1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 83 #include "llvm/Analysis/TargetLibraryInfo.h" 84 #include "llvm/Analysis/ValueTracking.h" 85 #include "llvm/Config/llvm-config.h" 86 #include "llvm/IR/Argument.h" 87 #include "llvm/IR/BasicBlock.h" 88 #include "llvm/IR/CFG.h" 89 #include "llvm/IR/Constant.h" 90 #include "llvm/IR/ConstantRange.h" 91 #include "llvm/IR/Constants.h" 92 #include "llvm/IR/DataLayout.h" 93 #include "llvm/IR/DerivedTypes.h" 94 #include "llvm/IR/Dominators.h" 95 #include "llvm/IR/Function.h" 96 #include "llvm/IR/GlobalAlias.h" 97 #include "llvm/IR/GlobalValue.h" 98 #include "llvm/IR/InstIterator.h" 99 #include "llvm/IR/InstrTypes.h" 100 #include "llvm/IR/Instruction.h" 101 #include "llvm/IR/Instructions.h" 102 #include "llvm/IR/IntrinsicInst.h" 103 #include "llvm/IR/Intrinsics.h" 104 #include "llvm/IR/LLVMContext.h" 105 #include "llvm/IR/Operator.h" 106 #include "llvm/IR/PatternMatch.h" 107 #include "llvm/IR/Type.h" 108 #include "llvm/IR/Use.h" 109 #include "llvm/IR/User.h" 110 #include "llvm/IR/Value.h" 111 #include "llvm/IR/Verifier.h" 112 #include "llvm/InitializePasses.h" 113 #include "llvm/Pass.h" 114 #include "llvm/Support/Casting.h" 115 #include "llvm/Support/CommandLine.h" 116 #include "llvm/Support/Compiler.h" 117 #include "llvm/Support/Debug.h" 118 #include "llvm/Support/ErrorHandling.h" 119 #include "llvm/Support/KnownBits.h" 120 #include "llvm/Support/SaveAndRestore.h" 121 #include "llvm/Support/raw_ostream.h" 122 #include <algorithm> 123 #include <cassert> 124 #include <climits> 125 #include <cstdint> 126 #include <cstdlib> 127 #include <map> 128 #include <memory> 129 #include <tuple> 130 #include <utility> 131 #include <vector> 132 133 using namespace llvm; 134 using namespace PatternMatch; 135 136 #define DEBUG_TYPE "scalar-evolution" 137 138 STATISTIC(NumTripCountsComputed, 139 "Number of loops with predictable loop counts"); 140 STATISTIC(NumTripCountsNotComputed, 141 "Number of loops without predictable loop counts"); 142 STATISTIC(NumBruteForceTripCountsComputed, 143 "Number of loops with trip counts computed by force"); 144 145 #ifdef EXPENSIVE_CHECKS 146 bool llvm::VerifySCEV = true; 147 #else 148 bool llvm::VerifySCEV = false; 149 #endif 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 static cl::opt<bool, true> VerifySCEVOpt( 159 "verify-scev", cl::Hidden, cl::location(VerifySCEV), 160 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 161 static cl::opt<bool> VerifySCEVStrict( 162 "verify-scev-strict", cl::Hidden, 163 cl::desc("Enable stricter verification with -verify-scev is passed")); 164 static cl::opt<bool> 165 VerifySCEVMap("verify-scev-maps", cl::Hidden, 166 cl::desc("Verify no dangling value in ScalarEvolution's " 167 "ExprValueMap (slow)")); 168 169 static cl::opt<bool> VerifyIR( 170 "scev-verify-ir", cl::Hidden, 171 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 172 cl::init(false)); 173 174 static cl::opt<unsigned> MulOpsInlineThreshold( 175 "scev-mulops-inline-threshold", cl::Hidden, 176 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 177 cl::init(32)); 178 179 static cl::opt<unsigned> AddOpsInlineThreshold( 180 "scev-addops-inline-threshold", cl::Hidden, 181 cl::desc("Threshold for inlining addition operands into a SCEV"), 182 cl::init(500)); 183 184 static cl::opt<unsigned> MaxSCEVCompareDepth( 185 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 186 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 187 cl::init(32)); 188 189 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 190 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 191 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 192 cl::init(2)); 193 194 static cl::opt<unsigned> MaxValueCompareDepth( 195 "scalar-evolution-max-value-compare-depth", cl::Hidden, 196 cl::desc("Maximum depth of recursive value complexity comparisons"), 197 cl::init(2)); 198 199 static cl::opt<unsigned> 200 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 201 cl::desc("Maximum depth of recursive arithmetics"), 202 cl::init(32)); 203 204 static cl::opt<unsigned> MaxConstantEvolvingDepth( 205 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 206 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 207 208 static cl::opt<unsigned> 209 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 210 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 211 cl::init(8)); 212 213 static cl::opt<unsigned> 214 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 215 cl::desc("Max coefficients in AddRec during evolving"), 216 cl::init(8)); 217 218 static cl::opt<unsigned> 219 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 220 cl::desc("Size of the expression which is considered huge"), 221 cl::init(4096)); 222 223 static cl::opt<bool> 224 ClassifyExpressions("scalar-evolution-classify-expressions", 225 cl::Hidden, cl::init(true), 226 cl::desc("When printing analysis, include information on every instruction")); 227 228 static cl::opt<bool> UseExpensiveRangeSharpening( 229 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 230 cl::init(false), 231 cl::desc("Use more powerful methods of sharpening expression ranges. May " 232 "be costly in terms of compile time")); 233 234 static cl::opt<unsigned> MaxPhiSCCAnalysisSize( 235 "scalar-evolution-max-scc-analysis-depth", cl::Hidden, 236 cl::desc("Maximum amount of nodes to process while searching SCEVUnknown " 237 "Phi strongly connected components"), 238 cl::init(8)); 239 240 static cl::opt<bool> 241 EnableFiniteLoopControl("scalar-evolution-finite-loop", cl::Hidden, 242 cl::desc("Handle <= and >= in finite loops"), 243 cl::init(true)); 244 245 //===----------------------------------------------------------------------===// 246 // SCEV class definitions 247 //===----------------------------------------------------------------------===// 248 249 //===----------------------------------------------------------------------===// 250 // Implementation of the SCEV class. 251 // 252 253 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 254 LLVM_DUMP_METHOD void SCEV::dump() const { 255 print(dbgs()); 256 dbgs() << '\n'; 257 } 258 #endif 259 260 void SCEV::print(raw_ostream &OS) const { 261 switch (getSCEVType()) { 262 case scConstant: 263 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 264 return; 265 case scPtrToInt: { 266 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 267 const SCEV *Op = PtrToInt->getOperand(); 268 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 269 << *PtrToInt->getType() << ")"; 270 return; 271 } 272 case scTruncate: { 273 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 274 const SCEV *Op = Trunc->getOperand(); 275 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 276 << *Trunc->getType() << ")"; 277 return; 278 } 279 case scZeroExtend: { 280 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 281 const SCEV *Op = ZExt->getOperand(); 282 OS << "(zext " << *Op->getType() << " " << *Op << " to " 283 << *ZExt->getType() << ")"; 284 return; 285 } 286 case scSignExtend: { 287 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 288 const SCEV *Op = SExt->getOperand(); 289 OS << "(sext " << *Op->getType() << " " << *Op << " to " 290 << *SExt->getType() << ")"; 291 return; 292 } 293 case scAddRecExpr: { 294 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 295 OS << "{" << *AR->getOperand(0); 296 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 297 OS << ",+," << *AR->getOperand(i); 298 OS << "}<"; 299 if (AR->hasNoUnsignedWrap()) 300 OS << "nuw><"; 301 if (AR->hasNoSignedWrap()) 302 OS << "nsw><"; 303 if (AR->hasNoSelfWrap() && 304 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 305 OS << "nw><"; 306 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 307 OS << ">"; 308 return; 309 } 310 case scAddExpr: 311 case scMulExpr: 312 case scUMaxExpr: 313 case scSMaxExpr: 314 case scUMinExpr: 315 case scSMinExpr: 316 case scSequentialUMinExpr: { 317 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 318 const char *OpStr = nullptr; 319 switch (NAry->getSCEVType()) { 320 case scAddExpr: OpStr = " + "; break; 321 case scMulExpr: OpStr = " * "; break; 322 case scUMaxExpr: OpStr = " umax "; break; 323 case scSMaxExpr: OpStr = " smax "; break; 324 case scUMinExpr: 325 OpStr = " umin "; 326 break; 327 case scSMinExpr: 328 OpStr = " smin "; 329 break; 330 case scSequentialUMinExpr: 331 OpStr = " umin_seq "; 332 break; 333 default: 334 llvm_unreachable("There are no other nary expression types."); 335 } 336 OS << "("; 337 ListSeparator LS(OpStr); 338 for (const SCEV *Op : NAry->operands()) 339 OS << LS << *Op; 340 OS << ")"; 341 switch (NAry->getSCEVType()) { 342 case scAddExpr: 343 case scMulExpr: 344 if (NAry->hasNoUnsignedWrap()) 345 OS << "<nuw>"; 346 if (NAry->hasNoSignedWrap()) 347 OS << "<nsw>"; 348 break; 349 default: 350 // Nothing to print for other nary expressions. 351 break; 352 } 353 return; 354 } 355 case scUDivExpr: { 356 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 357 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 358 return; 359 } 360 case scUnknown: { 361 const SCEVUnknown *U = cast<SCEVUnknown>(this); 362 Type *AllocTy; 363 if (U->isSizeOf(AllocTy)) { 364 OS << "sizeof(" << *AllocTy << ")"; 365 return; 366 } 367 if (U->isAlignOf(AllocTy)) { 368 OS << "alignof(" << *AllocTy << ")"; 369 return; 370 } 371 372 Type *CTy; 373 Constant *FieldNo; 374 if (U->isOffsetOf(CTy, FieldNo)) { 375 OS << "offsetof(" << *CTy << ", "; 376 FieldNo->printAsOperand(OS, false); 377 OS << ")"; 378 return; 379 } 380 381 // Otherwise just print it normally. 382 U->getValue()->printAsOperand(OS, false); 383 return; 384 } 385 case scCouldNotCompute: 386 OS << "***COULDNOTCOMPUTE***"; 387 return; 388 } 389 llvm_unreachable("Unknown SCEV kind!"); 390 } 391 392 Type *SCEV::getType() const { 393 switch (getSCEVType()) { 394 case scConstant: 395 return cast<SCEVConstant>(this)->getType(); 396 case scPtrToInt: 397 case scTruncate: 398 case scZeroExtend: 399 case scSignExtend: 400 return cast<SCEVCastExpr>(this)->getType(); 401 case scAddRecExpr: 402 return cast<SCEVAddRecExpr>(this)->getType(); 403 case scMulExpr: 404 return cast<SCEVMulExpr>(this)->getType(); 405 case scUMaxExpr: 406 case scSMaxExpr: 407 case scUMinExpr: 408 case scSMinExpr: 409 return cast<SCEVMinMaxExpr>(this)->getType(); 410 case scSequentialUMinExpr: 411 return cast<SCEVSequentialMinMaxExpr>(this)->getType(); 412 case scAddExpr: 413 return cast<SCEVAddExpr>(this)->getType(); 414 case scUDivExpr: 415 return cast<SCEVUDivExpr>(this)->getType(); 416 case scUnknown: 417 return cast<SCEVUnknown>(this)->getType(); 418 case scCouldNotCompute: 419 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 420 } 421 llvm_unreachable("Unknown SCEV kind!"); 422 } 423 424 bool SCEV::isZero() const { 425 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 426 return SC->getValue()->isZero(); 427 return false; 428 } 429 430 bool SCEV::isOne() const { 431 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 432 return SC->getValue()->isOne(); 433 return false; 434 } 435 436 bool SCEV::isAllOnesValue() const { 437 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 438 return SC->getValue()->isMinusOne(); 439 return false; 440 } 441 442 bool SCEV::isNonConstantNegative() const { 443 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 444 if (!Mul) return false; 445 446 // If there is a constant factor, it will be first. 447 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 448 if (!SC) return false; 449 450 // Return true if the value is negative, this matches things like (-42 * V). 451 return SC->getAPInt().isNegative(); 452 } 453 454 SCEVCouldNotCompute::SCEVCouldNotCompute() : 455 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 456 457 bool SCEVCouldNotCompute::classof(const SCEV *S) { 458 return S->getSCEVType() == scCouldNotCompute; 459 } 460 461 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 462 FoldingSetNodeID ID; 463 ID.AddInteger(scConstant); 464 ID.AddPointer(V); 465 void *IP = nullptr; 466 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 467 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 468 UniqueSCEVs.InsertNode(S, IP); 469 return S; 470 } 471 472 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 473 return getConstant(ConstantInt::get(getContext(), Val)); 474 } 475 476 const SCEV * 477 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 478 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 479 return getConstant(ConstantInt::get(ITy, V, isSigned)); 480 } 481 482 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 483 const SCEV *op, Type *ty) 484 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 485 Operands[0] = op; 486 } 487 488 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 489 Type *ITy) 490 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 491 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 492 "Must be a non-bit-width-changing pointer-to-integer cast!"); 493 } 494 495 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 496 SCEVTypes SCEVTy, const SCEV *op, 497 Type *ty) 498 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 499 500 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 501 Type *ty) 502 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 503 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 504 "Cannot truncate non-integer value!"); 505 } 506 507 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 508 const SCEV *op, Type *ty) 509 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 510 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 511 "Cannot zero extend non-integer value!"); 512 } 513 514 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 515 const SCEV *op, Type *ty) 516 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 517 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 518 "Cannot sign extend non-integer value!"); 519 } 520 521 void SCEVUnknown::deleted() { 522 // Clear this SCEVUnknown from various maps. 523 SE->forgetMemoizedResults(this); 524 525 // Remove this SCEVUnknown from the uniquing map. 526 SE->UniqueSCEVs.RemoveNode(this); 527 528 // Release the value. 529 setValPtr(nullptr); 530 } 531 532 void SCEVUnknown::allUsesReplacedWith(Value *New) { 533 // Clear this SCEVUnknown from various maps. 534 SE->forgetMemoizedResults(this); 535 536 // Remove this SCEVUnknown from the uniquing map. 537 SE->UniqueSCEVs.RemoveNode(this); 538 539 // Replace the value pointer in case someone is still using this SCEVUnknown. 540 setValPtr(New); 541 } 542 543 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue() && 549 CE->getNumOperands() == 2) 550 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 551 if (CI->isOne()) { 552 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 553 return true; 554 } 555 556 return false; 557 } 558 559 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 560 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 561 if (VCE->getOpcode() == Instruction::PtrToInt) 562 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 563 if (CE->getOpcode() == Instruction::GetElementPtr && 564 CE->getOperand(0)->isNullValue()) { 565 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 566 if (StructType *STy = dyn_cast<StructType>(Ty)) 567 if (!STy->isPacked() && 568 CE->getNumOperands() == 3 && 569 CE->getOperand(1)->isNullValue()) { 570 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 571 if (CI->isOne() && 572 STy->getNumElements() == 2 && 573 STy->getElementType(0)->isIntegerTy(1)) { 574 AllocTy = STy->getElementType(1); 575 return true; 576 } 577 } 578 } 579 580 return false; 581 } 582 583 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 584 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 585 if (VCE->getOpcode() == Instruction::PtrToInt) 586 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 587 if (CE->getOpcode() == Instruction::GetElementPtr && 588 CE->getNumOperands() == 3 && 589 CE->getOperand(0)->isNullValue() && 590 CE->getOperand(1)->isNullValue()) { 591 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 592 // Ignore vector types here so that ScalarEvolutionExpander doesn't 593 // emit getelementptrs that index into vectors. 594 if (Ty->isStructTy() || Ty->isArrayTy()) { 595 CTy = Ty; 596 FieldNo = CE->getOperand(2); 597 return true; 598 } 599 } 600 601 return false; 602 } 603 604 //===----------------------------------------------------------------------===// 605 // SCEV Utilities 606 //===----------------------------------------------------------------------===// 607 608 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 609 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 610 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 611 /// have been previously deemed to be "equally complex" by this routine. It is 612 /// intended to avoid exponential time complexity in cases like: 613 /// 614 /// %a = f(%x, %y) 615 /// %b = f(%a, %a) 616 /// %c = f(%b, %b) 617 /// 618 /// %d = f(%x, %y) 619 /// %e = f(%d, %d) 620 /// %f = f(%e, %e) 621 /// 622 /// CompareValueComplexity(%f, %c) 623 /// 624 /// Since we do not continue running this routine on expression trees once we 625 /// have seen unequal values, there is no need to track them in the cache. 626 static int 627 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 628 const LoopInfo *const LI, Value *LV, Value *RV, 629 unsigned Depth) { 630 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 631 return 0; 632 633 // Order pointer values after integer values. This helps SCEVExpander form 634 // GEPs. 635 bool LIsPointer = LV->getType()->isPointerTy(), 636 RIsPointer = RV->getType()->isPointerTy(); 637 if (LIsPointer != RIsPointer) 638 return (int)LIsPointer - (int)RIsPointer; 639 640 // Compare getValueID values. 641 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 642 if (LID != RID) 643 return (int)LID - (int)RID; 644 645 // Sort arguments by their position. 646 if (const auto *LA = dyn_cast<Argument>(LV)) { 647 const auto *RA = cast<Argument>(RV); 648 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 649 return (int)LArgNo - (int)RArgNo; 650 } 651 652 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 653 const auto *RGV = cast<GlobalValue>(RV); 654 655 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 656 auto LT = GV->getLinkage(); 657 return !(GlobalValue::isPrivateLinkage(LT) || 658 GlobalValue::isInternalLinkage(LT)); 659 }; 660 661 // Use the names to distinguish the two values, but only if the 662 // names are semantically important. 663 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 664 return LGV->getName().compare(RGV->getName()); 665 } 666 667 // For instructions, compare their loop depth, and their operand count. This 668 // is pretty loose. 669 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 670 const auto *RInst = cast<Instruction>(RV); 671 672 // Compare loop depths. 673 const BasicBlock *LParent = LInst->getParent(), 674 *RParent = RInst->getParent(); 675 if (LParent != RParent) { 676 unsigned LDepth = LI->getLoopDepth(LParent), 677 RDepth = LI->getLoopDepth(RParent); 678 if (LDepth != RDepth) 679 return (int)LDepth - (int)RDepth; 680 } 681 682 // Compare the number of operands. 683 unsigned LNumOps = LInst->getNumOperands(), 684 RNumOps = RInst->getNumOperands(); 685 if (LNumOps != RNumOps) 686 return (int)LNumOps - (int)RNumOps; 687 688 for (unsigned Idx : seq(0u, LNumOps)) { 689 int Result = 690 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 691 RInst->getOperand(Idx), Depth + 1); 692 if (Result != 0) 693 return Result; 694 } 695 } 696 697 EqCacheValue.unionSets(LV, RV); 698 return 0; 699 } 700 701 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 702 // than RHS, respectively. A three-way result allows recursive comparisons to be 703 // more efficient. 704 // If the max analysis depth was reached, return None, assuming we do not know 705 // if they are equivalent for sure. 706 static Optional<int> 707 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 708 EquivalenceClasses<const Value *> &EqCacheValue, 709 const LoopInfo *const LI, const SCEV *LHS, 710 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 711 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 712 if (LHS == RHS) 713 return 0; 714 715 // Primarily, sort the SCEVs by their getSCEVType(). 716 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 717 if (LType != RType) 718 return (int)LType - (int)RType; 719 720 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 721 return 0; 722 723 if (Depth > MaxSCEVCompareDepth) 724 return None; 725 726 // Aside from the getSCEVType() ordering, the particular ordering 727 // isn't very important except that it's beneficial to be consistent, 728 // so that (a + b) and (b + a) don't end up as different expressions. 729 switch (LType) { 730 case scUnknown: { 731 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 732 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 733 734 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 735 RU->getValue(), Depth + 1); 736 if (X == 0) 737 EqCacheSCEV.unionSets(LHS, RHS); 738 return X; 739 } 740 741 case scConstant: { 742 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 743 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 744 745 // Compare constant values. 746 const APInt &LA = LC->getAPInt(); 747 const APInt &RA = RC->getAPInt(); 748 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 749 if (LBitWidth != RBitWidth) 750 return (int)LBitWidth - (int)RBitWidth; 751 return LA.ult(RA) ? -1 : 1; 752 } 753 754 case scAddRecExpr: { 755 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 756 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 757 758 // There is always a dominance between two recs that are used by one SCEV, 759 // so we can safely sort recs by loop header dominance. We require such 760 // order in getAddExpr. 761 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 762 if (LLoop != RLoop) { 763 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 764 assert(LHead != RHead && "Two loops share the same header?"); 765 if (DT.dominates(LHead, RHead)) 766 return 1; 767 else 768 assert(DT.dominates(RHead, LHead) && 769 "No dominance between recurrences used by one SCEV?"); 770 return -1; 771 } 772 773 // Addrec complexity grows with operand count. 774 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 775 if (LNumOps != RNumOps) 776 return (int)LNumOps - (int)RNumOps; 777 778 // Lexicographically compare. 779 for (unsigned i = 0; i != LNumOps; ++i) { 780 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 781 LA->getOperand(i), RA->getOperand(i), DT, 782 Depth + 1); 783 if (X != 0) 784 return X; 785 } 786 EqCacheSCEV.unionSets(LHS, RHS); 787 return 0; 788 } 789 790 case scAddExpr: 791 case scMulExpr: 792 case scSMaxExpr: 793 case scUMaxExpr: 794 case scSMinExpr: 795 case scUMinExpr: 796 case scSequentialUMinExpr: { 797 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 798 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 799 800 // Lexicographically compare n-ary expressions. 801 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 802 if (LNumOps != RNumOps) 803 return (int)LNumOps - (int)RNumOps; 804 805 for (unsigned i = 0; i != LNumOps; ++i) { 806 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 807 LC->getOperand(i), RC->getOperand(i), DT, 808 Depth + 1); 809 if (X != 0) 810 return X; 811 } 812 EqCacheSCEV.unionSets(LHS, RHS); 813 return 0; 814 } 815 816 case scUDivExpr: { 817 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 818 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 819 820 // Lexicographically compare udiv expressions. 821 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 822 RC->getLHS(), DT, Depth + 1); 823 if (X != 0) 824 return X; 825 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 826 RC->getRHS(), DT, Depth + 1); 827 if (X == 0) 828 EqCacheSCEV.unionSets(LHS, RHS); 829 return X; 830 } 831 832 case scPtrToInt: 833 case scTruncate: 834 case scZeroExtend: 835 case scSignExtend: { 836 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 837 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 838 839 // Compare cast expressions by operand. 840 auto X = 841 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 842 RC->getOperand(), DT, Depth + 1); 843 if (X == 0) 844 EqCacheSCEV.unionSets(LHS, RHS); 845 return X; 846 } 847 848 case scCouldNotCompute: 849 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 850 } 851 llvm_unreachable("Unknown SCEV kind!"); 852 } 853 854 /// Given a list of SCEV objects, order them by their complexity, and group 855 /// objects of the same complexity together by value. When this routine is 856 /// finished, we know that any duplicates in the vector are consecutive and that 857 /// complexity is monotonically increasing. 858 /// 859 /// Note that we go take special precautions to ensure that we get deterministic 860 /// results from this routine. In other words, we don't want the results of 861 /// this to depend on where the addresses of various SCEV objects happened to 862 /// land in memory. 863 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 864 LoopInfo *LI, DominatorTree &DT) { 865 if (Ops.size() < 2) return; // Noop 866 867 EquivalenceClasses<const SCEV *> EqCacheSCEV; 868 EquivalenceClasses<const Value *> EqCacheValue; 869 870 // Whether LHS has provably less complexity than RHS. 871 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 872 auto Complexity = 873 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 874 return Complexity && *Complexity < 0; 875 }; 876 if (Ops.size() == 2) { 877 // This is the common case, which also happens to be trivially simple. 878 // Special case it. 879 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 880 if (IsLessComplex(RHS, LHS)) 881 std::swap(LHS, RHS); 882 return; 883 } 884 885 // Do the rough sort by complexity. 886 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 887 return IsLessComplex(LHS, RHS); 888 }); 889 890 // Now that we are sorted by complexity, group elements of the same 891 // complexity. Note that this is, at worst, N^2, but the vector is likely to 892 // be extremely short in practice. Note that we take this approach because we 893 // do not want to depend on the addresses of the objects we are grouping. 894 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 895 const SCEV *S = Ops[i]; 896 unsigned Complexity = S->getSCEVType(); 897 898 // If there are any objects of the same complexity and same value as this 899 // one, group them. 900 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 901 if (Ops[j] == S) { // Found a duplicate. 902 // Move it to immediately after i'th element. 903 std::swap(Ops[i+1], Ops[j]); 904 ++i; // no need to rescan it. 905 if (i == e-2) return; // Done! 906 } 907 } 908 } 909 } 910 911 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 912 /// least HugeExprThreshold nodes). 913 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 914 return any_of(Ops, [](const SCEV *S) { 915 return S->getExpressionSize() >= HugeExprThreshold; 916 }); 917 } 918 919 //===----------------------------------------------------------------------===// 920 // Simple SCEV method implementations 921 //===----------------------------------------------------------------------===// 922 923 /// Compute BC(It, K). The result has width W. Assume, K > 0. 924 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 925 ScalarEvolution &SE, 926 Type *ResultTy) { 927 // Handle the simplest case efficiently. 928 if (K == 1) 929 return SE.getTruncateOrZeroExtend(It, ResultTy); 930 931 // We are using the following formula for BC(It, K): 932 // 933 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 934 // 935 // Suppose, W is the bitwidth of the return value. We must be prepared for 936 // overflow. Hence, we must assure that the result of our computation is 937 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 938 // safe in modular arithmetic. 939 // 940 // However, this code doesn't use exactly that formula; the formula it uses 941 // is something like the following, where T is the number of factors of 2 in 942 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 943 // exponentiation: 944 // 945 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 946 // 947 // This formula is trivially equivalent to the previous formula. However, 948 // this formula can be implemented much more efficiently. The trick is that 949 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 950 // arithmetic. To do exact division in modular arithmetic, all we have 951 // to do is multiply by the inverse. Therefore, this step can be done at 952 // width W. 953 // 954 // The next issue is how to safely do the division by 2^T. The way this 955 // is done is by doing the multiplication step at a width of at least W + T 956 // bits. This way, the bottom W+T bits of the product are accurate. Then, 957 // when we perform the division by 2^T (which is equivalent to a right shift 958 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 959 // truncated out after the division by 2^T. 960 // 961 // In comparison to just directly using the first formula, this technique 962 // is much more efficient; using the first formula requires W * K bits, 963 // but this formula less than W + K bits. Also, the first formula requires 964 // a division step, whereas this formula only requires multiplies and shifts. 965 // 966 // It doesn't matter whether the subtraction step is done in the calculation 967 // width or the input iteration count's width; if the subtraction overflows, 968 // the result must be zero anyway. We prefer here to do it in the width of 969 // the induction variable because it helps a lot for certain cases; CodeGen 970 // isn't smart enough to ignore the overflow, which leads to much less 971 // efficient code if the width of the subtraction is wider than the native 972 // register width. 973 // 974 // (It's possible to not widen at all by pulling out factors of 2 before 975 // the multiplication; for example, K=2 can be calculated as 976 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 977 // extra arithmetic, so it's not an obvious win, and it gets 978 // much more complicated for K > 3.) 979 980 // Protection from insane SCEVs; this bound is conservative, 981 // but it probably doesn't matter. 982 if (K > 1000) 983 return SE.getCouldNotCompute(); 984 985 unsigned W = SE.getTypeSizeInBits(ResultTy); 986 987 // Calculate K! / 2^T and T; we divide out the factors of two before 988 // multiplying for calculating K! / 2^T to avoid overflow. 989 // Other overflow doesn't matter because we only care about the bottom 990 // W bits of the result. 991 APInt OddFactorial(W, 1); 992 unsigned T = 1; 993 for (unsigned i = 3; i <= K; ++i) { 994 APInt Mult(W, i); 995 unsigned TwoFactors = Mult.countTrailingZeros(); 996 T += TwoFactors; 997 Mult.lshrInPlace(TwoFactors); 998 OddFactorial *= Mult; 999 } 1000 1001 // We need at least W + T bits for the multiplication step 1002 unsigned CalculationBits = W + T; 1003 1004 // Calculate 2^T, at width T+W. 1005 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 1006 1007 // Calculate the multiplicative inverse of K! / 2^T; 1008 // this multiplication factor will perform the exact division by 1009 // K! / 2^T. 1010 APInt Mod = APInt::getSignedMinValue(W+1); 1011 APInt MultiplyFactor = OddFactorial.zext(W+1); 1012 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 1013 MultiplyFactor = MultiplyFactor.trunc(W); 1014 1015 // Calculate the product, at width T+W 1016 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1017 CalculationBits); 1018 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1019 for (unsigned i = 1; i != K; ++i) { 1020 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1021 Dividend = SE.getMulExpr(Dividend, 1022 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1023 } 1024 1025 // Divide by 2^T 1026 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1027 1028 // Truncate the result, and divide by K! / 2^T. 1029 1030 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1031 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1032 } 1033 1034 /// Return the value of this chain of recurrences at the specified iteration 1035 /// number. We can evaluate this recurrence by multiplying each element in the 1036 /// chain by the binomial coefficient corresponding to it. In other words, we 1037 /// can evaluate {A,+,B,+,C,+,D} as: 1038 /// 1039 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1040 /// 1041 /// where BC(It, k) stands for binomial coefficient. 1042 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1043 ScalarEvolution &SE) const { 1044 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1045 } 1046 1047 const SCEV * 1048 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1049 const SCEV *It, ScalarEvolution &SE) { 1050 assert(Operands.size() > 0); 1051 const SCEV *Result = Operands[0]; 1052 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1053 // The computation is correct in the face of overflow provided that the 1054 // multiplication is performed _after_ the evaluation of the binomial 1055 // coefficient. 1056 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1057 if (isa<SCEVCouldNotCompute>(Coeff)) 1058 return Coeff; 1059 1060 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1061 } 1062 return Result; 1063 } 1064 1065 //===----------------------------------------------------------------------===// 1066 // SCEV Expression folder implementations 1067 //===----------------------------------------------------------------------===// 1068 1069 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1070 unsigned Depth) { 1071 assert(Depth <= 1 && 1072 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1073 1074 // We could be called with an integer-typed operands during SCEV rewrites. 1075 // Since the operand is an integer already, just perform zext/trunc/self cast. 1076 if (!Op->getType()->isPointerTy()) 1077 return Op; 1078 1079 // What would be an ID for such a SCEV cast expression? 1080 FoldingSetNodeID ID; 1081 ID.AddInteger(scPtrToInt); 1082 ID.AddPointer(Op); 1083 1084 void *IP = nullptr; 1085 1086 // Is there already an expression for such a cast? 1087 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1088 return S; 1089 1090 // It isn't legal for optimizations to construct new ptrtoint expressions 1091 // for non-integral pointers. 1092 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1093 return getCouldNotCompute(); 1094 1095 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1096 1097 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1098 // is sufficiently wide to represent all possible pointer values. 1099 // We could theoretically teach SCEV to truncate wider pointers, but 1100 // that isn't implemented for now. 1101 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1102 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1103 return getCouldNotCompute(); 1104 1105 // If not, is this expression something we can't reduce any further? 1106 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1107 // Perform some basic constant folding. If the operand of the ptr2int cast 1108 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1109 // left as-is), but produce a zero constant. 1110 // NOTE: We could handle a more general case, but lack motivational cases. 1111 if (isa<ConstantPointerNull>(U->getValue())) 1112 return getZero(IntPtrTy); 1113 1114 // Create an explicit cast node. 1115 // We can reuse the existing insert position since if we get here, 1116 // we won't have made any changes which would invalidate it. 1117 SCEV *S = new (SCEVAllocator) 1118 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1119 UniqueSCEVs.InsertNode(S, IP); 1120 registerUser(S, Op); 1121 return S; 1122 } 1123 1124 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1125 "non-SCEVUnknown's."); 1126 1127 // Otherwise, we've got some expression that is more complex than just a 1128 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1129 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1130 // only, and the expressions must otherwise be integer-typed. 1131 // So sink the cast down to the SCEVUnknown's. 1132 1133 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1134 /// which computes a pointer-typed value, and rewrites the whole expression 1135 /// tree so that *all* the computations are done on integers, and the only 1136 /// pointer-typed operands in the expression are SCEVUnknown. 1137 class SCEVPtrToIntSinkingRewriter 1138 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1139 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1140 1141 public: 1142 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1143 1144 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1145 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1146 return Rewriter.visit(Scev); 1147 } 1148 1149 const SCEV *visit(const SCEV *S) { 1150 Type *STy = S->getType(); 1151 // If the expression is not pointer-typed, just keep it as-is. 1152 if (!STy->isPointerTy()) 1153 return S; 1154 // Else, recursively sink the cast down into it. 1155 return Base::visit(S); 1156 } 1157 1158 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1159 SmallVector<const SCEV *, 2> Operands; 1160 bool Changed = false; 1161 for (auto *Op : Expr->operands()) { 1162 Operands.push_back(visit(Op)); 1163 Changed |= Op != Operands.back(); 1164 } 1165 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1166 } 1167 1168 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1169 SmallVector<const SCEV *, 2> Operands; 1170 bool Changed = false; 1171 for (auto *Op : Expr->operands()) { 1172 Operands.push_back(visit(Op)); 1173 Changed |= Op != Operands.back(); 1174 } 1175 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1176 } 1177 1178 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1179 assert(Expr->getType()->isPointerTy() && 1180 "Should only reach pointer-typed SCEVUnknown's."); 1181 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1182 } 1183 }; 1184 1185 // And actually perform the cast sinking. 1186 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1187 assert(IntOp->getType()->isIntegerTy() && 1188 "We must have succeeded in sinking the cast, " 1189 "and ending up with an integer-typed expression!"); 1190 return IntOp; 1191 } 1192 1193 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1194 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1195 1196 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1197 if (isa<SCEVCouldNotCompute>(IntOp)) 1198 return IntOp; 1199 1200 return getTruncateOrZeroExtend(IntOp, Ty); 1201 } 1202 1203 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1204 unsigned Depth) { 1205 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1206 "This is not a truncating conversion!"); 1207 assert(isSCEVable(Ty) && 1208 "This is not a conversion to a SCEVable type!"); 1209 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1210 Ty = getEffectiveSCEVType(Ty); 1211 1212 FoldingSetNodeID ID; 1213 ID.AddInteger(scTruncate); 1214 ID.AddPointer(Op); 1215 ID.AddPointer(Ty); 1216 void *IP = nullptr; 1217 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1218 1219 // Fold if the operand is constant. 1220 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1221 return getConstant( 1222 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1223 1224 // trunc(trunc(x)) --> trunc(x) 1225 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1226 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1227 1228 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1229 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1230 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1231 1232 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1233 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1234 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1235 1236 if (Depth > MaxCastDepth) { 1237 SCEV *S = 1238 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1239 UniqueSCEVs.InsertNode(S, IP); 1240 registerUser(S, Op); 1241 return S; 1242 } 1243 1244 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1245 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1246 // if after transforming we have at most one truncate, not counting truncates 1247 // that replace other casts. 1248 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1249 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1250 SmallVector<const SCEV *, 4> Operands; 1251 unsigned numTruncs = 0; 1252 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1253 ++i) { 1254 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1255 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1256 isa<SCEVTruncateExpr>(S)) 1257 numTruncs++; 1258 Operands.push_back(S); 1259 } 1260 if (numTruncs < 2) { 1261 if (isa<SCEVAddExpr>(Op)) 1262 return getAddExpr(Operands); 1263 else if (isa<SCEVMulExpr>(Op)) 1264 return getMulExpr(Operands); 1265 else 1266 llvm_unreachable("Unexpected SCEV type for Op."); 1267 } 1268 // Although we checked in the beginning that ID is not in the cache, it is 1269 // possible that during recursion and different modification ID was inserted 1270 // into the cache. So if we find it, just return it. 1271 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1272 return S; 1273 } 1274 1275 // If the input value is a chrec scev, truncate the chrec's operands. 1276 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1277 SmallVector<const SCEV *, 4> Operands; 1278 for (const SCEV *Op : AddRec->operands()) 1279 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1280 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1281 } 1282 1283 // Return zero if truncating to known zeros. 1284 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1285 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1286 return getZero(Ty); 1287 1288 // The cast wasn't folded; create an explicit cast node. We can reuse 1289 // the existing insert position since if we get here, we won't have 1290 // made any changes which would invalidate it. 1291 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1292 Op, Ty); 1293 UniqueSCEVs.InsertNode(S, IP); 1294 registerUser(S, Op); 1295 return S; 1296 } 1297 1298 // Get the limit of a recurrence such that incrementing by Step cannot cause 1299 // signed overflow as long as the value of the recurrence within the 1300 // loop does not exceed this limit before incrementing. 1301 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1302 ICmpInst::Predicate *Pred, 1303 ScalarEvolution *SE) { 1304 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1305 if (SE->isKnownPositive(Step)) { 1306 *Pred = ICmpInst::ICMP_SLT; 1307 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1308 SE->getSignedRangeMax(Step)); 1309 } 1310 if (SE->isKnownNegative(Step)) { 1311 *Pred = ICmpInst::ICMP_SGT; 1312 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1313 SE->getSignedRangeMin(Step)); 1314 } 1315 return nullptr; 1316 } 1317 1318 // Get the limit of a recurrence such that incrementing by Step cannot cause 1319 // unsigned overflow as long as the value of the recurrence within the loop does 1320 // not exceed this limit before incrementing. 1321 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1322 ICmpInst::Predicate *Pred, 1323 ScalarEvolution *SE) { 1324 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1325 *Pred = ICmpInst::ICMP_ULT; 1326 1327 return SE->getConstant(APInt::getMinValue(BitWidth) - 1328 SE->getUnsignedRangeMax(Step)); 1329 } 1330 1331 namespace { 1332 1333 struct ExtendOpTraitsBase { 1334 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1335 unsigned); 1336 }; 1337 1338 // Used to make code generic over signed and unsigned overflow. 1339 template <typename ExtendOp> struct ExtendOpTraits { 1340 // Members present: 1341 // 1342 // static const SCEV::NoWrapFlags WrapType; 1343 // 1344 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1345 // 1346 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1347 // ICmpInst::Predicate *Pred, 1348 // ScalarEvolution *SE); 1349 }; 1350 1351 template <> 1352 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1353 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1354 1355 static const GetExtendExprTy GetExtendExpr; 1356 1357 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1358 ICmpInst::Predicate *Pred, 1359 ScalarEvolution *SE) { 1360 return getSignedOverflowLimitForStep(Step, Pred, SE); 1361 } 1362 }; 1363 1364 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1365 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1366 1367 template <> 1368 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1369 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1370 1371 static const GetExtendExprTy GetExtendExpr; 1372 1373 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1374 ICmpInst::Predicate *Pred, 1375 ScalarEvolution *SE) { 1376 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1377 } 1378 }; 1379 1380 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1381 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1382 1383 } // end anonymous namespace 1384 1385 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1386 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1387 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1388 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1389 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1390 // expression "Step + sext/zext(PreIncAR)" is congruent with 1391 // "sext/zext(PostIncAR)" 1392 template <typename ExtendOpTy> 1393 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1394 ScalarEvolution *SE, unsigned Depth) { 1395 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1396 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1397 1398 const Loop *L = AR->getLoop(); 1399 const SCEV *Start = AR->getStart(); 1400 const SCEV *Step = AR->getStepRecurrence(*SE); 1401 1402 // Check for a simple looking step prior to loop entry. 1403 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1404 if (!SA) 1405 return nullptr; 1406 1407 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1408 // subtraction is expensive. For this purpose, perform a quick and dirty 1409 // difference, by checking for Step in the operand list. 1410 SmallVector<const SCEV *, 4> DiffOps; 1411 for (const SCEV *Op : SA->operands()) 1412 if (Op != Step) 1413 DiffOps.push_back(Op); 1414 1415 if (DiffOps.size() == SA->getNumOperands()) 1416 return nullptr; 1417 1418 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1419 // `Step`: 1420 1421 // 1. NSW/NUW flags on the step increment. 1422 auto PreStartFlags = 1423 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1424 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1425 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1426 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1427 1428 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1429 // "S+X does not sign/unsign-overflow". 1430 // 1431 1432 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1433 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1434 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1435 return PreStart; 1436 1437 // 2. Direct overflow check on the step operation's expression. 1438 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1439 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1440 const SCEV *OperandExtendedStart = 1441 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1442 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1443 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1444 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1445 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1446 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1447 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1448 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1449 } 1450 return PreStart; 1451 } 1452 1453 // 3. Loop precondition. 1454 ICmpInst::Predicate Pred; 1455 const SCEV *OverflowLimit = 1456 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1457 1458 if (OverflowLimit && 1459 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1460 return PreStart; 1461 1462 return nullptr; 1463 } 1464 1465 // Get the normalized zero or sign extended expression for this AddRec's Start. 1466 template <typename ExtendOpTy> 1467 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1468 ScalarEvolution *SE, 1469 unsigned Depth) { 1470 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1471 1472 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1473 if (!PreStart) 1474 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1475 1476 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1477 Depth), 1478 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1479 } 1480 1481 // Try to prove away overflow by looking at "nearby" add recurrences. A 1482 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1483 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1484 // 1485 // Formally: 1486 // 1487 // {S,+,X} == {S-T,+,X} + T 1488 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1489 // 1490 // If ({S-T,+,X} + T) does not overflow ... (1) 1491 // 1492 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1493 // 1494 // If {S-T,+,X} does not overflow ... (2) 1495 // 1496 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1497 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1498 // 1499 // If (S-T)+T does not overflow ... (3) 1500 // 1501 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1502 // == {Ext(S),+,Ext(X)} == LHS 1503 // 1504 // Thus, if (1), (2) and (3) are true for some T, then 1505 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1506 // 1507 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1508 // does not overflow" restricted to the 0th iteration. Therefore we only need 1509 // to check for (1) and (2). 1510 // 1511 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1512 // is `Delta` (defined below). 1513 template <typename ExtendOpTy> 1514 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1515 const SCEV *Step, 1516 const Loop *L) { 1517 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1518 1519 // We restrict `Start` to a constant to prevent SCEV from spending too much 1520 // time here. It is correct (but more expensive) to continue with a 1521 // non-constant `Start` and do a general SCEV subtraction to compute 1522 // `PreStart` below. 1523 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1524 if (!StartC) 1525 return false; 1526 1527 APInt StartAI = StartC->getAPInt(); 1528 1529 for (unsigned Delta : {-2, -1, 1, 2}) { 1530 const SCEV *PreStart = getConstant(StartAI - Delta); 1531 1532 FoldingSetNodeID ID; 1533 ID.AddInteger(scAddRecExpr); 1534 ID.AddPointer(PreStart); 1535 ID.AddPointer(Step); 1536 ID.AddPointer(L); 1537 void *IP = nullptr; 1538 const auto *PreAR = 1539 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1540 1541 // Give up if we don't already have the add recurrence we need because 1542 // actually constructing an add recurrence is relatively expensive. 1543 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1544 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1545 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1546 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1547 DeltaS, &Pred, this); 1548 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1549 return true; 1550 } 1551 } 1552 1553 return false; 1554 } 1555 1556 // Finds an integer D for an expression (C + x + y + ...) such that the top 1557 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1558 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1559 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1560 // the (C + x + y + ...) expression is \p WholeAddExpr. 1561 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1562 const SCEVConstant *ConstantTerm, 1563 const SCEVAddExpr *WholeAddExpr) { 1564 const APInt &C = ConstantTerm->getAPInt(); 1565 const unsigned BitWidth = C.getBitWidth(); 1566 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1567 uint32_t TZ = BitWidth; 1568 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1569 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1570 if (TZ) { 1571 // Set D to be as many least significant bits of C as possible while still 1572 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1573 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1574 } 1575 return APInt(BitWidth, 0); 1576 } 1577 1578 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1579 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1580 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1581 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1582 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1583 const APInt &ConstantStart, 1584 const SCEV *Step) { 1585 const unsigned BitWidth = ConstantStart.getBitWidth(); 1586 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1587 if (TZ) 1588 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1589 : ConstantStart; 1590 return APInt(BitWidth, 0); 1591 } 1592 1593 const SCEV * 1594 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1595 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1596 "This is not an extending conversion!"); 1597 assert(isSCEVable(Ty) && 1598 "This is not a conversion to a SCEVable type!"); 1599 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1600 Ty = getEffectiveSCEVType(Ty); 1601 1602 // Fold if the operand is constant. 1603 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1604 return getConstant( 1605 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1606 1607 // zext(zext(x)) --> zext(x) 1608 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1609 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1610 1611 // Before doing any expensive analysis, check to see if we've already 1612 // computed a SCEV for this Op and Ty. 1613 FoldingSetNodeID ID; 1614 ID.AddInteger(scZeroExtend); 1615 ID.AddPointer(Op); 1616 ID.AddPointer(Ty); 1617 void *IP = nullptr; 1618 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1619 if (Depth > MaxCastDepth) { 1620 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1621 Op, Ty); 1622 UniqueSCEVs.InsertNode(S, IP); 1623 registerUser(S, Op); 1624 return S; 1625 } 1626 1627 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1628 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1629 // It's possible the bits taken off by the truncate were all zero bits. If 1630 // so, we should be able to simplify this further. 1631 const SCEV *X = ST->getOperand(); 1632 ConstantRange CR = getUnsignedRange(X); 1633 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1634 unsigned NewBits = getTypeSizeInBits(Ty); 1635 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1636 CR.zextOrTrunc(NewBits))) 1637 return getTruncateOrZeroExtend(X, Ty, Depth); 1638 } 1639 1640 // If the input value is a chrec scev, and we can prove that the value 1641 // did not overflow the old, smaller, value, we can zero extend all of the 1642 // operands (often constants). This allows analysis of something like 1643 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1644 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1645 if (AR->isAffine()) { 1646 const SCEV *Start = AR->getStart(); 1647 const SCEV *Step = AR->getStepRecurrence(*this); 1648 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1649 const Loop *L = AR->getLoop(); 1650 1651 if (!AR->hasNoUnsignedWrap()) { 1652 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1653 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1654 } 1655 1656 // If we have special knowledge that this addrec won't overflow, 1657 // we don't need to do any further analysis. 1658 if (AR->hasNoUnsignedWrap()) { 1659 Start = 1660 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1661 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1662 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1663 } 1664 1665 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1666 // Note that this serves two purposes: It filters out loops that are 1667 // simply not analyzable, and it covers the case where this code is 1668 // being called from within backedge-taken count analysis, such that 1669 // attempting to ask for the backedge-taken count would likely result 1670 // in infinite recursion. In the later case, the analysis code will 1671 // cope with a conservative value, and it will take care to purge 1672 // that value once it has finished. 1673 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1674 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1675 // Manually compute the final value for AR, checking for overflow. 1676 1677 // Check whether the backedge-taken count can be losslessly casted to 1678 // the addrec's type. The count is always unsigned. 1679 const SCEV *CastedMaxBECount = 1680 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1681 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1682 CastedMaxBECount, MaxBECount->getType(), Depth); 1683 if (MaxBECount == RecastedMaxBECount) { 1684 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1685 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1686 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1687 SCEV::FlagAnyWrap, Depth + 1); 1688 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1689 SCEV::FlagAnyWrap, 1690 Depth + 1), 1691 WideTy, Depth + 1); 1692 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1693 const SCEV *WideMaxBECount = 1694 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1695 const SCEV *OperandExtendedAdd = 1696 getAddExpr(WideStart, 1697 getMulExpr(WideMaxBECount, 1698 getZeroExtendExpr(Step, WideTy, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1), 1700 SCEV::FlagAnyWrap, Depth + 1); 1701 if (ZAdd == OperandExtendedAdd) { 1702 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1704 // Return the expression with the addrec on the outside. 1705 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1706 Depth + 1); 1707 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1708 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1709 } 1710 // Similar to above, only this time treat the step value as signed. 1711 // This covers loops that count down. 1712 OperandExtendedAdd = 1713 getAddExpr(WideStart, 1714 getMulExpr(WideMaxBECount, 1715 getSignExtendExpr(Step, WideTy, Depth + 1), 1716 SCEV::FlagAnyWrap, Depth + 1), 1717 SCEV::FlagAnyWrap, Depth + 1); 1718 if (ZAdd == OperandExtendedAdd) { 1719 // Cache knowledge of AR NW, which is propagated to this AddRec. 1720 // Negative step causes unsigned wrap, but it still can't self-wrap. 1721 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1722 // Return the expression with the addrec on the outside. 1723 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1724 Depth + 1); 1725 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1726 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1727 } 1728 } 1729 } 1730 1731 // Normally, in the cases we can prove no-overflow via a 1732 // backedge guarding condition, we can also compute a backedge 1733 // taken count for the loop. The exceptions are assumptions and 1734 // guards present in the loop -- SCEV is not great at exploiting 1735 // these to compute max backedge taken counts, but can still use 1736 // these to prove lack of overflow. Use this fact to avoid 1737 // doing extra work that may not pay off. 1738 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1739 !AC.assumptions().empty()) { 1740 1741 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1742 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1743 if (AR->hasNoUnsignedWrap()) { 1744 // Same as nuw case above - duplicated here to avoid a compile time 1745 // issue. It's not clear that the order of checks does matter, but 1746 // it's one of two issue possible causes for a change which was 1747 // reverted. Be conservative for the moment. 1748 Start = 1749 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1750 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1751 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1752 } 1753 1754 // For a negative step, we can extend the operands iff doing so only 1755 // traverses values in the range zext([0,UINT_MAX]). 1756 if (isKnownNegative(Step)) { 1757 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1758 getSignedRangeMin(Step)); 1759 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1760 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1761 // Cache knowledge of AR NW, which is propagated to this 1762 // AddRec. Negative step causes unsigned wrap, but it 1763 // still can't self-wrap. 1764 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1765 // Return the expression with the addrec on the outside. 1766 Start = getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1767 Depth + 1); 1768 Step = getSignExtendExpr(Step, Ty, Depth + 1); 1769 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1770 } 1771 } 1772 } 1773 1774 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1775 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1776 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1777 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1778 const APInt &C = SC->getAPInt(); 1779 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1780 if (D != 0) { 1781 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1782 const SCEV *SResidual = 1783 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1784 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1785 return getAddExpr(SZExtD, SZExtR, 1786 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1787 Depth + 1); 1788 } 1789 } 1790 1791 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1792 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1793 Start = 1794 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1); 1795 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 1796 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 1797 } 1798 } 1799 1800 // zext(A % B) --> zext(A) % zext(B) 1801 { 1802 const SCEV *LHS; 1803 const SCEV *RHS; 1804 if (matchURem(Op, LHS, RHS)) 1805 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1806 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1807 } 1808 1809 // zext(A / B) --> zext(A) / zext(B). 1810 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1811 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1812 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1813 1814 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1815 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1816 if (SA->hasNoUnsignedWrap()) { 1817 // If the addition does not unsign overflow then we can, by definition, 1818 // commute the zero extension with the addition operation. 1819 SmallVector<const SCEV *, 4> Ops; 1820 for (const auto *Op : SA->operands()) 1821 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1822 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1823 } 1824 1825 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1826 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1827 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1828 // 1829 // Often address arithmetics contain expressions like 1830 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1831 // This transformation is useful while proving that such expressions are 1832 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1833 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1834 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1835 if (D != 0) { 1836 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1837 const SCEV *SResidual = 1838 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1839 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1840 return getAddExpr(SZExtD, SZExtR, 1841 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1842 Depth + 1); 1843 } 1844 } 1845 } 1846 1847 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1848 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1849 if (SM->hasNoUnsignedWrap()) { 1850 // If the multiply does not unsign overflow then we can, by definition, 1851 // commute the zero extension with the multiply operation. 1852 SmallVector<const SCEV *, 4> Ops; 1853 for (const auto *Op : SM->operands()) 1854 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1855 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1856 } 1857 1858 // zext(2^K * (trunc X to iN)) to iM -> 1859 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1860 // 1861 // Proof: 1862 // 1863 // zext(2^K * (trunc X to iN)) to iM 1864 // = zext((trunc X to iN) << K) to iM 1865 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1866 // (because shl removes the top K bits) 1867 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1868 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1869 // 1870 if (SM->getNumOperands() == 2) 1871 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1872 if (MulLHS->getAPInt().isPowerOf2()) 1873 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1874 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1875 MulLHS->getAPInt().logBase2(); 1876 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1877 return getMulExpr( 1878 getZeroExtendExpr(MulLHS, Ty), 1879 getZeroExtendExpr( 1880 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1881 SCEV::FlagNUW, Depth + 1); 1882 } 1883 } 1884 1885 // The cast wasn't folded; create an explicit cast node. 1886 // Recompute the insert position, as it may have been invalidated. 1887 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1888 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1889 Op, Ty); 1890 UniqueSCEVs.InsertNode(S, IP); 1891 registerUser(S, Op); 1892 return S; 1893 } 1894 1895 const SCEV * 1896 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1897 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1898 "This is not an extending conversion!"); 1899 assert(isSCEVable(Ty) && 1900 "This is not a conversion to a SCEVable type!"); 1901 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1902 Ty = getEffectiveSCEVType(Ty); 1903 1904 // Fold if the operand is constant. 1905 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1906 return getConstant( 1907 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1908 1909 // sext(sext(x)) --> sext(x) 1910 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1911 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1912 1913 // sext(zext(x)) --> zext(x) 1914 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1915 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1916 1917 // Before doing any expensive analysis, check to see if we've already 1918 // computed a SCEV for this Op and Ty. 1919 FoldingSetNodeID ID; 1920 ID.AddInteger(scSignExtend); 1921 ID.AddPointer(Op); 1922 ID.AddPointer(Ty); 1923 void *IP = nullptr; 1924 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1925 // Limit recursion depth. 1926 if (Depth > MaxCastDepth) { 1927 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1928 Op, Ty); 1929 UniqueSCEVs.InsertNode(S, IP); 1930 registerUser(S, Op); 1931 return S; 1932 } 1933 1934 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1935 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1936 // It's possible the bits taken off by the truncate were all sign bits. If 1937 // so, we should be able to simplify this further. 1938 const SCEV *X = ST->getOperand(); 1939 ConstantRange CR = getSignedRange(X); 1940 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1941 unsigned NewBits = getTypeSizeInBits(Ty); 1942 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1943 CR.sextOrTrunc(NewBits))) 1944 return getTruncateOrSignExtend(X, Ty, Depth); 1945 } 1946 1947 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1948 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1949 if (SA->hasNoSignedWrap()) { 1950 // If the addition does not sign overflow then we can, by definition, 1951 // commute the sign extension with the addition operation. 