;
7345     case ICmpInst::ICMP_ULE:
7346       if ((RA + 1).isMaxValue()) {
7347         Pred = ICmpInst::ICMP_NE;
7348         RHS = getConstant(RA + 1);
7349         Changed = true;
7350         break;
7351       }
7352       if (RA.isMinValue()) {
7353         Pred = ICmpInst::ICMP_EQ;
7354         Changed = true;
7355         break;
7356       }
7357       if (RA.isMaxValue()) goto trivially_true;
7358 
7359       Pred = ICmpInst::ICMP_ULT;
7360       RHS = getConstant(RA + 1);
7361       Changed = true;
7362       break;
7363     case ICmpInst::ICMP_SGE:
7364       if ((RA - 1).isMinSignedValue()) {
7365         Pred = ICmpInst::ICMP_NE;
7366         RHS = getConstant(RA - 1);
7367         Changed = true;
7368         break;
7369       }
7370       if (RA.isMaxSignedValue()) {
7371         Pred = ICmpInst::ICMP_EQ;
7372         Changed = true;
7373         break;
7374       }
7375       if (RA.isMinSignedValue()) goto trivially_true;
7376 
7377       Pred = ICmpInst::ICMP_SGT;
7378       RHS = getConstant(RA - 1);
7379       Changed = true;
7380       break;
7381     case ICmpInst::ICMP_SLE:
7382       if ((RA + 1).isMaxSignedValue()) {
7383         Pred = ICmpInst::ICMP_NE;
7384         RHS = getConstant(RA + 1);
7385         Changed = true;
7386         break;
7387       }
7388       if (RA.isMinSignedValue()) {
7389         Pred = ICmpInst::ICMP_EQ;
7390         Changed = true;
7391         break;
7392       }
7393       if (RA.isMaxSignedValue()) goto trivially_true;
7394 
7395       Pred = ICmpInst::ICMP_SLT;
7396       RHS = getConstant(RA + 1);
7397       Changed = true;
7398       break;
7399     case ICmpInst::ICMP_UGT:
7400       if (RA.isMinValue()) {
7401         Pred = ICmpInst::ICMP_NE;
7402         Changed = true;
7403         break;
7404       }
7405       if ((RA + 1).isMaxValue()) {
7406         Pred = ICmpInst::ICMP_EQ;
7407         RHS = getConstant(RA + 1);
7408         Changed = true;
7409         break;
7410       }
7411       if (RA.isMaxValue()) goto trivially_false;
7412       break;
7413     case ICmpInst::ICMP_ULT:
7414       if (RA.isMaxValue()) {
7415         Pred = ICmpInst::ICMP_NE;
7416         Changed = true;
7417         break;
7418       }
7419       if ((RA - 1).isMinValue()) {
7420         Pred = ICmpInst::ICMP_EQ;
7421         RHS = getConstant(RA - 1);
7422         Changed = true;
7423         break;
7424       }
7425       if (RA.isMinValue()) goto trivially_false;
7426       break;
7427     case ICmpInst::ICMP_SGT:
7428       if (RA.isMinSignedValue()) {
7429         Pred = ICmpInst::ICMP_NE;
7430         Changed = true;
7431         break;
7432       }
7433       if ((RA + 1).isMaxSignedValue()) {
7434         Pred = ICmpInst::ICMP_EQ;
7435         RHS = getConstant(RA + 1);
7436         Changed = true;
7437         break;
7438       }
7439       if (RA.isMaxSignedValue()) goto trivially_false;
7440       break;
7441     case ICmpInst::ICMP_SLT:
7442       if (RA.isMaxSignedValue()) {
7443         Pred = ICmpInst::ICMP_NE;
7444         Changed = true;
7445         break;
7446       }
7447       if ((RA - 1).isMinSignedValue()) {
7448        Pred = ICmpInst::ICMP_EQ;
7449        RHS = getConstant(RA - 1);
7450         Changed = true;
7451        break;
7452       }
7453       if (RA.isMinSignedValue()) goto trivially_false;
7454       break;
7455     }
7456   }
7457 
7458   // Check for obvious equality.
7459   if (HasSameValue(LHS, RHS)) {
7460     if (ICmpInst::isTrueWhenEqual(Pred))
7461       goto trivially_true;
7462     if (ICmpInst::isFalseWhenEqual(Pred))
7463       goto trivially_false;
7464   }
7465 
7466   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7467   // adding or subtracting 1 from one of the operands.
7468   switch (Pred) {
7469   case ICmpInst::ICMP_SLE:
7470     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7471       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7472                        SCEV::FlagNSW);
7473       Pred = ICmpInst::ICMP_SLT;
7474       Changed = true;
7475     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7476       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7477                        SCEV::FlagNSW);
7478       Pred = ICmpInst::ICMP_SLT;
7479       Changed = true;
7480     }
7481     break;
7482   case ICmpInst::ICMP_SGE:
7483     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7484       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7485                        SCEV::FlagNSW);
7486       Pred = ICmpInst::ICMP_SGT;
7487       Changed = true;
7488     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7489       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7490                        SCEV::FlagNSW);
7491       Pred = ICmpInst::ICMP_SGT;
7492       Changed = true;
7493     }
7494     break;
7495   case ICmpInst::ICMP_ULE:
7496     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7497       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7498                        SCEV::FlagNUW);
7499       Pred = ICmpInst::ICMP_ULT;
7500       Changed = true;
7501     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7502       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7503       Pred = ICmpInst::ICMP_ULT;
7504       Changed = true;
7505     }
7506     break;
7507   case ICmpInst::ICMP_UGE:
7508     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7509       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7510       Pred = ICmpInst::ICMP_UGT;
7511       Changed = true;
7512     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7513       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7514                        SCEV::FlagNUW);
7515       Pred = ICmpInst::ICMP_UGT;
7516       Changed = true;
7517     }
7518     break;
7519   default:
7520     break;
7521   }
7522 
7523   // TODO: More simplifications are possible here.
7524 
7525   // Recursively simplify until we either hit a recursion limit or nothing
7526   // changes.
7527   if (Changed)
7528     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7529 
7530   return Changed;
7531 
7532 trivially_true:
7533   // Return 0 == 0.
7534   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7535   Pred = ICmpInst::ICMP_EQ;
7536   return true;
7537 
7538 trivially_false:
7539   // Return 0 != 0.
7540   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7541   Pred = ICmpInst::ICMP_NE;
7542   return true;
7543 }
7544 
7545 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7546   return getSignedRange(S).getSignedMax().isNegative();
7547 }
7548 
7549 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7550   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7551 }
7552 
7553 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7554   return !getSignedRange(S).getSignedMin().isNegative();
7555 }
7556 
7557 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7558   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7559 }
7560 
7561 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7562   return isKnownNegative(S) || isKnownPositive(S);
7563 }
7564 
7565 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7566                                        const SCEV *LHS, const SCEV *RHS) {
7567   // Canonicalize the inputs first.
7568   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7569 
7570   // If LHS or RHS is an addrec, check to see if the condition is true in
7571   // every iteration of the loop.
7572   // If LHS and RHS are both addrec, both conditions must be true in
7573   // every iteration of the loop.
7574   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7575   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7576   bool LeftGuarded = false;
7577   bool RightGuarded = false;
7578   if (LAR) {
7579     const Loop *L = LAR->getLoop();
7580     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7581         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7582       if (!RAR) return true;
7583       LeftGuarded = true;
7584     }
7585   }
7586   if (RAR) {
7587     const Loop *L = RAR->getLoop();
7588     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7589         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7590       if (!LAR) return true;
7591       RightGuarded = true;
7592     }
7593   }
7594   if (LeftGuarded && RightGuarded)
7595     return true;
7596 
7597   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7598     return true;
7599 
7600   // Otherwise see what can be done with known constant ranges.
7601   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7602 }
7603 
7604 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7605                                            ICmpInst::Predicate Pred,
7606                                            bool &Increasing) {
7607   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7608 
7609 #ifndef NDEBUG
7610   // Verify an invariant: inverting the predicate should turn a monotonically
7611   // increasing change to a monotonically decreasing one, and vice versa.
7612   bool IncreasingSwapped;
7613   bool ResultSwapped = isMonotonicPredicateImpl(
7614       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7615 
7616   assert(Result == ResultSwapped && "should be able to analyze both!");
7617   if (ResultSwapped)
7618     assert(Increasing == !IncreasingSwapped &&
7619            "monotonicity should flip as we flip the predicate");
7620 #endif
7621 
7622   return Result;
7623 }
7624 
7625 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7626                                                ICmpInst::Predicate Pred,
7627                                                bool &Increasing) {
7628 
7629   // A zero step value for LHS means the induction variable is essentially a
7630   // loop invariant value. We don't really depend on the predicate actually
7631   // flipping from false to true (for increasing predicates, and the other way
7632   // around for decreasing predicates), all we care about is that *if* the
7633   // predicate changes then it only changes from false to true.
7634   //
7635   // A zero step value in itself is not very useful, but there may be places
7636   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7637   // as general as possible.
7638 
7639   switch (Pred) {
7640   default:
7641     return false; // Conservative answer
7642 
7643   case ICmpInst::ICMP_UGT:
7644   case ICmpInst::ICMP_UGE:
7645   case ICmpInst::ICMP_ULT:
7646   case ICmpInst::ICMP_ULE:
7647     if (!LHS->hasNoUnsignedWrap())
7648       return false;
7649 
7650     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7651     return true;
7652 
7653   case ICmpInst::ICMP_SGT:
7654   case ICmpInst::ICMP_SGE:
7655   case ICmpInst::ICMP_SLT:
7656   case ICmpInst::ICMP_SLE: {
7657     if (!LHS->hasNoSignedWrap())
7658       return false;
7659 
7660     const SCEV *Step = LHS->getStepRecurrence(*this);
7661 
7662     if (isKnownNonNegative(Step)) {
7663       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7664       return true;
7665     }
7666 
7667     if (isKnownNonPositive(Step)) {
7668       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7669       return true;
7670     }
7671 
7672     return false;
7673   }
7674 
7675   }
7676 
7677   llvm_unreachable("switch has default clause!");
7678 }
7679 
7680 bool ScalarEvolution::isLoopInvariantPredicate(
7681     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7682     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7683     const SCEV *&InvariantRHS) {
7684 
7685   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7686   if (!isLoopInvariant(RHS, L)) {
7687     if (!isLoopInvariant(LHS, L))
7688       return false;
7689 
7690     std::swap(LHS, RHS);
7691     Pred = ICmpInst::getSwappedPredicate(Pred);
7692   }
7693 
7694   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7695   if (!ArLHS || ArLHS->getLoop() != L)
7696     return false;
7697 
7698   bool Increasing;
7699   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7700     return false;
7701 
7702   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7703   // true as the loop iterates, and the backedge is control dependent on
7704   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7705   //
7706   //   * if the predicate was false in the first iteration then the predicate
7707   //     is never evaluated again, since the loop exits without taking the
7708   //     backedge.
7709   //   * if the predicate was true in the first iteration then it will
7710   //     continue to be true for all future iterations since it is
7711   //     monotonically increasing.
7712   //
7713   // For both the above possibilities, we can replace the loop varying
7714   // predicate with its value on the first iteration of the loop (which is
7715   // loop invariant).
7716   //
7717   // A similar reasoning applies for a monotonically decreasing predicate, by
7718   // replacing true with false and false with true in the above two bullets.
7719 
7720   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7721 
7722   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7723     return false;
7724 
7725   InvariantPred = Pred;
7726   InvariantLHS = ArLHS->getStart();
7727   InvariantRHS = RHS;
7728   return true;
7729 }
7730 
7731 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7732     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7733   if (HasSameValue(LHS, RHS))
7734     return ICmpInst::isTrueWhenEqual(Pred);
7735 
7736   // This code is split out from isKnownPredicate because it is called from
7737   // within isLoopEntryGuardedByCond.
7738 
7739   auto CheckRanges =
7740       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7741     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7742         .contains(RangeLHS);
7743   };
7744 
7745   // The check at the top of the function catches the case where the values are
7746   // known to be equal.
