1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 139 #define DEBUG_TYPE "scalar-evolution" 140 141 STATISTIC(NumArrayLenItCounts, 142 "Number of trip counts computed with array length"); 143 STATISTIC(NumTripCountsComputed, 144 "Number of loops with predictable loop counts"); 145 STATISTIC(NumTripCountsNotComputed, 146 "Number of loops without predictable loop counts"); 147 STATISTIC(NumBruteForceTripCountsComputed, 148 "Number of loops with trip counts computed by force"); 149 150 static cl::opt<unsigned> 151 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 152 cl::ZeroOrMore, 153 cl::desc("Maximum number of iterations SCEV will " 154 "symbolically execute a constant " 155 "derived loop"), 156 cl::init(100)); 157 158 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 159 static cl::opt<bool> VerifySCEV( 160 "verify-scev", cl::Hidden, 161 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 162 static cl::opt<bool> VerifySCEVStrict( 163 "verify-scev-strict", cl::Hidden, 164 cl::desc("Enable stricter verification with -verify-scev is passed")); 165 static cl::opt<bool> 166 VerifySCEVMap("verify-scev-maps", cl::Hidden, 167 cl::desc("Verify no dangling value in ScalarEvolution's " 168 "ExprValueMap (slow)")); 169 170 static cl::opt<bool> VerifyIR( 171 "scev-verify-ir", cl::Hidden, 172 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 173 cl::init(false)); 174 175 static cl::opt<unsigned> MulOpsInlineThreshold( 176 "scev-mulops-inline-threshold", cl::Hidden, 177 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 178 cl::init(32)); 179 180 static cl::opt<unsigned> AddOpsInlineThreshold( 181 "scev-addops-inline-threshold", cl::Hidden, 182 cl::desc("Threshold for inlining addition operands into a SCEV"), 183 cl::init(500)); 184 185 static cl::opt<unsigned> MaxSCEVCompareDepth( 186 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 187 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 188 cl::init(32)); 189 190 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 191 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 192 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 193 cl::init(2)); 194 195 static cl::opt<unsigned> MaxValueCompareDepth( 196 "scalar-evolution-max-value-compare-depth", cl::Hidden, 197 cl::desc("Maximum depth of recursive value complexity comparisons"), 198 cl::init(2)); 199 200 static cl::opt<unsigned> 201 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 202 cl::desc("Maximum depth of recursive arithmetics"), 203 cl::init(32)); 204 205 static cl::opt<unsigned> MaxConstantEvolvingDepth( 206 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 207 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 208 209 static cl::opt<unsigned> 210 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 211 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 212 cl::init(8)); 213 214 static cl::opt<unsigned> 215 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 216 cl::desc("Max coefficients in AddRec during evolving"), 217 cl::init(8)); 218 219 static cl::opt<unsigned> 220 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 221 cl::desc("Size of the expression which is considered huge"), 222 cl::init(4096)); 223 224 static cl::opt<bool> 225 ClassifyExpressions("scalar-evolution-classify-expressions", 226 cl::Hidden, cl::init(true), 227 cl::desc("When printing analysis, include information on every instruction")); 228 229 230 //===----------------------------------------------------------------------===// 231 // SCEV class definitions 232 //===----------------------------------------------------------------------===// 233 234 //===----------------------------------------------------------------------===// 235 // Implementation of the SCEV class. 236 // 237 238 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 239 LLVM_DUMP_METHOD void SCEV::dump() const { 240 print(dbgs()); 241 dbgs() << '\n'; 242 } 243 #endif 244 245 void SCEV::print(raw_ostream &OS) const { 246 switch (static_cast<SCEVTypes>(getSCEVType())) { 247 case scConstant: 248 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 249 return; 250 case scTruncate: { 251 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 252 const SCEV *Op = Trunc->getOperand(); 253 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 254 << *Trunc->getType() << ")"; 255 return; 256 } 257 case scZeroExtend: { 258 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 259 const SCEV *Op = ZExt->getOperand(); 260 OS << "(zext " << *Op->getType() << " " << *Op << " to " 261 << *ZExt->getType() << ")"; 262 return; 263 } 264 case scSignExtend: { 265 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 266 const SCEV *Op = SExt->getOperand(); 267 OS << "(sext " << *Op->getType() << " " << *Op << " to " 268 << *SExt->getType() << ")"; 269 return; 270 } 271 case scAddRecExpr: { 272 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 273 OS << "{" << *AR->getOperand(0); 274 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 275 OS << ",+," << *AR->getOperand(i); 276 OS << "}<"; 277 if (AR->hasNoUnsignedWrap()) 278 OS << "nuw><"; 279 if (AR->hasNoSignedWrap()) 280 OS << "nsw><"; 281 if (AR->hasNoSelfWrap() && 282 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 283 OS << "nw><"; 284 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 285 OS << ">"; 286 return; 287 } 288 case scAddExpr: 289 case scMulExpr: 290 case scUMaxExpr: 291 case scSMaxExpr: 292 case scUMinExpr: 293 case scSMinExpr: { 294 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 295 const char *OpStr = nullptr; 296 switch (NAry->getSCEVType()) { 297 case scAddExpr: OpStr = " + "; break; 298 case scMulExpr: OpStr = " * "; break; 299 case scUMaxExpr: OpStr = " umax "; break; 300 case scSMaxExpr: OpStr = " smax "; break; 301 case scUMinExpr: 302 OpStr = " umin "; 303 break; 304 case scSMinExpr: 305 OpStr = " smin "; 306 break; 307 } 308 OS << "("; 309 for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end(); 310 I != E; ++I) { 311 OS << **I; 312 if (std::next(I) != E) 313 OS << OpStr; 314 } 315 OS << ")"; 316 switch (NAry->getSCEVType()) { 317 case scAddExpr: 318 case scMulExpr: 319 if (NAry->hasNoUnsignedWrap()) 320 OS << "<nuw>"; 321 if (NAry->hasNoSignedWrap()) 322 OS << "<nsw>"; 323 } 324 return; 325 } 326 case scUDivExpr: { 327 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 328 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 329 return; 330 } 331 case scUnknown: { 332 const SCEVUnknown *U = cast<SCEVUnknown>(this); 333 Type *AllocTy; 334 if (U->isSizeOf(AllocTy)) { 335 OS << "sizeof(" << *AllocTy << ")"; 336 return; 337 } 338 if (U->isAlignOf(AllocTy)) { 339 OS << "alignof(" << *AllocTy << ")"; 340 return; 341 } 342 343 Type *CTy; 344 Constant *FieldNo; 345 if (U->isOffsetOf(CTy, FieldNo)) { 346 OS << "offsetof(" << *CTy << ", "; 347 FieldNo->printAsOperand(OS, false); 348 OS << ")"; 349 return; 350 } 351 352 // Otherwise just print it normally. 353 U->getValue()->printAsOperand(OS, false); 354 return; 355 } 356 case scCouldNotCompute: 357 OS << "***COULDNOTCOMPUTE***"; 358 return; 359 } 360 llvm_unreachable("Unknown SCEV kind!"); 361 } 362 363 Type *SCEV::getType() const { 364 switch (static_cast<SCEVTypes>(getSCEVType())) { 365 case scConstant: 366 return cast<SCEVConstant>(this)->getType(); 367 case scTruncate: 368 case scZeroExtend: 369 case scSignExtend: 370 return cast<SCEVCastExpr>(this)->getType(); 371 case scAddRecExpr: 372 case scMulExpr: 373 case scUMaxExpr: 374 case scSMaxExpr: 375 case scUMinExpr: 376 case scSMinExpr: 377 return cast<SCEVNAryExpr>(this)->getType(); 378 case scAddExpr: 379 return cast<SCEVAddExpr>(this)->getType(); 380 case scUDivExpr: 381 return cast<SCEVUDivExpr>(this)->getType(); 382 case scUnknown: 383 return cast<SCEVUnknown>(this)->getType(); 384 case scCouldNotCompute: 385 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 386 } 387 llvm_unreachable("Unknown SCEV kind!"); 388 } 389 390 bool SCEV::isZero() const { 391 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 392 return SC->getValue()->isZero(); 393 return false; 394 } 395 396 bool SCEV::isOne() const { 397 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 398 return SC->getValue()->isOne(); 399 return false; 400 } 401 402 bool SCEV::isAllOnesValue() const { 403 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 404 return SC->getValue()->isMinusOne(); 405 return false; 406 } 407 408 bool SCEV::isNonConstantNegative() const { 409 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 410 if (!Mul) return false; 411 412 // If there is a constant factor, it will be first. 413 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 414 if (!SC) return false; 415 416 // Return true if the value is negative, this matches things like (-42 * V). 417 return SC->getAPInt().isNegative(); 418 } 419 420 SCEVCouldNotCompute::SCEVCouldNotCompute() : 421 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 422 423 bool SCEVCouldNotCompute::classof(const SCEV *S) { 424 return S->getSCEVType() == scCouldNotCompute; 425 } 426 427 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 428 FoldingSetNodeID ID; 429 ID.AddInteger(scConstant); 430 ID.AddPointer(V); 431 void *IP = nullptr; 432 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 433 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 434 UniqueSCEVs.InsertNode(S, IP); 435 return S; 436 } 437 438 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 439 return getConstant(ConstantInt::get(getContext(), Val)); 440 } 441 442 const SCEV * 443 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 444 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 445 return getConstant(ConstantInt::get(ITy, V, isSigned)); 446 } 447 448 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, 449 unsigned SCEVTy, const SCEV *op, Type *ty) 450 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Op(op), Ty(ty) {} 451 452 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, 453 const SCEV *op, Type *ty) 454 : SCEVCastExpr(ID, scTruncate, op, ty) { 455 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 456 "Cannot truncate non-integer value!"); 457 } 458 459 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 460 const SCEV *op, Type *ty) 461 : SCEVCastExpr(ID, scZeroExtend, op, ty) { 462 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 463 "Cannot zero extend non-integer value!"); 464 } 465 466 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 467 const SCEV *op, Type *ty) 468 : SCEVCastExpr(ID, scSignExtend, op, ty) { 469 assert(Op->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 470 "Cannot sign extend non-integer value!"); 471 } 472 473 void SCEVUnknown::deleted() { 474 // Clear this SCEVUnknown from various maps. 475 SE->forgetMemoizedResults(this); 476 477 // Remove this SCEVUnknown from the uniquing map. 478 SE->UniqueSCEVs.RemoveNode(this); 479 480 // Release the value. 481 setValPtr(nullptr); 482 } 483 484 void SCEVUnknown::allUsesReplacedWith(Value *New) { 485 // Remove this SCEVUnknown from the uniquing map. 486 SE->UniqueSCEVs.RemoveNode(this); 487 488 // Update this SCEVUnknown to point to the new value. This is needed 489 // because there may still be outstanding SCEVs which still point to 490 // this SCEVUnknown. 491 setValPtr(New); 492 } 493 494 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 495 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 496 if (VCE->getOpcode() == Instruction::PtrToInt) 497 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 498 if (CE->getOpcode() == Instruction::GetElementPtr && 499 CE->getOperand(0)->isNullValue() && 500 CE->getNumOperands() == 2) 501 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 502 if (CI->isOne()) { 503 AllocTy = cast<PointerType>(CE->getOperand(0)->getType()) 504 ->getElementType(); 505 return true; 506 } 507 508 return false; 509 } 510 511 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 512 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 513 if (VCE->getOpcode() == Instruction::PtrToInt) 514 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 515 if (CE->getOpcode() == Instruction::GetElementPtr && 516 CE->getOperand(0)->isNullValue()) { 517 Type *Ty = 518 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 519 if (StructType *STy = dyn_cast<StructType>(Ty)) 520 if (!STy->isPacked() && 521 CE->getNumOperands() == 3 && 522 CE->getOperand(1)->isNullValue()) { 523 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 524 if (CI->isOne() && 525 STy->getNumElements() == 2 && 526 STy->getElementType(0)->isIntegerTy(1)) { 527 AllocTy = STy->getElementType(1); 528 return true; 529 } 530 } 531 } 532 533 return false; 534 } 535 536 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 537 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 538 if (VCE->getOpcode() == Instruction::PtrToInt) 539 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 540 if (CE->getOpcode() == Instruction::GetElementPtr && 541 CE->getNumOperands() == 3 && 542 CE->getOperand(0)->isNullValue() && 543 CE->getOperand(1)->isNullValue()) { 544 Type *Ty = 545 cast<PointerType>(CE->getOperand(0)->getType())->getElementType(); 546 // Ignore vector types here so that ScalarEvolutionExpander doesn't 547 // emit getelementptrs that index into vectors. 548 if (Ty->isStructTy() || Ty->isArrayTy()) { 549 CTy = Ty; 550 FieldNo = CE->getOperand(2); 551 return true; 552 } 553 } 554 555 return false; 556 } 557 558 //===----------------------------------------------------------------------===// 559 // SCEV Utilities 560 //===----------------------------------------------------------------------===// 561 562 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 563 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 564 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 565 /// have been previously deemed to be "equally complex" by this routine. It is 566 /// intended to avoid exponential time complexity in cases like: 567 /// 568 /// %a = f(%x, %y) 569 /// %b = f(%a, %a) 570 /// %c = f(%b, %b) 571 /// 572 /// %d = f(%x, %y) 573 /// %e = f(%d, %d) 574 /// %f = f(%e, %e) 575 /// 576 /// CompareValueComplexity(%f, %c) 577 /// 578 /// Since we do not continue running this routine on expression trees once we 579 /// have seen unequal values, there is no need to track them in the cache. 580 static int 581 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 582 const LoopInfo *const LI, Value *LV, Value *RV, 583 unsigned Depth) { 584 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 585 return 0; 586 587 // Order pointer values after integer values. This helps SCEVExpander form 588 // GEPs. 589 bool LIsPointer = LV->getType()->isPointerTy(), 590 RIsPointer = RV->getType()->isPointerTy(); 591 if (LIsPointer != RIsPointer) 592 return (int)LIsPointer - (int)RIsPointer; 593 594 // Compare getValueID values. 595 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 596 if (LID != RID) 597 return (int)LID - (int)RID; 598 599 // Sort arguments by their position. 600 if (const auto *LA = dyn_cast<Argument>(LV)) { 601 const auto *RA = cast<Argument>(RV); 602 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 603 return (int)LArgNo - (int)RArgNo; 604 } 605 606 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 607 const auto *RGV = cast<GlobalValue>(RV); 608 609 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 610 auto LT = GV->getLinkage(); 611 return !(GlobalValue::isPrivateLinkage(LT) || 612 GlobalValue::isInternalLinkage(LT)); 613 }; 614 615 // Use the names to distinguish the two values, but only if the 616 // names are semantically important. 617 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 618 return LGV->getName().compare(RGV->getName()); 619 } 620 621 // For instructions, compare their loop depth, and their operand count. This 622 // is pretty loose. 623 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 624 const auto *RInst = cast<Instruction>(RV); 625 626 // Compare loop depths. 627 const BasicBlock *LParent = LInst->getParent(), 628 *RParent = RInst->getParent(); 629 if (LParent != RParent) { 630 unsigned LDepth = LI->getLoopDepth(LParent), 631 RDepth = LI->getLoopDepth(RParent); 632 if (LDepth != RDepth) 633 return (int)LDepth - (int)RDepth; 634 } 635 636 // Compare the number of operands. 637 unsigned LNumOps = LInst->getNumOperands(), 638 RNumOps = RInst->getNumOperands(); 639 if (LNumOps != RNumOps) 640 return (int)LNumOps - (int)RNumOps; 641 642 for (unsigned Idx : seq(0u, LNumOps)) { 643 int Result = 644 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 645 RInst->getOperand(Idx), Depth + 1); 646 if (Result != 0) 647 return Result; 648 } 649 } 650 651 EqCacheValue.unionSets(LV, RV); 652 return 0; 653 } 654 655 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 656 // than RHS, respectively. A three-way result allows recursive comparisons to be 657 // more efficient. 658 static int CompareSCEVComplexity( 659 EquivalenceClasses<const SCEV *> &EqCacheSCEV, 660 EquivalenceClasses<const Value *> &EqCacheValue, 661 const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS, 662 DominatorTree &DT, unsigned Depth = 0) { 663 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 664 if (LHS == RHS) 665 return 0; 666 667 // Primarily, sort the SCEVs by their getSCEVType(). 668 unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 669 if (LType != RType) 670 return (int)LType - (int)RType; 671 672 if (Depth > MaxSCEVCompareDepth || EqCacheSCEV.isEquivalent(LHS, RHS)) 673 return 0; 674 // Aside from the getSCEVType() ordering, the particular ordering 675 // isn't very important except that it's beneficial to be consistent, 676 // so that (a + b) and (b + a) don't end up as different expressions. 677 switch (static_cast<SCEVTypes>(LType)) { 678 case scUnknown: { 679 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 680 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 681 682 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 683 RU->getValue(), Depth + 1); 684 if (X == 0) 685 EqCacheSCEV.unionSets(LHS, RHS); 686 return X; 687 } 688 689 case scConstant: { 690 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 691 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 692 693 // Compare constant values. 694 const APInt &LA = LC->getAPInt(); 695 const APInt &RA = RC->getAPInt(); 696 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 697 if (LBitWidth != RBitWidth) 698 return (int)LBitWidth - (int)RBitWidth; 699 return LA.ult(RA) ? -1 : 1; 700 } 701 702 case scAddRecExpr: { 703 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 704 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 705 706 // There is always a dominance between two recs that are used by one SCEV, 707 // so we can safely sort recs by loop header dominance. We require such 708 // order in getAddExpr. 709 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 710 if (LLoop != RLoop) { 711 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 712 assert(LHead != RHead && "Two loops share the same header?"); 713 if (DT.dominates(LHead, RHead)) 714 return 1; 715 else 716 assert(DT.dominates(RHead, LHead) && 717 "No dominance between recurrences used by one SCEV?"); 718 return -1; 719 } 720 721 // Addrec complexity grows with operand count. 722 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 723 if (LNumOps != RNumOps) 724 return (int)LNumOps - (int)RNumOps; 725 726 // Lexicographically compare. 727 for (unsigned i = 0; i != LNumOps; ++i) { 728 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 729 LA->getOperand(i), RA->getOperand(i), DT, 730 Depth + 1); 731 if (X != 0) 732 return X; 733 } 734 EqCacheSCEV.unionSets(LHS, RHS); 735 return 0; 736 } 737 738 case scAddExpr: 739 case scMulExpr: 740 case scSMaxExpr: 741 case scUMaxExpr: 742 case scSMinExpr: 743 case scUMinExpr: { 744 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 745 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 746 747 // Lexicographically compare n-ary expressions. 748 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 749 if (LNumOps != RNumOps) 750 return (int)LNumOps - (int)RNumOps; 751 752 for (unsigned i = 0; i != LNumOps; ++i) { 753 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 754 LC->getOperand(i), RC->getOperand(i), DT, 755 Depth + 1); 756 if (X != 0) 757 return X; 758 } 759 EqCacheSCEV.unionSets(LHS, RHS); 760 return 0; 761 } 762 763 case scUDivExpr: { 764 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 765 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 766 767 // Lexicographically compare udiv expressions. 768 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 769 RC->getLHS(), DT, Depth + 1); 770 if (X != 0) 771 return X; 772 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 773 RC->getRHS(), DT, Depth + 1); 774 if (X == 0) 775 EqCacheSCEV.unionSets(LHS, RHS); 776 return X; 777 } 778 779 case scTruncate: 780 case scZeroExtend: 781 case scSignExtend: { 782 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 783 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 784 785 // Compare cast expressions by operand. 786 int X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 787 LC->getOperand(), RC->getOperand(), DT, 788 Depth + 1); 789 if (X == 0) 790 EqCacheSCEV.unionSets(LHS, RHS); 791 return X; 792 } 793 794 case scCouldNotCompute: 795 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 796 } 797 llvm_unreachable("Unknown SCEV kind!"); 798 } 799 800 /// Given a list of SCEV objects, order them by their complexity, and group 801 /// objects of the same complexity together by value. When this routine is 802 /// finished, we know that any duplicates in the vector are consecutive and that 803 /// complexity is monotonically increasing. 804 /// 805 /// Note that we go take special precautions to ensure that we get deterministic 806 /// results from this routine. In other words, we don't want the results of 807 /// this to depend on where the addresses of various SCEV objects happened to 808 /// land in memory. 809 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 810 LoopInfo *LI, DominatorTree &DT) { 811 if (Ops.size() < 2) return; // Noop 812 813 EquivalenceClasses<const SCEV *> EqCacheSCEV; 814 EquivalenceClasses<const Value *> EqCacheValue; 815 if (Ops.size() == 2) { 816 // This is the common case, which also happens to be trivially simple. 817 // Special case it. 818 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 819 if (CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, RHS, LHS, DT) < 0) 820 std::swap(LHS, RHS); 821 return; 822 } 823 824 // Do the rough sort by complexity. 825 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 826 return CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT) < 827 0; 828 }); 829 830 // Now that we are sorted by complexity, group elements of the same 831 // complexity. Note that this is, at worst, N^2, but the vector is likely to 832 // be extremely short in practice. Note that we take this approach because we 833 // do not want to depend on the addresses of the objects we are grouping. 834 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 835 const SCEV *S = Ops[i]; 836 unsigned Complexity = S->getSCEVType(); 837 838 // If there are any objects of the same complexity and same value as this 839 // one, group them. 840 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 841 if (Ops[j] == S) { // Found a duplicate. 842 // Move it to immediately after i'th element. 843 std::swap(Ops[i+1], Ops[j]); 844 ++i; // no need to rescan it. 845 if (i == e-2) return; // Done! 846 } 847 } 848 } 849 } 850 851 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 852 /// least HugeExprThreshold nodes). 853 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 854 return any_of(Ops, [](const SCEV *S) { 855 return S->getExpressionSize() >= HugeExprThreshold; 856 }); 857 } 858 859 //===----------------------------------------------------------------------===// 860 // Simple SCEV method implementations 861 //===----------------------------------------------------------------------===// 862 863 /// Compute BC(It, K). The result has width W. Assume, K > 0. 864 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 865 ScalarEvolution &SE, 866 Type *ResultTy) { 867 // Handle the simplest case efficiently. 868 if (K == 1) 869 return SE.getTruncateOrZeroExtend(It, ResultTy); 870 871 // We are using the following formula for BC(It, K): 872 // 873 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 874 // 875 // Suppose, W is the bitwidth of the return value. We must be prepared for 876 // overflow. Hence, we must assure that the result of our computation is 877 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 878 // safe in modular arithmetic. 879 // 880 // However, this code doesn't use exactly that formula; the formula it uses 881 // is something like the following, where T is the number of factors of 2 in 882 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 883 // exponentiation: 884 // 885 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 886 // 887 // This formula is trivially equivalent to the previous formula. However, 888 // this formula can be implemented much more efficiently. The trick is that 889 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 890 // arithmetic. To do exact division in modular arithmetic, all we have 891 // to do is multiply by the inverse. Therefore, this step can be done at 892 // width W. 893 // 894 // The next issue is how to safely do the division by 2^T. The way this 895 // is done is by doing the multiplication step at a width of at least W + T 896 // bits. This way, the bottom W+T bits of the product are accurate. Then, 897 // when we perform the division by 2^T (which is equivalent to a right shift 898 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 899 // truncated out after the division by 2^T. 900 // 901 // In comparison to just directly using the first formula, this technique 902 // is much more efficient; using the first formula requires W * K bits, 903 // but this formula less than W + K bits. Also, the first formula requires 904 // a division step, whereas this formula only requires multiplies and shifts. 905 // 906 // It doesn't matter whether the subtraction step is done in the calculation 907 // width or the input iteration count's width; if the subtraction overflows, 908 // the result must be zero anyway. We prefer here to do it in the width of 909 // the induction variable because it helps a lot for certain cases; CodeGen 910 // isn't smart enough to ignore the overflow, which leads to much less 911 // efficient code if the width of the subtraction is wider than the native 912 // register width. 913 // 914 // (It's possible to not widen at all by pulling out factors of 2 before 915 // the multiplication; for example, K=2 can be calculated as 916 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 917 // extra arithmetic, so it's not an obvious win, and it gets 918 // much more complicated for K > 3.) 919 920 // Protection from insane SCEVs; this bound is conservative, 921 // but it probably doesn't matter. 922 if (K > 1000) 923 return SE.getCouldNotCompute(); 924 925 unsigned W = SE.getTypeSizeInBits(ResultTy); 926 927 // Calculate K! / 2^T and T; we divide out the factors of two before 928 // multiplying for calculating K! / 2^T to avoid overflow. 929 // Other overflow doesn't matter because we only care about the bottom 930 // W bits of the result. 931 APInt OddFactorial(W, 1); 932 unsigned T = 1; 933 for (unsigned i = 3; i <= K; ++i) { 934 APInt Mult(W, i); 935 unsigned TwoFactors = Mult.countTrailingZeros(); 936 T += TwoFactors; 937 Mult.lshrInPlace(TwoFactors); 938 OddFactorial *= Mult; 939 } 940 941 // We need at least W + T bits for the multiplication step 942 unsigned CalculationBits = W + T; 943 944 // Calculate 2^T, at width T+W. 945 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 946 947 // Calculate the multiplicative inverse of K! / 2^T; 948 // this multiplication factor will perform the exact division by 949 // K! / 2^T. 950 APInt Mod = APInt::getSignedMinValue(W+1); 951 APInt MultiplyFactor = OddFactorial.zext(W+1); 952 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 953 MultiplyFactor = MultiplyFactor.trunc(W); 954 955 // Calculate the product, at width T+W 956 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 957 CalculationBits); 958 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 959 for (unsigned i = 1; i != K; ++i) { 960 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 961 Dividend = SE.getMulExpr(Dividend, 962 SE.getTruncateOrZeroExtend(S, CalculationTy)); 963 } 964 965 // Divide by 2^T 966 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 967 968 // Truncate the result, and divide by K! / 2^T. 969 970 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 971 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 972 } 973 974 /// Return the value of this chain of recurrences at the specified iteration 975 /// number. We can evaluate this recurrence by multiplying each element in the 976 /// chain by the binomial coefficient corresponding to it. In other words, we 977 /// can evaluate {A,+,B,+,C,+,D} as: 978 /// 979 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 980 /// 981 /// where BC(It, k) stands for binomial coefficient. 