1952 SmallVector<const SCEV *, 4> Ops; 1953 for (const auto *Op : SA->operands()) 1954 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1955 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1956 } 1957 1958 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1959 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1960 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1961 // 1962 // For instance, this will bring two seemingly different expressions: 1963 // 1 + sext(5 + 20 * %x + 24 * %y) and 1964 // sext(6 + 20 * %x + 24 * %y) 1965 // to the same form: 1966 // 2 + sext(4 + 20 * %x + 24 * %y) 1967 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1968 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1969 if (D != 0) { 1970 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1971 const SCEV *SResidual = 1972 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1973 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1974 return getAddExpr(SSExtD, SSExtR, 1975 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1976 Depth + 1); 1977 } 1978 } 1979 } 1980 // If the input value is a chrec scev, and we can prove that the value 1981 // did not overflow the old, smaller, value, we can sign extend all of the 1982 // operands (often constants). This allows analysis of something like 1983 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1984 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1985 if (AR->isAffine()) { 1986 const SCEV *Start = AR->getStart(); 1987 const SCEV *Step = AR->getStepRecurrence(*this); 1988 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1989 const Loop *L = AR->getLoop(); 1990 1991 if (!AR->hasNoSignedWrap()) { 1992 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1993 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1994 } 1995 1996 // If we have special knowledge that this addrec won't overflow, 1997 // we don't need to do any further analysis. 1998 if (AR->hasNoSignedWrap()) { 1999 Start = 2000 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2001 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2002 return getAddRecExpr(Start, Step, L, SCEV::FlagNSW); 2003 } 2004 2005 // Check whether the backedge-taken count is SCEVCouldNotCompute. 2006 // Note that this serves two purposes: It filters out loops that are 2007 // simply not analyzable, and it covers the case where this code is 2008 // being called from within backedge-taken count analysis, such that 2009 // attempting to ask for the backedge-taken count would likely result 2010 // in infinite recursion. In the later case, the analysis code will 2011 // cope with a conservative value, and it will take care to purge 2012 // that value once it has finished. 2013 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 2014 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 2015 // Manually compute the final value for AR, checking for 2016 // overflow. 2017 2018 // Check whether the backedge-taken count can be losslessly casted to 2019 // the addrec's type. The count is always unsigned. 2020 const SCEV *CastedMaxBECount = 2021 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2022 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2023 CastedMaxBECount, MaxBECount->getType(), Depth); 2024 if (MaxBECount == RecastedMaxBECount) { 2025 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2026 // Check whether Start+Step*MaxBECount has no signed overflow. 2027 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2028 SCEV::FlagAnyWrap, Depth + 1); 2029 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2030 SCEV::FlagAnyWrap, 2031 Depth + 1), 2032 WideTy, Depth + 1); 2033 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2034 const SCEV *WideMaxBECount = 2035 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2036 const SCEV *OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getSignExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2044 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2045 // Return the expression with the addrec on the outside. 2046 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2047 Depth + 1); 2048 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2049 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2050 } 2051 // Similar to above, only this time treat the step value as unsigned. 2052 // This covers loops that count up with an unsigned step. 2053 OperandExtendedAdd = 2054 getAddExpr(WideStart, 2055 getMulExpr(WideMaxBECount, 2056 getZeroExtendExpr(Step, WideTy, Depth + 1), 2057 SCEV::FlagAnyWrap, Depth + 1), 2058 SCEV::FlagAnyWrap, Depth + 1); 2059 if (SAdd == OperandExtendedAdd) { 2060 // If AR wraps around then 2061 // 2062 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2063 // => SAdd != OperandExtendedAdd 2064 // 2065 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2066 // (SAdd == OperandExtendedAdd => AR is NW) 2067 2068 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2069 2070 // Return the expression with the addrec on the outside. 2071 Start = getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2072 Depth + 1); 2073 Step = getZeroExtendExpr(Step, Ty, Depth + 1); 2074 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2075 } 2076 } 2077 } 2078 2079 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2080 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2081 if (AR->hasNoSignedWrap()) { 2082 // Same as nsw case above - duplicated here to avoid a compile time 2083 // issue. It's not clear that the order of checks does matter, but 2084 // it's one of two issue possible causes for a change which was 2085 // reverted. Be conservative for the moment. 2086 Start = 2087 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2088 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2089 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2090 } 2091 2092 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2093 // if D + (C - D + Step * n) could be proven to not signed wrap 2094 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2095 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2096 const APInt &C = SC->getAPInt(); 2097 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2098 if (D != 0) { 2099 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2100 const SCEV *SResidual = 2101 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2102 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2103 return getAddExpr(SSExtD, SSExtR, 2104 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2105 Depth + 1); 2106 } 2107 } 2108 2109 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2110 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2111 Start = 2112 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1); 2113 Step = getSignExtendExpr(Step, Ty, Depth + 1); 2114 return getAddRecExpr(Start, Step, L, AR->getNoWrapFlags()); 2115 } 2116 } 2117 2118 // If the input value is provably positive and we could not simplify 2119 // away the sext build a zext instead. 2120 if (isKnownNonNegative(Op)) 2121 return getZeroExtendExpr(Op, Ty, Depth + 1); 2122 2123 // The cast wasn't folded; create an explicit cast node. 2124 // Recompute the insert position, as it may have been invalidated. 2125 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2126 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2127 Op, Ty); 2128 UniqueSCEVs.InsertNode(S, IP); 2129 registerUser(S, { Op }); 2130 return S; 2131 } 2132 2133 const SCEV *ScalarEvolution::getCastExpr(SCEVTypes Kind, const SCEV *Op, 2134 Type *Ty) { 2135 switch (Kind) { 2136 case scTruncate: 2137 return getTruncateExpr(Op, Ty); 2138 case scZeroExtend: 2139 return getZeroExtendExpr(Op, Ty); 2140 case scSignExtend: 2141 return getSignExtendExpr(Op, Ty); 2142 case scPtrToInt: 2143 return getPtrToIntExpr(Op, Ty); 2144 default: 2145 llvm_unreachable("Not a SCEV cast expression!"); 2146 } 2147 } 2148 2149 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2150 /// unspecified bits out to the given type. 2151 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2152 Type *Ty) { 2153 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2154 "This is not an extending conversion!"); 2155 assert(isSCEVable(Ty) && 2156 "This is not a conversion to a SCEVable type!"); 2157 Ty = getEffectiveSCEVType(Ty); 2158 2159 // Sign-extend negative constants. 2160 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2161 if (SC->getAPInt().isNegative()) 2162 return getSignExtendExpr(Op, Ty); 2163 2164 // Peel off a truncate cast. 2165 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2166 const SCEV *NewOp = T->getOperand(); 2167 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2168 return getAnyExtendExpr(NewOp, Ty); 2169 return getTruncateOrNoop(NewOp, Ty); 2170 } 2171 2172 // Next try a zext cast. If the cast is folded, use it. 2173 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2174 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2175 return ZExt; 2176 2177 // Next try a sext cast. If the cast is folded, use it. 2178 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2179 if (!isa<SCEVSignExtendExpr>(SExt)) 2180 return SExt; 2181 2182 // Force the cast to be folded into the operands of an addrec. 2183 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2184 SmallVector<const SCEV *, 4> Ops; 2185 for (const SCEV *Op : AR->operands()) 2186 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2187 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2188 } 2189 2190 // If the expression is obviously signed, use the sext cast value. 2191 if (isa<SCEVSMaxExpr>(Op)) 2192 return SExt; 2193 2194 // Absent any other information, use the zext cast value. 2195 return ZExt; 2196 } 2197 2198 /// Process the given Ops list, which is a list of operands to be added under 2199 /// the given scale, update the given map. This is a helper function for 2200 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2201 /// that would form an add expression like this: 2202 /// 2203 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2204 /// 2205 /// where A and B are constants, update the map with these values: 2206 /// 2207 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2208 /// 2209 /// and add 13 + A*B*29 to AccumulatedConstant. 2210 /// This will allow getAddRecExpr to produce this: 2211 /// 2212 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2213 /// 2214 /// This form often exposes folding opportunities that are hidden in 2215 /// the original operand list. 2216 /// 2217 /// Return true iff it appears that any interesting folding opportunities 2218 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2219 /// the common case where no interesting opportunities are present, and 2220 /// is also used as a check to avoid infinite recursion. 2221 static bool 2222 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2223 SmallVectorImpl<const SCEV *> &NewOps, 2224 APInt &AccumulatedConstant, 2225 const SCEV *const *Ops, size_t NumOperands, 2226 const APInt &Scale, 2227 ScalarEvolution &SE) { 2228 bool Interesting = false; 2229 2230 // Iterate over the add operands. They are sorted, with constants first. 2231 unsigned i = 0; 2232 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2233 ++i; 2234 // Pull a buried constant out to the outside. 2235 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2236 Interesting = true; 2237 AccumulatedConstant += Scale * C->getAPInt(); 2238 } 2239 2240 // Next comes everything else. We're especially interested in multiplies 2241 // here, but they're in the middle, so just visit the rest with one loop. 2242 for (; i != NumOperands; ++i) { 2243 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2244 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2245 APInt NewScale = 2246 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2247 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2248 // A multiplication of a constant with another add; recurse. 2249 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2250 Interesting |= 2251 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2252 Add->op_begin(), Add->getNumOperands(), 2253 NewScale, SE); 2254 } else { 2255 // A multiplication of a constant with some other value. Update 2256 // the map. 2257 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2258 const SCEV *Key = SE.getMulExpr(MulOps); 2259 auto Pair = M.insert({Key, NewScale}); 2260 if (Pair.second) { 2261 NewOps.push_back(Pair.first->first); 2262 } else { 2263 Pair.first->second += NewScale; 2264 // The map already had an entry for this value, which may indicate 2265 // a folding opportunity. 2266 Interesting = true; 2267 } 2268 } 2269 } else { 2270 // An ordinary operand. Update the map. 2271 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2272 M.insert({Ops[i], Scale}); 2273 if (Pair.second) { 2274 NewOps.push_back(Pair.first->first); 2275 } else { 2276 Pair.first->second += Scale; 2277 // The map already had an entry for this value, which may indicate 2278 // a folding opportunity. 2279 Interesting = true; 2280 } 2281 } 2282 } 2283 2284 return Interesting; 2285 } 2286 2287 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2288 const SCEV *LHS, const SCEV *RHS) { 2289 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2290 SCEV::NoWrapFlags, unsigned); 2291 switch (BinOp) { 2292 default: 2293 llvm_unreachable("Unsupported binary op"); 2294 case Instruction::Add: 2295 Operation = &ScalarEvolution::getAddExpr; 2296 break; 2297 case Instruction::Sub: 2298 Operation = &ScalarEvolution::getMinusSCEV; 2299 break; 2300 case Instruction::Mul: 2301 Operation = &ScalarEvolution::getMulExpr; 2302 break; 2303 } 2304 2305 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2306 Signed ? &ScalarEvolution::getSignExtendExpr 2307 : &ScalarEvolution::getZeroExtendExpr; 2308 2309 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2310 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2311 auto *WideTy = 2312 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2313 2314 const SCEV *A = (this->*Extension)( 2315 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2316 const SCEV *LHSB = (this->*Extension)(LHS, WideTy, 0); 2317 const SCEV *RHSB = (this->*Extension)(RHS, WideTy, 0); 2318 const SCEV *B = (this->*Operation)(LHSB, RHSB, SCEV::FlagAnyWrap, 0); 2319 return A == B; 2320 } 2321 2322 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2323 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2324 const OverflowingBinaryOperator *OBO) { 2325 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2326 2327 if (OBO->hasNoUnsignedWrap()) 2328 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2329 if (OBO->hasNoSignedWrap()) 2330 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2331 2332 bool Deduced = false; 2333 2334 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2335 return {Flags, Deduced}; 2336 2337 if (OBO->getOpcode() != Instruction::Add && 2338 OBO->getOpcode() != Instruction::Sub && 2339 OBO->getOpcode() != Instruction::Mul) 2340 return {Flags, Deduced}; 2341 2342 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2343 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2344 2345 if (!OBO->hasNoUnsignedWrap() && 2346 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2347 /* Signed */ false, LHS, RHS)) { 2348 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2349 Deduced = true; 2350 } 2351 2352 if (!OBO->hasNoSignedWrap() && 2353 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2354 /* Signed */ true, LHS, RHS)) { 2355 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2356 Deduced = true; 2357 } 2358 2359 return {Flags, Deduced}; 2360 } 2361 2362 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2363 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2364 // can't-overflow flags for the operation if possible. 2365 static SCEV::NoWrapFlags 2366 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2367 const ArrayRef<const SCEV *> Ops, 2368 SCEV::NoWrapFlags Flags) { 2369 using namespace std::placeholders; 2370 2371 using OBO = OverflowingBinaryOperator; 2372 2373 bool CanAnalyze = 2374 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2375 (void)CanAnalyze; 2376 assert(CanAnalyze && "don't call from other places!"); 2377 2378 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2379 SCEV::NoWrapFlags SignOrUnsignWrap = 2380 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2381 2382 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2383 auto IsKnownNonNegative = [&](const SCEV *S) { 2384 return SE->isKnownNonNegative(S); 2385 }; 2386 2387 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2388 Flags = 2389 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2390 2391 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2392 2393 if (SignOrUnsignWrap != SignOrUnsignMask && 2394 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2395 isa<SCEVConstant>(Ops[0])) { 2396 2397 auto Opcode = [&] { 2398 switch (Type) { 2399 case scAddExpr: 2400 return Instruction::Add; 2401 case scMulExpr: 2402 return Instruction::Mul; 2403 default: 2404 llvm_unreachable("Unexpected SCEV op."); 2405 } 2406 }(); 2407 2408 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2409 2410 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2411 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2412 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2413 Opcode, C, OBO::NoSignedWrap); 2414 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2415 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2416 } 2417 2418 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2419 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2420 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2421 Opcode, C, OBO::NoUnsignedWrap); 2422 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2423 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2424 } 2425 } 2426 2427 // <0,+,nonnegative><nw> is also nuw 2428 // TODO: Add corresponding nsw case 2429 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2430 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2431 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2432 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2433 2434 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2435 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2436 Ops.size() == 2) { 2437 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2438 if (UDiv->getOperand(1) == Ops[1]) 2439 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2440 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2441 if (UDiv->getOperand(1) == Ops[0]) 2442 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2443 } 2444 2445 return Flags; 2446 } 2447 2448 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2449 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2450 } 2451 2452 /// Get a canonical add expression, or something simpler if possible. 2453 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2454 SCEV::NoWrapFlags OrigFlags, 2455 unsigned Depth) { 2456 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2457 "only nuw or nsw allowed"); 2458 assert(!Ops.empty() && "Cannot get empty add!"); 2459 if (Ops.size() == 1) return Ops[0]; 2460 #ifndef NDEBUG 2461 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2462 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2463 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2464 "SCEVAddExpr operand types don't match!"); 2465 unsigned NumPtrs = count_if( 2466 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2467 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2468 #endif 2469 2470 // Sort by complexity, this groups all similar expression types together. 2471 GroupByComplexity(Ops, &LI, DT); 2472 2473 // If there are any constants, fold them together. 2474 unsigned Idx = 0; 2475 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2476 ++Idx; 2477 assert(Idx < Ops.size()); 2478 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2479 // We found two constants, fold them together! 2480 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2481 if (Ops.size() == 2) return Ops[0]; 2482 Ops.erase(Ops.begin()+1); // Erase the folded element 2483 LHSC = cast<SCEVConstant>(Ops[0]); 2484 } 2485 2486 // If we are left with a constant zero being added, strip it off. 2487 if (LHSC->getValue()->isZero()) { 2488 Ops.erase(Ops.begin()); 2489 --Idx; 2490 } 2491 2492 if (Ops.size() == 1) return Ops[0]; 2493 } 2494 2495 // Delay expensive flag strengthening until necessary. 2496 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2497 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2498 }; 2499 2500 // Limit recursion calls depth. 2501 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2502 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2503 2504 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2505 // Don't strengthen flags if we have no new information. 2506 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2507 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2508 Add->setNoWrapFlags(ComputeFlags(Ops)); 2509 return S; 2510 } 2511 2512 // Okay, check to see if the same value occurs in the operand list more than 2513 // once. If so, merge them together into an multiply expression. Since we 2514 // sorted the list, these values are required to be adjacent. 2515 Type *Ty = Ops[0]->getType(); 2516 bool FoundMatch = false; 2517 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2518 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2519 // Scan ahead to count how many equal operands there are. 2520 unsigned Count = 2; 2521 while (i+Count != e && Ops[i+Count] == Ops[i]) 2522 ++Count; 2523 // Merge the values into a multiply. 2524 const SCEV *Scale = getConstant(Ty, Count); 2525 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2526 if (Ops.size() == Count) 2527 return Mul; 2528 Ops[i] = Mul; 2529 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2530 --i; e -= Count - 1; 2531 FoundMatch = true; 2532 } 2533 if (FoundMatch) 2534 return getAddExpr(Ops, OrigFlags, Depth + 1); 2535 2536 // Check for truncates. If all the operands are truncated from the same 2537 // type, see if factoring out the truncate would permit the result to be 2538 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2539 // if the contents of the resulting outer trunc fold to something simple. 2540 auto FindTruncSrcType = [&]() -> Type * { 2541 // We're ultimately looking to fold an addrec of truncs and muls of only 2542 // constants and truncs, so if we find any other types of SCEV 2543 // as operands of the addrec then we bail and return nullptr here. 2544 // Otherwise, we return the type of the operand of a trunc that we find. 2545 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2546 return T->getOperand()->getType(); 2547 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2548 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2549 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2550 return T->getOperand()->getType(); 2551 } 2552 return nullptr; 2553 }; 2554 if (auto *SrcType = FindTruncSrcType()) { 2555 SmallVector<const SCEV *, 8> LargeOps; 2556 bool Ok = true; 2557 // Check all the operands to see if they can be represented in the 2558 // source type of the truncate. 2559 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2560 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2561 if (T->getOperand()->getType() != SrcType) { 2562 Ok = false; 2563 break; 2564 } 2565 LargeOps.push_back(T->getOperand()); 2566 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2567 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2568 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2569 SmallVector<const SCEV *, 8> LargeMulOps; 2570 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2571 if (const SCEVTruncateExpr *T = 2572 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2573 if (T->getOperand()->getType() != SrcType) { 2574 Ok = false; 2575 break; 2576 } 2577 LargeMulOps.push_back(T->getOperand()); 2578 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2579 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2580 } else { 2581 Ok = false; 2582 break; 2583 } 2584 } 2585 if (Ok) 2586 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2587 } else { 2588 Ok = false; 2589 break; 2590 } 2591 } 2592 if (Ok) { 2593 // Evaluate the expression in the larger type. 2594 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2595 // If it folds to something simple, use it. Otherwise, don't. 2596 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2597 return getTruncateExpr(Fold, Ty); 2598 } 2599 } 2600 2601 if (Ops.size() == 2) { 2602 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2603 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2604 // C1). 2605 const SCEV *A = Ops[0]; 2606 const SCEV *B = Ops[1]; 2607 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2608 auto *C = dyn_cast<SCEVConstant>(A); 2609 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2610 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2611 auto C2 = C->getAPInt(); 2612 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2613 2614 APInt ConstAdd = C1 + C2; 2615 auto AddFlags = AddExpr->getNoWrapFlags(); 2616 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2617 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2618 ConstAdd.ule(C1)) { 2619 PreservedFlags = 2620 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2621 } 2622 2623 // Adding a constant with the same sign and small magnitude is NSW, if the 2624 // original AddExpr was NSW. 2625 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2626 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2627 ConstAdd.abs().ule(C1.abs())) { 2628 PreservedFlags = 2629 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2630 } 2631 2632 if (PreservedFlags != SCEV::FlagAnyWrap) { 2633 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2634 NewOps[0] = getConstant(ConstAdd); 2635 return getAddExpr(NewOps, PreservedFlags); 2636 } 2637 } 2638 } 2639 2640 // Canonicalize (-1 * urem X, Y) + X --> (Y * X/Y) 2641 if (Ops.size() == 2) { 2642 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[0]); 2643 if (Mul && Mul->getNumOperands() == 2 && 2644 Mul->getOperand(0)->isAllOnesValue()) { 2645 const SCEV *X; 2646 const SCEV *Y; 2647 if (matchURem(Mul->getOperand(1), X, Y) && X == Ops[1]) { 2648 return getMulExpr(Y, getUDivExpr(X, Y)); 2649 } 2650 } 2651 } 2652 2653 // Skip past any other cast SCEVs. 2654 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2655 ++Idx; 2656 2657 // If there are add operands they would be next. 2658 if (Idx < Ops.size()) { 2659 bool DeletedAdd = false; 2660 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2661 // common NUW flag for expression after inlining. Other flags cannot be 2662 // preserved, because they may depend on the original order of operations. 2663 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2664 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2665 if (Ops.size() > AddOpsInlineThreshold || 2666 Add->getNumOperands() > AddOpsInlineThreshold) 2667 break; 2668 // If we have an add, expand the add operands onto the end of the operands 2669 // list. 2670 Ops.erase(Ops.begin()+Idx); 2671 Ops.append(Add->op_begin(), Add->op_end()); 2672 DeletedAdd = true; 2673 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2674 } 2675 2676 // If we deleted at least one add, we added operands to the end of the list, 2677 // and they are not necessarily sorted. Recurse to resort and resimplify 2678 // any operands we just acquired. 2679 if (DeletedAdd) 2680 return getAddExpr(Ops, CommonFlags, Depth + 1); 2681 } 2682 2683 // Skip over the add expression until we get to a multiply. 2684 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2685 ++Idx; 2686 2687 // Check to see if there are any folding opportunities present with 2688 // operands multiplied by constant values. 2689 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2690 uint64_t BitWidth = getTypeSizeInBits(Ty); 2691 DenseMap<const SCEV *, APInt> M; 2692 SmallVector<const SCEV *, 8> NewOps; 2693 APInt AccumulatedConstant(BitWidth, 0); 2694 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2695 Ops.data(), Ops.size(), 2696 APInt(BitWidth, 1), *this)) { 2697 struct APIntCompare { 2698 bool operator()(const APInt &LHS, const APInt &RHS) const { 2699 return LHS.ult(RHS); 2700 } 2701 }; 2702 2703 // Some interesting folding opportunity is present, so its worthwhile to 2704 // re-generate the operands list. Group the operands by constant scale, 2705 // to avoid multiplying by the same constant scale multiple times. 2706 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2707 for (const SCEV *NewOp : NewOps) 2708 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2709 // Re-generate the operands list. 2710 Ops.clear(); 2711 if (AccumulatedConstant != 0) 2712 Ops.push_back(getConstant(AccumulatedConstant)); 2713 for (auto &MulOp : MulOpLists) { 2714 if (MulOp.first == 1) { 2715 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2716 } else if (MulOp.first != 0) { 2717 Ops.push_back(getMulExpr( 2718 getConstant(MulOp.first), 2719 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2720 SCEV::FlagAnyWrap, Depth + 1)); 2721 } 2722 } 2723 if (Ops.empty()) 2724 return getZero(Ty); 2725 if (Ops.size() == 1) 2726 return Ops[0]; 2727 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2728 } 2729 } 2730 2731 // If we are adding something to a multiply expression, make sure the 2732 // something is not already an operand of the multiply. If so, merge it into 2733 // the multiply. 2734 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2735 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2736 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2737 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2738 if (isa<SCEVConstant>(MulOpSCEV)) 2739 continue; 2740 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2741 if (MulOpSCEV == Ops[AddOp]) { 2742 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2743 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2744 if (Mul->getNumOperands() != 2) { 2745 // If the multiply has more than two operands, we must get the 2746 // Y*Z term. 2747 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2748 Mul->op_begin()+MulOp); 2749 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2750 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2751 } 2752 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2753 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2754 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2755 SCEV::FlagAnyWrap, Depth + 1); 2756 if (Ops.size() == 2) return OuterMul; 2757 if (AddOp < Idx) { 2758 Ops.erase(Ops.begin()+AddOp); 2759 Ops.erase(Ops.begin()+Idx-1); 2760 } else { 2761 Ops.erase(Ops.begin()+Idx); 2762 Ops.erase(Ops.begin()+AddOp-1); 2763 } 2764 Ops.push_back(OuterMul); 2765 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2766 } 2767 2768 // Check this multiply against other multiplies being added together. 2769 for (unsigned OtherMulIdx = Idx+1; 2770 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2771 ++OtherMulIdx) { 2772 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2773 // If MulOp occurs in OtherMul, we can fold the two multiplies 2774 // together. 2775 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2776 OMulOp != e; ++OMulOp) 2777 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2778 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2779 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2780 if (Mul->getNumOperands() != 2) { 2781 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2782 Mul->op_begin()+MulOp); 2783 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2784 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2785 } 2786 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2787 if (OtherMul->getNumOperands() != 2) { 2788 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2789 OtherMul->op_begin()+OMulOp); 2790 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2791 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2792 } 2793 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2794 const SCEV *InnerMulSum = 2795 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2796 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2797 SCEV::FlagAnyWrap, Depth + 1); 2798 if (Ops.size() == 2) return OuterMul; 2799 Ops.erase(Ops.begin()+Idx); 2800 Ops.erase(Ops.begin()+OtherMulIdx-1); 2801 Ops.push_back(OuterMul); 2802 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2803 } 2804 } 2805 } 2806 } 2807 2808 // If there are any add recurrences in the operands list, see if any other 2809 // added values are loop invariant. If so, we can fold them into the 2810 // recurrence. 2811 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2812 ++Idx; 2813 2814 // Scan over all recurrences, trying to fold loop invariants into them. 2815 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2816 // Scan all of the other operands to this add and add them to the vector if 2817 // they are loop invariant w.r.t. the recurrence. 2818 SmallVector<const SCEV *, 8> LIOps; 2819 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2820 const Loop *AddRecLoop = AddRec->getLoop(); 2821 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2822 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2823 LIOps.push_back(Ops[i]); 2824 Ops.erase(Ops.begin()+i); 2825 --i; --e; 2826 } 2827 2828 // If we found some loop invariants, fold them into the recurrence. 2829 if (!LIOps.empty()) { 2830 // Compute nowrap flags for the addition of the loop-invariant ops and 2831 // the addrec. Temporarily push it as an operand for that purpose. These 2832 // flags are valid in the scope of the addrec only. 2833 LIOps.push_back(AddRec); 2834 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2835 LIOps.pop_back(); 2836 2837 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2838 LIOps.push_back(AddRec->getStart()); 2839 2840 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2841 2842 // It is not in general safe to propagate flags valid on an add within 2843 // the addrec scope to one outside it. We must prove that the inner 2844 // scope is guaranteed to execute if the outer one does to be able to 2845 // safely propagate. We know the program is undefined if poison is 2846 // produced on the inner scoped addrec. We also know that *for this use* 2847 // the outer scoped add can't overflow (because of the flags we just 2848 // computed for the inner scoped add) without the program being undefined. 2849 // Proving that entry to the outer scope neccesitates entry to the inner 2850 // scope, thus proves the program undefined if the flags would be violated 2851 // in the outer scope. 2852 SCEV::NoWrapFlags AddFlags = Flags; 2853 if (AddFlags != SCEV::FlagAnyWrap) { 2854 auto *DefI = getDefiningScopeBound(LIOps); 2855 auto *ReachI = &*AddRecLoop->getHeader()->begin(); 2856 if (!isGuaranteedToTransferExecutionTo(DefI, ReachI)) 2857 AddFlags = SCEV::FlagAnyWrap; 2858 } 2859 AddRecOps[0] = getAddExpr(LIOps, AddFlags, Depth + 1); 2860 2861 // Build the new addrec. Propagate the NUW and NSW flags if both the 2862 // outer add and the inner addrec are guaranteed to have no overflow. 2863 // Always propagate NW. 2864 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2865 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2866 2867 // If all of the other operands were loop invariant, we are done. 2868 if (Ops.size() == 1) return NewRec; 2869 2870 // Otherwise, add the folded AddRec by the non-invariant parts. 2871 for (unsigned i = 0;; ++i) 2872 if (Ops[i] == AddRec) { 2873 Ops[i] = NewRec; 2874 break; 2875 } 2876 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2877 } 2878 2879 // Okay, if there weren't any loop invariants to be folded, check to see if 2880 // there are multiple AddRec's with the same loop induction variable being 2881 // added together. If so, we can fold them. 2882 for (unsigned OtherIdx = Idx+1; 2883 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2884 ++OtherIdx) { 2885 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2886 // so that the 1st found AddRecExpr is dominated by all others. 2887 assert(DT.dominates( 2888 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2889 AddRec->getLoop()->getHeader()) && 2890 "AddRecExprs are not sorted in reverse dominance order?"); 2891 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2892 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2893 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2894 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2895 ++OtherIdx) { 2896 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2897 if (OtherAddRec->getLoop() == AddRecLoop) { 2898 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2899 i != e; ++i) { 2900 if (i >= AddRecOps.size()) { 2901 AddRecOps.append(OtherAddRec->op_begin()+i, 2902 OtherAddRec->op_end()); 2903 break; 2904 } 2905 SmallVector<const SCEV *, 2> TwoOps = { 2906 AddRecOps[i], OtherAddRec->getOperand(i)}; 2907 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2908 } 2909 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2910 } 2911 } 2912 // Step size has changed, so we cannot guarantee no self-wraparound. 2913 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2914 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2915 } 2916 } 2917 2918 // Otherwise couldn't fold anything into this recurrence. Move onto the 2919 // next one. 2920 } 2921 2922 // Okay, it looks like we really DO need an add expr. Check to see if we 2923 // already have one, otherwise create a new one. 2924 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2925 } 2926 2927 const SCEV * 2928 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2929 SCEV::NoWrapFlags Flags) { 2930 FoldingSetNodeID ID; 2931 ID.AddInteger(scAddExpr); 2932 for (const SCEV *Op : Ops) 2933 ID.AddPointer(Op); 2934 void *IP = nullptr; 2935 SCEVAddExpr *S = 2936 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2937 if (!S) { 2938 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2939 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2940 S = new (SCEVAllocator) 2941 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2942 UniqueSCEVs.InsertNode(S, IP); 2943 registerUser(S, Ops); 2944 } 2945 S->setNoWrapFlags(Flags); 2946 return S; 2947 } 2948 2949 const SCEV * 2950 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2951 const Loop *L, SCEV::NoWrapFlags Flags) { 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scAddRecExpr); 2954 for (const SCEV *Op : Ops) 2955 ID.AddPointer(Op); 2956 ID.AddPointer(L); 2957 void *IP = nullptr; 2958 SCEVAddRecExpr *S = 2959 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2960 if (!S) { 2961 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2962 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2963 S = new (SCEVAllocator) 2964 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2965 UniqueSCEVs.InsertNode(S, IP); 2966 LoopUsers[L].push_back(S); 2967 registerUser(S, Ops); 2968 } 2969 setNoWrapFlags(S, Flags); 2970 return S; 2971 } 2972 2973 const SCEV * 2974 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2975 SCEV::NoWrapFlags Flags) { 2976 FoldingSetNodeID ID; 2977 ID.AddInteger(scMulExpr); 2978 for (const SCEV *Op : Ops) 2979 ID.AddPointer(Op); 2980 void *IP = nullptr; 2981 SCEVMulExpr *S = 2982 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2983 if (!S) { 2984 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2985 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2986 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2987 O, Ops.size()); 2988 UniqueSCEVs.InsertNode(S, IP); 2989 registerUser(S, Ops); 2990 } 2991 S->setNoWrapFlags(Flags); 2992 return S; 2993 } 2994 2995 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2996 uint64_t k = i*j; 2997 if (j > 1 && k / j != i) Overflow = true; 2998 return k; 2999 } 3000 3001 /// Compute the result of "n choose k", the binomial coefficient. If an 3002 /// intermediate computation overflows, Overflow will be set and the return will 3003 /// be garbage. Overflow is not cleared on absence of overflow. 3004 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 3005 // We use the multiplicative formula: 3006 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 3007 // At each iteration, we take the n-th term of the numeral and divide by the 3008 // (k-n)th term of the denominator. This division will always produce an 3009 // integral result, and helps reduce the chance of overflow in the 3010 // intermediate computations. However, we can still overflow even when the 3011 // final result would fit. 3012 3013 if (n == 0 || n == k) return 1; 3014 if (k > n) return 0; 3015 3016 if (k > n/2) 3017 k = n-k; 3018 3019 uint64_t r = 1; 3020 for (uint64_t i = 1; i <= k; ++i) { 3021 r = umul_ov(r, n-(i-1), Overflow); 3022 r /= i; 3023 } 3024 return r; 3025 } 3026 3027 /// Determine if any of the operands in this SCEV are a constant or if 3028 /// any of the add or multiply expressions in this SCEV contain a constant. 3029 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 3030 struct FindConstantInAddMulChain { 3031 bool FoundConstant = false; 3032 3033 bool follow(const SCEV *S) { 3034 FoundConstant |= isa<SCEVConstant>(S); 3035 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 3036 } 3037 3038 bool isDone() const { 3039 return FoundConstant; 3040 } 3041 }; 3042 3043 FindConstantInAddMulChain F; 3044 SCEVTraversal<FindConstantInAddMulChain> ST(F); 3045 ST.visitAll(StartExpr); 3046 return F.FoundConstant; 3047 } 3048 3049 /// Get a canonical multiply expression, or something simpler if possible. 3050 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 3051 SCEV::NoWrapFlags OrigFlags, 3052 unsigned Depth) { 3053 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 3054 "only nuw or nsw allowed"); 3055 assert(!Ops.empty() && "Cannot get empty mul!"); 3056 if (Ops.size() == 1) return Ops[0]; 3057 #ifndef NDEBUG 3058 Type *ETy = Ops[0]->getType(); 3059 assert(!ETy->isPointerTy()); 3060 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3061 assert(Ops[i]->getType() == ETy && 3062 "SCEVMulExpr operand types don't match!"); 3063 #endif 3064 3065 // Sort by complexity, this groups all similar expression types together. 3066 GroupByComplexity(Ops, &LI, DT); 3067 3068 // If there are any constants, fold them together. 3069 unsigned Idx = 0; 3070 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3071 ++Idx; 3072 assert(Idx < Ops.size()); 3073 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3074 // We found two constants, fold them together! 3075 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3076 if (Ops.size() == 2) return Ops[0]; 3077 Ops.erase(Ops.begin()+1); // Erase the folded element 3078 LHSC = cast<SCEVConstant>(Ops[0]); 3079 } 3080 3081 // If we have a multiply of zero, it will always be zero. 3082 if (LHSC->getValue()->isZero()) 3083 return LHSC; 3084 3085 // If we are left with a constant one being multiplied, strip it off. 3086 if (LHSC->getValue()->isOne()) { 3087 Ops.erase(Ops.begin()); 3088 --Idx; 3089 } 3090 3091 if (Ops.size() == 1) 3092 return Ops[0]; 3093 } 3094 3095 // Delay expensive flag strengthening until necessary. 3096 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3097 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3098 }; 3099 3100 // Limit recursion calls depth. 3101 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3102 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3103 3104 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3105 // Don't strengthen flags if we have no new information. 3106 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3107 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3108 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3109 return S; 3110 } 3111 3112 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3113 if (Ops.size() == 2) { 3114 // C1*(C2+V) -> C1*C2 + C1*V 3115 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3116 // If any of Add's ops are Adds or Muls with a constant, apply this 3117 // transformation as well. 3118 // 3119 // TODO: There are some cases where this transformation is not 3120 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3121 // this transformation should be narrowed down. 3122 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) { 3123 const SCEV *LHS = getMulExpr(LHSC, Add->getOperand(0), 3124 SCEV::FlagAnyWrap, Depth + 1); 3125 const SCEV *RHS = getMulExpr(LHSC, Add->getOperand(1), 3126 SCEV::FlagAnyWrap, Depth + 1); 3127 return getAddExpr(LHS, RHS, SCEV::FlagAnyWrap, Depth + 1); 3128 } 3129 3130 if (Ops[0]->isAllOnesValue()) { 3131 // If we have a mul by -1 of an add, try distributing the -1 among the 3132 // add operands. 3133 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3134 SmallVector<const SCEV *, 4> NewOps; 3135 bool AnyFolded = false; 3136 for (const SCEV *AddOp : Add->operands()) { 3137 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3138 Depth + 1); 3139 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3140 NewOps.push_back(Mul); 3141 } 3142 if (AnyFolded) 3143 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3144 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3145 // Negation preserves a recurrence's no self-wrap property. 3146 SmallVector<const SCEV *, 4> Operands; 3147 for (const SCEV *AddRecOp : AddRec->operands()) 3148 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3149 Depth + 1)); 3150 3151 return getAddRecExpr(Operands, AddRec->getLoop(), 3152 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3153 } 3154 } 3155 } 3156 } 3157 3158 // Skip over the add expression until we get to a multiply. 3159 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3160 ++Idx; 3161 3162 // If there are mul operands inline them all into this expression. 3163 if (Idx < Ops.size()) { 3164 bool DeletedMul = false; 3165 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3166 if (Ops.size() > MulOpsInlineThreshold) 3167 break; 3168 // If we have an mul, expand the mul operands onto the end of the 3169 // operands list. 3170 Ops.erase(Ops.begin()+Idx); 3171 Ops.append(Mul->op_begin(), Mul->op_end()); 3172 DeletedMul = true; 3173 } 3174 3175 // If we deleted at least one mul, we added operands to the end of the 3176 // list, and they are not necessarily sorted. Recurse to resort and 3177 // resimplify any operands we just acquired. 3178 if (DeletedMul) 3179 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3180 } 3181 3182 // If there are any add recurrences in the operands list, see if any other 3183 // added values are loop invariant. If so, we can fold them into the 3184 // recurrence. 3185 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3186 ++Idx; 3187 3188 // Scan over all recurrences, trying to fold loop invariants into them. 3189 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3190 // Scan all of the other operands to this mul and add them to the vector 3191 // if they are loop invariant w.r.t. the recurrence. 3192 SmallVector<const SCEV *, 8> LIOps; 3193 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3194 const Loop *AddRecLoop = AddRec->getLoop(); 3195 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3196 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3197 LIOps.push_back(Ops[i]); 3198 Ops.erase(Ops.begin()+i); 3199 --i; --e; 3200 } 3201 3202 // If we found some loop invariants, fold them into the recurrence. 3203 if (!LIOps.empty()) { 3204 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3205 SmallVector<const SCEV *, 4> NewOps; 3206 NewOps.reserve(AddRec->getNumOperands()); 3207 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3208 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3209 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3210 SCEV::FlagAnyWrap, Depth + 1)); 3211 3212 // Build the new addrec. Propagate the NUW and NSW flags if both the 3213 // outer mul and the inner addrec are guaranteed to have no overflow. 3214 // 3215 // No self-wrap cannot be guaranteed after changing the step size, but 3216 // will be inferred if either NUW or NSW is true. 3217 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3218 const SCEV *NewRec = getAddRecExpr( 3219 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3220 3221 // If all of the other operands were loop invariant, we are done. 3222 if (Ops.size() == 1) return NewRec; 3223 3224 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3225 for (unsigned i = 0;; ++i) 3226 if (Ops[i] == AddRec) { 3227 Ops[i] = NewRec; 3228 break; 3229 } 3230 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3231 } 3232 3233 // Okay, if there weren't any loop invariants to be folded, check to see 3234 // if there are multiple AddRec's with the same loop induction variable 3235 // being multiplied together. If so, we can fold them. 3236 3237 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3238 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3239 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3240 // ]]],+,...up to x=2n}. 3241 // Note that the arguments to choose() are always integers with values 3242 // known at compile time, never SCEV objects. 3243 // 3244 // The implementation avoids pointless extra computations when the two 3245 // addrec's are of different length (mathematically, it's equivalent to 3246 // an infinite stream of zeros on the right). 3247 bool OpsModified = false; 3248 for (unsigned OtherIdx = Idx+1; 3249 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3250 ++OtherIdx) { 3251 const SCEVAddRecExpr *OtherAddRec = 3252 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3253 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3254 continue; 3255 3256 // Limit max number of arguments to avoid creation of unreasonably big 3257 // SCEVAddRecs with very complex operands. 3258 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3259 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3260 continue; 3261 3262 bool Overflow = false; 3263 Type *Ty = AddRec->getType(); 3264 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3265 SmallVector<const SCEV*, 7> AddRecOps; 3266 for (int x = 0, xe = AddRec->getNumOperands() + 3267 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3268 SmallVector <const SCEV *, 7> SumOps; 3269 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3270 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3271 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3272 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3273 z < ze && !Overflow; ++z) { 3274 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3275 uint64_t Coeff; 3276 if (LargerThan64Bits) 3277 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3278 else 3279 Coeff = Coeff1*Coeff2; 3280 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3281 const SCEV *Term1 = AddRec->getOperand(y-z); 3282 const SCEV *Term2 = OtherAddRec->getOperand(z); 3283 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3284 SCEV::FlagAnyWrap, Depth + 1)); 3285 } 3286 } 3287 if (SumOps.empty()) 3288 SumOps.push_back(getZero(Ty)); 3289 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3290 } 3291 if (!Overflow) { 3292 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3293 SCEV::FlagAnyWrap); 3294 if (Ops.size() == 2) return NewAddRec; 3295 Ops[Idx] = NewAddRec; 3296 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3297 OpsModified = true; 3298 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3299 if (!AddRec) 3300 break; 3301 } 3302 } 3303 if (OpsModified) 3304 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3305 3306 // Otherwise couldn't fold anything into this recurrence. Move onto the 3307 // next one. 3308 } 3309 3310 // Okay, it looks like we really DO need an mul expr. Check to see if we 3311 // already have one, otherwise create a new one. 3312 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3313 } 3314 3315 /// Represents an unsigned remainder expression based on unsigned division. 3316 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3317 const SCEV *RHS) { 3318 assert(getEffectiveSCEVType(LHS->getType()) == 3319 getEffectiveSCEVType(RHS->getType()) && 3320 "SCEVURemExpr operand types don't match!"); 3321 3322 // Short-circuit easy cases 3323 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3324 // If constant is one, the result is trivial 3325 if (RHSC->getValue()->isOne()) 3326 return getZero(LHS->getType()); // X urem 1 --> 0 3327 3328 // If constant is a power of two, fold into a zext(trunc(LHS)). 3329 if (RHSC->getAPInt().isPowerOf2()) { 3330 Type *FullTy = LHS->getType(); 3331 Type *TruncTy = 3332 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3333 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3334 } 3335 } 3336 3337 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3338 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3339 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3340 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3341 } 3342 3343 /// Get a canonical unsigned division expression, or something simpler if 3344 /// possible. 3345 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3346 const SCEV *RHS) { 3347 assert(!LHS->getType()->isPointerTy() && 3348 "SCEVUDivExpr operand can't be pointer!"); 3349 assert(LHS->getType() == RHS->getType() && 3350 "SCEVUDivExpr operand types don't match!"); 3351 3352 FoldingSetNodeID ID; 3353 ID.AddInteger(scUDivExpr); 3354 ID.AddPointer(LHS); 3355 ID.AddPointer(RHS); 3356 void *IP = nullptr; 3357 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3358 return S; 3359 3360 // 0 udiv Y == 0 3361 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3362 if (LHSC->getValue()->isZero()) 3363 return LHS; 3364 3365 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3366 if (RHSC->getValue()->isOne()) 3367 return LHS; // X udiv 1 --> x 3368 // If the denominator is zero, the result of the udiv is undefined. Don't 3369 // try to analyze it, because the resolution chosen here may differ from 3370 // the resolution chosen in other parts of the compiler. 3371 if (!RHSC->getValue()->isZero()) { 3372 // Determine if the division can be folded into the operands of 3373 // its operands. 3374 // TODO: Generalize this to non-constants by using known-bits information. 3375 Type *Ty = LHS->getType(); 3376 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3377 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3378 // For non-power-of-two values, effectively round the value up to the 3379 // nearest power of two. 3380 if (!RHSC->getAPInt().isPowerOf2()) 3381 ++MaxShiftAmt; 3382 IntegerType *ExtTy = 3383 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3384 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3385 if (const SCEVConstant *Step = 3386 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3387 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3388 const APInt &StepInt = Step->getAPInt(); 3389 const APInt &DivInt = RHSC->getAPInt(); 3390 if (!StepInt.urem(DivInt) && 3391 getZeroExtendExpr(AR, ExtTy) == 3392 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3393 getZeroExtendExpr(Step, ExtTy), 3394 AR->getLoop(), SCEV::FlagAnyWrap)) { 3395 SmallVector<const SCEV *, 4> Operands; 3396 for (const SCEV *Op : AR->operands()) 3397 Operands.push_back(getUDivExpr(Op, RHS)); 3398 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3399 } 3400 /// Get a canonical UDivExpr for a recurrence. 3401 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3402 // We can currently only fold X%N if X is constant. 3403 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3404 if (StartC && !DivInt.urem(StepInt) && 3405 getZeroExtendExpr(AR, ExtTy) == 3406 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3407 getZeroExtendExpr(Step, ExtTy), 3408 AR->getLoop(), SCEV::FlagAnyWrap)) { 3409 const APInt &StartInt = StartC->getAPInt(); 3410 const APInt &StartRem = StartInt.urem(StepInt); 3411 if (StartRem != 0) { 3412 const SCEV *NewLHS = 3413 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3414 AR->getLoop(), SCEV::FlagNW); 3415 if (LHS != NewLHS) { 3416 LHS = NewLHS; 3417 3418 // Reset the ID to include the new LHS, and check if it is 3419 // already cached. 3420 ID.clear(); 3421 ID.AddInteger(scUDivExpr); 3422 ID.AddPointer(LHS); 3423 ID.AddPointer(RHS); 3424 IP = nullptr; 3425 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3426 return S; 3427 } 3428 } 3429 } 3430 } 3431 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3432 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3433 SmallVector<const SCEV *, 4> Operands; 3434 for (const SCEV *Op : M->operands()) 3435 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3436 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3437 // Find an operand that's safely divisible. 3438 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3439 const SCEV *Op = M->getOperand(i); 3440 const SCEV *Div = getUDivExpr(Op, RHSC); 3441 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3442 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3443 Operands[i] = Div; 3444 return getMulExpr(Operands); 3445 } 3446 } 3447 } 3448 3449 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3450 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3451 if (auto *DivisorConstant = 3452 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3453 bool Overflow = false; 3454 APInt NewRHS = 3455 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3456 if (Overflow) { 3457 return getConstant(RHSC->getType(), 0, false); 3458 } 3459 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3460 } 3461 } 3462 3463 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3464 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3465 SmallVector<const SCEV *, 4> Operands; 3466 for (const SCEV *Op : A->operands()) 3467 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3468 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3469 Operands.clear(); 3470 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3471 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3472 if (isa<SCEVUDivExpr>(Op) || 3473 getMulExpr(Op, RHS) != A->getOperand(i)) 3474 break; 3475 Operands.push_back(Op); 3476 } 3477 if (Operands.size() == A->getNumOperands()) 3478 return getAddExpr(Operands); 3479 } 3480 } 3481 3482 // Fold if both operands are constant. 3483 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3484 Constant *LHSCV = LHSC->getValue(); 3485 Constant *RHSCV = RHSC->getValue(); 3486 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3487 RHSCV))); 3488 } 3489 } 3490 } 3491 3492 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3493 // changes). Make sure we get a new one. 3494 IP = nullptr; 3495 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3496 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3497 LHS, RHS); 3498 UniqueSCEVs.InsertNode(S, IP); 3499 registerUser(S, {LHS, RHS}); 3500 return S; 3501 } 3502 3503 APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3504 APInt A = C1->getAPInt().abs(); 3505 APInt B = C2->getAPInt().abs(); 3506 uint32_t ABW = A.getBitWidth(); 3507 uint32_t BBW = B.getBitWidth(); 3508 3509 if (ABW > BBW) 3510 B = B.zext(ABW); 3511 else if (ABW < BBW) 3512 A = A.zext(BBW); 3513 3514 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3515 } 3516 3517 /// Get a canonical unsigned division expression, or something simpler if 3518 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3519 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3520 /// it's not exact because the udiv may be clearing bits. 3521 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3522 const SCEV *RHS) { 3523 // TODO: we could try to find factors in all sorts of things, but for now we 3524 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3525 // end of this file for inspiration. 3526 3527 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3528 if (!Mul || !Mul->hasNoUnsignedWrap()) 3529 return getUDivExpr(LHS, RHS); 3530 3531 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3532 // If the mulexpr multiplies by a constant, then that constant must be the 3533 // first element of the mulexpr. 3534 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3535 if (LHSCst == RHSCst) { 3536 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3537 return getMulExpr(Operands); 3538 } 3539 3540 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3541 // that there's a factor provided by one of the other terms. We need to 3542 // check. 3543 APInt Factor = gcd(LHSCst, RHSCst); 3544 if (!Factor.isIntN(1)) { 3545 LHSCst = 3546 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3547 RHSCst = 3548 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3549 SmallVector<const SCEV *, 2> Operands; 3550 Operands.push_back(LHSCst); 3551 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3552 LHS = getMulExpr(Operands); 3553 RHS = RHSCst; 3554 Mul = dyn_cast<SCEVMulExpr>(LHS); 3555 if (!Mul) 3556 return getUDivExactExpr(LHS, RHS); 3557 } 3558 } 3559 } 3560 3561 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3562 if (Mul->getOperand(i) == RHS) { 3563 SmallVector<const SCEV *, 2> Operands; 3564 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3565 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3566 return getMulExpr(Operands); 3567 } 3568 } 3569 3570 return getUDivExpr(LHS, RHS); 3571 } 3572 3573 /// Get an add recurrence expression for the specified loop. Simplify the 3574 /// expression as much as possible. 3575 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3576 const Loop *L, 3577 SCEV::NoWrapFlags Flags) { 3578 SmallVector<const SCEV *, 4> Operands; 3579 Operands.push_back(Start); 3580 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3581 if (StepChrec->getLoop() == L) { 3582 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3583 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3584 } 3585 3586 Operands.push_back(Step); 3587 return getAddRecExpr(Operands, L, Flags); 3588 } 3589 3590 /// Get an add recurrence expression for the specified loop. Simplify the 3591 /// expression as much as possible. 3592 const SCEV * 3593 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3594 const Loop *L, SCEV::NoWrapFlags Flags) { 3595 if (Operands.size() == 1) return Operands[0]; 3596 #ifndef NDEBUG 3597 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3598 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3599 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3600 "SCEVAddRecExpr operand types don't match!"); 3601 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3602 } 3603 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3604 assert(isLoopInvariant(Operands[i], L) && 3605 "SCEVAddRecExpr operand is not loop-invariant!"); 3606 #endif 3607 3608 if (Operands.back()->isZero()) { 3609 Operands.pop_back(); 3610 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3611 } 3612 3613 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3614 // use that information to infer NUW and NSW flags. However, computing a 3615 // BE count requires calling getAddRecExpr, so we may not yet have a 3616 // meaningful BE count at this point (and if we don't, we'd be stuck 3617 // with a SCEVCouldNotCompute as the cached BE count). 3618 3619 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3620 3621 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3622 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3623 const Loop *NestedLoop = NestedAR->getLoop(); 3624 if (L->contains(NestedLoop) 3625 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3626 : (!NestedLoop->contains(L) && 3627 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3628 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3629 Operands[0] = NestedAR->getStart(); 3630 // AddRecs require their operands be loop-invariant with respect to their 3631 // loops. Don't perform this transformation if it would break this 3632 // requirement. 3633 bool AllInvariant = all_of( 3634 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3635 3636 if (AllInvariant) { 3637 // Create a recurrence for the outer loop with the same step size. 3638 // 3639 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3640 // inner recurrence has the same property. 3641 SCEV::NoWrapFlags OuterFlags = 3642 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3643 3644 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3645 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3646 return isLoopInvariant(Op, NestedLoop); 3647 }); 3648 3649 if (AllInvariant) { 3650 // Ok, both add recurrences are valid after the transformation. 3651 // 3652 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3653 // the outer recurrence has the same property. 3654 SCEV::NoWrapFlags InnerFlags = 3655 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3656 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3657 } 3658 } 3659 // Reset Operands to its original state. 3660 Operands[0] = NestedAR; 3661 } 3662 } 3663 3664 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3665 // already have one, otherwise create a new one. 3666 return getOrCreateAddRecExpr(Operands, L, Flags); 3667 } 3668 3669 const SCEV * 3670 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3671 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3672 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3673 // getSCEV(Base)->getType() has the same address space as Base->getType() 3674 // because SCEV::getType() preserves the address space. 3675 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3676 const bool AssumeInBoundsFlags = [&]() { 3677 if (!GEP->isInBounds()) 3678 return false; 3679 3680 // We'd like to propagate flags from the IR to the corresponding SCEV nodes, 3681 // but to do that, we have to ensure that said flag is valid in the entire 3682 // defined scope of the SCEV. 3683 auto *GEPI = dyn_cast<Instruction>(GEP); 3684 // TODO: non-instructions have global scope. We might be able to prove 3685 // some global scope cases 3686 return GEPI && isSCEVExprNeverPoison(GEPI); 3687 }(); 3688 3689 SCEV::NoWrapFlags OffsetWrap = 3690 AssumeInBoundsFlags ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3691 3692 Type *CurTy = GEP->getType(); 3693 bool FirstIter = true; 3694 SmallVector<const SCEV *, 4> Offsets; 3695 for (const SCEV *IndexExpr : IndexExprs) { 3696 // Compute the (potentially symbolic) offset in bytes for this index. 3697 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3698 // For a struct, add the member offset. 3699 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3700 unsigned FieldNo = Index->getZExtValue(); 3701 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3702 Offsets.push_back(FieldOffset); 3703 3704 // Update CurTy to the type of the field at Index. 3705 CurTy = STy->getTypeAtIndex(Index); 3706 } else { 3707 // Update CurTy to its element type. 3708 if (FirstIter) { 3709 assert(isa<PointerType>(CurTy) && 3710 "The first index of a GEP indexes a pointer"); 3711 CurTy = GEP->getSourceElementType(); 3712 FirstIter = false; 3713 } else { 3714 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3715 } 3716 // For an array, add the element offset, explicitly scaled. 3717 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3718 // Getelementptr indices are signed. 3719 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3720 3721 // Multiply the index by the element size to compute the element offset. 3722 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3723 Offsets.push_back(LocalOffset); 3724 } 3725 } 3726 3727 // Handle degenerate case of GEP without offsets. 3728 if (Offsets.empty()) 3729 return BaseExpr; 3730 3731 // Add the offsets together, assuming nsw if inbounds. 