7747   if (Pred == CmpInst::ICMP_EQ)
7748     return false;
7749 
7750   if (Pred == CmpInst::ICMP_NE)
7751     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7752            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7753            isKnownNonZero(getMinusSCEV(LHS, RHS));
7754 
7755   if (CmpInst::isSigned(Pred))
7756     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7757 
7758   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7759 }
7760 
7761 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7762                                                     const SCEV *LHS,
7763                                                     const SCEV *RHS) {
7764 
7765   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7766   // Return Y via OutY.
7767   auto MatchBinaryAddToConst =
7768       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7769              SCEV::NoWrapFlags ExpectedFlags) {
7770     const SCEV *NonConstOp, *ConstOp;
7771     SCEV::NoWrapFlags FlagsPresent;
7772 
7773     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7774         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7775       return false;
7776 
7777     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7778     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7779   };
7780 
7781   APInt C;
7782 
7783   switch (Pred) {
7784   default:
7785     break;
7786 
7787   case ICmpInst::ICMP_SGE:
7788     std::swap(LHS, RHS);
7789   case ICmpInst::ICMP_SLE:
7790     // X s<= (X + C)<nsw> if C >= 0
7791     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7792       return true;
7793 
7794     // (X + C)<nsw> s<= X if C <= 0
7795     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7796         !C.isStrictlyPositive())
7797       return true;
7798     break;
7799 
7800   case ICmpInst::ICMP_SGT:
7801     std::swap(LHS, RHS);
7802   case ICmpInst::ICMP_SLT:
7803     // X s< (X + C)<nsw> if C > 0
7804     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7805         C.isStrictlyPositive())
7806       return true;
7807 
7808     // (X + C)<nsw> s< X if C < 0
7809     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7810       return true;
7811     break;
7812   }
7813 
7814   return false;
7815 }
7816 
7817 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7818                                                    const SCEV *LHS,
7819                                                    const SCEV *RHS) {
7820   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7821     return false;
7822 
7823   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7824   // the stack can result in exponential time complexity.
7825   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7826 
7827   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7828   //
7829   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7830   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7831   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7832   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7833   // use isKnownPredicate later if needed.
7834   return isKnownNonNegative(RHS) &&
7835          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7836          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7837 }
7838 
7839 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7840                                         ICmpInst::Predicate Pred,
7841                                         const SCEV *LHS, const SCEV *RHS) {
7842   // No need to even try if we know the module has no guards.
7843   if (!HasGuards)
7844     return false;
7845 
7846   return any_of(*BB, [&](Instruction &I) {
7847     using namespace llvm::PatternMatch;
7848 
7849     Value *Condition;
7850     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7851                          m_Value(Condition))) &&
7852            isImpliedCond(Pred, LHS, RHS, Condition, false);
7853   });
7854 }
7855 
7856 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7857 /// protected by a conditional between LHS and RHS.  This is used to
7858 /// to eliminate casts.
7859 bool
7860 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7861                                              ICmpInst::Predicate Pred,
7862                                              const SCEV *LHS, const SCEV *RHS) {
7863   // Interpret a null as meaning no loop, where there is obviously no guard
7864   // (interprocedural conditions notwithstanding).
7865   if (!L) return true;
7866 
7867   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7868     return true;
7869 
7870   BasicBlock *Latch = L->getLoopLatch();
7871   if (!Latch)
7872     return false;
7873 
7874   BranchInst *LoopContinuePredicate =
7875     dyn_cast<BranchInst>(Latch->getTerminator());
7876   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7877       isImpliedCond(Pred, LHS, RHS,
7878                     LoopContinuePredicate->getCondition(),
7879                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7880     return true;
7881 
7882   // We don't want more than one activation of the following loops on the stack
7883   // -- that can lead to O(n!) time complexity.
7884   if (WalkingBEDominatingConds)
7885     return false;
7886 
7887   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7888 
7889   // See if we can exploit a trip count to prove the predicate.
7890   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7891   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7892   if (LatchBECount != getCouldNotCompute()) {
7893     // We know that Latch branches back to the loop header exactly
7894     // LatchBECount times.  This means the backdege condition at Latch is
7895     // equivalent to  "{0,+,1} u< LatchBECount".
7896     Type *Ty = LatchBECount->getType();
7897     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7898     const SCEV *LoopCounter =
7899       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7900     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7901                       LatchBECount))
7902       return true;
7903   }
7904 
7905   // Check conditions due to any @llvm.assume intrinsics.
7906   for (auto &AssumeVH : AC.assumptions()) {
7907     if (!AssumeVH)
7908       continue;
7909     auto *CI = cast<CallInst>(AssumeVH);
7910     if (!DT.dominates(CI, Latch->getTerminator()))
7911       continue;
7912 
7913     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7914       return true;
7915   }
7916 
7917   // If the loop is not reachable from the entry block, we risk running into an
7918   // infinite loop as we walk up into the dom tree.  These loops do not matter
7919   // anyway, so we just return a conservative answer when we see them.
7920   if (!DT.isReachableFromEntry(L->getHeader()))
7921     return false;
7922 
7923   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7924     return true;
7925 
7926   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7927        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7928 
7929     assert(DTN && "should reach the loop header before reaching the root!");
7930 
7931     BasicBlock *BB = DTN->getBlock();
7932     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7933       return true;
7934 
7935     BasicBlock *PBB = BB->getSinglePredecessor();
7936     if (!PBB)
7937       continue;
7938 
7939     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7940     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7941       continue;
7942 
7943     Value *Condition = ContinuePredicate->getCondition();
7944 
7945     // If we have an edge `E` within the loop body that dominates the only
7946     // latch, the condition guarding `E` also guards the backedge.  This
7947     // reasoning works only for loops with a single latch.
7948 
7949     BasicBlockEdge DominatingEdge(PBB, BB);
7950     if (DominatingEdge.isSingleEdge()) {
7951       // We're constructively (and conservatively) enumerating edges within the
7952       // loop body that dominate the latch.  The dominator tree better agree
7953       // with us on this:
7954       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7955 
7956       if (isImpliedCond(Pred, LHS, RHS, Condition,
7957                         BB != ContinuePredicate->getSuccessor(0)))
7958         return true;
7959     }
7960   }
7961 
7962   return false;
7963 }
7964 
7965 /// isLoopEntryGuardedByCond - Test whether entry to the loop is protected
7966 /// by a conditional between LHS and RHS.  This is used to help avoid max
7967 /// expressions in loop trip counts, and to eliminate casts.
7968 bool
7969 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
7970                                           ICmpInst::Predicate Pred,
7971                                           const SCEV *LHS, const SCEV *RHS) {
7972   // Interpret a null as meaning no loop, where there is obviously no guard
7973   // (interprocedural conditions notwithstanding).
7974   if (!L) return false;
7975 
7976   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7977     return true;
7978 
7979   // Starting at the loop predecessor, climb up the predecessor chain, as long
7980   // as there are predecessors that can be found that have unique successors
7981   // leading to the original header.
7982   for (std::pair<BasicBlock *, BasicBlock *>
7983          Pair(L->getLoopPredecessor(), L->getHeader());
7984        Pair.first;
7985        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
7986 
7987     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
7988       return true;
7989 
7990     BranchInst *LoopEntryPredicate =
7991       dyn_cast<BranchInst>(Pair.first->getTerminator());
7992     if (!LoopEntryPredicate ||
7993         LoopEntryPredicate->isUnconditional())
7994       continue;
7995 
7996     if (isImpliedCond(Pred, LHS, RHS,
7997                       LoopEntryPredicate->getCondition(),
7998                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
7999       return true;
8000   }
8001 
8002   // Check conditions due to any @llvm.assume intrinsics.
8003   for (auto &AssumeVH : AC.assumptions()) {
8004     if (!AssumeVH)
8005       continue;
8006     auto *CI = cast<CallInst>(AssumeVH);
8007     if (!DT.dominates(CI, L->getHeader()))
8008       continue;
8009 
8010     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8011       return true;
8012   }
8013 
8014   return false;
8015 }
8016 
8017 namespace {
8018 /// RAII wrapper to prevent recursive application of isImpliedCond.
8019 /// ScalarEvolution's PendingLoopPredicates set must be empty unless we are
8020 /// currently evaluating isImpliedCond.
8021 struct MarkPendingLoopPredicate {
8022   Value *Cond;
8023   DenseSet<Value*> &LoopPreds;
8024   bool Pending;
8025 
8026   MarkPendingLoopPredicate(Value *C, DenseSet<Value*> &LP)
8027     : Cond(C), LoopPreds(LP) {
8028     Pending = !LoopPreds.insert(Cond).second;
8029   }
8030   ~MarkPendingLoopPredicate() {
8031     if (!Pending)
8032       LoopPreds.erase(Cond);
8033   }
8034 };
8035 } // end anonymous namespace
8036 
8037 /// isImpliedCond - Test whether the condition described by Pred, LHS,
8038 /// and RHS is true whenever the given Cond value evaluates to true.
8039 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8040                                     const SCEV *LHS, const SCEV *RHS,
8041                                     Value *FoundCondValue,
8042                                     bool Inverse) {
8043   MarkPendingLoopPredicate Mark(FoundCondValue, PendingLoopPredicates);
8044   if (Mark.Pending)
8045     return false;
8046 
8047   // Recursively handle And and Or conditions.
8048   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8049     if (BO->getOpcode() == Instruction::And) {
8050       if (!Inverse)
8051         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8052                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8053     } else if (BO->getOpcode() == Instruction::Or) {
8054       if (Inverse)
8055         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8056                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8057     }
8058   }
8059 
8060   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8061   if (!ICI) return false;
8062 
8063   // Now that we found a conditional branch that dominates the loop or controls
8064   // the loop latch. Check to see if it is the comparison we are looking for.
8065   ICmpInst::Predicate FoundPred;
8066   if (Inverse)
8067     FoundPred = ICI->getInversePredicate();
8068   else
8069     FoundPred = ICI->getPredicate();
8070 
8071   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8072   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8073 
8074   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8075 }
8076 
8077 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8078                                     const SCEV *RHS,
8079                                     ICmpInst::Predicate FoundPred,
8080                                     const SCEV *FoundLHS,
8081                                     const SCEV *FoundRHS) {
8082   // Balance the types.
8083   if (getTypeSizeInBits(LHS->getType()) <
8084       getTypeSizeInBits(FoundLHS->getType())) {
8085     if (CmpInst::isSigned(Pred)) {
8086       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8087       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8088     } else {
8089       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8090       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8091     }
8092   } else if (getTypeSizeInBits(LHS->getType()) >
8093       getTypeSizeInBits(FoundLHS->getType())) {
8094     if (CmpInst::isSigned(FoundPred)) {
8095       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8096       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8097     } else {
8098       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8099       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8100     }
8101   }
8102 
8103   // Canonicalize the query to match the way instcombine will have
8104   // canonicalized the comparison.
8105   if (SimplifyICmpOperands(Pred, LHS, RHS))
8106     if (LHS == RHS)
8107       return CmpInst::isTrueWhenEqual(Pred);
8108   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8109     if (FoundLHS == FoundRHS)
8110       return CmpInst::isFalseWhenEqual(FoundPred);
8111 
8112   // Check to see if we can make the LHS or RHS match.
8113   if (LHS == FoundRHS || RHS == FoundLHS) {
8114     if (isa<SCEVConstant>(RHS)) {
8115       std::swap(FoundLHS, FoundRHS);
8116       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8117     } else {
8118       std::swap(LHS, RHS);
8119       Pred = ICmpInst::getSwappedPredicate(Pred);
8120     }
8121   }
8122 
8123   // Check whether the found predicate is the same as the desired predicate.
8124   if (FoundPred == Pred)
8125     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8126 
8127   // Check whether swapping the found predicate makes it the same as the
8128   // desired predicate.
8129   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8130     if (isa<SCEVConstant>(RHS))
8131       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8132     else
8133       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8134                                    RHS, LHS, FoundLHS, FoundRHS);
8135   }
8136 
8137   // Unsigned comparison is the same as signed comparison when both the operands
8138   // are non-negative.