982 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 983 ScalarEvolution &SE) const { 984 const SCEV *Result = getStart(); 985 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) { 986 // The computation is correct in the face of overflow provided that the 987 // multiplication is performed _after_ the evaluation of the binomial 988 // coefficient. 989 const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType()); 990 if (isa<SCEVCouldNotCompute>(Coeff)) 991 return Coeff; 992 993 Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff)); 994 } 995 return Result; 996 } 997 998 //===----------------------------------------------------------------------===// 999 // SCEV Expression folder implementations 1000 //===----------------------------------------------------------------------===// 1001 1002 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1003 unsigned Depth) { 1004 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1005 "This is not a truncating conversion!"); 1006 assert(isSCEVable(Ty) && 1007 "This is not a conversion to a SCEVable type!"); 1008 Ty = getEffectiveSCEVType(Ty); 1009 1010 FoldingSetNodeID ID; 1011 ID.AddInteger(scTruncate); 1012 ID.AddPointer(Op); 1013 ID.AddPointer(Ty); 1014 void *IP = nullptr; 1015 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1016 1017 // Fold if the operand is constant. 1018 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1019 return getConstant( 1020 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1021 1022 // trunc(trunc(x)) --> trunc(x) 1023 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1024 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1025 1026 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1027 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1028 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1029 1030 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1031 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1032 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1033 1034 if (Depth > MaxCastDepth) { 1035 SCEV *S = 1036 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1037 UniqueSCEVs.InsertNode(S, IP); 1038 addToLoopUseLists(S); 1039 return S; 1040 } 1041 1042 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1043 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1044 // if after transforming we have at most one truncate, not counting truncates 1045 // that replace other casts. 1046 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1047 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1048 SmallVector<const SCEV *, 4> Operands; 1049 unsigned numTruncs = 0; 1050 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1051 ++i) { 1052 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1053 if (!isa<SCEVCastExpr>(CommOp->getOperand(i)) && isa<SCEVTruncateExpr>(S)) 1054 numTruncs++; 1055 Operands.push_back(S); 1056 } 1057 if (numTruncs < 2) { 1058 if (isa<SCEVAddExpr>(Op)) 1059 return getAddExpr(Operands); 1060 else if (isa<SCEVMulExpr>(Op)) 1061 return getMulExpr(Operands); 1062 else 1063 llvm_unreachable("Unexpected SCEV type for Op."); 1064 } 1065 // Although we checked in the beginning that ID is not in the cache, it is 1066 // possible that during recursion and different modification ID was inserted 1067 // into the cache. So if we find it, just return it. 1068 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1069 return S; 1070 } 1071 1072 // If the input value is a chrec scev, truncate the chrec's operands. 1073 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1074 SmallVector<const SCEV *, 4> Operands; 1075 for (const SCEV *Op : AddRec->operands()) 1076 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1077 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1078 } 1079 1080 // The cast wasn't folded; create an explicit cast node. We can reuse 1081 // the existing insert position since if we get here, we won't have 1082 // made any changes which would invalidate it. 1083 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1084 Op, Ty); 1085 UniqueSCEVs.InsertNode(S, IP); 1086 addToLoopUseLists(S); 1087 return S; 1088 } 1089 1090 // Get the limit of a recurrence such that incrementing by Step cannot cause 1091 // signed overflow as long as the value of the recurrence within the 1092 // loop does not exceed this limit before incrementing. 1093 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1094 ICmpInst::Predicate *Pred, 1095 ScalarEvolution *SE) { 1096 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1097 if (SE->isKnownPositive(Step)) { 1098 *Pred = ICmpInst::ICMP_SLT; 1099 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1100 SE->getSignedRangeMax(Step)); 1101 } 1102 if (SE->isKnownNegative(Step)) { 1103 *Pred = ICmpInst::ICMP_SGT; 1104 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1105 SE->getSignedRangeMin(Step)); 1106 } 1107 return nullptr; 1108 } 1109 1110 // Get the limit of a recurrence such that incrementing by Step cannot cause 1111 // unsigned overflow as long as the value of the recurrence within the loop does 1112 // not exceed this limit before incrementing. 1113 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1114 ICmpInst::Predicate *Pred, 1115 ScalarEvolution *SE) { 1116 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1117 *Pred = ICmpInst::ICMP_ULT; 1118 1119 return SE->getConstant(APInt::getMinValue(BitWidth) - 1120 SE->getUnsignedRangeMax(Step)); 1121 } 1122 1123 namespace { 1124 1125 struct ExtendOpTraitsBase { 1126 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1127 unsigned); 1128 }; 1129 1130 // Used to make code generic over signed and unsigned overflow. 1131 template <typename ExtendOp> struct ExtendOpTraits { 1132 // Members present: 1133 // 1134 // static const SCEV::NoWrapFlags WrapType; 1135 // 1136 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1137 // 1138 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1139 // ICmpInst::Predicate *Pred, 1140 // ScalarEvolution *SE); 1141 }; 1142 1143 template <> 1144 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1145 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1146 1147 static const GetExtendExprTy GetExtendExpr; 1148 1149 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1150 ICmpInst::Predicate *Pred, 1151 ScalarEvolution *SE) { 1152 return getSignedOverflowLimitForStep(Step, Pred, SE); 1153 } 1154 }; 1155 1156 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1157 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1158 1159 template <> 1160 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1161 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1162 1163 static const GetExtendExprTy GetExtendExpr; 1164 1165 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1166 ICmpInst::Predicate *Pred, 1167 ScalarEvolution *SE) { 1168 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1169 } 1170 }; 1171 1172 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1173 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1174 1175 } // end anonymous namespace 1176 1177 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1178 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1179 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1180 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1181 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1182 // expression "Step + sext/zext(PreIncAR)" is congruent with 1183 // "sext/zext(PostIncAR)" 1184 template <typename ExtendOpTy> 1185 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1186 ScalarEvolution *SE, unsigned Depth) { 1187 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1188 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1189 1190 const Loop *L = AR->getLoop(); 1191 const SCEV *Start = AR->getStart(); 1192 const SCEV *Step = AR->getStepRecurrence(*SE); 1193 1194 // Check for a simple looking step prior to loop entry. 1195 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1196 if (!SA) 1197 return nullptr; 1198 1199 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1200 // subtraction is expensive. For this purpose, perform a quick and dirty 1201 // difference, by checking for Step in the operand list. 1202 SmallVector<const SCEV *, 4> DiffOps; 1203 for (const SCEV *Op : SA->operands()) 1204 if (Op != Step) 1205 DiffOps.push_back(Op); 1206 1207 if (DiffOps.size() == SA->getNumOperands()) 1208 return nullptr; 1209 1210 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1211 // `Step`: 1212 1213 // 1. NSW/NUW flags on the step increment. 1214 auto PreStartFlags = 1215 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1216 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1217 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1218 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1219 1220 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1221 // "S+X does not sign/unsign-overflow". 1222 // 1223 1224 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1225 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1226 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1227 return PreStart; 1228 1229 // 2. Direct overflow check on the step operation's expression. 1230 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1231 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1232 const SCEV *OperandExtendedStart = 1233 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1234 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1235 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1236 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1237 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1238 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1239 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1240 const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType); 1241 } 1242 return PreStart; 1243 } 1244 1245 // 3. Loop precondition. 1246 ICmpInst::Predicate Pred; 1247 const SCEV *OverflowLimit = 1248 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1249 1250 if (OverflowLimit && 1251 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1252 return PreStart; 1253 1254 return nullptr; 1255 } 1256 1257 // Get the normalized zero or sign extended expression for this AddRec's Start. 1258 template <typename ExtendOpTy> 1259 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1260 ScalarEvolution *SE, 1261 unsigned Depth) { 1262 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1263 1264 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1265 if (!PreStart) 1266 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1267 1268 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1269 Depth), 1270 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1271 } 1272 1273 // Try to prove away overflow by looking at "nearby" add recurrences. A 1274 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1275 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1276 // 1277 // Formally: 1278 // 1279 // {S,+,X} == {S-T,+,X} + T 1280 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1281 // 1282 // If ({S-T,+,X} + T) does not overflow ... (1) 1283 // 1284 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1285 // 1286 // If {S-T,+,X} does not overflow ... (2) 1287 // 1288 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1289 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1290 // 1291 // If (S-T)+T does not overflow ... (3) 1292 // 1293 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1294 // == {Ext(S),+,Ext(X)} == LHS 1295 // 1296 // Thus, if (1), (2) and (3) are true for some T, then 1297 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1298 // 1299 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1300 // does not overflow" restricted to the 0th iteration. Therefore we only need 1301 // to check for (1) and (2). 1302 // 1303 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1304 // is `Delta` (defined below). 1305 template <typename ExtendOpTy> 1306 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1307 const SCEV *Step, 1308 const Loop *L) { 1309 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1310 1311 // We restrict `Start` to a constant to prevent SCEV from spending too much 1312 // time here. It is correct (but more expensive) to continue with a 1313 // non-constant `Start` and do a general SCEV subtraction to compute 1314 // `PreStart` below. 1315 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1316 if (!StartC) 1317 return false; 1318 1319 APInt StartAI = StartC->getAPInt(); 1320 1321 for (unsigned Delta : {-2, -1, 1, 2}) { 1322 const SCEV *PreStart = getConstant(StartAI - Delta); 1323 1324 FoldingSetNodeID ID; 1325 ID.AddInteger(scAddRecExpr); 1326 ID.AddPointer(PreStart); 1327 ID.AddPointer(Step); 1328 ID.AddPointer(L); 1329 void *IP = nullptr; 1330 const auto *PreAR = 1331 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1332 1333 // Give up if we don't already have the add recurrence we need because 1334 // actually constructing an add recurrence is relatively expensive. 1335 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1336 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1337 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1338 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1339 DeltaS, &Pred, this); 1340 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1341 return true; 1342 } 1343 } 1344 1345 return false; 1346 } 1347 1348 // Finds an integer D for an expression (C + x + y + ...) such that the top 1349 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1350 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1351 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1352 // the (C + x + y + ...) expression is \p WholeAddExpr. 1353 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1354 const SCEVConstant *ConstantTerm, 1355 const SCEVAddExpr *WholeAddExpr) { 1356 const APInt C = ConstantTerm->getAPInt(); 1357 const unsigned BitWidth = C.getBitWidth(); 1358 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1359 uint32_t TZ = BitWidth; 1360 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1361 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1362 if (TZ) { 1363 // Set D to be as many least significant bits of C as possible while still 1364 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1365 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1366 } 1367 return APInt(BitWidth, 0); 1368 } 1369 1370 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1371 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1372 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1373 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1374 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1375 const APInt &ConstantStart, 1376 const SCEV *Step) { 1377 const unsigned BitWidth = ConstantStart.getBitWidth(); 1378 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1379 if (TZ) 1380 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1381 : ConstantStart; 1382 return APInt(BitWidth, 0); 1383 } 1384 1385 const SCEV * 1386 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1387 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1388 "This is not an extending conversion!"); 1389 assert(isSCEVable(Ty) && 1390 "This is not a conversion to a SCEVable type!"); 1391 Ty = getEffectiveSCEVType(Ty); 1392 1393 // Fold if the operand is constant. 1394 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1395 return getConstant( 1396 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1397 1398 // zext(zext(x)) --> zext(x) 1399 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1400 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1401 1402 // Before doing any expensive analysis, check to see if we've already 1403 // computed a SCEV for this Op and Ty. 1404 FoldingSetNodeID ID; 1405 ID.AddInteger(scZeroExtend); 1406 ID.AddPointer(Op); 1407 ID.AddPointer(Ty); 1408 void *IP = nullptr; 1409 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1410 if (Depth > MaxCastDepth) { 1411 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1412 Op, Ty); 1413 UniqueSCEVs.InsertNode(S, IP); 1414 addToLoopUseLists(S); 1415 return S; 1416 } 1417 1418 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1419 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1420 // It's possible the bits taken off by the truncate were all zero bits. If 1421 // so, we should be able to simplify this further. 1422 const SCEV *X = ST->getOperand(); 1423 ConstantRange CR = getUnsignedRange(X); 1424 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1425 unsigned NewBits = getTypeSizeInBits(Ty); 1426 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1427 CR.zextOrTrunc(NewBits))) 1428 return getTruncateOrZeroExtend(X, Ty, Depth); 1429 } 1430 1431 // If the input value is a chrec scev, and we can prove that the value 1432 // did not overflow the old, smaller, value, we can zero extend all of the 1433 // operands (often constants). This allows analysis of something like 1434 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1435 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1436 if (AR->isAffine()) { 1437 const SCEV *Start = AR->getStart(); 1438 const SCEV *Step = AR->getStepRecurrence(*this); 1439 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1440 const Loop *L = AR->getLoop(); 1441 1442 if (!AR->hasNoUnsignedWrap()) { 1443 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1444 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1445 } 1446 1447 // If we have special knowledge that this addrec won't overflow, 1448 // we don't need to do any further analysis. 1449 if (AR->hasNoUnsignedWrap()) 1450 return getAddRecExpr( 1451 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1452 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1453 1454 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1455 // Note that this serves two purposes: It filters out loops that are 1456 // simply not analyzable, and it covers the case where this code is 1457 // being called from within backedge-taken count analysis, such that 1458 // attempting to ask for the backedge-taken count would likely result 1459 // in infinite recursion. In the later case, the analysis code will 1460 // cope with a conservative value, and it will take care to purge 1461 // that value once it has finished. 1462 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1463 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1464 // Manually compute the final value for AR, checking for 1465 // overflow. 1466 1467 // Check whether the backedge-taken count can be losslessly casted to 1468 // the addrec's type. The count is always unsigned. 1469 const SCEV *CastedMaxBECount = 1470 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1471 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1472 CastedMaxBECount, MaxBECount->getType(), Depth); 1473 if (MaxBECount == RecastedMaxBECount) { 1474 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1475 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1476 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1477 SCEV::FlagAnyWrap, Depth + 1); 1478 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1479 SCEV::FlagAnyWrap, 1480 Depth + 1), 1481 WideTy, Depth + 1); 1482 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1483 const SCEV *WideMaxBECount = 1484 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1485 const SCEV *OperandExtendedAdd = 1486 getAddExpr(WideStart, 1487 getMulExpr(WideMaxBECount, 1488 getZeroExtendExpr(Step, WideTy, Depth + 1), 1489 SCEV::FlagAnyWrap, Depth + 1), 1490 SCEV::FlagAnyWrap, Depth + 1); 1491 if (ZAdd == OperandExtendedAdd) { 1492 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1493 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1494 // Return the expression with the addrec on the outside. 1495 return getAddRecExpr( 1496 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1497 Depth + 1), 1498 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1499 AR->getNoWrapFlags()); 1500 } 1501 // Similar to above, only this time treat the step value as signed. 1502 // This covers loops that count down. 1503 OperandExtendedAdd = 1504 getAddExpr(WideStart, 1505 getMulExpr(WideMaxBECount, 1506 getSignExtendExpr(Step, WideTy, Depth + 1), 1507 SCEV::FlagAnyWrap, Depth + 1), 1508 SCEV::FlagAnyWrap, Depth + 1); 1509 if (ZAdd == OperandExtendedAdd) { 1510 // Cache knowledge of AR NW, which is propagated to this AddRec. 1511 // Negative step causes unsigned wrap, but it still can't self-wrap. 1512 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1513 // Return the expression with the addrec on the outside. 1514 return getAddRecExpr( 1515 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1516 Depth + 1), 1517 getSignExtendExpr(Step, Ty, Depth + 1), L, 1518 AR->getNoWrapFlags()); 1519 } 1520 } 1521 } 1522 1523 // Normally, in the cases we can prove no-overflow via a 1524 // backedge guarding condition, we can also compute a backedge 1525 // taken count for the loop. The exceptions are assumptions and 1526 // guards present in the loop -- SCEV is not great at exploiting 1527 // these to compute max backedge taken counts, but can still use 1528 // these to prove lack of overflow. Use this fact to avoid 1529 // doing extra work that may not pay off. 1530 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1531 !AC.assumptions().empty()) { 1532 // If the backedge is guarded by a comparison with the pre-inc 1533 // value the addrec is safe. Also, if the entry is guarded by 1534 // a comparison with the start value and the backedge is 1535 // guarded by a comparison with the post-inc value, the addrec 1536 // is safe. 1537 if (isKnownPositive(Step)) { 1538 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 1539 getUnsignedRangeMax(Step)); 1540 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 1541 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 1542 // Cache knowledge of AR NUW, which is propagated to this 1543 // AddRec. 1544 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1545 // Return the expression with the addrec on the outside. 1546 return getAddRecExpr( 1547 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1548 Depth + 1), 1549 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1550 AR->getNoWrapFlags()); 1551 } 1552 } else if (isKnownNegative(Step)) { 1553 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1554 getSignedRangeMin(Step)); 1555 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1556 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1557 // Cache knowledge of AR NW, which is propagated to this 1558 // AddRec. Negative step causes unsigned wrap, but it 1559 // still can't self-wrap. 1560 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1561 // Return the expression with the addrec on the outside. 1562 return getAddRecExpr( 1563 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1564 Depth + 1), 1565 getSignExtendExpr(Step, Ty, Depth + 1), L, 1566 AR->getNoWrapFlags()); 1567 } 1568 } 1569 } 1570 1571 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1572 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1573 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1574 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1575 const APInt &C = SC->getAPInt(); 1576 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1577 if (D != 0) { 1578 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1579 const SCEV *SResidual = 1580 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1581 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1582 return getAddExpr(SZExtD, SZExtR, 1583 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1584 Depth + 1); 1585 } 1586 } 1587 1588 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1589 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW); 1590 return getAddRecExpr( 1591 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1592 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1593 } 1594 } 1595 1596 // zext(A % B) --> zext(A) % zext(B) 1597 { 1598 const SCEV *LHS; 1599 const SCEV *RHS; 1600 if (matchURem(Op, LHS, RHS)) 1601 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1602 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1603 } 1604 1605 // zext(A / B) --> zext(A) / zext(B). 1606 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1607 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1608 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1609 1610 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1611 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1612 if (SA->hasNoUnsignedWrap()) { 1613 // If the addition does not unsign overflow then we can, by definition, 1614 // commute the zero extension with the addition operation. 1615 SmallVector<const SCEV *, 4> Ops; 1616 for (const auto *Op : SA->operands()) 1617 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1618 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1619 } 1620 1621 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1622 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1623 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1624 // 1625 // Often address arithmetics contain expressions like 1626 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1627 // This transformation is useful while proving that such expressions are 1628 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1629 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1630 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1631 if (D != 0) { 1632 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1633 const SCEV *SResidual = 1634 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1635 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1636 return getAddExpr(SZExtD, SZExtR, 1637 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1638 Depth + 1); 1639 } 1640 } 1641 } 1642 1643 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1644 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1645 if (SM->hasNoUnsignedWrap()) { 1646 // If the multiply does not unsign overflow then we can, by definition, 1647 // commute the zero extension with the multiply operation. 1648 SmallVector<const SCEV *, 4> Ops; 1649 for (const auto *Op : SM->operands()) 1650 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1651 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1652 } 1653 1654 // zext(2^K * (trunc X to iN)) to iM -> 1655 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1656 // 1657 // Proof: 1658 // 1659 // zext(2^K * (trunc X to iN)) to iM 1660 // = zext((trunc X to iN) << K) to iM 1661 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1662 // (because shl removes the top K bits) 1663 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1664 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1665 // 1666 if (SM->getNumOperands() == 2) 1667 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1668 if (MulLHS->getAPInt().isPowerOf2()) 1669 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1670 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1671 MulLHS->getAPInt().logBase2(); 1672 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1673 return getMulExpr( 1674 getZeroExtendExpr(MulLHS, Ty), 1675 getZeroExtendExpr( 1676 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1677 SCEV::FlagNUW, Depth + 1); 1678 } 1679 } 1680 1681 // The cast wasn't folded; create an explicit cast node. 1682 // Recompute the insert position, as it may have been invalidated. 1683 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1684 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1685 Op, Ty); 1686 UniqueSCEVs.InsertNode(S, IP); 1687 addToLoopUseLists(S); 1688 return S; 1689 } 1690 1691 const SCEV * 1692 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1693 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1694 "This is not an extending conversion!"); 1695 assert(isSCEVable(Ty) && 1696 "This is not a conversion to a SCEVable type!"); 1697 Ty = getEffectiveSCEVType(Ty); 1698 1699 // Fold if the operand is constant. 1700 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1701 return getConstant( 1702 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1703 1704 // sext(sext(x)) --> sext(x) 1705 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1706 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1707 1708 // sext(zext(x)) --> zext(x) 1709 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1710 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1711 1712 // Before doing any expensive analysis, check to see if we've already 1713 // computed a SCEV for this Op and Ty. 1714 FoldingSetNodeID ID; 1715 ID.AddInteger(scSignExtend); 1716 ID.AddPointer(Op); 1717 ID.AddPointer(Ty); 1718 void *IP = nullptr; 1719 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1720 // Limit recursion depth. 1721 if (Depth > MaxCastDepth) { 1722 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1723 Op, Ty); 1724 UniqueSCEVs.InsertNode(S, IP); 1725 addToLoopUseLists(S); 1726 return S; 1727 } 1728 1729 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1730 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1731 // It's possible the bits taken off by the truncate were all sign bits. If 1732 // so, we should be able to simplify this further. 