3732 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3733 // Add the base address and the offset. We cannot use the nsw flag, as the 3734 // base address is unsigned. However, if we know that the offset is 3735 // non-negative, we can use nuw. 3736 SCEV::NoWrapFlags BaseWrap = AssumeInBoundsFlags && isKnownNonNegative(Offset) 3737 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3738 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3739 assert(BaseExpr->getType() == GEPExpr->getType() && 3740 "GEP should not change type mid-flight."); 3741 return GEPExpr; 3742 } 3743 3744 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3745 ArrayRef<const SCEV *> Ops) { 3746 FoldingSetNodeID ID; 3747 ID.AddInteger(SCEVType); 3748 for (const SCEV *Op : Ops) 3749 ID.AddPointer(Op); 3750 void *IP = nullptr; 3751 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3752 } 3753 3754 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3755 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3756 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3757 } 3758 3759 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3760 SmallVectorImpl<const SCEV *> &Ops) { 3761 assert(SCEVMinMaxExpr::isMinMaxType(Kind) && "Not a SCEVMinMaxExpr!"); 3762 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3763 if (Ops.size() == 1) return Ops[0]; 3764 #ifndef NDEBUG 3765 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3766 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3767 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3768 "Operand types don't match!"); 3769 assert(Ops[0]->getType()->isPointerTy() == 3770 Ops[i]->getType()->isPointerTy() && 3771 "min/max should be consistently pointerish"); 3772 } 3773 #endif 3774 3775 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3776 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3777 3778 // Sort by complexity, this groups all similar expression types together. 3779 GroupByComplexity(Ops, &LI, DT); 3780 3781 // Check if we have created the same expression before. 3782 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3783 return S; 3784 } 3785 3786 // If there are any constants, fold them together. 3787 unsigned Idx = 0; 3788 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3789 ++Idx; 3790 assert(Idx < Ops.size()); 3791 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3792 if (Kind == scSMaxExpr) 3793 return APIntOps::smax(LHS, RHS); 3794 else if (Kind == scSMinExpr) 3795 return APIntOps::smin(LHS, RHS); 3796 else if (Kind == scUMaxExpr) 3797 return APIntOps::umax(LHS, RHS); 3798 else if (Kind == scUMinExpr) 3799 return APIntOps::umin(LHS, RHS); 3800 llvm_unreachable("Unknown SCEV min/max opcode"); 3801 }; 3802 3803 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3804 // We found two constants, fold them together! 3805 ConstantInt *Fold = ConstantInt::get( 3806 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3807 Ops[0] = getConstant(Fold); 3808 Ops.erase(Ops.begin()+1); // Erase the folded element 3809 if (Ops.size() == 1) return Ops[0]; 3810 LHSC = cast<SCEVConstant>(Ops[0]); 3811 } 3812 3813 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3814 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3815 3816 if (IsMax ? IsMinV : IsMaxV) { 3817 // If we are left with a constant minimum(/maximum)-int, strip it off. 3818 Ops.erase(Ops.begin()); 3819 --Idx; 3820 } else if (IsMax ? IsMaxV : IsMinV) { 3821 // If we have a max(/min) with a constant maximum(/minimum)-int, 3822 // it will always be the extremum. 3823 return LHSC; 3824 } 3825 3826 if (Ops.size() == 1) return Ops[0]; 3827 } 3828 3829 // Find the first operation of the same kind 3830 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3831 ++Idx; 3832 3833 // Check to see if one of the operands is of the same kind. If so, expand its 3834 // operands onto our operand list, and recurse to simplify. 3835 if (Idx < Ops.size()) { 3836 bool DeletedAny = false; 3837 while (Ops[Idx]->getSCEVType() == Kind) { 3838 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3839 Ops.erase(Ops.begin()+Idx); 3840 Ops.append(SMME->op_begin(), SMME->op_end()); 3841 DeletedAny = true; 3842 } 3843 3844 if (DeletedAny) 3845 return getMinMaxExpr(Kind, Ops); 3846 } 3847 3848 // Okay, check to see if the same value occurs in the operand list twice. If 3849 // so, delete one. Since we sorted the list, these values are required to 3850 // be adjacent. 3851 llvm::CmpInst::Predicate GEPred = 3852 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3853 llvm::CmpInst::Predicate LEPred = 3854 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3855 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3856 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3857 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3858 if (Ops[i] == Ops[i + 1] || 3859 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3860 // X op Y op Y --> X op Y 3861 // X op Y --> X, if we know X, Y are ordered appropriately 3862 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3863 --i; 3864 --e; 3865 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3866 Ops[i + 1])) { 3867 // X op Y --> Y, if we know X, Y are ordered appropriately 3868 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3869 --i; 3870 --e; 3871 } 3872 } 3873 3874 if (Ops.size() == 1) return Ops[0]; 3875 3876 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3877 3878 // Okay, it looks like we really DO need an expr. Check to see if we 3879 // already have one, otherwise create a new one. 3880 FoldingSetNodeID ID; 3881 ID.AddInteger(Kind); 3882 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3883 ID.AddPointer(Ops[i]); 3884 void *IP = nullptr; 3885 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3886 if (ExistingSCEV) 3887 return ExistingSCEV; 3888 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3889 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3890 SCEV *S = new (SCEVAllocator) 3891 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3892 3893 UniqueSCEVs.InsertNode(S, IP); 3894 registerUser(S, Ops); 3895 return S; 3896 } 3897 3898 namespace { 3899 3900 class SCEVSequentialMinMaxDeduplicatingVisitor final 3901 : public SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, 3902 Optional<const SCEV *>> { 3903 using RetVal = Optional<const SCEV *>; 3904 using Base = SCEVVisitor<SCEVSequentialMinMaxDeduplicatingVisitor, RetVal>; 3905 3906 ScalarEvolution &SE; 3907 const SCEVTypes RootKind; // Must be a sequential min/max expression. 3908 const SCEVTypes NonSequentialRootKind; // Non-sequential variant of RootKind. 3909 SmallPtrSet<const SCEV *, 16> SeenOps; 3910 3911 bool canRecurseInto(SCEVTypes Kind) const { 3912 // We can only recurse into the SCEV expression of the same effective type 3913 // as the type of our root SCEV expression. 3914 return RootKind == Kind || NonSequentialRootKind == Kind; 3915 }; 3916 3917 RetVal visitAnyMinMaxExpr(const SCEV *S) { 3918 assert((isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) && 3919 "Only for min/max expressions."); 3920 SCEVTypes Kind = S->getSCEVType(); 3921 3922 if (!canRecurseInto(Kind)) 3923 return S; 3924 3925 auto *NAry = cast<SCEVNAryExpr>(S); 3926 SmallVector<const SCEV *> NewOps; 3927 bool Changed = 3928 visit(Kind, makeArrayRef(NAry->op_begin(), NAry->op_end()), NewOps); 3929 3930 if (!Changed) 3931 return S; 3932 if (NewOps.empty()) 3933 return None; 3934 3935 return isa<SCEVSequentialMinMaxExpr>(S) 3936 ? SE.getSequentialMinMaxExpr(Kind, NewOps) 3937 : SE.getMinMaxExpr(Kind, NewOps); 3938 } 3939 3940 RetVal visit(const SCEV *S) { 3941 // Has the whole operand been seen already? 3942 if (!SeenOps.insert(S).second) 3943 return None; 3944 return Base::visit(S); 3945 } 3946 3947 public: 3948 SCEVSequentialMinMaxDeduplicatingVisitor(ScalarEvolution &SE, 3949 SCEVTypes RootKind) 3950 : SE(SE), RootKind(RootKind), 3951 NonSequentialRootKind( 3952 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 3953 RootKind)) {} 3954 3955 bool /*Changed*/ visit(SCEVTypes Kind, ArrayRef<const SCEV *> OrigOps, 3956 SmallVectorImpl<const SCEV *> &NewOps) { 3957 bool Changed = false; 3958 SmallVector<const SCEV *> Ops; 3959 Ops.reserve(OrigOps.size()); 3960 3961 for (const SCEV *Op : OrigOps) { 3962 RetVal NewOp = visit(Op); 3963 if (NewOp != Op) 3964 Changed = true; 3965 if (NewOp) 3966 Ops.emplace_back(*NewOp); 3967 } 3968 3969 if (Changed) 3970 NewOps = std::move(Ops); 3971 return Changed; 3972 } 3973 3974 RetVal visitConstant(const SCEVConstant *Constant) { return Constant; } 3975 3976 RetVal visitPtrToIntExpr(const SCEVPtrToIntExpr *Expr) { return Expr; } 3977 3978 RetVal visitTruncateExpr(const SCEVTruncateExpr *Expr) { return Expr; } 3979 3980 RetVal visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { return Expr; } 3981 3982 RetVal visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { return Expr; } 3983 3984 RetVal visitAddExpr(const SCEVAddExpr *Expr) { return Expr; } 3985 3986 RetVal visitMulExpr(const SCEVMulExpr *Expr) { return Expr; } 3987 3988 RetVal visitUDivExpr(const SCEVUDivExpr *Expr) { return Expr; } 3989 3990 RetVal visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 3991 3992 RetVal visitSMaxExpr(const SCEVSMaxExpr *Expr) { 3993 return visitAnyMinMaxExpr(Expr); 3994 } 3995 3996 RetVal visitUMaxExpr(const SCEVUMaxExpr *Expr) { 3997 return visitAnyMinMaxExpr(Expr); 3998 } 3999 4000 RetVal visitSMinExpr(const SCEVSMinExpr *Expr) { 4001 return visitAnyMinMaxExpr(Expr); 4002 } 4003 4004 RetVal visitUMinExpr(const SCEVUMinExpr *Expr) { 4005 return visitAnyMinMaxExpr(Expr); 4006 } 4007 4008 RetVal visitSequentialUMinExpr(const SCEVSequentialUMinExpr *Expr) { 4009 return visitAnyMinMaxExpr(Expr); 4010 } 4011 4012 RetVal visitUnknown(const SCEVUnknown *Expr) { return Expr; } 4013 4014 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { return Expr; } 4015 }; 4016 4017 } // namespace 4018 4019 /// Return true if V is poison given that AssumedPoison is already poison. 4020 static bool impliesPoison(const SCEV *AssumedPoison, const SCEV *S) { 4021 // The only way poison may be introduced in a SCEV expression is from a 4022 // poison SCEVUnknown (ConstantExprs are also represented as SCEVUnknown, 4023 // not SCEVConstant). Notably, nowrap flags in SCEV nodes can *not* 4024 // introduce poison -- they encode guaranteed, non-speculated knowledge. 4025 // 4026 // Additionally, all SCEV nodes propagate poison from inputs to outputs, 4027 // with the notable exception of umin_seq, where only poison from the first 4028 // operand is (unconditionally) propagated. 4029 struct SCEVPoisonCollector { 4030 bool LookThroughSeq; 4031 SmallPtrSet<const SCEV *, 4> MaybePoison; 4032 SCEVPoisonCollector(bool LookThroughSeq) : LookThroughSeq(LookThroughSeq) {} 4033 4034 bool follow(const SCEV *S) { 4035 // TODO: We can always follow the first operand, but the SCEVTraversal 4036 // API doesn't support this. 4037 if (!LookThroughSeq && isa<SCEVSequentialMinMaxExpr>(S)) 4038 return false; 4039 4040 if (auto *SU = dyn_cast<SCEVUnknown>(S)) { 4041 if (!isGuaranteedNotToBePoison(SU->getValue())) 4042 MaybePoison.insert(S); 4043 } 4044 return true; 4045 } 4046 bool isDone() const { return false; } 4047 }; 4048 4049 // First collect all SCEVs that might result in AssumedPoison to be poison. 4050 // We need to look through umin_seq here, because we want to find all SCEVs 4051 // that *might* result in poison, not only those that are *required* to. 4052 SCEVPoisonCollector PC1(/* LookThroughSeq */ true); 4053 visitAll(AssumedPoison, PC1); 4054 4055 // AssumedPoison is never poison. As the assumption is false, the implication 4056 // is true. Don't bother walking the other SCEV in this case. 4057 if (PC1.MaybePoison.empty()) 4058 return true; 4059 4060 // Collect all SCEVs in S that, if poison, *will* result in S being poison 4061 // as well. We cannot look through umin_seq here, as its argument only *may* 4062 // make the result poison. 4063 SCEVPoisonCollector PC2(/* LookThroughSeq */ false); 4064 visitAll(S, PC2); 4065 4066 // Make sure that no matter which SCEV in PC1.MaybePoison is actually poison, 4067 // it will also make S poison by being part of PC2.MaybePoison. 4068 return all_of(PC1.MaybePoison, 4069 [&](const SCEV *S) { return PC2.MaybePoison.contains(S); }); 4070 } 4071 4072 const SCEV * 4073 ScalarEvolution::getSequentialMinMaxExpr(SCEVTypes Kind, 4074 SmallVectorImpl<const SCEV *> &Ops) { 4075 assert(SCEVSequentialMinMaxExpr::isSequentialMinMaxType(Kind) && 4076 "Not a SCEVSequentialMinMaxExpr!"); 4077 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 4078 if (Ops.size() == 1) 4079 return Ops[0]; 4080 #ifndef NDEBUG 4081 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 4082 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4083 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 4084 "Operand types don't match!"); 4085 assert(Ops[0]->getType()->isPointerTy() == 4086 Ops[i]->getType()->isPointerTy() && 4087 "min/max should be consistently pointerish"); 4088 } 4089 #endif 4090 4091 // Note that SCEVSequentialMinMaxExpr is *NOT* commutative, 4092 // so we can *NOT* do any kind of sorting of the expressions! 4093 4094 // Check if we have created the same expression before. 4095 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) 4096 return S; 4097 4098 // FIXME: there are *some* simplifications that we can do here. 4099 4100 // Keep only the first instance of an operand. 4101 { 4102 SCEVSequentialMinMaxDeduplicatingVisitor Deduplicator(*this, Kind); 4103 bool Changed = Deduplicator.visit(Kind, Ops, Ops); 4104 if (Changed) 4105 return getSequentialMinMaxExpr(Kind, Ops); 4106 } 4107 4108 // Check to see if one of the operands is of the same kind. If so, expand its 4109 // operands onto our operand list, and recurse to simplify. 4110 { 4111 unsigned Idx = 0; 4112 bool DeletedAny = false; 4113 while (Idx < Ops.size()) { 4114 if (Ops[Idx]->getSCEVType() != Kind) { 4115 ++Idx; 4116 continue; 4117 } 4118 const auto *SMME = cast<SCEVSequentialMinMaxExpr>(Ops[Idx]); 4119 Ops.erase(Ops.begin() + Idx); 4120 Ops.insert(Ops.begin() + Idx, SMME->op_begin(), SMME->op_end()); 4121 DeletedAny = true; 4122 } 4123 4124 if (DeletedAny) 4125 return getSequentialMinMaxExpr(Kind, Ops); 4126 } 4127 4128 const SCEV *SaturationPoint; 4129 ICmpInst::Predicate Pred; 4130 switch (Kind) { 4131 case scSequentialUMinExpr: 4132 SaturationPoint = getZero(Ops[0]->getType()); 4133 Pred = ICmpInst::ICMP_ULE; 4134 break; 4135 default: 4136 llvm_unreachable("Not a sequential min/max type."); 4137 } 4138 4139 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 4140 // We can replace %x umin_seq %y with %x umin %y if either: 4141 // * %y being poison implies %x is also poison. 4142 // * %x cannot be the saturating value (e.g. zero for umin). 4143 if (::impliesPoison(Ops[i], Ops[i - 1]) || 4144 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, Ops[i - 1], 4145 SaturationPoint)) { 4146 SmallVector<const SCEV *> SeqOps = {Ops[i - 1], Ops[i]}; 4147 Ops[i - 1] = getMinMaxExpr( 4148 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType(Kind), 4149 SeqOps); 4150 Ops.erase(Ops.begin() + i); 4151 return getSequentialMinMaxExpr(Kind, Ops); 4152 } 4153 // Fold %x umin_seq %y to %x if %x ule %y. 4154 // TODO: We might be able to prove the predicate for a later operand. 4155 if (isKnownViaNonRecursiveReasoning(Pred, Ops[i - 1], Ops[i])) { 4156 Ops.erase(Ops.begin() + i); 4157 return getSequentialMinMaxExpr(Kind, Ops); 4158 } 4159 } 4160 4161 // Okay, it looks like we really DO need an expr. Check to see if we 4162 // already have one, otherwise create a new one. 4163 FoldingSetNodeID ID; 4164 ID.AddInteger(Kind); 4165 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 4166 ID.AddPointer(Ops[i]); 4167 void *IP = nullptr; 4168 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 4169 if (ExistingSCEV) 4170 return ExistingSCEV; 4171 4172 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 4173 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 4174 SCEV *S = new (SCEVAllocator) 4175 SCEVSequentialMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 4176 4177 UniqueSCEVs.InsertNode(S, IP); 4178 registerUser(S, Ops); 4179 return S; 4180 } 4181 4182 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4183 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4184 return getSMaxExpr(Ops); 4185 } 4186 4187 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4188 return getMinMaxExpr(scSMaxExpr, Ops); 4189 } 4190 4191 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 4192 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 4193 return getUMaxExpr(Ops); 4194 } 4195 4196 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 4197 return getMinMaxExpr(scUMaxExpr, Ops); 4198 } 4199 4200 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 4201 const SCEV *RHS) { 4202 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4203 return getSMinExpr(Ops); 4204 } 4205 4206 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 4207 return getMinMaxExpr(scSMinExpr, Ops); 4208 } 4209 4210 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, const SCEV *RHS, 4211 bool Sequential) { 4212 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4213 return getUMinExpr(Ops, Sequential); 4214 } 4215 4216 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops, 4217 bool Sequential) { 4218 return Sequential ? getSequentialMinMaxExpr(scSequentialUMinExpr, Ops) 4219 : getMinMaxExpr(scUMinExpr, Ops); 4220 } 4221 4222 const SCEV * 4223 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 4224 ScalableVectorType *ScalableTy) { 4225 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 4226 Constant *One = ConstantInt::get(IntTy, 1); 4227 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 4228 // Note that the expression we created is the final expression, we don't 4229 // want to simplify it any further Also, if we call a normal getSCEV(), 4230 // we'll end up in an endless recursion. So just create an SCEVUnknown. 4231 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 4232 } 4233 4234 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 4235 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 4236 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 4237 // We can bypass creating a target-independent constant expression and then 4238 // folding it back into a ConstantInt. This is just a compile-time 4239 // optimization. 4240 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 4241 } 4242 4243 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 4244 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 4245 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 4246 // We can bypass creating a target-independent constant expression and then 4247 // folding it back into a ConstantInt. This is just a compile-time 4248 // optimization. 4249 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 4250 } 4251 4252 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 4253 StructType *STy, 4254 unsigned FieldNo) { 4255 // We can bypass creating a target-independent constant expression and then 4256 // folding it back into a ConstantInt. This is just a compile-time 4257 // optimization. 4258 return getConstant( 4259 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 4260 } 4261 4262 const SCEV *ScalarEvolution::getUnknown(Value *V) { 4263 // Don't attempt to do anything other than create a SCEVUnknown object 4264 // here. createSCEV only calls getUnknown after checking for all other 4265 // interesting possibilities, and any other code that calls getUnknown 4266 // is doing so in order to hide a value from SCEV canonicalization. 4267 4268 FoldingSetNodeID ID; 4269 ID.AddInteger(scUnknown); 4270 ID.AddPointer(V); 4271 void *IP = nullptr; 4272 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 4273 assert(cast<SCEVUnknown>(S)->getValue() == V && 4274 "Stale SCEVUnknown in uniquing map!"); 4275 return S; 4276 } 4277 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 4278 FirstUnknown); 4279 FirstUnknown = cast<SCEVUnknown>(S); 4280 UniqueSCEVs.InsertNode(S, IP); 4281 return S; 4282 } 4283 4284 //===----------------------------------------------------------------------===// 4285 // Basic SCEV Analysis and PHI Idiom Recognition Code 4286 // 4287 4288 /// Test if values of the given type are analyzable within the SCEV 4289 /// framework. This primarily includes integer types, and it can optionally 4290 /// include pointer types if the ScalarEvolution class has access to 4291 /// target-specific information. 4292 bool ScalarEvolution::isSCEVable(Type *Ty) const { 4293 // Integers and pointers are always SCEVable. 4294 return Ty->isIntOrPtrTy(); 4295 } 4296 4297 /// Return the size in bits of the specified type, for which isSCEVable must 4298 /// return true. 4299 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 4300 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4301 if (Ty->isPointerTy()) 4302 return getDataLayout().getIndexTypeSizeInBits(Ty); 4303 return getDataLayout().getTypeSizeInBits(Ty); 4304 } 4305 4306 /// Return a type with the same bitwidth as the given type and which represents 4307 /// how SCEV will treat the given type, for which isSCEVable must return 4308 /// true. For pointer types, this is the pointer index sized integer type. 4309 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 4310 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 4311 4312 if (Ty->isIntegerTy()) 4313 return Ty; 4314 4315 // The only other support type is pointer. 4316 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 4317 return getDataLayout().getIndexType(Ty); 4318 } 4319 4320 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 4321 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 4322 } 4323 4324 bool ScalarEvolution::instructionCouldExistWitthOperands(const SCEV *A, 4325 const SCEV *B) { 4326 /// For a valid use point to exist, the defining scope of one operand 4327 /// must dominate the other. 4328 bool PreciseA, PreciseB; 4329 auto *ScopeA = getDefiningScopeBound({A}, PreciseA); 4330 auto *ScopeB = getDefiningScopeBound({B}, PreciseB); 4331 if (!PreciseA || !PreciseB) 4332 // Can't tell. 4333 return false; 4334 return (ScopeA == ScopeB) || DT.dominates(ScopeA, ScopeB) || 4335 DT.dominates(ScopeB, ScopeA); 4336 } 4337 4338 4339 const SCEV *ScalarEvolution::getCouldNotCompute() { 4340 return CouldNotCompute.get(); 4341 } 4342 4343 bool ScalarEvolution::checkValidity(const SCEV *S) const { 4344 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 4345 auto *SU = dyn_cast<SCEVUnknown>(S); 4346 return SU && SU->getValue() == nullptr; 4347 }); 4348 4349 return !ContainsNulls; 4350 } 4351 4352 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 4353 HasRecMapType::iterator I = HasRecMap.find(S); 4354 if (I != HasRecMap.end()) 4355 return I->second; 4356 4357 bool FoundAddRec = 4358 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 4359 HasRecMap.insert({S, FoundAddRec}); 4360 return FoundAddRec; 4361 } 4362 4363 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4364 /// by the value and offset from any ValueOffsetPair in the set. 4365 ArrayRef<Value *> ScalarEvolution::getSCEVValues(const SCEV *S) { 4366 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4367 if (SI == ExprValueMap.end()) 4368 return None; 4369 #ifndef NDEBUG 4370 if (VerifySCEVMap) { 4371 // Check there is no dangling Value in the set returned. 4372 for (Value *V : SI->second) 4373 assert(ValueExprMap.count(V)); 4374 } 4375 #endif 4376 return SI->second.getArrayRef(); 4377 } 4378 4379 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4380 /// cannot be used separately. eraseValueFromMap should be used to remove 4381 /// V from ValueExprMap and ExprValueMap at the same time. 4382 void ScalarEvolution::eraseValueFromMap(Value *V) { 4383 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4384 if (I != ValueExprMap.end()) { 4385 auto EVIt = ExprValueMap.find(I->second); 4386 bool Removed = EVIt->second.remove(V); 4387 (void) Removed; 4388 assert(Removed && "Value not in ExprValueMap?"); 4389 ValueExprMap.erase(I); 4390 } 4391 } 4392 4393 void ScalarEvolution::insertValueToMap(Value *V, const SCEV *S) { 4394 // A recursive query may have already computed the SCEV. It should be 4395 // equivalent, but may not necessarily be exactly the same, e.g. due to lazily 4396 // inferred nowrap flags. 4397 auto It = ValueExprMap.find_as(V); 4398 if (It == ValueExprMap.end()) { 4399 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4400 ExprValueMap[S].insert(V); 4401 } 4402 } 4403 4404 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4405 /// create a new one. 4406 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4407 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4408 4409 const SCEV *S = getExistingSCEV(V); 4410 if (S == nullptr) { 4411 S = createSCEV(V); 4412 // During PHI resolution, it is possible to create two SCEVs for the same 4413 // V, so it is needed to double check whether V->S is inserted into 4414 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4415 std::pair<ValueExprMapType::iterator, bool> Pair = 4416 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4417 if (Pair.second) 4418 ExprValueMap[S].insert(V); 4419 } 4420 return S; 4421 } 4422 4423 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4424 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4425 4426 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4427 if (I != ValueExprMap.end()) { 4428 const SCEV *S = I->second; 4429 assert(checkValidity(S) && 4430 "existing SCEV has not been properly invalidated"); 4431 return S; 4432 } 4433 return nullptr; 4434 } 4435 4436 /// Return a SCEV corresponding to -V = -1*V 4437 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4438 SCEV::NoWrapFlags Flags) { 4439 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4440 return getConstant( 4441 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4442 4443 Type *Ty = V->getType(); 4444 Ty = getEffectiveSCEVType(Ty); 4445 return getMulExpr(V, getMinusOne(Ty), Flags); 4446 } 4447 4448 /// If Expr computes ~A, return A else return nullptr 4449 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4450 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4451 if (!Add || Add->getNumOperands() != 2 || 4452 !Add->getOperand(0)->isAllOnesValue()) 4453 return nullptr; 4454 4455 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4456 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4457 !AddRHS->getOperand(0)->isAllOnesValue()) 4458 return nullptr; 4459 4460 return AddRHS->getOperand(1); 4461 } 4462 4463 /// Return a SCEV corresponding to ~V = -1-V 4464 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4465 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4466 4467 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4468 return getConstant( 4469 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4470 4471 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4472 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4473 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4474 SmallVector<const SCEV *, 2> MatchedOperands; 4475 for (const SCEV *Operand : MME->operands()) { 4476 const SCEV *Matched = MatchNotExpr(Operand); 4477 if (!Matched) 4478 return (const SCEV *)nullptr; 4479 MatchedOperands.push_back(Matched); 4480 } 4481 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4482 MatchedOperands); 4483 }; 4484 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4485 return Replaced; 4486 } 4487 4488 Type *Ty = V->getType(); 4489 Ty = getEffectiveSCEVType(Ty); 4490 return getMinusSCEV(getMinusOne(Ty), V); 4491 } 4492 4493 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4494 assert(P->getType()->isPointerTy()); 4495 4496 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4497 // The base of an AddRec is the first operand. 4498 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4499 Ops[0] = removePointerBase(Ops[0]); 4500 // Don't try to transfer nowrap flags for now. We could in some cases 4501 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4502 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4503 } 4504 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4505 // The base of an Add is the pointer operand. 4506 SmallVector<const SCEV *> Ops{Add->operands()}; 4507 const SCEV **PtrOp = nullptr; 4508 for (const SCEV *&AddOp : Ops) { 4509 if (AddOp->getType()->isPointerTy()) { 4510 assert(!PtrOp && "Cannot have multiple pointer ops"); 4511 PtrOp = &AddOp; 4512 } 4513 } 4514 *PtrOp = removePointerBase(*PtrOp); 4515 // Don't try to transfer nowrap flags for now. We could in some cases 4516 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4517 return getAddExpr(Ops); 4518 } 4519 // Any other expression must be a pointer base. 4520 return getZero(P->getType()); 4521 } 4522 4523 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4524 SCEV::NoWrapFlags Flags, 4525 unsigned Depth) { 4526 // Fast path: X - X --> 0. 4527 if (LHS == RHS) 4528 return getZero(LHS->getType()); 4529 4530 // If we subtract two pointers with different pointer bases, bail. 4531 // Eventually, we're going to add an assertion to getMulExpr that we 4532 // can't multiply by a pointer. 4533 if (RHS->getType()->isPointerTy()) { 4534 if (!LHS->getType()->isPointerTy() || 4535 getPointerBase(LHS) != getPointerBase(RHS)) 4536 return getCouldNotCompute(); 4537 LHS = removePointerBase(LHS); 4538 RHS = removePointerBase(RHS); 4539 } 4540 4541 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4542 // makes it so that we cannot make much use of NUW. 4543 auto AddFlags = SCEV::FlagAnyWrap; 4544 const bool RHSIsNotMinSigned = 4545 !getSignedRangeMin(RHS).isMinSignedValue(); 4546 if (hasFlags(Flags, SCEV::FlagNSW)) { 4547 // Let M be the minimum representable signed value. Then (-1)*RHS 4548 // signed-wraps if and only if RHS is M. That can happen even for 4549 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4550 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4551 // (-1)*RHS, we need to prove that RHS != M. 4552 // 4553 // If LHS is non-negative and we know that LHS - RHS does not 4554 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4555 // either by proving that RHS > M or that LHS >= 0. 4556 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4557 AddFlags = SCEV::FlagNSW; 4558 } 4559 } 4560 4561 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4562 // RHS is NSW and LHS >= 0. 4563 // 4564 // The difficulty here is that the NSW flag may have been proven 4565 // relative to a loop that is to be found in a recurrence in LHS and 4566 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4567 // larger scope than intended. 4568 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4569 4570 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4571 } 4572 4573 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4574 unsigned Depth) { 4575 Type *SrcTy = V->getType(); 4576 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4577 "Cannot truncate or zero extend with non-integer arguments!"); 4578 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4579 return V; // No conversion 4580 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4581 return getTruncateExpr(V, Ty, Depth); 4582 return getZeroExtendExpr(V, Ty, Depth); 4583 } 4584 4585 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4586 unsigned Depth) { 4587 Type *SrcTy = V->getType(); 4588 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4589 "Cannot truncate or zero extend with non-integer arguments!"); 4590 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4591 return V; // No conversion 4592 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4593 return getTruncateExpr(V, Ty, Depth); 4594 return getSignExtendExpr(V, Ty, Depth); 4595 } 4596 4597 const SCEV * 4598 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4599 Type *SrcTy = V->getType(); 4600 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4601 "Cannot noop or zero extend with non-integer arguments!"); 4602 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4603 "getNoopOrZeroExtend cannot truncate!"); 4604 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4605 return V; // No conversion 4606 return getZeroExtendExpr(V, Ty); 4607 } 4608 4609 const SCEV * 4610 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4611 Type *SrcTy = V->getType(); 4612 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4613 "Cannot noop or sign extend with non-integer arguments!"); 4614 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4615 "getNoopOrSignExtend cannot truncate!"); 4616 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4617 return V; // No conversion 4618 return getSignExtendExpr(V, Ty); 4619 } 4620 4621 const SCEV * 4622 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4623 Type *SrcTy = V->getType(); 4624 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4625 "Cannot noop or any extend with non-integer arguments!"); 4626 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4627 "getNoopOrAnyExtend cannot truncate!"); 4628 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4629 return V; // No conversion 4630 return getAnyExtendExpr(V, Ty); 4631 } 4632 4633 const SCEV * 4634 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4635 Type *SrcTy = V->getType(); 4636 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4637 "Cannot truncate or noop with non-integer arguments!"); 4638 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4639 "getTruncateOrNoop cannot extend!"); 4640 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4641 return V; // No conversion 4642 return getTruncateExpr(V, Ty); 4643 } 4644 4645 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4646 const SCEV *RHS) { 4647 const SCEV *PromotedLHS = LHS; 4648 const SCEV *PromotedRHS = RHS; 4649 4650 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4651 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4652 else 4653 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4654 4655 return getUMaxExpr(PromotedLHS, PromotedRHS); 4656 } 4657 4658 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4659 const SCEV *RHS, 4660 bool Sequential) { 4661 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4662 return getUMinFromMismatchedTypes(Ops, Sequential); 4663 } 4664 4665 const SCEV * 4666 ScalarEvolution::getUMinFromMismatchedTypes(SmallVectorImpl<const SCEV *> &Ops, 4667 bool Sequential) { 4668 assert(!Ops.empty() && "At least one operand must be!"); 4669 // Trivial case. 4670 if (Ops.size() == 1) 4671 return Ops[0]; 4672 4673 // Find the max type first. 4674 Type *MaxType = nullptr; 4675 for (auto *S : Ops) 4676 if (MaxType) 4677 MaxType = getWiderType(MaxType, S->getType()); 4678 else 4679 MaxType = S->getType(); 4680 assert(MaxType && "Failed to find maximum type!"); 4681 4682 // Extend all ops to max type. 4683 SmallVector<const SCEV *, 2> PromotedOps; 4684 for (auto *S : Ops) 4685 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4686 4687 // Generate umin. 4688 return getUMinExpr(PromotedOps, Sequential); 4689 } 4690 4691 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4692 // A pointer operand may evaluate to a nonpointer expression, such as null. 4693 if (!V->getType()->isPointerTy()) 4694 return V; 4695 4696 while (true) { 4697 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4698 V = AddRec->getStart(); 4699 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4700 const SCEV *PtrOp = nullptr; 4701 for (const SCEV *AddOp : Add->operands()) { 4702 if (AddOp->getType()->isPointerTy()) { 4703 assert(!PtrOp && "Cannot have multiple pointer ops"); 4704 PtrOp = AddOp; 4705 } 4706 } 4707 assert(PtrOp && "Must have pointer op"); 4708 V = PtrOp; 4709 } else // Not something we can look further into. 4710 return V; 4711 } 4712 } 4713 4714 /// Push users of the given Instruction onto the given Worklist. 4715 static void PushDefUseChildren(Instruction *I, 4716 SmallVectorImpl<Instruction *> &Worklist, 4717 SmallPtrSetImpl<Instruction *> &Visited) { 4718 // Push the def-use children onto the Worklist stack. 4719 for (User *U : I->users()) { 4720 auto *UserInsn = cast<Instruction>(U); 4721 if (Visited.insert(UserInsn).second) 4722 Worklist.push_back(UserInsn); 4723 } 4724 } 4725 4726 namespace { 4727 4728 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4729 /// expression in case its Loop is L. If it is not L then 4730 /// if IgnoreOtherLoops is true then use AddRec itself 4731 /// otherwise rewrite cannot be done. 4732 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4733 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4734 public: 4735 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4736 bool IgnoreOtherLoops = true) { 4737 SCEVInitRewriter Rewriter(L, SE); 4738 const SCEV *Result = Rewriter.visit(S); 4739 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4740 return SE.getCouldNotCompute(); 4741 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4742 ? SE.getCouldNotCompute() 4743 : Result; 4744 } 4745 4746 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4747 if (!SE.isLoopInvariant(Expr, L)) 4748 SeenLoopVariantSCEVUnknown = true; 4749 return Expr; 4750 } 4751 4752 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4753 // Only re-write AddRecExprs for this loop. 4754 if (Expr->getLoop() == L) 4755 return Expr->getStart(); 4756 SeenOtherLoops = true; 4757 return Expr; 4758 } 4759 4760 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4761 4762 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4763 4764 private: 4765 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4766 : SCEVRewriteVisitor(SE), L(L) {} 4767 4768 const Loop *L; 4769 bool SeenLoopVariantSCEVUnknown = false; 4770 bool SeenOtherLoops = false; 4771 }; 4772 4773 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4774 /// increment expression in case its Loop is L. If it is not L then 4775 /// use AddRec itself. 4776 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4777 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4778 public: 4779 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4780 SCEVPostIncRewriter Rewriter(L, SE); 4781 const SCEV *Result = Rewriter.visit(S); 4782 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4783 ? SE.getCouldNotCompute() 4784 : Result; 4785 } 4786 4787 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4788 if (!SE.isLoopInvariant(Expr, L)) 4789 SeenLoopVariantSCEVUnknown = true; 4790 return Expr; 4791 } 4792 4793 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4794 // Only re-write AddRecExprs for this loop. 4795 if (Expr->getLoop() == L) 4796 return Expr->getPostIncExpr(SE); 4797 SeenOtherLoops = true; 4798 return Expr; 4799 } 4800 4801 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4802 4803 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4804 4805 private: 4806 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4807 : SCEVRewriteVisitor(SE), L(L) {} 4808 4809 const Loop *L; 4810 bool SeenLoopVariantSCEVUnknown = false; 4811 bool SeenOtherLoops = false; 4812 }; 4813 4814 /// This class evaluates the compare condition by matching it against the 4815 /// condition of loop latch. If there is a match we assume a true value 4816 /// for the condition while building SCEV nodes. 4817 class SCEVBackedgeConditionFolder 4818 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4819 public: 4820 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4821 ScalarEvolution &SE) { 4822 bool IsPosBECond = false; 4823 Value *BECond = nullptr; 4824 if (BasicBlock *Latch = L->getLoopLatch()) { 4825 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4826 if (BI && BI->isConditional()) { 4827 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4828 "Both outgoing branches should not target same header!"); 4829 BECond = BI->getCondition(); 4830 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4831 } else { 4832 return S; 4833 } 4834 } 4835 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4836 return Rewriter.visit(S); 4837 } 4838 4839 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4840 const SCEV *Result = Expr; 4841 bool InvariantF = SE.isLoopInvariant(Expr, L); 4842 4843 if (!InvariantF) { 4844 Instruction *I = cast<Instruction>(Expr->getValue()); 4845 switch (I->getOpcode()) { 4846 case Instruction::Select: { 4847 SelectInst *SI = cast<SelectInst>(I); 4848 Optional<const SCEV *> Res = 4849 compareWithBackedgeCondition(SI->getCondition()); 4850 if (Res) { 4851 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4852 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4853 } 4854 break; 4855 } 4856 default: { 4857 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4858 if (Res) 4859 Result = Res.getValue(); 4860 break; 4861 } 4862 } 4863 } 4864 return Result; 4865 } 4866 4867 private: 4868 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4869 bool IsPosBECond, ScalarEvolution &SE) 4870 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4871 IsPositiveBECond(IsPosBECond) {} 4872 4873 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4874 4875 const Loop *L; 4876 /// Loop back condition. 4877 Value *BackedgeCond = nullptr; 4878 /// Set to true if loop back is on positive branch condition. 4879 bool IsPositiveBECond; 4880 }; 4881 4882 Optional<const SCEV *> 4883 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4884 4885 // If value matches the backedge condition for loop latch, 4886 // then return a constant evolution node based on loopback 4887 // branch taken. 4888 if (BackedgeCond == IC) 4889 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4890 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4891 return None; 4892 } 4893 4894 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4895 public: 4896 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4897 ScalarEvolution &SE) { 4898 SCEVShiftRewriter Rewriter(L, SE); 4899 const SCEV *Result = Rewriter.visit(S); 4900 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4901 } 4902 4903 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4904 // Only allow AddRecExprs for this loop. 4905 if (!SE.isLoopInvariant(Expr, L)) 4906 Valid = false; 4907 return Expr; 4908 } 4909 4910 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4911 if (Expr->getLoop() == L && Expr->isAffine()) 4912 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4913 Valid = false; 4914 return Expr; 4915 } 4916 4917 bool isValid() { return Valid; } 4918 4919 private: 4920 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4921 : SCEVRewriteVisitor(SE), L(L) {} 4922 4923 const Loop *L; 4924 bool Valid = true; 4925 }; 4926 4927 } // end anonymous namespace 4928 4929 SCEV::NoWrapFlags 4930 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4931 if (!AR->isAffine()) 4932 return SCEV::FlagAnyWrap; 4933 4934 using OBO = OverflowingBinaryOperator; 4935 4936 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4937 4938 if (!AR->hasNoSignedWrap()) { 4939 ConstantRange AddRecRange = getSignedRange(AR); 4940 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4941 4942 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4943 Instruction::Add, IncRange, OBO::NoSignedWrap); 4944 if (NSWRegion.contains(AddRecRange)) 4945 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4946 } 4947 4948 if (!AR->hasNoUnsignedWrap()) { 4949 ConstantRange AddRecRange = getUnsignedRange(AR); 4950 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4951 4952 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4953 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4954 if (NUWRegion.contains(AddRecRange)) 4955 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4956 } 4957 4958 return Result; 4959 } 4960 4961 SCEV::NoWrapFlags 4962 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4963 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4964 4965 if (AR->hasNoSignedWrap()) 4966 return Result; 4967 4968 if (!AR->isAffine()) 4969 return Result; 4970 4971 const SCEV *Step = AR->getStepRecurrence(*this); 4972 const Loop *L = AR->getLoop(); 4973 4974 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4975 // Note that this serves two purposes: It filters out loops that are 4976 // simply not analyzable, and it covers the case where this code is 4977 // being called from within backedge-taken count analysis, such that 4978 // attempting to ask for the backedge-taken count would likely result 4979 // in infinite recursion. In the later case, the analysis code will 4980 // cope with a conservative value, and it will take care to purge 4981 // that value once it has finished. 4982 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4983 4984 // Normally, in the cases we can prove no-overflow via a 4985 // backedge guarding condition, we can also compute a backedge 4986 // taken count for the loop. The exceptions are assumptions and 4987 // guards present in the loop -- SCEV is not great at exploiting 4988 // these to compute max backedge taken counts, but can still use 4989 // these to prove lack of overflow. Use this fact to avoid 4990 // doing extra work that may not pay off. 4991 4992 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4993 AC.assumptions().empty()) 4994 return Result; 4995 4996 // If the backedge is guarded by a comparison with the pre-inc value the 4997 // addrec is safe. Also, if the entry is guarded by a comparison with the 4998 // start value and the backedge is guarded by a comparison with the post-inc 4999 // value, the addrec is safe. 5000 ICmpInst::Predicate Pred; 5001 const SCEV *OverflowLimit = 5002 getSignedOverflowLimitForStep(Step, &Pred, this); 5003 if (OverflowLimit && 5004 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 5005 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 5006 Result = setFlags(Result, SCEV::FlagNSW); 5007 } 5008 return Result; 5009 } 5010 SCEV::NoWrapFlags 5011 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 5012 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 5013 5014 if (AR->hasNoUnsignedWrap()) 5015 return Result; 5016 5017 if (!AR->isAffine()) 5018 return Result; 5019 5020 const SCEV *Step = AR->getStepRecurrence(*this); 5021 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 5022 const Loop *L = AR->getLoop(); 5023 5024 // Check whether the backedge-taken count is SCEVCouldNotCompute. 5025 // Note that this serves two purposes: It filters out loops that are 5026 // simply not analyzable, and it covers the case where this code is 5027 // being called from within backedge-taken count analysis, such that 5028 // attempting to ask for the backedge-taken count would likely result 5029 // in infinite recursion. In the later case, the analysis code will 5030 // cope with a conservative value, and it will take care to purge 5031 // that value once it has finished. 5032 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 5033 5034 // Normally, in the cases we can prove no-overflow via a 5035 // backedge guarding condition, we can also compute a backedge 5036 // taken count for the loop. The exceptions are assumptions and 5037 // guards present in the loop -- SCEV is not great at exploiting 5038 // these to compute max backedge taken counts, but can still use 5039 // these to prove lack of overflow. Use this fact to avoid 5040 // doing extra work that may not pay off. 5041 5042 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 5043 AC.assumptions().empty()) 5044 return Result; 5045 5046 // If the backedge is guarded by a comparison with the pre-inc value the 5047 // addrec is safe. Also, if the entry is guarded by a comparison with the 5048 // start value and the backedge is guarded by a comparison with the post-inc 5049 // value, the addrec is safe. 5050 if (isKnownPositive(Step)) { 5051 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 5052 getUnsignedRangeMax(Step)); 5053 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 5054 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 5055 Result = setFlags(Result, SCEV::FlagNUW); 5056 } 5057 } 5058 5059 return Result; 5060 } 5061 5062 namespace { 5063 5064 /// Represents an abstract binary operation. This may exist as a 5065 /// normal instruction or constant expression, or may have been 5066 /// derived from an expression tree. 5067 struct BinaryOp { 5068 unsigned Opcode; 5069 Value *LHS; 5070 Value *RHS; 5071 bool IsNSW = false; 5072 bool IsNUW = false; 5073 5074 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 5075 /// constant expression. 5076 Operator *Op = nullptr; 5077 5078 explicit BinaryOp(Operator *Op) 5079 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 5080 Op(Op) { 5081 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 5082 IsNSW = OBO->hasNoSignedWrap(); 5083 IsNUW = OBO->hasNoUnsignedWrap(); 5084 } 5085 } 5086 5087 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 5088 bool IsNUW = false) 5089 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 5090 }; 5091 5092 } // end anonymous namespace 5093 5094 /// Try to map \p V into a BinaryOp, and return \c None on failure. 5095 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 5096 auto *Op = dyn_cast<Operator>(V); 5097 if (!Op) 5098 return None; 5099 5100 // Implementation detail: all the cleverness here should happen without 5101 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 5102 // SCEV expressions when possible, and we should not break that. 5103 5104 switch (Op->getOpcode()) { 5105 case Instruction::Add: 5106 case Instruction::Sub: 5107 case Instruction::Mul: 5108 case Instruction::UDiv: 5109 case Instruction::URem: 5110 case Instruction::And: 5111 case Instruction::Or: 5112 case Instruction::AShr: 5113 case Instruction::Shl: 5114 return BinaryOp(Op); 5115 5116 case Instruction::Xor: 5117 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 5118 // If the RHS of the xor is a signmask, then this is just an add. 5119 // Instcombine turns add of signmask into xor as a strength reduction step. 5120 if (RHSC->getValue().isSignMask()) 5121 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5122 // Binary `xor` is a bit-wise `add`. 5123 if (V->getType()->isIntegerTy(1)) 5124 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 5125 return BinaryOp(Op); 5126 5127 case Instruction::LShr: 5128 // Turn logical shift right of a constant into a unsigned divide. 5129 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 5130 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 5131 5132 // If the shift count is not less than the bitwidth, the result of 5133 // the shift is undefined. Don't try to analyze it, because the 5134 // resolution chosen here may differ from the resolution chosen in 5135 // other parts of the compiler. 5136 if (SA->getValue().ult(BitWidth)) { 5137 Constant *X = 5138 ConstantInt::get(SA->getContext(), 5139 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 5140 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 5141 } 5142 } 5143 return BinaryOp(Op); 5144 5145 case Instruction::ExtractValue: { 5146 auto *EVI = cast<ExtractValueInst>(Op); 5147 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 5148 break; 5149 5150 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 5151 if (!WO) 5152 break; 5153 5154 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 5155 bool Signed = WO->isSigned(); 5156 // TODO: Should add nuw/nsw flags for mul as well. 5157 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 5158 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 5159 5160 // Now that we know that all uses of the arithmetic-result component of 5161 // CI are guarded by the overflow check, we can go ahead and pretend 5162 // that the arithmetic is non-overflowing. 5163 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 5164 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 5165 } 5166 5167 default: 5168 break; 5169 } 5170 5171 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 5172 // semantics as a Sub, return a binary sub expression. 5173 if (auto *II = dyn_cast<IntrinsicInst>(V)) 5174 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 5175 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 5176 5177 return None; 5178 } 5179 5180 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 5181 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 5182 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 5183 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 5184 /// follows one of the following patterns: 5185 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5186 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 5187 /// If the SCEV expression of \p Op conforms with one of the expected patterns 5188 /// we return the type of the truncation operation, and indicate whether the 5189 /// truncated type should be treated as signed/unsigned by setting 5190 /// \p Signed to true/false, respectively. 5191 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 5192 bool &Signed, ScalarEvolution &SE) { 5193 // The case where Op == SymbolicPHI (that is, with no type conversions on 5194 // the way) is handled by the regular add recurrence creating logic and 5195 // would have already been triggered in createAddRecForPHI. Reaching it here 5196 // means that createAddRecFromPHI had failed for this PHI before (e.g., 5197 // because one of the other operands of the SCEVAddExpr updating this PHI is 5198 // not invariant). 5199 // 5200 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 5201 // this case predicates that allow us to prove that Op == SymbolicPHI will 5202 // be added. 5203 if (Op == SymbolicPHI) 5204 return nullptr; 5205 5206 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 5207 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 5208 if (SourceBits != NewBits) 5209 return nullptr; 5210 5211 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 5212 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 5213 if (!SExt && !ZExt) 5214 return nullptr; 5215 const SCEVTruncateExpr *Trunc = 5216 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 5217 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 5218 if (!Trunc) 5219 return nullptr; 5220 const SCEV *X = Trunc->getOperand(); 5221 if (X != SymbolicPHI) 5222 return nullptr; 5223 Signed = SExt != nullptr; 5224 return Trunc->getType(); 5225 } 5226 5227 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 5228 if (!PN->getType()->isIntegerTy()) 5229 return nullptr; 5230 const Loop *L = LI.getLoopFor(PN->getParent()); 5231 if (!L || L->getHeader() != PN->getParent()) 5232 return nullptr; 5233 return L; 5234 } 5235 5236 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 5237 // computation that updates the phi follows the following pattern: 5238 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 5239 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 5240 // If so, try to see if it can be rewritten as an AddRecExpr under some 5241 // Predicates. If successful, return them as a pair. Also cache the results 5242 // of the analysis. 5243 // 5244 // Example usage scenario: 5245 // Say the Rewriter is called for the following SCEV: 5246 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5247 // where: 5248 // %X = phi i64 (%Start, %BEValue) 5249 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 5250 // and call this function with %SymbolicPHI = %X. 5251 // 5252 // The analysis will find that the value coming around the backedge has 5253 // the following SCEV: 5254 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 5255 // Upon concluding that this matches the desired pattern, the function 5256 // will return the pair {NewAddRec, SmallPredsVec} where: 5257 // NewAddRec = {%Start,+,%Step} 5258 // SmallPredsVec = {P1, P2, P3} as follows: 5259 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 5260 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 5261 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 5262 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 5263 // under the predicates {P1,P2,P3}. 5264 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 5265 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 5266 // 5267 // TODO's: 5268 // 5269 // 1) Extend the Induction descriptor to also support inductions that involve 5270 // casts: When needed (namely, when we are called in the context of the 5271 // vectorizer induction analysis), a Set of cast instructions will be 5272 // populated by this method, and provided back to isInductionPHI. This is 5273 // needed to allow the vectorizer to properly record them to be ignored by 5274 // the cost model and to avoid vectorizing them (otherwise these casts, 5275 // which are redundant under the runtime overflow checks, will be 5276 // vectorized, which can be costly). 5277 // 5278 // 2) Support additional induction/PHISCEV patterns: We also want to support 5279 // inductions where the sext-trunc / zext-trunc operations (partly) occur 5280 // after the induction update operation (the induction increment): 5281 // 5282 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 5283 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 5284 // 5285 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 5286 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 5287 // 5288 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 5289 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5290 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 5291 SmallVector<const SCEVPredicate *, 3> Predicates; 5292 5293 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5294 // return an AddRec expression under some predicate. 5295 5296 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5297 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5298 assert(L && "Expecting an integer loop header phi"); 5299 5300 // The loop may have multiple entrances or multiple exits; we can analyze 5301 // this phi as an addrec if it has a unique entry value and a unique 5302 // backedge value. 5303 Value *BEValueV = nullptr, *StartValueV = nullptr; 5304 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5305 Value *V = PN->getIncomingValue(i); 5306 if (L->contains(PN->getIncomingBlock(i))) { 5307 if (!BEValueV) { 5308 BEValueV = V; 5309 } else if (BEValueV != V) { 5310 BEValueV = nullptr; 5311 break; 5312 } 5313 } else if (!StartValueV) { 5314 StartValueV = V; 5315 } else if (StartValueV != V) { 5316 StartValueV = nullptr; 5317 break; 5318 } 5319 } 5320 if (!BEValueV || !StartValueV) 5321 return None; 5322 5323 const SCEV *BEValue = getSCEV(BEValueV); 5324 5325 // If the value coming around the backedge is an add with the symbolic 5326 // value we just inserted, possibly with casts that we can ignore under 5327 // an appropriate runtime guard, then we found a simple induction variable! 5328 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5329 if (!Add) 5330 return None; 5331 5332 // If there is a single occurrence of the symbolic value, possibly 5333 // casted, replace it with a recurrence. 5334 unsigned FoundIndex = Add->getNumOperands(); 5335 Type *TruncTy = nullptr; 5336 bool Signed; 5337 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5338 if ((TruncTy = 5339 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5340 if (FoundIndex == e) { 5341 FoundIndex = i; 5342 break; 5343 } 5344 5345 if (FoundIndex == Add->getNumOperands()) 5346 return None; 5347 5348 // Create an add with everything but the specified operand. 5349 SmallVector<const SCEV *, 8> Ops; 5350 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5351 if (i != FoundIndex) 5352 Ops.push_back(Add->getOperand(i)); 5353 const SCEV *Accum = getAddExpr(Ops); 5354 5355 // The runtime checks will not be valid if the step amount is 5356 // varying inside the loop. 5357 if (!isLoopInvariant(Accum, L)) 5358 return None; 5359 5360 // *** Part2: Create the predicates 5361 5362 // Analysis was successful: we have a phi-with-cast pattern for which we 5363 // can return an AddRec expression under the following predicates: 5364 // 5365 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5366 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5367 // P2: An Equal predicate that guarantees that 5368 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5369 // P3: An Equal predicate that guarantees that 5370 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5371 // 5372 // As we next prove, the above predicates guarantee that: 5373 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5374 // 5375 // 5376 // More formally, we want to prove that: 5377 // Expr(i+1) = Start + (i+1) * Accum 5378 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5379 // 5380 // Given that: 5381 // 1) Expr(0) = Start 5382 // 2) Expr(1) = Start + Accum 5383 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5384 // 3) Induction hypothesis (step i): 5385 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5386 // 5387 // Proof: 5388 // Expr(i+1) = 5389 // = Start + (i+1)*Accum 5390 // = (Start + i*Accum) + Accum 5391 // = Expr(i) + Accum 5392 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5393 // :: from step i 5394 // 5395 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5396 // 5397 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5398 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5399 // + Accum :: from P3 5400 // 5401 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5402 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5403 // 5404 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5405 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5406 // 5407 // By induction, the same applies to all iterations 1<=i<n: 5408 // 5409 5410 // Create a truncated addrec for which we will add a no overflow check (P1). 5411 const SCEV *StartVal = getSCEV(StartValueV); 5412 const SCEV *PHISCEV = 5413 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5414 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5415 5416 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5417 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5418 // will be constant. 5419 // 5420 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5421 // add P1. 5422 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5423 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5424 Signed ? SCEVWrapPredicate::IncrementNSSW 5425 : SCEVWrapPredicate::IncrementNUSW; 5426 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5427 Predicates.push_back(AddRecPred); 5428 } 5429 5430 // Create the Equal Predicates P2,P3: 5431 5432 // It is possible that the predicates P2 and/or P3 are computable at 5433 // compile time due to StartVal and/or Accum being constants. 5434 // If either one is, then we can check that now and escape if either P2 5435 // or P3 is false. 5436 5437 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5438 // for each of StartVal and Accum 5439 auto getExtendedExpr = [&](const SCEV *Expr, 5440 bool CreateSignExtend) -> const SCEV * { 5441 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5442 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5443 const SCEV *ExtendedExpr = 5444 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5445 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5446 return ExtendedExpr; 5447 }; 5448 5449 // Given: 5450 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5451 // = getExtendedExpr(Expr) 5452 // Determine whether the predicate P: Expr == ExtendedExpr 5453 // is known to be false at compile time 5454 auto PredIsKnownFalse = [&](const SCEV *Expr, 5455 const SCEV *ExtendedExpr) -> bool { 5456 return Expr != ExtendedExpr && 5457 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5458 }; 5459 5460 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5461 if (PredIsKnownFalse(StartVal, StartExtended)) { 5462 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5463 return None; 5464 } 5465 5466 // The Step is always Signed (because the overflow checks are either 5467 // NSSW or NUSW) 5468 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5469 if (PredIsKnownFalse(Accum, AccumExtended)) { 5470 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5471 return None; 5472 } 5473 5474 auto AppendPredicate = [&](const SCEV *Expr, 5475 const SCEV *ExtendedExpr) -> void { 5476 if (Expr != ExtendedExpr && 5477 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5478 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5479 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5480 Predicates.push_back(Pred); 5481 } 5482 }; 5483 5484 AppendPredicate(StartVal, StartExtended); 5485 AppendPredicate(Accum, AccumExtended); 5486 5487 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5488 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5489 // into NewAR if it will also add the runtime overflow checks specified in 5490 // Predicates. 5491 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5492 5493 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5494 std::make_pair(NewAR, Predicates); 5495 // Remember the result of the analysis for this SCEV at this locayyytion. 5496 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5497 return PredRewrite; 5498 } 5499 5500 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5501 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5502 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5503 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5504 if (!L) 5505 return None; 5506 5507 // Check to see if we already analyzed this PHI. 5508 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5509 if (I != PredicatedSCEVRewrites.end()) { 5510 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5511 I->second; 5512 // Analysis was done before and failed to create an AddRec: 5513 if (Rewrite.first == SymbolicPHI) 5514 return None; 5515 // Analysis was done before and succeeded to create an AddRec under 5516 // a predicate: 5517 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5518 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5519 return Rewrite; 5520 } 5521 5522 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5523 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5524 5525 // Record in the cache that the analysis failed 5526 if (!Rewrite) { 5527 SmallVector<const SCEVPredicate *, 3> Predicates; 5528 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5529 return None; 5530 } 5531 5532 return Rewrite; 5533 } 5534 5535 // FIXME: This utility is currently required because the Rewriter currently 5536 // does not rewrite this expression: 5537 // {0, +, (sext ix (trunc iy to ix) to iy)} 5538 // into {0, +, %step}, 5539 // even when the following Equal predicate exists: 5540 // "%step == (sext ix (trunc iy to ix) to iy)". 5541 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5542 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5543 if (AR1 == AR2) 5544 return true; 5545 5546 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5547 if (Expr1 != Expr2 && !Preds->implies(SE.getEqualPredicate(Expr1, Expr2)) && 5548 !Preds->implies(SE.getEqualPredicate(Expr2, Expr1))) 5549 return false; 5550 return true; 5551 }; 5552 5553 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5554 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5555 return false; 5556 return true; 5557 } 5558 5559 /// A helper function for createAddRecFromPHI to handle simple cases. 5560 /// 5561 /// This function tries to find an AddRec expression for the simplest (yet most 5562 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5563 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5564 /// technique for finding the AddRec expression. 5565 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5566 Value *BEValueV, 5567 Value *StartValueV) { 5568 const Loop *L = LI.getLoopFor(PN->getParent()); 5569 assert(L && L->getHeader() == PN->getParent()); 5570 assert(BEValueV && StartValueV); 5571 5572 auto BO = MatchBinaryOp(BEValueV, DT); 5573 if (!BO) 5574 return nullptr; 5575 5576 if (BO->Opcode != Instruction::Add) 5577 return nullptr; 5578 5579 const SCEV *Accum = nullptr; 5580 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5581 Accum = getSCEV(BO->RHS); 5582 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5583 Accum = getSCEV(BO->LHS); 5584 5585 if (!Accum) 5586 return nullptr; 5587 5588 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5589 if (BO->IsNUW) 5590 Flags = setFlags(Flags, SCEV::FlagNUW); 5591 if (BO->IsNSW) 5592 Flags = setFlags(Flags, SCEV::FlagNSW); 5593 5594 const SCEV *StartVal = getSCEV(StartValueV); 5595 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5596 insertValueToMap(PN, PHISCEV); 5597 5598 // We can add Flags to the post-inc expression only if we 5599 // know that it is *undefined behavior* for BEValueV to 5600 // overflow. 