8139   if (CmpInst::isUnsigned(FoundPred) &&
8140       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8141       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8142     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8143 
8144   // Check if we can make progress by sharpening ranges.
8145   if (FoundPred == ICmpInst::ICMP_NE &&
8146       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8147 
8148     const SCEVConstant *C = nullptr;
8149     const SCEV *V = nullptr;
8150 
8151     if (isa<SCEVConstant>(FoundLHS)) {
8152       C = cast<SCEVConstant>(FoundLHS);
8153       V = FoundRHS;
8154     } else {
8155       C = cast<SCEVConstant>(FoundRHS);
8156       V = FoundLHS;
8157     }
8158 
8159     // The guarding predicate tells us that C != V. If the known range
8160     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8161     // range we consider has to correspond to same signedness as the
8162     // predicate we're interested in folding.
8163 
8164     APInt Min = ICmpInst::isSigned(Pred) ?
8165         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8166 
8167     if (Min == C->getAPInt()) {
8168       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8169       // This is true even if (Min + 1) wraps around -- in case of
8170       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8171 
8172       APInt SharperMin = Min + 1;
8173 
8174       switch (Pred) {
8175         case ICmpInst::ICMP_SGE:
8176         case ICmpInst::ICMP_UGE:
8177           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8178           // RHS, we're done.
8179           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8180                                     getConstant(SharperMin)))
8181             return true;
8182 
8183         case ICmpInst::ICMP_SGT:
8184         case ICmpInst::ICMP_UGT:
8185           // We know from the range information that (V `Pred` Min ||
8186           // V == Min).  We know from the guarding condition that !(V
8187           // == Min).  This gives us
8188           //
8189           //       V `Pred` Min || V == Min && !(V == Min)
8190           //   =>  V `Pred` Min
8191           //
8192           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8193 
8194           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8195             return true;
8196 
8197         default:
8198           // No change
8199           break;
8200       }
8201     }
8202   }
8203 
8204   // Check whether the actual condition is beyond sufficient.
8205   if (FoundPred == ICmpInst::ICMP_EQ)
8206     if (ICmpInst::isTrueWhenEqual(Pred))
8207       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8208         return true;
8209   if (Pred == ICmpInst::ICMP_NE)
8210     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8211       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8212         return true;
8213 
8214   // Otherwise assume the worst.
8215   return false;
8216 }
8217 
8218 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8219                                      const SCEV *&L, const SCEV *&R,
8220                                      SCEV::NoWrapFlags &Flags) {
8221   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8222   if (!AE || AE->getNumOperands() != 2)
8223     return false;
8224 
8225   L = AE->getOperand(0);
8226   R = AE->getOperand(1);
8227   Flags = AE->getNoWrapFlags();
8228   return true;
8229 }
8230 
8231 bool ScalarEvolution::computeConstantDifference(const SCEV *Less,
8232                                                 const SCEV *More,
8233                                                 APInt &C) {
8234   // We avoid subtracting expressions here because this function is usually
8235   // fairly deep in the call stack (i.e. is called many times).
8236 
8237   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8238     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8239     const auto *MAR = cast<SCEVAddRecExpr>(More);
8240 
8241     if (LAR->getLoop() != MAR->getLoop())
8242       return false;
8243 
8244     // We look at affine expressions only; not for correctness but to keep
8245     // getStepRecurrence cheap.
8246     if (!LAR->isAffine() || !MAR->isAffine())
8247       return false;
8248 
8249     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8250       return false;
8251 
8252     Less = LAR->getStart();
8253     More = MAR->getStart();
8254 
8255     // fall through
8256   }
8257 
8258   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8259     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8260     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8261     C = M - L;
8262     return true;
8263   }
8264 
8265   const SCEV *L, *R;
8266   SCEV::NoWrapFlags Flags;
8267   if (splitBinaryAdd(Less, L, R, Flags))
8268     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8269       if (R == More) {
8270         C = -(LC->getAPInt());
8271         return true;
8272       }
8273 
8274   if (splitBinaryAdd(More, L, R, Flags))
8275     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8276       if (R == Less) {
8277         C = LC->getAPInt();
8278         return true;
8279       }
8280 
8281   return false;
8282 }
8283 
8284 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8285     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8286     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8287   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8288     return false;
8289 
8290   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8291   if (!AddRecLHS)
8292     return false;
8293 
8294   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8295   if (!AddRecFoundLHS)
8296     return false;
8297 
8298   // We'd like to let SCEV reason about control dependencies, so we constrain
8299   // both the inequalities to be about add recurrences on the same loop.  This
8300   // way we can use isLoopEntryGuardedByCond later.
8301 
8302   const Loop *L = AddRecFoundLHS->getLoop();
8303   if (L != AddRecLHS->getLoop())
8304     return false;
8305 
8306   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8307   //
8308   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8309   //                                                                  ... (2)
8310   //
8311   // Informal proof for (2), assuming (1) [*]:
8312   //
8313   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8314   //
8315   // Then
8316   //
8317   //       FoundLHS s< FoundRHS s< INT_MIN - C
8318   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8319   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8320   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8321   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8322   // <=>  FoundLHS + C s< FoundRHS + C
8323   //
8324   // [*]: (1) can be proved by ruling out overflow.
8325   //
8326   // [**]: This can be proved by analyzing all the four possibilities:
8327   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8328   //    (A s>= 0, B s>= 0).
8329   //
8330   // Note:
8331   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8332   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8333   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8334   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8335   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8336   // C)".
8337 
8338   APInt LDiff, RDiff;
8339   if (!computeConstantDifference(FoundLHS, LHS, LDiff) ||
8340       !computeConstantDifference(FoundRHS, RHS, RDiff) ||
8341       LDiff != RDiff)
8342     return false;
8343 
8344   if (LDiff == 0)
8345     return true;
8346 
8347   APInt FoundRHSLimit;
8348 
8349   if (Pred == CmpInst::ICMP_ULT) {
8350     FoundRHSLimit = -RDiff;
8351   } else {
8352     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8353     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - RDiff;
8354   }
8355 
8356   // Try to prove (1) or (2), as needed.
8357   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8358                                   getConstant(FoundRHSLimit));
8359 }
8360 
8361 /// isImpliedCondOperands - Test whether the condition described by Pred,
8362 /// LHS, and RHS is true whenever the condition described by Pred, FoundLHS,
8363 /// and FoundRHS is true.
8364 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8365                                             const SCEV *LHS, const SCEV *RHS,
8366                                             const SCEV *FoundLHS,
8367                                             const SCEV *FoundRHS) {
8368   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8369     return true;
8370 
8371   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8372     return true;
8373 
8374   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8375                                      FoundLHS, FoundRHS) ||
8376          // ~x < ~y --> x > y
8377          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8378                                      getNotSCEV(FoundRHS),
8379                                      getNotSCEV(FoundLHS));
8380 }
8381 
8382 
8383 /// If Expr computes ~A, return A else return nullptr
8384 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8385   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8386   if (!Add || Add->getNumOperands() != 2 ||
8387       !Add->getOperand(0)->isAllOnesValue())
8388     return nullptr;
8389 
8390   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8391   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8392       !AddRHS->getOperand(0)->isAllOnesValue())
8393     return nullptr;
8394 
8395   return AddRHS->getOperand(1);
8396 }
8397 
8398 
8399 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8400 template<typename MaxExprType>
8401 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8402                               const SCEV *Candidate) {
8403   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8404   if (!MaxExpr) return false;
8405 
8406   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8407 }
8408 
8409 
8410 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8411 template<typename MaxExprType>
8412 static bool IsMinConsistingOf(ScalarEvolution &SE,
8413                               const SCEV *MaybeMinExpr,
8414                               const SCEV *Candidate) {
8415   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8416   if (!MaybeMaxExpr)
8417     return false;
8418 
8419   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8420 }
8421 
8422 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8423                                            ICmpInst::Predicate Pred,
8424                                            const SCEV *LHS, const SCEV *RHS) {
8425 
8426   // If both sides are affine addrecs for the same loop, with equal
8427   // steps, and we know the recurrences don't wrap, then we only
8428   // need to check the predicate on the starting values.
8429 
8430   if (!ICmpInst::isRelational(Pred))
8431     return false;
8432 
8433   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8434   if (!LAR)
8435     return false;
8436   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8437   if (!RAR)
8438     return false;
8439   if (LAR->getLoop() != RAR->getLoop())
8440     return false;
8441   if (!LAR->isAffine() || !RAR->isAffine())
8442     return false;
8443 
8444   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8445     return false;
8446 
8447   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8448                          SCEV::FlagNSW : SCEV::FlagNUW;
8449   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8450     return false;
8451 
8452   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8453 }
8454 
8455 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8456 /// expression?
8457 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8458                                         ICmpInst::Predicate Pred,
8459                                         const SCEV *LHS, const SCEV *RHS) {
8460   switch (Pred) {
8461   default:
8462     return false;
8463 
8464   case ICmpInst::ICMP_SGE:
8465     std::swap(LHS, RHS);
8466     // fall through
8467   case ICmpInst::ICMP_SLE:
8468     return
8469       // min(A, ...) <= A
8470       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8471       // A <= max(A, ...)
8472       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8473 
8474   case ICmpInst::ICMP_UGE:
8475     std::swap(LHS, RHS);
8476     // fall through
8477   case ICmpInst::ICMP_ULE:
8478     return
8479       // min(A, ...) <= A
8480       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8481       // A <= max(A, ...)
8482       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8483   }
8484 
8485   llvm_unreachable("covered switch fell through?!");
8486 }
8487 
8488 /// isImpliedCondOperandsHelper - Test whether the condition described by
8489 /// Pred, LHS, and RHS is true whenever the condition described by Pred,
8490 /// FoundLHS, and FoundRHS is true.
8491 bool
8492 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8493                                              const SCEV *LHS, const SCEV *RHS,
8494                                              const SCEV *FoundLHS,
8495                                              const SCEV *FoundRHS) {
8496   auto IsKnownPredicateFull =
8497       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8498     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8499            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8500            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8501            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8502   };
8503 
8504   switch (Pred) {
8505   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8506   case ICmpInst::ICMP_EQ:
8507   case ICmpInst::ICMP_NE:
8508     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8509       return true;
8510     break;
8511   case ICmpInst::ICMP_SLT:
8512   case ICmpInst::ICMP_SLE:
8513     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8514         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8515       return true;
8516     break;
8517   case ICmpInst::ICMP_SGT:
8518   case ICmpInst::ICMP_SGE:
8519     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8520         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8521       return true;
8522     break;
8523   case ICmpInst::ICMP_ULT:
8524   case ICmpInst::ICMP_ULE:
8525     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8526         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8527       return true;
8528     break;
8529   case ICmpInst::ICMP_UGT:
8530   case ICmpInst::ICMP_UGE:
8531     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8532         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8533       return true;
8534     break;
8535   }
8536 
8537   return false;
8538 }
8539 
8540 /// isImpliedCondOperandsViaRanges - helper function for isImpliedCondOperands.
8541 /// Tries to get cases like "X `sgt` 0 => X - 1 `sgt` -1".
8542 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8543                                                      const SCEV *LHS,
8544                                                      const SCEV *RHS,
8545                                                      const SCEV *FoundLHS,
8546                                                      const SCEV *FoundRHS) {
8547   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8548     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8549     // reduce the compile time impact of this optimization.
8550     return false;
8551 
8552   const SCEVAddExpr *AddLHS = dyn_cast<SCEVAddExpr>(LHS);
8553   if (!AddLHS || AddLHS->getOperand(1) != FoundLHS ||
8554       !isa<SCEVConstant>(AddLHS->getOperand(0)))
8555     return false;
8556 
8557   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8558 
8559   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8560   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8561   ConstantRange FoundLHSRange =
8562       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8563 
8564   // Since `LHS` is `FoundLHS` + `AddLHS->getOperand(0)`, we can compute a range
8565   // for `LHS`:
8566   APInt Addend = cast<SCEVConstant>(AddLHS->getOperand(0))->getAPInt();
8567   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(Addend));
8568 
8569   // We can also compute the range of values for `LHS` that satisfy the
8570   // consequent, "`LHS` `Pred` `RHS`":
8571   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8572   ConstantRange SatisfyingLHSRange =
8573       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8574 
8575   // The antecedent implies the consequent if every value of `LHS` that
8576   // satisfies the antecedent also satisfies the consequent.