1733 const SCEV *X = ST->getOperand(); 1734 ConstantRange CR = getSignedRange(X); 1735 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1736 unsigned NewBits = getTypeSizeInBits(Ty); 1737 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1738 CR.sextOrTrunc(NewBits))) 1739 return getTruncateOrSignExtend(X, Ty, Depth); 1740 } 1741 1742 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1743 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1744 if (SA->hasNoSignedWrap()) { 1745 // If the addition does not sign overflow then we can, by definition, 1746 // commute the sign extension with the addition operation. 1747 SmallVector<const SCEV *, 4> Ops; 1748 for (const auto *Op : SA->operands()) 1749 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1750 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1751 } 1752 1753 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1754 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1755 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1756 // 1757 // For instance, this will bring two seemingly different expressions: 1758 // 1 + sext(5 + 20 * %x + 24 * %y) and 1759 // sext(6 + 20 * %x + 24 * %y) 1760 // to the same form: 1761 // 2 + sext(4 + 20 * %x + 24 * %y) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1763 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1764 if (D != 0) { 1765 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1766 const SCEV *SResidual = 1767 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1768 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1769 return getAddExpr(SSExtD, SSExtR, 1770 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1771 Depth + 1); 1772 } 1773 } 1774 } 1775 // If the input value is a chrec scev, and we can prove that the value 1776 // did not overflow the old, smaller, value, we can sign extend all of the 1777 // operands (often constants). This allows analysis of something like 1778 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1779 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1780 if (AR->isAffine()) { 1781 const SCEV *Start = AR->getStart(); 1782 const SCEV *Step = AR->getStepRecurrence(*this); 1783 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1784 const Loop *L = AR->getLoop(); 1785 1786 if (!AR->hasNoSignedWrap()) { 1787 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1788 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags); 1789 } 1790 1791 // If we have special knowledge that this addrec won't overflow, 1792 // we don't need to do any further analysis. 1793 if (AR->hasNoSignedWrap()) 1794 return getAddRecExpr( 1795 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1796 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1797 1798 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1799 // Note that this serves two purposes: It filters out loops that are 1800 // simply not analyzable, and it covers the case where this code is 1801 // being called from within backedge-taken count analysis, such that 1802 // attempting to ask for the backedge-taken count would likely result 1803 // in infinite recursion. In the later case, the analysis code will 1804 // cope with a conservative value, and it will take care to purge 1805 // that value once it has finished. 1806 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1807 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1808 // Manually compute the final value for AR, checking for 1809 // overflow. 1810 1811 // Check whether the backedge-taken count can be losslessly casted to 1812 // the addrec's type. The count is always unsigned. 1813 const SCEV *CastedMaxBECount = 1814 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1815 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1816 CastedMaxBECount, MaxBECount->getType(), Depth); 1817 if (MaxBECount == RecastedMaxBECount) { 1818 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1819 // Check whether Start+Step*MaxBECount has no signed overflow. 1820 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 1821 SCEV::FlagAnyWrap, Depth + 1); 1822 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 1823 SCEV::FlagAnyWrap, 1824 Depth + 1), 1825 WideTy, Depth + 1); 1826 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 1827 const SCEV *WideMaxBECount = 1828 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1829 const SCEV *OperandExtendedAdd = 1830 getAddExpr(WideStart, 1831 getMulExpr(WideMaxBECount, 1832 getSignExtendExpr(Step, WideTy, Depth + 1), 1833 SCEV::FlagAnyWrap, Depth + 1), 1834 SCEV::FlagAnyWrap, Depth + 1); 1835 if (SAdd == OperandExtendedAdd) { 1836 // Cache knowledge of AR NSW, which is propagated to this AddRec. 1837 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1838 // Return the expression with the addrec on the outside. 1839 return getAddRecExpr( 1840 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1841 Depth + 1), 1842 getSignExtendExpr(Step, Ty, Depth + 1), L, 1843 AR->getNoWrapFlags()); 1844 } 1845 // Similar to above, only this time treat the step value as unsigned. 1846 // This covers loops that count up with an unsigned step. 1847 OperandExtendedAdd = 1848 getAddExpr(WideStart, 1849 getMulExpr(WideMaxBECount, 1850 getZeroExtendExpr(Step, WideTy, Depth + 1), 1851 SCEV::FlagAnyWrap, Depth + 1), 1852 SCEV::FlagAnyWrap, Depth + 1); 1853 if (SAdd == OperandExtendedAdd) { 1854 // If AR wraps around then 1855 // 1856 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 1857 // => SAdd != OperandExtendedAdd 1858 // 1859 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 1860 // (SAdd == OperandExtendedAdd => AR is NW) 1861 1862 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW); 1863 1864 // Return the expression with the addrec on the outside. 1865 return getAddRecExpr( 1866 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 1867 Depth + 1), 1868 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1869 AR->getNoWrapFlags()); 1870 } 1871 } 1872 } 1873 1874 // Normally, in the cases we can prove no-overflow via a 1875 // backedge guarding condition, we can also compute a backedge 1876 // taken count for the loop. The exceptions are assumptions and 1877 // guards present in the loop -- SCEV is not great at exploiting 1878 // these to compute max backedge taken counts, but can still use 1879 // these to prove lack of overflow. Use this fact to avoid 1880 // doing extra work that may not pay off. 1881 1882 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1883 !AC.assumptions().empty()) { 1884 // If the backedge is guarded by a comparison with the pre-inc 1885 // value the addrec is safe. Also, if the entry is guarded by 1886 // a comparison with the start value and the backedge is 1887 // guarded by a comparison with the post-inc value, the addrec 1888 // is safe. 1889 ICmpInst::Predicate Pred; 1890 const SCEV *OverflowLimit = 1891 getSignedOverflowLimitForStep(Step, &Pred, this); 1892 if (OverflowLimit && 1893 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 1894 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 1895 // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec. 1896 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1897 return getAddRecExpr( 1898 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1899 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1900 } 1901 } 1902 1903 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 1904 // if D + (C - D + Step * n) could be proven to not signed wrap 1905 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1906 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1907 const APInt &C = SC->getAPInt(); 1908 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1909 if (D != 0) { 1910 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1911 const SCEV *SResidual = 1912 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1913 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1914 return getAddExpr(SSExtD, SSExtR, 1915 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1916 Depth + 1); 1917 } 1918 } 1919 1920 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 1921 const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW); 1922 return getAddRecExpr( 1923 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1924 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1925 } 1926 } 1927 1928 // If the input value is provably positive and we could not simplify 1929 // away the sext build a zext instead. 1930 if (isKnownNonNegative(Op)) 1931 return getZeroExtendExpr(Op, Ty, Depth + 1); 1932 1933 // The cast wasn't folded; create an explicit cast node. 1934 // Recompute the insert position, as it may have been invalidated. 1935 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1936 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1937 Op, Ty); 1938 UniqueSCEVs.InsertNode(S, IP); 1939 addToLoopUseLists(S); 1940 return S; 1941 } 1942 1943 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 1944 /// unspecified bits out to the given type. 1945 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 1946 Type *Ty) { 1947 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1948 "This is not an extending conversion!"); 1949 assert(isSCEVable(Ty) && 1950 "This is not a conversion to a SCEVable type!"); 1951 Ty = getEffectiveSCEVType(Ty); 1952 1953 // Sign-extend negative constants. 1954 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1955 if (SC->getAPInt().isNegative()) 1956 return getSignExtendExpr(Op, Ty); 1957 1958 // Peel off a truncate cast. 1959 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 1960 const SCEV *NewOp = T->getOperand(); 1961 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 1962 return getAnyExtendExpr(NewOp, Ty); 1963 return getTruncateOrNoop(NewOp, Ty); 1964 } 1965 1966 // Next try a zext cast. If the cast is folded, use it. 1967 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 1968 if (!isa<SCEVZeroExtendExpr>(ZExt)) 1969 return ZExt; 1970 1971 // Next try a sext cast. If the cast is folded, use it. 1972 const SCEV *SExt = getSignExtendExpr(Op, Ty); 1973 if (!isa<SCEVSignExtendExpr>(SExt)) 1974 return SExt; 1975 1976 // Force the cast to be folded into the operands of an addrec. 1977 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 1978 SmallVector<const SCEV *, 4> Ops; 1979 for (const SCEV *Op : AR->operands()) 1980 Ops.push_back(getAnyExtendExpr(Op, Ty)); 1981 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 1982 } 1983 1984 // If the expression is obviously signed, use the sext cast value. 1985 if (isa<SCEVSMaxExpr>(Op)) 1986 return SExt; 1987 1988 // Absent any other information, use the zext cast value. 1989 return ZExt; 1990 } 1991 1992 /// Process the given Ops list, which is a list of operands to be added under 1993 /// the given scale, update the given map. This is a helper function for 1994 /// getAddRecExpr. As an example of what it does, given a sequence of operands 1995 /// that would form an add expression like this: 1996 /// 1997 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 1998 /// 1999 /// where A and B are constants, update the map with these values: 2000 /// 2001 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2002 /// 2003 /// and add 13 + A*B*29 to AccumulatedConstant. 2004 /// This will allow getAddRecExpr to produce this: 2005 /// 2006 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2007 /// 2008 /// This form often exposes folding opportunities that are hidden in 2009 /// the original operand list. 2010 /// 2011 /// Return true iff it appears that any interesting folding opportunities 2012 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2013 /// the common case where no interesting opportunities are present, and 2014 /// is also used as a check to avoid infinite recursion. 2015 static bool 2016 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2017 SmallVectorImpl<const SCEV *> &NewOps, 2018 APInt &AccumulatedConstant, 2019 const SCEV *const *Ops, size_t NumOperands, 2020 const APInt &Scale, 2021 ScalarEvolution &SE) { 2022 bool Interesting = false; 2023 2024 // Iterate over the add operands. They are sorted, with constants first. 2025 unsigned i = 0; 2026 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2027 ++i; 2028 // Pull a buried constant out to the outside. 2029 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2030 Interesting = true; 2031 AccumulatedConstant += Scale * C->getAPInt(); 2032 } 2033 2034 // Next comes everything else. We're especially interested in multiplies 2035 // here, but they're in the middle, so just visit the rest with one loop. 2036 for (; i != NumOperands; ++i) { 2037 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2038 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2039 APInt NewScale = 2040 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2041 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2042 // A multiplication of a constant with another add; recurse. 2043 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2044 Interesting |= 2045 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2046 Add->op_begin(), Add->getNumOperands(), 2047 NewScale, SE); 2048 } else { 2049 // A multiplication of a constant with some other value. Update 2050 // the map. 2051 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end()); 2052 const SCEV *Key = SE.getMulExpr(MulOps); 2053 auto Pair = M.insert({Key, NewScale}); 2054 if (Pair.second) { 2055 NewOps.push_back(Pair.first->first); 2056 } else { 2057 Pair.first->second += NewScale; 2058 // The map already had an entry for this value, which may indicate 2059 // a folding opportunity. 2060 Interesting = true; 2061 } 2062 } 2063 } else { 2064 // An ordinary operand. Update the map. 2065 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2066 M.insert({Ops[i], Scale}); 2067 if (Pair.second) { 2068 NewOps.push_back(Pair.first->first); 2069 } else { 2070 Pair.first->second += Scale; 2071 // The map already had an entry for this value, which may indicate 2072 // a folding opportunity. 2073 Interesting = true; 2074 } 2075 } 2076 } 2077 2078 return Interesting; 2079 } 2080 2081 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2082 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2083 // can't-overflow flags for the operation if possible. 2084 static SCEV::NoWrapFlags 2085 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2086 const ArrayRef<const SCEV *> Ops, 2087 SCEV::NoWrapFlags Flags) { 2088 using namespace std::placeholders; 2089 2090 using OBO = OverflowingBinaryOperator; 2091 2092 bool CanAnalyze = 2093 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2094 (void)CanAnalyze; 2095 assert(CanAnalyze && "don't call from other places!"); 2096 2097 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2098 SCEV::NoWrapFlags SignOrUnsignWrap = 2099 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2100 2101 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2102 auto IsKnownNonNegative = [&](const SCEV *S) { 2103 return SE->isKnownNonNegative(S); 2104 }; 2105 2106 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2107 Flags = 2108 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2109 2110 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2111 2112 if (SignOrUnsignWrap != SignOrUnsignMask && 2113 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2114 isa<SCEVConstant>(Ops[0])) { 2115 2116 auto Opcode = [&] { 2117 switch (Type) { 2118 case scAddExpr: 2119 return Instruction::Add; 2120 case scMulExpr: 2121 return Instruction::Mul; 2122 default: 2123 llvm_unreachable("Unexpected SCEV op."); 2124 } 2125 }(); 2126 2127 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2128 2129 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2130 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2131 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2132 Opcode, C, OBO::NoSignedWrap); 2133 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2134 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2135 } 2136 2137 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2138 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2139 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2140 Opcode, C, OBO::NoUnsignedWrap); 2141 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2142 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2143 } 2144 } 2145 2146 return Flags; 2147 } 2148 2149 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2150 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2151 } 2152 2153 /// Get a canonical add expression, or something simpler if possible. 2154 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2155 SCEV::NoWrapFlags Flags, 2156 unsigned Depth) { 2157 assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2158 "only nuw or nsw allowed"); 2159 assert(!Ops.empty() && "Cannot get empty add!"); 2160 if (Ops.size() == 1) return Ops[0]; 2161 #ifndef NDEBUG 2162 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2163 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2164 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2165 "SCEVAddExpr operand types don't match!"); 2166 #endif 2167 2168 // Sort by complexity, this groups all similar expression types together. 2169 GroupByComplexity(Ops, &LI, DT); 2170 2171 Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags); 2172 2173 // If there are any constants, fold them together. 2174 unsigned Idx = 0; 2175 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2176 ++Idx; 2177 assert(Idx < Ops.size()); 2178 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2179 // We found two constants, fold them together! 2180 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2181 if (Ops.size() == 2) return Ops[0]; 2182 Ops.erase(Ops.begin()+1); // Erase the folded element 2183 LHSC = cast<SCEVConstant>(Ops[0]); 2184 } 2185 2186 // If we are left with a constant zero being added, strip it off. 2187 if (LHSC->getValue()->isZero()) { 2188 Ops.erase(Ops.begin()); 2189 --Idx; 2190 } 2191 2192 if (Ops.size() == 1) return Ops[0]; 2193 } 2194 2195 // Limit recursion calls depth. 2196 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2197 return getOrCreateAddExpr(Ops, Flags); 2198 2199 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scAddExpr, Ops))) { 2200 static_cast<SCEVAddExpr *>(S)->setNoWrapFlags(Flags); 2201 return S; 2202 } 2203 2204 // Okay, check to see if the same value occurs in the operand list more than 2205 // once. If so, merge them together into an multiply expression. Since we 2206 // sorted the list, these values are required to be adjacent. 2207 Type *Ty = Ops[0]->getType(); 2208 bool FoundMatch = false; 2209 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2210 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2211 // Scan ahead to count how many equal operands there are. 2212 unsigned Count = 2; 2213 while (i+Count != e && Ops[i+Count] == Ops[i]) 2214 ++Count; 2215 // Merge the values into a multiply. 2216 const SCEV *Scale = getConstant(Ty, Count); 2217 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2218 if (Ops.size() == Count) 2219 return Mul; 2220 Ops[i] = Mul; 2221 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2222 --i; e -= Count - 1; 2223 FoundMatch = true; 2224 } 2225 if (FoundMatch) 2226 return getAddExpr(Ops, Flags, Depth + 1); 2227 2228 // Check for truncates. If all the operands are truncated from the same 2229 // type, see if factoring out the truncate would permit the result to be 2230 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2231 // if the contents of the resulting outer trunc fold to something simple. 2232 auto FindTruncSrcType = [&]() -> Type * { 2233 // We're ultimately looking to fold an addrec of truncs and muls of only 2234 // constants and truncs, so if we find any other types of SCEV 2235 // as operands of the addrec then we bail and return nullptr here. 2236 // Otherwise, we return the type of the operand of a trunc that we find. 2237 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2238 return T->getOperand()->getType(); 2239 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2240 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2241 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2242 return T->getOperand()->getType(); 2243 } 2244 return nullptr; 2245 }; 2246 if (auto *SrcType = FindTruncSrcType()) { 2247 SmallVector<const SCEV *, 8> LargeOps; 2248 bool Ok = true; 2249 // Check all the operands to see if they can be represented in the 2250 // source type of the truncate. 2251 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2252 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2253 if (T->getOperand()->getType() != SrcType) { 2254 Ok = false; 2255 break; 2256 } 2257 LargeOps.push_back(T->getOperand()); 2258 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2259 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2260 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2261 SmallVector<const SCEV *, 8> LargeMulOps; 2262 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2263 if (const SCEVTruncateExpr *T = 2264 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2265 if (T->getOperand()->getType() != SrcType) { 2266 Ok = false; 2267 break; 2268 } 2269 LargeMulOps.push_back(T->getOperand()); 2270 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2271 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2272 } else { 2273 Ok = false; 2274 break; 2275 } 2276 } 2277 if (Ok) 2278 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2279 } else { 2280 Ok = false; 2281 break; 2282 } 2283 } 2284 if (Ok) { 2285 // Evaluate the expression in the larger type. 2286 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2287 // If it folds to something simple, use it. Otherwise, don't. 2288 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2289 return getTruncateExpr(Fold, Ty); 2290 } 2291 } 2292 2293 // Skip past any other cast SCEVs. 2294 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2295 ++Idx; 2296 2297 // If there are add operands they would be next. 2298 if (Idx < Ops.size()) { 2299 bool DeletedAdd = false; 2300 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2301 if (Ops.size() > AddOpsInlineThreshold || 2302 Add->getNumOperands() > AddOpsInlineThreshold) 2303 break; 2304 // If we have an add, expand the add operands onto the end of the operands 2305 // list. 2306 Ops.erase(Ops.begin()+Idx); 2307 Ops.append(Add->op_begin(), Add->op_end()); 2308 DeletedAdd = true; 2309 } 2310 2311 // If we deleted at least one add, we added operands to the end of the list, 2312 // and they are not necessarily sorted. Recurse to resort and resimplify 2313 // any operands we just acquired. 2314 if (DeletedAdd) 2315 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2316 } 2317 2318 // Skip over the add expression until we get to a multiply. 2319 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2320 ++Idx; 2321 2322 // Check to see if there are any folding opportunities present with 2323 // operands multiplied by constant values. 2324 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2325 uint64_t BitWidth = getTypeSizeInBits(Ty); 2326 DenseMap<const SCEV *, APInt> M; 2327 SmallVector<const SCEV *, 8> NewOps; 2328 APInt AccumulatedConstant(BitWidth, 0); 2329 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2330 Ops.data(), Ops.size(), 2331 APInt(BitWidth, 1), *this)) { 2332 struct APIntCompare { 2333 bool operator()(const APInt &LHS, const APInt &RHS) const { 2334 return LHS.ult(RHS); 2335 } 2336 }; 2337 2338 // Some interesting folding opportunity is present, so its worthwhile to 2339 // re-generate the operands list. Group the operands by constant scale, 2340 // to avoid multiplying by the same constant scale multiple times. 2341 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2342 for (const SCEV *NewOp : NewOps) 2343 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2344 // Re-generate the operands list. 2345 Ops.clear(); 2346 if (AccumulatedConstant != 0) 2347 Ops.push_back(getConstant(AccumulatedConstant)); 2348 for (auto &MulOp : MulOpLists) 2349 if (MulOp.first != 0) 2350 Ops.push_back(getMulExpr( 2351 getConstant(MulOp.first), 2352 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2353 SCEV::FlagAnyWrap, Depth + 1)); 2354 if (Ops.empty()) 2355 return getZero(Ty); 2356 if (Ops.size() == 1) 2357 return Ops[0]; 2358 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2359 } 2360 } 2361 2362 // If we are adding something to a multiply expression, make sure the 2363 // something is not already an operand of the multiply. If so, merge it into 2364 // the multiply. 2365 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2366 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2367 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2368 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2369 if (isa<SCEVConstant>(MulOpSCEV)) 2370 continue; 2371 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2372 if (MulOpSCEV == Ops[AddOp]) { 2373 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2374 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2375 if (Mul->getNumOperands() != 2) { 2376 // If the multiply has more than two operands, we must get the 2377 // Y*Z term. 2378 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2379 Mul->op_begin()+MulOp); 2380 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2381 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2382 } 2383 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2384 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2385 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2386 SCEV::FlagAnyWrap, Depth + 1); 2387 if (Ops.size() == 2) return OuterMul; 2388 if (AddOp < Idx) { 2389 Ops.erase(Ops.begin()+AddOp); 2390 Ops.erase(Ops.begin()+Idx-1); 2391 } else { 2392 Ops.erase(Ops.begin()+Idx); 2393 Ops.erase(Ops.begin()+AddOp-1); 2394 } 2395 Ops.push_back(OuterMul); 2396 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2397 } 2398 2399 // Check this multiply against other multiplies being added together. 2400 for (unsigned OtherMulIdx = Idx+1; 2401 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2402 ++OtherMulIdx) { 2403 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2404 // If MulOp occurs in OtherMul, we can fold the two multiplies 2405 // together. 2406 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2407 OMulOp != e; ++OMulOp) 2408 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2409 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2410 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2411 if (Mul->getNumOperands() != 2) { 2412 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2413 Mul->op_begin()+MulOp); 2414 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2415 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2416 } 2417 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2418 if (OtherMul->getNumOperands() != 2) { 2419 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2420 OtherMul->op_begin()+OMulOp); 2421 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2422 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2423 } 2424 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2425 const SCEV *InnerMulSum = 2426 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2427 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2428 SCEV::FlagAnyWrap, Depth + 1); 2429 if (Ops.size() == 2) return OuterMul; 2430 Ops.erase(Ops.begin()+Idx); 2431 Ops.erase(Ops.begin()+OtherMulIdx-1); 2432 Ops.push_back(OuterMul); 2433 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2434 } 2435 } 2436 } 2437 } 2438 2439 // If there are any add recurrences in the operands list, see if any other 2440 // added values are loop invariant. If so, we can fold them into the 2441 // recurrence. 2442 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2443 ++Idx; 2444 2445 // Scan over all recurrences, trying to fold loop invariants into them. 2446 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2447 // Scan all of the other operands to this add and add them to the vector if 2448 // they are loop invariant w.r.t. the recurrence. 2449 SmallVector<const SCEV *, 8> LIOps; 2450 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2451 const Loop *AddRecLoop = AddRec->getLoop(); 2452 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2453 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2454 LIOps.push_back(Ops[i]); 2455 Ops.erase(Ops.begin()+i); 2456 --i; --e; 2457 } 2458 2459 // If we found some loop invariants, fold them into the recurrence. 2460 if (!LIOps.empty()) { 2461 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2462 LIOps.push_back(AddRec->getStart()); 2463 2464 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2465 AddRec->op_end()); 2466 // This follows from the fact that the no-wrap flags on the outer add 2467 // expression are applicable on the 0th iteration, when the add recurrence 2468 // will be equal to its start value. 