5601 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) { 5602 assert(isLoopInvariant(Accum, L) && 5603 "Accum is defined outside L, but is not invariant?"); 5604 if (isAddRecNeverPoison(BEInst, L)) 5605 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5606 } 5607 5608 return PHISCEV; 5609 } 5610 5611 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5612 const Loop *L = LI.getLoopFor(PN->getParent()); 5613 if (!L || L->getHeader() != PN->getParent()) 5614 return nullptr; 5615 5616 // The loop may have multiple entrances or multiple exits; we can analyze 5617 // this phi as an addrec if it has a unique entry value and a unique 5618 // backedge value. 5619 Value *BEValueV = nullptr, *StartValueV = nullptr; 5620 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5621 Value *V = PN->getIncomingValue(i); 5622 if (L->contains(PN->getIncomingBlock(i))) { 5623 if (!BEValueV) { 5624 BEValueV = V; 5625 } else if (BEValueV != V) { 5626 BEValueV = nullptr; 5627 break; 5628 } 5629 } else if (!StartValueV) { 5630 StartValueV = V; 5631 } else if (StartValueV != V) { 5632 StartValueV = nullptr; 5633 break; 5634 } 5635 } 5636 if (!BEValueV || !StartValueV) 5637 return nullptr; 5638 5639 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5640 "PHI node already processed?"); 5641 5642 // First, try to find AddRec expression without creating a fictituos symbolic 5643 // value for PN. 5644 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5645 return S; 5646 5647 // Handle PHI node value symbolically. 5648 const SCEV *SymbolicName = getUnknown(PN); 5649 insertValueToMap(PN, SymbolicName); 5650 5651 // Using this symbolic name for the PHI, analyze the value coming around 5652 // the back-edge. 5653 const SCEV *BEValue = getSCEV(BEValueV); 5654 5655 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5656 // has a special value for the first iteration of the loop. 5657 5658 // If the value coming around the backedge is an add with the symbolic 5659 // value we just inserted, then we found a simple induction variable! 5660 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5661 // If there is a single occurrence of the symbolic value, replace it 5662 // with a recurrence. 5663 unsigned FoundIndex = Add->getNumOperands(); 5664 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5665 if (Add->getOperand(i) == SymbolicName) 5666 if (FoundIndex == e) { 5667 FoundIndex = i; 5668 break; 5669 } 5670 5671 if (FoundIndex != Add->getNumOperands()) { 5672 // Create an add with everything but the specified operand. 5673 SmallVector<const SCEV *, 8> Ops; 5674 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5675 if (i != FoundIndex) 5676 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5677 L, *this)); 5678 const SCEV *Accum = getAddExpr(Ops); 5679 5680 // This is not a valid addrec if the step amount is varying each 5681 // loop iteration, but is not itself an addrec in this loop. 5682 if (isLoopInvariant(Accum, L) || 5683 (isa<SCEVAddRecExpr>(Accum) && 5684 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5685 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5686 5687 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5688 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5689 if (BO->IsNUW) 5690 Flags = setFlags(Flags, SCEV::FlagNUW); 5691 if (BO->IsNSW) 5692 Flags = setFlags(Flags, SCEV::FlagNSW); 5693 } 5694 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5695 // If the increment is an inbounds GEP, then we know the address 5696 // space cannot be wrapped around. We cannot make any guarantee 5697 // about signed or unsigned overflow because pointers are 5698 // unsigned but we may have a negative index from the base 5699 // pointer. We can guarantee that no unsigned wrap occurs if the 5700 // indices form a positive value. 5701 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5702 Flags = setFlags(Flags, SCEV::FlagNW); 5703 5704 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5705 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5706 Flags = setFlags(Flags, SCEV::FlagNUW); 5707 } 5708 5709 // We cannot transfer nuw and nsw flags from subtraction 5710 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5711 // for instance. 5712 } 5713 5714 const SCEV *StartVal = getSCEV(StartValueV); 5715 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5716 5717 // Okay, for the entire analysis of this edge we assumed the PHI 5718 // to be symbolic. We now need to go back and purge all of the 5719 // entries for the scalars that use the symbolic expression. 5720 forgetMemoizedResults(SymbolicName); 5721 insertValueToMap(PN, PHISCEV); 5722 5723 // We can add Flags to the post-inc expression only if we 5724 // know that it is *undefined behavior* for BEValueV to 5725 // overflow. 5726 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5727 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5728 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5729 5730 return PHISCEV; 5731 } 5732 } 5733 } else { 5734 // Otherwise, this could be a loop like this: 5735 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5736 // In this case, j = {1,+,1} and BEValue is j. 5737 // Because the other in-value of i (0) fits the evolution of BEValue 5738 // i really is an addrec evolution. 5739 // 5740 // We can generalize this saying that i is the shifted value of BEValue 5741 // by one iteration: 5742 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5743 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5744 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5745 if (Shifted != getCouldNotCompute() && 5746 Start != getCouldNotCompute()) { 5747 const SCEV *StartVal = getSCEV(StartValueV); 5748 if (Start == StartVal) { 5749 // Okay, for the entire analysis of this edge we assumed the PHI 5750 // to be symbolic. We now need to go back and purge all of the 5751 // entries for the scalars that use the symbolic expression. 5752 forgetMemoizedResults(SymbolicName); 5753 insertValueToMap(PN, Shifted); 5754 return Shifted; 5755 } 5756 } 5757 } 5758 5759 // Remove the temporary PHI node SCEV that has been inserted while intending 5760 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5761 // as it will prevent later (possibly simpler) SCEV expressions to be added 5762 // to the ValueExprMap. 5763 eraseValueFromMap(PN); 5764 5765 return nullptr; 5766 } 5767 5768 // Checks if the SCEV S is available at BB. S is considered available at BB 5769 // if S can be materialized at BB without introducing a fault. 5770 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5771 BasicBlock *BB) { 5772 struct CheckAvailable { 5773 bool TraversalDone = false; 5774 bool Available = true; 5775 5776 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5777 BasicBlock *BB = nullptr; 5778 DominatorTree &DT; 5779 5780 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5781 : L(L), BB(BB), DT(DT) {} 5782 5783 bool setUnavailable() { 5784 TraversalDone = true; 5785 Available = false; 5786 return false; 5787 } 5788 5789 bool follow(const SCEV *S) { 5790 switch (S->getSCEVType()) { 5791 case scConstant: 5792 case scPtrToInt: 5793 case scTruncate: 5794 case scZeroExtend: 5795 case scSignExtend: 5796 case scAddExpr: 5797 case scMulExpr: 5798 case scUMaxExpr: 5799 case scSMaxExpr: 5800 case scUMinExpr: 5801 case scSMinExpr: 5802 case scSequentialUMinExpr: 5803 // These expressions are available if their operand(s) is/are. 5804 return true; 5805 5806 case scAddRecExpr: { 5807 // We allow add recurrences that are on the loop BB is in, or some 5808 // outer loop. This guarantees availability because the value of the 5809 // add recurrence at BB is simply the "current" value of the induction 5810 // variable. We can relax this in the future; for instance an add 5811 // recurrence on a sibling dominating loop is also available at BB. 5812 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5813 if (L && (ARLoop == L || ARLoop->contains(L))) 5814 return true; 5815 5816 return setUnavailable(); 5817 } 5818 5819 case scUnknown: { 5820 // For SCEVUnknown, we check for simple dominance. 5821 const auto *SU = cast<SCEVUnknown>(S); 5822 Value *V = SU->getValue(); 5823 5824 if (isa<Argument>(V)) 5825 return false; 5826 5827 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5828 return false; 5829 5830 return setUnavailable(); 5831 } 5832 5833 case scUDivExpr: 5834 case scCouldNotCompute: 5835 // We do not try to smart about these at all. 5836 return setUnavailable(); 5837 } 5838 llvm_unreachable("Unknown SCEV kind!"); 5839 } 5840 5841 bool isDone() { return TraversalDone; } 5842 }; 5843 5844 CheckAvailable CA(L, BB, DT); 5845 SCEVTraversal<CheckAvailable> ST(CA); 5846 5847 ST.visitAll(S); 5848 return CA.Available; 5849 } 5850 5851 // Try to match a control flow sequence that branches out at BI and merges back 5852 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5853 // match. 5854 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5855 Value *&C, Value *&LHS, Value *&RHS) { 5856 C = BI->getCondition(); 5857 5858 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5859 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5860 5861 if (!LeftEdge.isSingleEdge()) 5862 return false; 5863 5864 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5865 5866 Use &LeftUse = Merge->getOperandUse(0); 5867 Use &RightUse = Merge->getOperandUse(1); 5868 5869 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5870 LHS = LeftUse; 5871 RHS = RightUse; 5872 return true; 5873 } 5874 5875 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5876 LHS = RightUse; 5877 RHS = LeftUse; 5878 return true; 5879 } 5880 5881 return false; 5882 } 5883 5884 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5885 auto IsReachable = 5886 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5887 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5888 const Loop *L = LI.getLoopFor(PN->getParent()); 5889 5890 // We don't want to break LCSSA, even in a SCEV expression tree. 5891 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5892 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5893 return nullptr; 5894 5895 // Try to match 5896 // 5897 // br %cond, label %left, label %right 5898 // left: 5899 // br label %merge 5900 // right: 5901 // br label %merge 5902 // merge: 5903 // V = phi [ %x, %left ], [ %y, %right ] 5904 // 5905 // as "select %cond, %x, %y" 5906 5907 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5908 assert(IDom && "At least the entry block should dominate PN"); 5909 5910 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5911 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5912 5913 if (BI && BI->isConditional() && 5914 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5915 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5916 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5917 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5918 } 5919 5920 return nullptr; 5921 } 5922 5923 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5924 if (const SCEV *S = createAddRecFromPHI(PN)) 5925 return S; 5926 5927 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5928 return S; 5929 5930 if (Value *V = simplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5931 return getSCEV(V); 5932 5933 // If it's not a loop phi, we can't handle it yet. 5934 return getUnknown(PN); 5935 } 5936 5937 bool SCEVMinMaxExprContains(const SCEV *Root, const SCEV *OperandToFind, 5938 SCEVTypes RootKind) { 5939 struct FindClosure { 5940 const SCEV *OperandToFind; 5941 const SCEVTypes RootKind; // Must be a sequential min/max expression. 5942 const SCEVTypes NonSequentialRootKind; // Non-seq variant of RootKind. 5943 5944 bool Found = false; 5945 5946 bool canRecurseInto(SCEVTypes Kind) const { 5947 // We can only recurse into the SCEV expression of the same effective type 5948 // as the type of our root SCEV expression, and into zero-extensions. 5949 return RootKind == Kind || NonSequentialRootKind == Kind || 5950 scZeroExtend == Kind; 5951 }; 5952 5953 FindClosure(const SCEV *OperandToFind, SCEVTypes RootKind) 5954 : OperandToFind(OperandToFind), RootKind(RootKind), 5955 NonSequentialRootKind( 5956 SCEVSequentialMinMaxExpr::getEquivalentNonSequentialSCEVType( 5957 RootKind)) {} 5958 5959 bool follow(const SCEV *S) { 5960 Found = S == OperandToFind; 5961 5962 return !isDone() && canRecurseInto(S->getSCEVType()); 5963 } 5964 5965 bool isDone() const { return Found; } 5966 }; 5967 5968 FindClosure FC(OperandToFind, RootKind); 5969 visitAll(Root, FC); 5970 return FC.Found; 5971 } 5972 5973 const SCEV *ScalarEvolution::createNodeForSelectOrPHIInstWithICmpInstCond( 5974 Instruction *I, ICmpInst *Cond, Value *TrueVal, Value *FalseVal) { 5975 // Try to match some simple smax or umax patterns. 5976 auto *ICI = Cond; 5977 5978 Value *LHS = ICI->getOperand(0); 5979 Value *RHS = ICI->getOperand(1); 5980 5981 switch (ICI->getPredicate()) { 5982 case ICmpInst::ICMP_SLT: 5983 case ICmpInst::ICMP_SLE: 5984 case ICmpInst::ICMP_ULT: 5985 case ICmpInst::ICMP_ULE: 5986 std::swap(LHS, RHS); 5987 LLVM_FALLTHROUGH; 5988 case ICmpInst::ICMP_SGT: 5989 case ICmpInst::ICMP_SGE: 5990 case ICmpInst::ICMP_UGT: 5991 case ICmpInst::ICMP_UGE: 5992 // a > b ? a+x : b+x -> max(a, b)+x 5993 // a > b ? b+x : a+x -> min(a, b)+x 5994 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5995 bool Signed = ICI->isSigned(); 5996 const SCEV *LA = getSCEV(TrueVal); 5997 const SCEV *RA = getSCEV(FalseVal); 5998 const SCEV *LS = getSCEV(LHS); 5999 const SCEV *RS = getSCEV(RHS); 6000 if (LA->getType()->isPointerTy()) { 6001 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 6002 // Need to make sure we can't produce weird expressions involving 6003 // negated pointers. 6004 if (LA == LS && RA == RS) 6005 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 6006 if (LA == RS && RA == LS) 6007 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 6008 } 6009 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 6010 if (Op->getType()->isPointerTy()) { 6011 Op = getLosslessPtrToIntExpr(Op); 6012 if (isa<SCEVCouldNotCompute>(Op)) 6013 return Op; 6014 } 6015 if (Signed) 6016 Op = getNoopOrSignExtend(Op, I->getType()); 6017 else 6018 Op = getNoopOrZeroExtend(Op, I->getType()); 6019 return Op; 6020 }; 6021 LS = CoerceOperand(LS); 6022 RS = CoerceOperand(RS); 6023 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 6024 break; 6025 const SCEV *LDiff = getMinusSCEV(LA, LS); 6026 const SCEV *RDiff = getMinusSCEV(RA, RS); 6027 if (LDiff == RDiff) 6028 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 6029 LDiff); 6030 LDiff = getMinusSCEV(LA, RS); 6031 RDiff = getMinusSCEV(RA, LS); 6032 if (LDiff == RDiff) 6033 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 6034 LDiff); 6035 } 6036 break; 6037 case ICmpInst::ICMP_NE: 6038 // x != 0 ? x+y : C+y -> x == 0 ? C+y : x+y 6039 std::swap(TrueVal, FalseVal); 6040 LLVM_FALLTHROUGH; 6041 case ICmpInst::ICMP_EQ: 6042 // x == 0 ? C+y : x+y -> umax(x, C)+y iff C u<= 1 6043 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 6044 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 6045 const SCEV *X = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 6046 const SCEV *TrueValExpr = getSCEV(TrueVal); // C+y 6047 const SCEV *FalseValExpr = getSCEV(FalseVal); // x+y 6048 const SCEV *Y = getMinusSCEV(FalseValExpr, X); // y = (x+y)-x 6049 const SCEV *C = getMinusSCEV(TrueValExpr, Y); // C = (C+y)-y 6050 if (isa<SCEVConstant>(C) && cast<SCEVConstant>(C)->getAPInt().ule(1)) 6051 return getAddExpr(getUMaxExpr(X, C), Y); 6052 } 6053 // x == 0 ? 0 : umin (..., x, ...) -> umin_seq(x, umin (...)) 6054 // x == 0 ? 0 : umin_seq(..., x, ...) -> umin_seq(x, umin_seq(...)) 6055 // x == 0 ? 0 : umin (..., umin_seq(..., x, ...), ...) 6056 // -> umin_seq(x, umin (..., umin_seq(...), ...)) 6057 if (isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero() && 6058 isa<ConstantInt>(TrueVal) && cast<ConstantInt>(TrueVal)->isZero()) { 6059 const SCEV *X = getSCEV(LHS); 6060 while (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(X)) 6061 X = ZExt->getOperand(); 6062 if (getTypeSizeInBits(X->getType()) <= getTypeSizeInBits(I->getType())) { 6063 const SCEV *FalseValExpr = getSCEV(FalseVal); 6064 if (SCEVMinMaxExprContains(FalseValExpr, X, scSequentialUMinExpr)) 6065 return getUMinExpr(getNoopOrZeroExtend(X, I->getType()), FalseValExpr, 6066 /*Sequential=*/true); 6067 } 6068 } 6069 break; 6070 default: 6071 break; 6072 } 6073 6074 return getUnknown(I); 6075 } 6076 6077 static Optional<const SCEV *> 6078 createNodeForSelectViaUMinSeq(ScalarEvolution *SE, const SCEV *CondExpr, 6079 const SCEV *TrueExpr, const SCEV *FalseExpr) { 6080 assert(CondExpr->getType()->isIntegerTy(1) && 6081 TrueExpr->getType() == FalseExpr->getType() && 6082 TrueExpr->getType()->isIntegerTy(1) && 6083 "Unexpected operands of a select."); 6084 6085 // i1 cond ? i1 x : i1 C --> C + (i1 cond ? (i1 x - i1 C) : i1 0) 6086 // --> C + (umin_seq cond, x - C) 6087 // 6088 // i1 cond ? i1 C : i1 x --> C + (i1 cond ? i1 0 : (i1 x - i1 C)) 6089 // --> C + (i1 ~cond ? (i1 x - i1 C) : i1 0) 6090 // --> C + (umin_seq ~cond, x - C) 6091 6092 // FIXME: while we can't legally model the case where both of the hands 6093 // are fully variable, we only require that the *difference* is constant. 6094 if (!isa<SCEVConstant>(TrueExpr) && !isa<SCEVConstant>(FalseExpr)) 6095 return None; 6096 6097 const SCEV *X, *C; 6098 if (isa<SCEVConstant>(TrueExpr)) { 6099 CondExpr = SE->getNotSCEV(CondExpr); 6100 X = FalseExpr; 6101 C = TrueExpr; 6102 } else { 6103 X = TrueExpr; 6104 C = FalseExpr; 6105 } 6106 return SE->getAddExpr(C, SE->getUMinExpr(CondExpr, SE->getMinusSCEV(X, C), 6107 /*Sequential=*/true)); 6108 } 6109 6110 static Optional<const SCEV *> createNodeForSelectViaUMinSeq(ScalarEvolution *SE, 6111 Value *Cond, 6112 Value *TrueVal, 6113 Value *FalseVal) { 6114 if (!isa<ConstantInt>(TrueVal) && !isa<ConstantInt>(FalseVal)) 6115 return None; 6116 6117 const auto *SECond = SE->getSCEV(Cond); 6118 const auto *SETrue = SE->getSCEV(TrueVal); 6119 const auto *SEFalse = SE->getSCEV(FalseVal); 6120 return createNodeForSelectViaUMinSeq(SE, SECond, SETrue, SEFalse); 6121 } 6122 6123 const SCEV *ScalarEvolution::createNodeForSelectOrPHIViaUMinSeq( 6124 Value *V, Value *Cond, Value *TrueVal, Value *FalseVal) { 6125 assert(Cond->getType()->isIntegerTy(1) && "Select condition is not an i1?"); 6126 assert(TrueVal->getType() == FalseVal->getType() && 6127 V->getType() == TrueVal->getType() && 6128 "Types of select hands and of the result must match."); 6129 6130 // For now, only deal with i1-typed `select`s. 6131 if (!V->getType()->isIntegerTy(1)) 6132 return getUnknown(V); 6133 6134 if (Optional<const SCEV *> S = 6135 createNodeForSelectViaUMinSeq(this, Cond, TrueVal, FalseVal)) 6136 return *S; 6137 6138 return getUnknown(V); 6139 } 6140 6141 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Value *V, Value *Cond, 6142 Value *TrueVal, 6143 Value *FalseVal) { 6144 // Handle "constant" branch or select. This can occur for instance when a 6145 // loop pass transforms an inner loop and moves on to process the outer loop. 6146 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 6147 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 6148 6149 if (auto *I = dyn_cast<Instruction>(V)) { 6150 if (auto *ICI = dyn_cast<ICmpInst>(Cond)) { 6151 const SCEV *S = createNodeForSelectOrPHIInstWithICmpInstCond( 6152 I, ICI, TrueVal, FalseVal); 6153 if (!isa<SCEVUnknown>(S)) 6154 return S; 6155 } 6156 } 6157 6158 return createNodeForSelectOrPHIViaUMinSeq(V, Cond, TrueVal, FalseVal); 6159 } 6160 6161 /// Expand GEP instructions into add and multiply operations. This allows them 6162 /// to be analyzed by regular SCEV code. 6163 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 6164 assert(GEP->getSourceElementType()->isSized() && 6165 "GEP source element type must be sized"); 6166 6167 SmallVector<const SCEV *, 4> IndexExprs; 6168 for (Value *Index : GEP->indices()) 6169 IndexExprs.push_back(getSCEV(Index)); 6170 return getGEPExpr(GEP, IndexExprs); 6171 } 6172 6173 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 6174 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6175 return C->getAPInt().countTrailingZeros(); 6176 6177 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 6178 return GetMinTrailingZeros(I->getOperand()); 6179 6180 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 6181 return std::min(GetMinTrailingZeros(T->getOperand()), 6182 (uint32_t)getTypeSizeInBits(T->getType())); 6183 6184 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 6185 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6186 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6187 ? getTypeSizeInBits(E->getType()) 6188 : OpRes; 6189 } 6190 6191 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 6192 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 6193 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 6194 ? getTypeSizeInBits(E->getType()) 6195 : OpRes; 6196 } 6197 6198 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 6199 // The result is the min of all operands results. 6200 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6201 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6202 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6203 return MinOpRes; 6204 } 6205 6206 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 6207 // The result is the sum of all operands results. 6208 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 6209 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 6210 for (unsigned i = 1, e = M->getNumOperands(); 6211 SumOpRes != BitWidth && i != e; ++i) 6212 SumOpRes = 6213 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 6214 return SumOpRes; 6215 } 6216 6217 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 6218 // The result is the min of all operands results. 6219 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 6220 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 6221 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 6222 return MinOpRes; 6223 } 6224 6225 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 6226 // The result is the min of all operands results. 6227 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6228 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6229 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6230 return MinOpRes; 6231 } 6232 6233 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 6234 // The result is the min of all operands results. 6235 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 6236 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 6237 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 6238 return MinOpRes; 6239 } 6240 6241 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6242 // For a SCEVUnknown, ask ValueTracking. 6243 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 6244 return Known.countMinTrailingZeros(); 6245 } 6246 6247 // SCEVUDivExpr 6248 return 0; 6249 } 6250 6251 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 6252 auto I = MinTrailingZerosCache.find(S); 6253 if (I != MinTrailingZerosCache.end()) 6254 return I->second; 6255 6256 uint32_t Result = GetMinTrailingZerosImpl(S); 6257 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 6258 assert(InsertPair.second && "Should insert a new key"); 6259 return InsertPair.first->second; 6260 } 6261 6262 /// Helper method to assign a range to V from metadata present in the IR. 6263 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 6264 if (Instruction *I = dyn_cast<Instruction>(V)) 6265 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 6266 return getConstantRangeFromMetadata(*MD); 6267 6268 return None; 6269 } 6270 6271 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 6272 SCEV::NoWrapFlags Flags) { 6273 if (AddRec->getNoWrapFlags(Flags) != Flags) { 6274 AddRec->setNoWrapFlags(Flags); 6275 UnsignedRanges.erase(AddRec); 6276 SignedRanges.erase(AddRec); 6277 } 6278 } 6279 6280 ConstantRange ScalarEvolution:: 6281 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 6282 const DataLayout &DL = getDataLayout(); 6283 6284 unsigned BitWidth = getTypeSizeInBits(U->getType()); 6285 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 6286 6287 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 6288 // use information about the trip count to improve our available range. Note 6289 // that the trip count independent cases are already handled by known bits. 6290 // WARNING: The definition of recurrence used here is subtly different than 6291 // the one used by AddRec (and thus most of this file). Step is allowed to 6292 // be arbitrarily loop varying here, where AddRec allows only loop invariant 6293 // and other addrecs in the same loop (for non-affine addrecs). The code 6294 // below intentionally handles the case where step is not loop invariant. 6295 auto *P = dyn_cast<PHINode>(U->getValue()); 6296 if (!P) 6297 return FullSet; 6298 6299 // Make sure that no Phi input comes from an unreachable block. Otherwise, 6300 // even the values that are not available in these blocks may come from them, 6301 // and this leads to false-positive recurrence test. 6302 for (auto *Pred : predecessors(P->getParent())) 6303 if (!DT.isReachableFromEntry(Pred)) 6304 return FullSet; 6305 6306 BinaryOperator *BO; 6307 Value *Start, *Step; 6308 if (!matchSimpleRecurrence(P, BO, Start, Step)) 6309 return FullSet; 6310 6311 // If we found a recurrence in reachable code, we must be in a loop. Note 6312 // that BO might be in some subloop of L, and that's completely okay. 6313 auto *L = LI.getLoopFor(P->getParent()); 6314 assert(L && L->getHeader() == P->getParent()); 6315 if (!L->contains(BO->getParent())) 6316 // NOTE: This bailout should be an assert instead. However, asserting 6317 // the condition here exposes a case where LoopFusion is querying SCEV 6318 // with malformed loop information during the midst of the transform. 6319 // There doesn't appear to be an obvious fix, so for the moment bailout 6320 // until the caller issue can be fixed. PR49566 tracks the bug. 6321 return FullSet; 6322 6323 // TODO: Extend to other opcodes such as mul, and div 6324 switch (BO->getOpcode()) { 6325 default: 6326 return FullSet; 6327 case Instruction::AShr: 6328 case Instruction::LShr: 6329 case Instruction::Shl: 6330 break; 6331 }; 6332 6333 if (BO->getOperand(0) != P) 6334 // TODO: Handle the power function forms some day. 6335 return FullSet; 6336 6337 unsigned TC = getSmallConstantMaxTripCount(L); 6338 if (!TC || TC >= BitWidth) 6339 return FullSet; 6340 6341 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 6342 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 6343 assert(KnownStart.getBitWidth() == BitWidth && 6344 KnownStep.getBitWidth() == BitWidth); 6345 6346 // Compute total shift amount, being careful of overflow and bitwidths. 6347 auto MaxShiftAmt = KnownStep.getMaxValue(); 6348 APInt TCAP(BitWidth, TC-1); 6349 bool Overflow = false; 6350 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 6351 if (Overflow) 6352 return FullSet; 6353 6354 switch (BO->getOpcode()) { 6355 default: 6356 llvm_unreachable("filtered out above"); 6357 case Instruction::AShr: { 6358 // For each ashr, three cases: 6359 // shift = 0 => unchanged value 6360 // saturation => 0 or -1 6361 // other => a value closer to zero (of the same sign) 6362 // Thus, the end value is closer to zero than the start. 6363 auto KnownEnd = KnownBits::ashr(KnownStart, 6364 KnownBits::makeConstant(TotalShift)); 6365 if (KnownStart.isNonNegative()) 6366 // Analogous to lshr (simply not yet canonicalized) 6367 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6368 KnownStart.getMaxValue() + 1); 6369 if (KnownStart.isNegative()) 6370 // End >=u Start && End <=s Start 6371 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 6372 KnownEnd.getMaxValue() + 1); 6373 break; 6374 } 6375 case Instruction::LShr: { 6376 // For each lshr, three cases: 6377 // shift = 0 => unchanged value 6378 // saturation => 0 6379 // other => a smaller positive number 6380 // Thus, the low end of the unsigned range is the last value produced. 6381 auto KnownEnd = KnownBits::lshr(KnownStart, 6382 KnownBits::makeConstant(TotalShift)); 6383 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 6384 KnownStart.getMaxValue() + 1); 6385 } 6386 case Instruction::Shl: { 6387 // Iff no bits are shifted out, value increases on every shift. 6388 auto KnownEnd = KnownBits::shl(KnownStart, 6389 KnownBits::makeConstant(TotalShift)); 6390 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 6391 return ConstantRange(KnownStart.getMinValue(), 6392 KnownEnd.getMaxValue() + 1); 6393 break; 6394 } 6395 }; 6396 return FullSet; 6397 } 6398 6399 /// Determine the range for a particular SCEV. If SignHint is 6400 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 6401 /// with a "cleaner" unsigned (resp. signed) representation. 6402 const ConstantRange & 6403 ScalarEvolution::getRangeRef(const SCEV *S, 6404 ScalarEvolution::RangeSignHint SignHint) { 6405 DenseMap<const SCEV *, ConstantRange> &Cache = 6406 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6407 : SignedRanges; 6408 ConstantRange::PreferredRangeType RangeType = 6409 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6410 ? ConstantRange::Unsigned : ConstantRange::Signed; 6411 6412 // See if we've computed this range already. 6413 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6414 if (I != Cache.end()) 6415 return I->second; 6416 6417 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6418 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6419 6420 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6421 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6422 using OBO = OverflowingBinaryOperator; 6423 6424 // If the value has known zeros, the maximum value will have those known zeros 6425 // as well. 6426 uint32_t TZ = GetMinTrailingZeros(S); 6427 if (TZ != 0) { 6428 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6429 ConservativeResult = 6430 ConstantRange(APInt::getMinValue(BitWidth), 6431 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6432 else 6433 ConservativeResult = ConstantRange( 6434 APInt::getSignedMinValue(BitWidth), 6435 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6436 } 6437 6438 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6439 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6440 unsigned WrapType = OBO::AnyWrap; 6441 if (Add->hasNoSignedWrap()) 6442 WrapType |= OBO::NoSignedWrap; 6443 if (Add->hasNoUnsignedWrap()) 6444 WrapType |= OBO::NoUnsignedWrap; 6445 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6446 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6447 WrapType, RangeType); 6448 return setRange(Add, SignHint, 6449 ConservativeResult.intersectWith(X, RangeType)); 6450 } 6451 6452 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6453 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6454 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6455 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6456 return setRange(Mul, SignHint, 6457 ConservativeResult.intersectWith(X, RangeType)); 6458 } 6459 6460 if (isa<SCEVMinMaxExpr>(S) || isa<SCEVSequentialMinMaxExpr>(S)) { 6461 Intrinsic::ID ID; 6462 switch (S->getSCEVType()) { 6463 case scUMaxExpr: 6464 ID = Intrinsic::umax; 6465 break; 6466 case scSMaxExpr: 6467 ID = Intrinsic::smax; 6468 break; 6469 case scUMinExpr: 6470 case scSequentialUMinExpr: 6471 ID = Intrinsic::umin; 6472 break; 6473 case scSMinExpr: 6474 ID = Intrinsic::smin; 6475 break; 6476 default: 6477 llvm_unreachable("Unknown SCEVMinMaxExpr/SCEVSequentialMinMaxExpr."); 6478 } 6479 6480 const auto *NAry = cast<SCEVNAryExpr>(S); 6481 ConstantRange X = getRangeRef(NAry->getOperand(0), SignHint); 6482 for (unsigned i = 1, e = NAry->getNumOperands(); i != e; ++i) 6483 X = X.intrinsic(ID, {X, getRangeRef(NAry->getOperand(i), SignHint)}); 6484 return setRange(S, SignHint, 6485 ConservativeResult.intersectWith(X, RangeType)); 6486 } 6487 6488 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6489 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6490 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6491 return setRange(UDiv, SignHint, 6492 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6493 } 6494 6495 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6496 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6497 return setRange(ZExt, SignHint, 6498 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6499 RangeType)); 6500 } 6501 6502 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6503 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6504 return setRange(SExt, SignHint, 6505 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6506 RangeType)); 6507 } 6508 6509 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6510 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6511 return setRange(PtrToInt, SignHint, X); 6512 } 6513 6514 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6515 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6516 return setRange(Trunc, SignHint, 6517 ConservativeResult.intersectWith(X.truncate(BitWidth), 6518 RangeType)); 6519 } 6520 6521 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6522 // If there's no unsigned wrap, the value will never be less than its 6523 // initial value. 6524 if (AddRec->hasNoUnsignedWrap()) { 6525 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6526 if (!UnsignedMinValue.isZero()) 6527 ConservativeResult = ConservativeResult.intersectWith( 6528 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6529 } 6530 6531 // If there's no signed wrap, and all the operands except initial value have 6532 // the same sign or zero, the value won't ever be: 6533 // 1: smaller than initial value if operands are non negative, 6534 // 2: bigger than initial value if operands are non positive. 6535 // For both cases, value can not cross signed min/max boundary. 6536 if (AddRec->hasNoSignedWrap()) { 6537 bool AllNonNeg = true; 6538 bool AllNonPos = true; 6539 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6540 if (!isKnownNonNegative(AddRec->getOperand(i))) 6541 AllNonNeg = false; 6542 if (!isKnownNonPositive(AddRec->getOperand(i))) 6543 AllNonPos = false; 6544 } 6545 if (AllNonNeg) 6546 ConservativeResult = ConservativeResult.intersectWith( 6547 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6548 APInt::getSignedMinValue(BitWidth)), 6549 RangeType); 6550 else if (AllNonPos) 6551 ConservativeResult = ConservativeResult.intersectWith( 6552 ConstantRange::getNonEmpty( 6553 APInt::getSignedMinValue(BitWidth), 6554 getSignedRangeMax(AddRec->getStart()) + 1), 6555 RangeType); 6556 } 6557 6558 // TODO: non-affine addrec 6559 if (AddRec->isAffine()) { 6560 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6561 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6562 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6563 auto RangeFromAffine = getRangeForAffineAR( 6564 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6565 BitWidth); 6566 ConservativeResult = 6567 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6568 6569 auto RangeFromFactoring = getRangeViaFactoring( 6570 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6571 BitWidth); 6572 ConservativeResult = 6573 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6574 } 6575 6576 // Now try symbolic BE count and more powerful methods. 6577 if (UseExpensiveRangeSharpening) { 6578 const SCEV *SymbolicMaxBECount = 6579 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6580 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6581 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6582 AddRec->hasNoSelfWrap()) { 6583 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6584 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6585 ConservativeResult = 6586 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6587 } 6588 } 6589 } 6590 6591 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6592 } 6593 6594 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6595 6596 // Check if the IR explicitly contains !range metadata. 6597 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6598 if (MDRange) 6599 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6600 RangeType); 6601 6602 // Use facts about recurrences in the underlying IR. Note that add 6603 // recurrences are AddRecExprs and thus don't hit this path. This 6604 // primarily handles shift recurrences. 6605 auto CR = getRangeForUnknownRecurrence(U); 6606 ConservativeResult = ConservativeResult.intersectWith(CR); 6607 6608 // See if ValueTracking can give us a useful range. 6609 const DataLayout &DL = getDataLayout(); 6610 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6611 if (Known.getBitWidth() != BitWidth) 6612 Known = Known.zextOrTrunc(BitWidth); 6613 6614 // ValueTracking may be able to compute a tighter result for the number of 6615 // sign bits than for the value of those sign bits. 6616 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6617 if (U->getType()->isPointerTy()) { 6618 // If the pointer size is larger than the index size type, this can cause 6619 // NS to be larger than BitWidth. So compensate for this. 6620 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6621 int ptrIdxDiff = ptrSize - BitWidth; 6622 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6623 NS -= ptrIdxDiff; 6624 } 6625 6626 if (NS > 1) { 6627 // If we know any of the sign bits, we know all of the sign bits. 6628 if (!Known.Zero.getHiBits(NS).isZero()) 6629 Known.Zero.setHighBits(NS); 6630 if (!Known.One.getHiBits(NS).isZero()) 6631 Known.One.setHighBits(NS); 6632 } 6633 6634 if (Known.getMinValue() != Known.getMaxValue() + 1) 6635 ConservativeResult = ConservativeResult.intersectWith( 6636 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6637 RangeType); 6638 if (NS > 1) 6639 ConservativeResult = ConservativeResult.intersectWith( 6640 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6641 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6642 RangeType); 6643 6644 // A range of Phi is a subset of union of all ranges of its input. 6645 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6646 // Make sure that we do not run over cycled Phis. 6647 if (PendingPhiRanges.insert(Phi).second) { 6648 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6649 for (auto &Op : Phi->operands()) { 6650 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6651 RangeFromOps = RangeFromOps.unionWith(OpRange); 6652 // No point to continue if we already have a full set. 6653 if (RangeFromOps.isFullSet()) 6654 break; 6655 } 6656 ConservativeResult = 6657 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6658 bool Erased = PendingPhiRanges.erase(Phi); 6659 assert(Erased && "Failed to erase Phi properly?"); 6660 (void) Erased; 6661 } 6662 } 6663 6664 return setRange(U, SignHint, std::move(ConservativeResult)); 6665 } 6666 6667 return setRange(S, SignHint, std::move(ConservativeResult)); 6668 } 6669 6670 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6671 // values that the expression can take. Initially, the expression has a value 6672 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6673 // argument defines if we treat Step as signed or unsigned. 6674 static ConstantRange getRangeForAffineARHelper(APInt Step, 6675 const ConstantRange &StartRange, 6676 const APInt &MaxBECount, 6677 unsigned BitWidth, bool Signed) { 6678 // If either Step or MaxBECount is 0, then the expression won't change, and we 6679 // just need to return the initial range. 6680 if (Step == 0 || MaxBECount == 0) 6681 return StartRange; 6682 6683 // If we don't know anything about the initial value (i.e. StartRange is 6684 // FullRange), then we don't know anything about the final range either. 6685 // Return FullRange. 6686 if (StartRange.isFullSet()) 6687 return ConstantRange::getFull(BitWidth); 6688 6689 // If Step is signed and negative, then we use its absolute value, but we also 6690 // note that we're moving in the opposite direction. 6691 bool Descending = Signed && Step.isNegative(); 6692 6693 if (Signed) 6694 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6695 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6696 // This equations hold true due to the well-defined wrap-around behavior of 6697 // APInt. 6698 Step = Step.abs(); 6699 6700 // Check if Offset is more than full span of BitWidth. If it is, the 6701 // expression is guaranteed to overflow. 6702 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6703 return ConstantRange::getFull(BitWidth); 6704 6705 // Offset is by how much the expression can change. Checks above guarantee no 6706 // overflow here. 6707 APInt Offset = Step * MaxBECount; 6708 6709 // Minimum value of the final range will match the minimal value of StartRange 6710 // if the expression is increasing and will be decreased by Offset otherwise. 6711 // Maximum value of the final range will match the maximal value of StartRange 6712 // if the expression is decreasing and will be increased by Offset otherwise. 6713 APInt StartLower = StartRange.getLower(); 6714 APInt StartUpper = StartRange.getUpper() - 1; 6715 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6716 : (StartUpper + std::move(Offset)); 6717 6718 // It's possible that the new minimum/maximum value will fall into the initial 6719 // range (due to wrap around). This means that the expression can take any 6720 // value in this bitwidth, and we have to return full range. 6721 if (StartRange.contains(MovedBoundary)) 6722 return ConstantRange::getFull(BitWidth); 6723 6724 APInt NewLower = 6725 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6726 APInt NewUpper = 6727 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6728 NewUpper += 1; 6729 6730 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6731 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6732 } 6733 6734 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6735 const SCEV *Step, 6736 const SCEV *MaxBECount, 6737 unsigned BitWidth) { 6738 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6739 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6740 "Precondition!"); 6741 6742 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6743 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6744 6745 // First, consider step signed. 6746 ConstantRange StartSRange = getSignedRange(Start); 6747 ConstantRange StepSRange = getSignedRange(Step); 6748 6749 // If Step can be both positive and negative, we need to find ranges for the 6750 // maximum absolute step values in both directions and union them. 6751 ConstantRange SR = 6752 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6753 MaxBECountValue, BitWidth, /* Signed = */ true); 6754 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6755 StartSRange, MaxBECountValue, 6756 BitWidth, /* Signed = */ true)); 6757 6758 // Next, consider step unsigned. 6759 ConstantRange UR = getRangeForAffineARHelper( 6760 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6761 MaxBECountValue, BitWidth, /* Signed = */ false); 6762 6763 // Finally, intersect signed and unsigned ranges. 6764 return SR.intersectWith(UR, ConstantRange::Smallest); 6765 } 6766 6767 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6768 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6769 ScalarEvolution::RangeSignHint SignHint) { 6770 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6771 assert(AddRec->hasNoSelfWrap() && 6772 "This only works for non-self-wrapping AddRecs!"); 6773 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6774 const SCEV *Step = AddRec->getStepRecurrence(*this); 6775 // Only deal with constant step to save compile time. 6776 if (!isa<SCEVConstant>(Step)) 6777 return ConstantRange::getFull(BitWidth); 6778 // Let's make sure that we can prove that we do not self-wrap during 6779 // MaxBECount iterations. We need this because MaxBECount is a maximum 6780 // iteration count estimate, and we might infer nw from some exit for which we 6781 // do not know max exit count (or any other side reasoning). 6782 // TODO: Turn into assert at some point. 6783 if (getTypeSizeInBits(MaxBECount->getType()) > 6784 getTypeSizeInBits(AddRec->getType())) 6785 return ConstantRange::getFull(BitWidth); 6786 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6787 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6788 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6789 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6790 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6791 MaxItersWithoutWrap)) 6792 return ConstantRange::getFull(BitWidth); 6793 6794 ICmpInst::Predicate LEPred = 6795 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6796 ICmpInst::Predicate GEPred = 6797 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6798 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6799 6800 // We know that there is no self-wrap. Let's take Start and End values and 6801 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6802 // the iteration. They either lie inside the range [Min(Start, End), 6803 // Max(Start, End)] or outside it: 6804 // 6805 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6806 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6807 // 6808 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6809 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6810 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6811 // Start <= End and step is positive, or Start >= End and step is negative. 6812 const SCEV *Start = AddRec->getStart(); 6813 ConstantRange StartRange = getRangeRef(Start, SignHint); 6814 ConstantRange EndRange = getRangeRef(End, SignHint); 6815 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6816 // If they already cover full iteration space, we will know nothing useful 6817 // even if we prove what we want to prove. 6818 if (RangeBetween.isFullSet()) 6819 return RangeBetween; 6820 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6821 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6822 : RangeBetween.isWrappedSet(); 6823 if (IsWrappedSet) 6824 return ConstantRange::getFull(BitWidth); 6825 6826 if (isKnownPositive(Step) && 6827 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6828 return RangeBetween; 6829 else if (isKnownNegative(Step) && 6830 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6831 return RangeBetween; 6832 return ConstantRange::getFull(BitWidth); 6833 } 6834 6835 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6836 const SCEV *Step, 6837 const SCEV *MaxBECount, 6838 unsigned BitWidth) { 6839 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6840 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6841 6842 struct SelectPattern { 6843 Value *Condition = nullptr; 6844 APInt TrueValue; 6845 APInt FalseValue; 6846 6847 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6848 const SCEV *S) { 6849 Optional<unsigned> CastOp; 6850 APInt Offset(BitWidth, 0); 6851 6852 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6853 "Should be!"); 6854 6855 // Peel off a constant offset: 6856 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6857 // In the future we could consider being smarter here and handle 6858 // {Start+Step,+,Step} too. 6859 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6860 return; 6861 6862 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6863 S = SA->getOperand(1); 6864 } 6865 6866 // Peel off a cast operation 6867 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6868 CastOp = SCast->getSCEVType(); 6869 S = SCast->getOperand(); 6870 } 6871 6872 using namespace llvm::PatternMatch; 6873 6874 auto *SU = dyn_cast<SCEVUnknown>(S); 6875 const APInt *TrueVal, *FalseVal; 6876 if (!SU || 6877 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6878 m_APInt(FalseVal)))) { 6879 Condition = nullptr; 6880 return; 6881 } 6882 6883 TrueValue = *TrueVal; 6884 FalseValue = *FalseVal; 6885 6886 // Re-apply the cast we peeled off earlier 6887 if (CastOp) 6888 switch (*CastOp) { 6889 default: 6890 llvm_unreachable("Unknown SCEV cast type!"); 6891 6892 case scTruncate: 6893 TrueValue = TrueValue.trunc(BitWidth); 6894 FalseValue = FalseValue.trunc(BitWidth); 6895 break; 6896 case scZeroExtend: 6897 TrueValue = TrueValue.zext(BitWidth); 6898 FalseValue = FalseValue.zext(BitWidth); 6899 break; 6900 case scSignExtend: 6901 TrueValue = TrueValue.sext(BitWidth); 6902 FalseValue = FalseValue.sext(BitWidth); 6903 break; 6904 } 6905 6906 // Re-apply the constant offset we peeled off earlier 6907 TrueValue += Offset; 6908 FalseValue += Offset; 6909 } 6910 6911 bool isRecognized() { return Condition != nullptr; } 6912 }; 6913 6914 SelectPattern StartPattern(*this, BitWidth, Start); 6915 if (!StartPattern.isRecognized()) 6916 return ConstantRange::getFull(BitWidth); 6917 6918 SelectPattern StepPattern(*this, BitWidth, Step); 6919 if (!StepPattern.isRecognized()) 6920 return ConstantRange::getFull(BitWidth); 6921 6922 if (StartPattern.Condition != StepPattern.Condition) { 6923 // We don't handle this case today; but we could, by considering four 6924 // possibilities below instead of two. I'm not sure if there are cases where 6925 // that will help over what getRange already does, though. 6926 return ConstantRange::getFull(BitWidth); 6927 } 6928 6929 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6930 // construct arbitrary general SCEV expressions here. This function is called 6931 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6932 // say) can end up caching a suboptimal value. 6933 6934 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6935 // C2352 and C2512 (otherwise it isn't needed). 6936 6937 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6938 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6939 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6940 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6941 6942 ConstantRange TrueRange = 6943 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6944 ConstantRange FalseRange = 6945 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6946 6947 return TrueRange.unionWith(FalseRange); 6948 } 6949 6950 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6951 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6952 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6953 6954 // Return early if there are no flags to propagate to the SCEV. 6955 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6956 if (BinOp->hasNoUnsignedWrap()) 6957 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6958 if (BinOp->hasNoSignedWrap()) 6959 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6960 if (Flags == SCEV::FlagAnyWrap) 6961 return SCEV::FlagAnyWrap; 6962 6963 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6964 } 6965 6966 const Instruction * 6967 ScalarEvolution::getNonTrivialDefiningScopeBound(const SCEV *S) { 6968 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(S)) 6969 return &*AddRec->getLoop()->getHeader()->begin(); 6970 if (auto *U = dyn_cast<SCEVUnknown>(S)) 6971 if (auto *I = dyn_cast<Instruction>(U->getValue())) 6972 return I; 6973 return nullptr; 6974 } 6975 6976 /// Fills \p Ops with unique operands of \p S, if it has operands. If not, 6977 /// \p Ops remains unmodified. 6978 static void collectUniqueOps(const SCEV *S, 6979 SmallVectorImpl<const SCEV *> &Ops) { 6980 SmallPtrSet<const SCEV *, 4> Unique; 6981 auto InsertUnique = [&](const SCEV *S) { 6982 if (Unique.insert(S).second) 6983 Ops.push_back(S); 6984 }; 6985 if (auto *S2 = dyn_cast<SCEVCastExpr>(S)) 6986 for (auto *Op : S2->operands()) 6987 InsertUnique(Op); 6988 else if (auto *S2 = dyn_cast<SCEVNAryExpr>(S)) 6989 for (auto *Op : S2->operands()) 6990 InsertUnique(Op); 6991 else if (auto *S2 = dyn_cast<SCEVUDivExpr>(S)) 6992 for (auto *Op : S2->operands()) 6993 InsertUnique(Op); 6994 } 6995 6996 const Instruction * 6997 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops, 6998 bool &Precise) { 6999 Precise = true; 7000 // Do a bounded search of the def relation of the requested SCEVs. 7001 SmallSet<const SCEV *, 16> Visited; 7002 SmallVector<const SCEV *> Worklist; 7003 auto pushOp = [&](const SCEV *S) { 7004 if (!Visited.insert(S).second) 7005 return; 7006 // Threshold of 30 here is arbitrary. 7007 if (Visited.size() > 30) { 7008 Precise = false; 7009 return; 7010 } 7011 Worklist.push_back(S); 7012 }; 7013 7014 for (auto *S : Ops) 7015 pushOp(S); 7016 7017 const Instruction *Bound = nullptr; 7018 while (!Worklist.empty()) { 7019 auto *S = Worklist.pop_back_val(); 7020 if (auto *DefI = getNonTrivialDefiningScopeBound(S)) { 7021 if (!Bound || DT.dominates(Bound, DefI)) 7022 Bound = DefI; 7023 } else { 7024 SmallVector<const SCEV *, 4> Ops; 7025 collectUniqueOps(S, Ops); 7026 for (auto *Op : Ops) 7027 pushOp(Op); 7028 } 7029 } 7030 return Bound ? Bound : &*F.getEntryBlock().begin(); 7031 } 7032 7033 const Instruction * 7034 ScalarEvolution::getDefiningScopeBound(ArrayRef<const SCEV *> Ops) { 7035 bool Discard; 7036 return getDefiningScopeBound(Ops, Discard); 7037 } 7038 7039 bool ScalarEvolution::isGuaranteedToTransferExecutionTo(const Instruction *A, 7040 const Instruction *B) { 7041 if (A->getParent() == B->getParent() && 7042 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7043 B->getIterator())) 7044 return true; 7045 7046 auto *BLoop = LI.getLoopFor(B->getParent()); 7047 if (BLoop && BLoop->getHeader() == B->getParent() && 7048 BLoop->getLoopPreheader() == A->getParent() && 7049 isGuaranteedToTransferExecutionToSuccessor(A->getIterator(), 7050 A->getParent()->end()) && 7051 isGuaranteedToTransferExecutionToSuccessor(B->getParent()->begin(), 7052 B->getIterator())) 7053 return true; 7054 return false; 7055 } 7056 7057 7058 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 7059 // Only proceed if we can prove that I does not yield poison. 7060 if (!programUndefinedIfPoison(I)) 7061 return false; 7062 7063 // At this point we know that if I is executed, then it does not wrap 7064 // according to at least one of NSW or NUW. If I is not executed, then we do 7065 // not know if the calculation that I represents would wrap. Multiple 7066 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 7067 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 7068 // derived from other instructions that map to the same SCEV. We cannot make 7069 // that guarantee for cases where I is not executed. So we need to find a 7070 // upper bound on the defining scope for the SCEV, and prove that I is 7071 // executed every time we enter that scope. When the bounding scope is a 7072 // loop (the common case), this is equivalent to proving I executes on every 7073 // iteration of that loop. 7074 SmallVector<const SCEV *> SCEVOps; 7075 for (const Use &Op : I->operands()) { 7076 // I could be an extractvalue from a call to an overflow intrinsic. 7077 // TODO: We can do better here in some cases. 7078 if (isSCEVable(Op->getType())) 7079 SCEVOps.push_back(getSCEV(Op)); 7080 } 7081 auto *DefI = getDefiningScopeBound(SCEVOps); 7082 return isGuaranteedToTransferExecutionTo(DefI, I); 7083 } 7084 7085 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 7086 // If we know that \c I can never be poison period, then that's enough. 7087 if (isSCEVExprNeverPoison(I)) 7088 return true; 7089 7090 // For an add recurrence specifically, we assume that infinite loops without 7091 // side effects are undefined behavior, and then reason as follows: 7092 // 7093 // If the add recurrence is poison in any iteration, it is poison on all 7094 // future iterations (since incrementing poison yields poison). If the result 7095 // of the add recurrence is fed into the loop latch condition and the loop 7096 // does not contain any throws or exiting blocks other than the latch, we now 7097 // have the ability to "choose" whether the backedge is taken or not (by 7098 // choosing a sufficiently evil value for the poison feeding into the branch) 7099 // for every iteration including and after the one in which \p I first became 7100 // poison. There are two possibilities (let's call the iteration in which \p 7101 // I first became poison as K): 7102 // 7103 // 1. In the set of iterations including and after K, the loop body executes 7104 // no side effects. In this case executing the backege an infinte number 7105 // of times will yield undefined behavior. 7106 // 7107 // 2. In the set of iterations including and after K, the loop body executes 7108 // at least one side effect. In this case, that specific instance of side 7109 // effect is control dependent on poison, which also yields undefined 7110 // behavior. 7111 7112 auto *ExitingBB = L->getExitingBlock(); 7113 auto *LatchBB = L->getLoopLatch(); 7114 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 7115 return false; 7116 7117 SmallPtrSet<const Instruction *, 16> Pushed; 7118 SmallVector<const Instruction *, 8> PoisonStack; 7119 7120 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 7121 // things that are known to be poison under that assumption go on the 7122 // PoisonStack. 7123 Pushed.insert(I); 7124 PoisonStack.push_back(I); 7125 7126 bool LatchControlDependentOnPoison = false; 7127 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 7128 const Instruction *Poison = PoisonStack.pop_back_val(); 7129 7130 for (auto *PoisonUser : Poison->users()) { 7131 if (propagatesPoison(cast<Operator>(PoisonUser))) { 7132 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 7133 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 7134 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 7135 assert(BI->isConditional() && "Only possibility!"); 7136 if (BI->getParent() == LatchBB) { 7137 LatchControlDependentOnPoison = true; 7138 break; 7139 } 7140 } 7141 } 7142 } 7143 7144 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 7145 } 7146 7147 ScalarEvolution::LoopProperties 7148 ScalarEvolution::getLoopProperties(const Loop *L) { 7149 using LoopProperties = ScalarEvolution::LoopProperties; 7150 7151 auto Itr = LoopPropertiesCache.find(L); 7152 if (Itr == LoopPropertiesCache.end()) { 7153 auto HasSideEffects = [](Instruction *I) { 7154 if (auto *SI = dyn_cast<StoreInst>(I)) 7155 return !SI->isSimple(); 7156 7157 return I->mayThrow() || I->mayWriteToMemory(); 7158 }; 7159 7160 LoopProperties LP = {/* HasNoAbnormalExits */ true, 7161 /*HasNoSideEffects*/ true}; 7162 7163 for (auto *BB : L->getBlocks()) 7164 for (auto &I : *BB) { 7165 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 7166 LP.HasNoAbnormalExits = false; 7167 if (HasSideEffects(&I)) 7168 LP.HasNoSideEffects = false; 7169 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 7170 break; // We're already as pessimistic as we can get. 7171 } 7172 7173 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 7174 assert(InsertPair.second && "We just checked!"); 7175 Itr = InsertPair.first; 7176 } 7177 7178 return Itr->second; 7179 } 7180 7181 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 7182 // A mustprogress loop without side effects must be finite. 7183 // TODO: The check used here is very conservative. It's only *specific* 7184 // side effects which are well defined in infinite loops. 7185 return isFinite(L) || (isMustProgress(L) && loopHasNoSideEffects(L)); 7186 } 7187 7188 const SCEV *ScalarEvolution::createSCEV(Value *V) { 7189 if (!isSCEVable(V->getType())) 7190 return getUnknown(V); 7191 7192 if (Instruction *I = dyn_cast<Instruction>(V)) { 7193 // Don't attempt to analyze instructions in blocks that aren't 7194 // reachable. Such instructions don't matter, and they aren't required 7195 // to obey basic rules for definitions dominating uses which this 7196 // analysis depends on. 7197 if (!DT.isReachableFromEntry(I->getParent())) 7198 return getUnknown(PoisonValue::get(V->getType())); 7199 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 7200 return getConstant(CI); 7201 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 7202 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 7203 else if (!isa<ConstantExpr>(V)) 7204 return getUnknown(V); 7205 7206 const SCEV *LHS; 7207 const SCEV *RHS; 7208 7209 Operator *U = cast<Operator>(V); 7210 if (auto BO = MatchBinaryOp(U, DT)) { 7211 switch (BO->Opcode) { 7212 case Instruction::Add: { 7213 // The simple thing to do would be to just call getSCEV on both operands 7214 // and call getAddExpr with the result. However if we're looking at a 7215 // bunch of things all added together, this can be quite inefficient, 7216 // because it leads to N-1 getAddExpr calls for N ultimate operands. 7217 // Instead, gather up all the operands and make a single getAddExpr call. 7218 // LLVM IR canonical form means we need only traverse the left operands. 7219 SmallVector<const SCEV *, 4> AddOps; 7220 do { 7221 if (BO->Op) { 7222 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7223 AddOps.push_back(OpSCEV); 7224 break; 7225 } 7226 7227 // If a NUW or NSW flag can be applied to the SCEV for this 7228 // addition, then compute the SCEV for this addition by itself 7229 // with a separate call to getAddExpr. We need to do that 7230 // instead of pushing the operands of the addition onto AddOps, 7231 // since the flags are only known to apply to this particular 7232 // addition - they may not apply to other additions that can be 7233 // formed with operands from AddOps. 7234 const SCEV *RHS = getSCEV(BO->RHS); 7235 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7236 if (Flags != SCEV::FlagAnyWrap) { 7237 const SCEV *LHS = getSCEV(BO->LHS); 7238 if (BO->Opcode == Instruction::Sub) 7239 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 7240 else 7241 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 7242 break; 7243 } 7244 } 7245 7246 if (BO->Opcode == Instruction::Sub) 7247 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 7248 else 7249 AddOps.push_back(getSCEV(BO->RHS)); 7250 7251 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7252 if (!NewBO || (NewBO->Opcode != Instruction::Add && 7253 NewBO->Opcode != Instruction::Sub)) { 7254 AddOps.push_back(getSCEV(BO->LHS)); 7255 break; 7256 } 7257 BO = NewBO; 7258 } while (true); 7259 7260 return getAddExpr(AddOps); 7261 } 7262 7263 case Instruction::Mul: { 7264 SmallVector<const SCEV *, 4> MulOps; 7265 do { 7266 if (BO->Op) { 7267 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 7268 MulOps.push_back(OpSCEV); 7269 break; 7270 } 7271 7272 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 7273 if (Flags != SCEV::FlagAnyWrap) { 7274 LHS = getSCEV(BO->LHS); 7275 RHS = getSCEV(BO->RHS); 7276 MulOps.push_back(getMulExpr(LHS, RHS, Flags)); 7277 break; 7278 } 7279 } 7280 7281 MulOps.push_back(getSCEV(BO->RHS)); 7282 auto NewBO = MatchBinaryOp(BO->LHS, DT); 7283 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 7284 MulOps.push_back(getSCEV(BO->LHS)); 7285 break; 7286 } 7287 BO = NewBO; 7288 } while (true); 7289 7290 return getMulExpr(MulOps); 7291 } 7292 case Instruction::UDiv: 7293 LHS = getSCEV(BO->LHS); 7294 RHS = getSCEV(BO->RHS); 7295 return getUDivExpr(LHS, RHS); 7296 case Instruction::URem: 7297 LHS = getSCEV(BO->LHS); 7298 RHS = getSCEV(BO->RHS); 7299 return getURemExpr(LHS, RHS); 7300 case Instruction::Sub: { 7301 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 7302 if (BO->Op) 7303 Flags = getNoWrapFlagsFromUB(BO->Op); 7304 LHS = getSCEV(BO->LHS); 7305 RHS = getSCEV(BO->RHS); 7306 return getMinusSCEV(LHS, RHS, Flags); 7307 } 7308 case Instruction::And: 7309 // For an expression like x&255 that merely masks off the high bits, 7310 // use zext(trunc(x)) as the SCEV expression. 7311 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7312 if (CI->isZero()) 7313 return getSCEV(BO->RHS); 7314 if (CI->isMinusOne()) 7315 return getSCEV(BO->LHS); 7316 const APInt &A = CI->getValue(); 7317 7318 // Instcombine's ShrinkDemandedConstant may strip bits out of 7319 // constants, obscuring what would otherwise be a low-bits mask. 7320 // Use computeKnownBits to compute what ShrinkDemandedConstant 7321 // knew about to reconstruct a low-bits mask value. 7322 unsigned LZ = A.countLeadingZeros(); 7323 unsigned TZ = A.countTrailingZeros(); 7324 unsigned BitWidth = A.getBitWidth(); 7325 KnownBits Known(BitWidth); 7326 computeKnownBits(BO->LHS, Known, getDataLayout(), 7327 0, &AC, nullptr, &DT); 7328 7329 APInt EffectiveMask = 7330 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 7331 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 7332 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 7333 const SCEV *LHS = getSCEV(BO->LHS); 7334 const SCEV *ShiftedLHS = nullptr; 7335 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 7336 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 7337 // For an expression like (x * 8) & 8, simplify the multiply. 7338 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 7339 unsigned GCD = std::min(MulZeros, TZ); 7340 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 7341 SmallVector<const SCEV*, 4> MulOps; 7342 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 7343 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 7344 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 7345 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 7346 } 7347 } 7348 if (!ShiftedLHS) 7349 ShiftedLHS = getUDivExpr(LHS, MulCount); 7350 return getMulExpr( 7351 getZeroExtendExpr( 7352 getTruncateExpr(ShiftedLHS, 7353 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 7354 BO->LHS->getType()), 7355 MulCount); 7356 } 7357 } 7358 // Binary `and` is a bit-wise `umin`. 7359 if (BO->LHS->getType()->isIntegerTy(1)) { 7360 LHS = getSCEV(BO->LHS); 7361 RHS = getSCEV(BO->RHS); 7362 return getUMinExpr(LHS, RHS); 7363 } 7364 break; 7365 7366 case Instruction::Or: 7367 // If the RHS of the Or is a constant, we may have something like: 7368 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 7369 // optimizations will transparently handle this case. 7370 // 7371 // In order for this transformation to be safe, the LHS must be of the 7372 // form X*(2^n) and the Or constant must be less than 2^n. 7373 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7374 const SCEV *LHS = getSCEV(BO->LHS); 7375 const APInt &CIVal = CI->getValue(); 7376 if (GetMinTrailingZeros(LHS) >= 7377 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 7378 // Build a plain add SCEV. 7379 return getAddExpr(LHS, getSCEV(CI), 7380 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 7381 } 7382 } 7383 // Binary `or` is a bit-wise `umax`. 7384 if (BO->LHS->getType()->isIntegerTy(1)) { 7385 LHS = getSCEV(BO->LHS); 7386 RHS = getSCEV(BO->RHS); 7387 return getUMaxExpr(LHS, RHS); 7388 } 7389 break; 7390 7391 case Instruction::Xor: 7392 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 7393 // If the RHS of xor is -1, then this is a not operation. 7394 if (CI->isMinusOne()) 7395 return getNotSCEV(getSCEV(BO->LHS)); 7396 7397 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 7398 // This is a variant of the check for xor with -1, and it handles 7399 // the case where instcombine has trimmed non-demanded bits out 7400 // of an xor with -1. 