8577   return SatisfyingLHSRange.contains(LHSRange);
8578 }
8579 
8580 // Verify if an linear IV with positive stride can overflow when in a
8581 // less-than comparison, knowing the invariant term of the comparison, the
8582 // stride and the knowledge of NSW/NUW flags on the recurrence.
8583 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8584                                          bool IsSigned, bool NoWrap) {
8585   if (NoWrap) return false;
8586 
8587   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8588   const SCEV *One = getOne(Stride->getType());
8589 
8590   if (IsSigned) {
8591     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8592     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8593     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8594                                 .getSignedMax();
8595 
8596     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8597     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8598   }
8599 
8600   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8601   APInt MaxValue = APInt::getMaxValue(BitWidth);
8602   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8603                               .getUnsignedMax();
8604 
8605   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8606   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8607 }
8608 
8609 // Verify if an linear IV with negative stride can overflow when in a
8610 // greater-than comparison, knowing the invariant term of the comparison,
8611 // the stride and the knowledge of NSW/NUW flags on the recurrence.
8612 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8613                                          bool IsSigned, bool NoWrap) {
8614   if (NoWrap) return false;
8615 
8616   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8617   const SCEV *One = getOne(Stride->getType());
8618 
8619   if (IsSigned) {
8620     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8621     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8622     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8623                                .getSignedMax();
8624 
8625     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8626     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8627   }
8628 
8629   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8630   APInt MinValue = APInt::getMinValue(BitWidth);
8631   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8632                             .getUnsignedMax();
8633 
8634   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8635   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8636 }
8637 
8638 // Compute the backedge taken count knowing the interval difference, the
8639 // stride and presence of the equality in the comparison.
8640 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8641                                             bool Equality) {
8642   const SCEV *One = getOne(Step->getType());
8643   Delta = Equality ? getAddExpr(Delta, Step)
8644                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8645   return getUDivExpr(Delta, Step);
8646 }
8647 
8648 /// HowManyLessThans - Return the number of times a backedge containing the
8649 /// specified less-than comparison will execute.  If not computable, return
8650 /// CouldNotCompute.
8651 ///
8652 /// @param ControlsExit is true when the LHS < RHS condition directly controls
8653 /// the branch (loops exits only if condition is true). In this case, we can use
8654 /// NoWrapFlags to skip overflow checks.
8655 ScalarEvolution::ExitLimit
8656 ScalarEvolution::HowManyLessThans(const SCEV *LHS, const SCEV *RHS,
8657                                   const Loop *L, bool IsSigned,
8658                                   bool ControlsExit, bool AllowPredicates) {
8659   SCEVUnionPredicate P;
8660   // We handle only IV < Invariant
8661   if (!isLoopInvariant(RHS, L))
8662     return getCouldNotCompute();
8663 
8664   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8665   if (!IV && AllowPredicates)
8666     // Try to make this an AddRec using runtime tests, in the first X
8667     // iterations of this loop, where X is the SCEV expression found by the
8668     // algorithm below.
8669     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8670 
8671   // Avoid weird loops
8672   if (!IV || IV->getLoop() != L || !IV->isAffine())
8673     return getCouldNotCompute();
8674 
8675   bool NoWrap = ControlsExit &&
8676                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8677 
8678   const SCEV *Stride = IV->getStepRecurrence(*this);
8679 
8680   // Avoid negative or zero stride values
8681   if (!isKnownPositive(Stride))
8682     return getCouldNotCompute();
8683 
8684   // Avoid proven overflow cases: this will ensure that the backedge taken count
8685   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8686   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8687   // behaviors like the case of C language.
8688   if (!Stride->isOne() && doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8689     return getCouldNotCompute();
8690 
8691   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8692                                       : ICmpInst::ICMP_ULT;
8693   const SCEV *Start = IV->getStart();
8694   const SCEV *End = RHS;
8695   if (!isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) {
8696     const SCEV *Diff = getMinusSCEV(RHS, Start);
8697     // If we have NoWrap set, then we can assume that the increment won't
8698     // overflow, in which case if RHS - Start is a constant, we don't need to
8699     // do a max operation since we can just figure it out statically
8700     if (NoWrap && isa<SCEVConstant>(Diff)) {
8701       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8702       if (D.isNegative())
8703         End = Start;
8704     } else
8705       End = IsSigned ? getSMaxExpr(RHS, Start)
8706                      : getUMaxExpr(RHS, Start);
8707   }
8708 
8709   const SCEV *BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8710 
8711   APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8712                             : getUnsignedRange(Start).getUnsignedMin();
8713 
8714   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8715                              : getUnsignedRange(Stride).getUnsignedMin();
8716 
8717   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8718   APInt Limit = IsSigned ? APInt::getSignedMaxValue(BitWidth) - (MinStride - 1)
8719                          : APInt::getMaxValue(BitWidth) - (MinStride - 1);
8720 
8721   // Although End can be a MAX expression we estimate MaxEnd considering only
8722   // the case End = RHS. This is safe because in the other case (End - Start)
8723   // is zero, leading to a zero maximum backedge taken count.
8724   APInt MaxEnd =
8725     IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8726              : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8727 
8728   const SCEV *MaxBECount;
8729   if (isa<SCEVConstant>(BECount))
8730     MaxBECount = BECount;
8731   else
8732     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8733                                 getConstant(MinStride), false);
8734 
8735   if (isa<SCEVCouldNotCompute>(MaxBECount))
8736     MaxBECount = BECount;
8737 
8738   return ExitLimit(BECount, MaxBECount, P);
8739 }
8740 
8741 ScalarEvolution::ExitLimit
8742 ScalarEvolution::HowManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8743                                      const Loop *L, bool IsSigned,
8744                                      bool ControlsExit, bool AllowPredicates) {
8745   SCEVUnionPredicate P;
8746   // We handle only IV > Invariant
8747   if (!isLoopInvariant(RHS, L))
8748     return getCouldNotCompute();
8749 
8750   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8751   if (!IV && AllowPredicates)
8752     // Try to make this an AddRec using runtime tests, in the first X
8753     // iterations of this loop, where X is the SCEV expression found by the
8754     // algorithm below.
8755     IV = convertSCEVToAddRecWithPredicates(LHS, L, P);
8756 
8757   // Avoid weird loops
8758   if (!IV || IV->getLoop() != L || !IV->isAffine())
8759     return getCouldNotCompute();
8760 
8761   bool NoWrap = ControlsExit &&
8762                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8763 
8764   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8765 
8766   // Avoid negative or zero stride values
8767   if (!isKnownPositive(Stride))
8768     return getCouldNotCompute();
8769 
8770   // Avoid proven overflow cases: this will ensure that the backedge taken count
8771   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8772   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8773   // behaviors like the case of C language.
8774   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8775     return getCouldNotCompute();
8776 
8777   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8778                                       : ICmpInst::ICMP_UGT;
8779 
8780   const SCEV *Start = IV->getStart();
8781   const SCEV *End = RHS;
8782   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
8783     const SCEV *Diff = getMinusSCEV(RHS, Start);
8784     // If we have NoWrap set, then we can assume that the increment won't
8785     // overflow, in which case if RHS - Start is a constant, we don't need to
8786     // do a max operation since we can just figure it out statically
8787     if (NoWrap && isa<SCEVConstant>(Diff)) {
8788       APInt D = dyn_cast<const SCEVConstant>(Diff)->getAPInt();
8789       if (!D.isNegative())
8790         End = Start;
8791     } else
8792       End = IsSigned ? getSMinExpr(RHS, Start)
8793                      : getUMinExpr(RHS, Start);
8794   }
8795 
8796   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8797 
8798   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8799                             : getUnsignedRange(Start).getUnsignedMax();
8800 
8801   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8802                              : getUnsignedRange(Stride).getUnsignedMin();
8803 
8804   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8805   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8806                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8807 
8808   // Although End can be a MIN expression we estimate MinEnd considering only
8809   // the case End = RHS. This is safe because in the other case (Start - End)
8810   // is zero, leading to a zero maximum backedge taken count.
8811   APInt MinEnd =
8812     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8813              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8814 
8815 
8816   const SCEV *MaxBECount = getCouldNotCompute();
8817   if (isa<SCEVConstant>(BECount))
8818     MaxBECount = BECount;
8819   else
8820     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8821                                 getConstant(MinStride), false);
8822 
8823   if (isa<SCEVCouldNotCompute>(MaxBECount))
8824     MaxBECount = BECount;
8825 
8826   return ExitLimit(BECount, MaxBECount, P);
8827 }
8828 
8829 /// getNumIterationsInRange - Return the number of iterations of this loop that
8830 /// produce values in the specified constant range.  Another way of looking at
8831 /// this is that it returns the first iteration number where the value is not in
8832 /// the condition, thus computing the exit count. If the iteration count can't
8833 /// be computed, an instance of SCEVCouldNotCompute is returned.
8834 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(ConstantRange Range,
8835                                                     ScalarEvolution &SE) const {
8836   if (Range.isFullSet())  // Infinite loop.
8837     return SE.getCouldNotCompute();
8838 
8839   // If the start is a non-zero constant, shift the range to simplify things.
8840   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8841     if (!SC->getValue()->isZero()) {
8842       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8843       Operands[0] = SE.getZero(SC->getType());
8844       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8845                                              getNoWrapFlags(FlagNW));
8846       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8847         return ShiftedAddRec->getNumIterationsInRange(
8848             Range.subtract(SC->getAPInt()), SE);
8849       // This is strange and shouldn't happen.
8850       return SE.getCouldNotCompute();
8851     }
8852 
8853   // The only time we can solve this is when we have all constant indices.
8854   // Otherwise, we cannot determine the overflow conditions.
8855   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8856     return SE.getCouldNotCompute();
8857 
8858   // Okay at this point we know that all elements of the chrec are constants and
8859   // that the start element is zero.
8860 
8861   // First check to see if the range contains zero.  If not, the first
8862   // iteration exits.
8863   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8864   if (!Range.contains(APInt(BitWidth, 0)))
8865     return SE.getZero(getType());
8866 
8867   if (isAffine()) {
8868     // If this is an affine expression then we have this situation:
8869     //   Solve {0,+,A} in Range  ===  Ax in Range
8870 
8871     // We know that zero is in the range.  If A is positive then we know that
8872     // the upper value of the range must be the first possible exit value.
8873     // If A is negative then the lower of the range is the last possible loop
8874     // value.  Also note that we already checked for a full range.
8875     APInt One(BitWidth,1);
8876     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8877     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8878 
8879     // The exit value should be (End+A)/A.
8880     APInt ExitVal = (End + A).udiv(A);
8881     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8882 
8883     // Evaluate at the exit value.  If we really did fall out of the valid
8884     // range, then we computed our trip count, otherwise wrap around or other
8885     // things must have happened.
8886     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8887     if (Range.contains(Val->getValue()))
8888       return SE.getCouldNotCompute();  // Something strange happened
8889 
8890     // Ensure that the previous value is in the range.  This is a sanity check.
8891     assert(Range.contains(
8892            EvaluateConstantChrecAtConstant(this,
8893            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8894            "Linear scev computation is off in a bad way!");
8895     return SE.getConstant(ExitValue);
8896   } else if (isQuadratic()) {
8897     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8898     // quadratic equation to solve it.  To do this, we must frame our problem in
8899     // terms of figuring out when zero is crossed, instead of when
8900     // Range.getUpper() is crossed.
8901     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8902     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8903     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(),
8904                                              // getNoWrapFlags(FlagNW)
8905                                              FlagAnyWrap);
8906 
8907     // Next, solve the constructed addrec
8908     auto Roots = SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE);
8909     const SCEVConstant *R1 = dyn_cast<SCEVConstant>(Roots.first);
8910     const SCEVConstant *R2 = dyn_cast<SCEVConstant>(Roots.second);
8911     if (R1) {
8912       // Pick the smallest positive root value.
8913       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8914               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8915         if (!CB->getZExtValue())
8916           std::swap(R1, R2);   // R1 is the minimum root now.