2469 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2470 2471 // Build the new addrec. Propagate the NUW and NSW flags if both the 2472 // outer add and the inner addrec are guaranteed to have no overflow. 2473 // Always propagate NW. 2474 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2475 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2476 2477 // If all of the other operands were loop invariant, we are done. 2478 if (Ops.size() == 1) return NewRec; 2479 2480 // Otherwise, add the folded AddRec by the non-invariant parts. 2481 for (unsigned i = 0;; ++i) 2482 if (Ops[i] == AddRec) { 2483 Ops[i] = NewRec; 2484 break; 2485 } 2486 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2487 } 2488 2489 // Okay, if there weren't any loop invariants to be folded, check to see if 2490 // there are multiple AddRec's with the same loop induction variable being 2491 // added together. If so, we can fold them. 2492 for (unsigned OtherIdx = Idx+1; 2493 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2494 ++OtherIdx) { 2495 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2496 // so that the 1st found AddRecExpr is dominated by all others. 2497 assert(DT.dominates( 2498 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2499 AddRec->getLoop()->getHeader()) && 2500 "AddRecExprs are not sorted in reverse dominance order?"); 2501 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2502 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2503 SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(), 2504 AddRec->op_end()); 2505 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2506 ++OtherIdx) { 2507 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2508 if (OtherAddRec->getLoop() == AddRecLoop) { 2509 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2510 i != e; ++i) { 2511 if (i >= AddRecOps.size()) { 2512 AddRecOps.append(OtherAddRec->op_begin()+i, 2513 OtherAddRec->op_end()); 2514 break; 2515 } 2516 SmallVector<const SCEV *, 2> TwoOps = { 2517 AddRecOps[i], OtherAddRec->getOperand(i)}; 2518 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2519 } 2520 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2521 } 2522 } 2523 // Step size has changed, so we cannot guarantee no self-wraparound. 2524 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2525 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2526 } 2527 } 2528 2529 // Otherwise couldn't fold anything into this recurrence. Move onto the 2530 // next one. 2531 } 2532 2533 // Okay, it looks like we really DO need an add expr. Check to see if we 2534 // already have one, otherwise create a new one. 2535 return getOrCreateAddExpr(Ops, Flags); 2536 } 2537 2538 const SCEV * 2539 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2540 SCEV::NoWrapFlags Flags) { 2541 FoldingSetNodeID ID; 2542 ID.AddInteger(scAddExpr); 2543 for (const SCEV *Op : Ops) 2544 ID.AddPointer(Op); 2545 void *IP = nullptr; 2546 SCEVAddExpr *S = 2547 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2548 if (!S) { 2549 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2550 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2551 S = new (SCEVAllocator) 2552 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2553 UniqueSCEVs.InsertNode(S, IP); 2554 addToLoopUseLists(S); 2555 } 2556 S->setNoWrapFlags(Flags); 2557 return S; 2558 } 2559 2560 const SCEV * 2561 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2562 const Loop *L, SCEV::NoWrapFlags Flags) { 2563 FoldingSetNodeID ID; 2564 ID.AddInteger(scAddRecExpr); 2565 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2566 ID.AddPointer(Ops[i]); 2567 ID.AddPointer(L); 2568 void *IP = nullptr; 2569 SCEVAddRecExpr *S = 2570 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2571 if (!S) { 2572 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2573 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2574 S = new (SCEVAllocator) 2575 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2576 UniqueSCEVs.InsertNode(S, IP); 2577 addToLoopUseLists(S); 2578 } 2579 S->setNoWrapFlags(Flags); 2580 return S; 2581 } 2582 2583 const SCEV * 2584 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2585 SCEV::NoWrapFlags Flags) { 2586 FoldingSetNodeID ID; 2587 ID.AddInteger(scMulExpr); 2588 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2589 ID.AddPointer(Ops[i]); 2590 void *IP = nullptr; 2591 SCEVMulExpr *S = 2592 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2593 if (!S) { 2594 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2595 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2596 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2597 O, Ops.size()); 2598 UniqueSCEVs.InsertNode(S, IP); 2599 addToLoopUseLists(S); 2600 } 2601 S->setNoWrapFlags(Flags); 2602 return S; 2603 } 2604 2605 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2606 uint64_t k = i*j; 2607 if (j > 1 && k / j != i) Overflow = true; 2608 return k; 2609 } 2610 2611 /// Compute the result of "n choose k", the binomial coefficient. If an 2612 /// intermediate computation overflows, Overflow will be set and the return will 2613 /// be garbage. Overflow is not cleared on absence of overflow. 2614 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2615 // We use the multiplicative formula: 2616 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2617 // At each iteration, we take the n-th term of the numeral and divide by the 2618 // (k-n)th term of the denominator. This division will always produce an 2619 // integral result, and helps reduce the chance of overflow in the 2620 // intermediate computations. However, we can still overflow even when the 2621 // final result would fit. 2622 2623 if (n == 0 || n == k) return 1; 2624 if (k > n) return 0; 2625 2626 if (k > n/2) 2627 k = n-k; 2628 2629 uint64_t r = 1; 2630 for (uint64_t i = 1; i <= k; ++i) { 2631 r = umul_ov(r, n-(i-1), Overflow); 2632 r /= i; 2633 } 2634 return r; 2635 } 2636 2637 /// Determine if any of the operands in this SCEV are a constant or if 2638 /// any of the add or multiply expressions in this SCEV contain a constant. 2639 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2640 struct FindConstantInAddMulChain { 2641 bool FoundConstant = false; 2642 2643 bool follow(const SCEV *S) { 2644 FoundConstant |= isa<SCEVConstant>(S); 2645 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2646 } 2647 2648 bool isDone() const { 2649 return FoundConstant; 2650 } 2651 }; 2652 2653 FindConstantInAddMulChain F; 2654 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2655 ST.visitAll(StartExpr); 2656 return F.FoundConstant; 2657 } 2658 2659 /// Get a canonical multiply expression, or something simpler if possible. 2660 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2661 SCEV::NoWrapFlags Flags, 2662 unsigned Depth) { 2663 assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) && 2664 "only nuw or nsw allowed"); 2665 assert(!Ops.empty() && "Cannot get empty mul!"); 2666 if (Ops.size() == 1) return Ops[0]; 2667 #ifndef NDEBUG 2668 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2669 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2670 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2671 "SCEVMulExpr operand types don't match!"); 2672 #endif 2673 2674 // Sort by complexity, this groups all similar expression types together. 2675 GroupByComplexity(Ops, &LI, DT); 2676 2677 Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags); 2678 2679 // Limit recursion calls depth, but fold all-constant expressions. 2680 // `Ops` is sorted, so it's enough to check just last one. 2681 if ((Depth > MaxArithDepth || hasHugeExpression(Ops)) && 2682 !isa<SCEVConstant>(Ops.back())) 2683 return getOrCreateMulExpr(Ops, Flags); 2684 2685 if (SCEV *S = std::get<0>(findExistingSCEVInCache(scMulExpr, Ops))) { 2686 static_cast<SCEVMulExpr *>(S)->setNoWrapFlags(Flags); 2687 return S; 2688 } 2689 2690 // If there are any constants, fold them together. 2691 unsigned Idx = 0; 2692 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2693 2694 if (Ops.size() == 2) 2695 // C1*(C2+V) -> C1*C2 + C1*V 2696 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 2697 // If any of Add's ops are Adds or Muls with a constant, apply this 2698 // transformation as well. 2699 // 2700 // TODO: There are some cases where this transformation is not 2701 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 2702 // this transformation should be narrowed down. 2703 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 2704 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 2705 SCEV::FlagAnyWrap, Depth + 1), 2706 getMulExpr(LHSC, Add->getOperand(1), 2707 SCEV::FlagAnyWrap, Depth + 1), 2708 SCEV::FlagAnyWrap, Depth + 1); 2709 2710 ++Idx; 2711 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2712 // We found two constants, fold them together! 2713 ConstantInt *Fold = 2714 ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt()); 2715 Ops[0] = getConstant(Fold); 2716 Ops.erase(Ops.begin()+1); // Erase the folded element 2717 if (Ops.size() == 1) return Ops[0]; 2718 LHSC = cast<SCEVConstant>(Ops[0]); 2719 } 2720 2721 // If we are left with a constant one being multiplied, strip it off. 2722 if (cast<SCEVConstant>(Ops[0])->getValue()->isOne()) { 2723 Ops.erase(Ops.begin()); 2724 --Idx; 2725 } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) { 2726 // If we have a multiply of zero, it will always be zero. 2727 return Ops[0]; 2728 } else if (Ops[0]->isAllOnesValue()) { 2729 // If we have a mul by -1 of an add, try distributing the -1 among the 2730 // add operands. 2731 if (Ops.size() == 2) { 2732 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 2733 SmallVector<const SCEV *, 4> NewOps; 2734 bool AnyFolded = false; 2735 for (const SCEV *AddOp : Add->operands()) { 2736 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 2737 Depth + 1); 2738 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 2739 NewOps.push_back(Mul); 2740 } 2741 if (AnyFolded) 2742 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 2743 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 2744 // Negation preserves a recurrence's no self-wrap property. 2745 SmallVector<const SCEV *, 4> Operands; 2746 for (const SCEV *AddRecOp : AddRec->operands()) 2747 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 2748 Depth + 1)); 2749 2750 return getAddRecExpr(Operands, AddRec->getLoop(), 2751 AddRec->getNoWrapFlags(SCEV::FlagNW)); 2752 } 2753 } 2754 } 2755 2756 if (Ops.size() == 1) 2757 return Ops[0]; 2758 } 2759 2760 // Skip over the add expression until we get to a multiply. 2761 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2762 ++Idx; 2763 2764 // If there are mul operands inline them all into this expression. 2765 if (Idx < Ops.size()) { 2766 bool DeletedMul = false; 2767 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2768 if (Ops.size() > MulOpsInlineThreshold) 2769 break; 2770 // If we have an mul, expand the mul operands onto the end of the 2771 // operands list. 2772 Ops.erase(Ops.begin()+Idx); 2773 Ops.append(Mul->op_begin(), Mul->op_end()); 2774 DeletedMul = true; 2775 } 2776 2777 // If we deleted at least one mul, we added operands to the end of the 2778 // list, and they are not necessarily sorted. Recurse to resort and 2779 // resimplify any operands we just acquired. 2780 if (DeletedMul) 2781 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2782 } 2783 2784 // If there are any add recurrences in the operands list, see if any other 2785 // added values are loop invariant. If so, we can fold them into the 2786 // recurrence. 2787 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2788 ++Idx; 2789 2790 // Scan over all recurrences, trying to fold loop invariants into them. 2791 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2792 // Scan all of the other operands to this mul and add them to the vector 2793 // if they are loop invariant w.r.t. the recurrence. 2794 SmallVector<const SCEV *, 8> LIOps; 2795 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2796 const Loop *AddRecLoop = AddRec->getLoop(); 2797 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2798 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2799 LIOps.push_back(Ops[i]); 2800 Ops.erase(Ops.begin()+i); 2801 --i; --e; 2802 } 2803 2804 // If we found some loop invariants, fold them into the recurrence. 2805 if (!LIOps.empty()) { 2806 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 2807 SmallVector<const SCEV *, 4> NewOps; 2808 NewOps.reserve(AddRec->getNumOperands()); 2809 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 2810 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 2811 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 2812 SCEV::FlagAnyWrap, Depth + 1)); 2813 2814 // Build the new addrec. Propagate the NUW and NSW flags if both the 2815 // outer mul and the inner addrec are guaranteed to have no overflow. 2816 // 2817 // No self-wrap cannot be guaranteed after changing the step size, but 2818 // will be inferred if either NUW or NSW is true. 2819 Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW)); 2820 const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags); 2821 2822 // If all of the other operands were loop invariant, we are done. 2823 if (Ops.size() == 1) return NewRec; 2824 2825 // Otherwise, multiply the folded AddRec by the non-invariant parts. 2826 for (unsigned i = 0;; ++i) 2827 if (Ops[i] == AddRec) { 2828 Ops[i] = NewRec; 2829 break; 2830 } 2831 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2832 } 2833 2834 // Okay, if there weren't any loop invariants to be folded, check to see 2835 // if there are multiple AddRec's with the same loop induction variable 2836 // being multiplied together. If so, we can fold them. 2837 2838 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 2839 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 2840 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 2841 // ]]],+,...up to x=2n}. 2842 // Note that the arguments to choose() are always integers with values 2843 // known at compile time, never SCEV objects. 2844 // 2845 // The implementation avoids pointless extra computations when the two 2846 // addrec's are of different length (mathematically, it's equivalent to 2847 // an infinite stream of zeros on the right). 2848 bool OpsModified = false; 2849 for (unsigned OtherIdx = Idx+1; 2850 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2851 ++OtherIdx) { 2852 const SCEVAddRecExpr *OtherAddRec = 2853 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2854 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 2855 continue; 2856 2857 // Limit max number of arguments to avoid creation of unreasonably big 2858 // SCEVAddRecs with very complex operands. 2859 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 2860 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 2861 continue; 2862 2863 bool Overflow = false; 2864 Type *Ty = AddRec->getType(); 2865 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 2866 SmallVector<const SCEV*, 7> AddRecOps; 2867 for (int x = 0, xe = AddRec->getNumOperands() + 2868 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 2869 SmallVector <const SCEV *, 7> SumOps; 2870 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 2871 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 2872 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 2873 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 2874 z < ze && !Overflow; ++z) { 2875 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 2876 uint64_t Coeff; 2877 if (LargerThan64Bits) 2878 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 2879 else 2880 Coeff = Coeff1*Coeff2; 2881 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 2882 const SCEV *Term1 = AddRec->getOperand(y-z); 2883 const SCEV *Term2 = OtherAddRec->getOperand(z); 2884 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 2885 SCEV::FlagAnyWrap, Depth + 1)); 2886 } 2887 } 2888 if (SumOps.empty()) 2889 SumOps.push_back(getZero(Ty)); 2890 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 2891 } 2892 if (!Overflow) { 2893 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 2894 SCEV::FlagAnyWrap); 2895 if (Ops.size() == 2) return NewAddRec; 2896 Ops[Idx] = NewAddRec; 2897 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2898 OpsModified = true; 2899 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 2900 if (!AddRec) 2901 break; 2902 } 2903 } 2904 if (OpsModified) 2905 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2906 2907 // Otherwise couldn't fold anything into this recurrence. Move onto the 2908 // next one. 2909 } 2910 2911 // Okay, it looks like we really DO need an mul expr. Check to see if we 2912 // already have one, otherwise create a new one. 2913 return getOrCreateMulExpr(Ops, Flags); 2914 } 2915 2916 /// Represents an unsigned remainder expression based on unsigned division. 2917 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 2918 const SCEV *RHS) { 2919 assert(getEffectiveSCEVType(LHS->getType()) == 2920 getEffectiveSCEVType(RHS->getType()) && 2921 "SCEVURemExpr operand types don't match!"); 2922 2923 // Short-circuit easy cases 2924 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2925 // If constant is one, the result is trivial 2926 if (RHSC->getValue()->isOne()) 2927 return getZero(LHS->getType()); // X urem 1 --> 0 2928 2929 // If constant is a power of two, fold into a zext(trunc(LHS)). 2930 if (RHSC->getAPInt().isPowerOf2()) { 2931 Type *FullTy = LHS->getType(); 2932 Type *TruncTy = 2933 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 2934 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 2935 } 2936 } 2937 2938 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 2939 const SCEV *UDiv = getUDivExpr(LHS, RHS); 2940 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 2941 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 2942 } 2943 2944 /// Get a canonical unsigned division expression, or something simpler if 2945 /// possible. 2946 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 2947 const SCEV *RHS) { 2948 assert(getEffectiveSCEVType(LHS->getType()) == 2949 getEffectiveSCEVType(RHS->getType()) && 2950 "SCEVUDivExpr operand types don't match!"); 2951 2952 FoldingSetNodeID ID; 2953 ID.AddInteger(scUDivExpr); 2954 ID.AddPointer(LHS); 2955 ID.AddPointer(RHS); 2956 void *IP = nullptr; 2957 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 2958 return S; 2959 2960 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 2961 if (RHSC->getValue()->isOne()) 2962 return LHS; // X udiv 1 --> x 2963 // If the denominator is zero, the result of the udiv is undefined. Don't 2964 // try to analyze it, because the resolution chosen here may differ from 2965 // the resolution chosen in other parts of the compiler. 2966 if (!RHSC->getValue()->isZero()) { 2967 // Determine if the division can be folded into the operands of 2968 // its operands. 2969 // TODO: Generalize this to non-constants by using known-bits information. 2970 Type *Ty = LHS->getType(); 2971 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 2972 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 2973 // For non-power-of-two values, effectively round the value up to the 2974 // nearest power of two. 2975 if (!RHSC->getAPInt().isPowerOf2()) 2976 ++MaxShiftAmt; 2977 IntegerType *ExtTy = 2978 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 2979 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 2980 if (const SCEVConstant *Step = 2981 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 2982 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 2983 const APInt &StepInt = Step->getAPInt(); 2984 const APInt &DivInt = RHSC->getAPInt(); 2985 if (!StepInt.urem(DivInt) && 2986 getZeroExtendExpr(AR, ExtTy) == 2987 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 2988 getZeroExtendExpr(Step, ExtTy), 2989 AR->getLoop(), SCEV::FlagAnyWrap)) { 2990 SmallVector<const SCEV *, 4> Operands; 2991 for (const SCEV *Op : AR->operands()) 2992 Operands.push_back(getUDivExpr(Op, RHS)); 2993 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 2994 } 2995 /// Get a canonical UDivExpr for a recurrence. 2996 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 2997 // We can currently only fold X%N if X is constant. 2998 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 2999 if (StartC && !DivInt.urem(StepInt) && 3000 getZeroExtendExpr(AR, ExtTy) == 3001 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3002 getZeroExtendExpr(Step, ExtTy), 3003 AR->getLoop(), SCEV::FlagAnyWrap)) { 3004 const APInt &StartInt = StartC->getAPInt(); 3005 const APInt &StartRem = StartInt.urem(StepInt); 3006 if (StartRem != 0) { 3007 const SCEV *NewLHS = 3008 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3009 AR->getLoop(), SCEV::FlagNW); 3010 if (LHS != NewLHS) { 3011 LHS = NewLHS; 3012 3013 // Reset the ID to include the new LHS, and check if it is 3014 // already cached. 3015 ID.clear(); 3016 ID.AddInteger(scUDivExpr); 3017 ID.AddPointer(LHS); 3018 ID.AddPointer(RHS); 3019 IP = nullptr; 3020 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3021 return S; 3022 } 3023 } 3024 } 3025 } 3026 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3027 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3028 SmallVector<const SCEV *, 4> Operands; 3029 for (const SCEV *Op : M->operands()) 3030 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3031 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3032 // Find an operand that's safely divisible. 3033 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3034 const SCEV *Op = M->getOperand(i); 3035 const SCEV *Div = getUDivExpr(Op, RHSC); 3036 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3037 Operands = SmallVector<const SCEV *, 4>(M->op_begin(), 3038 M->op_end()); 3039 Operands[i] = Div; 3040 return getMulExpr(Operands); 3041 } 3042 } 3043 } 3044 3045 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3046 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3047 if (auto *DivisorConstant = 3048 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3049 bool Overflow = false; 3050 APInt NewRHS = 3051 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3052 if (Overflow) { 3053 return getConstant(RHSC->getType(), 0, false); 3054 } 3055 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3056 } 3057 } 3058 3059 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3060 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3061 SmallVector<const SCEV *, 4> Operands; 3062 for (const SCEV *Op : A->operands()) 3063 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3064 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3065 Operands.clear(); 3066 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3067 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3068 if (isa<SCEVUDivExpr>(Op) || 3069 getMulExpr(Op, RHS) != A->getOperand(i)) 3070 break; 3071 Operands.push_back(Op); 3072 } 3073 if (Operands.size() == A->getNumOperands()) 3074 return getAddExpr(Operands); 3075 } 3076 } 3077 3078 // Fold if both operands are constant. 3079 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3080 Constant *LHSCV = LHSC->getValue(); 3081 Constant *RHSCV = RHSC->getValue(); 3082 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3083 RHSCV))); 3084 } 3085 } 3086 } 3087 3088 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3089 // changes). Make sure we get a new one. 3090 IP = nullptr; 3091 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3092 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3093 LHS, RHS); 3094 UniqueSCEVs.InsertNode(S, IP); 3095 addToLoopUseLists(S); 3096 return S; 3097 } 3098 3099 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3100 APInt A = C1->getAPInt().abs(); 3101 APInt B = C2->getAPInt().abs(); 3102 uint32_t ABW = A.getBitWidth(); 3103 uint32_t BBW = B.getBitWidth(); 3104 3105 if (ABW > BBW) 3106 B = B.zext(ABW); 3107 else if (ABW < BBW) 3108 A = A.zext(BBW); 3109 3110 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3111 } 3112 3113 /// Get a canonical unsigned division expression, or something simpler if 3114 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3115 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3116 /// it's not exact because the udiv may be clearing bits. 3117 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3118 const SCEV *RHS) { 3119 // TODO: we could try to find factors in all sorts of things, but for now we 3120 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3121 // end of this file for inspiration. 3122 3123 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3124 if (!Mul || !Mul->hasNoUnsignedWrap()) 3125 return getUDivExpr(LHS, RHS); 3126 3127 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3128 // If the mulexpr multiplies by a constant, then that constant must be the 3129 // first element of the mulexpr. 3130 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3131 if (LHSCst == RHSCst) { 3132 SmallVector<const SCEV *, 2> Operands; 3133 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3134 return getMulExpr(Operands); 3135 } 3136 3137 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3138 // that there's a factor provided by one of the other terms. We need to 3139 // check. 3140 APInt Factor = gcd(LHSCst, RHSCst); 3141 if (!Factor.isIntN(1)) { 3142 LHSCst = 3143 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3144 RHSCst = 3145 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3146 SmallVector<const SCEV *, 2> Operands; 3147 Operands.push_back(LHSCst); 3148 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3149 LHS = getMulExpr(Operands); 3150 RHS = RHSCst; 3151 Mul = dyn_cast<SCEVMulExpr>(LHS); 3152 if (!Mul) 3153 return getUDivExactExpr(LHS, RHS); 3154 } 3155 } 3156 } 3157 3158 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3159 if (Mul->getOperand(i) == RHS) { 3160 SmallVector<const SCEV *, 2> Operands; 3161 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3162 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3163 return getMulExpr(Operands); 3164 } 3165 } 3166 3167 return getUDivExpr(LHS, RHS); 3168 } 3169 3170 /// Get an add recurrence expression for the specified loop. Simplify the 3171 /// expression as much as possible. 3172 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3173 const Loop *L, 3174 SCEV::NoWrapFlags Flags) { 3175 SmallVector<const SCEV *, 4> Operands; 3176 Operands.push_back(Start); 3177 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3178 if (StepChrec->getLoop() == L) { 3179 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3180 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3181 } 3182 3183 Operands.push_back(Step); 3184 return getAddRecExpr(Operands, L, Flags); 3185 } 3186 3187 /// Get an add recurrence expression for the specified loop. Simplify the 3188 /// expression as much as possible. 3189 const SCEV * 3190 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3191 const Loop *L, SCEV::NoWrapFlags Flags) { 3192 if (Operands.size() == 1) return Operands[0]; 3193 #ifndef NDEBUG 3194 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3195 for (unsigned i = 1, e = Operands.size(); i != e; ++i) 3196 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3197 "SCEVAddRecExpr operand types don't match!"); 3198 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3199 assert(isLoopInvariant(Operands[i], L) && 3200 "SCEVAddRecExpr operand is not loop-invariant!"); 3201 #endif 3202 3203 if (Operands.back()->isZero()) { 3204 Operands.pop_back(); 3205 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3206 } 3207 3208 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3209 // use that information to infer NUW and NSW flags. However, computing a 3210 // BE count requires calling getAddRecExpr, so we may not yet have a 3211 // meaningful BE count at this point (and if we don't, we'd be stuck 3212 // with a SCEVCouldNotCompute as the cached BE count). 3213 3214 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3215 3216 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3217 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3218 const Loop *NestedLoop = NestedAR->getLoop(); 3219 if (L->contains(NestedLoop) 3220 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3221 : (!NestedLoop->contains(L) && 3222 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3223 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(), 3224 NestedAR->op_end()); 3225 Operands[0] = NestedAR->getStart(); 3226 // AddRecs require their operands be loop-invariant with respect to their 3227 // loops. Don't perform this transformation if it would break this 3228 // requirement. 3229 bool AllInvariant = all_of( 3230 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3231 3232 if (AllInvariant) { 3233 // Create a recurrence for the outer loop with the same step size. 3234 // 3235 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3236 // inner recurrence has the same property. 3237 SCEV::NoWrapFlags OuterFlags = 3238 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3239 3240 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3241 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3242 return isLoopInvariant(Op, NestedLoop); 3243 }); 3244 3245 if (AllInvariant) { 3246 // Ok, both add recurrences are valid after the transformation. 