7401 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 7402 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 7403 if (LBO->getOpcode() == Instruction::And && 7404 LCI->getValue() == CI->getValue()) 7405 if (const SCEVZeroExtendExpr *Z = 7406 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 7407 Type *UTy = BO->LHS->getType(); 7408 const SCEV *Z0 = Z->getOperand(); 7409 Type *Z0Ty = Z0->getType(); 7410 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 7411 7412 // If C is a low-bits mask, the zero extend is serving to 7413 // mask off the high bits. Complement the operand and 7414 // re-apply the zext. 7415 if (CI->getValue().isMask(Z0TySize)) 7416 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 7417 7418 // If C is a single bit, it may be in the sign-bit position 7419 // before the zero-extend. In this case, represent the xor 7420 // using an add, which is equivalent, and re-apply the zext. 7421 APInt Trunc = CI->getValue().trunc(Z0TySize); 7422 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 7423 Trunc.isSignMask()) 7424 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 7425 UTy); 7426 } 7427 } 7428 break; 7429 7430 case Instruction::Shl: 7431 // Turn shift left of a constant amount into a multiply. 7432 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 7433 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 7434 7435 // If the shift count is not less than the bitwidth, the result of 7436 // the shift is undefined. Don't try to analyze it, because the 7437 // resolution chosen here may differ from the resolution chosen in 7438 // other parts of the compiler. 7439 if (SA->getValue().uge(BitWidth)) 7440 break; 7441 7442 // We can safely preserve the nuw flag in all cases. It's also safe to 7443 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 7444 // requires special handling. It can be preserved as long as we're not 7445 // left shifting by bitwidth - 1. 7446 auto Flags = SCEV::FlagAnyWrap; 7447 if (BO->Op) { 7448 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 7449 if ((MulFlags & SCEV::FlagNSW) && 7450 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 7451 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 7452 if (MulFlags & SCEV::FlagNUW) 7453 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 7454 } 7455 7456 ConstantInt *X = ConstantInt::get( 7457 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 7458 return getMulExpr(getSCEV(BO->LHS), getConstant(X), Flags); 7459 } 7460 break; 7461 7462 case Instruction::AShr: { 7463 // AShr X, C, where C is a constant. 7464 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 7465 if (!CI) 7466 break; 7467 7468 Type *OuterTy = BO->LHS->getType(); 7469 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 7470 // If the shift count is not less than the bitwidth, the result of 7471 // the shift is undefined. Don't try to analyze it, because the 7472 // resolution chosen here may differ from the resolution chosen in 7473 // other parts of the compiler. 7474 if (CI->getValue().uge(BitWidth)) 7475 break; 7476 7477 if (CI->isZero()) 7478 return getSCEV(BO->LHS); // shift by zero --> noop 7479 7480 uint64_t AShrAmt = CI->getZExtValue(); 7481 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 7482 7483 Operator *L = dyn_cast<Operator>(BO->LHS); 7484 if (L && L->getOpcode() == Instruction::Shl) { 7485 // X = Shl A, n 7486 // Y = AShr X, m 7487 // Both n and m are constant. 7488 7489 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7490 if (L->getOperand(1) == BO->RHS) 7491 // For a two-shift sext-inreg, i.e. n = m, 7492 // use sext(trunc(x)) as the SCEV expression. 7493 return getSignExtendExpr( 7494 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7495 7496 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7497 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7498 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7499 if (ShlAmt > AShrAmt) { 7500 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7501 // expression. We already checked that ShlAmt < BitWidth, so 7502 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7503 // ShlAmt - AShrAmt < Amt. 7504 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7505 ShlAmt - AShrAmt); 7506 return getSignExtendExpr( 7507 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7508 getConstant(Mul)), OuterTy); 7509 } 7510 } 7511 } 7512 break; 7513 } 7514 } 7515 } 7516 7517 switch (U->getOpcode()) { 7518 case Instruction::Trunc: 7519 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7520 7521 case Instruction::ZExt: 7522 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7523 7524 case Instruction::SExt: 7525 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7526 // The NSW flag of a subtract does not always survive the conversion to 7527 // A + (-1)*B. By pushing sign extension onto its operands we are much 7528 // more likely to preserve NSW and allow later AddRec optimisations. 7529 // 7530 // NOTE: This is effectively duplicating this logic from getSignExtend: 7531 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7532 // but by that point the NSW information has potentially been lost. 7533 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7534 Type *Ty = U->getType(); 7535 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7536 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7537 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7538 } 7539 } 7540 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7541 7542 case Instruction::BitCast: 7543 // BitCasts are no-op casts so we just eliminate the cast. 7544 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7545 return getSCEV(U->getOperand(0)); 7546 break; 7547 7548 case Instruction::PtrToInt: { 7549 // Pointer to integer cast is straight-forward, so do model it. 7550 const SCEV *Op = getSCEV(U->getOperand(0)); 7551 Type *DstIntTy = U->getType(); 7552 // But only if effective SCEV (integer) type is wide enough to represent 7553 // all possible pointer values. 7554 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7555 if (isa<SCEVCouldNotCompute>(IntOp)) 7556 return getUnknown(V); 7557 return IntOp; 7558 } 7559 case Instruction::IntToPtr: 7560 // Just don't deal with inttoptr casts. 7561 return getUnknown(V); 7562 7563 case Instruction::SDiv: 7564 // If both operands are non-negative, this is just an udiv. 7565 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7566 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7567 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7568 break; 7569 7570 case Instruction::SRem: 7571 // If both operands are non-negative, this is just an urem. 7572 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7573 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7574 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7575 break; 7576 7577 case Instruction::GetElementPtr: 7578 return createNodeForGEP(cast<GEPOperator>(U)); 7579 7580 case Instruction::PHI: 7581 return createNodeForPHI(cast<PHINode>(U)); 7582 7583 case Instruction::Select: 7584 return createNodeForSelectOrPHI(U, U->getOperand(0), U->getOperand(1), 7585 U->getOperand(2)); 7586 7587 case Instruction::Call: 7588 case Instruction::Invoke: 7589 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7590 return getSCEV(RV); 7591 7592 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7593 switch (II->getIntrinsicID()) { 7594 case Intrinsic::abs: 7595 return getAbsExpr( 7596 getSCEV(II->getArgOperand(0)), 7597 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7598 case Intrinsic::umax: 7599 LHS = getSCEV(II->getArgOperand(0)); 7600 RHS = getSCEV(II->getArgOperand(1)); 7601 return getUMaxExpr(LHS, RHS); 7602 case Intrinsic::umin: 7603 LHS = getSCEV(II->getArgOperand(0)); 7604 RHS = getSCEV(II->getArgOperand(1)); 7605 return getUMinExpr(LHS, RHS); 7606 case Intrinsic::smax: 7607 LHS = getSCEV(II->getArgOperand(0)); 7608 RHS = getSCEV(II->getArgOperand(1)); 7609 return getSMaxExpr(LHS, RHS); 7610 case Intrinsic::smin: 7611 LHS = getSCEV(II->getArgOperand(0)); 7612 RHS = getSCEV(II->getArgOperand(1)); 7613 return getSMinExpr(LHS, RHS); 7614 case Intrinsic::usub_sat: { 7615 const SCEV *X = getSCEV(II->getArgOperand(0)); 7616 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7617 const SCEV *ClampedY = getUMinExpr(X, Y); 7618 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7619 } 7620 case Intrinsic::uadd_sat: { 7621 const SCEV *X = getSCEV(II->getArgOperand(0)); 7622 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7623 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7624 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7625 } 7626 case Intrinsic::start_loop_iterations: 7627 // A start_loop_iterations is just equivalent to the first operand for 7628 // SCEV purposes. 7629 return getSCEV(II->getArgOperand(0)); 7630 default: 7631 break; 7632 } 7633 } 7634 break; 7635 } 7636 7637 return getUnknown(V); 7638 } 7639 7640 //===----------------------------------------------------------------------===// 7641 // Iteration Count Computation Code 7642 // 7643 7644 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount, 7645 bool Extend) { 7646 if (isa<SCEVCouldNotCompute>(ExitCount)) 7647 return getCouldNotCompute(); 7648 7649 auto *ExitCountType = ExitCount->getType(); 7650 assert(ExitCountType->isIntegerTy()); 7651 7652 if (!Extend) 7653 return getAddExpr(ExitCount, getOne(ExitCountType)); 7654 7655 auto *WiderType = Type::getIntNTy(ExitCountType->getContext(), 7656 1 + ExitCountType->getScalarSizeInBits()); 7657 return getAddExpr(getNoopOrZeroExtend(ExitCount, WiderType), 7658 getOne(WiderType)); 7659 } 7660 7661 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7662 if (!ExitCount) 7663 return 0; 7664 7665 ConstantInt *ExitConst = ExitCount->getValue(); 7666 7667 // Guard against huge trip counts. 7668 if (ExitConst->getValue().getActiveBits() > 32) 7669 return 0; 7670 7671 // In case of integer overflow, this returns 0, which is correct. 7672 return ((unsigned)ExitConst->getZExtValue()) + 1; 7673 } 7674 7675 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7676 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7677 return getConstantTripCount(ExitCount); 7678 } 7679 7680 unsigned 7681 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7682 const BasicBlock *ExitingBlock) { 7683 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7684 assert(L->isLoopExiting(ExitingBlock) && 7685 "Exiting block must actually branch out of the loop!"); 7686 const SCEVConstant *ExitCount = 7687 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7688 return getConstantTripCount(ExitCount); 7689 } 7690 7691 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7692 const auto *MaxExitCount = 7693 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7694 return getConstantTripCount(MaxExitCount); 7695 } 7696 7697 const SCEV *ScalarEvolution::getConstantMaxTripCountFromArray(const Loop *L) { 7698 // We can't infer from Array in Irregular Loop. 7699 // FIXME: It's hard to infer loop bound from array operated in Nested Loop. 7700 if (!L->isLoopSimplifyForm() || !L->isInnermost()) 7701 return getCouldNotCompute(); 7702 7703 // FIXME: To make the scene more typical, we only analysis loops that have 7704 // one exiting block and that block must be the latch. To make it easier to 7705 // capture loops that have memory access and memory access will be executed 7706 // in each iteration. 7707 const BasicBlock *LoopLatch = L->getLoopLatch(); 7708 assert(LoopLatch && "See defination of simplify form loop."); 7709 if (L->getExitingBlock() != LoopLatch) 7710 return getCouldNotCompute(); 7711 7712 const DataLayout &DL = getDataLayout(); 7713 SmallVector<const SCEV *> InferCountColl; 7714 for (auto *BB : L->getBlocks()) { 7715 // Go here, we can know that Loop is a single exiting and simplified form 7716 // loop. Make sure that infer from Memory Operation in those BBs must be 7717 // executed in loop. First step, we can make sure that max execution time 7718 // of MemAccessBB in loop represents latch max excution time. 7719 // If MemAccessBB does not dom Latch, skip. 7720 // Entry 7721 // │ 7722 // ┌─────▼─────┐ 7723 // │Loop Header◄─────┐ 7724 // └──┬──────┬─┘ │ 7725 // │ │ │ 7726 // ┌────────▼──┐ ┌─▼─────┐ │ 7727 // │MemAccessBB│ │OtherBB│ │ 7728 // └────────┬──┘ └─┬─────┘ │ 7729 // │ │ │ 7730 // ┌─▼──────▼─┐ │ 7731 // │Loop Latch├─────┘ 7732 // └────┬─────┘ 7733 // ▼ 7734 // Exit 7735 if (!DT.dominates(BB, LoopLatch)) 7736 continue; 7737 7738 for (Instruction &Inst : *BB) { 7739 // Find Memory Operation Instruction. 7740 auto *GEP = getLoadStorePointerOperand(&Inst); 7741 if (!GEP) 7742 continue; 7743 7744 auto *ElemSize = dyn_cast<SCEVConstant>(getElementSize(&Inst)); 7745 // Do not infer from scalar type, eg."ElemSize = sizeof()". 7746 if (!ElemSize) 7747 continue; 7748 7749 // Use a existing polynomial recurrence on the trip count. 7750 auto *AddRec = dyn_cast<SCEVAddRecExpr>(getSCEV(GEP)); 7751 if (!AddRec) 7752 continue; 7753 auto *ArrBase = dyn_cast<SCEVUnknown>(getPointerBase(AddRec)); 7754 auto *Step = dyn_cast<SCEVConstant>(AddRec->getStepRecurrence(*this)); 7755 if (!ArrBase || !Step) 7756 continue; 7757 assert(isLoopInvariant(ArrBase, L) && "See addrec definition"); 7758 7759 // Only handle { %array + step }, 7760 // FIXME: {(SCEVAddRecExpr) + step } could not be analysed here. 7761 if (AddRec->getStart() != ArrBase) 7762 continue; 7763 7764 // Memory operation pattern which have gaps. 7765 // Or repeat memory opreation. 7766 // And index of GEP wraps arround. 7767 if (Step->getAPInt().getActiveBits() > 32 || 7768 Step->getAPInt().getZExtValue() != 7769 ElemSize->getAPInt().getZExtValue() || 7770 Step->isZero() || Step->getAPInt().isNegative()) 7771 continue; 7772 7773 // Only infer from stack array which has certain size. 7774 // Make sure alloca instruction is not excuted in loop. 7775 AllocaInst *AllocateInst = dyn_cast<AllocaInst>(ArrBase->getValue()); 7776 if (!AllocateInst || L->contains(AllocateInst->getParent())) 7777 continue; 7778 7779 // Make sure only handle normal array. 7780 auto *Ty = dyn_cast<ArrayType>(AllocateInst->getAllocatedType()); 7781 auto *ArrSize = dyn_cast<ConstantInt>(AllocateInst->getArraySize()); 7782 if (!Ty || !ArrSize || !ArrSize->isOne()) 7783 continue; 7784 7785 // FIXME: Since gep indices are silently zext to the indexing type, 7786 // we will have a narrow gep index which wraps around rather than 7787 // increasing strictly, we shoule ensure that step is increasing 7788 // strictly by the loop iteration. 7789 // Now we can infer a max execution time by MemLength/StepLength. 7790 const SCEV *MemSize = 7791 getConstant(Step->getType(), DL.getTypeAllocSize(Ty)); 7792 auto *MaxExeCount = 7793 dyn_cast<SCEVConstant>(getUDivCeilSCEV(MemSize, Step)); 7794 if (!MaxExeCount || MaxExeCount->getAPInt().getActiveBits() > 32) 7795 continue; 7796 7797 // If the loop reaches the maximum number of executions, we can not 7798 // access bytes starting outside the statically allocated size without 7799 // being immediate UB. But it is allowed to enter loop header one more 7800 // time. 7801 auto *InferCount = dyn_cast<SCEVConstant>( 7802 getAddExpr(MaxExeCount, getOne(MaxExeCount->getType()))); 7803 // Discard the maximum number of execution times under 32bits. 7804 if (!InferCount || InferCount->getAPInt().getActiveBits() > 32) 7805 continue; 7806 7807 InferCountColl.push_back(InferCount); 7808 } 7809 } 7810 7811 if (InferCountColl.size() == 0) 7812 return getCouldNotCompute(); 7813 7814 return getUMinFromMismatchedTypes(InferCountColl); 7815 } 7816 7817 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7818 SmallVector<BasicBlock *, 8> ExitingBlocks; 7819 L->getExitingBlocks(ExitingBlocks); 7820 7821 Optional<unsigned> Res = None; 7822 for (auto *ExitingBB : ExitingBlocks) { 7823 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7824 if (!Res) 7825 Res = Multiple; 7826 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7827 } 7828 return Res.value_or(1); 7829 } 7830 7831 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7832 const SCEV *ExitCount) { 7833 if (ExitCount == getCouldNotCompute()) 7834 return 1; 7835 7836 // Get the trip count 7837 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7838 7839 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7840 if (!TC) 7841 // Attempt to factor more general cases. Returns the greatest power of 7842 // two divisor. If overflow happens, the trip count expression is still 7843 // divisible by the greatest power of 2 divisor returned. 7844 return 1U << std::min((uint32_t)31, 7845 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7846 7847 ConstantInt *Result = TC->getValue(); 7848 7849 // Guard against huge trip counts (this requires checking 7850 // for zero to handle the case where the trip count == -1 and the 7851 // addition wraps). 7852 if (!Result || Result->getValue().getActiveBits() > 32 || 7853 Result->getValue().getActiveBits() == 0) 7854 return 1; 7855 7856 return (unsigned)Result->getZExtValue(); 7857 } 7858 7859 /// Returns the largest constant divisor of the trip count of this loop as a 7860 /// normal unsigned value, if possible. This means that the actual trip count is 7861 /// always a multiple of the returned value (don't forget the trip count could 7862 /// very well be zero as well!). 7863 /// 7864 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7865 /// multiple of a constant (which is also the case if the trip count is simply 7866 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7867 /// if the trip count is very large (>= 2^32). 7868 /// 7869 /// As explained in the comments for getSmallConstantTripCount, this assumes 7870 /// that control exits the loop via ExitingBlock. 7871 unsigned 7872 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7873 const BasicBlock *ExitingBlock) { 7874 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7875 assert(L->isLoopExiting(ExitingBlock) && 7876 "Exiting block must actually branch out of the loop!"); 7877 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7878 return getSmallConstantTripMultiple(L, ExitCount); 7879 } 7880 7881 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7882 const BasicBlock *ExitingBlock, 7883 ExitCountKind Kind) { 7884 switch (Kind) { 7885 case Exact: 7886 case SymbolicMaximum: 7887 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7888 case ConstantMaximum: 7889 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7890 }; 7891 llvm_unreachable("Invalid ExitCountKind!"); 7892 } 7893 7894 const SCEV * 7895 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7896 SmallVector<const SCEVPredicate *, 4> &Preds) { 7897 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7898 } 7899 7900 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7901 ExitCountKind Kind) { 7902 switch (Kind) { 7903 case Exact: 7904 return getBackedgeTakenInfo(L).getExact(L, this); 7905 case ConstantMaximum: 7906 return getBackedgeTakenInfo(L).getConstantMax(this); 7907 case SymbolicMaximum: 7908 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7909 }; 7910 llvm_unreachable("Invalid ExitCountKind!"); 7911 } 7912 7913 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7914 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7915 } 7916 7917 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7918 static void PushLoopPHIs(const Loop *L, 7919 SmallVectorImpl<Instruction *> &Worklist, 7920 SmallPtrSetImpl<Instruction *> &Visited) { 7921 BasicBlock *Header = L->getHeader(); 7922 7923 // Push all Loop-header PHIs onto the Worklist stack. 7924 for (PHINode &PN : Header->phis()) 7925 if (Visited.insert(&PN).second) 7926 Worklist.push_back(&PN); 7927 } 7928 7929 const ScalarEvolution::BackedgeTakenInfo & 7930 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7931 auto &BTI = getBackedgeTakenInfo(L); 7932 if (BTI.hasFullInfo()) 7933 return BTI; 7934 7935 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7936 7937 if (!Pair.second) 7938 return Pair.first->second; 7939 7940 BackedgeTakenInfo Result = 7941 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7942 7943 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7944 } 7945 7946 ScalarEvolution::BackedgeTakenInfo & 7947 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7948 // Initially insert an invalid entry for this loop. If the insertion 7949 // succeeds, proceed to actually compute a backedge-taken count and 7950 // update the value. The temporary CouldNotCompute value tells SCEV 7951 // code elsewhere that it shouldn't attempt to request a new 7952 // backedge-taken count, which could result in infinite recursion. 7953 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7954 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7955 if (!Pair.second) 7956 return Pair.first->second; 7957 7958 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7959 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7960 // must be cleared in this scope. 7961 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7962 7963 // In product build, there are no usage of statistic. 7964 (void)NumTripCountsComputed; 7965 (void)NumTripCountsNotComputed; 7966 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7967 const SCEV *BEExact = Result.getExact(L, this); 7968 if (BEExact != getCouldNotCompute()) { 7969 assert(isLoopInvariant(BEExact, L) && 7970 isLoopInvariant(Result.getConstantMax(this), L) && 7971 "Computed backedge-taken count isn't loop invariant for loop!"); 7972 ++NumTripCountsComputed; 7973 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7974 isa<PHINode>(L->getHeader()->begin())) { 7975 // Only count loops that have phi nodes as not being computable. 7976 ++NumTripCountsNotComputed; 7977 } 7978 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7979 7980 // Now that we know more about the trip count for this loop, forget any 7981 // existing SCEV values for PHI nodes in this loop since they are only 7982 // conservative estimates made without the benefit of trip count 7983 // information. This invalidation is not necessary for correctness, and is 7984 // only done to produce more precise results. 7985 if (Result.hasAnyInfo()) { 7986 // Invalidate any expression using an addrec in this loop. 7987 SmallVector<const SCEV *, 8> ToForget; 7988 auto LoopUsersIt = LoopUsers.find(L); 7989 if (LoopUsersIt != LoopUsers.end()) 7990 append_range(ToForget, LoopUsersIt->second); 7991 forgetMemoizedResults(ToForget); 7992 7993 // Invalidate constant-evolved loop header phis. 7994 for (PHINode &PN : L->getHeader()->phis()) 7995 ConstantEvolutionLoopExitValue.erase(&PN); 7996 } 7997 7998 // Re-lookup the insert position, since the call to 7999 // computeBackedgeTakenCount above could result in a 8000 // recusive call to getBackedgeTakenInfo (on a different 8001 // loop), which would invalidate the iterator computed 8002 // earlier. 8003 return BackedgeTakenCounts.find(L)->second = std::move(Result); 8004 } 8005 8006 void ScalarEvolution::forgetAllLoops() { 8007 // This method is intended to forget all info about loops. It should 8008 // invalidate caches as if the following happened: 8009 // - The trip counts of all loops have changed arbitrarily 8010 // - Every llvm::Value has been updated in place to produce a different 8011 // result. 8012 BackedgeTakenCounts.clear(); 8013 PredicatedBackedgeTakenCounts.clear(); 8014 BECountUsers.clear(); 8015 LoopPropertiesCache.clear(); 8016 ConstantEvolutionLoopExitValue.clear(); 8017 ValueExprMap.clear(); 8018 ValuesAtScopes.clear(); 8019 ValuesAtScopesUsers.clear(); 8020 LoopDispositions.clear(); 8021 BlockDispositions.clear(); 8022 UnsignedRanges.clear(); 8023 SignedRanges.clear(); 8024 ExprValueMap.clear(); 8025 HasRecMap.clear(); 8026 MinTrailingZerosCache.clear(); 8027 PredicatedSCEVRewrites.clear(); 8028 } 8029 8030 void ScalarEvolution::forgetLoop(const Loop *L) { 8031 SmallVector<const Loop *, 16> LoopWorklist(1, L); 8032 SmallVector<Instruction *, 32> Worklist; 8033 SmallPtrSet<Instruction *, 16> Visited; 8034 SmallVector<const SCEV *, 16> ToForget; 8035 8036 // Iterate over all the loops and sub-loops to drop SCEV information. 8037 while (!LoopWorklist.empty()) { 8038 auto *CurrL = LoopWorklist.pop_back_val(); 8039 8040 // Drop any stored trip count value. 8041 forgetBackedgeTakenCounts(CurrL, /* Predicated */ false); 8042 forgetBackedgeTakenCounts(CurrL, /* Predicated */ true); 8043 8044 // Drop information about predicated SCEV rewrites for this loop. 8045 for (auto I = PredicatedSCEVRewrites.begin(); 8046 I != PredicatedSCEVRewrites.end();) { 8047 std::pair<const SCEV *, const Loop *> Entry = I->first; 8048 if (Entry.second == CurrL) 8049 PredicatedSCEVRewrites.erase(I++); 8050 else 8051 ++I; 8052 } 8053 8054 auto LoopUsersItr = LoopUsers.find(CurrL); 8055 if (LoopUsersItr != LoopUsers.end()) { 8056 ToForget.insert(ToForget.end(), LoopUsersItr->second.begin(), 8057 LoopUsersItr->second.end()); 8058 } 8059 8060 // Drop information about expressions based on loop-header PHIs. 8061 PushLoopPHIs(CurrL, Worklist, Visited); 8062 8063 while (!Worklist.empty()) { 8064 Instruction *I = Worklist.pop_back_val(); 8065 8066 ValueExprMapType::iterator It = 8067 ValueExprMap.find_as(static_cast<Value *>(I)); 8068 if (It != ValueExprMap.end()) { 8069 eraseValueFromMap(It->first); 8070 ToForget.push_back(It->second); 8071 if (PHINode *PN = dyn_cast<PHINode>(I)) 8072 ConstantEvolutionLoopExitValue.erase(PN); 8073 } 8074 8075 PushDefUseChildren(I, Worklist, Visited); 8076 } 8077 8078 LoopPropertiesCache.erase(CurrL); 8079 // Forget all contained loops too, to avoid dangling entries in the 8080 // ValuesAtScopes map. 8081 LoopWorklist.append(CurrL->begin(), CurrL->end()); 8082 } 8083 forgetMemoizedResults(ToForget); 8084 } 8085 8086 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 8087 forgetLoop(L->getOutermostLoop()); 8088 } 8089 8090 void ScalarEvolution::forgetValue(Value *V) { 8091 Instruction *I = dyn_cast<Instruction>(V); 8092 if (!I) return; 8093 8094 // Drop information about expressions based on loop-header PHIs. 8095 SmallVector<Instruction *, 16> Worklist; 8096 SmallPtrSet<Instruction *, 8> Visited; 8097 SmallVector<const SCEV *, 8> ToForget; 8098 Worklist.push_back(I); 8099 Visited.insert(I); 8100 8101 while (!Worklist.empty()) { 8102 I = Worklist.pop_back_val(); 8103 ValueExprMapType::iterator It = 8104 ValueExprMap.find_as(static_cast<Value *>(I)); 8105 if (It != ValueExprMap.end()) { 8106 eraseValueFromMap(It->first); 8107 ToForget.push_back(It->second); 8108 if (PHINode *PN = dyn_cast<PHINode>(I)) 8109 ConstantEvolutionLoopExitValue.erase(PN); 8110 } 8111 8112 PushDefUseChildren(I, Worklist, Visited); 8113 } 8114 forgetMemoizedResults(ToForget); 8115 } 8116 8117 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 8118 LoopDispositions.clear(); 8119 } 8120 8121 /// Get the exact loop backedge taken count considering all loop exits. A 8122 /// computable result can only be returned for loops with all exiting blocks 8123 /// dominating the latch. howFarToZero assumes that the limit of each loop test 8124 /// is never skipped. This is a valid assumption as long as the loop exits via 8125 /// that test. For precise results, it is the caller's responsibility to specify 8126 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 8127 const SCEV * 8128 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 8129 SmallVector<const SCEVPredicate *, 4> *Preds) const { 8130 // If any exits were not computable, the loop is not computable. 8131 if (!isComplete() || ExitNotTaken.empty()) 8132 return SE->getCouldNotCompute(); 8133 8134 const BasicBlock *Latch = L->getLoopLatch(); 8135 // All exiting blocks we have collected must dominate the only backedge. 8136 if (!Latch) 8137 return SE->getCouldNotCompute(); 8138 8139 // All exiting blocks we have gathered dominate loop's latch, so exact trip 8140 // count is simply a minimum out of all these calculated exit counts. 8141 SmallVector<const SCEV *, 2> Ops; 8142 for (auto &ENT : ExitNotTaken) { 8143 const SCEV *BECount = ENT.ExactNotTaken; 8144 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 8145 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 8146 "We should only have known counts for exiting blocks that dominate " 8147 "latch!"); 8148 8149 Ops.push_back(BECount); 8150 8151 if (Preds) 8152 for (auto *P : ENT.Predicates) 8153 Preds->push_back(P); 8154 8155 assert((Preds || ENT.hasAlwaysTruePredicate()) && 8156 "Predicate should be always true!"); 8157 } 8158 8159 // If an earlier exit exits on the first iteration (exit count zero), then 8160 // a later poison exit count should not propagate into the result. This are 8161 // exactly the semantics provided by umin_seq. 8162 return SE->getUMinFromMismatchedTypes(Ops, /* Sequential */ true); 8163 } 8164 8165 /// Get the exact not taken count for this loop exit. 8166 const SCEV * 8167 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 8168 ScalarEvolution *SE) const { 8169 for (auto &ENT : ExitNotTaken) 8170 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8171 return ENT.ExactNotTaken; 8172 8173 return SE->getCouldNotCompute(); 8174 } 8175 8176 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 8177 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 8178 for (auto &ENT : ExitNotTaken) 8179 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 8180 return ENT.MaxNotTaken; 8181 8182 return SE->getCouldNotCompute(); 8183 } 8184 8185 /// getConstantMax - Get the constant max backedge taken count for the loop. 8186 const SCEV * 8187 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 8188 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8189 return !ENT.hasAlwaysTruePredicate(); 8190 }; 8191 8192 if (!getConstantMax() || any_of(ExitNotTaken, PredicateNotAlwaysTrue)) 8193 return SE->getCouldNotCompute(); 8194 8195 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 8196 isa<SCEVConstant>(getConstantMax())) && 8197 "No point in having a non-constant max backedge taken count!"); 8198 return getConstantMax(); 8199 } 8200 8201 const SCEV * 8202 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 8203 ScalarEvolution *SE) { 8204 if (!SymbolicMax) 8205 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 8206 return SymbolicMax; 8207 } 8208 8209 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 8210 ScalarEvolution *SE) const { 8211 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 8212 return !ENT.hasAlwaysTruePredicate(); 8213 }; 8214 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 8215 } 8216 8217 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 8218 : ExitLimit(E, E, false, None) { 8219 } 8220 8221 ScalarEvolution::ExitLimit::ExitLimit( 8222 const SCEV *E, const SCEV *M, bool MaxOrZero, 8223 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 8224 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 8225 // If we prove the max count is zero, so is the symbolic bound. This happens 8226 // in practice due to differences in a) how context sensitive we've chosen 8227 // to be and b) how we reason about bounds impied by UB. 8228 if (MaxNotTaken->isZero()) 8229 ExactNotTaken = MaxNotTaken; 8230 8231 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 8232 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 8233 "Exact is not allowed to be less precise than Max"); 8234 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 8235 isa<SCEVConstant>(MaxNotTaken)) && 8236 "No point in having a non-constant max backedge taken count!"); 8237 for (auto *PredSet : PredSetList) 8238 for (auto *P : *PredSet) 8239 addPredicate(P); 8240 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 8241 "Backedge count should be int"); 8242 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 8243 "Max backedge count should be int"); 8244 } 8245 8246 ScalarEvolution::ExitLimit::ExitLimit( 8247 const SCEV *E, const SCEV *M, bool MaxOrZero, 8248 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 8249 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 8250 } 8251 8252 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 8253 bool MaxOrZero) 8254 : ExitLimit(E, M, MaxOrZero, None) { 8255 } 8256 8257 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 8258 /// computable exit into a persistent ExitNotTakenInfo array. 8259 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 8260 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 8261 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 8262 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 8263 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8264 8265 ExitNotTaken.reserve(ExitCounts.size()); 8266 std::transform( 8267 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 8268 [&](const EdgeExitInfo &EEI) { 8269 BasicBlock *ExitBB = EEI.first; 8270 const ExitLimit &EL = EEI.second; 8271 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 8272 EL.Predicates); 8273 }); 8274 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 8275 isa<SCEVConstant>(ConstantMax)) && 8276 "No point in having a non-constant max backedge taken count!"); 8277 } 8278 8279 /// Compute the number of times the backedge of the specified loop will execute. 8280 ScalarEvolution::BackedgeTakenInfo 8281 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 8282 bool AllowPredicates) { 8283 SmallVector<BasicBlock *, 8> ExitingBlocks; 8284 L->getExitingBlocks(ExitingBlocks); 8285 8286 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 8287 8288 SmallVector<EdgeExitInfo, 4> ExitCounts; 8289 bool CouldComputeBECount = true; 8290 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 8291 const SCEV *MustExitMaxBECount = nullptr; 8292 const SCEV *MayExitMaxBECount = nullptr; 8293 bool MustExitMaxOrZero = false; 8294 8295 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 8296 // and compute maxBECount. 8297 // Do a union of all the predicates here. 8298 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 8299 BasicBlock *ExitBB = ExitingBlocks[i]; 8300 8301 // We canonicalize untaken exits to br (constant), ignore them so that 8302 // proving an exit untaken doesn't negatively impact our ability to reason 8303 // about the loop as whole. 8304 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 8305 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 8306 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8307 if (ExitIfTrue == CI->isZero()) 8308 continue; 8309 } 8310 8311 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 8312 8313 assert((AllowPredicates || EL.Predicates.empty()) && 8314 "Predicated exit limit when predicates are not allowed!"); 8315 8316 // 1. For each exit that can be computed, add an entry to ExitCounts. 8317 // CouldComputeBECount is true only if all exits can be computed. 8318 if (EL.ExactNotTaken == getCouldNotCompute()) 8319 // We couldn't compute an exact value for this exit, so 8320 // we won't be able to compute an exact value for the loop. 8321 CouldComputeBECount = false; 8322 else 8323 ExitCounts.emplace_back(ExitBB, EL); 8324 8325 // 2. Derive the loop's MaxBECount from each exit's max number of 8326 // non-exiting iterations. Partition the loop exits into two kinds: 8327 // LoopMustExits and LoopMayExits. 8328 // 8329 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 8330 // is a LoopMayExit. If any computable LoopMustExit is found, then 8331 // MaxBECount is the minimum EL.MaxNotTaken of computable 8332 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 8333 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 8334 // computable EL.MaxNotTaken. 8335 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 8336 DT.dominates(ExitBB, Latch)) { 8337 if (!MustExitMaxBECount) { 8338 MustExitMaxBECount = EL.MaxNotTaken; 8339 MustExitMaxOrZero = EL.MaxOrZero; 8340 } else { 8341 MustExitMaxBECount = 8342 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 8343 } 8344 } else if (MayExitMaxBECount != getCouldNotCompute()) { 8345 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 8346 MayExitMaxBECount = EL.MaxNotTaken; 8347 else { 8348 MayExitMaxBECount = 8349 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 8350 } 8351 } 8352 } 8353 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 8354 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 8355 // The loop backedge will be taken the maximum or zero times if there's 8356 // a single exit that must be taken the maximum or zero times. 8357 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 8358 8359 // Remember which SCEVs are used in exit limits for invalidation purposes. 8360 // We only care about non-constant SCEVs here, so we can ignore EL.MaxNotTaken 8361 // and MaxBECount, which must be SCEVConstant. 8362 for (const auto &Pair : ExitCounts) 8363 if (!isa<SCEVConstant>(Pair.second.ExactNotTaken)) 8364 BECountUsers[Pair.second.ExactNotTaken].insert({L, AllowPredicates}); 8365 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 8366 MaxBECount, MaxOrZero); 8367 } 8368 8369 ScalarEvolution::ExitLimit 8370 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 8371 bool AllowPredicates) { 8372 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 8373 // If our exiting block does not dominate the latch, then its connection with 8374 // loop's exit limit may be far from trivial. 8375 const BasicBlock *Latch = L->getLoopLatch(); 8376 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 8377 return getCouldNotCompute(); 8378 8379 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 8380 Instruction *Term = ExitingBlock->getTerminator(); 8381 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 8382 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 8383 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 8384 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 8385 "It should have one successor in loop and one exit block!"); 8386 // Proceed to the next level to examine the exit condition expression. 8387 return computeExitLimitFromCond( 8388 L, BI->getCondition(), ExitIfTrue, 8389 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 8390 } 8391 8392 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 8393 // For switch, make sure that there is a single exit from the loop. 8394 BasicBlock *Exit = nullptr; 8395 for (auto *SBB : successors(ExitingBlock)) 8396 if (!L->contains(SBB)) { 8397 if (Exit) // Multiple exit successors. 8398 return getCouldNotCompute(); 8399 Exit = SBB; 8400 } 8401 assert(Exit && "Exiting block must have at least one exit"); 8402 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 8403 /*ControlsExit=*/IsOnlyExit); 8404 } 8405 8406 return getCouldNotCompute(); 8407 } 8408 8409 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 8410 const Loop *L, Value *ExitCond, bool ExitIfTrue, 8411 bool ControlsExit, bool AllowPredicates) { 8412 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 8413 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 8414 ControlsExit, AllowPredicates); 8415 } 8416 8417 Optional<ScalarEvolution::ExitLimit> 8418 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 8419 bool ExitIfTrue, bool ControlsExit, 8420 bool AllowPredicates) { 8421 (void)this->L; 8422 (void)this->ExitIfTrue; 8423 (void)this->AllowPredicates; 8424 8425 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8426 this->AllowPredicates == AllowPredicates && 8427 "Variance in assumed invariant key components!"); 8428 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 8429 if (Itr == TripCountMap.end()) 8430 return None; 8431 return Itr->second; 8432 } 8433 8434 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 8435 bool ExitIfTrue, 8436 bool ControlsExit, 8437 bool AllowPredicates, 8438 const ExitLimit &EL) { 8439 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 8440 this->AllowPredicates == AllowPredicates && 8441 "Variance in assumed invariant key components!"); 8442 8443 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 8444 assert(InsertResult.second && "Expected successful insertion!"); 8445 (void)InsertResult; 8446 (void)ExitIfTrue; 8447 } 8448 8449 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 8450 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8451 bool ControlsExit, bool AllowPredicates) { 8452 8453 if (auto MaybeEL = 8454 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8455 return *MaybeEL; 8456 8457 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 8458 ControlsExit, AllowPredicates); 8459 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 8460 return EL; 8461 } 8462 8463 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 8464 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8465 bool ControlsExit, bool AllowPredicates) { 8466 // Handle BinOp conditions (And, Or). 8467 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 8468 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 8469 return *LimitFromBinOp; 8470 8471 // With an icmp, it may be feasible to compute an exact backedge-taken count. 8472 // Proceed to the next level to examine the icmp. 8473 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 8474 ExitLimit EL = 8475 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 8476 if (EL.hasFullInfo() || !AllowPredicates) 8477 return EL; 8478 8479 // Try again, but use SCEV predicates this time. 8480 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 8481 /*AllowPredicates=*/true); 8482 } 8483 8484 // Check for a constant condition. These are normally stripped out by 8485 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 8486 // preserve the CFG and is temporarily leaving constant conditions 8487 // in place. 8488 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 8489 if (ExitIfTrue == !CI->getZExtValue()) 8490 // The backedge is always taken. 8491 return getCouldNotCompute(); 8492 else 8493 // The backedge is never taken. 8494 return getZero(CI->getType()); 8495 } 8496 8497 // If we're exiting based on the overflow flag of an x.with.overflow intrinsic 8498 // with a constant step, we can form an equivalent icmp predicate and figure 8499 // out how many iterations will be taken before we exit. 8500 const WithOverflowInst *WO; 8501 const APInt *C; 8502 if (match(ExitCond, m_ExtractValue<1>(m_WithOverflowInst(WO))) && 8503 match(WO->getRHS(), m_APInt(C))) { 8504 ConstantRange NWR = 8505 ConstantRange::makeExactNoWrapRegion(WO->getBinaryOp(), *C, 8506 WO->getNoWrapKind()); 8507 CmpInst::Predicate Pred; 8508 APInt NewRHSC, Offset; 8509 NWR.getEquivalentICmp(Pred, NewRHSC, Offset); 8510 if (!ExitIfTrue) 8511 Pred = ICmpInst::getInversePredicate(Pred); 8512 auto *LHS = getSCEV(WO->getLHS()); 8513 if (Offset != 0) 8514 LHS = getAddExpr(LHS, getConstant(Offset)); 8515 auto EL = computeExitLimitFromICmp(L, Pred, LHS, getConstant(NewRHSC), 8516 ControlsExit, AllowPredicates); 8517 if (EL.hasAnyInfo()) return EL; 8518 } 8519 8520 // If it's not an integer or pointer comparison then compute it the hard way. 8521 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8522 } 8523 8524 Optional<ScalarEvolution::ExitLimit> 8525 ScalarEvolution::computeExitLimitFromCondFromBinOp( 8526 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 8527 bool ControlsExit, bool AllowPredicates) { 8528 // Check if the controlling expression for this loop is an And or Or. 8529 Value *Op0, *Op1; 8530 bool IsAnd = false; 8531 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 8532 IsAnd = true; 8533 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 8534 IsAnd = false; 8535 else 8536 return None; 8537 8538 // EitherMayExit is true in these two cases: 8539 // br (and Op0 Op1), loop, exit 8540 // br (or Op0 Op1), exit, loop 8541 bool EitherMayExit = IsAnd ^ ExitIfTrue; 8542 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 8543 ControlsExit && !EitherMayExit, 8544 AllowPredicates); 8545 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 8546 ControlsExit && !EitherMayExit, 8547 AllowPredicates); 8548 8549 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 8550 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 8551 if (isa<ConstantInt>(Op1)) 8552 return Op1 == NeutralElement ? EL0 : EL1; 8553 if (isa<ConstantInt>(Op0)) 8554 return Op0 == NeutralElement ? EL1 : EL0; 8555 8556 const SCEV *BECount = getCouldNotCompute(); 8557 const SCEV *MaxBECount = getCouldNotCompute(); 8558 if (EitherMayExit) { 8559 // Both conditions must be same for the loop to continue executing. 8560 // Choose the less conservative count. 8561 if (EL0.ExactNotTaken != getCouldNotCompute() && 8562 EL1.ExactNotTaken != getCouldNotCompute()) { 8563 BECount = getUMinFromMismatchedTypes( 8564 EL0.ExactNotTaken, EL1.ExactNotTaken, 8565 /*Sequential=*/!isa<BinaryOperator>(ExitCond)); 8566 } 8567 if (EL0.MaxNotTaken == getCouldNotCompute()) 8568 MaxBECount = EL1.MaxNotTaken; 8569 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8570 MaxBECount = EL0.MaxNotTaken; 8571 else 8572 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8573 } else { 8574 // Both conditions must be same at the same time for the loop to exit. 8575 // For now, be conservative. 8576 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8577 BECount = EL0.ExactNotTaken; 8578 } 8579 8580 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8581 // to be more aggressive when computing BECount than when computing 8582 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8583 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8584 // to not. 8585 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8586 !isa<SCEVCouldNotCompute>(BECount)) 8587 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8588 8589 return ExitLimit(BECount, MaxBECount, false, 8590 { &EL0.Predicates, &EL1.Predicates }); 8591 } 8592 8593 ScalarEvolution::ExitLimit 8594 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8595 ICmpInst *ExitCond, 8596 bool ExitIfTrue, 8597 bool ControlsExit, 8598 bool AllowPredicates) { 8599 // If the condition was exit on true, convert the condition to exit on false 8600 ICmpInst::Predicate Pred; 8601 if (!ExitIfTrue) 8602 Pred = ExitCond->getPredicate(); 8603 else 8604 Pred = ExitCond->getInversePredicate(); 8605 const ICmpInst::Predicate OriginalPred = Pred; 8606 8607 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8608 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8609 8610 ExitLimit EL = computeExitLimitFromICmp(L, Pred, LHS, RHS, ControlsExit, 8611 AllowPredicates); 8612 if (EL.hasAnyInfo()) return EL; 8613 8614 auto *ExhaustiveCount = 8615 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8616 8617 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8618 return ExhaustiveCount; 8619 8620 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8621 ExitCond->getOperand(1), L, OriginalPred); 8622 } 8623 ScalarEvolution::ExitLimit 8624 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8625 ICmpInst::Predicate Pred, 8626 const SCEV *LHS, const SCEV *RHS, 8627 bool ControlsExit, 8628 bool AllowPredicates) { 8629 8630 // Try to evaluate any dependencies out of the loop. 8631 LHS = getSCEVAtScope(LHS, L); 8632 RHS = getSCEVAtScope(RHS, L); 8633 8634 // At this point, we would like to compute how many iterations of the 8635 // loop the predicate will return true for these inputs. 8636 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8637 // If there is a loop-invariant, force it into the RHS. 8638 std::swap(LHS, RHS); 8639 Pred = ICmpInst::getSwappedPredicate(Pred); 8640 } 8641 8642 bool ControllingFiniteLoop = 8643 ControlsExit && loopHasNoAbnormalExits(L) && loopIsFiniteByAssumption(L); 8644 // Simplify the operands before analyzing them. 8645 (void)SimplifyICmpOperands(Pred, LHS, RHS, /*Depth=*/0, 8646 (EnableFiniteLoopControl ? ControllingFiniteLoop 8647 : false)); 8648 8649 // If we have a comparison of a chrec against a constant, try to use value 8650 // ranges to answer this query. 8651 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8652 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8653 if (AddRec->getLoop() == L) { 8654 // Form the constant range. 8655 ConstantRange CompRange = 8656 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8657 8658 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8659 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8660 } 8661 8662 // If this loop must exit based on this condition (or execute undefined 8663 // behaviour), and we can prove the test sequence produced must repeat 8664 // the same values on self-wrap of the IV, then we can infer that IV 8665 // doesn't self wrap because if it did, we'd have an infinite (undefined) 8666 // loop. 8667 if (ControllingFiniteLoop && isLoopInvariant(RHS, L)) { 8668 // TODO: We can peel off any functions which are invertible *in L*. Loop 8669 // invariant terms are effectively constants for our purposes here. 8670 auto *InnerLHS = LHS; 8671 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) 8672 InnerLHS = ZExt->getOperand(); 8673 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(InnerLHS)) { 8674 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 8675 if (!AR->hasNoSelfWrap() && AR->getLoop() == L && AR->isAffine() && 8676 StrideC && StrideC->getAPInt().isPowerOf2()) { 8677 auto Flags = AR->getNoWrapFlags(); 8678 Flags = setFlags(Flags, SCEV::FlagNW); 8679 SmallVector<const SCEV*> Operands{AR->operands()}; 8680 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 8681 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 8682 } 8683 } 8684 } 8685 8686 switch (Pred) { 8687 case ICmpInst::ICMP_NE: { // while (X != Y) 8688 // Convert to: while (X-Y != 0) 8689 if (LHS->getType()->isPointerTy()) { 8690 LHS = getLosslessPtrToIntExpr(LHS); 8691 if (isa<SCEVCouldNotCompute>(LHS)) 8692 return LHS; 8693 } 8694 if (RHS->getType()->isPointerTy()) { 8695 RHS = getLosslessPtrToIntExpr(RHS); 8696 if (isa<SCEVCouldNotCompute>(RHS)) 8697 return RHS; 8698 } 8699 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8700 AllowPredicates); 8701 if (EL.hasAnyInfo()) return EL; 8702 break; 8703 } 8704 case ICmpInst::ICMP_EQ: { // while (X == Y) 8705 // Convert to: while (X-Y == 0) 8706 if (LHS->getType()->isPointerTy()) { 8707 LHS = getLosslessPtrToIntExpr(LHS); 8708 if (isa<SCEVCouldNotCompute>(LHS)) 8709 return LHS; 8710 } 8711 if (RHS->getType()->isPointerTy()) { 8712 RHS = getLosslessPtrToIntExpr(RHS); 8713 if (isa<SCEVCouldNotCompute>(RHS)) 8714 return RHS; 8715 } 8716 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8717 if (EL.hasAnyInfo()) return EL; 8718 break; 8719 } 8720 case ICmpInst::ICMP_SLT: 8721 case ICmpInst::ICMP_ULT: { // while (X < Y) 8722 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8723 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8724 AllowPredicates); 8725 if (EL.hasAnyInfo()) return EL; 8726 break; 8727 } 8728 case ICmpInst::ICMP_SGT: 8729 case ICmpInst::ICMP_UGT: { // while (X > Y) 8730 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8731 ExitLimit EL = 8732 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8733 AllowPredicates); 8734 if (EL.hasAnyInfo()) return EL; 8735 break; 8736 } 8737 default: 8738 break; 8739 } 8740 8741 return getCouldNotCompute(); 8742 } 8743 8744 ScalarEvolution::ExitLimit 8745 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8746 SwitchInst *Switch, 8747 BasicBlock *ExitingBlock, 8748 bool ControlsExit) { 8749 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8750 8751 // Give up if the exit is the default dest of a switch. 8752 if (Switch->getDefaultDest() == ExitingBlock) 8753 return getCouldNotCompute(); 8754 8755 assert(L->contains(Switch->getDefaultDest()) && 8756 "Default case must not exit the loop!"); 8757 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8758 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8759 8760 // while (X != Y) --> while (X-Y != 0) 8761 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8762 if (EL.hasAnyInfo()) 8763 return EL; 8764 8765 return getCouldNotCompute(); 8766 } 8767 8768 static ConstantInt * 8769 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8770 ScalarEvolution &SE) { 8771 const SCEV *InVal = SE.getConstant(C); 8772 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8773 assert(isa<SCEVConstant>(Val) && 8774 "Evaluation of SCEV at constant didn't fold correctly?"); 8775 return cast<SCEVConstant>(Val)->getValue(); 8776 } 8777 8778 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8779 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8780 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8781 if (!RHS) 8782 return getCouldNotCompute(); 8783 8784 const BasicBlock *Latch = L->getLoopLatch(); 8785 if (!Latch) 8786 return getCouldNotCompute(); 8787 8788 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8789 if (!Predecessor) 8790 return getCouldNotCompute(); 8791 8792 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8793 // Return LHS in OutLHS and shift_opt in OutOpCode. 8794 auto MatchPositiveShift = 8795 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8796 8797 using namespace PatternMatch; 8798 8799 ConstantInt *ShiftAmt; 8800 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8801 OutOpCode = Instruction::LShr; 8802 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8803 OutOpCode = Instruction::AShr; 8804 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8805 OutOpCode = Instruction::Shl; 8806 else 8807 return false; 8808 8809 return ShiftAmt->getValue().isStrictlyPositive(); 8810 }; 8811 8812 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8813 // 8814 // loop: 8815 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8816 // %iv.shifted = lshr i32 %iv, <positive constant> 8817 // 8818 // Return true on a successful match. Return the corresponding PHI node (%iv 8819 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8820 auto MatchShiftRecurrence = 8821 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8822 Optional<Instruction::BinaryOps> PostShiftOpCode; 8823 8824 { 8825 Instruction::BinaryOps OpC; 8826 Value *V; 8827 8828 // If we encounter a shift instruction, "peel off" the shift operation, 8829 // and remember that we did so. Later when we inspect %iv's backedge 8830 // value, we will make sure that the backedge value uses the same 8831 // operation. 8832 // 8833 // Note: the peeled shift operation does not have to be the same 8834 // instruction as the one feeding into the PHI's backedge value. We only 8835 // really care about it being the same *kind* of shift instruction -- 8836 // that's all that is required for our later inferences to hold. 8837 if (MatchPositiveShift(LHS, V, OpC)) { 8838 PostShiftOpCode = OpC; 8839 LHS = V; 8840 } 8841 } 8842 8843 PNOut = dyn_cast<PHINode>(LHS); 8844 if (!PNOut || PNOut->getParent() != L->getHeader()) 8845 return false; 8846 8847 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8848 Value *OpLHS; 8849 8850 return 8851 // The backedge value for the PHI node must be a shift by a positive 8852 // amount 8853 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8854 8855 // of the PHI node itself 8856 OpLHS == PNOut && 8857 8858 // and the kind of shift should be match the kind of shift we peeled 8859 // off, if any. 8860 (!PostShiftOpCode || *PostShiftOpCode == OpCodeOut); 8861 }; 8862 8863 PHINode *PN; 8864 Instruction::BinaryOps OpCode; 8865 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8866 return getCouldNotCompute(); 8867 8868 const DataLayout &DL = getDataLayout(); 8869 8870 // The key rationale for this optimization is that for some kinds of shift 8871 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8872 // within a finite number of iterations. If the condition guarding the 8873 // backedge (in the sense that the backedge is taken if the condition is true) 8874 // is false for the value the shift recurrence stabilizes to, then we know 8875 // that the backedge is taken only a finite number of times. 8876 8877 ConstantInt *StableValue = nullptr; 8878 switch (OpCode) { 8879 default: 8880 llvm_unreachable("Impossible case!"); 8881 8882 case Instruction::AShr: { 8883 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8884 // bitwidth(K) iterations. 8885 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8886 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8887 Predecessor->getTerminator(), &DT); 8888 auto *Ty = cast<IntegerType>(RHS->getType()); 8889 if (Known.isNonNegative()) 8890 StableValue = ConstantInt::get(Ty, 0); 8891 else if (Known.isNegative()) 8892 StableValue = ConstantInt::get(Ty, -1, true); 8893 else 8894 return getCouldNotCompute(); 8895 8896 break; 8897 } 8898 case Instruction::LShr: 8899 case Instruction::Shl: 8900 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8901 // stabilize to 0 in at most bitwidth(K) iterations. 8902 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8903 break; 8904 } 8905 8906 auto *Result = 8907 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8908 assert(Result->getType()->isIntegerTy(1) && 8909 "Otherwise cannot be an operand to a branch instruction"); 8910 8911 if (Result->isZeroValue()) { 8912 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8913 const SCEV *UpperBound = 8914 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8915 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8916 } 8917 8918 return getCouldNotCompute(); 8919 } 8920 8921 /// Return true if we can constant fold an instruction of the specified type, 8922 /// assuming that all operands were constants. 8923 static bool CanConstantFold(const Instruction *I) { 8924 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8925 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8926 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8927 return true; 8928 8929 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8930 if (const Function *F = CI->getCalledFunction()) 8931 return canConstantFoldCallTo(CI, F); 8932 return false; 8933 } 8934 8935 /// Determine whether this instruction can constant evolve within this loop 8936 /// assuming its operands can all constant evolve. 8937 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8938 // An instruction outside of the loop can't be derived from a loop PHI. 8939 if (!L->contains(I)) return false; 8940 8941 if (isa<PHINode>(I)) { 8942 // We don't currently keep track of the control flow needed to evaluate 8943 // PHIs, so we cannot handle PHIs inside of loops. 8944 return L->getHeader() == I->getParent(); 8945 } 8946 8947 // If we won't be able to constant fold this expression even if the operands 8948 // are constants, bail early. 8949 return CanConstantFold(I); 8950 } 8951 8952 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8953 /// recursing through each instruction operand until reaching a loop header phi. 8954 static PHINode * 8955 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8956 DenseMap<Instruction *, PHINode *> &PHIMap, 8957 unsigned Depth) { 8958 if (Depth > MaxConstantEvolvingDepth) 8959 return nullptr; 8960 8961 // Otherwise, we can evaluate this instruction if all of its operands are 8962 // constant or derived from a PHI node themselves. 8963 PHINode *PHI = nullptr; 8964 for (Value *Op : UseInst->operands()) { 8965 if (isa<Constant>(Op)) continue; 8966 8967 Instruction *OpInst = dyn_cast<Instruction>(Op); 8968 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8969 8970 PHINode *P = dyn_cast<PHINode>(OpInst); 8971 if (!P) 8972 // If this operand is already visited, reuse the prior result. 8973 // We may have P != PHI if this is the deepest point at which the 8974 // inconsistent paths meet. 8975 P = PHIMap.lookup(OpInst); 8976 if (!P) { 8977 // Recurse and memoize the results, whether a phi is found or not. 8978 // This recursive call invalidates pointers into PHIMap. 8979 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8980 PHIMap[OpInst] = P; 8981 } 8982 if (!P) 8983 return nullptr; // Not evolving from PHI 8984 if (PHI && PHI != P) 8985 return nullptr; // Evolving from multiple different PHIs. 8986 PHI = P; 8987 } 8988 // This is a expression evolving from a constant PHI! 8989 return PHI; 8990 } 8991 8992 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8993 /// in the loop that V is derived from. We allow arbitrary operations along the 8994 /// way, but the operands of an operation must either be constants or a value 8995 /// derived from a constant PHI. If this expression does not fit with these 8996 /// constraints, return null. 8997 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8998 Instruction *I = dyn_cast<Instruction>(V); 8999 if (!I || !canConstantEvolve(I, L)) return nullptr; 9000 9001 if (PHINode *PN = dyn_cast<PHINode>(I)) 9002 return PN; 9003 9004 // Record non-constant instructions contained by the loop. 9005 DenseMap<Instruction *, PHINode *> PHIMap; 9006 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 9007 } 9008 9009 /// EvaluateExpression - Given an expression that passes the 9010 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 9011 /// in the loop has the value PHIVal. If we can't fold this expression for some 9012 /// reason, return null. 9013 static Constant *EvaluateExpression(Value *V, const Loop *L, 9014 DenseMap<Instruction *, Constant *> &Vals, 9015 const DataLayout &DL, 9016 const TargetLibraryInfo *TLI) { 9017 // Convenient constant check, but redundant for recursive calls. 9018 if (Constant *C = dyn_cast<Constant>(V)) return C; 9019 Instruction *I = dyn_cast<Instruction>(V); 9020 if (!I) return nullptr; 9021 9022 if (Constant *C = Vals.lookup(I)) return C; 9023 9024 // An instruction inside the loop depends on a value outside the loop that we 9025 // weren't given a mapping for, or a value such as a call inside the loop. 9026 if (!canConstantEvolve(I, L)) return nullptr; 9027 9028 // An unmapped PHI can be due to a branch or another loop inside this loop, 9029 // or due to this not being the initial iteration through a loop where we 9030 // couldn't compute the evolution of this particular PHI last time. 9031 if (isa<PHINode>(I)) return nullptr; 9032 9033 std::vector<Constant*> Operands(I->getNumOperands()); 9034 9035 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 9036 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 9037 if (!Operand) { 9038 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 9039 if (!Operands[i]) return nullptr; 9040 continue; 9041 } 9042 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 9043 Vals[Operand] = C; 9044 if (!C) return nullptr; 9045 Operands[i] = C; 9046 } 9047 9048 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 9049 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9050 Operands[1], DL, TLI); 9051 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 9052 if (!LI->isVolatile()) 9053 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 9054 } 9055 return ConstantFoldInstOperands(I, Operands, DL, TLI); 9056 } 9057 9058 9059 // If every incoming value to PN except the one for BB is a specific Constant, 9060 // return that, else return nullptr. 9061 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 9062 Constant *IncomingVal = nullptr; 9063 9064 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 9065 if (PN->getIncomingBlock(i) == BB) 9066 continue; 9067 9068 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 9069 if (!CurrentVal) 9070 return nullptr; 9071 9072 if (IncomingVal != CurrentVal) { 9073 if (IncomingVal) 9074 return nullptr; 9075 IncomingVal = CurrentVal; 9076 } 9077 } 9078 9079 return IncomingVal; 9080 } 9081 9082 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 9083 /// in the header of its containing loop, we know the loop executes a 9084 /// constant number of times, and the PHI node is just a recurrence 9085 /// involving constants, fold it. 9086 Constant * 9087 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 9088 const APInt &BEs, 9089 const Loop *L) { 9090 auto I = ConstantEvolutionLoopExitValue.find(PN); 9091 if (I != ConstantEvolutionLoopExitValue.end()) 9092 return I->second; 9093 9094 if (BEs.ugt(MaxBruteForceIterations)) 9095 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 9096 9097 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 9098 9099 DenseMap<Instruction *, Constant *> CurrentIterVals; 9100 BasicBlock *Header = L->getHeader(); 9101 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9102 9103 BasicBlock *Latch = L->getLoopLatch(); 9104 if (!Latch) 9105 return nullptr; 9106 9107 for (PHINode &PHI : Header->phis()) { 9108 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9109 CurrentIterVals[&PHI] = StartCST; 9110 } 9111 if (!CurrentIterVals.count(PN)) 9112 return RetVal = nullptr; 9113 9114 Value *BEValue = PN->getIncomingValueForBlock(Latch); 9115 9116 // Execute the loop symbolically to determine the exit value. 9117 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 9118 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 9119 9120 unsigned NumIterations = BEs.getZExtValue(); // must be in range 9121 unsigned IterationNum = 0; 9122 const DataLayout &DL = getDataLayout(); 9123 for (; ; ++IterationNum) { 9124 if (IterationNum == NumIterations) 9125 return RetVal = CurrentIterVals[PN]; // Got exit value! 9126 9127 // Compute the value of the PHIs for the next iteration. 9128 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 9129 DenseMap<Instruction *, Constant *> NextIterVals; 9130 Constant *NextPHI = 9131 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9132 if (!NextPHI) 9133 return nullptr; // Couldn't evaluate! 9134 NextIterVals[PN] = NextPHI; 9135 9136 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 9137 9138 // Also evaluate the other PHI nodes. However, we don't get to stop if we 9139 // cease to be able to evaluate one of them or if they stop evolving, 9140 // because that doesn't necessarily prevent us from computing PN. 9141 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 9142 for (const auto &I : CurrentIterVals) { 9143 PHINode *PHI = dyn_cast<PHINode>(I.first); 9144 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 9145 PHIsToCompute.emplace_back(PHI, I.second); 9146 } 9147 // We use two distinct loops because EvaluateExpression may invalidate any 9148 // iterators into CurrentIterVals. 9149 for (const auto &I : PHIsToCompute) { 9150 PHINode *PHI = I.first; 9151 Constant *&NextPHI = NextIterVals[PHI]; 9152 if (!NextPHI) { // Not already computed. 9153 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9154 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9155 } 9156 if (NextPHI != I.second) 9157 StoppedEvolving = false; 9158 } 9159 9160 // If all entries in CurrentIterVals == NextIterVals then we can stop 9161 // iterating, the loop can't continue to change. 9162 if (StoppedEvolving) 9163 return RetVal = CurrentIterVals[PN]; 9164 9165 CurrentIterVals.swap(NextIterVals); 9166 } 9167 } 9168 9169 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 9170 Value *Cond, 9171 bool ExitWhen) { 9172 PHINode *PN = getConstantEvolvingPHI(Cond, L); 9173 if (!PN) return getCouldNotCompute(); 9174 9175 // If the loop is canonicalized, the PHI will have exactly two entries. 9176 // That's the only form we support here. 9177 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 9178 9179 DenseMap<Instruction *, Constant *> CurrentIterVals; 9180 BasicBlock *Header = L->getHeader(); 9181 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 9182 9183 BasicBlock *Latch = L->getLoopLatch(); 9184 assert(Latch && "Should follow from NumIncomingValues == 2!"); 9185 9186 for (PHINode &PHI : Header->phis()) { 9187 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 9188 CurrentIterVals[&PHI] = StartCST; 9189 } 9190 if (!CurrentIterVals.count(PN)) 9191 return getCouldNotCompute(); 9192 9193 // Okay, we find a PHI node that defines the trip count of this loop. Execute 9194 // the loop symbolically to determine when the condition gets a value of 9195 // "ExitWhen". 9196 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 9197 const DataLayout &DL = getDataLayout(); 9198 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 9199 auto *CondVal = dyn_cast_or_null<ConstantInt>( 9200 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 9201 9202 // Couldn't symbolically evaluate. 9203 if (!CondVal) return getCouldNotCompute(); 9204 9205 if (CondVal->getValue() == uint64_t(ExitWhen)) { 9206 ++NumBruteForceTripCountsComputed; 9207 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 9208 } 9209 9210 // Update all the PHI nodes for the next iteration. 9211 DenseMap<Instruction *, Constant *> NextIterVals; 9212 9213 // Create a list of which PHIs we need to compute. We want to do this before 9214 // calling EvaluateExpression on them because that may invalidate iterators 9215 // into CurrentIterVals. 