8917 
8918         // Make sure the root is not off by one.  The returned iteration should
8919         // not be in the range, but the previous one should be.  When solving
8920         // for "X*X < 5", for example, we should not return a root of 2.
8921         ConstantInt *R1Val = EvaluateConstantChrecAtConstant(this,
8922                                                              R1->getValue(),
8923                                                              SE);
8924         if (Range.contains(R1Val->getValue())) {
8925           // The next iteration must be out of the range...
8926           ConstantInt *NextVal =
8927               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8928 
8929           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8930           if (!Range.contains(R1Val->getValue()))
8931             return SE.getConstant(NextVal);
8932           return SE.getCouldNotCompute();  // Something strange happened
8933         }
8934 
8935         // If R1 was not in the range, then it is a good return value.  Make
8936         // sure that R1-1 WAS in the range though, just in case.
8937         ConstantInt *NextVal =
8938             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8939         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8940         if (Range.contains(R1Val->getValue()))
8941           return R1;
8942         return SE.getCouldNotCompute();  // Something strange happened
8943       }
8944     }
8945   }
8946 
8947   return SE.getCouldNotCompute();
8948 }
8949 
8950 namespace {
8951 struct FindUndefs {
8952   bool Found;
8953   FindUndefs() : Found(false) {}
8954 
8955   bool follow(const SCEV *S) {
8956     if (const SCEVUnknown *C = dyn_cast<SCEVUnknown>(S)) {
8957       if (isa<UndefValue>(C->getValue()))
8958         Found = true;
8959     } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
8960       if (isa<UndefValue>(C->getValue()))
8961         Found = true;
8962     }
8963 
8964     // Keep looking if we haven't found it yet.
8965     return !Found;
8966   }
8967   bool isDone() const {
8968     // Stop recursion if we have found an undef.
8969     return Found;
8970   }
8971 };
8972 }
8973 
8974 // Return true when S contains at least an undef value.
8975 static inline bool
8976 containsUndefs(const SCEV *S) {
8977   FindUndefs F;
8978   SCEVTraversal<FindUndefs> ST(F);
8979   ST.visitAll(S);
8980 
8981   return F.Found;
8982 }
8983 
8984 namespace {
8985 // Collect all steps of SCEV expressions.
8986 struct SCEVCollectStrides {
8987   ScalarEvolution &SE;
8988   SmallVectorImpl<const SCEV *> &Strides;
8989 
8990   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
8991       : SE(SE), Strides(S) {}
8992 
8993   bool follow(const SCEV *S) {
8994     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
8995       Strides.push_back(AR->getStepRecurrence(SE));
8996     return true;
8997   }
8998   bool isDone() const { return false; }
8999 };
9000 
9001 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9002 struct SCEVCollectTerms {
9003   SmallVectorImpl<const SCEV *> &Terms;
9004 
9005   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9006       : Terms(T) {}
9007 
9008   bool follow(const SCEV *S) {
9009     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S)) {
9010       if (!containsUndefs(S))
9011         Terms.push_back(S);
9012 
9013       // Stop recursion: once we collected a term, do not walk its operands.
9014       return false;
9015     }
9016 
9017     // Keep looking.
9018     return true;
9019   }
9020   bool isDone() const { return false; }
9021 };
9022 
9023 // Check if a SCEV contains an AddRecExpr.
9024 struct SCEVHasAddRec {
9025   bool &ContainsAddRec;
9026 
9027   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9028    ContainsAddRec = false;
9029   }
9030 
9031   bool follow(const SCEV *S) {
9032     if (isa<SCEVAddRecExpr>(S)) {
9033       ContainsAddRec = true;
9034 
9035       // Stop recursion: once we collected a term, do not walk its operands.
9036       return false;
9037     }
9038 
9039     // Keep looking.
9040     return true;
9041   }
9042   bool isDone() const { return false; }
9043 };
9044 
9045 // Find factors that are multiplied with an expression that (possibly as a
9046 // subexpression) contains an AddRecExpr. In the expression:
9047 //
9048 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9049 //
9050 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9051 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9052 // parameters as they form a product with an induction variable.
9053 //
9054 // This collector expects all array size parameters to be in the same MulExpr.
9055 // It might be necessary to later add support for collecting parameters that are
9056 // spread over different nested MulExpr.
9057 struct SCEVCollectAddRecMultiplies {
9058   SmallVectorImpl<const SCEV *> &Terms;
9059   ScalarEvolution &SE;
9060 
9061   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9062       : Terms(T), SE(SE) {}
9063 
9064   bool follow(const SCEV *S) {
9065     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9066       bool HasAddRec = false;
9067       SmallVector<const SCEV *, 0> Operands;
9068       for (auto Op : Mul->operands()) {
9069         if (isa<SCEVUnknown>(Op)) {
9070           Operands.push_back(Op);
9071         } else {
9072           bool ContainsAddRec;
9073           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9074           visitAll(Op, ContiansAddRec);
9075           HasAddRec |= ContainsAddRec;
9076         }
9077       }
9078       if (Operands.size() == 0)
9079         return true;
9080 
9081       if (!HasAddRec)
9082         return false;
9083 
9084       Terms.push_back(SE.getMulExpr(Operands));
9085       // Stop recursion: once we collected a term, do not walk its operands.
9086       return false;
9087     }
9088 
9089     // Keep looking.
9090     return true;
9091   }
9092   bool isDone() const { return false; }
9093 };
9094 }
9095 
9096 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9097 /// two places:
9098 ///   1) The strides of AddRec expressions.
9099 ///   2) Unknowns that are multiplied with AddRec expressions.
9100 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9101     SmallVectorImpl<const SCEV *> &Terms) {
9102   SmallVector<const SCEV *, 4> Strides;
9103   SCEVCollectStrides StrideCollector(*this, Strides);
9104   visitAll(Expr, StrideCollector);
9105 
9106   DEBUG({
9107       dbgs() << "Strides:\n";
9108       for (const SCEV *S : Strides)
9109         dbgs() << *S << "\n";
9110     });
9111 
9112   for (const SCEV *S : Strides) {
9113     SCEVCollectTerms TermCollector(Terms);
9114     visitAll(S, TermCollector);
9115   }
9116 
9117   DEBUG({
9118       dbgs() << "Terms:\n";
9119       for (const SCEV *T : Terms)
9120         dbgs() << *T << "\n";
9121     });
9122 
9123   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9124   visitAll(Expr, MulCollector);
9125 }
9126 
9127 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9128                                    SmallVectorImpl<const SCEV *> &Terms,
9129                                    SmallVectorImpl<const SCEV *> &Sizes) {
9130   int Last = Terms.size() - 1;
9131   const SCEV *Step = Terms[Last];
9132 
9133   // End of recursion.
9134   if (Last == 0) {
9135     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9136       SmallVector<const SCEV *, 2> Qs;
9137       for (const SCEV *Op : M->operands())
9138         if (!isa<SCEVConstant>(Op))
9139           Qs.push_back(Op);
9140 
9141       Step = SE.getMulExpr(Qs);
9142     }
9143 
9144     Sizes.push_back(Step);
9145     return true;
9146   }
9147 
9148   for (const SCEV *&Term : Terms) {
9149     // Normalize the terms before the next call to findArrayDimensionsRec.
9150     const SCEV *Q, *R;
9151     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9152 
9153     // Bail out when GCD does not evenly divide one of the terms.
9154     if (!R->isZero())
9155       return false;
9156 
9157     Term = Q;
9158   }
9159 
9160   // Remove all SCEVConstants.
9161   Terms.erase(std::remove_if(Terms.begin(), Terms.end(), [](const SCEV *E) {
9162                 return isa<SCEVConstant>(E);
9163               }),
9164               Terms.end());
9165 
9166   if (Terms.size() > 0)
9167     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9168       return false;
9169 
9170   Sizes.push_back(Step);
9171   return true;
9172 }
9173 
9174 // Returns true when S contains at least a SCEVUnknown parameter.
9175 static inline bool
9176 containsParameters(const SCEV *S) {
9177   struct FindParameter {
9178     bool FoundParameter;
9179     FindParameter() : FoundParameter(false) {}
9180 
9181     bool follow(const SCEV *S) {
9182       if (isa<SCEVUnknown>(S)) {
9183         FoundParameter = true;
9184         // Stop recursion: we found a parameter.
9185         return false;
9186       }
9187       // Keep looking.
9188       return true;
9189     }
9190     bool isDone() const {
9191       // Stop recursion if we have found a parameter.
9192       return FoundParameter;
9193     }
9194   };
9195 
9196   FindParameter F;
9197   SCEVTraversal<FindParameter> ST(F);
9198   ST.visitAll(S);
9199 
9200   return F.FoundParameter;
9201 }
9202 
9203 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9204 static inline bool
9205 containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9206   for (const SCEV *T : Terms)
9207     if (containsParameters(T))
9208       return true;
9209   return false;
9210 }
9211 
9212 // Return the number of product terms in S.
9213 static inline int numberOfTerms(const SCEV *S) {
9214   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9215     return Expr->getNumOperands();
9216   return 1;
9217 }
9218 
9219 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9220   if (isa<SCEVConstant>(T))
9221     return nullptr;
9222 
9223   if (isa<SCEVUnknown>(T))
9224     return T;
9225 
9226   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9227     SmallVector<const SCEV *, 2> Factors;
9228     for (const SCEV *Op : M->operands())
9229       if (!isa<SCEVConstant>(Op))
9230         Factors.push_back(Op);
9231 
9232     return SE.getMulExpr(Factors);
9233   }
9234 
9235   return T;
9236 }
9237 
9238 /// Return the size of an element read or written by Inst.
9239 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9240   Type *Ty;
9241   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9242     Ty = Store->getValueOperand()->getType();
9243   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9244     Ty = Load->getType();
9245   else
9246     return nullptr;
9247 
9248   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9249   return getSizeOfExpr(ETy, Ty);
9250 }
9251 
9252 /// Second step of delinearization: compute the array dimensions Sizes from the
9253 /// set of Terms extracted from the memory access function of this SCEVAddRec.
9254 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9255                                           SmallVectorImpl<const SCEV *> &Sizes,
9256                                           const SCEV *ElementSize) const {
9257 
9258   if (Terms.size() < 1 || !ElementSize)
9259     return;
9260 
9261   // Early return when Terms do not contain parameters: we do not delinearize
9262   // non parametric SCEVs.
9263   if (!containsParameters(Terms))
9264     return;
9265 
9266   DEBUG({
9267       dbgs() << "Terms:\n";
9268       for (const SCEV *T : Terms)
9269         dbgs() << *T << "\n";
9270     });
9271 
9272   // Remove duplicates.
9273   std::sort(Terms.begin(), Terms.end());
9274   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9275 
9276   // Put larger terms first.
9277   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9278     return numberOfTerms(LHS) > numberOfTerms(RHS);
9279   });
9280 
9281   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9282 
9283   // Try to divide all terms by the element size. If term is not divisible by
9284   // element size, proceed with the original term.
9285   for (const SCEV *&Term : Terms) {
9286     const SCEV *Q, *R;
9287     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9288     if (!Q->isZero())
9289       Term = Q;
9290   }
9291 
9292   SmallVector<const SCEV *, 4> NewTerms;
9293 
9294   // Remove constant factors.
9295   for (const SCEV *T : Terms)
9296     if (const SCEV *NewT = removeConstantFactors(SE, T))
9297       NewTerms.push_back(NewT);
9298 
9299   DEBUG({
9300       dbgs() << "Terms after sorting:\n";
9301       for (const SCEV *T : NewTerms)
9302         dbgs() << *T << "\n";
9303     });
9304 
9305   if (NewTerms.empty() ||
9306       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9307     Sizes.clear();
9308     return;
9309   }
9310 
9311   // The last element to be pushed into Sizes is the size of an element.
9312   Sizes.push_back(ElementSize);
9313 
9314   DEBUG({
9315       dbgs() << "Sizes:\n";
9316       for (const SCEV *S : Sizes)
9317         dbgs() << *S << "\n";
9318     });
9319 }
9320 
9321 /// Third step of delinearization: compute the access functions for the
9322 /// Subscripts based on the dimensions in Sizes.