3247 // 3248 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3249 // the outer recurrence has the same property. 3250 SCEV::NoWrapFlags InnerFlags = 3251 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3252 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3253 } 3254 } 3255 // Reset Operands to its original state. 3256 Operands[0] = NestedAR; 3257 } 3258 } 3259 3260 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3261 // already have one, otherwise create a new one. 3262 return getOrCreateAddRecExpr(Operands, L, Flags); 3263 } 3264 3265 const SCEV * 3266 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3267 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3268 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3269 // getSCEV(Base)->getType() has the same address space as Base->getType() 3270 // because SCEV::getType() preserves the address space. 3271 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3272 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3273 // instruction to its SCEV, because the Instruction may be guarded by control 3274 // flow and the no-overflow bits may not be valid for the expression in any 3275 // context. This can be fixed similarly to how these flags are handled for 3276 // adds. 3277 SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW 3278 : SCEV::FlagAnyWrap; 3279 3280 const SCEV *TotalOffset = getZero(IntIdxTy); 3281 Type *CurTy = GEP->getType(); 3282 bool FirstIter = true; 3283 for (const SCEV *IndexExpr : IndexExprs) { 3284 // Compute the (potentially symbolic) offset in bytes for this index. 3285 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3286 // For a struct, add the member offset. 3287 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3288 unsigned FieldNo = Index->getZExtValue(); 3289 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3290 3291 // Add the field offset to the running total offset. 3292 TotalOffset = getAddExpr(TotalOffset, FieldOffset); 3293 3294 // Update CurTy to the type of the field at Index. 3295 CurTy = STy->getTypeAtIndex(Index); 3296 } else { 3297 // Update CurTy to its element type. 3298 if (FirstIter) { 3299 assert(isa<PointerType>(CurTy) && 3300 "The first index of a GEP indexes a pointer"); 3301 CurTy = GEP->getSourceElementType(); 3302 FirstIter = false; 3303 } else { 3304 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3305 } 3306 // For an array, add the element offset, explicitly scaled. 3307 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3308 // Getelementptr indices are signed. 3309 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3310 3311 // Multiply the index by the element size to compute the element offset. 3312 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap); 3313 3314 // Add the element offset to the running total offset. 3315 TotalOffset = getAddExpr(TotalOffset, LocalOffset); 3316 } 3317 } 3318 3319 // Add the total offset from all the GEP indices to the base. 3320 auto *GEPExpr = getAddExpr(BaseExpr, TotalOffset, Wrap); 3321 assert(BaseExpr->getType() == GEPExpr->getType() && 3322 "GEP should not change type mid-flight."); 3323 return GEPExpr; 3324 } 3325 3326 std::tuple<SCEV *, FoldingSetNodeID, void *> 3327 ScalarEvolution::findExistingSCEVInCache(int SCEVType, 3328 ArrayRef<const SCEV *> Ops) { 3329 FoldingSetNodeID ID; 3330 void *IP = nullptr; 3331 ID.AddInteger(SCEVType); 3332 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3333 ID.AddPointer(Ops[i]); 3334 return std::tuple<SCEV *, FoldingSetNodeID, void *>( 3335 UniqueSCEVs.FindNodeOrInsertPos(ID, IP), std::move(ID), IP); 3336 } 3337 3338 const SCEV *ScalarEvolution::getMinMaxExpr(unsigned Kind, 3339 SmallVectorImpl<const SCEV *> &Ops) { 3340 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3341 if (Ops.size() == 1) return Ops[0]; 3342 #ifndef NDEBUG 3343 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3344 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 3345 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3346 "Operand types don't match!"); 3347 #endif 3348 3349 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3350 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3351 3352 // Sort by complexity, this groups all similar expression types together. 3353 GroupByComplexity(Ops, &LI, DT); 3354 3355 // Check if we have created the same expression before. 3356 if (const SCEV *S = std::get<0>(findExistingSCEVInCache(Kind, Ops))) { 3357 return S; 3358 } 3359 3360 // If there are any constants, fold them together. 3361 unsigned Idx = 0; 3362 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3363 ++Idx; 3364 assert(Idx < Ops.size()); 3365 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3366 if (Kind == scSMaxExpr) 3367 return APIntOps::smax(LHS, RHS); 3368 else if (Kind == scSMinExpr) 3369 return APIntOps::smin(LHS, RHS); 3370 else if (Kind == scUMaxExpr) 3371 return APIntOps::umax(LHS, RHS); 3372 else if (Kind == scUMinExpr) 3373 return APIntOps::umin(LHS, RHS); 3374 llvm_unreachable("Unknown SCEV min/max opcode"); 3375 }; 3376 3377 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3378 // We found two constants, fold them together! 3379 ConstantInt *Fold = ConstantInt::get( 3380 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3381 Ops[0] = getConstant(Fold); 3382 Ops.erase(Ops.begin()+1); // Erase the folded element 3383 if (Ops.size() == 1) return Ops[0]; 3384 LHSC = cast<SCEVConstant>(Ops[0]); 3385 } 3386 3387 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3388 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3389 3390 if (IsMax ? IsMinV : IsMaxV) { 3391 // If we are left with a constant minimum(/maximum)-int, strip it off. 3392 Ops.erase(Ops.begin()); 3393 --Idx; 3394 } else if (IsMax ? IsMaxV : IsMinV) { 3395 // If we have a max(/min) with a constant maximum(/minimum)-int, 3396 // it will always be the extremum. 3397 return LHSC; 3398 } 3399 3400 if (Ops.size() == 1) return Ops[0]; 3401 } 3402 3403 // Find the first operation of the same kind 3404 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3405 ++Idx; 3406 3407 // Check to see if one of the operands is of the same kind. If so, expand its 3408 // operands onto our operand list, and recurse to simplify. 3409 if (Idx < Ops.size()) { 3410 bool DeletedAny = false; 3411 while (Ops[Idx]->getSCEVType() == Kind) { 3412 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3413 Ops.erase(Ops.begin()+Idx); 3414 Ops.append(SMME->op_begin(), SMME->op_end()); 3415 DeletedAny = true; 3416 } 3417 3418 if (DeletedAny) 3419 return getMinMaxExpr(Kind, Ops); 3420 } 3421 3422 // Okay, check to see if the same value occurs in the operand list twice. If 3423 // so, delete one. Since we sorted the list, these values are required to 3424 // be adjacent. 3425 llvm::CmpInst::Predicate GEPred = 3426 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3427 llvm::CmpInst::Predicate LEPred = 3428 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3429 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3430 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3431 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3432 if (Ops[i] == Ops[i + 1] || 3433 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3434 // X op Y op Y --> X op Y 3435 // X op Y --> X, if we know X, Y are ordered appropriately 3436 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3437 --i; 3438 --e; 3439 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3440 Ops[i + 1])) { 3441 // X op Y --> Y, if we know X, Y are ordered appropriately 3442 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3443 --i; 3444 --e; 3445 } 3446 } 3447 3448 if (Ops.size() == 1) return Ops[0]; 3449 3450 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3451 3452 // Okay, it looks like we really DO need an expr. Check to see if we 3453 // already have one, otherwise create a new one. 3454 const SCEV *ExistingSCEV; 3455 FoldingSetNodeID ID; 3456 void *IP; 3457 std::tie(ExistingSCEV, ID, IP) = findExistingSCEVInCache(Kind, Ops); 3458 if (ExistingSCEV) 3459 return ExistingSCEV; 3460 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3461 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3462 SCEV *S = new (SCEVAllocator) SCEVMinMaxExpr( 3463 ID.Intern(SCEVAllocator), static_cast<SCEVTypes>(Kind), O, Ops.size()); 3464 3465 UniqueSCEVs.InsertNode(S, IP); 3466 addToLoopUseLists(S); 3467 return S; 3468 } 3469 3470 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3471 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3472 return getSMaxExpr(Ops); 3473 } 3474 3475 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3476 return getMinMaxExpr(scSMaxExpr, Ops); 3477 } 3478 3479 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3480 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3481 return getUMaxExpr(Ops); 3482 } 3483 3484 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3485 return getMinMaxExpr(scUMaxExpr, Ops); 3486 } 3487 3488 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3489 const SCEV *RHS) { 3490 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3491 return getSMinExpr(Ops); 3492 } 3493 3494 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3495 return getMinMaxExpr(scSMinExpr, Ops); 3496 } 3497 3498 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3499 const SCEV *RHS) { 3500 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3501 return getUMinExpr(Ops); 3502 } 3503 3504 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3505 return getMinMaxExpr(scUMinExpr, Ops); 3506 } 3507 3508 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3509 // We can bypass creating a target-independent 3510 // constant expression and then folding it back into a ConstantInt. 3511 // This is just a compile-time optimization. 3512 if (isa<ScalableVectorType>(AllocTy)) { 3513 Constant *NullPtr = Constant::getNullValue(AllocTy->getPointerTo()); 3514 Constant *One = ConstantInt::get(IntTy, 1); 3515 Constant *GEP = ConstantExpr::getGetElementPtr(AllocTy, NullPtr, One); 3516 return getSCEV(ConstantExpr::getPtrToInt(GEP, IntTy)); 3517 } 3518 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3519 } 3520 3521 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3522 StructType *STy, 3523 unsigned FieldNo) { 3524 // We can bypass creating a target-independent 3525 // constant expression and then folding it back into a ConstantInt. 3526 // This is just a compile-time optimization. 3527 return getConstant( 3528 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3529 } 3530 3531 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3532 // Don't attempt to do anything other than create a SCEVUnknown object 3533 // here. createSCEV only calls getUnknown after checking for all other 3534 // interesting possibilities, and any other code that calls getUnknown 3535 // is doing so in order to hide a value from SCEV canonicalization. 3536 3537 FoldingSetNodeID ID; 3538 ID.AddInteger(scUnknown); 3539 ID.AddPointer(V); 3540 void *IP = nullptr; 3541 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3542 assert(cast<SCEVUnknown>(S)->getValue() == V && 3543 "Stale SCEVUnknown in uniquing map!"); 3544 return S; 3545 } 3546 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3547 FirstUnknown); 3548 FirstUnknown = cast<SCEVUnknown>(S); 3549 UniqueSCEVs.InsertNode(S, IP); 3550 return S; 3551 } 3552 3553 //===----------------------------------------------------------------------===// 3554 // Basic SCEV Analysis and PHI Idiom Recognition Code 3555 // 3556 3557 /// Test if values of the given type are analyzable within the SCEV 3558 /// framework. This primarily includes integer types, and it can optionally 3559 /// include pointer types if the ScalarEvolution class has access to 3560 /// target-specific information. 3561 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3562 // Integers and pointers are always SCEVable. 3563 return Ty->isIntOrPtrTy(); 3564 } 3565 3566 /// Return the size in bits of the specified type, for which isSCEVable must 3567 /// return true. 3568 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3569 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3570 if (Ty->isPointerTy()) 3571 return getDataLayout().getIndexTypeSizeInBits(Ty); 3572 return getDataLayout().getTypeSizeInBits(Ty); 3573 } 3574 3575 /// Return a type with the same bitwidth as the given type and which represents 3576 /// how SCEV will treat the given type, for which isSCEVable must return 3577 /// true. For pointer types, this is the pointer index sized integer type. 3578 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3579 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3580 3581 if (Ty->isIntegerTy()) 3582 return Ty; 3583 3584 // The only other support type is pointer. 3585 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3586 return getDataLayout().getIndexType(Ty); 3587 } 3588 3589 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3590 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3591 } 3592 3593 const SCEV *ScalarEvolution::getCouldNotCompute() { 3594 return CouldNotCompute.get(); 3595 } 3596 3597 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3598 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3599 auto *SU = dyn_cast<SCEVUnknown>(S); 3600 return SU && SU->getValue() == nullptr; 3601 }); 3602 3603 return !ContainsNulls; 3604 } 3605 3606 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3607 HasRecMapType::iterator I = HasRecMap.find(S); 3608 if (I != HasRecMap.end()) 3609 return I->second; 3610 3611 bool FoundAddRec = 3612 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3613 HasRecMap.insert({S, FoundAddRec}); 3614 return FoundAddRec; 3615 } 3616 3617 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3618 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3619 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3620 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3621 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3622 if (!Add) 3623 return {S, nullptr}; 3624 3625 if (Add->getNumOperands() != 2) 3626 return {S, nullptr}; 3627 3628 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 3629 if (!ConstOp) 3630 return {S, nullptr}; 3631 3632 return {Add->getOperand(1), ConstOp->getValue()}; 3633 } 3634 3635 /// Return the ValueOffsetPair set for \p S. \p S can be represented 3636 /// by the value and offset from any ValueOffsetPair in the set. 3637 SetVector<ScalarEvolution::ValueOffsetPair> * 3638 ScalarEvolution::getSCEVValues(const SCEV *S) { 3639 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 3640 if (SI == ExprValueMap.end()) 3641 return nullptr; 3642 #ifndef NDEBUG 3643 if (VerifySCEVMap) { 3644 // Check there is no dangling Value in the set returned. 3645 for (const auto &VE : SI->second) 3646 assert(ValueExprMap.count(VE.first)); 3647 } 3648 #endif 3649 return &SI->second; 3650 } 3651 3652 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 3653 /// cannot be used separately. eraseValueFromMap should be used to remove 3654 /// V from ValueExprMap and ExprValueMap at the same time. 3655 void ScalarEvolution::eraseValueFromMap(Value *V) { 3656 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3657 if (I != ValueExprMap.end()) { 3658 const SCEV *S = I->second; 3659 // Remove {V, 0} from the set of ExprValueMap[S] 3660 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S)) 3661 SV->remove({V, nullptr}); 3662 3663 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 3664 const SCEV *Stripped; 3665 ConstantInt *Offset; 3666 std::tie(Stripped, Offset) = splitAddExpr(S); 3667 if (Offset != nullptr) { 3668 if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped)) 3669 SV->remove({V, Offset}); 3670 } 3671 ValueExprMap.erase(V); 3672 } 3673 } 3674 3675 /// Check whether value has nuw/nsw/exact set but SCEV does not. 3676 /// TODO: In reality it is better to check the poison recursively 3677 /// but this is better than nothing. 3678 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 3679 if (auto *I = dyn_cast<Instruction>(V)) { 3680 if (isa<OverflowingBinaryOperator>(I)) { 3681 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 3682 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 3683 return true; 3684 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 3685 return true; 3686 } 3687 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 3688 return true; 3689 } 3690 return false; 3691 } 3692 3693 /// Return an existing SCEV if it exists, otherwise analyze the expression and 3694 /// create a new one. 3695 const SCEV *ScalarEvolution::getSCEV(Value *V) { 3696 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3697 3698 const SCEV *S = getExistingSCEV(V); 3699 if (S == nullptr) { 3700 S = createSCEV(V); 3701 // During PHI resolution, it is possible to create two SCEVs for the same 3702 // V, so it is needed to double check whether V->S is inserted into 3703 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 3704 std::pair<ValueExprMapType::iterator, bool> Pair = 3705 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 3706 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 3707 ExprValueMap[S].insert({V, nullptr}); 3708 3709 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 3710 // ExprValueMap. 3711 const SCEV *Stripped = S; 3712 ConstantInt *Offset = nullptr; 3713 std::tie(Stripped, Offset) = splitAddExpr(S); 3714 // If stripped is SCEVUnknown, don't bother to save 3715 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 3716 // increase the complexity of the expansion code. 3717 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 3718 // because it may generate add/sub instead of GEP in SCEV expansion. 3719 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 3720 !isa<GetElementPtrInst>(V)) 3721 ExprValueMap[Stripped].insert({V, Offset}); 3722 } 3723 } 3724 return S; 3725 } 3726 3727 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 3728 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 3729 3730 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 3731 if (I != ValueExprMap.end()) { 3732 const SCEV *S = I->second; 3733 if (checkValidity(S)) 3734 return S; 3735 eraseValueFromMap(V); 3736 forgetMemoizedResults(S); 3737 } 3738 return nullptr; 3739 } 3740 3741 /// Return a SCEV corresponding to -V = -1*V 3742 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 3743 SCEV::NoWrapFlags Flags) { 3744 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3745 return getConstant( 3746 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 3747 3748 Type *Ty = V->getType(); 3749 Ty = getEffectiveSCEVType(Ty); 3750 return getMulExpr( 3751 V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags); 3752 } 3753 3754 /// If Expr computes ~A, return A else return nullptr 3755 static const SCEV *MatchNotExpr(const SCEV *Expr) { 3756 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 3757 if (!Add || Add->getNumOperands() != 2 || 3758 !Add->getOperand(0)->isAllOnesValue()) 3759 return nullptr; 3760 3761 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 3762 if (!AddRHS || AddRHS->getNumOperands() != 2 || 3763 !AddRHS->getOperand(0)->isAllOnesValue()) 3764 return nullptr; 3765 3766 return AddRHS->getOperand(1); 3767 } 3768 3769 /// Return a SCEV corresponding to ~V = -1-V 3770 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 3771 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 3772 return getConstant( 3773 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 3774 3775 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 3776 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 3777 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 3778 SmallVector<const SCEV *, 2> MatchedOperands; 3779 for (const SCEV *Operand : MME->operands()) { 3780 const SCEV *Matched = MatchNotExpr(Operand); 3781 if (!Matched) 3782 return (const SCEV *)nullptr; 3783 MatchedOperands.push_back(Matched); 3784 } 3785 return getMinMaxExpr( 3786 SCEVMinMaxExpr::negate(static_cast<SCEVTypes>(MME->getSCEVType())), 3787 MatchedOperands); 3788 }; 3789 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 3790 return Replaced; 3791 } 3792 3793 Type *Ty = V->getType(); 3794 Ty = getEffectiveSCEVType(Ty); 3795 const SCEV *AllOnes = 3796 getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))); 3797 return getMinusSCEV(AllOnes, V); 3798 } 3799 3800 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 3801 SCEV::NoWrapFlags Flags, 3802 unsigned Depth) { 3803 // Fast path: X - X --> 0. 3804 if (LHS == RHS) 3805 return getZero(LHS->getType()); 3806 3807 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 3808 // makes it so that we cannot make much use of NUW. 3809 auto AddFlags = SCEV::FlagAnyWrap; 3810 const bool RHSIsNotMinSigned = 3811 !getSignedRangeMin(RHS).isMinSignedValue(); 3812 if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) { 3813 // Let M be the minimum representable signed value. Then (-1)*RHS 3814 // signed-wraps if and only if RHS is M. That can happen even for 3815 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 3816 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 3817 // (-1)*RHS, we need to prove that RHS != M. 3818 // 3819 // If LHS is non-negative and we know that LHS - RHS does not 3820 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 3821 // either by proving that RHS > M or that LHS >= 0. 3822 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 3823 AddFlags = SCEV::FlagNSW; 3824 } 3825 } 3826 3827 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 3828 // RHS is NSW and LHS >= 0. 3829 // 3830 // The difficulty here is that the NSW flag may have been proven 3831 // relative to a loop that is to be found in a recurrence in LHS and 3832 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 3833 // larger scope than intended. 3834 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3835 3836 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 3837 } 3838 3839 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 3840 unsigned Depth) { 3841 Type *SrcTy = V->getType(); 3842 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3843 "Cannot truncate or zero extend with non-integer arguments!"); 3844 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3845 return V; // No conversion 3846 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3847 return getTruncateExpr(V, Ty, Depth); 3848 return getZeroExtendExpr(V, Ty, Depth); 3849 } 3850 3851 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 3852 unsigned Depth) { 3853 Type *SrcTy = V->getType(); 3854 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3855 "Cannot truncate or zero extend with non-integer arguments!"); 3856 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3857 return V; // No conversion 3858 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 3859 return getTruncateExpr(V, Ty, Depth); 3860 return getSignExtendExpr(V, Ty, Depth); 3861 } 3862 3863 const SCEV * 3864 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 3865 Type *SrcTy = V->getType(); 3866 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3867 "Cannot noop or zero extend with non-integer arguments!"); 3868 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3869 "getNoopOrZeroExtend cannot truncate!"); 3870 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3871 return V; // No conversion 3872 return getZeroExtendExpr(V, Ty); 3873 } 3874 3875 const SCEV * 3876 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 3877 Type *SrcTy = V->getType(); 3878 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3879 "Cannot noop or sign extend with non-integer arguments!"); 3880 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3881 "getNoopOrSignExtend cannot truncate!"); 3882 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3883 return V; // No conversion 3884 return getSignExtendExpr(V, Ty); 3885 } 3886 3887 const SCEV * 3888 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 3889 Type *SrcTy = V->getType(); 3890 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3891 "Cannot noop or any extend with non-integer arguments!"); 3892 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 3893 "getNoopOrAnyExtend cannot truncate!"); 3894 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3895 return V; // No conversion 3896 return getAnyExtendExpr(V, Ty); 3897 } 3898 3899 const SCEV * 3900 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 3901 Type *SrcTy = V->getType(); 3902 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 3903 "Cannot truncate or noop with non-integer arguments!"); 3904 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 3905 "getTruncateOrNoop cannot extend!"); 3906 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 3907 return V; // No conversion 3908 return getTruncateExpr(V, Ty); 3909 } 3910 3911 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 3912 const SCEV *RHS) { 3913 const SCEV *PromotedLHS = LHS; 3914 const SCEV *PromotedRHS = RHS; 3915 3916 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 3917 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 3918 else 3919 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 3920 3921 return getUMaxExpr(PromotedLHS, PromotedRHS); 3922 } 3923 3924 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 3925 const SCEV *RHS) { 3926 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3927 return getUMinFromMismatchedTypes(Ops); 3928 } 3929 3930 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 3931 SmallVectorImpl<const SCEV *> &Ops) { 3932 assert(!Ops.empty() && "At least one operand must be!"); 3933 // Trivial case. 3934 if (Ops.size() == 1) 3935 return Ops[0]; 3936 3937 // Find the max type first. 3938 Type *MaxType = nullptr; 3939 for (auto *S : Ops) 3940 if (MaxType) 3941 MaxType = getWiderType(MaxType, S->getType()); 3942 else 3943 MaxType = S->getType(); 3944 3945 // Extend all ops to max type. 3946 SmallVector<const SCEV *, 2> PromotedOps; 3947 for (auto *S : Ops) 3948 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 3949 3950 // Generate umin. 3951 return getUMinExpr(PromotedOps); 3952 } 3953 3954 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 3955 // A pointer operand may evaluate to a nonpointer expression, such as null. 3956 if (!V->getType()->isPointerTy()) 3957 return V; 3958 3959 while (true) { 3960 if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) { 3961 V = Cast->getOperand(); 3962 } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) { 3963 const SCEV *PtrOp = nullptr; 3964 for (const SCEV *NAryOp : NAry->operands()) { 3965 if (NAryOp->getType()->isPointerTy()) { 3966 // Cannot find the base of an expression with multiple pointer ops. 3967 if (PtrOp) 3968 return V; 3969 PtrOp = NAryOp; 3970 } 3971 } 3972 if (!PtrOp) // All operands were non-pointer. 3973 return V; 3974 V = PtrOp; 3975 } else // Not something we can look further into. 3976 return V; 3977 } 3978 } 3979 3980 /// Push users of the given Instruction onto the given Worklist. 3981 static void 3982 PushDefUseChildren(Instruction *I, 3983 SmallVectorImpl<Instruction *> &Worklist) { 3984 // Push the def-use children onto the Worklist stack. 3985 for (User *U : I->users()) 3986 Worklist.push_back(cast<Instruction>(U)); 3987 } 3988 3989 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 3990 SmallVector<Instruction *, 16> Worklist; 3991 PushDefUseChildren(PN, Worklist); 3992 3993 SmallPtrSet<Instruction *, 8> Visited; 3994 Visited.insert(PN); 3995 while (!Worklist.empty()) { 3996 Instruction *I = Worklist.pop_back_val(); 3997 if (!Visited.insert(I).second) 3998 continue; 3999 4000 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4001 if (It != ValueExprMap.end()) { 4002 const SCEV *Old = It->second; 4003 4004 // Short-circuit the def-use traversal if the symbolic name 4005 // ceases to appear in expressions. 4006 if (Old != SymName && !hasOperand(Old, SymName)) 4007 continue; 4008 4009 // SCEVUnknown for a PHI either means that it has an unrecognized 4010 // structure, it's a PHI that's in the progress of being computed 4011 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4012 // additional loop trip count information isn't going to change anything. 4013 // In the second case, createNodeForPHI will perform the necessary 4014 // updates on its own when it gets to that point. In the third, we do 4015 // want to forget the SCEVUnknown. 