9216 SmallVector<PHINode *, 8> PHIsToCompute; 9217 for (const auto &I : CurrentIterVals) { 9218 PHINode *PHI = dyn_cast<PHINode>(I.first); 9219 if (!PHI || PHI->getParent() != Header) continue; 9220 PHIsToCompute.push_back(PHI); 9221 } 9222 for (PHINode *PHI : PHIsToCompute) { 9223 Constant *&NextPHI = NextIterVals[PHI]; 9224 if (NextPHI) continue; // Already computed! 9225 9226 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 9227 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 9228 } 9229 CurrentIterVals.swap(NextIterVals); 9230 } 9231 9232 // Too many iterations were needed to evaluate. 9233 return getCouldNotCompute(); 9234 } 9235 9236 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 9237 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 9238 ValuesAtScopes[V]; 9239 // Check to see if we've folded this expression at this loop before. 9240 for (auto &LS : Values) 9241 if (LS.first == L) 9242 return LS.second ? LS.second : V; 9243 9244 Values.emplace_back(L, nullptr); 9245 9246 // Otherwise compute it. 9247 const SCEV *C = computeSCEVAtScope(V, L); 9248 for (auto &LS : reverse(ValuesAtScopes[V])) 9249 if (LS.first == L) { 9250 LS.second = C; 9251 if (!isa<SCEVConstant>(C)) 9252 ValuesAtScopesUsers[C].push_back({L, V}); 9253 break; 9254 } 9255 return C; 9256 } 9257 9258 /// This builds up a Constant using the ConstantExpr interface. That way, we 9259 /// will return Constants for objects which aren't represented by a 9260 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 9261 /// Returns NULL if the SCEV isn't representable as a Constant. 9262 static Constant *BuildConstantFromSCEV(const SCEV *V) { 9263 switch (V->getSCEVType()) { 9264 case scCouldNotCompute: 9265 case scAddRecExpr: 9266 return nullptr; 9267 case scConstant: 9268 return cast<SCEVConstant>(V)->getValue(); 9269 case scUnknown: 9270 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 9271 case scSignExtend: { 9272 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 9273 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 9274 return ConstantExpr::getSExt(CastOp, SS->getType()); 9275 return nullptr; 9276 } 9277 case scZeroExtend: { 9278 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 9279 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 9280 return ConstantExpr::getZExt(CastOp, SZ->getType()); 9281 return nullptr; 9282 } 9283 case scPtrToInt: { 9284 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 9285 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 9286 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 9287 9288 return nullptr; 9289 } 9290 case scTruncate: { 9291 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 9292 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 9293 return ConstantExpr::getTrunc(CastOp, ST->getType()); 9294 return nullptr; 9295 } 9296 case scAddExpr: { 9297 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 9298 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 9299 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 9300 unsigned AS = PTy->getAddressSpace(); 9301 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9302 C = ConstantExpr::getBitCast(C, DestPtrTy); 9303 } 9304 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 9305 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 9306 if (!C2) 9307 return nullptr; 9308 9309 // First pointer! 9310 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 9311 unsigned AS = C2->getType()->getPointerAddressSpace(); 9312 std::swap(C, C2); 9313 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 9314 // The offsets have been converted to bytes. We can add bytes to an 9315 // i8* by GEP with the byte count in the first index. 9316 C = ConstantExpr::getBitCast(C, DestPtrTy); 9317 } 9318 9319 // Don't bother trying to sum two pointers. We probably can't 9320 // statically compute a load that results from it anyway. 9321 if (C2->getType()->isPointerTy()) 9322 return nullptr; 9323 9324 if (C->getType()->isPointerTy()) { 9325 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 9326 C, C2); 9327 } else { 9328 C = ConstantExpr::getAdd(C, C2); 9329 } 9330 } 9331 return C; 9332 } 9333 return nullptr; 9334 } 9335 case scMulExpr: { 9336 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 9337 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 9338 // Don't bother with pointers at all. 9339 if (C->getType()->isPointerTy()) 9340 return nullptr; 9341 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 9342 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 9343 if (!C2 || C2->getType()->isPointerTy()) 9344 return nullptr; 9345 C = ConstantExpr::getMul(C, C2); 9346 } 9347 return C; 9348 } 9349 return nullptr; 9350 } 9351 case scUDivExpr: { 9352 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 9353 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 9354 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 9355 if (LHS->getType() == RHS->getType()) 9356 return ConstantExpr::getUDiv(LHS, RHS); 9357 return nullptr; 9358 } 9359 case scSMaxExpr: 9360 case scUMaxExpr: 9361 case scSMinExpr: 9362 case scUMinExpr: 9363 case scSequentialUMinExpr: 9364 return nullptr; // TODO: smax, umax, smin, umax, umin_seq. 9365 } 9366 llvm_unreachable("Unknown SCEV kind!"); 9367 } 9368 9369 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 9370 if (isa<SCEVConstant>(V)) return V; 9371 9372 // If this instruction is evolved from a constant-evolving PHI, compute the 9373 // exit value from the loop without using SCEVs. 9374 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 9375 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 9376 if (PHINode *PN = dyn_cast<PHINode>(I)) { 9377 const Loop *CurrLoop = this->LI[I->getParent()]; 9378 // Looking for loop exit value. 9379 if (CurrLoop && CurrLoop->getParentLoop() == L && 9380 PN->getParent() == CurrLoop->getHeader()) { 9381 // Okay, there is no closed form solution for the PHI node. Check 9382 // to see if the loop that contains it has a known backedge-taken 9383 // count. If so, we may be able to force computation of the exit 9384 // value. 9385 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 9386 // This trivial case can show up in some degenerate cases where 9387 // the incoming IR has not yet been fully simplified. 9388 if (BackedgeTakenCount->isZero()) { 9389 Value *InitValue = nullptr; 9390 bool MultipleInitValues = false; 9391 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 9392 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 9393 if (!InitValue) 9394 InitValue = PN->getIncomingValue(i); 9395 else if (InitValue != PN->getIncomingValue(i)) { 9396 MultipleInitValues = true; 9397 break; 9398 } 9399 } 9400 } 9401 if (!MultipleInitValues && InitValue) 9402 return getSCEV(InitValue); 9403 } 9404 // Do we have a loop invariant value flowing around the backedge 9405 // for a loop which must execute the backedge? 9406 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 9407 isKnownPositive(BackedgeTakenCount) && 9408 PN->getNumIncomingValues() == 2) { 9409 9410 unsigned InLoopPred = 9411 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 9412 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 9413 if (CurrLoop->isLoopInvariant(BackedgeVal)) 9414 return getSCEV(BackedgeVal); 9415 } 9416 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 9417 // Okay, we know how many times the containing loop executes. If 9418 // this is a constant evolving PHI node, get the final value at 9419 // the specified iteration number. 9420 Constant *RV = getConstantEvolutionLoopExitValue( 9421 PN, BTCC->getAPInt(), CurrLoop); 9422 if (RV) return getSCEV(RV); 9423 } 9424 } 9425 9426 // If there is a single-input Phi, evaluate it at our scope. If we can 9427 // prove that this replacement does not break LCSSA form, use new value. 9428 if (PN->getNumOperands() == 1) { 9429 const SCEV *Input = getSCEV(PN->getOperand(0)); 9430 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 9431 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 9432 // for the simplest case just support constants. 9433 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 9434 } 9435 } 9436 9437 // Okay, this is an expression that we cannot symbolically evaluate 9438 // into a SCEV. Check to see if it's possible to symbolically evaluate 9439 // the arguments into constants, and if so, try to constant propagate the 9440 // result. This is particularly useful for computing loop exit values. 9441 if (CanConstantFold(I)) { 9442 SmallVector<Constant *, 4> Operands; 9443 bool MadeImprovement = false; 9444 for (Value *Op : I->operands()) { 9445 if (Constant *C = dyn_cast<Constant>(Op)) { 9446 Operands.push_back(C); 9447 continue; 9448 } 9449 9450 // If any of the operands is non-constant and if they are 9451 // non-integer and non-pointer, don't even try to analyze them 9452 // with scev techniques. 9453 if (!isSCEVable(Op->getType())) 9454 return V; 9455 9456 const SCEV *OrigV = getSCEV(Op); 9457 const SCEV *OpV = getSCEVAtScope(OrigV, L); 9458 MadeImprovement |= OrigV != OpV; 9459 9460 Constant *C = BuildConstantFromSCEV(OpV); 9461 if (!C) return V; 9462 if (C->getType() != Op->getType()) 9463 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 9464 Op->getType(), 9465 false), 9466 C, Op->getType()); 9467 Operands.push_back(C); 9468 } 9469 9470 // Check to see if getSCEVAtScope actually made an improvement. 9471 if (MadeImprovement) { 9472 Constant *C = nullptr; 9473 const DataLayout &DL = getDataLayout(); 9474 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 9475 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 9476 Operands[1], DL, &TLI); 9477 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 9478 if (!Load->isVolatile()) 9479 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 9480 DL); 9481 } else 9482 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 9483 if (!C) return V; 9484 return getSCEV(C); 9485 } 9486 } 9487 } 9488 9489 // This is some other type of SCEVUnknown, just return it. 9490 return V; 9491 } 9492 9493 if (isa<SCEVCommutativeExpr>(V) || isa<SCEVSequentialMinMaxExpr>(V)) { 9494 const auto *Comm = cast<SCEVNAryExpr>(V); 9495 // Avoid performing the look-up in the common case where the specified 9496 // expression has no loop-variant portions. 9497 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 9498 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9499 if (OpAtScope != Comm->getOperand(i)) { 9500 // Okay, at least one of these operands is loop variant but might be 9501 // foldable. Build a new instance of the folded commutative expression. 9502 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 9503 Comm->op_begin()+i); 9504 NewOps.push_back(OpAtScope); 9505 9506 for (++i; i != e; ++i) { 9507 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 9508 NewOps.push_back(OpAtScope); 9509 } 9510 if (isa<SCEVAddExpr>(Comm)) 9511 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 9512 if (isa<SCEVMulExpr>(Comm)) 9513 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9514 if (isa<SCEVMinMaxExpr>(Comm)) 9515 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9516 if (isa<SCEVSequentialMinMaxExpr>(Comm)) 9517 return getSequentialMinMaxExpr(Comm->getSCEVType(), NewOps); 9518 llvm_unreachable("Unknown commutative / sequential min/max SCEV type!"); 9519 } 9520 } 9521 // If we got here, all operands are loop invariant. 9522 return Comm; 9523 } 9524 9525 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9526 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9527 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9528 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9529 return Div; // must be loop invariant 9530 return getUDivExpr(LHS, RHS); 9531 } 9532 9533 // If this is a loop recurrence for a loop that does not contain L, then we 9534 // are dealing with the final value computed by the loop. 9535 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9536 // First, attempt to evaluate each operand. 9537 // Avoid performing the look-up in the common case where the specified 9538 // expression has no loop-variant portions. 9539 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9540 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9541 if (OpAtScope == AddRec->getOperand(i)) 9542 continue; 9543 9544 // Okay, at least one of these operands is loop variant but might be 9545 // foldable. Build a new instance of the folded commutative expression. 9546 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9547 AddRec->op_begin()+i); 9548 NewOps.push_back(OpAtScope); 9549 for (++i; i != e; ++i) 9550 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9551 9552 const SCEV *FoldedRec = 9553 getAddRecExpr(NewOps, AddRec->getLoop(), 9554 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9555 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9556 // The addrec may be folded to a nonrecurrence, for example, if the 9557 // induction variable is multiplied by zero after constant folding. Go 9558 // ahead and return the folded value. 9559 if (!AddRec) 9560 return FoldedRec; 9561 break; 9562 } 9563 9564 // If the scope is outside the addrec's loop, evaluate it by using the 9565 // loop exit value of the addrec. 9566 if (!AddRec->getLoop()->contains(L)) { 9567 // To evaluate this recurrence, we need to know how many times the AddRec 9568 // loop iterates. Compute this now. 9569 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9570 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9571 9572 // Then, evaluate the AddRec. 9573 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9574 } 9575 9576 return AddRec; 9577 } 9578 9579 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 9580 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9581 if (Op == Cast->getOperand()) 9582 return Cast; // must be loop invariant 9583 return getCastExpr(Cast->getSCEVType(), Op, Cast->getType()); 9584 } 9585 9586 llvm_unreachable("Unknown SCEV type!"); 9587 } 9588 9589 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9590 return getSCEVAtScope(getSCEV(V), L); 9591 } 9592 9593 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9594 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9595 return stripInjectiveFunctions(ZExt->getOperand()); 9596 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9597 return stripInjectiveFunctions(SExt->getOperand()); 9598 return S; 9599 } 9600 9601 /// Finds the minimum unsigned root of the following equation: 9602 /// 9603 /// A * X = B (mod N) 9604 /// 9605 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9606 /// A and B isn't important. 9607 /// 9608 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9609 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9610 ScalarEvolution &SE) { 9611 uint32_t BW = A.getBitWidth(); 9612 assert(BW == SE.getTypeSizeInBits(B->getType())); 9613 assert(A != 0 && "A must be non-zero."); 9614 9615 // 1. D = gcd(A, N) 9616 // 9617 // The gcd of A and N may have only one prime factor: 2. The number of 9618 // trailing zeros in A is its multiplicity 9619 uint32_t Mult2 = A.countTrailingZeros(); 9620 // D = 2^Mult2 9621 9622 // 2. Check if B is divisible by D. 9623 // 9624 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9625 // is not less than multiplicity of this prime factor for D. 9626 if (SE.GetMinTrailingZeros(B) < Mult2) 9627 return SE.getCouldNotCompute(); 9628 9629 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9630 // modulo (N / D). 9631 // 9632 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9633 // (N / D) in general. The inverse itself always fits into BW bits, though, 9634 // so we immediately truncate it. 9635 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9636 APInt Mod(BW + 1, 0); 9637 Mod.setBit(BW - Mult2); // Mod = N / D 9638 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9639 9640 // 4. Compute the minimum unsigned root of the equation: 9641 // I * (B / D) mod (N / D) 9642 // To simplify the computation, we factor out the divide by D: 9643 // (I * B mod N) / D 9644 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9645 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9646 } 9647 9648 /// For a given quadratic addrec, generate coefficients of the corresponding 9649 /// quadratic equation, multiplied by a common value to ensure that they are 9650 /// integers. 9651 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9652 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9653 /// were multiplied by, and BitWidth is the bit width of the original addrec 9654 /// coefficients. 9655 /// This function returns None if the addrec coefficients are not compile- 9656 /// time constants. 9657 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9658 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9659 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9660 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9661 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9662 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9663 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9664 << *AddRec << '\n'); 9665 9666 // We currently can only solve this if the coefficients are constants. 9667 if (!LC || !MC || !NC) { 9668 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9669 return None; 9670 } 9671 9672 APInt L = LC->getAPInt(); 9673 APInt M = MC->getAPInt(); 9674 APInt N = NC->getAPInt(); 9675 assert(!N.isZero() && "This is not a quadratic addrec"); 9676 9677 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9678 unsigned NewWidth = BitWidth + 1; 9679 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9680 << BitWidth << '\n'); 9681 // The sign-extension (as opposed to a zero-extension) here matches the 9682 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9683 N = N.sext(NewWidth); 9684 M = M.sext(NewWidth); 9685 L = L.sext(NewWidth); 9686 9687 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9688 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9689 // L+M, L+2M+N, L+3M+3N, ... 9690 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9691 // 9692 // The equation Acc = 0 is then 9693 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9694 // In a quadratic form it becomes: 9695 // N n^2 + (2M-N) n + 2L = 0. 9696 9697 APInt A = N; 9698 APInt B = 2 * M - A; 9699 APInt C = 2 * L; 9700 APInt T = APInt(NewWidth, 2); 9701 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9702 << "x + " << C << ", coeff bw: " << NewWidth 9703 << ", multiplied by " << T << '\n'); 9704 return std::make_tuple(A, B, C, T, BitWidth); 9705 } 9706 9707 /// Helper function to compare optional APInts: 9708 /// (a) if X and Y both exist, return min(X, Y), 9709 /// (b) if neither X nor Y exist, return None, 9710 /// (c) if exactly one of X and Y exists, return that value. 9711 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9712 if (X && Y) { 9713 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9714 APInt XW = X->sext(W); 9715 APInt YW = Y->sext(W); 9716 return XW.slt(YW) ? *X : *Y; 9717 } 9718 if (!X && !Y) 9719 return None; 9720 return X ? *X : *Y; 9721 } 9722 9723 /// Helper function to truncate an optional APInt to a given BitWidth. 9724 /// When solving addrec-related equations, it is preferable to return a value 9725 /// that has the same bit width as the original addrec's coefficients. If the 9726 /// solution fits in the original bit width, truncate it (except for i1). 9727 /// Returning a value of a different bit width may inhibit some optimizations. 9728 /// 9729 /// In general, a solution to a quadratic equation generated from an addrec 9730 /// may require BW+1 bits, where BW is the bit width of the addrec's 9731 /// coefficients. The reason is that the coefficients of the quadratic 9732 /// equation are BW+1 bits wide (to avoid truncation when converting from 9733 /// the addrec to the equation). 9734 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9735 if (!X) 9736 return None; 9737 unsigned W = X->getBitWidth(); 9738 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9739 return X->trunc(BitWidth); 9740 return X; 9741 } 9742 9743 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9744 /// iterations. The values L, M, N are assumed to be signed, and they 9745 /// should all have the same bit widths. 9746 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9747 /// where BW is the bit width of the addrec's coefficients. 9748 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9749 /// returned as such, otherwise the bit width of the returned value may 9750 /// be greater than BW. 9751 /// 9752 /// This function returns None if 9753 /// (a) the addrec coefficients are not constant, or 9754 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9755 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9756 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9757 static Optional<APInt> 9758 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9759 APInt A, B, C, M; 9760 unsigned BitWidth; 9761 auto T = GetQuadraticEquation(AddRec); 9762 if (!T) 9763 return None; 9764 9765 std::tie(A, B, C, M, BitWidth) = *T; 9766 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9767 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9768 if (!X) 9769 return None; 9770 9771 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9772 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9773 if (!V->isZero()) 9774 return None; 9775 9776 return TruncIfPossible(X, BitWidth); 9777 } 9778 9779 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9780 /// iterations. The values M, N are assumed to be signed, and they 9781 /// should all have the same bit widths. 9782 /// Find the least n such that c(n) does not belong to the given range, 9783 /// while c(n-1) does. 9784 /// 9785 /// This function returns None if 9786 /// (a) the addrec coefficients are not constant, or 9787 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9788 /// bounds of the range. 9789 static Optional<APInt> 9790 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9791 const ConstantRange &Range, ScalarEvolution &SE) { 9792 assert(AddRec->getOperand(0)->isZero() && 9793 "Starting value of addrec should be 0"); 9794 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9795 << Range << ", addrec " << *AddRec << '\n'); 9796 // This case is handled in getNumIterationsInRange. Here we can assume that 9797 // we start in the range. 9798 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9799 "Addrec's initial value should be in range"); 9800 9801 APInt A, B, C, M; 9802 unsigned BitWidth; 9803 auto T = GetQuadraticEquation(AddRec); 9804 if (!T) 9805 return None; 9806 9807 // Be careful about the return value: there can be two reasons for not 9808 // returning an actual number. First, if no solutions to the equations 9809 // were found, and second, if the solutions don't leave the given range. 9810 // The first case means that the actual solution is "unknown", the second 9811 // means that it's known, but not valid. If the solution is unknown, we 9812 // cannot make any conclusions. 9813 // Return a pair: the optional solution and a flag indicating if the 9814 // solution was found. 9815 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9816 // Solve for signed overflow and unsigned overflow, pick the lower 9817 // solution. 9818 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9819 << Bound << " (before multiplying by " << M << ")\n"); 9820 Bound *= M; // The quadratic equation multiplier. 9821 9822 Optional<APInt> SO = None; 9823 if (BitWidth > 1) { 9824 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9825 "signed overflow\n"); 9826 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9827 } 9828 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9829 "unsigned overflow\n"); 9830 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9831 BitWidth+1); 9832 9833 auto LeavesRange = [&] (const APInt &X) { 9834 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9835 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9836 if (Range.contains(V0->getValue())) 9837 return false; 9838 // X should be at least 1, so X-1 is non-negative. 9839 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9840 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9841 if (Range.contains(V1->getValue())) 9842 return true; 9843 return false; 9844 }; 9845 9846 // If SolveQuadraticEquationWrap returns None, it means that there can 9847 // be a solution, but the function failed to find it. We cannot treat it 9848 // as "no solution". 9849 if (!SO || !UO) 9850 return { None, false }; 9851 9852 // Check the smaller value first to see if it leaves the range. 9853 // At this point, both SO and UO must have values. 9854 Optional<APInt> Min = MinOptional(SO, UO); 9855 if (LeavesRange(*Min)) 9856 return { Min, true }; 9857 Optional<APInt> Max = Min == SO ? UO : SO; 9858 if (LeavesRange(*Max)) 9859 return { Max, true }; 9860 9861 // Solutions were found, but were eliminated, hence the "true". 9862 return { None, true }; 9863 }; 9864 9865 std::tie(A, B, C, M, BitWidth) = *T; 9866 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9867 APInt Lower = Range.getLower().sext(A.getBitWidth()) - 1; 9868 APInt Upper = Range.getUpper().sext(A.getBitWidth()); 9869 auto SL = SolveForBoundary(Lower); 9870 auto SU = SolveForBoundary(Upper); 9871 // If any of the solutions was unknown, no meaninigful conclusions can 9872 // be made. 9873 if (!SL.second || !SU.second) 9874 return None; 9875 9876 // Claim: The correct solution is not some value between Min and Max. 9877 // 9878 // Justification: Assuming that Min and Max are different values, one of 9879 // them is when the first signed overflow happens, the other is when the 9880 // first unsigned overflow happens. Crossing the range boundary is only 9881 // possible via an overflow (treating 0 as a special case of it, modeling 9882 // an overflow as crossing k*2^W for some k). 9883 // 9884 // The interesting case here is when Min was eliminated as an invalid 9885 // solution, but Max was not. The argument is that if there was another 9886 // overflow between Min and Max, it would also have been eliminated if 9887 // it was considered. 9888 // 9889 // For a given boundary, it is possible to have two overflows of the same 9890 // type (signed/unsigned) without having the other type in between: this 9891 // can happen when the vertex of the parabola is between the iterations 9892 // corresponding to the overflows. This is only possible when the two 9893 // overflows cross k*2^W for the same k. In such case, if the second one 9894 // left the range (and was the first one to do so), the first overflow 9895 // would have to enter the range, which would mean that either we had left 9896 // the range before or that we started outside of it. Both of these cases 9897 // are contradictions. 9898 // 9899 // Claim: In the case where SolveForBoundary returns None, the correct 9900 // solution is not some value between the Max for this boundary and the 9901 // Min of the other boundary. 9902 // 9903 // Justification: Assume that we had such Max_A and Min_B corresponding 9904 // to range boundaries A and B and such that Max_A < Min_B. If there was 9905 // a solution between Max_A and Min_B, it would have to be caused by an 9906 // overflow corresponding to either A or B. It cannot correspond to B, 9907 // since Min_B is the first occurrence of such an overflow. If it 9908 // corresponded to A, it would have to be either a signed or an unsigned 9909 // overflow that is larger than both eliminated overflows for A. But 9910 // between the eliminated overflows and this overflow, the values would 9911 // cover the entire value space, thus crossing the other boundary, which 9912 // is a contradiction. 9913 9914 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9915 } 9916 9917 ScalarEvolution::ExitLimit 9918 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9919 bool AllowPredicates) { 9920 9921 // This is only used for loops with a "x != y" exit test. The exit condition 9922 // is now expressed as a single expression, V = x-y. So the exit test is 9923 // effectively V != 0. We know and take advantage of the fact that this 9924 // expression only being used in a comparison by zero context. 9925 9926 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9927 // If the value is a constant 9928 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9929 // If the value is already zero, the branch will execute zero times. 9930 if (C->getValue()->isZero()) return C; 9931 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9932 } 9933 9934 const SCEVAddRecExpr *AddRec = 9935 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9936 9937 if (!AddRec && AllowPredicates) 9938 // Try to make this an AddRec using runtime tests, in the first X 9939 // iterations of this loop, where X is the SCEV expression found by the 9940 // algorithm below. 9941 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9942 9943 if (!AddRec || AddRec->getLoop() != L) 9944 return getCouldNotCompute(); 9945 9946 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9947 // the quadratic equation to solve it. 9948 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9949 // We can only use this value if the chrec ends up with an exact zero 9950 // value at this index. When solving for "X*X != 5", for example, we 9951 // should not accept a root of 2. 9952 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9953 const auto *R = cast<SCEVConstant>(getConstant(*S)); 9954 return ExitLimit(R, R, false, Predicates); 9955 } 9956 return getCouldNotCompute(); 9957 } 9958 9959 // Otherwise we can only handle this if it is affine. 9960 if (!AddRec->isAffine()) 9961 return getCouldNotCompute(); 9962 9963 // If this is an affine expression, the execution count of this branch is 9964 // the minimum unsigned root of the following equation: 9965 // 9966 // Start + Step*N = 0 (mod 2^BW) 9967 // 9968 // equivalent to: 9969 // 9970 // Step*N = -Start (mod 2^BW) 9971 // 9972 // where BW is the common bit width of Start and Step. 9973 9974 // Get the initial value for the loop. 9975 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9976 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9977 9978 // For now we handle only constant steps. 9979 // 9980 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9981 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9982 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9983 // We have not yet seen any such cases. 9984 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9985 if (!StepC || StepC->getValue()->isZero()) 9986 return getCouldNotCompute(); 9987 9988 // For positive steps (counting up until unsigned overflow): 9989 // N = -Start/Step (as unsigned) 9990 // For negative steps (counting down to zero): 9991 // N = Start/-Step 9992 // First compute the unsigned distance from zero in the direction of Step. 9993 bool CountDown = StepC->getAPInt().isNegative(); 9994 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9995 9996 // Handle unitary steps, which cannot wraparound. 9997 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9998 // N = Distance (as unsigned) 9999 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 10000 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 10001 MaxBECount = APIntOps::umin(MaxBECount, getUnsignedRangeMax(Distance)); 10002 10003 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 10004 // we end up with a loop whose backedge-taken count is n - 1. Detect this 10005 // case, and see if we can improve the bound. 10006 // 10007 // Explicitly handling this here is necessary because getUnsignedRange 10008 // isn't context-sensitive; it doesn't know that we only care about the 10009 // range inside the loop. 10010 const SCEV *Zero = getZero(Distance->getType()); 10011 const SCEV *One = getOne(Distance->getType()); 10012 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 10013 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 10014 // If Distance + 1 doesn't overflow, we can compute the maximum distance 10015 // as "unsigned_max(Distance + 1) - 1". 10016 ConstantRange CR = getUnsignedRange(DistancePlusOne); 10017 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 10018 } 10019 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 10020 } 10021 10022 // If the condition controls loop exit (the loop exits only if the expression 10023 // is true) and the addition is no-wrap we can use unsigned divide to 10024 // compute the backedge count. In this case, the step may not divide the 10025 // distance, but we don't care because if the condition is "missed" the loop 10026 // will have undefined behavior due to wrapping. 10027 if (ControlsExit && AddRec->hasNoSelfWrap() && 10028 loopHasNoAbnormalExits(AddRec->getLoop())) { 10029 const SCEV *Exact = 10030 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 10031 const SCEV *Max = getCouldNotCompute(); 10032 if (Exact != getCouldNotCompute()) { 10033 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 10034 Max = getConstant(APIntOps::umin(MaxInt, getUnsignedRangeMax(Exact))); 10035 } 10036 return ExitLimit(Exact, Max, false, Predicates); 10037 } 10038 10039 // Solve the general equation. 10040 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 10041 getNegativeSCEV(Start), *this); 10042 10043 const SCEV *M = E; 10044 if (E != getCouldNotCompute()) { 10045 APInt MaxWithGuards = getUnsignedRangeMax(applyLoopGuards(E, L)); 10046 M = getConstant(APIntOps::umin(MaxWithGuards, getUnsignedRangeMax(E))); 10047 } 10048 return ExitLimit(E, M, false, Predicates); 10049 } 10050 10051 ScalarEvolution::ExitLimit 10052 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 10053 // Loops that look like: while (X == 0) are very strange indeed. We don't 10054 // handle them yet except for the trivial case. This could be expanded in the 10055 // future as needed. 10056 10057 // If the value is a constant, check to see if it is known to be non-zero 10058 // already. If so, the backedge will execute zero times. 10059 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 10060 if (!C->getValue()->isZero()) 10061 return getZero(C->getType()); 10062 return getCouldNotCompute(); // Otherwise it will loop infinitely. 10063 } 10064 10065 // We could implement others, but I really doubt anyone writes loops like 10066 // this, and if they did, they would already be constant folded. 10067 return getCouldNotCompute(); 10068 } 10069 10070 std::pair<const BasicBlock *, const BasicBlock *> 10071 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 10072 const { 10073 // If the block has a unique predecessor, then there is no path from the 10074 // predecessor to the block that does not go through the direct edge 10075 // from the predecessor to the block. 10076 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 10077 return {Pred, BB}; 10078 10079 // A loop's header is defined to be a block that dominates the loop. 10080 // If the header has a unique predecessor outside the loop, it must be 10081 // a block that has exactly one successor that can reach the loop. 10082 if (const Loop *L = LI.getLoopFor(BB)) 10083 return {L->getLoopPredecessor(), L->getHeader()}; 10084 10085 return {nullptr, nullptr}; 10086 } 10087 10088 /// SCEV structural equivalence is usually sufficient for testing whether two 10089 /// expressions are equal, however for the purposes of looking for a condition 10090 /// guarding a loop, it can be useful to be a little more general, since a 10091 /// front-end may have replicated the controlling expression. 10092 static bool HasSameValue(const SCEV *A, const SCEV *B) { 10093 // Quick check to see if they are the same SCEV. 10094 if (A == B) return true; 10095 10096 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 10097 // Not all instructions that are "identical" compute the same value. For 10098 // instance, two distinct alloca instructions allocating the same type are 10099 // identical and do not read memory; but compute distinct values. 10100 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 10101 }; 10102 10103 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 10104 // two different instructions with the same value. Check for this case. 10105 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 10106 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 10107 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 10108 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 10109 if (ComputesEqualValues(AI, BI)) 10110 return true; 10111 10112 // Otherwise assume they may have a different value. 10113 return false; 10114 } 10115 10116 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 10117 const SCEV *&LHS, const SCEV *&RHS, 10118 unsigned Depth, 10119 bool ControllingFiniteLoop) { 10120 bool Changed = false; 10121 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 10122 // '0 != 0'. 10123 auto TrivialCase = [&](bool TriviallyTrue) { 10124 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 10125 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 10126 return true; 10127 }; 10128 // If we hit the max recursion limit bail out. 10129 if (Depth >= 3) 10130 return false; 10131 10132 // Canonicalize a constant to the right side. 10133 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 10134 // Check for both operands constant. 10135 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 10136 if (ConstantExpr::getICmp(Pred, 10137 LHSC->getValue(), 10138 RHSC->getValue())->isNullValue()) 10139 return TrivialCase(false); 10140 else 10141 return TrivialCase(true); 10142 } 10143 // Otherwise swap the operands to put the constant on the right. 10144 std::swap(LHS, RHS); 10145 Pred = ICmpInst::getSwappedPredicate(Pred); 10146 Changed = true; 10147 } 10148 10149 // If we're comparing an addrec with a value which is loop-invariant in the 10150 // addrec's loop, put the addrec on the left. Also make a dominance check, 10151 // as both operands could be addrecs loop-invariant in each other's loop. 10152 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 10153 const Loop *L = AR->getLoop(); 10154 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 10155 std::swap(LHS, RHS); 10156 Pred = ICmpInst::getSwappedPredicate(Pred); 10157 Changed = true; 10158 } 10159 } 10160 10161 // If there's a constant operand, canonicalize comparisons with boundary 10162 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 10163 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 10164 const APInt &RA = RC->getAPInt(); 10165 10166 bool SimplifiedByConstantRange = false; 10167 10168 if (!ICmpInst::isEquality(Pred)) { 10169 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 10170 if (ExactCR.isFullSet()) 10171 return TrivialCase(true); 10172 else if (ExactCR.isEmptySet()) 10173 return TrivialCase(false); 10174 10175 APInt NewRHS; 10176 CmpInst::Predicate NewPred; 10177 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 10178 ICmpInst::isEquality(NewPred)) { 10179 // We were able to convert an inequality to an equality. 10180 Pred = NewPred; 10181 RHS = getConstant(NewRHS); 10182 Changed = SimplifiedByConstantRange = true; 10183 } 10184 } 10185 10186 if (!SimplifiedByConstantRange) { 10187 switch (Pred) { 10188 default: 10189 break; 10190 case ICmpInst::ICMP_EQ: 10191 case ICmpInst::ICMP_NE: 10192 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 10193 if (!RA) 10194 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 10195 if (const SCEVMulExpr *ME = 10196 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 10197 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 10198 ME->getOperand(0)->isAllOnesValue()) { 10199 RHS = AE->getOperand(1); 10200 LHS = ME->getOperand(1); 10201 Changed = true; 10202 } 10203 break; 10204 10205 10206 // The "Should have been caught earlier!" messages refer to the fact 10207 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 10208 // should have fired on the corresponding cases, and canonicalized the 10209 // check to trivial case. 10210 10211 case ICmpInst::ICMP_UGE: 10212 assert(!RA.isMinValue() && "Should have been caught earlier!"); 10213 Pred = ICmpInst::ICMP_UGT; 10214 RHS = getConstant(RA - 1); 10215 Changed = true; 10216 break; 10217 case ICmpInst::ICMP_ULE: 10218 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 10219 Pred = ICmpInst::ICMP_ULT; 10220 RHS = getConstant(RA + 1); 10221 Changed = true; 10222 break; 10223 case ICmpInst::ICMP_SGE: 10224 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 10225 Pred = ICmpInst::ICMP_SGT; 10226 RHS = getConstant(RA - 1); 10227 Changed = true; 10228 break; 10229 case ICmpInst::ICMP_SLE: 10230 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 10231 Pred = ICmpInst::ICMP_SLT; 10232 RHS = getConstant(RA + 1); 10233 Changed = true; 10234 break; 10235 } 10236 } 10237 } 10238 10239 // Check for obvious equality. 10240 if (HasSameValue(LHS, RHS)) { 10241 if (ICmpInst::isTrueWhenEqual(Pred)) 10242 return TrivialCase(true); 10243 if (ICmpInst::isFalseWhenEqual(Pred)) 10244 return TrivialCase(false); 10245 } 10246 10247 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 10248 // adding or subtracting 1 from one of the operands. This can be done for 10249 // one of two reasons: 10250 // 1) The range of the RHS does not include the (signed/unsigned) boundaries 10251 // 2) The loop is finite, with this comparison controlling the exit. Since the 10252 // loop is finite, the bound cannot include the corresponding boundary 10253 // (otherwise it would loop forever). 10254 switch (Pred) { 10255 case ICmpInst::ICMP_SLE: 10256 if (ControllingFiniteLoop || !getSignedRangeMax(RHS).isMaxSignedValue()) { 10257 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10258 SCEV::FlagNSW); 10259 Pred = ICmpInst::ICMP_SLT; 10260 Changed = true; 10261 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 10262 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 10263 SCEV::FlagNSW); 10264 Pred = ICmpInst::ICMP_SLT; 10265 Changed = true; 10266 } 10267 break; 10268 case ICmpInst::ICMP_SGE: 10269 if (ControllingFiniteLoop || !getSignedRangeMin(RHS).isMinSignedValue()) { 10270 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 10271 SCEV::FlagNSW); 10272 Pred = ICmpInst::ICMP_SGT; 10273 Changed = true; 10274 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 10275 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10276 SCEV::FlagNSW); 10277 Pred = ICmpInst::ICMP_SGT; 10278 Changed = true; 10279 } 10280 break; 10281 case ICmpInst::ICMP_ULE: 10282 if (ControllingFiniteLoop || !getUnsignedRangeMax(RHS).isMaxValue()) { 10283 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 10284 SCEV::FlagNUW); 10285 Pred = ICmpInst::ICMP_ULT; 10286 Changed = true; 10287 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 10288 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 10289 Pred = ICmpInst::ICMP_ULT; 10290 Changed = true; 10291 } 10292 break; 10293 case ICmpInst::ICMP_UGE: 10294 if (ControllingFiniteLoop || !getUnsignedRangeMin(RHS).isMinValue()) { 10295 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 10296 Pred = ICmpInst::ICMP_UGT; 10297 Changed = true; 10298 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 10299 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 10300 SCEV::FlagNUW); 10301 Pred = ICmpInst::ICMP_UGT; 10302 Changed = true; 10303 } 10304 break; 10305 default: 10306 break; 10307 } 10308 10309 // TODO: More simplifications are possible here. 10310 10311 // Recursively simplify until we either hit a recursion limit or nothing 10312 // changes. 10313 if (Changed) 10314 return SimplifyICmpOperands(Pred, LHS, RHS, Depth + 1, 10315 ControllingFiniteLoop); 10316 10317 return Changed; 10318 } 10319 10320 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 10321 return getSignedRangeMax(S).isNegative(); 10322 } 10323 10324 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 10325 return getSignedRangeMin(S).isStrictlyPositive(); 10326 } 10327 10328 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 10329 return !getSignedRangeMin(S).isNegative(); 10330 } 10331 10332 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 10333 return !getSignedRangeMax(S).isStrictlyPositive(); 10334 } 10335 10336 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 10337 return getUnsignedRangeMin(S) != 0; 10338 } 10339 10340 std::pair<const SCEV *, const SCEV *> 10341 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 10342 // Compute SCEV on entry of loop L. 10343 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 10344 if (Start == getCouldNotCompute()) 10345 return { Start, Start }; 10346 // Compute post increment SCEV for loop L. 10347 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 10348 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 10349 return { Start, PostInc }; 10350 } 10351 10352 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 10353 const SCEV *LHS, const SCEV *RHS) { 10354 // First collect all loops. 10355 SmallPtrSet<const Loop *, 8> LoopsUsed; 10356 getUsedLoops(LHS, LoopsUsed); 10357 getUsedLoops(RHS, LoopsUsed); 10358 10359 if (LoopsUsed.empty()) 10360 return false; 10361 10362 // Domination relationship must be a linear order on collected loops. 10363 #ifndef NDEBUG 10364 for (auto *L1 : LoopsUsed) 10365 for (auto *L2 : LoopsUsed) 10366 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 10367 DT.dominates(L2->getHeader(), L1->getHeader())) && 10368 "Domination relationship is not a linear order"); 10369 #endif 10370 10371 const Loop *MDL = 10372 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 10373 [&](const Loop *L1, const Loop *L2) { 10374 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 10375 }); 10376 10377 // Get init and post increment value for LHS. 10378 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 10379 // if LHS contains unknown non-invariant SCEV then bail out. 10380 if (SplitLHS.first == getCouldNotCompute()) 10381 return false; 10382 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 10383 // Get init and post increment value for RHS. 10384 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 10385 // if RHS contains unknown non-invariant SCEV then bail out. 10386 if (SplitRHS.first == getCouldNotCompute()) 10387 return false; 10388 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 10389 // It is possible that init SCEV contains an invariant load but it does 10390 // not dominate MDL and is not available at MDL loop entry, so we should 10391 // check it here. 10392 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 10393 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 10394 return false; 10395 10396 // It seems backedge guard check is faster than entry one so in some cases 10397 // it can speed up whole estimation by short circuit 10398 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 10399 SplitRHS.second) && 10400 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 10401 } 10402 10403 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 10404 const SCEV *LHS, const SCEV *RHS) { 10405 // Canonicalize the inputs first. 10406 (void)SimplifyICmpOperands(Pred, LHS, RHS); 10407 10408 if (isKnownViaInduction(Pred, LHS, RHS)) 10409 return true; 10410 10411 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 10412 return true; 10413 10414 // Otherwise see what can be done with some simple reasoning. 10415 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 10416 } 10417 10418 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 10419 const SCEV *LHS, 10420 const SCEV *RHS) { 10421 if (isKnownPredicate(Pred, LHS, RHS)) 10422 return true; 10423 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 10424 return false; 10425 return None; 10426 } 10427 10428 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 10429 const SCEV *LHS, const SCEV *RHS, 10430 const Instruction *CtxI) { 10431 // TODO: Analyze guards and assumes from Context's block. 10432 return isKnownPredicate(Pred, LHS, RHS) || 10433 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 10434 } 10435 10436 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 10437 const SCEV *LHS, 10438 const SCEV *RHS, 10439 const Instruction *CtxI) { 10440 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 10441 if (KnownWithoutContext) 10442 return KnownWithoutContext; 10443 10444 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 10445 return true; 10446 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 10447 ICmpInst::getInversePredicate(Pred), 10448 LHS, RHS)) 10449 return false; 10450 return None; 10451 } 10452 10453 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 10454 const SCEVAddRecExpr *LHS, 10455 const SCEV *RHS) { 10456 const Loop *L = LHS->getLoop(); 10457 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 10458 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 10459 } 10460 10461 Optional<ScalarEvolution::MonotonicPredicateType> 10462 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 10463 ICmpInst::Predicate Pred) { 10464 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 10465 10466 #ifndef NDEBUG 10467 // Verify an invariant: inverting the predicate should turn a monotonically 10468 // increasing change to a monotonically decreasing one, and vice versa. 10469 if (Result) { 10470 auto ResultSwapped = 10471 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 10472 10473 assert(ResultSwapped && "should be able to analyze both!"); 10474 assert(ResultSwapped.getValue() != Result.getValue() && 10475 "monotonicity should flip as we flip the predicate"); 10476 } 10477 #endif 10478 10479 return Result; 10480 } 10481 10482 Optional<ScalarEvolution::MonotonicPredicateType> 10483 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 10484 ICmpInst::Predicate Pred) { 10485 // A zero step value for LHS means the induction variable is essentially a 10486 // loop invariant value. We don't really depend on the predicate actually 10487 // flipping from false to true (for increasing predicates, and the other way 10488 // around for decreasing predicates), all we care about is that *if* the 10489 // predicate changes then it only changes from false to true. 10490 // 10491 // A zero step value in itself is not very useful, but there may be places 10492 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 10493 // as general as possible. 10494 10495 // Only handle LE/LT/GE/GT predicates. 10496 if (!ICmpInst::isRelational(Pred)) 10497 return None; 10498 10499 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10500 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10501 "Should be greater or less!"); 10502 10503 // Check that AR does not wrap. 10504 if (ICmpInst::isUnsigned(Pred)) { 10505 if (!LHS->hasNoUnsignedWrap()) 10506 return None; 10507 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10508 } else { 10509 assert(ICmpInst::isSigned(Pred) && 10510 "Relational predicate is either signed or unsigned!"); 10511 if (!LHS->hasNoSignedWrap()) 10512 return None; 10513 10514 const SCEV *Step = LHS->getStepRecurrence(*this); 10515 10516 if (isKnownNonNegative(Step)) 10517 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10518 10519 if (isKnownNonPositive(Step)) 10520 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10521 10522 return None; 10523 } 10524 } 10525 10526 Optional<ScalarEvolution::LoopInvariantPredicate> 10527 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10528 const SCEV *LHS, const SCEV *RHS, 10529 const Loop *L) { 10530 10531 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10532 if (!isLoopInvariant(RHS, L)) { 10533 if (!isLoopInvariant(LHS, L)) 10534 return None; 10535 10536 std::swap(LHS, RHS); 10537 Pred = ICmpInst::getSwappedPredicate(Pred); 10538 } 10539 10540 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10541 if (!ArLHS || ArLHS->getLoop() != L) 10542 return None; 10543 10544 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10545 if (!MonotonicType) 10546 return None; 10547 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10548 // true as the loop iterates, and the backedge is control dependent on 10549 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10550 // 10551 // * if the predicate was false in the first iteration then the predicate 10552 // is never evaluated again, since the loop exits without taking the 10553 // backedge. 10554 // * if the predicate was true in the first iteration then it will 10555 // continue to be true for all future iterations since it is 10556 // monotonically increasing. 10557 // 10558 // For both the above possibilities, we can replace the loop varying 10559 // predicate with its value on the first iteration of the loop (which is 10560 // loop invariant). 10561 // 10562 // A similar reasoning applies for a monotonically decreasing predicate, by 10563 // replacing true with false and false with true in the above two bullets. 10564 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10565 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10566 10567 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10568 return None; 10569 10570 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10571 } 10572 10573 Optional<ScalarEvolution::LoopInvariantPredicate> 10574 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10575 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10576 const Instruction *CtxI, const SCEV *MaxIter) { 10577 // Try to prove the following set of facts: 10578 // - The predicate is monotonic in the iteration space. 10579 // - If the check does not fail on the 1st iteration: 10580 // - No overflow will happen during first MaxIter iterations; 10581 // - It will not fail on the MaxIter'th iteration. 10582 // If the check does fail on the 1st iteration, we leave the loop and no 10583 // other checks matter. 10584 10585 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10586 if (!isLoopInvariant(RHS, L)) { 10587 if (!isLoopInvariant(LHS, L)) 10588 return None; 10589 10590 std::swap(LHS, RHS); 10591 Pred = ICmpInst::getSwappedPredicate(Pred); 10592 } 10593 10594 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10595 if (!AR || AR->getLoop() != L) 10596 return None; 10597 10598 // The predicate must be relational (i.e. <, <=, >=, >). 10599 if (!ICmpInst::isRelational(Pred)) 10600 return None; 10601 10602 // TODO: Support steps other than +/- 1. 10603 const SCEV *Step = AR->getStepRecurrence(*this); 10604 auto *One = getOne(Step->getType()); 10605 auto *MinusOne = getNegativeSCEV(One); 10606 if (Step != One && Step != MinusOne) 10607 return None; 10608 10609 // Type mismatch here means that MaxIter is potentially larger than max 10610 // unsigned value in start type, which mean we cannot prove no wrap for the 10611 // indvar. 10612 if (AR->getType() != MaxIter->getType()) 10613 return None; 10614 10615 // Value of IV on suggested last iteration. 10616 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10617 // Does it still meet the requirement? 10618 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10619 return None; 10620 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10621 // not exceed max unsigned value of this type), this effectively proves 10622 // that there is no wrap during the iteration. To prove that there is no 10623 // signed/unsigned wrap, we need to check that 10624 // Start <= Last for step = 1 or Start >= Last for step = -1. 10625 ICmpInst::Predicate NoOverflowPred = 10626 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10627 if (Step == MinusOne) 10628 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10629 const SCEV *Start = AR->getStart(); 10630 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10631 return None; 10632 10633 // Everything is fine. 10634 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10635 } 10636 10637 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10638 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10639 if (HasSameValue(LHS, RHS)) 10640 return ICmpInst::isTrueWhenEqual(Pred); 10641 10642 // This code is split out from isKnownPredicate because it is called from 10643 // within isLoopEntryGuardedByCond. 10644 10645 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10646 const ConstantRange &RangeRHS) { 10647 return RangeLHS.icmp(Pred, RangeRHS); 10648 }; 10649 10650 // The check at the top of the function catches the case where the values are 10651 // known to be equal. 10652 if (Pred == CmpInst::ICMP_EQ) 10653 return false; 10654 10655 if (Pred == CmpInst::ICMP_NE) { 10656 auto SL = getSignedRange(LHS); 10657 auto SR = getSignedRange(RHS); 10658 if (CheckRanges(SL, SR)) 10659 return true; 10660 auto UL = getUnsignedRange(LHS); 10661 auto UR = getUnsignedRange(RHS); 10662 if (CheckRanges(UL, UR)) 10663 return true; 10664 auto *Diff = getMinusSCEV(LHS, RHS); 10665 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10666 } 10667 10668 if (CmpInst::isSigned(Pred)) { 10669 auto SL = getSignedRange(LHS); 10670 auto SR = getSignedRange(RHS); 10671 return CheckRanges(SL, SR); 10672 } 10673 10674 auto UL = getUnsignedRange(LHS); 10675 auto UR = getUnsignedRange(RHS); 10676 return CheckRanges(UL, UR); 10677 } 10678 10679 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10680 const SCEV *LHS, 10681 const SCEV *RHS) { 10682 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10683 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10684 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10685 // OutC1 and OutC2. 10686 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10687 APInt &OutC1, APInt &OutC2, 10688 SCEV::NoWrapFlags ExpectedFlags) { 10689 const SCEV *XNonConstOp, *XConstOp; 10690 const SCEV *YNonConstOp, *YConstOp; 10691 SCEV::NoWrapFlags XFlagsPresent; 10692 SCEV::NoWrapFlags YFlagsPresent; 10693 10694 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10695 XConstOp = getZero(X->getType()); 10696 XNonConstOp = X; 10697 XFlagsPresent = ExpectedFlags; 10698 } 10699 if (!isa<SCEVConstant>(XConstOp) || 10700 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10701 return false; 10702 10703 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10704 YConstOp = getZero(Y->getType()); 10705 YNonConstOp = Y; 10706 YFlagsPresent = ExpectedFlags; 10707 } 10708 10709 if (!isa<SCEVConstant>(YConstOp) || 10710 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10711 return false; 10712 10713 if (YNonConstOp != XNonConstOp) 10714 return false; 10715 10716 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10717 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10718 10719 return true; 10720 }; 10721 10722 APInt C1; 10723 APInt C2; 10724 10725 switch (Pred) { 10726 default: 10727 break; 10728 10729 case ICmpInst::ICMP_SGE: 10730 std::swap(LHS, RHS); 10731 LLVM_FALLTHROUGH; 10732 case ICmpInst::ICMP_SLE: 10733 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10734 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10735 return true; 10736 10737 break; 10738 10739 case ICmpInst::ICMP_SGT: 10740 std::swap(LHS, RHS); 10741 LLVM_FALLTHROUGH; 10742 case ICmpInst::ICMP_SLT: 10743 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10744 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10745 return true; 10746 10747 break; 10748 10749 case ICmpInst::ICMP_UGE: 10750 std::swap(LHS, RHS); 10751 LLVM_FALLTHROUGH; 10752 case ICmpInst::ICMP_ULE: 10753 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10754 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10755 return true; 10756 10757 break; 10758 10759 case ICmpInst::ICMP_UGT: 10760 std::swap(LHS, RHS); 10761 LLVM_FALLTHROUGH; 10762 case ICmpInst::ICMP_ULT: 10763 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10764 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10765 return true; 10766 break; 10767 } 10768 10769 return false; 10770 } 10771 10772 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10773 const SCEV *LHS, 10774 const SCEV *RHS) { 10775 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10776 return false; 10777 10778 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10779 // the stack can result in exponential time complexity. 10780 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10781 10782 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10783 // 10784 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10785 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10786 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10787 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10788 // use isKnownPredicate later if needed. 10789 return isKnownNonNegative(RHS) && 10790 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10791 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10792 } 10793 10794 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10795 ICmpInst::Predicate Pred, 10796 const SCEV *LHS, const SCEV *RHS) { 10797 // No need to even try if we know the module has no guards. 10798 if (!HasGuards) 10799 return false; 10800 10801 return any_of(*BB, [&](const Instruction &I) { 10802 using namespace llvm::PatternMatch; 10803 10804 Value *Condition; 10805 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10806 m_Value(Condition))) && 10807 isImpliedCond(Pred, LHS, RHS, Condition, false); 10808 }); 10809 } 10810 10811 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10812 /// protected by a conditional between LHS and RHS. This is used to 10813 /// to eliminate casts. 10814 bool 10815 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10816 ICmpInst::Predicate Pred, 10817 const SCEV *LHS, const SCEV *RHS) { 10818 // Interpret a null as meaning no loop, where there is obviously no guard 10819 // (interprocedural conditions notwithstanding). 10820 if (!L) return true; 10821 10822 if (VerifyIR) 10823 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10824 "This cannot be done on broken IR!"); 10825 10826 10827 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10828 return true; 10829 10830 BasicBlock *Latch = L->getLoopLatch(); 10831 if (!Latch) 10832 return false; 10833 10834 BranchInst *LoopContinuePredicate = 10835 dyn_cast<BranchInst>(Latch->getTerminator()); 10836 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10837 isImpliedCond(Pred, LHS, RHS, 10838 LoopContinuePredicate->getCondition(), 10839 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10840 return true; 10841 10842 // We don't want more than one activation of the following loops on the stack 10843 // -- that can lead to O(n!) time complexity. 10844 if (WalkingBEDominatingConds) 10845 return false; 10846 10847 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10848 10849 // See if we can exploit a trip count to prove the predicate. 10850 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10851 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10852 if (LatchBECount != getCouldNotCompute()) { 10853 // We know that Latch branches back to the loop header exactly 10854 // LatchBECount times. This means the backdege condition at Latch is 10855 // equivalent to "{0,+,1} u< LatchBECount". 10856 Type *Ty = LatchBECount->getType(); 10857 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10858 const SCEV *LoopCounter = 10859 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10860 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10861 LatchBECount)) 10862 return true; 10863 } 10864 10865 // Check conditions due to any @llvm.assume intrinsics. 10866 for (auto &AssumeVH : AC.assumptions()) { 10867 if (!AssumeVH) 10868 continue; 10869 auto *CI = cast<CallInst>(AssumeVH); 10870 if (!DT.dominates(CI, Latch->getTerminator())) 10871 continue; 10872 10873 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10874 return true; 10875 } 10876 10877 // If the loop is not reachable from the entry block, we risk running into an 10878 // infinite loop as we walk up into the dom tree. These loops do not matter 10879 // anyway, so we just return a conservative answer when we see them. 10880 if (!DT.isReachableFromEntry(L->getHeader())) 10881 return false; 10882 10883 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10884 return true; 10885 10886 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10887 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10888 assert(DTN && "should reach the loop header before reaching the root!"); 10889 10890 BasicBlock *BB = DTN->getBlock(); 10891 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10892 return true; 10893 10894 BasicBlock *PBB = BB->getSinglePredecessor(); 10895 if (!PBB) 10896 continue; 10897 10898 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10899 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10900 continue; 10901 10902 Value *Condition = ContinuePredicate->getCondition(); 10903 10904 // If we have an edge `E` within the loop body that dominates the only 10905 // latch, the condition guarding `E` also guards the backedge. This 10906 // reasoning works only for loops with a single latch. 10907 10908 BasicBlockEdge DominatingEdge(PBB, BB); 10909 if (DominatingEdge.isSingleEdge()) { 10910 // We're constructively (and conservatively) enumerating edges within the 10911 // loop body that dominate the latch. The dominator tree better agree 10912 // with us on this: 10913 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10914 10915 if (isImpliedCond(Pred, LHS, RHS, Condition, 10916 BB != ContinuePredicate->getSuccessor(0))) 10917 return true; 10918 } 10919 } 10920 10921 return false; 10922 } 10923 10924 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10925 ICmpInst::Predicate Pred, 10926 const SCEV *LHS, 10927 const SCEV *RHS) { 10928 if (VerifyIR) 10929 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10930 "This cannot be done on broken IR!"); 10931 10932 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10933 // the facts (a >= b && a != b) separately. A typical situation is when the 10934 // non-strict comparison is known from ranges and non-equality is known from 10935 // dominating predicates. If we are proving strict comparison, we always try 10936 // to prove non-equality and non-strict comparison separately. 10937 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10938 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10939 bool ProvedNonStrictComparison = false; 10940 bool ProvedNonEquality = false; 10941 10942 auto SplitAndProve = 10943 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10944 if (!ProvedNonStrictComparison) 10945 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10946 if (!ProvedNonEquality) 10947 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10948 if (ProvedNonStrictComparison && ProvedNonEquality) 10949 return true; 10950 return false; 10951 }; 10952 10953 if (ProvingStrictComparison) { 10954 auto ProofFn = [&](ICmpInst::Predicate P) { 10955 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10956 }; 10957 if (SplitAndProve(ProofFn)) 10958 return true; 10959 } 10960 10961 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10962 auto ProveViaGuard = [&](const BasicBlock *Block) { 10963 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10964 return true; 10965 if (ProvingStrictComparison) { 10966 auto ProofFn = [&](ICmpInst::Predicate P) { 10967 return isImpliedViaGuard(Block, P, LHS, RHS); 10968 }; 10969 if (SplitAndProve(ProofFn)) 10970 return true; 10971 } 10972 return false; 10973 }; 10974 10975 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10976 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10977 const Instruction *CtxI = &BB->front(); 10978 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10979 return true; 10980 if (ProvingStrictComparison) { 10981 auto ProofFn = [&](ICmpInst::Predicate P) { 10982 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10983 }; 10984 if (SplitAndProve(ProofFn)) 10985 return true; 10986 } 10987 return false; 10988 }; 10989 10990 // Starting at the block's predecessor, climb up the predecessor chain, as long 10991 // as there are predecessors that can be found that have unique successors 10992 // leading to the original block. 