9323 void ScalarEvolution::computeAccessFunctions(
9324     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9325     SmallVectorImpl<const SCEV *> &Sizes) {
9326 
9327   // Early exit in case this SCEV is not an affine multivariate function.
9328   if (Sizes.empty())
9329     return;
9330 
9331   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9332     if (!AR->isAffine())
9333       return;
9334 
9335   const SCEV *Res = Expr;
9336   int Last = Sizes.size() - 1;
9337   for (int i = Last; i >= 0; i--) {
9338     const SCEV *Q, *R;
9339     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9340 
9341     DEBUG({
9342         dbgs() << "Res: " << *Res << "\n";
9343         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9344         dbgs() << "Res divided by Sizes[i]:\n";
9345         dbgs() << "Quotient: " << *Q << "\n";
9346         dbgs() << "Remainder: " << *R << "\n";
9347       });
9348 
9349     Res = Q;
9350 
9351     // Do not record the last subscript corresponding to the size of elements in
9352     // the array.
9353     if (i == Last) {
9354 
9355       // Bail out if the remainder is too complex.
9356       if (isa<SCEVAddRecExpr>(R)) {
9357         Subscripts.clear();
9358         Sizes.clear();
9359         return;
9360       }
9361 
9362       continue;
9363     }
9364 
9365     // Record the access function for the current subscript.
9366     Subscripts.push_back(R);
9367   }
9368 
9369   // Also push in last position the remainder of the last division: it will be
9370   // the access function of the innermost dimension.
9371   Subscripts.push_back(Res);
9372 
9373   std::reverse(Subscripts.begin(), Subscripts.end());
9374 
9375   DEBUG({
9376       dbgs() << "Subscripts:\n";
9377       for (const SCEV *S : Subscripts)
9378         dbgs() << *S << "\n";
9379     });
9380 }
9381 
9382 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9383 /// sizes of an array access. Returns the remainder of the delinearization that
9384 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9385 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9386 /// expressions in the stride and base of a SCEV corresponding to the
9387 /// computation of a GCD (greatest common divisor) of base and stride.  When
9388 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9389 ///
9390 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9391 ///
9392 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9393 ///
9394 ///    for (long i = 0; i < n; i++)
9395 ///      for (long j = 0; j < m; j++)
9396 ///        for (long k = 0; k < o; k++)
9397 ///          A[i][j][k] = 1.0;
9398 ///  }
9399 ///
9400 /// the delinearization input is the following AddRec SCEV:
9401 ///
9402 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9403 ///
9404 /// From this SCEV, we are able to say that the base offset of the access is %A
9405 /// because it appears as an offset that does not divide any of the strides in
9406 /// the loops:
9407 ///
9408 ///  CHECK: Base offset: %A
9409 ///
9410 /// and then SCEV->delinearize determines the size of some of the dimensions of
9411 /// the array as these are the multiples by which the strides are happening:
9412 ///
9413 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9414 ///
9415 /// Note that the outermost dimension remains of UnknownSize because there are
9416 /// no strides that would help identifying the size of the last dimension: when
9417 /// the array has been statically allocated, one could compute the size of that
9418 /// dimension by dividing the overall size of the array by the size of the known
9419 /// dimensions: %m * %o * 8.
9420 ///
9421 /// Finally delinearize provides the access functions for the array reference
9422 /// that does correspond to A[i][j][k] of the above C testcase:
9423 ///
9424 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9425 ///
9426 /// The testcases are checking the output of a function pass:
9427 /// DelinearizationPass that walks through all loads and stores of a function
9428 /// asking for the SCEV of the memory access with respect to all enclosing
9429 /// loops, calling SCEV->delinearize on that and printing the results.
9430 
9431 void ScalarEvolution::delinearize(const SCEV *Expr,
9432                                  SmallVectorImpl<const SCEV *> &Subscripts,
9433                                  SmallVectorImpl<const SCEV *> &Sizes,
9434                                  const SCEV *ElementSize) {
9435   // First step: collect parametric terms.
9436   SmallVector<const SCEV *, 4> Terms;
9437   collectParametricTerms(Expr, Terms);
9438 
9439   if (Terms.empty())
9440     return;
9441 
9442   // Second step: find subscript sizes.
9443   findArrayDimensions(Terms, Sizes, ElementSize);
9444 
9445   if (Sizes.empty())
9446     return;
9447 
9448   // Third step: compute the access functions for each subscript.
9449   computeAccessFunctions(Expr, Subscripts, Sizes);
9450 
9451   if (Subscripts.empty())
9452     return;
9453 
9454   DEBUG({
9455       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9456       dbgs() << "ArrayDecl[UnknownSize]";
9457       for (const SCEV *S : Sizes)
9458         dbgs() << "[" << *S << "]";
9459 
9460       dbgs() << "\nArrayRef";
9461       for (const SCEV *S : Subscripts)
9462         dbgs() << "[" << *S << "]";
9463       dbgs() << "\n";
9464     });
9465 }
9466 
9467 //===----------------------------------------------------------------------===//
9468 //                   SCEVCallbackVH Class Implementation
9469 //===----------------------------------------------------------------------===//
9470 
9471 void ScalarEvolution::SCEVCallbackVH::deleted() {
9472   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9473   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9474     SE->ConstantEvolutionLoopExitValue.erase(PN);
9475   SE->eraseValueFromMap(getValPtr());
9476   // this now dangles!
9477 }
9478 
9479 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9480   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9481 
9482   // Forget all the expressions associated with users of the old value,
9483   // so that future queries will recompute the expressions using the new
9484   // value.
9485   Value *Old = getValPtr();
9486   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9487   SmallPtrSet<User *, 8> Visited;
9488   while (!Worklist.empty()) {
9489     User *U = Worklist.pop_back_val();
9490     // Deleting the Old value will cause this to dangle. Postpone
9491     // that until everything else is done.
9492     if (U == Old)
9493       continue;
9494     if (!Visited.insert(U).second)
9495       continue;
9496     if (PHINode *PN = dyn_cast<PHINode>(U))
9497       SE->ConstantEvolutionLoopExitValue.erase(PN);
9498     SE->eraseValueFromMap(U);
9499     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9500   }
9501   // Delete the Old value.
9502   if (PHINode *PN = dyn_cast<PHINode>(Old))
9503     SE->ConstantEvolutionLoopExitValue.erase(PN);
9504   SE->eraseValueFromMap(Old);
9505   // this now dangles!
9506 }
9507 
9508 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9509   : CallbackVH(V), SE(se) {}
9510 
9511 //===----------------------------------------------------------------------===//
9512 //                   ScalarEvolution Class Implementation
9513 //===----------------------------------------------------------------------===//
9514 
9515 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9516                                  AssumptionCache &AC, DominatorTree &DT,
9517                                  LoopInfo &LI)
9518     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9519       CouldNotCompute(new SCEVCouldNotCompute()),
9520       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9521       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9522       FirstUnknown(nullptr) {
9523 
9524   // To use guards for proving predicates, we need to scan every instruction in
9525   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9526   // time if the IR does not actually contain any calls to
9527   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9528   //
9529   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9530   // to _add_ guards to the module when there weren't any before, and wants
9531   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9532   // efficient in lieu of being smart in that rather obscure case.
9533 
9534   auto *GuardDecl = F.getParent()->getFunction(
9535       Intrinsic::getName(Intrinsic::experimental_guard));
9536   HasGuards = GuardDecl && !GuardDecl->use_empty();
9537 }
9538 
9539 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9540     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9541       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9542       ValueExprMap(std::move(Arg.ValueExprMap)),
9543       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9544       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9545       PredicatedBackedgeTakenCounts(
9546           std::move(Arg.PredicatedBackedgeTakenCounts)),
9547       ConstantEvolutionLoopExitValue(
9548           std::move(Arg.ConstantEvolutionLoopExitValue)),
9549       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9550       LoopDispositions(std::move(Arg.LoopDispositions)),
9551       BlockDispositions(std::move(Arg.BlockDispositions)),
9552       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9553       SignedRanges(std::move(Arg.SignedRanges)),
9554       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9555       UniquePreds(std::move(Arg.UniquePreds)),
9556       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9557       FirstUnknown(Arg.FirstUnknown) {
9558   Arg.FirstUnknown = nullptr;
9559 }
9560 
9561 ScalarEvolution::~ScalarEvolution() {
9562   // Iterate through all the SCEVUnknown instances and call their
9563   // destructors, so that they release their references to their values.
9564   for (SCEVUnknown *U = FirstUnknown; U;) {
9565     SCEVUnknown *Tmp = U;
9566     U = U->Next;
9567     Tmp->~SCEVUnknown();
9568   }
9569   FirstUnknown = nullptr;
9570 
9571   ExprValueMap.clear();
9572   ValueExprMap.clear();
9573   HasRecMap.clear();
9574 
9575   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9576   // that a loop had multiple computable exits.
9577   for (auto &BTCI : BackedgeTakenCounts)
9578     BTCI.second.clear();
9579   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9580     BTCI.second.clear();
9581 
9582   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9583   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9584   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9585 }
9586 
9587 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9588   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9589 }
9590 
9591 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9592                           const Loop *L) {
9593   // Print all inner loops first
9594   for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I)
9595     PrintLoopInfo(OS, SE, *I);
9596 
9597   OS << "Loop ";
9598   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9599   OS << ": ";
9600 
9601   SmallVector<BasicBlock *, 8> ExitBlocks;
9602   L->getExitBlocks(ExitBlocks);
9603   if (ExitBlocks.size() != 1)
9604     OS << "<multiple exits> ";
9605 
9606   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9607     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9608   } else {
9609     OS << "Unpredictable backedge-taken count. ";
9610   }
9611 
9612   OS << "\n"
9613         "Loop ";
9614   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9615   OS << ": ";
9616 
9617   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9618     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9619   } else {
9620     OS << "Unpredictable max backedge-taken count. ";
9621   }
9622 
9623   OS << "\n"
9624         "Loop ";
9625   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9626   OS << ": ";
9627 
9628   SCEVUnionPredicate Pred;
9629   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9630   if (!isa<SCEVCouldNotCompute>(PBT)) {
9631     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9632     OS << " Predicates:\n";
9633     Pred.print(OS, 4);
9634   } else {
9635     OS << "Unpredictable predicated backedge-taken count. ";
9636   }
9637   OS << "\n";
9638 }
9639 
9640 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9641   switch (LD) {
9642   case ScalarEvolution::LoopVariant:
9643     return "Variant";
9644   case ScalarEvolution::LoopInvariant:
9645     return "Invariant";
9646   case ScalarEvolution::LoopComputable:
9647     return "Computable";
9648   }
9649   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9650 }
9651 
9652 void ScalarEvolution::print(raw_ostream &OS) const {
9653   // ScalarEvolution's implementation of the print method is to print
9654   // out SCEV values of all instructions that are interesting. Doing
9655   // this potentially causes it to create new SCEV objects though,
9656   // which technically conflicts with the const qualifier. This isn't
9657   // observable from outside the class though, so casting away the
9658   // const isn't dangerous.