4016 if (!isa<PHINode>(I) || 4017 !isa<SCEVUnknown>(Old) || 4018 (I != PN && Old == SymName)) { 4019 eraseValueFromMap(It->first); 4020 forgetMemoizedResults(Old); 4021 } 4022 } 4023 4024 PushDefUseChildren(I, Worklist); 4025 } 4026 } 4027 4028 namespace { 4029 4030 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4031 /// expression in case its Loop is L. If it is not L then 4032 /// if IgnoreOtherLoops is true then use AddRec itself 4033 /// otherwise rewrite cannot be done. 4034 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4035 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4036 public: 4037 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4038 bool IgnoreOtherLoops = true) { 4039 SCEVInitRewriter Rewriter(L, SE); 4040 const SCEV *Result = Rewriter.visit(S); 4041 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4042 return SE.getCouldNotCompute(); 4043 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4044 ? SE.getCouldNotCompute() 4045 : Result; 4046 } 4047 4048 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4049 if (!SE.isLoopInvariant(Expr, L)) 4050 SeenLoopVariantSCEVUnknown = true; 4051 return Expr; 4052 } 4053 4054 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4055 // Only re-write AddRecExprs for this loop. 4056 if (Expr->getLoop() == L) 4057 return Expr->getStart(); 4058 SeenOtherLoops = true; 4059 return Expr; 4060 } 4061 4062 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4063 4064 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4065 4066 private: 4067 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4068 : SCEVRewriteVisitor(SE), L(L) {} 4069 4070 const Loop *L; 4071 bool SeenLoopVariantSCEVUnknown = false; 4072 bool SeenOtherLoops = false; 4073 }; 4074 4075 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4076 /// increment expression in case its Loop is L. If it is not L then 4077 /// use AddRec itself. 4078 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4079 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4080 public: 4081 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4082 SCEVPostIncRewriter Rewriter(L, SE); 4083 const SCEV *Result = Rewriter.visit(S); 4084 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4085 ? SE.getCouldNotCompute() 4086 : Result; 4087 } 4088 4089 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4090 if (!SE.isLoopInvariant(Expr, L)) 4091 SeenLoopVariantSCEVUnknown = true; 4092 return Expr; 4093 } 4094 4095 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4096 // Only re-write AddRecExprs for this loop. 4097 if (Expr->getLoop() == L) 4098 return Expr->getPostIncExpr(SE); 4099 SeenOtherLoops = true; 4100 return Expr; 4101 } 4102 4103 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4104 4105 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4106 4107 private: 4108 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4109 : SCEVRewriteVisitor(SE), L(L) {} 4110 4111 const Loop *L; 4112 bool SeenLoopVariantSCEVUnknown = false; 4113 bool SeenOtherLoops = false; 4114 }; 4115 4116 /// This class evaluates the compare condition by matching it against the 4117 /// condition of loop latch. If there is a match we assume a true value 4118 /// for the condition while building SCEV nodes. 4119 class SCEVBackedgeConditionFolder 4120 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4121 public: 4122 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4123 ScalarEvolution &SE) { 4124 bool IsPosBECond = false; 4125 Value *BECond = nullptr; 4126 if (BasicBlock *Latch = L->getLoopLatch()) { 4127 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4128 if (BI && BI->isConditional()) { 4129 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4130 "Both outgoing branches should not target same header!"); 4131 BECond = BI->getCondition(); 4132 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4133 } else { 4134 return S; 4135 } 4136 } 4137 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4138 return Rewriter.visit(S); 4139 } 4140 4141 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4142 const SCEV *Result = Expr; 4143 bool InvariantF = SE.isLoopInvariant(Expr, L); 4144 4145 if (!InvariantF) { 4146 Instruction *I = cast<Instruction>(Expr->getValue()); 4147 switch (I->getOpcode()) { 4148 case Instruction::Select: { 4149 SelectInst *SI = cast<SelectInst>(I); 4150 Optional<const SCEV *> Res = 4151 compareWithBackedgeCondition(SI->getCondition()); 4152 if (Res.hasValue()) { 4153 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4154 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4155 } 4156 break; 4157 } 4158 default: { 4159 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4160 if (Res.hasValue()) 4161 Result = Res.getValue(); 4162 break; 4163 } 4164 } 4165 } 4166 return Result; 4167 } 4168 4169 private: 4170 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4171 bool IsPosBECond, ScalarEvolution &SE) 4172 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4173 IsPositiveBECond(IsPosBECond) {} 4174 4175 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4176 4177 const Loop *L; 4178 /// Loop back condition. 4179 Value *BackedgeCond = nullptr; 4180 /// Set to true if loop back is on positive branch condition. 4181 bool IsPositiveBECond; 4182 }; 4183 4184 Optional<const SCEV *> 4185 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4186 4187 // If value matches the backedge condition for loop latch, 4188 // then return a constant evolution node based on loopback 4189 // branch taken. 4190 if (BackedgeCond == IC) 4191 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4192 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4193 return None; 4194 } 4195 4196 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4197 public: 4198 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4199 ScalarEvolution &SE) { 4200 SCEVShiftRewriter Rewriter(L, SE); 4201 const SCEV *Result = Rewriter.visit(S); 4202 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4203 } 4204 4205 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4206 // Only allow AddRecExprs for this loop. 4207 if (!SE.isLoopInvariant(Expr, L)) 4208 Valid = false; 4209 return Expr; 4210 } 4211 4212 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4213 if (Expr->getLoop() == L && Expr->isAffine()) 4214 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4215 Valid = false; 4216 return Expr; 4217 } 4218 4219 bool isValid() { return Valid; } 4220 4221 private: 4222 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4223 : SCEVRewriteVisitor(SE), L(L) {} 4224 4225 const Loop *L; 4226 bool Valid = true; 4227 }; 4228 4229 } // end anonymous namespace 4230 4231 SCEV::NoWrapFlags 4232 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4233 if (!AR->isAffine()) 4234 return SCEV::FlagAnyWrap; 4235 4236 using OBO = OverflowingBinaryOperator; 4237 4238 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4239 4240 if (!AR->hasNoSignedWrap()) { 4241 ConstantRange AddRecRange = getSignedRange(AR); 4242 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4243 4244 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4245 Instruction::Add, IncRange, OBO::NoSignedWrap); 4246 if (NSWRegion.contains(AddRecRange)) 4247 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4248 } 4249 4250 if (!AR->hasNoUnsignedWrap()) { 4251 ConstantRange AddRecRange = getUnsignedRange(AR); 4252 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4253 4254 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4255 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4256 if (NUWRegion.contains(AddRecRange)) 4257 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4258 } 4259 4260 return Result; 4261 } 4262 4263 namespace { 4264 4265 /// Represents an abstract binary operation. This may exist as a 4266 /// normal instruction or constant expression, or may have been 4267 /// derived from an expression tree. 4268 struct BinaryOp { 4269 unsigned Opcode; 4270 Value *LHS; 4271 Value *RHS; 4272 bool IsNSW = false; 4273 bool IsNUW = false; 4274 4275 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4276 /// constant expression. 4277 Operator *Op = nullptr; 4278 4279 explicit BinaryOp(Operator *Op) 4280 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4281 Op(Op) { 4282 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4283 IsNSW = OBO->hasNoSignedWrap(); 4284 IsNUW = OBO->hasNoUnsignedWrap(); 4285 } 4286 } 4287 4288 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4289 bool IsNUW = false) 4290 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4291 }; 4292 4293 } // end anonymous namespace 4294 4295 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4296 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4297 auto *Op = dyn_cast<Operator>(V); 4298 if (!Op) 4299 return None; 4300 4301 // Implementation detail: all the cleverness here should happen without 4302 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4303 // SCEV expressions when possible, and we should not break that. 4304 4305 switch (Op->getOpcode()) { 4306 case Instruction::Add: 4307 case Instruction::Sub: 4308 case Instruction::Mul: 4309 case Instruction::UDiv: 4310 case Instruction::URem: 4311 case Instruction::And: 4312 case Instruction::Or: 4313 case Instruction::AShr: 4314 case Instruction::Shl: 4315 return BinaryOp(Op); 4316 4317 case Instruction::Xor: 4318 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4319 // If the RHS of the xor is a signmask, then this is just an add. 4320 // Instcombine turns add of signmask into xor as a strength reduction step. 4321 if (RHSC->getValue().isSignMask()) 4322 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4323 return BinaryOp(Op); 4324 4325 case Instruction::LShr: 4326 // Turn logical shift right of a constant into a unsigned divide. 4327 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4328 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4329 4330 // If the shift count is not less than the bitwidth, the result of 4331 // the shift is undefined. Don't try to analyze it, because the 4332 // resolution chosen here may differ from the resolution chosen in 4333 // other parts of the compiler. 4334 if (SA->getValue().ult(BitWidth)) { 4335 Constant *X = 4336 ConstantInt::get(SA->getContext(), 4337 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4338 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4339 } 4340 } 4341 return BinaryOp(Op); 4342 4343 case Instruction::ExtractValue: { 4344 auto *EVI = cast<ExtractValueInst>(Op); 4345 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4346 break; 4347 4348 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4349 if (!WO) 4350 break; 4351 4352 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4353 bool Signed = WO->isSigned(); 4354 // TODO: Should add nuw/nsw flags for mul as well. 4355 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4356 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4357 4358 // Now that we know that all uses of the arithmetic-result component of 4359 // CI are guarded by the overflow check, we can go ahead and pretend 4360 // that the arithmetic is non-overflowing. 4361 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4362 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4363 } 4364 4365 default: 4366 break; 4367 } 4368 4369 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4370 // semantics as a Sub, return a binary sub expression. 4371 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4372 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4373 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4374 4375 return None; 4376 } 4377 4378 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4379 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4380 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4381 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4382 /// follows one of the following patterns: 4383 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4384 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4385 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4386 /// we return the type of the truncation operation, and indicate whether the 4387 /// truncated type should be treated as signed/unsigned by setting 4388 /// \p Signed to true/false, respectively. 4389 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4390 bool &Signed, ScalarEvolution &SE) { 4391 // The case where Op == SymbolicPHI (that is, with no type conversions on 4392 // the way) is handled by the regular add recurrence creating logic and 4393 // would have already been triggered in createAddRecForPHI. Reaching it here 4394 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4395 // because one of the other operands of the SCEVAddExpr updating this PHI is 4396 // not invariant). 4397 // 4398 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4399 // this case predicates that allow us to prove that Op == SymbolicPHI will 4400 // be added. 4401 if (Op == SymbolicPHI) 4402 return nullptr; 4403 4404 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4405 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4406 if (SourceBits != NewBits) 4407 return nullptr; 4408 4409 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4410 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4411 if (!SExt && !ZExt) 4412 return nullptr; 4413 const SCEVTruncateExpr *Trunc = 4414 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4415 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4416 if (!Trunc) 4417 return nullptr; 4418 const SCEV *X = Trunc->getOperand(); 4419 if (X != SymbolicPHI) 4420 return nullptr; 4421 Signed = SExt != nullptr; 4422 return Trunc->getType(); 4423 } 4424 4425 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4426 if (!PN->getType()->isIntegerTy()) 4427 return nullptr; 4428 const Loop *L = LI.getLoopFor(PN->getParent()); 4429 if (!L || L->getHeader() != PN->getParent()) 4430 return nullptr; 4431 return L; 4432 } 4433 4434 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4435 // computation that updates the phi follows the following pattern: 4436 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4437 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4438 // If so, try to see if it can be rewritten as an AddRecExpr under some 4439 // Predicates. If successful, return them as a pair. Also cache the results 4440 // of the analysis. 4441 // 4442 // Example usage scenario: 4443 // Say the Rewriter is called for the following SCEV: 4444 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4445 // where: 4446 // %X = phi i64 (%Start, %BEValue) 4447 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4448 // and call this function with %SymbolicPHI = %X. 4449 // 4450 // The analysis will find that the value coming around the backedge has 4451 // the following SCEV: 4452 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4453 // Upon concluding that this matches the desired pattern, the function 4454 // will return the pair {NewAddRec, SmallPredsVec} where: 4455 // NewAddRec = {%Start,+,%Step} 4456 // SmallPredsVec = {P1, P2, P3} as follows: 4457 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4458 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4459 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4460 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4461 // under the predicates {P1,P2,P3}. 4462 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4463 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4464 // 4465 // TODO's: 4466 // 4467 // 1) Extend the Induction descriptor to also support inductions that involve 4468 // casts: When needed (namely, when we are called in the context of the 4469 // vectorizer induction analysis), a Set of cast instructions will be 4470 // populated by this method, and provided back to isInductionPHI. This is 4471 // needed to allow the vectorizer to properly record them to be ignored by 4472 // the cost model and to avoid vectorizing them (otherwise these casts, 4473 // which are redundant under the runtime overflow checks, will be 4474 // vectorized, which can be costly). 4475 // 4476 // 2) Support additional induction/PHISCEV patterns: We also want to support 4477 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4478 // after the induction update operation (the induction increment): 4479 // 4480 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4481 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4482 // 4483 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4484 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4485 // 4486 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4487 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4488 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4489 SmallVector<const SCEVPredicate *, 3> Predicates; 4490 4491 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 4492 // return an AddRec expression under some predicate. 4493 4494 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4495 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4496 assert(L && "Expecting an integer loop header phi"); 4497 4498 // The loop may have multiple entrances or multiple exits; we can analyze 4499 // this phi as an addrec if it has a unique entry value and a unique 4500 // backedge value. 4501 Value *BEValueV = nullptr, *StartValueV = nullptr; 4502 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4503 Value *V = PN->getIncomingValue(i); 4504 if (L->contains(PN->getIncomingBlock(i))) { 4505 if (!BEValueV) { 4506 BEValueV = V; 4507 } else if (BEValueV != V) { 4508 BEValueV = nullptr; 4509 break; 4510 } 4511 } else if (!StartValueV) { 4512 StartValueV = V; 4513 } else if (StartValueV != V) { 4514 StartValueV = nullptr; 4515 break; 4516 } 4517 } 4518 if (!BEValueV || !StartValueV) 4519 return None; 4520 4521 const SCEV *BEValue = getSCEV(BEValueV); 4522 4523 // If the value coming around the backedge is an add with the symbolic 4524 // value we just inserted, possibly with casts that we can ignore under 4525 // an appropriate runtime guard, then we found a simple induction variable! 4526 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 4527 if (!Add) 4528 return None; 4529 4530 // If there is a single occurrence of the symbolic value, possibly 4531 // casted, replace it with a recurrence. 4532 unsigned FoundIndex = Add->getNumOperands(); 4533 Type *TruncTy = nullptr; 4534 bool Signed; 4535 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4536 if ((TruncTy = 4537 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 4538 if (FoundIndex == e) { 4539 FoundIndex = i; 4540 break; 4541 } 4542 4543 if (FoundIndex == Add->getNumOperands()) 4544 return None; 4545 4546 // Create an add with everything but the specified operand. 4547 SmallVector<const SCEV *, 8> Ops; 4548 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4549 if (i != FoundIndex) 4550 Ops.push_back(Add->getOperand(i)); 4551 const SCEV *Accum = getAddExpr(Ops); 4552 4553 // The runtime checks will not be valid if the step amount is 4554 // varying inside the loop. 4555 if (!isLoopInvariant(Accum, L)) 4556 return None; 4557 4558 // *** Part2: Create the predicates 4559 4560 // Analysis was successful: we have a phi-with-cast pattern for which we 4561 // can return an AddRec expression under the following predicates: 4562 // 4563 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 4564 // fits within the truncated type (does not overflow) for i = 0 to n-1. 4565 // P2: An Equal predicate that guarantees that 4566 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 4567 // P3: An Equal predicate that guarantees that 4568 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 4569 // 4570 // As we next prove, the above predicates guarantee that: 4571 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 4572 // 4573 // 4574 // More formally, we want to prove that: 4575 // Expr(i+1) = Start + (i+1) * Accum 4576 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4577 // 4578 // Given that: 4579 // 1) Expr(0) = Start 4580 // 2) Expr(1) = Start + Accum 4581 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 4582 // 3) Induction hypothesis (step i): 4583 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 4584 // 4585 // Proof: 4586 // Expr(i+1) = 4587 // = Start + (i+1)*Accum 4588 // = (Start + i*Accum) + Accum 4589 // = Expr(i) + Accum 4590 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 4591 // :: from step i 4592 // 4593 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 4594 // 4595 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 4596 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 4597 // + Accum :: from P3 4598 // 4599 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 4600 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 4601 // 4602 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 4603 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 4604 // 4605 // By induction, the same applies to all iterations 1<=i<n: 4606 // 4607 4608 // Create a truncated addrec for which we will add a no overflow check (P1). 4609 const SCEV *StartVal = getSCEV(StartValueV); 4610 const SCEV *PHISCEV = 4611 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 4612 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 4613 4614 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 4615 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 4616 // will be constant. 4617 // 4618 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 4619 // add P1. 4620 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 4621 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 4622 Signed ? SCEVWrapPredicate::IncrementNSSW 4623 : SCEVWrapPredicate::IncrementNUSW; 4624 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 4625 Predicates.push_back(AddRecPred); 4626 } 4627 4628 // Create the Equal Predicates P2,P3: 4629 4630 // It is possible that the predicates P2 and/or P3 are computable at 4631 // compile time due to StartVal and/or Accum being constants. 4632 // If either one is, then we can check that now and escape if either P2 4633 // or P3 is false. 4634 4635 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 4636 // for each of StartVal and Accum 4637 auto getExtendedExpr = [&](const SCEV *Expr, 4638 bool CreateSignExtend) -> const SCEV * { 4639 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 4640 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 4641 const SCEV *ExtendedExpr = 4642 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 4643 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 4644 return ExtendedExpr; 4645 }; 4646 4647 // Given: 4648 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 4649 // = getExtendedExpr(Expr) 4650 // Determine whether the predicate P: Expr == ExtendedExpr 4651 // is known to be false at compile time 4652 auto PredIsKnownFalse = [&](const SCEV *Expr, 4653 const SCEV *ExtendedExpr) -> bool { 4654 return Expr != ExtendedExpr && 4655 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 4656 }; 4657 4658 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 4659 if (PredIsKnownFalse(StartVal, StartExtended)) { 4660 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 4661 return None; 4662 } 4663 4664 // The Step is always Signed (because the overflow checks are either 4665 // NSSW or NUSW) 4666 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 4667 if (PredIsKnownFalse(Accum, AccumExtended)) { 4668 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 4669 return None; 4670 } 4671 4672 auto AppendPredicate = [&](const SCEV *Expr, 4673 const SCEV *ExtendedExpr) -> void { 4674 if (Expr != ExtendedExpr && 4675 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 4676 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 4677 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 4678 Predicates.push_back(Pred); 4679 } 4680 }; 4681 4682 AppendPredicate(StartVal, StartExtended); 4683 AppendPredicate(Accum, AccumExtended); 4684 4685 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 4686 // which the casts had been folded away. The caller can rewrite SymbolicPHI 4687 // into NewAR if it will also add the runtime overflow checks specified in 4688 // Predicates. 4689 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 4690 4691 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 4692 std::make_pair(NewAR, Predicates); 4693 // Remember the result of the analysis for this SCEV at this locayyytion. 4694 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 4695 return PredRewrite; 4696 } 4697 4698 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4699 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 4700 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 4701 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 4702 if (!L) 4703 return None; 4704 4705 // Check to see if we already analyzed this PHI. 4706 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 4707 if (I != PredicatedSCEVRewrites.end()) { 4708 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 4709 I->second; 4710 // Analysis was done before and failed to create an AddRec: 4711 if (Rewrite.first == SymbolicPHI) 4712 return None; 4713 // Analysis was done before and succeeded to create an AddRec under 4714 // a predicate: 4715 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 4716 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 4717 return Rewrite; 4718 } 4719 4720 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4721 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 4722 4723 // Record in the cache that the analysis failed 4724 if (!Rewrite) { 4725 SmallVector<const SCEVPredicate *, 3> Predicates; 4726 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 4727 return None; 4728 } 4729 4730 return Rewrite; 4731 } 4732 4733 // FIXME: This utility is currently required because the Rewriter currently 4734 // does not rewrite this expression: 4735 // {0, +, (sext ix (trunc iy to ix) to iy)} 4736 // into {0, +, %step}, 4737 // even when the following Equal predicate exists: 4738 // "%step == (sext ix (trunc iy to ix) to iy)". 4739 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 4740 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 4741 if (AR1 == AR2) 4742 return true; 4743 4744 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 4745 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 4746 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 4747 return false; 4748 return true; 4749 }; 4750 4751 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 4752 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 4753 return false; 4754 return true; 4755 } 4756 4757 /// A helper function for createAddRecFromPHI to handle simple cases. 4758 /// 4759 /// This function tries to find an AddRec expression for the simplest (yet most 4760 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 4761 /// If it fails, createAddRecFromPHI will use a more general, but slow, 4762 /// technique for finding the AddRec expression. 4763 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 4764 Value *BEValueV, 4765 Value *StartValueV) { 4766 const Loop *L = LI.getLoopFor(PN->getParent()); 4767 assert(L && L->getHeader() == PN->getParent()); 4768 assert(BEValueV && StartValueV); 4769 4770 auto BO = MatchBinaryOp(BEValueV, DT); 4771 if (!BO) 4772 return nullptr; 4773 4774 if (BO->Opcode != Instruction::Add) 4775 return nullptr; 4776 4777 const SCEV *Accum = nullptr; 4778 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 4779 Accum = getSCEV(BO->RHS); 4780 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 4781 Accum = getSCEV(BO->LHS); 4782 4783 if (!Accum) 4784 return nullptr; 4785 4786 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4787 if (BO->IsNUW) 4788 Flags = setFlags(Flags, SCEV::FlagNUW); 4789 if (BO->IsNSW) 4790 Flags = setFlags(Flags, SCEV::FlagNSW); 4791 4792 const SCEV *StartVal = getSCEV(StartValueV); 4793 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4794 4795 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4796 4797 // We can add Flags to the post-inc expression only if we 4798 // know that it is *undefined behavior* for BEValueV to 4799 // overflow. 4800 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4801 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4802 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4803 4804 return PHISCEV; 4805 } 4806 4807 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 4808 const Loop *L = LI.getLoopFor(PN->getParent()); 4809 if (!L || L->getHeader() != PN->getParent()) 4810 return nullptr; 4811 4812 // The loop may have multiple entrances or multiple exits; we can analyze 4813 // this phi as an addrec if it has a unique entry value and a unique 4814 // backedge value. 4815 Value *BEValueV = nullptr, *StartValueV = nullptr; 4816 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 4817 Value *V = PN->getIncomingValue(i); 4818 if (L->contains(PN->getIncomingBlock(i))) { 4819 if (!BEValueV) { 4820 BEValueV = V; 4821 } else if (BEValueV != V) { 4822 BEValueV = nullptr; 4823 break; 4824 } 4825 } else if (!StartValueV) { 4826 StartValueV = V; 4827 } else if (StartValueV != V) { 4828 StartValueV = nullptr; 4829 break; 4830 } 4831 } 4832 if (!BEValueV || !StartValueV) 4833 return nullptr; 4834 4835 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 4836 "PHI node already processed?"); 4837 4838 // First, try to find AddRec expression without creating a fictituos symbolic 4839 // value for PN. 4840 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 4841 return S; 4842 4843 // Handle PHI node value symbolically. 4844 const SCEV *SymbolicName = getUnknown(PN); 4845 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 4846 4847 // Using this symbolic name for the PHI, analyze the value coming around 4848 // the back-edge. 4849 const SCEV *BEValue = getSCEV(BEValueV); 4850 4851 // NOTE: If BEValue is loop invariant, we know that the PHI node just 4852 // has a special value for the first iteration of the loop. 4853 4854 // If the value coming around the backedge is an add with the symbolic 4855 // value we just inserted, then we found a simple induction variable! 