10993 const Loop *ContainingLoop = LI.getLoopFor(BB); 10994 const BasicBlock *PredBB; 10995 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10996 PredBB = ContainingLoop->getLoopPredecessor(); 10997 else 10998 PredBB = BB->getSinglePredecessor(); 10999 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 11000 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 11001 if (ProveViaGuard(Pair.first)) 11002 return true; 11003 11004 const BranchInst *LoopEntryPredicate = 11005 dyn_cast<BranchInst>(Pair.first->getTerminator()); 11006 if (!LoopEntryPredicate || 11007 LoopEntryPredicate->isUnconditional()) 11008 continue; 11009 11010 if (ProveViaCond(LoopEntryPredicate->getCondition(), 11011 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 11012 return true; 11013 } 11014 11015 // Check conditions due to any @llvm.assume intrinsics. 11016 for (auto &AssumeVH : AC.assumptions()) { 11017 if (!AssumeVH) 11018 continue; 11019 auto *CI = cast<CallInst>(AssumeVH); 11020 if (!DT.dominates(CI, BB)) 11021 continue; 11022 11023 if (ProveViaCond(CI->getArgOperand(0), false)) 11024 return true; 11025 } 11026 11027 return false; 11028 } 11029 11030 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 11031 ICmpInst::Predicate Pred, 11032 const SCEV *LHS, 11033 const SCEV *RHS) { 11034 // Interpret a null as meaning no loop, where there is obviously no guard 11035 // (interprocedural conditions notwithstanding). 11036 if (!L) 11037 return false; 11038 11039 // Both LHS and RHS must be available at loop entry. 11040 assert(isAvailableAtLoopEntry(LHS, L) && 11041 "LHS is not available at Loop Entry"); 11042 assert(isAvailableAtLoopEntry(RHS, L) && 11043 "RHS is not available at Loop Entry"); 11044 11045 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 11046 return true; 11047 11048 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 11049 } 11050 11051 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11052 const SCEV *RHS, 11053 const Value *FoundCondValue, bool Inverse, 11054 const Instruction *CtxI) { 11055 // False conditions implies anything. Do not bother analyzing it further. 11056 if (FoundCondValue == 11057 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 11058 return true; 11059 11060 if (!PendingLoopPredicates.insert(FoundCondValue).second) 11061 return false; 11062 11063 auto ClearOnExit = 11064 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 11065 11066 // Recursively handle And and Or conditions. 11067 const Value *Op0, *Op1; 11068 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 11069 if (!Inverse) 11070 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11071 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11072 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 11073 if (Inverse) 11074 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 11075 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 11076 } 11077 11078 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 11079 if (!ICI) return false; 11080 11081 // Now that we found a conditional branch that dominates the loop or controls 11082 // the loop latch. Check to see if it is the comparison we are looking for. 11083 ICmpInst::Predicate FoundPred; 11084 if (Inverse) 11085 FoundPred = ICI->getInversePredicate(); 11086 else 11087 FoundPred = ICI->getPredicate(); 11088 11089 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 11090 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 11091 11092 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 11093 } 11094 11095 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 11096 const SCEV *RHS, 11097 ICmpInst::Predicate FoundPred, 11098 const SCEV *FoundLHS, const SCEV *FoundRHS, 11099 const Instruction *CtxI) { 11100 // Balance the types. 11101 if (getTypeSizeInBits(LHS->getType()) < 11102 getTypeSizeInBits(FoundLHS->getType())) { 11103 // For unsigned and equality predicates, try to prove that both found 11104 // operands fit into narrow unsigned range. If so, try to prove facts in 11105 // narrow types. 11106 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy() && 11107 !FoundRHS->getType()->isPointerTy()) { 11108 auto *NarrowType = LHS->getType(); 11109 auto *WideType = FoundLHS->getType(); 11110 auto BitWidth = getTypeSizeInBits(NarrowType); 11111 const SCEV *MaxValue = getZeroExtendExpr( 11112 getConstant(APInt::getMaxValue(BitWidth)), WideType); 11113 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundLHS, 11114 MaxValue) && 11115 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, FoundRHS, 11116 MaxValue)) { 11117 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 11118 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 11119 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 11120 TruncFoundRHS, CtxI)) 11121 return true; 11122 } 11123 } 11124 11125 if (LHS->getType()->isPointerTy() || RHS->getType()->isPointerTy()) 11126 return false; 11127 if (CmpInst::isSigned(Pred)) { 11128 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 11129 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 11130 } else { 11131 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 11132 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 11133 } 11134 } else if (getTypeSizeInBits(LHS->getType()) > 11135 getTypeSizeInBits(FoundLHS->getType())) { 11136 if (FoundLHS->getType()->isPointerTy() || FoundRHS->getType()->isPointerTy()) 11137 return false; 11138 if (CmpInst::isSigned(FoundPred)) { 11139 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 11140 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 11141 } else { 11142 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 11143 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 11144 } 11145 } 11146 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 11147 FoundRHS, CtxI); 11148 } 11149 11150 bool ScalarEvolution::isImpliedCondBalancedTypes( 11151 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11152 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 11153 const Instruction *CtxI) { 11154 assert(getTypeSizeInBits(LHS->getType()) == 11155 getTypeSizeInBits(FoundLHS->getType()) && 11156 "Types should be balanced!"); 11157 // Canonicalize the query to match the way instcombine will have 11158 // canonicalized the comparison. 11159 if (SimplifyICmpOperands(Pred, LHS, RHS)) 11160 if (LHS == RHS) 11161 return CmpInst::isTrueWhenEqual(Pred); 11162 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 11163 if (FoundLHS == FoundRHS) 11164 return CmpInst::isFalseWhenEqual(FoundPred); 11165 11166 // Check to see if we can make the LHS or RHS match. 11167 if (LHS == FoundRHS || RHS == FoundLHS) { 11168 if (isa<SCEVConstant>(RHS)) { 11169 std::swap(FoundLHS, FoundRHS); 11170 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 11171 } else { 11172 std::swap(LHS, RHS); 11173 Pred = ICmpInst::getSwappedPredicate(Pred); 11174 } 11175 } 11176 11177 // Check whether the found predicate is the same as the desired predicate. 11178 if (FoundPred == Pred) 11179 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11180 11181 // Check whether swapping the found predicate makes it the same as the 11182 // desired predicate. 11183 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 11184 // We can write the implication 11185 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 11186 // using one of the following ways: 11187 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 11188 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 11189 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 11190 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 11191 // Forms 1. and 2. require swapping the operands of one condition. Don't 11192 // do this if it would break canonical constant/addrec ordering. 11193 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 11194 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 11195 CtxI); 11196 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 11197 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 11198 11199 // There's no clear preference between forms 3. and 4., try both. Avoid 11200 // forming getNotSCEV of pointer values as the resulting subtract is 11201 // not legal. 11202 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 11203 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 11204 FoundLHS, FoundRHS, CtxI)) 11205 return true; 11206 11207 if (!FoundLHS->getType()->isPointerTy() && 11208 !FoundRHS->getType()->isPointerTy() && 11209 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 11210 getNotSCEV(FoundRHS), CtxI)) 11211 return true; 11212 11213 return false; 11214 } 11215 11216 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 11217 CmpInst::Predicate P2) { 11218 assert(P1 != P2 && "Handled earlier!"); 11219 return CmpInst::isRelational(P2) && 11220 P1 == CmpInst::getFlippedSignednessPredicate(P2); 11221 }; 11222 if (IsSignFlippedPredicate(Pred, FoundPred)) { 11223 // Unsigned comparison is the same as signed comparison when both the 11224 // operands are non-negative or negative. 11225 if ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 11226 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))) 11227 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 11228 // Create local copies that we can freely swap and canonicalize our 11229 // conditions to "le/lt". 11230 ICmpInst::Predicate CanonicalPred = Pred, CanonicalFoundPred = FoundPred; 11231 const SCEV *CanonicalLHS = LHS, *CanonicalRHS = RHS, 11232 *CanonicalFoundLHS = FoundLHS, *CanonicalFoundRHS = FoundRHS; 11233 if (ICmpInst::isGT(CanonicalPred) || ICmpInst::isGE(CanonicalPred)) { 11234 CanonicalPred = ICmpInst::getSwappedPredicate(CanonicalPred); 11235 CanonicalFoundPred = ICmpInst::getSwappedPredicate(CanonicalFoundPred); 11236 std::swap(CanonicalLHS, CanonicalRHS); 11237 std::swap(CanonicalFoundLHS, CanonicalFoundRHS); 11238 } 11239 assert((ICmpInst::isLT(CanonicalPred) || ICmpInst::isLE(CanonicalPred)) && 11240 "Must be!"); 11241 assert((ICmpInst::isLT(CanonicalFoundPred) || 11242 ICmpInst::isLE(CanonicalFoundPred)) && 11243 "Must be!"); 11244 if (ICmpInst::isSigned(CanonicalPred) && isKnownNonNegative(CanonicalRHS)) 11245 // Use implication: 11246 // x <u y && y >=s 0 --> x <s y. 11247 // If we can prove the left part, the right part is also proven. 11248 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11249 CanonicalRHS, CanonicalFoundLHS, 11250 CanonicalFoundRHS); 11251 if (ICmpInst::isUnsigned(CanonicalPred) && isKnownNegative(CanonicalRHS)) 11252 // Use implication: 11253 // x <s y && y <s 0 --> x <u y. 11254 // If we can prove the left part, the right part is also proven. 11255 return isImpliedCondOperands(CanonicalFoundPred, CanonicalLHS, 11256 CanonicalRHS, CanonicalFoundLHS, 11257 CanonicalFoundRHS); 11258 } 11259 11260 // Check if we can make progress by sharpening ranges. 11261 if (FoundPred == ICmpInst::ICMP_NE && 11262 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 11263 11264 const SCEVConstant *C = nullptr; 11265 const SCEV *V = nullptr; 11266 11267 if (isa<SCEVConstant>(FoundLHS)) { 11268 C = cast<SCEVConstant>(FoundLHS); 11269 V = FoundRHS; 11270 } else { 11271 C = cast<SCEVConstant>(FoundRHS); 11272 V = FoundLHS; 11273 } 11274 11275 // The guarding predicate tells us that C != V. If the known range 11276 // of V is [C, t), we can sharpen the range to [C + 1, t). The 11277 // range we consider has to correspond to same signedness as the 11278 // predicate we're interested in folding. 11279 11280 APInt Min = ICmpInst::isSigned(Pred) ? 11281 getSignedRangeMin(V) : getUnsignedRangeMin(V); 11282 11283 if (Min == C->getAPInt()) { 11284 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 11285 // This is true even if (Min + 1) wraps around -- in case of 11286 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 11287 11288 APInt SharperMin = Min + 1; 11289 11290 switch (Pred) { 11291 case ICmpInst::ICMP_SGE: 11292 case ICmpInst::ICMP_UGE: 11293 // We know V `Pred` SharperMin. If this implies LHS `Pred` 11294 // RHS, we're done. 11295 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 11296 CtxI)) 11297 return true; 11298 LLVM_FALLTHROUGH; 11299 11300 case ICmpInst::ICMP_SGT: 11301 case ICmpInst::ICMP_UGT: 11302 // We know from the range information that (V `Pred` Min || 11303 // V == Min). We know from the guarding condition that !(V 11304 // == Min). This gives us 11305 // 11306 // V `Pred` Min || V == Min && !(V == Min) 11307 // => V `Pred` Min 11308 // 11309 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 11310 11311 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 11312 return true; 11313 break; 11314 11315 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 11316 case ICmpInst::ICMP_SLE: 11317 case ICmpInst::ICMP_ULE: 11318 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11319 LHS, V, getConstant(SharperMin), CtxI)) 11320 return true; 11321 LLVM_FALLTHROUGH; 11322 11323 case ICmpInst::ICMP_SLT: 11324 case ICmpInst::ICMP_ULT: 11325 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 11326 LHS, V, getConstant(Min), CtxI)) 11327 return true; 11328 break; 11329 11330 default: 11331 // No change 11332 break; 11333 } 11334 } 11335 } 11336 11337 // Check whether the actual condition is beyond sufficient. 11338 if (FoundPred == ICmpInst::ICMP_EQ) 11339 if (ICmpInst::isTrueWhenEqual(Pred)) 11340 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11341 return true; 11342 if (Pred == ICmpInst::ICMP_NE) 11343 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 11344 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 11345 return true; 11346 11347 // Otherwise assume the worst. 11348 return false; 11349 } 11350 11351 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 11352 const SCEV *&L, const SCEV *&R, 11353 SCEV::NoWrapFlags &Flags) { 11354 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 11355 if (!AE || AE->getNumOperands() != 2) 11356 return false; 11357 11358 L = AE->getOperand(0); 11359 R = AE->getOperand(1); 11360 Flags = AE->getNoWrapFlags(); 11361 return true; 11362 } 11363 11364 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 11365 const SCEV *Less) { 11366 // We avoid subtracting expressions here because this function is usually 11367 // fairly deep in the call stack (i.e. is called many times). 11368 11369 // X - X = 0. 11370 if (More == Less) 11371 return APInt(getTypeSizeInBits(More->getType()), 0); 11372 11373 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 11374 const auto *LAR = cast<SCEVAddRecExpr>(Less); 11375 const auto *MAR = cast<SCEVAddRecExpr>(More); 11376 11377 if (LAR->getLoop() != MAR->getLoop()) 11378 return None; 11379 11380 // We look at affine expressions only; not for correctness but to keep 11381 // getStepRecurrence cheap. 11382 if (!LAR->isAffine() || !MAR->isAffine()) 11383 return None; 11384 11385 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 11386 return None; 11387 11388 Less = LAR->getStart(); 11389 More = MAR->getStart(); 11390 11391 // fall through 11392 } 11393 11394 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 11395 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 11396 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 11397 return M - L; 11398 } 11399 11400 SCEV::NoWrapFlags Flags; 11401 const SCEV *LLess = nullptr, *RLess = nullptr; 11402 const SCEV *LMore = nullptr, *RMore = nullptr; 11403 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 11404 // Compare (X + C1) vs X. 11405 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 11406 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 11407 if (RLess == More) 11408 return -(C1->getAPInt()); 11409 11410 // Compare X vs (X + C2). 11411 if (splitBinaryAdd(More, LMore, RMore, Flags)) 11412 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 11413 if (RMore == Less) 11414 return C2->getAPInt(); 11415 11416 // Compare (X + C1) vs (X + C2). 11417 if (C1 && C2 && RLess == RMore) 11418 return C2->getAPInt() - C1->getAPInt(); 11419 11420 return None; 11421 } 11422 11423 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 11424 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11425 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 11426 // Try to recognize the following pattern: 11427 // 11428 // FoundRHS = ... 11429 // ... 11430 // loop: 11431 // FoundLHS = {Start,+,W} 11432 // context_bb: // Basic block from the same loop 11433 // known(Pred, FoundLHS, FoundRHS) 11434 // 11435 // If some predicate is known in the context of a loop, it is also known on 11436 // each iteration of this loop, including the first iteration. Therefore, in 11437 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 11438 // prove the original pred using this fact. 11439 if (!CtxI) 11440 return false; 11441 const BasicBlock *ContextBB = CtxI->getParent(); 11442 // Make sure AR varies in the context block. 11443 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 11444 const Loop *L = AR->getLoop(); 11445 // Make sure that context belongs to the loop and executes on 1st iteration 11446 // (if it ever executes at all). 11447 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11448 return false; 11449 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 11450 return false; 11451 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 11452 } 11453 11454 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 11455 const Loop *L = AR->getLoop(); 11456 // Make sure that context belongs to the loop and executes on 1st iteration 11457 // (if it ever executes at all). 11458 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 11459 return false; 11460 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 11461 return false; 11462 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 11463 } 11464 11465 return false; 11466 } 11467 11468 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 11469 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 11470 const SCEV *FoundLHS, const SCEV *FoundRHS) { 11471 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 11472 return false; 11473 11474 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 11475 if (!AddRecLHS) 11476 return false; 11477 11478 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 11479 if (!AddRecFoundLHS) 11480 return false; 11481 11482 // We'd like to let SCEV reason about control dependencies, so we constrain 11483 // both the inequalities to be about add recurrences on the same loop. This 11484 // way we can use isLoopEntryGuardedByCond later. 11485 11486 const Loop *L = AddRecFoundLHS->getLoop(); 11487 if (L != AddRecLHS->getLoop()) 11488 return false; 11489 11490 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 11491 // 11492 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 11493 // ... (2) 11494 // 11495 // Informal proof for (2), assuming (1) [*]: 11496 // 11497 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 11498 // 11499 // Then 11500 // 11501 // FoundLHS s< FoundRHS s< INT_MIN - C 11502 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 11503 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 11504 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 11505 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 11506 // <=> FoundLHS + C s< FoundRHS + C 11507 // 11508 // [*]: (1) can be proved by ruling out overflow. 11509 // 11510 // [**]: This can be proved by analyzing all the four possibilities: 11511 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 11512 // (A s>= 0, B s>= 0). 11513 // 11514 // Note: 11515 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 11516 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 11517 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 11518 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 11519 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 11520 // C)". 11521 11522 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 11523 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 11524 if (!LDiff || !RDiff || *LDiff != *RDiff) 11525 return false; 11526 11527 if (LDiff->isMinValue()) 11528 return true; 11529 11530 APInt FoundRHSLimit; 11531 11532 if (Pred == CmpInst::ICMP_ULT) { 11533 FoundRHSLimit = -(*RDiff); 11534 } else { 11535 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 11536 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 11537 } 11538 11539 // Try to prove (1) or (2), as needed. 11540 return isAvailableAtLoopEntry(FoundRHS, L) && 11541 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11542 getConstant(FoundRHSLimit)); 11543 } 11544 11545 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11546 const SCEV *LHS, const SCEV *RHS, 11547 const SCEV *FoundLHS, 11548 const SCEV *FoundRHS, unsigned Depth) { 11549 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11550 11551 auto ClearOnExit = make_scope_exit([&]() { 11552 if (LPhi) { 11553 bool Erased = PendingMerges.erase(LPhi); 11554 assert(Erased && "Failed to erase LPhi!"); 11555 (void)Erased; 11556 } 11557 if (RPhi) { 11558 bool Erased = PendingMerges.erase(RPhi); 11559 assert(Erased && "Failed to erase RPhi!"); 11560 (void)Erased; 11561 } 11562 }); 11563 11564 // Find respective Phis and check that they are not being pending. 11565 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11566 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11567 if (!PendingMerges.insert(Phi).second) 11568 return false; 11569 LPhi = Phi; 11570 } 11571 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11572 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11573 // If we detect a loop of Phi nodes being processed by this method, for 11574 // example: 11575 // 11576 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11577 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11578 // 11579 // we don't want to deal with a case that complex, so return conservative 11580 // answer false. 11581 if (!PendingMerges.insert(Phi).second) 11582 return false; 11583 RPhi = Phi; 11584 } 11585 11586 // If none of LHS, RHS is a Phi, nothing to do here. 11587 if (!LPhi && !RPhi) 11588 return false; 11589 11590 // If there is a SCEVUnknown Phi we are interested in, make it left. 11591 if (!LPhi) { 11592 std::swap(LHS, RHS); 11593 std::swap(FoundLHS, FoundRHS); 11594 std::swap(LPhi, RPhi); 11595 Pred = ICmpInst::getSwappedPredicate(Pred); 11596 } 11597 11598 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11599 const BasicBlock *LBB = LPhi->getParent(); 11600 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11601 11602 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11603 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11604 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11605 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11606 }; 11607 11608 if (RPhi && RPhi->getParent() == LBB) { 11609 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11610 // If we compare two Phis from the same block, and for each entry block 11611 // the predicate is true for incoming values from this block, then the 11612 // predicate is also true for the Phis. 11613 for (const BasicBlock *IncBB : predecessors(LBB)) { 11614 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11615 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11616 if (!ProvedEasily(L, R)) 11617 return false; 11618 } 11619 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11620 // Case two: RHS is also a Phi from the same basic block, and it is an 11621 // AddRec. It means that there is a loop which has both AddRec and Unknown 11622 // PHIs, for it we can compare incoming values of AddRec from above the loop 11623 // and latch with their respective incoming values of LPhi. 11624 // TODO: Generalize to handle loops with many inputs in a header. 11625 if (LPhi->getNumIncomingValues() != 2) return false; 11626 11627 auto *RLoop = RAR->getLoop(); 11628 auto *Predecessor = RLoop->getLoopPredecessor(); 11629 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11630 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11631 if (!ProvedEasily(L1, RAR->getStart())) 11632 return false; 11633 auto *Latch = RLoop->getLoopLatch(); 11634 assert(Latch && "Loop with AddRec with no latch?"); 11635 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11636 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11637 return false; 11638 } else { 11639 // In all other cases go over inputs of LHS and compare each of them to RHS, 11640 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11641 // At this point RHS is either a non-Phi, or it is a Phi from some block 11642 // different from LBB. 11643 for (const BasicBlock *IncBB : predecessors(LBB)) { 11644 // Check that RHS is available in this block. 11645 if (!dominates(RHS, IncBB)) 11646 return false; 11647 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11648 // Make sure L does not refer to a value from a potentially previous 11649 // iteration of a loop. 11650 if (!properlyDominates(L, IncBB)) 11651 return false; 11652 if (!ProvedEasily(L, RHS)) 11653 return false; 11654 } 11655 } 11656 return true; 11657 } 11658 11659 bool ScalarEvolution::isImpliedCondOperandsViaShift(ICmpInst::Predicate Pred, 11660 const SCEV *LHS, 11661 const SCEV *RHS, 11662 const SCEV *FoundLHS, 11663 const SCEV *FoundRHS) { 11664 // We want to imply LHS < RHS from LHS < (RHS >> shiftvalue). First, make 11665 // sure that we are dealing with same LHS. 11666 if (RHS == FoundRHS) { 11667 std::swap(LHS, RHS); 11668 std::swap(FoundLHS, FoundRHS); 11669 Pred = ICmpInst::getSwappedPredicate(Pred); 11670 } 11671 if (LHS != FoundLHS) 11672 return false; 11673 11674 auto *SUFoundRHS = dyn_cast<SCEVUnknown>(FoundRHS); 11675 if (!SUFoundRHS) 11676 return false; 11677 11678 Value *Shiftee, *ShiftValue; 11679 11680 using namespace PatternMatch; 11681 if (match(SUFoundRHS->getValue(), 11682 m_LShr(m_Value(Shiftee), m_Value(ShiftValue)))) { 11683 auto *ShifteeS = getSCEV(Shiftee); 11684 // Prove one of the following: 11685 // LHS <u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <u RHS 11686 // LHS <=u (shiftee >> shiftvalue) && shiftee <=u RHS ---> LHS <=u RHS 11687 // LHS <s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11688 // ---> LHS <s RHS 11689 // LHS <=s (shiftee >> shiftvalue) && shiftee <=s RHS && shiftee >=s 0 11690 // ---> LHS <=s RHS 11691 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) 11692 return isKnownPredicate(ICmpInst::ICMP_ULE, ShifteeS, RHS); 11693 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) 11694 if (isKnownNonNegative(ShifteeS)) 11695 return isKnownPredicate(ICmpInst::ICMP_SLE, ShifteeS, RHS); 11696 } 11697 11698 return false; 11699 } 11700 11701 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11702 const SCEV *LHS, const SCEV *RHS, 11703 const SCEV *FoundLHS, 11704 const SCEV *FoundRHS, 11705 const Instruction *CtxI) { 11706 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11707 return true; 11708 11709 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11710 return true; 11711 11712 if (isImpliedCondOperandsViaShift(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11713 return true; 11714 11715 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11716 CtxI)) 11717 return true; 11718 11719 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11720 FoundLHS, FoundRHS); 11721 } 11722 11723 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11724 template <typename MinMaxExprType> 11725 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11726 const SCEV *Candidate) { 11727 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11728 if (!MinMaxExpr) 11729 return false; 11730 11731 return is_contained(MinMaxExpr->operands(), Candidate); 11732 } 11733 11734 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11735 ICmpInst::Predicate Pred, 11736 const SCEV *LHS, const SCEV *RHS) { 11737 // If both sides are affine addrecs for the same loop, with equal 11738 // steps, and we know the recurrences don't wrap, then we only 11739 // need to check the predicate on the starting values. 11740 11741 if (!ICmpInst::isRelational(Pred)) 11742 return false; 11743 11744 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11745 if (!LAR) 11746 return false; 11747 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11748 if (!RAR) 11749 return false; 11750 if (LAR->getLoop() != RAR->getLoop()) 11751 return false; 11752 if (!LAR->isAffine() || !RAR->isAffine()) 11753 return false; 11754 11755 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11756 return false; 11757 11758 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11759 SCEV::FlagNSW : SCEV::FlagNUW; 11760 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11761 return false; 11762 11763 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11764 } 11765 11766 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11767 /// expression? 11768 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11769 ICmpInst::Predicate Pred, 11770 const SCEV *LHS, const SCEV *RHS) { 11771 switch (Pred) { 11772 default: 11773 return false; 11774 11775 case ICmpInst::ICMP_SGE: 11776 std::swap(LHS, RHS); 11777 LLVM_FALLTHROUGH; 11778 case ICmpInst::ICMP_SLE: 11779 return 11780 // min(A, ...) <= A 11781 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11782 // A <= max(A, ...) 11783 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11784 11785 case ICmpInst::ICMP_UGE: 11786 std::swap(LHS, RHS); 11787 LLVM_FALLTHROUGH; 11788 case ICmpInst::ICMP_ULE: 11789 return 11790 // min(A, ...) <= A 11791 // FIXME: what about umin_seq? 11792 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11793 // A <= max(A, ...) 11794 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11795 } 11796 11797 llvm_unreachable("covered switch fell through?!"); 11798 } 11799 11800 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11801 const SCEV *LHS, const SCEV *RHS, 11802 const SCEV *FoundLHS, 11803 const SCEV *FoundRHS, 11804 unsigned Depth) { 11805 assert(getTypeSizeInBits(LHS->getType()) == 11806 getTypeSizeInBits(RHS->getType()) && 11807 "LHS and RHS have different sizes?"); 11808 assert(getTypeSizeInBits(FoundLHS->getType()) == 11809 getTypeSizeInBits(FoundRHS->getType()) && 11810 "FoundLHS and FoundRHS have different sizes?"); 11811 // We want to avoid hurting the compile time with analysis of too big trees. 11812 if (Depth > MaxSCEVOperationsImplicationDepth) 11813 return false; 11814 11815 // We only want to work with GT comparison so far. 11816 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11817 Pred = CmpInst::getSwappedPredicate(Pred); 11818 std::swap(LHS, RHS); 11819 std::swap(FoundLHS, FoundRHS); 11820 } 11821 11822 // For unsigned, try to reduce it to corresponding signed comparison. 11823 if (Pred == ICmpInst::ICMP_UGT) 11824 // We can replace unsigned predicate with its signed counterpart if all 11825 // involved values are non-negative. 11826 // TODO: We could have better support for unsigned. 11827 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11828 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11829 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11830 // use this fact to prove that LHS and RHS are non-negative. 11831 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11832 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11833 FoundRHS) && 11834 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11835 FoundRHS)) 11836 Pred = ICmpInst::ICMP_SGT; 11837 } 11838 11839 if (Pred != ICmpInst::ICMP_SGT) 11840 return false; 11841 11842 auto GetOpFromSExt = [&](const SCEV *S) { 11843 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11844 return Ext->getOperand(); 11845 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11846 // the constant in some cases. 11847 return S; 11848 }; 11849 11850 // Acquire values from extensions. 11851 auto *OrigLHS = LHS; 11852 auto *OrigFoundLHS = FoundLHS; 11853 LHS = GetOpFromSExt(LHS); 11854 FoundLHS = GetOpFromSExt(FoundLHS); 11855 11856 // Is the SGT predicate can be proved trivially or using the found context. 11857 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11858 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11859 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11860 FoundRHS, Depth + 1); 11861 }; 11862 11863 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11864 // We want to avoid creation of any new non-constant SCEV. Since we are 11865 // going to compare the operands to RHS, we should be certain that we don't 11866 // need any size extensions for this. So let's decline all cases when the 11867 // sizes of types of LHS and RHS do not match. 11868 // TODO: Maybe try to get RHS from sext to catch more cases? 11869 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11870 return false; 11871 11872 // Should not overflow. 11873 if (!LHSAddExpr->hasNoSignedWrap()) 11874 return false; 11875 11876 auto *LL = LHSAddExpr->getOperand(0); 11877 auto *LR = LHSAddExpr->getOperand(1); 11878 auto *MinusOne = getMinusOne(RHS->getType()); 11879 11880 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11881 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11882 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11883 }; 11884 // Try to prove the following rule: 11885 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11886 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11887 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11888 return true; 11889 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11890 Value *LL, *LR; 11891 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11892 11893 using namespace llvm::PatternMatch; 11894 11895 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11896 // Rules for division. 11897 // We are going to perform some comparisons with Denominator and its 11898 // derivative expressions. In general case, creating a SCEV for it may 11899 // lead to a complex analysis of the entire graph, and in particular it 11900 // can request trip count recalculation for the same loop. This would 11901 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11902 // this, we only want to create SCEVs that are constants in this section. 11903 // So we bail if Denominator is not a constant. 11904 if (!isa<ConstantInt>(LR)) 11905 return false; 11906 11907 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11908 11909 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11910 // then a SCEV for the numerator already exists and matches with FoundLHS. 11911 auto *Numerator = getExistingSCEV(LL); 11912 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11913 return false; 11914 11915 // Make sure that the numerator matches with FoundLHS and the denominator 11916 // is positive. 11917 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11918 return false; 11919 11920 auto *DTy = Denominator->getType(); 11921 auto *FRHSTy = FoundRHS->getType(); 11922 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11923 // One of types is a pointer and another one is not. We cannot extend 11924 // them properly to a wider type, so let us just reject this case. 11925 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11926 // to avoid this check. 11927 return false; 11928 11929 // Given that: 11930 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11931 auto *WTy = getWiderType(DTy, FRHSTy); 11932 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11933 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11934 11935 // Try to prove the following rule: 11936 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11937 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11938 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11939 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11940 if (isKnownNonPositive(RHS) && 11941 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11942 return true; 11943 11944 // Try to prove the following rule: 11945 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11946 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11947 // If we divide it by Denominator > 2, then: 11948 // 1. If FoundLHS is negative, then the result is 0. 11949 // 2. If FoundLHS is non-negative, then the result is non-negative. 11950 // Anyways, the result is non-negative. 11951 auto *MinusOne = getMinusOne(WTy); 11952 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11953 if (isKnownNegative(RHS) && 11954 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11955 return true; 11956 } 11957 } 11958 11959 // If our expression contained SCEVUnknown Phis, and we split it down and now 11960 // need to prove something for them, try to prove the predicate for every 11961 // possible incoming values of those Phis. 11962 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11963 return true; 11964 11965 return false; 11966 } 11967 11968 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11969 const SCEV *LHS, const SCEV *RHS) { 11970 // zext x u<= sext x, sext x s<= zext x 11971 switch (Pred) { 11972 case ICmpInst::ICMP_SGE: 11973 std::swap(LHS, RHS); 11974 LLVM_FALLTHROUGH; 11975 case ICmpInst::ICMP_SLE: { 11976 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11977 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11978 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11979 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11980 return true; 11981 break; 11982 } 11983 case ICmpInst::ICMP_UGE: 11984 std::swap(LHS, RHS); 11985 LLVM_FALLTHROUGH; 11986 case ICmpInst::ICMP_ULE: { 11987 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11988 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11989 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11990 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11991 return true; 11992 break; 11993 } 11994 default: 11995 break; 11996 }; 11997 return false; 11998 } 11999 12000 bool 12001 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 12002 const SCEV *LHS, const SCEV *RHS) { 12003 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 12004 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 12005 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 12006 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 12007 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 12008 } 12009 12010 bool 12011 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 12012 const SCEV *LHS, const SCEV *RHS, 12013 const SCEV *FoundLHS, 12014 const SCEV *FoundRHS) { 12015 switch (Pred) { 12016 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 12017 case ICmpInst::ICMP_EQ: 12018 case ICmpInst::ICMP_NE: 12019 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 12020 return true; 12021 break; 12022 case ICmpInst::ICMP_SLT: 12023 case ICmpInst::ICMP_SLE: 12024 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 12025 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 12026 return true; 12027 break; 12028 case ICmpInst::ICMP_SGT: 12029 case ICmpInst::ICMP_SGE: 12030 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 12031 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 12032 return true; 12033 break; 12034 case ICmpInst::ICMP_ULT: 12035 case ICmpInst::ICMP_ULE: 12036 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 12037 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 12038 return true; 12039 break; 12040 case ICmpInst::ICMP_UGT: 12041 case ICmpInst::ICMP_UGE: 12042 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 12043 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 12044 return true; 12045 break; 12046 } 12047 12048 // Maybe it can be proved via operations? 12049 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 12050 return true; 12051 12052 return false; 12053 } 12054 12055 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 12056 const SCEV *LHS, 12057 const SCEV *RHS, 12058 const SCEV *FoundLHS, 12059 const SCEV *FoundRHS) { 12060 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 12061 // The restriction on `FoundRHS` be lifted easily -- it exists only to 12062 // reduce the compile time impact of this optimization. 12063 return false; 12064 12065 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 12066 if (!Addend) 12067 return false; 12068 12069 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 12070 12071 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 12072 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 12073 ConstantRange FoundLHSRange = 12074 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 12075 12076 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 12077 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 12078 12079 // We can also compute the range of values for `LHS` that satisfy the 12080 // consequent, "`LHS` `Pred` `RHS`": 12081 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 12082 // The antecedent implies the consequent if every value of `LHS` that 12083 // satisfies the antecedent also satisfies the consequent. 12084 return LHSRange.icmp(Pred, ConstRHS); 12085 } 12086 12087 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 12088 bool IsSigned) { 12089 assert(isKnownPositive(Stride) && "Positive stride expected!"); 12090 12091 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12092 const SCEV *One = getOne(Stride->getType()); 12093 12094 if (IsSigned) { 12095 APInt MaxRHS = getSignedRangeMax(RHS); 12096 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 12097 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12098 12099 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 12100 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 12101 } 12102 12103 APInt MaxRHS = getUnsignedRangeMax(RHS); 12104 APInt MaxValue = APInt::getMaxValue(BitWidth); 12105 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12106 12107 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 12108 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 12109 } 12110 12111 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 12112 bool IsSigned) { 12113 12114 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 12115 const SCEV *One = getOne(Stride->getType()); 12116 12117 if (IsSigned) { 12118 APInt MinRHS = getSignedRangeMin(RHS); 12119 APInt MinValue = APInt::getSignedMinValue(BitWidth); 12120 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 12121 12122 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 12123 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 12124 } 12125 12126 APInt MinRHS = getUnsignedRangeMin(RHS); 12127 APInt MinValue = APInt::getMinValue(BitWidth); 12128 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 12129 12130 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 12131 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 12132 } 12133 12134 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 12135 // umin(N, 1) + floor((N - umin(N, 1)) / D) 12136 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 12137 // expression fixes the case of N=0. 12138 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 12139 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 12140 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 12141 } 12142 12143 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 12144 const SCEV *Stride, 12145 const SCEV *End, 12146 unsigned BitWidth, 12147 bool IsSigned) { 12148 // The logic in this function assumes we can represent a positive stride. 12149 // If we can't, the backedge-taken count must be zero. 12150 if (IsSigned && BitWidth == 1) 12151 return getZero(Stride->getType()); 12152 12153 // This code has only been closely audited for negative strides in the 12154 // unsigned comparison case, it may be correct for signed comparison, but 12155 // that needs to be established. 12156 assert((!IsSigned || !isKnownNonPositive(Stride)) && 12157 "Stride is expected strictly positive for signed case!"); 12158 12159 // Calculate the maximum backedge count based on the range of values 12160 // permitted by Start, End, and Stride. 12161 APInt MinStart = 12162 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 12163 12164 APInt MinStride = 12165 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 12166 12167 // We assume either the stride is positive, or the backedge-taken count 12168 // is zero. So force StrideForMaxBECount to be at least one. 12169 APInt One(BitWidth, 1); 12170 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 12171 : APIntOps::umax(One, MinStride); 12172 12173 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 12174 : APInt::getMaxValue(BitWidth); 12175 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 12176 12177 // Although End can be a MAX expression we estimate MaxEnd considering only 12178 // the case End = RHS of the loop termination condition. This is safe because 12179 // in the other case (End - Start) is zero, leading to a zero maximum backedge 12180 // taken count. 12181 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 12182 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 12183 12184 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 12185 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 12186 : APIntOps::umax(MaxEnd, MinStart); 12187 12188 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 12189 getConstant(StrideForMaxBECount) /* Step */); 12190 } 12191 12192 ScalarEvolution::ExitLimit 12193 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 12194 const Loop *L, bool IsSigned, 12195 bool ControlsExit, bool AllowPredicates) { 12196 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12197 12198 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12199 bool PredicatedIV = false; 12200 12201 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 12202 // Can we prove this loop *must* be UB if overflow of IV occurs? 12203 // Reasoning goes as follows: 12204 // * Suppose the IV did self wrap. 12205 // * If Stride evenly divides the iteration space, then once wrap 12206 // occurs, the loop must revisit the same values. 12207 // * We know that RHS is invariant, and that none of those values 12208 // caused this exit to be taken previously. Thus, this exit is 12209 // dynamically dead. 12210 // * If this is the sole exit, then a dead exit implies the loop 12211 // must be infinite if there are no abnormal exits. 12212 // * If the loop were infinite, then it must either not be mustprogress 12213 // or have side effects. Otherwise, it must be UB. 12214 // * It can't (by assumption), be UB so we have contradicted our 12215 // premise and can conclude the IV did not in fact self-wrap. 12216 if (!isLoopInvariant(RHS, L)) 12217 return false; 12218 12219 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 12220 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 12221 return false; 12222 12223 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 12224 return false; 12225 12226 return loopIsFiniteByAssumption(L); 12227 }; 12228 12229 if (!IV) { 12230 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 12231 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 12232 if (AR && AR->getLoop() == L && AR->isAffine()) { 12233 auto canProveNUW = [&]() { 12234 if (!isLoopInvariant(RHS, L)) 12235 return false; 12236 12237 if (!isKnownNonZero(AR->getStepRecurrence(*this))) 12238 // We need the sequence defined by AR to strictly increase in the 12239 // unsigned integer domain for the logic below to hold. 12240 return false; 12241 12242 const unsigned InnerBitWidth = getTypeSizeInBits(AR->getType()); 12243 const unsigned OuterBitWidth = getTypeSizeInBits(RHS->getType()); 12244 // If RHS <=u Limit, then there must exist a value V in the sequence 12245 // defined by AR (e.g. {Start,+,Step}) such that V >u RHS, and 12246 // V <=u UINT_MAX. Thus, we must exit the loop before unsigned 12247 // overflow occurs. This limit also implies that a signed comparison 12248 // (in the wide bitwidth) is equivalent to an unsigned comparison as 12249 // the high bits on both sides must be zero. 12250 APInt StrideMax = getUnsignedRangeMax(AR->getStepRecurrence(*this)); 12251 APInt Limit = APInt::getMaxValue(InnerBitWidth) - (StrideMax - 1); 12252 Limit = Limit.zext(OuterBitWidth); 12253 return getUnsignedRangeMax(applyLoopGuards(RHS, L)).ule(Limit); 12254 }; 12255 auto Flags = AR->getNoWrapFlags(); 12256 if (!hasFlags(Flags, SCEV::FlagNUW) && canProveNUW()) 12257 Flags = setFlags(Flags, SCEV::FlagNUW); 12258 12259 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 12260 if (AR->hasNoUnsignedWrap()) { 12261 // Emulate what getZeroExtendExpr would have done during construction 12262 // if we'd been able to infer the fact just above at that time. 12263 const SCEV *Step = AR->getStepRecurrence(*this); 12264 Type *Ty = ZExt->getType(); 12265 auto *S = getAddRecExpr( 12266 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 12267 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 12268 IV = dyn_cast<SCEVAddRecExpr>(S); 12269 } 12270 } 12271 } 12272 } 12273 12274 12275 if (!IV && AllowPredicates) { 12276 // Try to make this an AddRec using runtime tests, in the first X 12277 // iterations of this loop, where X is the SCEV expression found by the 12278 // algorithm below. 12279 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12280 PredicatedIV = true; 12281 } 12282 12283 // Avoid weird loops 12284 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12285 return getCouldNotCompute(); 12286 12287 // A precondition of this method is that the condition being analyzed 12288 // reaches an exiting branch which dominates the latch. Given that, we can 12289 // assume that an increment which violates the nowrap specification and 12290 // produces poison must cause undefined behavior when the resulting poison 12291 // value is branched upon and thus we can conclude that the backedge is 12292 // taken no more often than would be required to produce that poison value. 12293 // Note that a well defined loop can exit on the iteration which violates 12294 // the nowrap specification if there is another exit (either explicit or 12295 // implicit/exceptional) which causes the loop to execute before the 12296 // exiting instruction we're analyzing would trigger UB. 12297 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12298 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12299 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 12300 12301 const SCEV *Stride = IV->getStepRecurrence(*this); 12302 12303 bool PositiveStride = isKnownPositive(Stride); 12304 12305 // Avoid negative or zero stride values. 12306 if (!PositiveStride) { 12307 // We can compute the correct backedge taken count for loops with unknown 12308 // strides if we can prove that the loop is not an infinite loop with side 12309 // effects. Here's the loop structure we are trying to handle - 12310 // 12311 // i = start 12312 // do { 12313 // A[i] = i; 12314 // i += s; 12315 // } while (i < end); 12316 // 12317 // The backedge taken count for such loops is evaluated as - 12318 // (max(end, start + stride) - start - 1) /u stride 12319 // 12320 // The additional preconditions that we need to check to prove correctness 12321 // of the above formula is as follows - 12322 // 12323 // a) IV is either nuw or nsw depending upon signedness (indicated by the 12324 // NoWrap flag). 12325 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 12326 // no side effects within the loop) 12327 // c) loop has a single static exit (with no abnormal exits) 12328 // 12329 // Precondition a) implies that if the stride is negative, this is a single 12330 // trip loop. The backedge taken count formula reduces to zero in this case. 12331 // 12332 // Precondition b) and c) combine to imply that if rhs is invariant in L, 12333 // then a zero stride means the backedge can't be taken without executing 12334 // undefined behavior. 12335 // 12336 // The positive stride case is the same as isKnownPositive(Stride) returning 12337 // true (original behavior of the function). 12338 // 12339 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 12340 !loopHasNoAbnormalExits(L)) 12341 return getCouldNotCompute(); 12342 12343 // This bailout is protecting the logic in computeMaxBECountForLT which 12344 // has not yet been sufficiently auditted or tested with negative strides. 12345 // We used to filter out all known-non-positive cases here, we're in the 12346 // process of being less restrictive bit by bit. 12347 if (IsSigned && isKnownNonPositive(Stride)) 12348 return getCouldNotCompute(); 12349 12350 if (!isKnownNonZero(Stride)) { 12351 // If we have a step of zero, and RHS isn't invariant in L, we don't know 12352 // if it might eventually be greater than start and if so, on which 12353 // iteration. We can't even produce a useful upper bound. 12354 if (!isLoopInvariant(RHS, L)) 12355 return getCouldNotCompute(); 12356 12357 // We allow a potentially zero stride, but we need to divide by stride 12358 // below. Since the loop can't be infinite and this check must control 12359 // the sole exit, we can infer the exit must be taken on the first 12360 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 12361 // we know the numerator in the divides below must be zero, so we can 12362 // pick an arbitrary non-zero value for the denominator (e.g. stride) 12363 // and produce the right result. 12364 // FIXME: Handle the case where Stride is poison? 12365 auto wouldZeroStrideBeUB = [&]() { 12366 // Proof by contradiction. Suppose the stride were zero. If we can 12367 // prove that the backedge *is* taken on the first iteration, then since 12368 // we know this condition controls the sole exit, we must have an 12369 // infinite loop. We can't have a (well defined) infinite loop per 12370 // check just above. 12371 // Note: The (Start - Stride) term is used to get the start' term from 12372 // (start' + stride,+,stride). Remember that we only care about the 12373 // result of this expression when stride == 0 at runtime. 12374 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 12375 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 12376 }; 12377 if (!wouldZeroStrideBeUB()) { 12378 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 12379 } 12380 } 12381 } else if (!Stride->isOne() && !NoWrap) { 12382 auto isUBOnWrap = [&]() { 12383 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 12384 // follows trivially from the fact that every (un)signed-wrapped, but 12385 // not self-wrapped value must be LT than the last value before 12386 // (un)signed wrap. Since we know that last value didn't exit, nor 12387 // will any smaller one. 12388 return canAssumeNoSelfWrap(IV); 12389 }; 12390 12391 // Avoid proven overflow cases: this will ensure that the backedge taken 12392 // count will not generate any unsigned overflow. Relaxed no-overflow 12393 // conditions exploit NoWrapFlags, allowing to optimize in presence of 12394 // undefined behaviors like the case of C language. 12395 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 12396 return getCouldNotCompute(); 12397 } 12398 12399 // On all paths just preceeding, we established the following invariant: 12400 // IV can be assumed not to overflow up to and including the exiting 12401 // iteration. We proved this in one of two ways: 12402 // 1) We can show overflow doesn't occur before the exiting iteration 12403 // 1a) canIVOverflowOnLT, and b) step of one 12404 // 2) We can show that if overflow occurs, the loop must execute UB 12405 // before any possible exit. 12406 // Note that we have not yet proved RHS invariant (in general). 12407 12408 const SCEV *Start = IV->getStart(); 12409 12410 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 12411 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 12412 // Use integer-typed versions for actual computation; we can't subtract 12413 // pointers in general. 12414 const SCEV *OrigStart = Start; 12415 const SCEV *OrigRHS = RHS; 12416 if (Start->getType()->isPointerTy()) { 12417 Start = getLosslessPtrToIntExpr(Start); 12418 if (isa<SCEVCouldNotCompute>(Start)) 12419 return Start; 12420 } 12421 if (RHS->getType()->isPointerTy()) { 12422 RHS = getLosslessPtrToIntExpr(RHS); 12423 if (isa<SCEVCouldNotCompute>(RHS)) 12424 return RHS; 12425 } 12426 12427 // When the RHS is not invariant, we do not know the end bound of the loop and 12428 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 12429 // calculate the MaxBECount, given the start, stride and max value for the end 12430 // bound of the loop (RHS), and the fact that IV does not overflow (which is 12431 // checked above). 12432 if (!isLoopInvariant(RHS, L)) { 12433 const SCEV *MaxBECount = computeMaxBECountForLT( 12434 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12435 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 12436 false /*MaxOrZero*/, Predicates); 12437 } 12438 12439 // We use the expression (max(End,Start)-Start)/Stride to describe the 12440 // backedge count, as if the backedge is taken at least once max(End,Start) 12441 // is End and so the result is as above, and if not max(End,Start) is Start 12442 // so we get a backedge count of zero. 12443 const SCEV *BECount = nullptr; 12444 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 12445 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 12446 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 12447 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 12448 // Can we prove (max(RHS,Start) > Start - Stride? 12449 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 12450 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 12451 // In this case, we can use a refined formula for computing backedge taken 12452 // count. The general formula remains: 12453 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 12454 // We want to use the alternate formula: 12455 // "((End - 1) - (Start - Stride)) /u Stride" 12456 // Let's do a quick case analysis to show these are equivalent under 12457 // our precondition that max(RHS,Start) > Start - Stride. 12458 // * For RHS <= Start, the backedge-taken count must be zero. 12459 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12460 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 12461 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 12462 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 12463 // this to the stride of 1 case. 12464 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 12465 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 12466 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 12467 // "((RHS - (Start - Stride) - 1) /u Stride". 12468 // Our preconditions trivially imply no overflow in that form. 12469 const SCEV *MinusOne = getMinusOne(Stride->getType()); 12470 const SCEV *Numerator = 12471 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 12472 BECount = getUDivExpr(Numerator, Stride); 12473 } 12474 12475 const SCEV *BECountIfBackedgeTaken = nullptr; 12476 if (!BECount) { 12477 auto canProveRHSGreaterThanEqualStart = [&]() { 12478 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 12479 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 12480 return true; 12481 12482 // (RHS > Start - 1) implies RHS >= Start. 12483 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 12484 // "Start - 1" doesn't overflow. 12485 // * For signed comparison, if Start - 1 does overflow, it's equal 12486 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 12487 // * For unsigned comparison, if Start - 1 does overflow, it's equal 12488 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 12489 // 12490 // FIXME: Should isLoopEntryGuardedByCond do this for us? 12491 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12492 auto *StartMinusOne = getAddExpr(OrigStart, 12493 getMinusOne(OrigStart->getType())); 12494 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 12495 }; 12496 12497 // If we know that RHS >= Start in the context of loop, then we know that 12498 // max(RHS, Start) = RHS at this point. 12499 const SCEV *End; 12500 if (canProveRHSGreaterThanEqualStart()) { 12501 End = RHS; 12502 } else { 12503 // If RHS < Start, the backedge will be taken zero times. So in 12504 // general, we can write the backedge-taken count as: 12505 // 12506 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 12507 // 12508 // We convert it to the following to make it more convenient for SCEV: 12509 // 12510 // ceil(max(RHS, Start) - Start) / Stride 12511 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 12512 12513 // See what would happen if we assume the backedge is taken. This is 12514 // used to compute MaxBECount. 12515 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 12516 } 12517 12518 // At this point, we know: 12519 // 12520 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 12521 // 2. The index variable doesn't overflow. 12522 // 12523 // Therefore, we know N exists such that 12524 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 12525 // doesn't overflow. 12526 // 12527 // Using this information, try to prove whether the addition in 12528 // "(Start - End) + (Stride - 1)" has unsigned overflow. 12529 const SCEV *One = getOne(Stride->getType()); 12530 bool MayAddOverflow = [&] { 12531 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 12532 if (StrideC->getAPInt().isPowerOf2()) { 12533 // Suppose Stride is a power of two, and Start/End are unsigned 12534 // integers. Let UMAX be the largest representable unsigned 12535 // integer. 12536 // 12537 // By the preconditions of this function, we know 12538 // "(Start + Stride * N) >= End", and this doesn't overflow. 12539 // As a formula: 12540 // 12541 // End <= (Start + Stride * N) <= UMAX 12542 // 12543 // Subtracting Start from all the terms: 12544 // 12545 // End - Start <= Stride * N <= UMAX - Start 12546 // 12547 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 12548 // 12549 // End - Start <= Stride * N <= UMAX 12550 // 12551 // Stride * N is a multiple of Stride. Therefore, 12552 // 12553 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 12554 // 12555 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 12556 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 12557 // 12558 // End - Start <= Stride * N <= UMAX - Stride - 1 12559 // 12560 // Dropping the middle term: 12561 // 12562 // End - Start <= UMAX - Stride - 1 12563 // 12564 // Adding Stride - 1 to both sides: 12565 // 12566 // (End - Start) + (Stride - 1) <= UMAX 12567 // 12568 // In other words, the addition doesn't have unsigned overflow. 12569 // 12570 // A similar proof works if we treat Start/End as signed values. 12571 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 12572 // use signed max instead of unsigned max. Note that we're trying 12573 // to prove a lack of unsigned overflow in either case. 12574 return false; 12575 } 12576 } 12577 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 12578 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 12579 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 12580 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 12581 // 12582 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 12583 return false; 12584 } 12585 return true; 12586 }(); 12587 12588 const SCEV *Delta = getMinusSCEV(End, Start); 12589 if (!MayAddOverflow) { 12590 // floor((D + (S - 1)) / S) 12591 // We prefer this formulation if it's legal because it's fewer operations. 12592 BECount = 12593 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 12594 } else { 12595 BECount = getUDivCeilSCEV(Delta, Stride); 12596 } 12597 } 12598 12599 const SCEV *MaxBECount; 12600 bool MaxOrZero = false; 12601 if (isa<SCEVConstant>(BECount)) { 12602 MaxBECount = BECount; 12603 } else if (BECountIfBackedgeTaken && 12604 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 12605 // If we know exactly how many times the backedge will be taken if it's 12606 // taken at least once, then the backedge count will either be that or 12607 // zero. 12608 MaxBECount = BECountIfBackedgeTaken; 12609 MaxOrZero = true; 12610 } else { 12611 MaxBECount = computeMaxBECountForLT( 12612 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12613 } 12614 12615 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12616 !isa<SCEVCouldNotCompute>(BECount)) 12617 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12618 12619 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12620 } 12621 12622 ScalarEvolution::ExitLimit 12623 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12624 const Loop *L, bool IsSigned, 12625 bool ControlsExit, bool AllowPredicates) { 12626 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12627 // We handle only IV > Invariant 12628 if (!isLoopInvariant(RHS, L)) 12629 return getCouldNotCompute(); 12630 12631 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12632 if (!IV && AllowPredicates) 12633 // Try to make this an AddRec using runtime tests, in the first X 12634 // iterations of this loop, where X is the SCEV expression found by the 12635 // algorithm below. 12636 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12637 12638 // Avoid weird loops 12639 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12640 return getCouldNotCompute(); 12641 12642 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12643 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12644 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12645 12646 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12647 12648 // Avoid negative or zero stride values 12649 if (!isKnownPositive(Stride)) 12650 return getCouldNotCompute(); 12651 12652 // Avoid proven overflow cases: this will ensure that the backedge taken count 12653 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12654 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12655 // behaviors like the case of C language. 12656 if (!Stride->isOne() && !NoWrap) 12657 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12658 return getCouldNotCompute(); 12659 12660 const SCEV *Start = IV->getStart(); 12661 const SCEV *End = RHS; 12662 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12663 // If we know that Start >= RHS in the context of loop, then we know that 12664 // min(RHS, Start) = RHS at this point. 12665 if (isLoopEntryGuardedByCond( 12666 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12667 End = RHS; 12668 else 12669 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12670 } 12671 12672 if (Start->getType()->isPointerTy()) { 12673 Start = getLosslessPtrToIntExpr(Start); 12674 if (isa<SCEVCouldNotCompute>(Start)) 12675 return Start; 12676 } 12677 if (End->getType()->isPointerTy()) { 12678 End = getLosslessPtrToIntExpr(End); 12679 if (isa<SCEVCouldNotCompute>(End)) 12680 return End; 12681 } 12682 12683 // Compute ((Start - End) + (Stride - 1)) / Stride. 12684 // FIXME: This can overflow. Holding off on fixing this for now; 12685 // howManyGreaterThans will hopefully be gone soon. 12686 const SCEV *One = getOne(Stride->getType()); 12687 const SCEV *BECount = getUDivExpr( 12688 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12689 12690 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12691 : getUnsignedRangeMax(Start); 12692 12693 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12694 : getUnsignedRangeMin(Stride); 12695 12696 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12697 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12698 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12699 12700 // Although End can be a MIN expression we estimate MinEnd considering only 12701 // the case End = RHS. This is safe because in the other case (Start - End) 12702 // is zero, leading to a zero maximum backedge taken count. 12703 APInt MinEnd = 12704 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12705 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12706 12707 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12708 ? BECount 12709 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12710 getConstant(MinStride)); 12711 12712 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12713 MaxBECount = BECount; 12714 12715 return ExitLimit(BECount, MaxBECount, false, Predicates); 12716 } 12717 12718 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12719 ScalarEvolution &SE) const { 12720 if (Range.isFullSet()) // Infinite loop. 12721 return SE.getCouldNotCompute(); 12722 12723 // If the start is a non-zero constant, shift the range to simplify things. 