9659   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9660 
9661   OS << "Classifying expressions for: ";
9662   F.printAsOperand(OS, /*PrintType=*/false);
9663   OS << "\n";
9664   for (Instruction &I : instructions(F))
9665     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9666       OS << I << '\n';
9667       OS << "  -->  ";
9668       const SCEV *SV = SE.getSCEV(&I);
9669       SV->print(OS);
9670       if (!isa<SCEVCouldNotCompute>(SV)) {
9671         OS << " U: ";
9672         SE.getUnsignedRange(SV).print(OS);
9673         OS << " S: ";
9674         SE.getSignedRange(SV).print(OS);
9675       }
9676 
9677       const Loop *L = LI.getLoopFor(I.getParent());
9678 
9679       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9680       if (AtUse != SV) {
9681         OS << "  -->  ";
9682         AtUse->print(OS);
9683         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9684           OS << " U: ";
9685           SE.getUnsignedRange(AtUse).print(OS);
9686           OS << " S: ";
9687           SE.getSignedRange(AtUse).print(OS);
9688         }
9689       }
9690 
9691       if (L) {
9692         OS << "\t\t" "Exits: ";
9693         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9694         if (!SE.isLoopInvariant(ExitValue, L)) {
9695           OS << "<<Unknown>>";
9696         } else {
9697           OS << *ExitValue;
9698         }
9699 
9700         bool First = true;
9701         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9702           if (First) {
9703             OS << "\t\t" "LoopDispositions: { ";
9704             First = false;
9705           } else {
9706             OS << ", ";
9707           }
9708 
9709           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9710           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9711         }
9712 
9713         for (auto *InnerL : depth_first(L)) {
9714           if (InnerL == L)
9715             continue;
9716           if (First) {
9717             OS << "\t\t" "LoopDispositions: { ";
9718             First = false;
9719           } else {
9720             OS << ", ";
9721           }
9722 
9723           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9724           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9725         }
9726 
9727         OS << " }";
9728       }
9729 
9730       OS << "\n";
9731     }
9732 
9733   OS << "Determining loop execution counts for: ";
9734   F.printAsOperand(OS, /*PrintType=*/false);
9735   OS << "\n";
9736   for (LoopInfo::iterator I = LI.begin(), E = LI.end(); I != E; ++I)
9737     PrintLoopInfo(OS, &SE, *I);
9738 }
9739 
9740 ScalarEvolution::LoopDisposition
9741 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9742   auto &Values = LoopDispositions[S];
9743   for (auto &V : Values) {
9744     if (V.getPointer() == L)
9745       return V.getInt();
9746   }
9747   Values.emplace_back(L, LoopVariant);
9748   LoopDisposition D = computeLoopDisposition(S, L);
9749   auto &Values2 = LoopDispositions[S];
9750   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9751     if (V.getPointer() == L) {
9752       V.setInt(D);
9753       break;
9754     }
9755   }
9756   return D;
9757 }
9758 
9759 ScalarEvolution::LoopDisposition
9760 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9761   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9762   case scConstant:
9763     return LoopInvariant;
9764   case scTruncate:
9765   case scZeroExtend:
9766   case scSignExtend:
9767     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9768   case scAddRecExpr: {
9769     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9770 
9771     // If L is the addrec's loop, it's computable.
9772     if (AR->getLoop() == L)
9773       return LoopComputable;
9774 
9775     // Add recurrences are never invariant in the function-body (null loop).
9776     if (!L)
9777       return LoopVariant;
9778 
9779     // This recurrence is variant w.r.t. L if L contains AR's loop.
9780     if (L->contains(AR->getLoop()))
9781       return LoopVariant;
9782 
9783     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9784     if (AR->getLoop()->contains(L))
9785       return LoopInvariant;
9786 
9787     // This recurrence is variant w.r.t. L if any of its operands
9788     // are variant.
9789     for (auto *Op : AR->operands())
9790       if (!isLoopInvariant(Op, L))
9791         return LoopVariant;
9792 
9793     // Otherwise it's loop-invariant.
9794     return LoopInvariant;
9795   }
9796   case scAddExpr:
9797   case scMulExpr:
9798   case scUMaxExpr:
9799   case scSMaxExpr: {
9800     bool HasVarying = false;
9801     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9802       LoopDisposition D = getLoopDisposition(Op, L);
9803       if (D == LoopVariant)
9804         return LoopVariant;
9805       if (D == LoopComputable)
9806         HasVarying = true;
9807     }
9808     return HasVarying ? LoopComputable : LoopInvariant;
9809   }
9810   case scUDivExpr: {
9811     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9812     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9813     if (LD == LoopVariant)
9814       return LoopVariant;
9815     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9816     if (RD == LoopVariant)
9817       return LoopVariant;
9818     return (LD == LoopInvariant && RD == LoopInvariant) ?
9819            LoopInvariant : LoopComputable;
9820   }
9821   case scUnknown:
9822     // All non-instruction values are loop invariant.  All instructions are loop
9823     // invariant if they are not contained in the specified loop.
9824     // Instructions are never considered invariant in the function body
9825     // (null loop) because they are defined within the "loop".
9826     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9827       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9828     return LoopInvariant;
9829   case scCouldNotCompute:
9830     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9831   }
9832   llvm_unreachable("Unknown SCEV kind!");
9833 }
9834 
9835 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9836   return getLoopDisposition(S, L) == LoopInvariant;
9837 }
9838 
9839 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9840   return getLoopDisposition(S, L) == LoopComputable;
9841 }
9842 
9843 ScalarEvolution::BlockDisposition
9844 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9845   auto &Values = BlockDispositions[S];
9846   for (auto &V : Values) {
9847     if (V.getPointer() == BB)
9848       return V.getInt();
9849   }
9850   Values.emplace_back(BB, DoesNotDominateBlock);
9851   BlockDisposition D = computeBlockDisposition(S, BB);
9852   auto &Values2 = BlockDispositions[S];
9853   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9854     if (V.getPointer() == BB) {
9855       V.setInt(D);
9856       break;
9857     }
9858   }
9859   return D;
9860 }
9861 
9862 ScalarEvolution::BlockDisposition
9863 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9864   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9865   case scConstant:
9866     return ProperlyDominatesBlock;
9867   case scTruncate:
9868   case scZeroExtend:
9869   case scSignExtend:
9870     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9871   case scAddRecExpr: {
9872     // This uses a "dominates" query instead of "properly dominates" query
9873     // to test for proper dominance too, because the instruction which
9874     // produces the addrec's value is a PHI, and a PHI effectively properly
9875     // dominates its entire containing block.
9876     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9877     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9878       return DoesNotDominateBlock;
9879   }
9880   // FALL THROUGH into SCEVNAryExpr handling.
9881   case scAddExpr:
9882   case scMulExpr:
9883   case scUMaxExpr:
9884   case scSMaxExpr: {
9885     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9886     bool Proper = true;
9887     for (const SCEV *NAryOp : NAry->operands()) {
9888       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9889       if (D == DoesNotDominateBlock)
9890         return DoesNotDominateBlock;
9891       if (D == DominatesBlock)
9892         Proper = false;
9893     }
9894     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9895   }
9896   case scUDivExpr: {
9897     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9898     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9899     BlockDisposition LD = getBlockDisposition(LHS, BB);
9900     if (LD == DoesNotDominateBlock)
9901       return DoesNotDominateBlock;
9902     BlockDisposition RD = getBlockDisposition(RHS, BB);
9903     if (RD == DoesNotDominateBlock)
9904       return DoesNotDominateBlock;
9905     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9906       ProperlyDominatesBlock : DominatesBlock;
9907   }
9908   case scUnknown:
9909     if (Instruction *I =
9910           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9911       if (I->getParent() == BB)
9912         return DominatesBlock;
9913       if (DT.properlyDominates(I->getParent(), BB))
9914         return ProperlyDominatesBlock;
9915       return DoesNotDominateBlock;
9916     }
9917     return ProperlyDominatesBlock;
9918   case scCouldNotCompute:
9919     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9920   }
9921   llvm_unreachable("Unknown SCEV kind!");
9922 }
9923 
9924 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9925   return getBlockDisposition(S, BB) >= DominatesBlock;
9926 }
9927 
9928 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9929   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9930 }
9931 
9932 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9933   // Search for a SCEV expression node within an expression tree.
9934   // Implements SCEVTraversal::Visitor.
9935   struct SCEVSearch {
9936     const SCEV *Node;
9937     bool IsFound;
9938 
9939     SCEVSearch(const SCEV *N): Node(N), IsFound(false) {}
9940 
9941     bool follow(const SCEV *S) {
9942       IsFound |= (S == Node);
9943       return !IsFound;
9944     }
9945     bool isDone() const { return IsFound; }
9946   };
9947 
9948   SCEVSearch Search(Op);
9949   visitAll(S, Search);
9950   return Search.IsFound;
9951 }
9952 
9953 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9954   ValuesAtScopes.erase(S);
9955   LoopDispositions.erase(S);
9956   BlockDispositions.erase(S);
9957   UnsignedRanges.erase(S);
9958   SignedRanges.erase(S);
9959   ExprValueMap.erase(S);
9960   HasRecMap.erase(S);
9961 
9962   auto RemoveSCEVFromBackedgeMap =
9963       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9964         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9965           BackedgeTakenInfo &BEInfo = I->second;
9966           if (BEInfo.hasOperand(S, this)) {
9967             BEInfo.clear();
9968             Map.erase(I++);
9969           } else
9970             ++I;
9971         }
9972       };
9973 
9974   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9975   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9976 }
9977 
9978 typedef DenseMap<const Loop *, std::string> VerifyMap;
9979 
9980 /// replaceSubString - Replaces all occurrences of From in Str with To.
9981 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9982   size_t Pos = 0;
9983   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9984     Str.replace(Pos, From.size(), To.data(), To.size());
9985     Pos += To.size();
9986   }
9987 }
9988 
9989 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9990 static void
9991 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9992   std::string &S = Map[L];
9993   if (S.empty()) {
9994     raw_string_ostream OS(S);
9995     SE.getBackedgeTakenCount(L)->print(OS);
9996 
9997     // false and 0 are semantically equivalent. This can happen in dead loops.
9998     replaceSubString(OS.str(), "false", "0");
9999     // Remove wrap flags, their use in SCEV is highly fragile.
10000     // FIXME: Remove this when SCEV gets smarter about them.
10001     replaceSubString(OS.str(), "<nw>", "");
10002     replaceSubString(OS.str(), "<nsw>", "");
10003     replaceSubString(OS.str(), "<nuw>", "");
10004   }
10005 
10006   for (auto *R : reverse(*L))
10007     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
10008 }
10009 
10010 void ScalarEvolution::verify() const {
10011   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
10012 
10013   // Gather stringified backedge taken counts for all loops using SCEV's caches.
10014   // FIXME: It would be much better to store actual values instead of strings,
10015   //        but SCEV pointers will change if we drop the caches.
10016   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
10017   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10018     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
10019 
10020   // Gather stringified backedge taken counts for all loops using a fresh
10021   // ScalarEvolution object.
10022   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10023   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10024     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
10025 
10026   // Now compare whether they're the same with and without caches. This allows
10027   // verifying that no pass changed the cache.
10028   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10029          "New loops suddenly appeared!");
10030 
10031   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10032                            OldE = BackedgeDumpsOld.end(),
10033                            NewI = BackedgeDumpsNew.begin();
10034        OldI != OldE; ++OldI, ++NewI) {
10035     assert(OldI->first == NewI->first && "Loop order changed!");
10036 
10037     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10038     // changes.
10039     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10040     // means that a pass is buggy or SCEV has to learn a new pattern but is
10041     // usually not harmful.
10042     if (OldI->second != NewI->second &&
10043         OldI->second.find("undef") == std::string::npos &&
10044         NewI->second.find("undef") == std::string::npos &&
10045         OldI->second != "***COULDNOTCOMPUTE***" &&
10046         NewI->second != "***COULDNOTCOMPUTE***") {
10047       dbgs() << "SCEVValidator: SCEV for loop '"
10048              << OldI->first->getHeader()->getName()
10049              << "' changed from '" << OldI->second
10050              << "' to '" << NewI->second << "'!\n";
10051       std::abort();
10052     }
10053   }
10054 
10055   // TODO: Verify more things.