4856 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 4857 // If there is a single occurrence of the symbolic value, replace it 4858 // with a recurrence. 4859 unsigned FoundIndex = Add->getNumOperands(); 4860 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4861 if (Add->getOperand(i) == SymbolicName) 4862 if (FoundIndex == e) { 4863 FoundIndex = i; 4864 break; 4865 } 4866 4867 if (FoundIndex != Add->getNumOperands()) { 4868 // Create an add with everything but the specified operand. 4869 SmallVector<const SCEV *, 8> Ops; 4870 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 4871 if (i != FoundIndex) 4872 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 4873 L, *this)); 4874 const SCEV *Accum = getAddExpr(Ops); 4875 4876 // This is not a valid addrec if the step amount is varying each 4877 // loop iteration, but is not itself an addrec in this loop. 4878 if (isLoopInvariant(Accum, L) || 4879 (isa<SCEVAddRecExpr>(Accum) && 4880 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 4881 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 4882 4883 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 4884 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 4885 if (BO->IsNUW) 4886 Flags = setFlags(Flags, SCEV::FlagNUW); 4887 if (BO->IsNSW) 4888 Flags = setFlags(Flags, SCEV::FlagNSW); 4889 } 4890 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 4891 // If the increment is an inbounds GEP, then we know the address 4892 // space cannot be wrapped around. We cannot make any guarantee 4893 // about signed or unsigned overflow because pointers are 4894 // unsigned but we may have a negative index from the base 4895 // pointer. We can guarantee that no unsigned wrap occurs if the 4896 // indices form a positive value. 4897 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 4898 Flags = setFlags(Flags, SCEV::FlagNW); 4899 4900 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 4901 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 4902 Flags = setFlags(Flags, SCEV::FlagNUW); 4903 } 4904 4905 // We cannot transfer nuw and nsw flags from subtraction 4906 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 4907 // for instance. 4908 } 4909 4910 const SCEV *StartVal = getSCEV(StartValueV); 4911 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 4912 4913 // Okay, for the entire analysis of this edge we assumed the PHI 4914 // to be symbolic. We now need to go back and purge all of the 4915 // entries for the scalars that use the symbolic expression. 4916 forgetSymbolicName(PN, SymbolicName); 4917 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 4918 4919 // We can add Flags to the post-inc expression only if we 4920 // know that it is *undefined behavior* for BEValueV to 4921 // overflow. 4922 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 4923 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 4924 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 4925 4926 return PHISCEV; 4927 } 4928 } 4929 } else { 4930 // Otherwise, this could be a loop like this: 4931 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 4932 // In this case, j = {1,+,1} and BEValue is j. 4933 // Because the other in-value of i (0) fits the evolution of BEValue 4934 // i really is an addrec evolution. 4935 // 4936 // We can generalize this saying that i is the shifted value of BEValue 4937 // by one iteration: 4938 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 4939 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 4940 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 4941 if (Shifted != getCouldNotCompute() && 4942 Start != getCouldNotCompute()) { 4943 const SCEV *StartVal = getSCEV(StartValueV); 4944 if (Start == StartVal) { 4945 // Okay, for the entire analysis of this edge we assumed the PHI 4946 // to be symbolic. We now need to go back and purge all of the 4947 // entries for the scalars that use the symbolic expression. 4948 forgetSymbolicName(PN, SymbolicName); 4949 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 4950 return Shifted; 4951 } 4952 } 4953 } 4954 4955 // Remove the temporary PHI node SCEV that has been inserted while intending 4956 // to create an AddRecExpr for this PHI node. We can not keep this temporary 4957 // as it will prevent later (possibly simpler) SCEV expressions to be added 4958 // to the ValueExprMap. 4959 eraseValueFromMap(PN); 4960 4961 return nullptr; 4962 } 4963 4964 // Checks if the SCEV S is available at BB. S is considered available at BB 4965 // if S can be materialized at BB without introducing a fault. 4966 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 4967 BasicBlock *BB) { 4968 struct CheckAvailable { 4969 bool TraversalDone = false; 4970 bool Available = true; 4971 4972 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 4973 BasicBlock *BB = nullptr; 4974 DominatorTree &DT; 4975 4976 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 4977 : L(L), BB(BB), DT(DT) {} 4978 4979 bool setUnavailable() { 4980 TraversalDone = true; 4981 Available = false; 4982 return false; 4983 } 4984 4985 bool follow(const SCEV *S) { 4986 switch (S->getSCEVType()) { 4987 case scConstant: case scTruncate: case scZeroExtend: case scSignExtend: 4988 case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr: 4989 case scUMinExpr: 4990 case scSMinExpr: 4991 // These expressions are available if their operand(s) is/are. 4992 return true; 4993 4994 case scAddRecExpr: { 4995 // We allow add recurrences that are on the loop BB is in, or some 4996 // outer loop. This guarantees availability because the value of the 4997 // add recurrence at BB is simply the "current" value of the induction 4998 // variable. We can relax this in the future; for instance an add 4999 // recurrence on a sibling dominating loop is also available at BB. 5000 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5001 if (L && (ARLoop == L || ARLoop->contains(L))) 5002 return true; 5003 5004 return setUnavailable(); 5005 } 5006 5007 case scUnknown: { 5008 // For SCEVUnknown, we check for simple dominance. 5009 const auto *SU = cast<SCEVUnknown>(S); 5010 Value *V = SU->getValue(); 5011 5012 if (isa<Argument>(V)) 5013 return false; 5014 5015 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5016 return false; 5017 5018 return setUnavailable(); 5019 } 5020 5021 case scUDivExpr: 5022 case scCouldNotCompute: 5023 // We do not try to smart about these at all. 5024 return setUnavailable(); 5025 } 5026 llvm_unreachable("switch should be fully covered!"); 5027 } 5028 5029 bool isDone() { return TraversalDone; } 5030 }; 5031 5032 CheckAvailable CA(L, BB, DT); 5033 SCEVTraversal<CheckAvailable> ST(CA); 5034 5035 ST.visitAll(S); 5036 return CA.Available; 5037 } 5038 5039 // Try to match a control flow sequence that branches out at BI and merges back 5040 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5041 // match. 5042 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5043 Value *&C, Value *&LHS, Value *&RHS) { 5044 C = BI->getCondition(); 5045 5046 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5047 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5048 5049 if (!LeftEdge.isSingleEdge()) 5050 return false; 5051 5052 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5053 5054 Use &LeftUse = Merge->getOperandUse(0); 5055 Use &RightUse = Merge->getOperandUse(1); 5056 5057 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5058 LHS = LeftUse; 5059 RHS = RightUse; 5060 return true; 5061 } 5062 5063 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5064 LHS = RightUse; 5065 RHS = LeftUse; 5066 return true; 5067 } 5068 5069 return false; 5070 } 5071 5072 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5073 auto IsReachable = 5074 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5075 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5076 const Loop *L = LI.getLoopFor(PN->getParent()); 5077 5078 // We don't want to break LCSSA, even in a SCEV expression tree. 5079 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5080 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5081 return nullptr; 5082 5083 // Try to match 5084 // 5085 // br %cond, label %left, label %right 5086 // left: 5087 // br label %merge 5088 // right: 5089 // br label %merge 5090 // merge: 5091 // V = phi [ %x, %left ], [ %y, %right ] 5092 // 5093 // as "select %cond, %x, %y" 5094 5095 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5096 assert(IDom && "At least the entry block should dominate PN"); 5097 5098 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5099 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5100 5101 if (BI && BI->isConditional() && 5102 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5103 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5104 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5105 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5106 } 5107 5108 return nullptr; 5109 } 5110 5111 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5112 if (const SCEV *S = createAddRecFromPHI(PN)) 5113 return S; 5114 5115 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5116 return S; 5117 5118 // If the PHI has a single incoming value, follow that value, unless the 5119 // PHI's incoming blocks are in a different loop, in which case doing so 5120 // risks breaking LCSSA form. Instcombine would normally zap these, but 5121 // it doesn't have DominatorTree information, so it may miss cases. 5122 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5123 if (LI.replacementPreservesLCSSAForm(PN, V)) 5124 return getSCEV(V); 5125 5126 // If it's not a loop phi, we can't handle it yet. 5127 return getUnknown(PN); 5128 } 5129 5130 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5131 Value *Cond, 5132 Value *TrueVal, 5133 Value *FalseVal) { 5134 // Handle "constant" branch or select. This can occur for instance when a 5135 // loop pass transforms an inner loop and moves on to process the outer loop. 5136 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5137 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5138 5139 // Try to match some simple smax or umax patterns. 5140 auto *ICI = dyn_cast<ICmpInst>(Cond); 5141 if (!ICI) 5142 return getUnknown(I); 5143 5144 Value *LHS = ICI->getOperand(0); 5145 Value *RHS = ICI->getOperand(1); 5146 5147 switch (ICI->getPredicate()) { 5148 case ICmpInst::ICMP_SLT: 5149 case ICmpInst::ICMP_SLE: 5150 std::swap(LHS, RHS); 5151 LLVM_FALLTHROUGH; 5152 case ICmpInst::ICMP_SGT: 5153 case ICmpInst::ICMP_SGE: 5154 // a >s b ? a+x : b+x -> smax(a, b)+x 5155 // a >s b ? b+x : a+x -> smin(a, b)+x 5156 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5157 const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType()); 5158 const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType()); 5159 const SCEV *LA = getSCEV(TrueVal); 5160 const SCEV *RA = getSCEV(FalseVal); 5161 const SCEV *LDiff = getMinusSCEV(LA, LS); 5162 const SCEV *RDiff = getMinusSCEV(RA, RS); 5163 if (LDiff == RDiff) 5164 return getAddExpr(getSMaxExpr(LS, RS), LDiff); 5165 LDiff = getMinusSCEV(LA, RS); 5166 RDiff = getMinusSCEV(RA, LS); 5167 if (LDiff == RDiff) 5168 return getAddExpr(getSMinExpr(LS, RS), LDiff); 5169 } 5170 break; 5171 case ICmpInst::ICMP_ULT: 5172 case ICmpInst::ICMP_ULE: 5173 std::swap(LHS, RHS); 5174 LLVM_FALLTHROUGH; 5175 case ICmpInst::ICMP_UGT: 5176 case ICmpInst::ICMP_UGE: 5177 // a >u b ? a+x : b+x -> umax(a, b)+x 5178 // a >u b ? b+x : a+x -> umin(a, b)+x 5179 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5180 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5181 const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType()); 5182 const SCEV *LA = getSCEV(TrueVal); 5183 const SCEV *RA = getSCEV(FalseVal); 5184 const SCEV *LDiff = getMinusSCEV(LA, LS); 5185 const SCEV *RDiff = getMinusSCEV(RA, RS); 5186 if (LDiff == RDiff) 5187 return getAddExpr(getUMaxExpr(LS, RS), LDiff); 5188 LDiff = getMinusSCEV(LA, RS); 5189 RDiff = getMinusSCEV(RA, LS); 5190 if (LDiff == RDiff) 5191 return getAddExpr(getUMinExpr(LS, RS), LDiff); 5192 } 5193 break; 5194 case ICmpInst::ICMP_NE: 5195 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5196 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5197 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5198 const SCEV *One = getOne(I->getType()); 5199 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5200 const SCEV *LA = getSCEV(TrueVal); 5201 const SCEV *RA = getSCEV(FalseVal); 5202 const SCEV *LDiff = getMinusSCEV(LA, LS); 5203 const SCEV *RDiff = getMinusSCEV(RA, One); 5204 if (LDiff == RDiff) 5205 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5206 } 5207 break; 5208 case ICmpInst::ICMP_EQ: 5209 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5210 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5211 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5212 const SCEV *One = getOne(I->getType()); 5213 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5214 const SCEV *LA = getSCEV(TrueVal); 5215 const SCEV *RA = getSCEV(FalseVal); 5216 const SCEV *LDiff = getMinusSCEV(LA, One); 5217 const SCEV *RDiff = getMinusSCEV(RA, LS); 5218 if (LDiff == RDiff) 5219 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5220 } 5221 break; 5222 default: 5223 break; 5224 } 5225 5226 return getUnknown(I); 5227 } 5228 5229 /// Expand GEP instructions into add and multiply operations. This allows them 5230 /// to be analyzed by regular SCEV code. 5231 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5232 // Don't attempt to analyze GEPs over unsized objects. 5233 if (!GEP->getSourceElementType()->isSized()) 5234 return getUnknown(GEP); 5235 5236 SmallVector<const SCEV *, 4> IndexExprs; 5237 for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index) 5238 IndexExprs.push_back(getSCEV(*Index)); 5239 return getGEPExpr(GEP, IndexExprs); 5240 } 5241 5242 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5243 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5244 return C->getAPInt().countTrailingZeros(); 5245 5246 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5247 return std::min(GetMinTrailingZeros(T->getOperand()), 5248 (uint32_t)getTypeSizeInBits(T->getType())); 5249 5250 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5251 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5252 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5253 ? getTypeSizeInBits(E->getType()) 5254 : OpRes; 5255 } 5256 5257 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5258 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5259 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5260 ? getTypeSizeInBits(E->getType()) 5261 : OpRes; 5262 } 5263 5264 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5265 // The result is the min of all operands results. 5266 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5267 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5268 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5269 return MinOpRes; 5270 } 5271 5272 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5273 // The result is the sum of all operands results. 5274 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5275 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5276 for (unsigned i = 1, e = M->getNumOperands(); 5277 SumOpRes != BitWidth && i != e; ++i) 5278 SumOpRes = 5279 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5280 return SumOpRes; 5281 } 5282 5283 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5284 // The result is the min of all operands results. 5285 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5286 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5287 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5288 return MinOpRes; 5289 } 5290 5291 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5292 // The result is the min of all operands results. 5293 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5294 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5295 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5296 return MinOpRes; 5297 } 5298 5299 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5300 // The result is the min of all operands results. 5301 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5302 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5303 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5304 return MinOpRes; 5305 } 5306 5307 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5308 // For a SCEVUnknown, ask ValueTracking. 5309 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5310 return Known.countMinTrailingZeros(); 5311 } 5312 5313 // SCEVUDivExpr 5314 return 0; 5315 } 5316 5317 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5318 auto I = MinTrailingZerosCache.find(S); 5319 if (I != MinTrailingZerosCache.end()) 5320 return I->second; 5321 5322 uint32_t Result = GetMinTrailingZerosImpl(S); 5323 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5324 assert(InsertPair.second && "Should insert a new key"); 5325 return InsertPair.first->second; 5326 } 5327 5328 /// Helper method to assign a range to V from metadata present in the IR. 5329 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5330 if (Instruction *I = dyn_cast<Instruction>(V)) 5331 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5332 return getConstantRangeFromMetadata(*MD); 5333 5334 return None; 5335 } 5336 5337 /// Determine the range for a particular SCEV. If SignHint is 5338 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5339 /// with a "cleaner" unsigned (resp. signed) representation. 5340 const ConstantRange & 5341 ScalarEvolution::getRangeRef(const SCEV *S, 5342 ScalarEvolution::RangeSignHint SignHint) { 5343 DenseMap<const SCEV *, ConstantRange> &Cache = 5344 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 5345 : SignedRanges; 5346 ConstantRange::PreferredRangeType RangeType = 5347 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 5348 ? ConstantRange::Unsigned : ConstantRange::Signed; 5349 5350 // See if we've computed this range already. 5351 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 5352 if (I != Cache.end()) 5353 return I->second; 5354 5355 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5356 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 5357 5358 unsigned BitWidth = getTypeSizeInBits(S->getType()); 5359 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 5360 using OBO = OverflowingBinaryOperator; 5361 5362 // If the value has known zeros, the maximum value will have those known zeros 5363 // as well. 5364 uint32_t TZ = GetMinTrailingZeros(S); 5365 if (TZ != 0) { 5366 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 5367 ConservativeResult = 5368 ConstantRange(APInt::getMinValue(BitWidth), 5369 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 5370 else 5371 ConservativeResult = ConstantRange( 5372 APInt::getSignedMinValue(BitWidth), 5373 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 5374 } 5375 5376 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 5377 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 5378 unsigned WrapType = OBO::AnyWrap; 5379 if (Add->hasNoSignedWrap()) 5380 WrapType |= OBO::NoSignedWrap; 5381 if (Add->hasNoUnsignedWrap()) 5382 WrapType |= OBO::NoUnsignedWrap; 5383 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 5384 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 5385 WrapType, RangeType); 5386 return setRange(Add, SignHint, 5387 ConservativeResult.intersectWith(X, RangeType)); 5388 } 5389 5390 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 5391 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 5392 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 5393 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 5394 return setRange(Mul, SignHint, 5395 ConservativeResult.intersectWith(X, RangeType)); 5396 } 5397 5398 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 5399 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 5400 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 5401 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 5402 return setRange(SMax, SignHint, 5403 ConservativeResult.intersectWith(X, RangeType)); 5404 } 5405 5406 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 5407 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 5408 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 5409 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 5410 return setRange(UMax, SignHint, 5411 ConservativeResult.intersectWith(X, RangeType)); 5412 } 5413 5414 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 5415 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 5416 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 5417 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 5418 return setRange(SMin, SignHint, 5419 ConservativeResult.intersectWith(X, RangeType)); 5420 } 5421 5422 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 5423 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 5424 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 5425 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 5426 return setRange(UMin, SignHint, 5427 ConservativeResult.intersectWith(X, RangeType)); 5428 } 5429 5430 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 5431 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 5432 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 5433 return setRange(UDiv, SignHint, 5434 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 5435 } 5436 5437 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 5438 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 5439 return setRange(ZExt, SignHint, 5440 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 5441 RangeType)); 5442 } 5443 5444 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 5445 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 5446 return setRange(SExt, SignHint, 5447 ConservativeResult.intersectWith(X.signExtend(BitWidth), 5448 RangeType)); 5449 } 5450 5451 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 5452 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 5453 return setRange(Trunc, SignHint, 5454 ConservativeResult.intersectWith(X.truncate(BitWidth), 5455 RangeType)); 5456 } 5457 5458 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 5459 // If there's no unsigned wrap, the value will never be less than its 5460 // initial value. 5461 if (AddRec->hasNoUnsignedWrap()) { 5462 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 5463 if (!UnsignedMinValue.isNullValue()) 5464 ConservativeResult = ConservativeResult.intersectWith( 5465 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 5466 } 5467 5468 // If there's no signed wrap, and all the operands except initial value have 5469 // the same sign or zero, the value won't ever be: 5470 // 1: smaller than initial value if operands are non negative, 5471 // 2: bigger than initial value if operands are non positive. 5472 // For both cases, value can not cross signed min/max boundary. 5473 if (AddRec->hasNoSignedWrap()) { 5474 bool AllNonNeg = true; 5475 bool AllNonPos = true; 5476 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 5477 if (!isKnownNonNegative(AddRec->getOperand(i))) 5478 AllNonNeg = false; 5479 if (!isKnownNonPositive(AddRec->getOperand(i))) 5480 AllNonPos = false; 5481 } 5482 if (AllNonNeg) 5483 ConservativeResult = ConservativeResult.intersectWith( 5484 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 5485 APInt::getSignedMinValue(BitWidth)), 5486 RangeType); 5487 else if (AllNonPos) 5488 ConservativeResult = ConservativeResult.intersectWith( 5489 ConstantRange::getNonEmpty( 5490 APInt::getSignedMinValue(BitWidth), 5491 getSignedRangeMax(AddRec->getStart()) + 1), 5492 RangeType); 5493 } 5494 5495 // TODO: non-affine addrec 5496 if (AddRec->isAffine()) { 5497 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 5498 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 5499 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 5500 auto RangeFromAffine = getRangeForAffineAR( 5501 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5502 BitWidth); 5503 if (!RangeFromAffine.isFullSet()) 5504 ConservativeResult = 5505 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 5506 5507 auto RangeFromFactoring = getRangeViaFactoring( 5508 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 5509 BitWidth); 5510 if (!RangeFromFactoring.isFullSet()) 5511 ConservativeResult = 5512 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 5513 } 5514 } 5515 5516 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 5517 } 5518 5519 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5520 // Check if the IR explicitly contains !range metadata. 5521 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 5522 if (MDRange.hasValue()) 5523 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 5524 RangeType); 5525 5526 // Split here to avoid paying the compile-time cost of calling both 5527 // computeKnownBits and ComputeNumSignBits. This restriction can be lifted 5528 // if needed. 5529 const DataLayout &DL = getDataLayout(); 5530 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) { 5531 // For a SCEVUnknown, ask ValueTracking. 5532 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5533 if (Known.getBitWidth() != BitWidth) 5534 Known = Known.zextOrTrunc(BitWidth); 5535 // If Known does not result in full-set, intersect with it. 5536 if (Known.getMinValue() != Known.getMaxValue() + 1) 5537 ConservativeResult = ConservativeResult.intersectWith( 5538 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 5539 RangeType); 5540 } else { 5541 assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED && 5542 "generalize as needed!"); 5543 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 5544 // If the pointer size is larger than the index size type, this can cause 5545 // NS to be larger than BitWidth. So compensate for this. 5546 if (U->getType()->isPointerTy()) { 5547 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 5548 int ptrIdxDiff = ptrSize - BitWidth; 5549 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 5550 NS -= ptrIdxDiff; 5551 } 5552 5553 if (NS > 1) 5554 ConservativeResult = ConservativeResult.intersectWith( 5555 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 5556 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 5557 RangeType); 5558 } 5559 5560 // A range of Phi is a subset of union of all ranges of its input. 5561 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 5562 // Make sure that we do not run over cycled Phis. 5563 if (PendingPhiRanges.insert(Phi).second) { 5564 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 5565 for (auto &Op : Phi->operands()) { 5566 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 5567 RangeFromOps = RangeFromOps.unionWith(OpRange); 5568 // No point to continue if we already have a full set. 5569 if (RangeFromOps.isFullSet()) 5570 break; 5571 } 5572 ConservativeResult = 5573 ConservativeResult.intersectWith(RangeFromOps, RangeType); 5574 bool Erased = PendingPhiRanges.erase(Phi); 5575 assert(Erased && "Failed to erase Phi properly?"); 5576 (void) Erased; 5577 } 5578 } 5579 5580 return setRange(U, SignHint, std::move(ConservativeResult)); 5581 } 5582 5583 return setRange(S, SignHint, std::move(ConservativeResult)); 5584 } 5585 5586 // Given a StartRange, Step and MaxBECount for an expression compute a range of 5587 // values that the expression can take. Initially, the expression has a value 5588 // from StartRange and then is changed by Step up to MaxBECount times. Signed 5589 // argument defines if we treat Step as signed or unsigned. 5590 static ConstantRange getRangeForAffineARHelper(APInt Step, 5591 const ConstantRange &StartRange, 5592 const APInt &MaxBECount, 5593 unsigned BitWidth, bool Signed) { 5594 // If either Step or MaxBECount is 0, then the expression won't change, and we 5595 // just need to return the initial range. 5596 if (Step == 0 || MaxBECount == 0) 5597 return StartRange; 5598 5599 // If we don't know anything about the initial value (i.e. StartRange is 5600 // FullRange), then we don't know anything about the final range either. 5601 // Return FullRange. 5602 if (StartRange.isFullSet()) 5603 return ConstantRange::getFull(BitWidth); 5604 5605 // If Step is signed and negative, then we use its absolute value, but we also 5606 // note that we're moving in the opposite direction. 5607 bool Descending = Signed && Step.isNegative(); 5608 5609 if (Signed) 5610 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 5611 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 5612 // This equations hold true due to the well-defined wrap-around behavior of 5613 // APInt. 5614 Step = Step.abs(); 5615 5616 // Check if Offset is more than full span of BitWidth. If it is, the 5617 // expression is guaranteed to overflow. 