12724 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12725 if (!SC->getValue()->isZero()) { 12726 SmallVector<const SCEV *, 4> Operands(operands()); 12727 Operands[0] = SE.getZero(SC->getType()); 12728 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12729 getNoWrapFlags(FlagNW)); 12730 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12731 return ShiftedAddRec->getNumIterationsInRange( 12732 Range.subtract(SC->getAPInt()), SE); 12733 // This is strange and shouldn't happen. 12734 return SE.getCouldNotCompute(); 12735 } 12736 12737 // The only time we can solve this is when we have all constant indices. 12738 // Otherwise, we cannot determine the overflow conditions. 12739 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12740 return SE.getCouldNotCompute(); 12741 12742 // Okay at this point we know that all elements of the chrec are constants and 12743 // that the start element is zero. 12744 12745 // First check to see if the range contains zero. If not, the first 12746 // iteration exits. 12747 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12748 if (!Range.contains(APInt(BitWidth, 0))) 12749 return SE.getZero(getType()); 12750 12751 if (isAffine()) { 12752 // If this is an affine expression then we have this situation: 12753 // Solve {0,+,A} in Range === Ax in Range 12754 12755 // We know that zero is in the range. If A is positive then we know that 12756 // the upper value of the range must be the first possible exit value. 12757 // If A is negative then the lower of the range is the last possible loop 12758 // value. Also note that we already checked for a full range. 12759 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12760 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12761 12762 // The exit value should be (End+A)/A. 12763 APInt ExitVal = (End + A).udiv(A); 12764 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12765 12766 // Evaluate at the exit value. If we really did fall out of the valid 12767 // range, then we computed our trip count, otherwise wrap around or other 12768 // things must have happened. 12769 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12770 if (Range.contains(Val->getValue())) 12771 return SE.getCouldNotCompute(); // Something strange happened 12772 12773 // Ensure that the previous value is in the range. 12774 assert(Range.contains( 12775 EvaluateConstantChrecAtConstant(this, 12776 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12777 "Linear scev computation is off in a bad way!"); 12778 return SE.getConstant(ExitValue); 12779 } 12780 12781 if (isQuadratic()) { 12782 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12783 return SE.getConstant(*S); 12784 } 12785 12786 return SE.getCouldNotCompute(); 12787 } 12788 12789 const SCEVAddRecExpr * 12790 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12791 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12792 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12793 // but in this case we cannot guarantee that the value returned will be an 12794 // AddRec because SCEV does not have a fixed point where it stops 12795 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12796 // may happen if we reach arithmetic depth limit while simplifying. So we 12797 // construct the returned value explicitly. 12798 SmallVector<const SCEV *, 3> Ops; 12799 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12800 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12801 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12802 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12803 // We know that the last operand is not a constant zero (otherwise it would 12804 // have been popped out earlier). This guarantees us that if the result has 12805 // the same last operand, then it will also not be popped out, meaning that 12806 // the returned value will be an AddRec. 12807 const SCEV *Last = getOperand(getNumOperands() - 1); 12808 assert(!Last->isZero() && "Recurrency with zero step?"); 12809 Ops.push_back(Last); 12810 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12811 SCEV::FlagAnyWrap)); 12812 } 12813 12814 // Return true when S contains at least an undef value. 12815 bool ScalarEvolution::containsUndefs(const SCEV *S) const { 12816 return SCEVExprContains(S, [](const SCEV *S) { 12817 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12818 return isa<UndefValue>(SU->getValue()); 12819 return false; 12820 }); 12821 } 12822 12823 // Return true when S contains a value that is a nullptr. 12824 bool ScalarEvolution::containsErasedValue(const SCEV *S) const { 12825 return SCEVExprContains(S, [](const SCEV *S) { 12826 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12827 return SU->getValue() == nullptr; 12828 return false; 12829 }); 12830 } 12831 12832 /// Return the size of an element read or written by Inst. 12833 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12834 Type *Ty; 12835 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12836 Ty = Store->getValueOperand()->getType(); 12837 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12838 Ty = Load->getType(); 12839 else 12840 return nullptr; 12841 12842 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12843 return getSizeOfExpr(ETy, Ty); 12844 } 12845 12846 //===----------------------------------------------------------------------===// 12847 // SCEVCallbackVH Class Implementation 12848 //===----------------------------------------------------------------------===// 12849 12850 void ScalarEvolution::SCEVCallbackVH::deleted() { 12851 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12852 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12853 SE->ConstantEvolutionLoopExitValue.erase(PN); 12854 SE->eraseValueFromMap(getValPtr()); 12855 // this now dangles! 12856 } 12857 12858 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12859 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12860 12861 // Forget all the expressions associated with users of the old value, 12862 // so that future queries will recompute the expressions using the new 12863 // value. 12864 Value *Old = getValPtr(); 12865 SmallVector<User *, 16> Worklist(Old->users()); 12866 SmallPtrSet<User *, 8> Visited; 12867 while (!Worklist.empty()) { 12868 User *U = Worklist.pop_back_val(); 12869 // Deleting the Old value will cause this to dangle. Postpone 12870 // that until everything else is done. 12871 if (U == Old) 12872 continue; 12873 if (!Visited.insert(U).second) 12874 continue; 12875 if (PHINode *PN = dyn_cast<PHINode>(U)) 12876 SE->ConstantEvolutionLoopExitValue.erase(PN); 12877 SE->eraseValueFromMap(U); 12878 llvm::append_range(Worklist, U->users()); 12879 } 12880 // Delete the Old value. 12881 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12882 SE->ConstantEvolutionLoopExitValue.erase(PN); 12883 SE->eraseValueFromMap(Old); 12884 // this now dangles! 12885 } 12886 12887 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12888 : CallbackVH(V), SE(se) {} 12889 12890 //===----------------------------------------------------------------------===// 12891 // ScalarEvolution Class Implementation 12892 //===----------------------------------------------------------------------===// 12893 12894 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12895 AssumptionCache &AC, DominatorTree &DT, 12896 LoopInfo &LI) 12897 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12898 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12899 LoopDispositions(64), BlockDispositions(64) { 12900 // To use guards for proving predicates, we need to scan every instruction in 12901 // relevant basic blocks, and not just terminators. Doing this is a waste of 12902 // time if the IR does not actually contain any calls to 12903 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12904 // 12905 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12906 // to _add_ guards to the module when there weren't any before, and wants 12907 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12908 // efficient in lieu of being smart in that rather obscure case. 12909 12910 auto *GuardDecl = F.getParent()->getFunction( 12911 Intrinsic::getName(Intrinsic::experimental_guard)); 12912 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12913 } 12914 12915 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12916 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12917 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12918 ValueExprMap(std::move(Arg.ValueExprMap)), 12919 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12920 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12921 PendingMerges(std::move(Arg.PendingMerges)), 12922 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12923 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12924 PredicatedBackedgeTakenCounts( 12925 std::move(Arg.PredicatedBackedgeTakenCounts)), 12926 BECountUsers(std::move(Arg.BECountUsers)), 12927 ConstantEvolutionLoopExitValue( 12928 std::move(Arg.ConstantEvolutionLoopExitValue)), 12929 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12930 ValuesAtScopesUsers(std::move(Arg.ValuesAtScopesUsers)), 12931 LoopDispositions(std::move(Arg.LoopDispositions)), 12932 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12933 BlockDispositions(std::move(Arg.BlockDispositions)), 12934 SCEVUsers(std::move(Arg.SCEVUsers)), 12935 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12936 SignedRanges(std::move(Arg.SignedRanges)), 12937 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12938 UniquePreds(std::move(Arg.UniquePreds)), 12939 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12940 LoopUsers(std::move(Arg.LoopUsers)), 12941 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12942 FirstUnknown(Arg.FirstUnknown) { 12943 Arg.FirstUnknown = nullptr; 12944 } 12945 12946 ScalarEvolution::~ScalarEvolution() { 12947 // Iterate through all the SCEVUnknown instances and call their 12948 // destructors, so that they release their references to their values. 12949 for (SCEVUnknown *U = FirstUnknown; U;) { 12950 SCEVUnknown *Tmp = U; 12951 U = U->Next; 12952 Tmp->~SCEVUnknown(); 12953 } 12954 FirstUnknown = nullptr; 12955 12956 ExprValueMap.clear(); 12957 ValueExprMap.clear(); 12958 HasRecMap.clear(); 12959 BackedgeTakenCounts.clear(); 12960 PredicatedBackedgeTakenCounts.clear(); 12961 12962 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12963 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12964 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12965 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12966 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12967 } 12968 12969 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12970 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12971 } 12972 12973 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12974 const Loop *L) { 12975 // Print all inner loops first 12976 for (Loop *I : *L) 12977 PrintLoopInfo(OS, SE, I); 12978 12979 OS << "Loop "; 12980 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12981 OS << ": "; 12982 12983 SmallVector<BasicBlock *, 8> ExitingBlocks; 12984 L->getExitingBlocks(ExitingBlocks); 12985 if (ExitingBlocks.size() != 1) 12986 OS << "<multiple exits> "; 12987 12988 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12989 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12990 else 12991 OS << "Unpredictable backedge-taken count.\n"; 12992 12993 if (ExitingBlocks.size() > 1) 12994 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12995 OS << " exit count for " << ExitingBlock->getName() << ": " 12996 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12997 } 12998 12999 OS << "Loop "; 13000 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13001 OS << ": "; 13002 13003 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 13004 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 13005 if (SE->isBackedgeTakenCountMaxOrZero(L)) 13006 OS << ", actual taken count either this or zero."; 13007 } else { 13008 OS << "Unpredictable max backedge-taken count. "; 13009 } 13010 13011 OS << "\n" 13012 "Loop "; 13013 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13014 OS << ": "; 13015 13016 SmallVector<const SCEVPredicate *, 4> Preds; 13017 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Preds); 13018 if (!isa<SCEVCouldNotCompute>(PBT)) { 13019 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 13020 OS << " Predicates:\n"; 13021 for (auto *P : Preds) 13022 P->print(OS, 4); 13023 } else { 13024 OS << "Unpredictable predicated backedge-taken count. "; 13025 } 13026 OS << "\n"; 13027 13028 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 13029 OS << "Loop "; 13030 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13031 OS << ": "; 13032 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 13033 } 13034 } 13035 13036 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 13037 switch (LD) { 13038 case ScalarEvolution::LoopVariant: 13039 return "Variant"; 13040 case ScalarEvolution::LoopInvariant: 13041 return "Invariant"; 13042 case ScalarEvolution::LoopComputable: 13043 return "Computable"; 13044 } 13045 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 13046 } 13047 13048 void ScalarEvolution::print(raw_ostream &OS) const { 13049 // ScalarEvolution's implementation of the print method is to print 13050 // out SCEV values of all instructions that are interesting. Doing 13051 // this potentially causes it to create new SCEV objects though, 13052 // which technically conflicts with the const qualifier. This isn't 13053 // observable from outside the class though, so casting away the 13054 // const isn't dangerous. 13055 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13056 13057 if (ClassifyExpressions) { 13058 OS << "Classifying expressions for: "; 13059 F.printAsOperand(OS, /*PrintType=*/false); 13060 OS << "\n"; 13061 for (Instruction &I : instructions(F)) 13062 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 13063 OS << I << '\n'; 13064 OS << " --> "; 13065 const SCEV *SV = SE.getSCEV(&I); 13066 SV->print(OS); 13067 if (!isa<SCEVCouldNotCompute>(SV)) { 13068 OS << " U: "; 13069 SE.getUnsignedRange(SV).print(OS); 13070 OS << " S: "; 13071 SE.getSignedRange(SV).print(OS); 13072 } 13073 13074 const Loop *L = LI.getLoopFor(I.getParent()); 13075 13076 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 13077 if (AtUse != SV) { 13078 OS << " --> "; 13079 AtUse->print(OS); 13080 if (!isa<SCEVCouldNotCompute>(AtUse)) { 13081 OS << " U: "; 13082 SE.getUnsignedRange(AtUse).print(OS); 13083 OS << " S: "; 13084 SE.getSignedRange(AtUse).print(OS); 13085 } 13086 } 13087 13088 if (L) { 13089 OS << "\t\t" "Exits: "; 13090 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 13091 if (!SE.isLoopInvariant(ExitValue, L)) { 13092 OS << "<<Unknown>>"; 13093 } else { 13094 OS << *ExitValue; 13095 } 13096 13097 bool First = true; 13098 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 13099 if (First) { 13100 OS << "\t\t" "LoopDispositions: { "; 13101 First = false; 13102 } else { 13103 OS << ", "; 13104 } 13105 13106 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13107 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 13108 } 13109 13110 for (auto *InnerL : depth_first(L)) { 13111 if (InnerL == L) 13112 continue; 13113 if (First) { 13114 OS << "\t\t" "LoopDispositions: { "; 13115 First = false; 13116 } else { 13117 OS << ", "; 13118 } 13119 13120 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 13121 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 13122 } 13123 13124 OS << " }"; 13125 } 13126 13127 OS << "\n"; 13128 } 13129 } 13130 13131 OS << "Determining loop execution counts for: "; 13132 F.printAsOperand(OS, /*PrintType=*/false); 13133 OS << "\n"; 13134 for (Loop *I : LI) 13135 PrintLoopInfo(OS, &SE, I); 13136 } 13137 13138 ScalarEvolution::LoopDisposition 13139 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 13140 auto &Values = LoopDispositions[S]; 13141 for (auto &V : Values) { 13142 if (V.getPointer() == L) 13143 return V.getInt(); 13144 } 13145 Values.emplace_back(L, LoopVariant); 13146 LoopDisposition D = computeLoopDisposition(S, L); 13147 auto &Values2 = LoopDispositions[S]; 13148 for (auto &V : llvm::reverse(Values2)) { 13149 if (V.getPointer() == L) { 13150 V.setInt(D); 13151 break; 13152 } 13153 } 13154 return D; 13155 } 13156 13157 ScalarEvolution::LoopDisposition 13158 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 13159 switch (S->getSCEVType()) { 13160 case scConstant: 13161 return LoopInvariant; 13162 case scPtrToInt: 13163 case scTruncate: 13164 case scZeroExtend: 13165 case scSignExtend: 13166 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 13167 case scAddRecExpr: { 13168 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13169 13170 // If L is the addrec's loop, it's computable. 13171 if (AR->getLoop() == L) 13172 return LoopComputable; 13173 13174 // Add recurrences are never invariant in the function-body (null loop). 13175 if (!L) 13176 return LoopVariant; 13177 13178 // Everything that is not defined at loop entry is variant. 13179 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 13180 return LoopVariant; 13181 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 13182 " dominate the contained loop's header?"); 13183 13184 // This recurrence is invariant w.r.t. L if AR's loop contains L. 13185 if (AR->getLoop()->contains(L)) 13186 return LoopInvariant; 13187 13188 // This recurrence is variant w.r.t. L if any of its operands 13189 // are variant. 13190 for (auto *Op : AR->operands()) 13191 if (!isLoopInvariant(Op, L)) 13192 return LoopVariant; 13193 13194 // Otherwise it's loop-invariant. 13195 return LoopInvariant; 13196 } 13197 case scAddExpr: 13198 case scMulExpr: 13199 case scUMaxExpr: 13200 case scSMaxExpr: 13201 case scUMinExpr: 13202 case scSMinExpr: 13203 case scSequentialUMinExpr: { 13204 bool HasVarying = false; 13205 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 13206 LoopDisposition D = getLoopDisposition(Op, L); 13207 if (D == LoopVariant) 13208 return LoopVariant; 13209 if (D == LoopComputable) 13210 HasVarying = true; 13211 } 13212 return HasVarying ? LoopComputable : LoopInvariant; 13213 } 13214 case scUDivExpr: { 13215 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13216 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 13217 if (LD == LoopVariant) 13218 return LoopVariant; 13219 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 13220 if (RD == LoopVariant) 13221 return LoopVariant; 13222 return (LD == LoopInvariant && RD == LoopInvariant) ? 13223 LoopInvariant : LoopComputable; 13224 } 13225 case scUnknown: 13226 // All non-instruction values are loop invariant. All instructions are loop 13227 // invariant if they are not contained in the specified loop. 13228 // Instructions are never considered invariant in the function body 13229 // (null loop) because they are defined within the "loop". 13230 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 13231 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 13232 return LoopInvariant; 13233 case scCouldNotCompute: 13234 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13235 } 13236 llvm_unreachable("Unknown SCEV kind!"); 13237 } 13238 13239 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 13240 return getLoopDisposition(S, L) == LoopInvariant; 13241 } 13242 13243 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 13244 return getLoopDisposition(S, L) == LoopComputable; 13245 } 13246 13247 ScalarEvolution::BlockDisposition 13248 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13249 auto &Values = BlockDispositions[S]; 13250 for (auto &V : Values) { 13251 if (V.getPointer() == BB) 13252 return V.getInt(); 13253 } 13254 Values.emplace_back(BB, DoesNotDominateBlock); 13255 BlockDisposition D = computeBlockDisposition(S, BB); 13256 auto &Values2 = BlockDispositions[S]; 13257 for (auto &V : llvm::reverse(Values2)) { 13258 if (V.getPointer() == BB) { 13259 V.setInt(D); 13260 break; 13261 } 13262 } 13263 return D; 13264 } 13265 13266 ScalarEvolution::BlockDisposition 13267 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 13268 switch (S->getSCEVType()) { 13269 case scConstant: 13270 return ProperlyDominatesBlock; 13271 case scPtrToInt: 13272 case scTruncate: 13273 case scZeroExtend: 13274 case scSignExtend: 13275 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 13276 case scAddRecExpr: { 13277 // This uses a "dominates" query instead of "properly dominates" query 13278 // to test for proper dominance too, because the instruction which 13279 // produces the addrec's value is a PHI, and a PHI effectively properly 13280 // dominates its entire containing block. 13281 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 13282 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 13283 return DoesNotDominateBlock; 13284 13285 // Fall through into SCEVNAryExpr handling. 13286 LLVM_FALLTHROUGH; 13287 } 13288 case scAddExpr: 13289 case scMulExpr: 13290 case scUMaxExpr: 13291 case scSMaxExpr: 13292 case scUMinExpr: 13293 case scSMinExpr: 13294 case scSequentialUMinExpr: { 13295 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 13296 bool Proper = true; 13297 for (const SCEV *NAryOp : NAry->operands()) { 13298 BlockDisposition D = getBlockDisposition(NAryOp, BB); 13299 if (D == DoesNotDominateBlock) 13300 return DoesNotDominateBlock; 13301 if (D == DominatesBlock) 13302 Proper = false; 13303 } 13304 return Proper ? ProperlyDominatesBlock : DominatesBlock; 13305 } 13306 case scUDivExpr: { 13307 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 13308 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 13309 BlockDisposition LD = getBlockDisposition(LHS, BB); 13310 if (LD == DoesNotDominateBlock) 13311 return DoesNotDominateBlock; 13312 BlockDisposition RD = getBlockDisposition(RHS, BB); 13313 if (RD == DoesNotDominateBlock) 13314 return DoesNotDominateBlock; 13315 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 13316 ProperlyDominatesBlock : DominatesBlock; 13317 } 13318 case scUnknown: 13319 if (Instruction *I = 13320 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 13321 if (I->getParent() == BB) 13322 return DominatesBlock; 13323 if (DT.properlyDominates(I->getParent(), BB)) 13324 return ProperlyDominatesBlock; 13325 return DoesNotDominateBlock; 13326 } 13327 return ProperlyDominatesBlock; 13328 case scCouldNotCompute: 13329 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 13330 } 13331 llvm_unreachable("Unknown SCEV kind!"); 13332 } 13333 13334 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 13335 return getBlockDisposition(S, BB) >= DominatesBlock; 13336 } 13337 13338 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 13339 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 13340 } 13341 13342 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 13343 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 13344 } 13345 13346 void ScalarEvolution::forgetBackedgeTakenCounts(const Loop *L, 13347 bool Predicated) { 13348 auto &BECounts = 13349 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13350 auto It = BECounts.find(L); 13351 if (It != BECounts.end()) { 13352 for (const ExitNotTakenInfo &ENT : It->second.ExitNotTaken) { 13353 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13354 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13355 assert(UserIt != BECountUsers.end()); 13356 UserIt->second.erase({L, Predicated}); 13357 } 13358 } 13359 BECounts.erase(It); 13360 } 13361 } 13362 13363 void ScalarEvolution::forgetMemoizedResults(ArrayRef<const SCEV *> SCEVs) { 13364 SmallPtrSet<const SCEV *, 8> ToForget(SCEVs.begin(), SCEVs.end()); 13365 SmallVector<const SCEV *, 8> Worklist(ToForget.begin(), ToForget.end()); 13366 13367 while (!Worklist.empty()) { 13368 const SCEV *Curr = Worklist.pop_back_val(); 13369 auto Users = SCEVUsers.find(Curr); 13370 if (Users != SCEVUsers.end()) 13371 for (auto *User : Users->second) 13372 if (ToForget.insert(User).second) 13373 Worklist.push_back(User); 13374 } 13375 13376 for (auto *S : ToForget) 13377 forgetMemoizedResultsImpl(S); 13378 13379 for (auto I = PredicatedSCEVRewrites.begin(); 13380 I != PredicatedSCEVRewrites.end();) { 13381 std::pair<const SCEV *, const Loop *> Entry = I->first; 13382 if (ToForget.count(Entry.first)) 13383 PredicatedSCEVRewrites.erase(I++); 13384 else 13385 ++I; 13386 } 13387 } 13388 13389 void ScalarEvolution::forgetMemoizedResultsImpl(const SCEV *S) { 13390 LoopDispositions.erase(S); 13391 BlockDispositions.erase(S); 13392 UnsignedRanges.erase(S); 13393 SignedRanges.erase(S); 13394 HasRecMap.erase(S); 13395 MinTrailingZerosCache.erase(S); 13396 13397 auto ExprIt = ExprValueMap.find(S); 13398 if (ExprIt != ExprValueMap.end()) { 13399 for (Value *V : ExprIt->second) { 13400 auto ValueIt = ValueExprMap.find_as(V); 13401 if (ValueIt != ValueExprMap.end()) 13402 ValueExprMap.erase(ValueIt); 13403 } 13404 ExprValueMap.erase(ExprIt); 13405 } 13406 13407 auto ScopeIt = ValuesAtScopes.find(S); 13408 if (ScopeIt != ValuesAtScopes.end()) { 13409 for (const auto &Pair : ScopeIt->second) 13410 if (!isa_and_nonnull<SCEVConstant>(Pair.second)) 13411 erase_value(ValuesAtScopesUsers[Pair.second], 13412 std::make_pair(Pair.first, S)); 13413 ValuesAtScopes.erase(ScopeIt); 13414 } 13415 13416 auto ScopeUserIt = ValuesAtScopesUsers.find(S); 13417 if (ScopeUserIt != ValuesAtScopesUsers.end()) { 13418 for (const auto &Pair : ScopeUserIt->second) 13419 erase_value(ValuesAtScopes[Pair.second], std::make_pair(Pair.first, S)); 13420 ValuesAtScopesUsers.erase(ScopeUserIt); 13421 } 13422 13423 auto BEUsersIt = BECountUsers.find(S); 13424 if (BEUsersIt != BECountUsers.end()) { 13425 // Work on a copy, as forgetBackedgeTakenCounts() will modify the original. 13426 auto Copy = BEUsersIt->second; 13427 for (const auto &Pair : Copy) 13428 forgetBackedgeTakenCounts(Pair.getPointer(), Pair.getInt()); 13429 BECountUsers.erase(BEUsersIt); 13430 } 13431 } 13432 13433 void 13434 ScalarEvolution::getUsedLoops(const SCEV *S, 13435 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 13436 struct FindUsedLoops { 13437 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 13438 : LoopsUsed(LoopsUsed) {} 13439 SmallPtrSetImpl<const Loop *> &LoopsUsed; 13440 bool follow(const SCEV *S) { 13441 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 13442 LoopsUsed.insert(AR->getLoop()); 13443 return true; 13444 } 13445 13446 bool isDone() const { return false; } 13447 }; 13448 13449 FindUsedLoops F(LoopsUsed); 13450 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 13451 } 13452 13453 void ScalarEvolution::getReachableBlocks( 13454 SmallPtrSetImpl<BasicBlock *> &Reachable, Function &F) { 13455 SmallVector<BasicBlock *> Worklist; 13456 Worklist.push_back(&F.getEntryBlock()); 13457 while (!Worklist.empty()) { 13458 BasicBlock *BB = Worklist.pop_back_val(); 13459 if (!Reachable.insert(BB).second) 13460 continue; 13461 13462 Value *Cond; 13463 BasicBlock *TrueBB, *FalseBB; 13464 if (match(BB->getTerminator(), m_Br(m_Value(Cond), m_BasicBlock(TrueBB), 13465 m_BasicBlock(FalseBB)))) { 13466 if (auto *C = dyn_cast<ConstantInt>(Cond)) { 13467 Worklist.push_back(C->isOne() ? TrueBB : FalseBB); 13468 continue; 13469 } 13470 13471 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13472 const SCEV *L = getSCEV(Cmp->getOperand(0)); 13473 const SCEV *R = getSCEV(Cmp->getOperand(1)); 13474 if (isKnownPredicateViaConstantRanges(Cmp->getPredicate(), L, R)) { 13475 Worklist.push_back(TrueBB); 13476 continue; 13477 } 13478 if (isKnownPredicateViaConstantRanges(Cmp->getInversePredicate(), L, 13479 R)) { 13480 Worklist.push_back(FalseBB); 13481 continue; 13482 } 13483 } 13484 } 13485 13486 append_range(Worklist, successors(BB)); 13487 } 13488 } 13489 13490 void ScalarEvolution::verify() const { 13491 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 13492 ScalarEvolution SE2(F, TLI, AC, DT, LI); 13493 13494 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 13495 13496 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 13497 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 13498 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 13499 13500 const SCEV *visitConstant(const SCEVConstant *Constant) { 13501 return SE.getConstant(Constant->getAPInt()); 13502 } 13503 13504 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13505 return SE.getUnknown(Expr->getValue()); 13506 } 13507 13508 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 13509 return SE.getCouldNotCompute(); 13510 } 13511 }; 13512 13513 SCEVMapper SCM(SE2); 13514 SmallPtrSet<BasicBlock *, 16> ReachableBlocks; 13515 SE2.getReachableBlocks(ReachableBlocks, F); 13516 13517 auto GetDelta = [&](const SCEV *Old, const SCEV *New) -> const SCEV * { 13518 if (containsUndefs(Old) || containsUndefs(New)) { 13519 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 13520 // not propagate undef aggressively). This means we can (and do) fail 13521 // verification in cases where a transform makes a value go from "undef" 13522 // to "undef+1" (say). The transform is fine, since in both cases the 13523 // result is "undef", but SCEV thinks the value increased by 1. 13524 return nullptr; 13525 } 13526 13527 // Unless VerifySCEVStrict is set, we only compare constant deltas. 13528 const SCEV *Delta = SE2.getMinusSCEV(Old, New); 13529 if (!VerifySCEVStrict && !isa<SCEVConstant>(Delta)) 13530 return nullptr; 13531 13532 return Delta; 13533 }; 13534 13535 while (!LoopStack.empty()) { 13536 auto *L = LoopStack.pop_back_val(); 13537 llvm::append_range(LoopStack, *L); 13538 13539 // Only verify BECounts in reachable loops. For an unreachable loop, 13540 // any BECount is legal. 13541 if (!ReachableBlocks.contains(L->getHeader())) 13542 continue; 13543 13544 // Only verify cached BECounts. Computing new BECounts may change the 13545 // results of subsequent SCEV uses. 13546 auto It = BackedgeTakenCounts.find(L); 13547 if (It == BackedgeTakenCounts.end()) 13548 continue; 13549 13550 auto *CurBECount = 13551 SCM.visit(It->second.getExact(L, const_cast<ScalarEvolution *>(this))); 13552 auto *NewBECount = SE2.getBackedgeTakenCount(L); 13553 13554 if (CurBECount == SE2.getCouldNotCompute() || 13555 NewBECount == SE2.getCouldNotCompute()) { 13556 // NB! This situation is legal, but is very suspicious -- whatever pass 13557 // change the loop to make a trip count go from could not compute to 13558 // computable or vice-versa *should have* invalidated SCEV. However, we 13559 // choose not to assert here (for now) since we don't want false 13560 // positives. 13561 continue; 13562 } 13563 13564 if (SE.getTypeSizeInBits(CurBECount->getType()) > 13565 SE.getTypeSizeInBits(NewBECount->getType())) 13566 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 13567 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 13568 SE.getTypeSizeInBits(NewBECount->getType())) 13569 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 13570 13571 const SCEV *Delta = GetDelta(CurBECount, NewBECount); 13572 if (Delta && !Delta->isZero()) { 13573 dbgs() << "Trip Count for " << *L << " Changed!\n"; 13574 dbgs() << "Old: " << *CurBECount << "\n"; 13575 dbgs() << "New: " << *NewBECount << "\n"; 13576 dbgs() << "Delta: " << *Delta << "\n"; 13577 std::abort(); 13578 } 13579 } 13580 13581 // Collect all valid loops currently in LoopInfo. 13582 SmallPtrSet<Loop *, 32> ValidLoops; 13583 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 13584 while (!Worklist.empty()) { 13585 Loop *L = Worklist.pop_back_val(); 13586 if (ValidLoops.insert(L).second) 13587 Worklist.append(L->begin(), L->end()); 13588 } 13589 for (auto &KV : ValueExprMap) { 13590 #ifndef NDEBUG 13591 // Check for SCEV expressions referencing invalid/deleted loops. 13592 if (auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second)) { 13593 assert(ValidLoops.contains(AR->getLoop()) && 13594 "AddRec references invalid loop"); 13595 } 13596 #endif 13597 13598 // Check that the value is also part of the reverse map. 13599 auto It = ExprValueMap.find(KV.second); 13600 if (It == ExprValueMap.end() || !It->second.contains(KV.first)) { 13601 dbgs() << "Value " << *KV.first 13602 << " is in ValueExprMap but not in ExprValueMap\n"; 13603 std::abort(); 13604 } 13605 13606 if (auto *I = dyn_cast<Instruction>(&*KV.first)) { 13607 if (!ReachableBlocks.contains(I->getParent())) 13608 continue; 13609 const SCEV *OldSCEV = SCM.visit(KV.second); 13610 const SCEV *NewSCEV = SE2.getSCEV(I); 13611 const SCEV *Delta = GetDelta(OldSCEV, NewSCEV); 13612 if (Delta && !Delta->isZero()) { 13613 dbgs() << "SCEV for value " << *I << " changed!\n" 13614 << "Old: " << *OldSCEV << "\n" 13615 << "New: " << *NewSCEV << "\n" 13616 << "Delta: " << *Delta << "\n"; 13617 std::abort(); 13618 } 13619 } 13620 } 13621 13622 for (const auto &KV : ExprValueMap) { 13623 for (Value *V : KV.second) { 13624 auto It = ValueExprMap.find_as(V); 13625 if (It == ValueExprMap.end()) { 13626 dbgs() << "Value " << *V 13627 << " is in ExprValueMap but not in ValueExprMap\n"; 13628 std::abort(); 13629 } 13630 if (It->second != KV.first) { 13631 dbgs() << "Value " << *V << " mapped to " << *It->second 13632 << " rather than " << *KV.first << "\n"; 13633 std::abort(); 13634 } 13635 } 13636 } 13637 13638 // Verify integrity of SCEV users. 13639 for (const auto &S : UniqueSCEVs) { 13640 SmallVector<const SCEV *, 4> Ops; 13641 collectUniqueOps(&S, Ops); 13642 for (const auto *Op : Ops) { 13643 // We do not store dependencies of constants. 13644 if (isa<SCEVConstant>(Op)) 13645 continue; 13646 auto It = SCEVUsers.find(Op); 13647 if (It != SCEVUsers.end() && It->second.count(&S)) 13648 continue; 13649 dbgs() << "Use of operand " << *Op << " by user " << S 13650 << " is not being tracked!\n"; 13651 std::abort(); 13652 } 13653 } 13654 13655 // Verify integrity of ValuesAtScopes users. 13656 for (const auto &ValueAndVec : ValuesAtScopes) { 13657 const SCEV *Value = ValueAndVec.first; 13658 for (const auto &LoopAndValueAtScope : ValueAndVec.second) { 13659 const Loop *L = LoopAndValueAtScope.first; 13660 const SCEV *ValueAtScope = LoopAndValueAtScope.second; 13661 if (!isa<SCEVConstant>(ValueAtScope)) { 13662 auto It = ValuesAtScopesUsers.find(ValueAtScope); 13663 if (It != ValuesAtScopesUsers.end() && 13664 is_contained(It->second, std::make_pair(L, Value))) 13665 continue; 13666 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13667 << *ValueAtScope << " missing in ValuesAtScopesUsers\n"; 13668 std::abort(); 13669 } 13670 } 13671 } 13672 13673 for (const auto &ValueAtScopeAndVec : ValuesAtScopesUsers) { 13674 const SCEV *ValueAtScope = ValueAtScopeAndVec.first; 13675 for (const auto &LoopAndValue : ValueAtScopeAndVec.second) { 13676 const Loop *L = LoopAndValue.first; 13677 const SCEV *Value = LoopAndValue.second; 13678 assert(!isa<SCEVConstant>(Value)); 13679 auto It = ValuesAtScopes.find(Value); 13680 if (It != ValuesAtScopes.end() && 13681 is_contained(It->second, std::make_pair(L, ValueAtScope))) 13682 continue; 13683 dbgs() << "Value: " << *Value << ", Loop: " << *L << ", ValueAtScope: " 13684 << *ValueAtScope << " missing in ValuesAtScopes\n"; 13685 std::abort(); 13686 } 13687 } 13688 13689 // Verify integrity of BECountUsers. 13690 auto VerifyBECountUsers = [&](bool Predicated) { 13691 auto &BECounts = 13692 Predicated ? PredicatedBackedgeTakenCounts : BackedgeTakenCounts; 13693 for (const auto &LoopAndBEInfo : BECounts) { 13694 for (const ExitNotTakenInfo &ENT : LoopAndBEInfo.second.ExitNotTaken) { 13695 if (!isa<SCEVConstant>(ENT.ExactNotTaken)) { 13696 auto UserIt = BECountUsers.find(ENT.ExactNotTaken); 13697 if (UserIt != BECountUsers.end() && 13698 UserIt->second.contains({ LoopAndBEInfo.first, Predicated })) 13699 continue; 13700 dbgs() << "Value " << *ENT.ExactNotTaken << " for loop " 13701 << *LoopAndBEInfo.first << " missing from BECountUsers\n"; 13702 std::abort(); 13703 } 13704 } 13705 } 13706 }; 13707 VerifyBECountUsers(/* Predicated */ false); 13708 VerifyBECountUsers(/* Predicated */ true); 13709 } 13710 13711 bool ScalarEvolution::invalidate( 13712 Function &F, const PreservedAnalyses &PA, 13713 FunctionAnalysisManager::Invalidator &Inv) { 13714 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 13715 // of its dependencies is invalidated. 13716 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 13717 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 13718 Inv.invalidate<AssumptionAnalysis>(F, PA) || 13719 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 13720 Inv.invalidate<LoopAnalysis>(F, PA); 13721 } 13722 13723 AnalysisKey ScalarEvolutionAnalysis::Key; 13724 13725 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 13726 FunctionAnalysisManager &AM) { 13727 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 13728 AM.getResult<AssumptionAnalysis>(F), 13729 AM.getResult<DominatorTreeAnalysis>(F), 13730 AM.getResult<LoopAnalysis>(F)); 13731 } 13732 13733 PreservedAnalyses 13734 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 13735 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 13736 return PreservedAnalyses::all(); 13737 } 13738 13739 PreservedAnalyses 13740 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 13741 // For compatibility with opt's -analyze feature under legacy pass manager 13742 // which was not ported to NPM. This keeps tests using 13743 // update_analyze_test_checks.py working. 13744 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 13745 << F.getName() << "':\n"; 13746 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 13747 return PreservedAnalyses::all(); 13748 } 13749 13750 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 13751 "Scalar Evolution Analysis", false, true) 13752 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 13753 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 13754 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 13755 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 13756 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 13757 "Scalar Evolution Analysis", false, true) 13758 13759 char ScalarEvolutionWrapperPass::ID = 0; 13760 13761 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 13762 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 13763 } 13764 13765 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 13766 SE.reset(new ScalarEvolution( 13767 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 13768 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 13769 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 13770 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 13771 return false; 13772 } 13773 13774 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 13775 13776 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 13777 SE->print(OS); 13778 } 13779 13780 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 13781 if (!VerifySCEV) 13782 return; 13783 13784 SE->verify(); 13785 } 13786 13787 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 13788 AU.setPreservesAll(); 13789 AU.addRequiredTransitive<AssumptionCacheTracker>(); 13790 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 13791 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 13792 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 13793 } 13794 13795 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 13796 const SCEV *RHS) { 13797 return getComparePredicate(ICmpInst::ICMP_EQ, LHS, RHS); 13798 } 13799 13800 const SCEVPredicate * 13801 ScalarEvolution::getComparePredicate(const ICmpInst::Predicate Pred, 13802 const SCEV *LHS, const SCEV *RHS) { 13803 FoldingSetNodeID ID; 13804 assert(LHS->getType() == RHS->getType() && 13805 "Type mismatch between LHS and RHS"); 13806 // Unique this node based on the arguments 13807 ID.AddInteger(SCEVPredicate::P_Compare); 13808 ID.AddInteger(Pred); 13809 ID.AddPointer(LHS); 13810 ID.AddPointer(RHS); 13811 void *IP = nullptr; 13812 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13813 return S; 13814 SCEVComparePredicate *Eq = new (SCEVAllocator) 13815 SCEVComparePredicate(ID.Intern(SCEVAllocator), Pred, LHS, RHS); 13816 UniquePreds.InsertNode(Eq, IP); 13817 return Eq; 13818 } 13819 13820 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 13821 const SCEVAddRecExpr *AR, 13822 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13823 FoldingSetNodeID ID; 13824 // Unique this node based on the arguments 13825 ID.AddInteger(SCEVPredicate::P_Wrap); 13826 ID.AddPointer(AR); 13827 ID.AddInteger(AddedFlags); 13828 void *IP = nullptr; 13829 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 13830 return S; 13831 auto *OF = new (SCEVAllocator) 13832 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 13833 UniquePreds.InsertNode(OF, IP); 13834 return OF; 13835 } 13836 13837 namespace { 13838 13839 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13840 public: 13841 13842 /// Rewrites \p S in the context of a loop L and the SCEV predication 13843 /// infrastructure. 13844 /// 13845 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13846 /// equivalences present in \p Pred. 13847 /// 13848 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13849 /// \p NewPreds such that the result will be an AddRecExpr. 13850 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13851 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13852 const SCEVPredicate *Pred) { 13853 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13854 return Rewriter.visit(S); 13855 } 13856 13857 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13858 if (Pred) { 13859 if (auto *U = dyn_cast<SCEVUnionPredicate>(Pred)) { 13860 for (auto *Pred : U->getPredicates()) 13861 if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) 13862 if (IPred->getLHS() == Expr && 13863 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13864 return IPred->getRHS(); 13865 } else if (const auto *IPred = dyn_cast<SCEVComparePredicate>(Pred)) { 13866 if (IPred->getLHS() == Expr && 13867 IPred->getPredicate() == ICmpInst::ICMP_EQ) 13868 return IPred->getRHS(); 13869 } 13870 } 13871 return convertToAddRecWithPreds(Expr); 13872 } 13873 13874 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13875 const SCEV *Operand = visit(Expr->getOperand()); 13876 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13877 if (AR && AR->getLoop() == L && AR->isAffine()) { 13878 // This couldn't be folded because the operand didn't have the nuw 13879 // flag. Add the nusw flag as an assumption that we could make. 13880 const SCEV *Step = AR->getStepRecurrence(SE); 13881 Type *Ty = Expr->getType(); 13882 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13883 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13884 SE.getSignExtendExpr(Step, Ty), L, 13885 AR->getNoWrapFlags()); 13886 } 13887 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13888 } 13889 13890 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13891 const SCEV *Operand = visit(Expr->getOperand()); 13892 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13893 if (AR && AR->getLoop() == L && AR->isAffine()) { 13894 // This couldn't be folded because the operand didn't have the nsw 13895 // flag. Add the nssw flag as an assumption that we could make. 13896 const SCEV *Step = AR->getStepRecurrence(SE); 13897 Type *Ty = Expr->getType(); 13898 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13899 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13900 SE.getSignExtendExpr(Step, Ty), L, 13901 AR->getNoWrapFlags()); 13902 } 13903 return SE.getSignExtendExpr(Operand, Expr->getType()); 13904 } 13905 13906 private: 13907 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13908 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13909 const SCEVPredicate *Pred) 13910 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13911 13912 bool addOverflowAssumption(const SCEVPredicate *P) { 13913 if (!NewPreds) { 13914 // Check if we've already made this assumption. 13915 return Pred && Pred->implies(P); 13916 } 13917 NewPreds->insert(P); 13918 return true; 13919 } 13920 13921 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13922 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13923 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13924 return addOverflowAssumption(A); 13925 } 13926 13927 // If \p Expr represents a PHINode, we try to see if it can be represented 13928 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13929 // to add this predicate as a runtime overflow check, we return the AddRec. 13930 // If \p Expr does not meet these conditions (is not a PHI node, or we 13931 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13932 // return \p Expr. 13933 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13934 if (!isa<PHINode>(Expr->getValue())) 13935 return Expr; 13936 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13937 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13938 if (!PredicatedRewrite) 13939 return Expr; 13940 for (auto *P : PredicatedRewrite->second){ 13941 // Wrap predicates from outer loops are not supported. 13942 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13943 if (L != WP->getExpr()->getLoop()) 13944 return Expr; 13945 } 13946 if (!addOverflowAssumption(P)) 13947 return Expr; 13948 } 13949 return PredicatedRewrite->first; 13950 } 13951 13952 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13953 const SCEVPredicate *Pred; 13954 const Loop *L; 13955 }; 13956 13957 } // end anonymous namespace 13958 13959 const SCEV * 13960 ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13961 const SCEVPredicate &Preds) { 13962 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13963 } 13964 13965 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13966 const SCEV *S, const Loop *L, 13967 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13968 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13969 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13970 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13971 13972 if (!AddRec) 13973 return nullptr; 13974 13975 // Since the transformation was successful, we can now transfer the SCEV 13976 // predicates. 13977 for (auto *P : TransformPreds) 13978 Preds.insert(P); 13979 13980 return AddRec; 13981 } 13982 13983 /// SCEV predicates 13984 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13985 SCEVPredicateKind Kind) 13986 : FastID(ID), Kind(Kind) {} 13987 13988 SCEVComparePredicate::SCEVComparePredicate(const FoldingSetNodeIDRef ID, 13989 const ICmpInst::Predicate Pred, 13990 const SCEV *LHS, const SCEV *RHS) 13991 : SCEVPredicate(ID, P_Compare), Pred(Pred), LHS(LHS), RHS(RHS) { 13992 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13993 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13994 } 13995 13996 bool SCEVComparePredicate::implies(const SCEVPredicate *N) const { 13997 const auto *Op = dyn_cast<SCEVComparePredicate>(N); 13998 13999 if (!Op) 14000 return false; 14001 14002 if (Pred != ICmpInst::ICMP_EQ) 14003 return false; 14004 14005 return Op->LHS == LHS && Op->RHS == RHS; 14006 } 14007 14008 bool SCEVComparePredicate::isAlwaysTrue() const { return false; } 14009 14010 void SCEVComparePredicate::print(raw_ostream &OS, unsigned Depth) const { 14011 if (Pred == ICmpInst::ICMP_EQ) 14012 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 14013 else 14014 OS.indent(Depth) << "Compare predicate: " << *LHS 14015 << " " << CmpInst::getPredicateName(Pred) << ") " 14016 << *RHS << "\n"; 14017 14018 } 14019 14020 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 14021 const SCEVAddRecExpr *AR, 14022 IncrementWrapFlags Flags) 14023 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 14024 14025 const SCEVAddRecExpr *SCEVWrapPredicate::getExpr() const { return AR; } 14026 14027 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 14028 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 14029 14030 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 14031 } 14032 14033 bool SCEVWrapPredicate::isAlwaysTrue() const { 14034 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 14035 IncrementWrapFlags IFlags = Flags; 14036 14037 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 14038 IFlags = clearFlags(IFlags, IncrementNSSW); 14039 14040 return IFlags == IncrementAnyWrap; 14041 } 14042 14043 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 14044 OS.indent(Depth) << *getExpr() << " Added Flags: "; 14045 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 14046 OS << "<nusw>"; 14047 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 14048 OS << "<nssw>"; 14049 OS << "\n"; 14050 } 14051 14052 SCEVWrapPredicate::IncrementWrapFlags 14053 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 14054 ScalarEvolution &SE) { 14055 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 14056 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 14057 14058 // We can safely transfer the NSW flag as NSSW. 14059 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 14060 ImpliedFlags = IncrementNSSW; 14061 14062 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 14063 // If the increment is positive, the SCEV NUW flag will also imply the 14064 // WrapPredicate NUSW flag. 14065 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 14066 if (Step->getValue()->getValue().isNonNegative()) 14067 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 14068 } 14069 14070 return ImpliedFlags; 14071 } 14072 14073 /// Union predicates don't get cached so create a dummy set ID for it. 14074 SCEVUnionPredicate::SCEVUnionPredicate(ArrayRef<const SCEVPredicate *> Preds) 14075 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) { 14076 for (auto *P : Preds) 14077 add(P); 14078 } 14079 14080 bool SCEVUnionPredicate::isAlwaysTrue() const { 14081 return all_of(Preds, 14082 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 14083 } 14084 14085 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 14086 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 14087 return all_of(Set->Preds, 14088 [this](const SCEVPredicate *I) { return this->implies(I); }); 14089 14090 return any_of(Preds, 14091 [N](const SCEVPredicate *I) { return I->implies(N); }); 14092 } 14093 14094 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 14095 for (auto Pred : Preds) 14096 Pred->print(OS, Depth); 14097 } 14098 14099 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 14100 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 14101 for (auto Pred : Set->Preds) 14102 add(Pred); 14103 return; 14104 } 14105 14106 Preds.push_back(N); 14107 } 14108 14109 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 14110 Loop &L) 14111 : SE(SE), L(L) { 14112 SmallVector<const SCEVPredicate*, 4> Empty; 14113 Preds = std::make_unique<SCEVUnionPredicate>(Empty); 14114 } 14115 14116 void ScalarEvolution::registerUser(const SCEV *User, 14117 ArrayRef<const SCEV *> Ops) { 14118 for (auto *Op : Ops) 14119 // We do not expect that forgetting cached data for SCEVConstants will ever 14120 // open any prospects for sharpening or introduce any correctness issues, 14121 // so we don't bother storing their dependencies. 14122 if (!isa<SCEVConstant>(Op)) 14123 SCEVUsers[Op].insert(User); 14124 } 14125 14126 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 14127 const SCEV *Expr = SE.getSCEV(V); 14128 RewriteEntry &Entry = RewriteMap[Expr]; 14129 14130 // If we already have an entry and the version matches, return it. 14131 if (Entry.second && Generation == Entry.first) 14132 return Entry.second; 14133 14134 // We found an entry but it's stale. Rewrite the stale entry 14135 // according to the current predicate. 14136 if (Entry.second) 14137 Expr = Entry.second; 14138 14139 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, *Preds); 14140 Entry = {Generation, NewSCEV}; 14141 14142 return NewSCEV; 14143 } 14144 14145 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 14146 if (!BackedgeCount) { 14147 SmallVector<const SCEVPredicate *, 4> Preds; 14148 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, Preds); 14149 for (auto *P : Preds) 14150 addPredicate(*P); 14151 } 14152 return BackedgeCount; 14153 } 14154 14155 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 14156 if (Preds->implies(&Pred)) 14157 return; 14158 14159 auto &OldPreds = Preds->getPredicates(); 14160 SmallVector<const SCEVPredicate*, 4> NewPreds(OldPreds.begin(), OldPreds.end()); 14161 NewPreds.push_back(&Pred); 14162 Preds = std::make_unique<SCEVUnionPredicate>(NewPreds); 14163 updateGeneration(); 14164 } 14165 14166 const SCEVPredicate &PredicatedScalarEvolution::getPredicate() const { 14167 return *Preds; 14168 } 14169 14170 void PredicatedScalarEvolution::updateGeneration() { 14171 // If the generation number wrapped recompute everything. 14172 if (++Generation == 0) { 14173 for (auto &II : RewriteMap) { 14174 const SCEV *Rewritten = II.second.second; 14175 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, *Preds)}; 14176 } 14177 } 14178 } 14179 14180 void PredicatedScalarEvolution::setNoOverflow( 14181 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14182 const SCEV *Expr = getSCEV(V); 14183 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14184 14185 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 14186 14187 // Clear the statically implied flags. 14188 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 14189 addPredicate(*SE.getWrapPredicate(AR, Flags)); 14190 14191 auto II = FlagsMap.insert({V, Flags}); 14192 if (!II.second) 14193 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 14194 } 14195 14196 bool PredicatedScalarEvolution::hasNoOverflow( 14197 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 14198 const SCEV *Expr = getSCEV(V); 14199 const auto *AR = cast<SCEVAddRecExpr>(Expr); 14200 14201 Flags = SCEVWrapPredicate::clearFlags( 14202 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 14203 14204 auto II = FlagsMap.find(V); 14205 14206 if (II != FlagsMap.end()) 14207 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 14208 14209 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 14210 } 14211 14212 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 14213 const SCEV *Expr = this->getSCEV(V); 14214 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 14215 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 14216 14217 if (!New) 14218 return nullptr; 14219 14220 for (auto *P : NewPreds) 14221 addPredicate(*P); 14222 14223 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 14224 return New; 14225 } 14226 14227 PredicatedScalarEvolution::PredicatedScalarEvolution( 14228 const PredicatedScalarEvolution &Init) 14229 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), 14230 Preds(std::make_unique<SCEVUnionPredicate>(Init.Preds->getPredicates())), 14231 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 14232 for (auto I : Init.FlagsMap) 14233 FlagsMap.insert(I); 14234 } 14235 14236 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 14237 // For each block. 14238 for (auto *BB : L.getBlocks()) 14239 for (auto &I : *BB) { 14240 if (!SE.isSCEVable(I.getType())) 14241 continue; 14242 14243 auto *Expr = SE.getSCEV(&I); 14244 auto II = RewriteMap.find(Expr); 14245 14246 if (II == RewriteMap.end()) 14247 continue; 14248 14249 // Don't print things that are not interesting. 14250 if (II->second.second == Expr) 14251 continue; 14252 14253 OS.indent(Depth) << "[PSE]" << I << ":\n"; 14254 OS.indent(Depth + 2) << *Expr << "\n"; 14255 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 14256 } 14257 } 14258 14259 // Match the mathematical pattern A - (A / B) * B, where A and B can be 14260 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 14261 // for URem with constant power-of-2 second operands. 14262 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 14263 // 4, A / B becomes X / 8). 14264 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 14265 const SCEV *&RHS) { 14266 // Try to match 'zext (trunc A to iB) to iY', which is used 14267 // for URem with constant power-of-2 second operands. Make sure the size of 14268 // the operand A matches the size of the whole expressions. 14269 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 14270 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 14271 LHS = Trunc->getOperand(); 14272 // Bail out if the type of the LHS is larger than the type of the 14273 // expression for now. 14274 if (getTypeSizeInBits(LHS->getType()) > 14275 getTypeSizeInBits(Expr->getType())) 14276 return false; 14277 if (LHS->getType() != Expr->getType()) 14278 LHS = getZeroExtendExpr(LHS, Expr->getType()); 14279 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 14280 << getTypeSizeInBits(Trunc->getType())); 14281 return true; 14282 } 14283 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 14284 if (Add == nullptr || Add->getNumOperands() != 2) 14285 return false; 14286 14287 const SCEV *A = Add->getOperand(1); 14288 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 14289 14290 if (Mul == nullptr) 14291 return false; 14292 14293 const auto MatchURemWithDivisor = [&](const SCEV *B) { 14294 // (SomeExpr + (-(SomeExpr / B) * B)). 14295 if (Expr == getURemExpr(A, B)) { 14296 LHS = A; 14297 RHS = B; 14298 return true; 14299 } 14300 return false; 14301 }; 14302 14303 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 14304 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 14305 return MatchURemWithDivisor(Mul->getOperand(1)) || 14306 MatchURemWithDivisor(Mul->getOperand(2)); 14307 14308 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 14309 if (Mul->getNumOperands() == 2) 14310 return MatchURemWithDivisor(Mul->getOperand(1)) || 14311 MatchURemWithDivisor(Mul->getOperand(0)) || 14312 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 14313 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 14314 return false; 14315 } 14316 14317 const SCEV * 14318 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 14319 SmallVector<BasicBlock*, 16> ExitingBlocks; 14320 L->getExitingBlocks(ExitingBlocks); 14321 14322 // Form an expression for the maximum exit count possible for this loop. We 14323 // merge the max and exact information to approximate a version of 14324 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 14325 SmallVector<const SCEV*, 4> ExitCounts; 14326 for (BasicBlock *ExitingBB : ExitingBlocks) { 14327 const SCEV *ExitCount = getExitCount(L, ExitingBB); 14328 if (isa<SCEVCouldNotCompute>(ExitCount)) 14329 ExitCount = getExitCount(L, ExitingBB, 14330 ScalarEvolution::ConstantMaximum); 14331 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 14332 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 14333 "We should only have known counts for exiting blocks that " 14334 "dominate latch!"); 14335 ExitCounts.push_back(ExitCount); 14336 } 14337 } 14338 if (ExitCounts.empty()) 14339 return getCouldNotCompute(); 14340 return getUMinFromMismatchedTypes(ExitCounts); 14341 } 14342 14343 /// A rewriter to replace SCEV expressions in Map with the corresponding entry 14344 /// in the map. It skips AddRecExpr because we cannot guarantee that the 14345 /// replacement is loop invariant in the loop of the AddRec. 14346 /// 14347 /// At the moment only rewriting SCEVUnknown and SCEVZeroExtendExpr is 14348 /// supported. 14349 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 14350 const DenseMap<const SCEV *, const SCEV *> ⤅ 14351 14352 public: 14353 SCEVLoopGuardRewriter(ScalarEvolution &SE, 14354 DenseMap<const SCEV *, const SCEV *> &M) 14355 : SCEVRewriteVisitor(SE), Map(M) {} 14356 14357 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 14358 14359 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 14360 auto I = Map.find(Expr); 14361 if (I == Map.end()) 14362 return Expr; 14363 return I->second; 14364 } 14365 14366 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 14367 auto I = Map.find(Expr); 14368 if (I == Map.end()) 14369 return SCEVRewriteVisitor<SCEVLoopGuardRewriter>::visitZeroExtendExpr( 14370 Expr); 14371 return I->second; 14372 } 14373 }; 14374 14375 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 14376 SmallVector<const SCEV *> ExprsToRewrite; 14377 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 14378 const SCEV *RHS, 14379 DenseMap<const SCEV *, const SCEV *> 14380 &RewriteMap) { 14381 // WARNING: It is generally unsound to apply any wrap flags to the proposed 14382 // replacement SCEV which isn't directly implied by the structure of that 14383 // SCEV. In particular, using contextual facts to imply flags is *NOT* 14384 // legal. See the scoping rules for flags in the header to understand why. 14385 14386 // If LHS is a constant, apply information to the other expression. 14387 if (isa<SCEVConstant>(LHS)) { 14388 std::swap(LHS, RHS); 14389 Predicate = CmpInst::getSwappedPredicate(Predicate); 14390 } 14391 14392 // Check for a condition of the form (-C1 + X < C2). InstCombine will 14393 // create this form when combining two checks of the form (X u< C2 + C1) and 14394 // (X >=u C1). 14395 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap, 14396 &ExprsToRewrite]() { 14397 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 14398 if (!AddExpr || AddExpr->getNumOperands() != 2) 14399 return false; 14400 14401 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 14402 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 14403 auto *C2 = dyn_cast<SCEVConstant>(RHS); 14404 if (!C1 || !C2 || !LHSUnknown) 14405 return false; 14406 14407 auto ExactRegion = 14408 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 14409 .sub(C1->getAPInt()); 14410 14411 // Bail out, unless we have a non-wrapping, monotonic range. 14412 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 14413 return false; 14414 auto I = RewriteMap.find(LHSUnknown); 14415 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 14416 RewriteMap[LHSUnknown] = getUMaxExpr( 14417 getConstant(ExactRegion.getUnsignedMin()), 14418 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 14419 ExprsToRewrite.push_back(LHSUnknown); 14420 return true; 14421 }; 14422 if (MatchRangeCheckIdiom()) 14423 return; 14424 14425 // If we have LHS == 0, check if LHS is computing a property of some unknown 14426 // SCEV %v which we can rewrite %v to express explicitly. 14427 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 14428 if (Predicate == CmpInst::ICMP_EQ && RHSC && 14429 RHSC->getValue()->isNullValue()) { 14430 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 14431 // explicitly express that. 14432 const SCEV *URemLHS = nullptr; 14433 const SCEV *URemRHS = nullptr; 14434 if (matchURem(LHS, URemLHS, URemRHS)) { 14435 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 14436 auto Multiple = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 14437 RewriteMap[LHSUnknown] = Multiple; 14438 ExprsToRewrite.push_back(LHSUnknown); 14439 return; 14440 } 14441 } 14442 } 14443 14444 // Do not apply information for constants or if RHS contains an AddRec. 14445 if (isa<SCEVConstant>(LHS) || containsAddRecurrence(RHS)) 14446 return; 14447 14448 // If RHS is SCEVUnknown, make sure the information is applied to it. 14449 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 14450 std::swap(LHS, RHS); 14451 Predicate = CmpInst::getSwappedPredicate(Predicate); 14452 } 14453 14454 // Limit to expressions that can be rewritten. 14455 if (!isa<SCEVUnknown>(LHS) && !isa<SCEVZeroExtendExpr>(LHS)) 14456 return; 14457 14458 // Check whether LHS has already been rewritten. In that case we want to 14459 // chain further rewrites onto the already rewritten value. 14460 auto I = RewriteMap.find(LHS); 14461 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 14462 14463 const SCEV *RewrittenRHS = nullptr; 14464 switch (Predicate) { 14465 case CmpInst::ICMP_ULT: 14466 RewrittenRHS = 14467 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14468 break; 14469 case CmpInst::ICMP_SLT: 14470 RewrittenRHS = 14471 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 14472 break; 14473 case CmpInst::ICMP_ULE: 14474 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 14475 break; 14476 case CmpInst::ICMP_SLE: 14477 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 14478 break; 14479 case CmpInst::ICMP_UGT: 14480 RewrittenRHS = 14481 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14482 break; 14483 case CmpInst::ICMP_SGT: 14484 RewrittenRHS = 14485 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 14486 break; 14487 case CmpInst::ICMP_UGE: 14488 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 14489 break; 14490 case CmpInst::ICMP_SGE: 14491 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 14492 break; 14493 case CmpInst::ICMP_EQ: 14494 if (isa<SCEVConstant>(RHS)) 14495 RewrittenRHS = RHS; 14496 break; 14497 case CmpInst::ICMP_NE: 14498 if (isa<SCEVConstant>(RHS) && 14499 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 14500 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 14501 break; 14502 default: 14503 break; 14504 } 14505 14506 if (RewrittenRHS) { 14507 RewriteMap[LHS] = RewrittenRHS; 14508 if (LHS == RewrittenLHS) 14509 ExprsToRewrite.push_back(LHS); 14510 } 14511 }; 14512 14513 SmallVector<std::pair<Value *, bool>> Terms; 14514 // First, collect information from assumptions dominating the loop. 14515 for (auto &AssumeVH : AC.assumptions()) { 14516 if (!AssumeVH) 14517 continue; 14518 auto *AssumeI = cast<CallInst>(AssumeVH); 14519 if (!DT.dominates(AssumeI, L->getHeader())) 14520 continue; 14521 Terms.emplace_back(AssumeI->getOperand(0), true); 14522 } 14523 14524 // Second, collect conditions from dominating branches. Starting at the loop 14525 // predecessor, climb up the predecessor chain, as long as there are 14526 // predecessors that can be found that have unique successors leading to the 14527 // original header. 14528 // TODO: share this logic with isLoopEntryGuardedByCond. 14529 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 14530 L->getLoopPredecessor(), L->getHeader()); 14531 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 14532 14533 const BranchInst *LoopEntryPredicate = 14534 dyn_cast<BranchInst>(Pair.first->getTerminator()); 14535 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 14536 continue; 14537 14538 Terms.emplace_back(LoopEntryPredicate->getCondition(), 14539 LoopEntryPredicate->getSuccessor(0) == Pair.second); 14540 } 14541 14542 // Now apply the information from the collected conditions to RewriteMap. 14543 // Conditions are processed in reverse order, so the earliest conditions is 14544 // processed first. This ensures the SCEVs with the shortest dependency chains 14545 // are constructed first. 14546 DenseMap<const SCEV *, const SCEV *> RewriteMap; 14547 for (auto &E : reverse(Terms)) { 14548 bool EnterIfTrue = E.second; 14549 SmallVector<Value *, 8> Worklist; 14550 SmallPtrSet<Value *, 8> Visited; 14551 Worklist.push_back(E.first); 14552 while (!Worklist.empty()) { 14553 Value *Cond = Worklist.pop_back_val(); 14554 if (!Visited.insert(Cond).second) 14555 continue; 14556 14557 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 14558 auto Predicate = 14559 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 14560 const auto *LHS = getSCEV(Cmp->getOperand(0)); 14561 const auto *RHS = getSCEV(Cmp->getOperand(1)); 14562 CollectCondition(Predicate, LHS, RHS, RewriteMap); 14563 continue; 14564 } 14565 14566 Value *L, *R; 14567 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 14568 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 14569 Worklist.push_back(L); 14570 Worklist.push_back(R); 14571 } 14572 } 14573 } 14574 14575 if (RewriteMap.empty()) 14576 return Expr; 14577 14578 // Now that all rewrite information is collect, rewrite the collected 14579 // expressions with the information in the map. This applies information to 14580 // sub-expressions. 14581 if (ExprsToRewrite.size() > 1) { 14582 for (const SCEV *Expr : ExprsToRewrite) { 14583 const SCEV *RewriteTo = RewriteMap[Expr]; 14584 RewriteMap.erase(Expr); 14585 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14586 RewriteMap.insert({Expr, Rewriter.visit(RewriteTo)}); 14587 } 14588 } 14589 14590 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 14591 return Rewriter.visit(Expr); 14592 } 14593