10056 }
10057 
10058 char ScalarEvolutionAnalysis::PassID;
10059 
10060 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10061                                              AnalysisManager<Function> &AM) {
10062   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10063                          AM.getResult<AssumptionAnalysis>(F),
10064                          AM.getResult<DominatorTreeAnalysis>(F),
10065                          AM.getResult<LoopAnalysis>(F));
10066 }
10067 
10068 PreservedAnalyses
10069 ScalarEvolutionPrinterPass::run(Function &F, AnalysisManager<Function> &AM) {
10070   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10071   return PreservedAnalyses::all();
10072 }
10073 
10074 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10075                       "Scalar Evolution Analysis", false, true)
10076 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10077 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10078 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10079 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10080 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10081                     "Scalar Evolution Analysis", false, true)
10082 char ScalarEvolutionWrapperPass::ID = 0;
10083 
10084 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10085   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10086 }
10087 
10088 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10089   SE.reset(new ScalarEvolution(
10090       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10091       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10092       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10093       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10094   return false;
10095 }
10096 
10097 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10098 
10099 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10100   SE->print(OS);
10101 }
10102 
10103 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10104   if (!VerifySCEV)
10105     return;
10106 
10107   SE->verify();
10108 }
10109 
10110 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10111   AU.setPreservesAll();
10112   AU.addRequiredTransitive<AssumptionCacheTracker>();
10113   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10114   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10115   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10116 }
10117 
10118 const SCEVPredicate *
10119 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10120                                    const SCEVConstant *RHS) {
10121   FoldingSetNodeID ID;
10122   // Unique this node based on the arguments
10123   ID.AddInteger(SCEVPredicate::P_Equal);
10124   ID.AddPointer(LHS);
10125   ID.AddPointer(RHS);
10126   void *IP = nullptr;
10127   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10128     return S;
10129   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10130       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10131   UniquePreds.InsertNode(Eq, IP);
10132   return Eq;
10133 }
10134 
10135 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10136     const SCEVAddRecExpr *AR,
10137     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10138   FoldingSetNodeID ID;
10139   // Unique this node based on the arguments
10140   ID.AddInteger(SCEVPredicate::P_Wrap);
10141   ID.AddPointer(AR);
10142   ID.AddInteger(AddedFlags);
10143   void *IP = nullptr;
10144   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10145     return S;
10146   auto *OF = new (SCEVAllocator)
10147       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10148   UniquePreds.InsertNode(OF, IP);
10149   return OF;
10150 }
10151 
10152 namespace {
10153 
10154 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10155 public:
10156   // Rewrites \p S in the context of a loop L and the predicate A.
10157   // If Assume is true, rewrite is free to add further predicates to A
10158   // such that the result will be an AddRecExpr.
10159   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10160                              SCEVUnionPredicate &A, bool Assume) {
10161     SCEVPredicateRewriter Rewriter(L, SE, A, Assume);
10162     return Rewriter.visit(S);
10163   }
10164 
10165   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10166                         SCEVUnionPredicate &P, bool Assume)
10167       : SCEVRewriteVisitor(SE), P(P), L(L), Assume(Assume) {}
10168 
10169   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10170     auto ExprPreds = P.getPredicatesForExpr(Expr);
10171     for (auto *Pred : ExprPreds)
10172       if (const auto *IPred = dyn_cast<const SCEVEqualPredicate>(Pred))
10173         if (IPred->getLHS() == Expr)
10174           return IPred->getRHS();
10175 
10176     return Expr;
10177   }
10178 
10179   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10180     const SCEV *Operand = visit(Expr->getOperand());
10181     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10182     if (AR && AR->getLoop() == L && AR->isAffine()) {
10183       // This couldn't be folded because the operand didn't have the nuw
10184       // flag. Add the nusw flag as an assumption that we could make.
10185       const SCEV *Step = AR->getStepRecurrence(SE);
10186       Type *Ty = Expr->getType();
10187       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10188         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10189                                 SE.getSignExtendExpr(Step, Ty), L,
10190                                 AR->getNoWrapFlags());
10191     }
10192     return SE.getZeroExtendExpr(Operand, Expr->getType());
10193   }
10194 
10195   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10196     const SCEV *Operand = visit(Expr->getOperand());
10197     const SCEVAddRecExpr *AR = dyn_cast<const SCEVAddRecExpr>(Operand);
10198     if (AR && AR->getLoop() == L && AR->isAffine()) {
10199       // This couldn't be folded because the operand didn't have the nsw
10200       // flag. Add the nssw flag as an assumption that we could make.
10201       const SCEV *Step = AR->getStepRecurrence(SE);
10202       Type *Ty = Expr->getType();
10203       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10204         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10205                                 SE.getSignExtendExpr(Step, Ty), L,
10206                                 AR->getNoWrapFlags());
10207     }
10208     return SE.getSignExtendExpr(Operand, Expr->getType());
10209   }
10210 
10211 private:
10212   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10213                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10214     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10215     if (!Assume) {
10216       // Check if we've already made this assumption.
10217       if (P.implies(A))
10218         return true;
10219       return false;
10220     }
10221     P.add(A);
10222     return true;
10223   }
10224 
10225   SCEVUnionPredicate &P;
10226   const Loop *L;
10227   bool Assume;
10228 };
10229 } // end anonymous namespace
10230 
10231 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10232                                                    SCEVUnionPredicate &Preds) {
10233   return SCEVPredicateRewriter::rewrite(S, L, *this, Preds, false);
10234 }
10235 
10236 const SCEVAddRecExpr *
10237 ScalarEvolution::convertSCEVToAddRecWithPredicates(const SCEV *S, const Loop *L,
10238                                                    SCEVUnionPredicate &Preds) {
10239   SCEVUnionPredicate TransformPreds;
10240   S = SCEVPredicateRewriter::rewrite(S, L, *this, TransformPreds, true);
10241   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10242 
10243   if (!AddRec)
10244     return nullptr;
10245 
10246   // Since the transformation was successful, we can now transfer the SCEV
10247   // predicates.
10248   Preds.add(&TransformPreds);
10249   return AddRec;
10250 }
10251 
10252 /// SCEV predicates
10253 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10254                              SCEVPredicateKind Kind)
10255     : FastID(ID), Kind(Kind) {}
10256 
10257 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10258                                        const SCEVUnknown *LHS,
10259                                        const SCEVConstant *RHS)
10260     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10261 
10262 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10263   const auto *Op = dyn_cast<const SCEVEqualPredicate>(N);
10264 
10265   if (!Op)
10266     return false;
10267 
10268   return Op->LHS == LHS && Op->RHS == RHS;
10269 }
10270 
10271 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10272 
10273 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10274 
10275 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10276   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10277 }
10278 
10279 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10280                                      const SCEVAddRecExpr *AR,
10281                                      IncrementWrapFlags Flags)
10282     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10283 
10284 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10285 
10286 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10287   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10288 
10289   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10290 }
10291 
10292 bool SCEVWrapPredicate::isAlwaysTrue() const {
10293   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10294   IncrementWrapFlags IFlags = Flags;
10295 
10296   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10297     IFlags = clearFlags(IFlags, IncrementNSSW);
10298 
10299   return IFlags == IncrementAnyWrap;
10300 }
10301 
10302 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10303   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10304   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10305     OS << "<nusw>";
10306   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10307     OS << "<nssw>";
10308   OS << "\n";
10309 }
10310 
10311 SCEVWrapPredicate::IncrementWrapFlags
10312 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10313                                    ScalarEvolution &SE) {
10314   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10315   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10316 
10317   // We can safely transfer the NSW flag as NSSW.
10318   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10319     ImpliedFlags = IncrementNSSW;
10320 
10321   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10322     // If the increment is positive, the SCEV NUW flag will also imply the
10323     // WrapPredicate NUSW flag.
10324     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10325       if (Step->getValue()->getValue().isNonNegative())
10326         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10327   }
10328 
10329   return ImpliedFlags;
10330 }
10331 
10332 /// Union predicates don't get cached so create a dummy set ID for it.
10333 SCEVUnionPredicate::SCEVUnionPredicate()
10334     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10335 
10336 bool SCEVUnionPredicate::isAlwaysTrue() const {
10337   return all_of(Preds,
10338                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10339 }
10340 
10341 ArrayRef<const SCEVPredicate *>
10342 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10343   auto I = SCEVToPreds.find(Expr);
10344   if (I == SCEVToPreds.end())
10345     return ArrayRef<const SCEVPredicate *>();
10346   return I->second;
10347 }
10348 
10349 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10350   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N))
10351     return all_of(Set->Preds,
10352                   [this](const SCEVPredicate *I) { return this->implies(I); });
10353 
10354   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10355   if (ScevPredsIt == SCEVToPreds.end())
10356     return false;
10357   auto &SCEVPreds = ScevPredsIt->second;
10358 
10359   return any_of(SCEVPreds,
10360                 [N](const SCEVPredicate *I) { return I->implies(N); });
10361 }
10362 
10363 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10364 
10365 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10366   for (auto Pred : Preds)
10367     Pred->print(OS, Depth);
10368 }
10369 
10370 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10371   if (const auto *Set = dyn_cast<const SCEVUnionPredicate>(N)) {
10372     for (auto Pred : Set->Preds)
10373       add(Pred);
10374     return;
10375   }
10376 
10377   if (implies(N))
10378     return;
10379 
10380   const SCEV *Key = N->getExpr();
10381   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10382                 " associated expression!");
10383 
10384   SCEVToPreds[Key].push_back(N);
10385   Preds.push_back(N);
10386 }
10387 
10388 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10389                                                      Loop &L)
10390     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10391 
10392 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10393   const SCEV *Expr = SE.getSCEV(V);
10394   RewriteEntry &Entry = RewriteMap[Expr];
10395 
10396   // If we already have an entry and the version matches, return it.
10397   if (Entry.second && Generation == Entry.first)
10398     return Entry.second;
10399 
10400   // We found an entry but it's stale. Rewrite the stale entry
10401   // acording to the current predicate.
10402   if (Entry.second)
10403     Expr = Entry.second;
10404 
10405   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10406   Entry = {Generation, NewSCEV};
10407 
10408   return NewSCEV;
10409 }
10410 
10411 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10412   if (!BackedgeCount) {
10413     SCEVUnionPredicate BackedgePred;
10414     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10415     addPredicate(BackedgePred);
10416   }
10417   return BackedgeCount;
10418 }
10419 
10420 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10421   if (Preds.implies(&Pred))
10422     return;
10423   Preds.add(&Pred);
10424   updateGeneration();
10425 }
10426 
10427 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10428   return Preds;
10429 }
10430 
10431 void PredicatedScalarEvolution::updateGeneration() {
10432   // If the generation number wrapped recompute everything.
10433   if (++Generation == 0) {
10434     for (auto &II : RewriteMap) {
10435       const SCEV *Rewritten = II.second.second;
10436       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10437     }
10438   }
10439 }
10440 
10441 void PredicatedScalarEvolution::setNoOverflow(
10442     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10443   const SCEV *Expr = getSCEV(V);
10444   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10445 
10446   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10447 
10448   // Clear the statically implied flags.
10449   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10450   addPredicate(*SE.getWrapPredicate(AR, Flags));
10451 
10452   auto II = FlagsMap.insert({V, Flags});
10453   if (!II.second)
10454     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10455 }
10456 
10457 bool PredicatedScalarEvolution::hasNoOverflow(
10458     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10459   const SCEV *Expr = getSCEV(V);
10460   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10461 
10462   Flags = SCEVWrapPredicate::clearFlags(
10463       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10464 
10465   auto II = FlagsMap.find(V);
10466 
10467   if (II != FlagsMap.end())
10468     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10469 
10470   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10471 }
10472 
10473 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10474   const SCEV *Expr = this->getSCEV(V);
10475   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, Preds);
10476 
10477   if (!New)
10478     return nullptr;
10479 
10480   updateGeneration();
10481   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10482   return New;
10483 }
10484 
10485 PredicatedScalarEvolution::PredicatedScalarEvolution(
10486     const PredicatedScalarEvolution &Init)
10487     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10488       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10489   for (auto I = Init.FlagsMap.begin(), E = Init.FlagsMap.end(); I != E; ++I)
10490     FlagsMap.insert(*I);
10491 }
10492 
10493 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10494   // For each block.
10495   for (auto *BB : L.getBlocks())
10496     for (auto &I : *BB) {
10497       if (!SE.isSCEVable(I.getType()))
10498         continue;
10499 
10500       auto *Expr = SE.getSCEV(&I);
10501       auto II = RewriteMap.find(Expr);
10502 
10503       if (II == RewriteMap.end())
10504         continue;
10505 
10506       // Don't print things that are not interesting.
10507       if (II->second.second == Expr)
10508         continue;
10509 
10510       OS.indent(Depth) << "[PSE]" << I << ":\n";
10511       OS.indent(Depth + 2) << *Expr << "\n";
10512       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10513     }
10514 }
10515