5618 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 5619 return ConstantRange::getFull(BitWidth); 5620 5621 // Offset is by how much the expression can change. Checks above guarantee no 5622 // overflow here. 5623 APInt Offset = Step * MaxBECount; 5624 5625 // Minimum value of the final range will match the minimal value of StartRange 5626 // if the expression is increasing and will be decreased by Offset otherwise. 5627 // Maximum value of the final range will match the maximal value of StartRange 5628 // if the expression is decreasing and will be increased by Offset otherwise. 5629 APInt StartLower = StartRange.getLower(); 5630 APInt StartUpper = StartRange.getUpper() - 1; 5631 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 5632 : (StartUpper + std::move(Offset)); 5633 5634 // It's possible that the new minimum/maximum value will fall into the initial 5635 // range (due to wrap around). This means that the expression can take any 5636 // value in this bitwidth, and we have to return full range. 5637 if (StartRange.contains(MovedBoundary)) 5638 return ConstantRange::getFull(BitWidth); 5639 5640 APInt NewLower = 5641 Descending ? std::move(MovedBoundary) : std::move(StartLower); 5642 APInt NewUpper = 5643 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 5644 NewUpper += 1; 5645 5646 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 5647 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 5648 } 5649 5650 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 5651 const SCEV *Step, 5652 const SCEV *MaxBECount, 5653 unsigned BitWidth) { 5654 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 5655 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 5656 "Precondition!"); 5657 5658 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 5659 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 5660 5661 // First, consider step signed. 5662 ConstantRange StartSRange = getSignedRange(Start); 5663 ConstantRange StepSRange = getSignedRange(Step); 5664 5665 // If Step can be both positive and negative, we need to find ranges for the 5666 // maximum absolute step values in both directions and union them. 5667 ConstantRange SR = 5668 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 5669 MaxBECountValue, BitWidth, /* Signed = */ true); 5670 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 5671 StartSRange, MaxBECountValue, 5672 BitWidth, /* Signed = */ true)); 5673 5674 // Next, consider step unsigned. 5675 ConstantRange UR = getRangeForAffineARHelper( 5676 getUnsignedRangeMax(Step), getUnsignedRange(Start), 5677 MaxBECountValue, BitWidth, /* Signed = */ false); 5678 5679 // Finally, intersect signed and unsigned ranges. 5680 return SR.intersectWith(UR, ConstantRange::Smallest); 5681 } 5682 5683 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 5684 const SCEV *Step, 5685 const SCEV *MaxBECount, 5686 unsigned BitWidth) { 5687 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 5688 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 5689 5690 struct SelectPattern { 5691 Value *Condition = nullptr; 5692 APInt TrueValue; 5693 APInt FalseValue; 5694 5695 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 5696 const SCEV *S) { 5697 Optional<unsigned> CastOp; 5698 APInt Offset(BitWidth, 0); 5699 5700 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 5701 "Should be!"); 5702 5703 // Peel off a constant offset: 5704 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 5705 // In the future we could consider being smarter here and handle 5706 // {Start+Step,+,Step} too. 5707 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 5708 return; 5709 5710 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 5711 S = SA->getOperand(1); 5712 } 5713 5714 // Peel off a cast operation 5715 if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) { 5716 CastOp = SCast->getSCEVType(); 5717 S = SCast->getOperand(); 5718 } 5719 5720 using namespace llvm::PatternMatch; 5721 5722 auto *SU = dyn_cast<SCEVUnknown>(S); 5723 const APInt *TrueVal, *FalseVal; 5724 if (!SU || 5725 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 5726 m_APInt(FalseVal)))) { 5727 Condition = nullptr; 5728 return; 5729 } 5730 5731 TrueValue = *TrueVal; 5732 FalseValue = *FalseVal; 5733 5734 // Re-apply the cast we peeled off earlier 5735 if (CastOp.hasValue()) 5736 switch (*CastOp) { 5737 default: 5738 llvm_unreachable("Unknown SCEV cast type!"); 5739 5740 case scTruncate: 5741 TrueValue = TrueValue.trunc(BitWidth); 5742 FalseValue = FalseValue.trunc(BitWidth); 5743 break; 5744 case scZeroExtend: 5745 TrueValue = TrueValue.zext(BitWidth); 5746 FalseValue = FalseValue.zext(BitWidth); 5747 break; 5748 case scSignExtend: 5749 TrueValue = TrueValue.sext(BitWidth); 5750 FalseValue = FalseValue.sext(BitWidth); 5751 break; 5752 } 5753 5754 // Re-apply the constant offset we peeled off earlier 5755 TrueValue += Offset; 5756 FalseValue += Offset; 5757 } 5758 5759 bool isRecognized() { return Condition != nullptr; } 5760 }; 5761 5762 SelectPattern StartPattern(*this, BitWidth, Start); 5763 if (!StartPattern.isRecognized()) 5764 return ConstantRange::getFull(BitWidth); 5765 5766 SelectPattern StepPattern(*this, BitWidth, Step); 5767 if (!StepPattern.isRecognized()) 5768 return ConstantRange::getFull(BitWidth); 5769 5770 if (StartPattern.Condition != StepPattern.Condition) { 5771 // We don't handle this case today; but we could, by considering four 5772 // possibilities below instead of two. I'm not sure if there are cases where 5773 // that will help over what getRange already does, though. 5774 return ConstantRange::getFull(BitWidth); 5775 } 5776 5777 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 5778 // construct arbitrary general SCEV expressions here. This function is called 5779 // from deep in the call stack, and calling getSCEV (on a sext instruction, 5780 // say) can end up caching a suboptimal value. 5781 5782 // FIXME: without the explicit `this` receiver below, MSVC errors out with 5783 // C2352 and C2512 (otherwise it isn't needed). 5784 5785 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 5786 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 5787 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 5788 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 5789 5790 ConstantRange TrueRange = 5791 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 5792 ConstantRange FalseRange = 5793 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 5794 5795 return TrueRange.unionWith(FalseRange); 5796 } 5797 5798 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 5799 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 5800 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 5801 5802 // Return early if there are no flags to propagate to the SCEV. 5803 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5804 if (BinOp->hasNoUnsignedWrap()) 5805 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 5806 if (BinOp->hasNoSignedWrap()) 5807 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 5808 if (Flags == SCEV::FlagAnyWrap) 5809 return SCEV::FlagAnyWrap; 5810 5811 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 5812 } 5813 5814 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 5815 // Here we check that I is in the header of the innermost loop containing I, 5816 // since we only deal with instructions in the loop header. The actual loop we 5817 // need to check later will come from an add recurrence, but getting that 5818 // requires computing the SCEV of the operands, which can be expensive. This 5819 // check we can do cheaply to rule out some cases early. 5820 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 5821 if (InnermostContainingLoop == nullptr || 5822 InnermostContainingLoop->getHeader() != I->getParent()) 5823 return false; 5824 5825 // Only proceed if we can prove that I does not yield poison. 5826 if (!programUndefinedIfPoison(I)) 5827 return false; 5828 5829 // At this point we know that if I is executed, then it does not wrap 5830 // according to at least one of NSW or NUW. If I is not executed, then we do 5831 // not know if the calculation that I represents would wrap. Multiple 5832 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 5833 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 5834 // derived from other instructions that map to the same SCEV. We cannot make 5835 // that guarantee for cases where I is not executed. So we need to find the 5836 // loop that I is considered in relation to and prove that I is executed for 5837 // every iteration of that loop. That implies that the value that I 5838 // calculates does not wrap anywhere in the loop, so then we can apply the 5839 // flags to the SCEV. 5840 // 5841 // We check isLoopInvariant to disambiguate in case we are adding recurrences 5842 // from different loops, so that we know which loop to prove that I is 5843 // executed in. 5844 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 5845 // I could be an extractvalue from a call to an overflow intrinsic. 5846 // TODO: We can do better here in some cases. 5847 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 5848 return false; 5849 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 5850 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 5851 bool AllOtherOpsLoopInvariant = true; 5852 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 5853 ++OtherOpIndex) { 5854 if (OtherOpIndex != OpIndex) { 5855 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 5856 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 5857 AllOtherOpsLoopInvariant = false; 5858 break; 5859 } 5860 } 5861 } 5862 if (AllOtherOpsLoopInvariant && 5863 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 5864 return true; 5865 } 5866 } 5867 return false; 5868 } 5869 5870 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 5871 // If we know that \c I can never be poison period, then that's enough. 5872 if (isSCEVExprNeverPoison(I)) 5873 return true; 5874 5875 // For an add recurrence specifically, we assume that infinite loops without 5876 // side effects are undefined behavior, and then reason as follows: 5877 // 5878 // If the add recurrence is poison in any iteration, it is poison on all 5879 // future iterations (since incrementing poison yields poison). If the result 5880 // of the add recurrence is fed into the loop latch condition and the loop 5881 // does not contain any throws or exiting blocks other than the latch, we now 5882 // have the ability to "choose" whether the backedge is taken or not (by 5883 // choosing a sufficiently evil value for the poison feeding into the branch) 5884 // for every iteration including and after the one in which \p I first became 5885 // poison. There are two possibilities (let's call the iteration in which \p 5886 // I first became poison as K): 5887 // 5888 // 1. In the set of iterations including and after K, the loop body executes 5889 // no side effects. In this case executing the backege an infinte number 5890 // of times will yield undefined behavior. 5891 // 5892 // 2. In the set of iterations including and after K, the loop body executes 5893 // at least one side effect. In this case, that specific instance of side 5894 // effect is control dependent on poison, which also yields undefined 5895 // behavior. 5896 5897 auto *ExitingBB = L->getExitingBlock(); 5898 auto *LatchBB = L->getLoopLatch(); 5899 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 5900 return false; 5901 5902 SmallPtrSet<const Instruction *, 16> Pushed; 5903 SmallVector<const Instruction *, 8> PoisonStack; 5904 5905 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 5906 // things that are known to be poison under that assumption go on the 5907 // PoisonStack. 5908 Pushed.insert(I); 5909 PoisonStack.push_back(I); 5910 5911 bool LatchControlDependentOnPoison = false; 5912 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 5913 const Instruction *Poison = PoisonStack.pop_back_val(); 5914 5915 for (auto *PoisonUser : Poison->users()) { 5916 if (propagatesPoison(cast<Instruction>(PoisonUser))) { 5917 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 5918 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 5919 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 5920 assert(BI->isConditional() && "Only possibility!"); 5921 if (BI->getParent() == LatchBB) { 5922 LatchControlDependentOnPoison = true; 5923 break; 5924 } 5925 } 5926 } 5927 } 5928 5929 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 5930 } 5931 5932 ScalarEvolution::LoopProperties 5933 ScalarEvolution::getLoopProperties(const Loop *L) { 5934 using LoopProperties = ScalarEvolution::LoopProperties; 5935 5936 auto Itr = LoopPropertiesCache.find(L); 5937 if (Itr == LoopPropertiesCache.end()) { 5938 auto HasSideEffects = [](Instruction *I) { 5939 if (auto *SI = dyn_cast<StoreInst>(I)) 5940 return !SI->isSimple(); 5941 5942 return I->mayHaveSideEffects(); 5943 }; 5944 5945 LoopProperties LP = {/* HasNoAbnormalExits */ true, 5946 /*HasNoSideEffects*/ true}; 5947 5948 for (auto *BB : L->getBlocks()) 5949 for (auto &I : *BB) { 5950 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 5951 LP.HasNoAbnormalExits = false; 5952 if (HasSideEffects(&I)) 5953 LP.HasNoSideEffects = false; 5954 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 5955 break; // We're already as pessimistic as we can get. 5956 } 5957 5958 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 5959 assert(InsertPair.second && "We just checked!"); 5960 Itr = InsertPair.first; 5961 } 5962 5963 return Itr->second; 5964 } 5965 5966 const SCEV *ScalarEvolution::createSCEV(Value *V) { 5967 if (!isSCEVable(V->getType())) 5968 return getUnknown(V); 5969 5970 if (Instruction *I = dyn_cast<Instruction>(V)) { 5971 // Don't attempt to analyze instructions in blocks that aren't 5972 // reachable. Such instructions don't matter, and they aren't required 5973 // to obey basic rules for definitions dominating uses which this 5974 // analysis depends on. 5975 if (!DT.isReachableFromEntry(I->getParent())) 5976 return getUnknown(UndefValue::get(V->getType())); 5977 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 5978 return getConstant(CI); 5979 else if (isa<ConstantPointerNull>(V)) 5980 return getZero(V->getType()); 5981 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 5982 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 5983 else if (!isa<ConstantExpr>(V)) 5984 return getUnknown(V); 5985 5986 Operator *U = cast<Operator>(V); 5987 if (auto BO = MatchBinaryOp(U, DT)) { 5988 switch (BO->Opcode) { 5989 case Instruction::Add: { 5990 // The simple thing to do would be to just call getSCEV on both operands 5991 // and call getAddExpr with the result. However if we're looking at a 5992 // bunch of things all added together, this can be quite inefficient, 5993 // because it leads to N-1 getAddExpr calls for N ultimate operands. 5994 // Instead, gather up all the operands and make a single getAddExpr call. 5995 // LLVM IR canonical form means we need only traverse the left operands. 5996 SmallVector<const SCEV *, 4> AddOps; 5997 do { 5998 if (BO->Op) { 5999 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6000 AddOps.push_back(OpSCEV); 6001 break; 6002 } 6003 6004 // If a NUW or NSW flag can be applied to the SCEV for this 6005 // addition, then compute the SCEV for this addition by itself 6006 // with a separate call to getAddExpr. We need to do that 6007 // instead of pushing the operands of the addition onto AddOps, 6008 // since the flags are only known to apply to this particular 6009 // addition - they may not apply to other additions that can be 6010 // formed with operands from AddOps. 6011 const SCEV *RHS = getSCEV(BO->RHS); 6012 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6013 if (Flags != SCEV::FlagAnyWrap) { 6014 const SCEV *LHS = getSCEV(BO->LHS); 6015 if (BO->Opcode == Instruction::Sub) 6016 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6017 else 6018 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6019 break; 6020 } 6021 } 6022 6023 if (BO->Opcode == Instruction::Sub) 6024 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6025 else 6026 AddOps.push_back(getSCEV(BO->RHS)); 6027 6028 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6029 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6030 NewBO->Opcode != Instruction::Sub)) { 6031 AddOps.push_back(getSCEV(BO->LHS)); 6032 break; 6033 } 6034 BO = NewBO; 6035 } while (true); 6036 6037 return getAddExpr(AddOps); 6038 } 6039 6040 case Instruction::Mul: { 6041 SmallVector<const SCEV *, 4> MulOps; 6042 do { 6043 if (BO->Op) { 6044 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6045 MulOps.push_back(OpSCEV); 6046 break; 6047 } 6048 6049 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6050 if (Flags != SCEV::FlagAnyWrap) { 6051 MulOps.push_back( 6052 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6053 break; 6054 } 6055 } 6056 6057 MulOps.push_back(getSCEV(BO->RHS)); 6058 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6059 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6060 MulOps.push_back(getSCEV(BO->LHS)); 6061 break; 6062 } 6063 BO = NewBO; 6064 } while (true); 6065 6066 return getMulExpr(MulOps); 6067 } 6068 case Instruction::UDiv: 6069 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6070 case Instruction::URem: 6071 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6072 case Instruction::Sub: { 6073 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6074 if (BO->Op) 6075 Flags = getNoWrapFlagsFromUB(BO->Op); 6076 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6077 } 6078 case Instruction::And: 6079 // For an expression like x&255 that merely masks off the high bits, 6080 // use zext(trunc(x)) as the SCEV expression. 6081 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6082 if (CI->isZero()) 6083 return getSCEV(BO->RHS); 6084 if (CI->isMinusOne()) 6085 return getSCEV(BO->LHS); 6086 const APInt &A = CI->getValue(); 6087 6088 // Instcombine's ShrinkDemandedConstant may strip bits out of 6089 // constants, obscuring what would otherwise be a low-bits mask. 6090 // Use computeKnownBits to compute what ShrinkDemandedConstant 6091 // knew about to reconstruct a low-bits mask value. 6092 unsigned LZ = A.countLeadingZeros(); 6093 unsigned TZ = A.countTrailingZeros(); 6094 unsigned BitWidth = A.getBitWidth(); 6095 KnownBits Known(BitWidth); 6096 computeKnownBits(BO->LHS, Known, getDataLayout(), 6097 0, &AC, nullptr, &DT); 6098 6099 APInt EffectiveMask = 6100 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6101 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6102 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6103 const SCEV *LHS = getSCEV(BO->LHS); 6104 const SCEV *ShiftedLHS = nullptr; 6105 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6106 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6107 // For an expression like (x * 8) & 8, simplify the multiply. 6108 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6109 unsigned GCD = std::min(MulZeros, TZ); 6110 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6111 SmallVector<const SCEV*, 4> MulOps; 6112 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6113 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6114 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6115 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6116 } 6117 } 6118 if (!ShiftedLHS) 6119 ShiftedLHS = getUDivExpr(LHS, MulCount); 6120 return getMulExpr( 6121 getZeroExtendExpr( 6122 getTruncateExpr(ShiftedLHS, 6123 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6124 BO->LHS->getType()), 6125 MulCount); 6126 } 6127 } 6128 break; 6129 6130 case Instruction::Or: 6131 // If the RHS of the Or is a constant, we may have something like: 6132 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6133 // optimizations will transparently handle this case. 6134 // 6135 // In order for this transformation to be safe, the LHS must be of the 6136 // form X*(2^n) and the Or constant must be less than 2^n. 6137 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6138 const SCEV *LHS = getSCEV(BO->LHS); 6139 const APInt &CIVal = CI->getValue(); 6140 if (GetMinTrailingZeros(LHS) >= 6141 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6142 // Build a plain add SCEV. 6143 return getAddExpr(LHS, getSCEV(CI), 6144 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6145 } 6146 } 6147 break; 6148 6149 case Instruction::Xor: 6150 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6151 // If the RHS of xor is -1, then this is a not operation. 6152 if (CI->isMinusOne()) 6153 return getNotSCEV(getSCEV(BO->LHS)); 6154 6155 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6156 // This is a variant of the check for xor with -1, and it handles 6157 // the case where instcombine has trimmed non-demanded bits out 6158 // of an xor with -1. 6159 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6160 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6161 if (LBO->getOpcode() == Instruction::And && 6162 LCI->getValue() == CI->getValue()) 6163 if (const SCEVZeroExtendExpr *Z = 6164 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6165 Type *UTy = BO->LHS->getType(); 6166 const SCEV *Z0 = Z->getOperand(); 6167 Type *Z0Ty = Z0->getType(); 6168 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6169 6170 // If C is a low-bits mask, the zero extend is serving to 6171 // mask off the high bits. Complement the operand and 6172 // re-apply the zext. 6173 if (CI->getValue().isMask(Z0TySize)) 6174 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6175 6176 // If C is a single bit, it may be in the sign-bit position 6177 // before the zero-extend. In this case, represent the xor 6178 // using an add, which is equivalent, and re-apply the zext. 6179 APInt Trunc = CI->getValue().trunc(Z0TySize); 6180 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6181 Trunc.isSignMask()) 6182 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6183 UTy); 6184 } 6185 } 6186 break; 6187 6188 case Instruction::Shl: 6189 // Turn shift left of a constant amount into a multiply. 6190 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6191 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6192 6193 // If the shift count is not less than the bitwidth, the result of 6194 // the shift is undefined. Don't try to analyze it, because the 6195 // resolution chosen here may differ from the resolution chosen in 6196 // other parts of the compiler. 6197 if (SA->getValue().uge(BitWidth)) 6198 break; 6199 6200 // We can safely preserve the nuw flag in all cases. It's also safe to 6201 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6202 // requires special handling. It can be preserved as long as we're not 6203 // left shifting by bitwidth - 1. 6204 auto Flags = SCEV::FlagAnyWrap; 6205 if (BO->Op) { 6206 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6207 if ((MulFlags & SCEV::FlagNSW) && 6208 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6209 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6210 if (MulFlags & SCEV::FlagNUW) 6211 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6212 } 6213 6214 Constant *X = ConstantInt::get( 6215 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6216 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6217 } 6218 break; 6219 6220 case Instruction::AShr: { 6221 // AShr X, C, where C is a constant. 6222 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6223 if (!CI) 6224 break; 6225 6226 Type *OuterTy = BO->LHS->getType(); 6227 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6228 // If the shift count is not less than the bitwidth, the result of 6229 // the shift is undefined. Don't try to analyze it, because the 6230 // resolution chosen here may differ from the resolution chosen in 6231 // other parts of the compiler. 6232 if (CI->getValue().uge(BitWidth)) 6233 break; 6234 6235 if (CI->isZero()) 6236 return getSCEV(BO->LHS); // shift by zero --> noop 6237 6238 uint64_t AShrAmt = CI->getZExtValue(); 6239 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6240 6241 Operator *L = dyn_cast<Operator>(BO->LHS); 6242 if (L && L->getOpcode() == Instruction::Shl) { 6243 // X = Shl A, n 6244 // Y = AShr X, m 6245 // Both n and m are constant. 6246 6247 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 6248 if (L->getOperand(1) == BO->RHS) 6249 // For a two-shift sext-inreg, i.e. n = m, 6250 // use sext(trunc(x)) as the SCEV expression. 6251 return getSignExtendExpr( 6252 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 6253 6254 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 6255 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 6256 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 6257 if (ShlAmt > AShrAmt) { 6258 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 6259 // expression. We already checked that ShlAmt < BitWidth, so 6260 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 6261 // ShlAmt - AShrAmt < Amt. 6262 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 6263 ShlAmt - AShrAmt); 6264 return getSignExtendExpr( 6265 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 6266 getConstant(Mul)), OuterTy); 6267 } 6268 } 6269 } 6270 break; 6271 } 6272 } 6273 } 6274 6275 switch (U->getOpcode()) { 6276 case Instruction::Trunc: 6277 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 6278 6279 case Instruction::ZExt: 6280 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6281 6282 case Instruction::SExt: 6283 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 6284 // The NSW flag of a subtract does not always survive the conversion to 6285 // A + (-1)*B. By pushing sign extension onto its operands we are much 6286 // more likely to preserve NSW and allow later AddRec optimisations. 6287 // 6288 // NOTE: This is effectively duplicating this logic from getSignExtend: 6289 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 6290 // but by that point the NSW information has potentially been lost. 6291 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 6292 Type *Ty = U->getType(); 6293 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 6294 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 6295 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 6296 } 6297 } 6298 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 6299 6300 case Instruction::BitCast: 6301 // BitCasts are no-op casts so we just eliminate the cast. 6302 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 6303 return getSCEV(U->getOperand(0)); 6304 break; 6305 6306 // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can 6307 // lead to pointer expressions which cannot safely be expanded to GEPs, 6308 // because ScalarEvolution doesn't respect the GEP aliasing rules when 6309 // simplifying integer expressions. 6310 6311 case Instruction::GetElementPtr: 6312 return createNodeForGEP(cast<GEPOperator>(U)); 6313 6314 case Instruction::PHI: 6315 return createNodeForPHI(cast<PHINode>(U)); 6316 6317 case Instruction::Select: 6318 // U can also be a select constant expr, which let fall through. Since 6319 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 6320 // constant expressions cannot have instructions as operands, we'd have 6321 // returned getUnknown for a select constant expressions anyway. 6322 if (isa<Instruction>(U)) 6323 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 6324 U->getOperand(1), U->getOperand(2)); 6325 break; 6326 6327 case Instruction::Call: 6328 case Instruction::Invoke: 6329 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 6330 return getSCEV(RV); 6331 break; 6332 } 6333 6334 return getUnknown(V); 6335 } 6336 6337 //===----------------------------------------------------------------------===// 6338 // Iteration Count Computation Code 6339 // 6340 6341 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 6342 if (!ExitCount) 6343 return 0; 6344 6345 ConstantInt *ExitConst = ExitCount->getValue(); 6346 6347 // Guard against huge trip counts. 6348 if (ExitConst->getValue().getActiveBits() > 32) 6349 return 0; 6350 6351 // In case of integer overflow, this returns 0, which is correct. 6352 return ((unsigned)ExitConst->getZExtValue()) + 1; 6353 } 6354 6355 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 6356 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6357 return getSmallConstantTripCount(L, ExitingBB); 6358 6359 // No trip count information for multiple exits. 6360 return 0; 6361 } 6362 6363 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L, 6364 BasicBlock *ExitingBlock) { 6365 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6366 assert(L->isLoopExiting(ExitingBlock) && 6367 "Exiting block must actually branch out of the loop!"); 6368 const SCEVConstant *ExitCount = 6369 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 6370 return getConstantTripCount(ExitCount); 6371 } 6372 6373 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 6374 const auto *MaxExitCount = 6375 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 6376 return getConstantTripCount(MaxExitCount); 6377 } 6378 6379 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 6380 if (BasicBlock *ExitingBB = L->getExitingBlock()) 6381 return getSmallConstantTripMultiple(L, ExitingBB); 6382 6383 // No trip multiple information for multiple exits. 6384 return 0; 6385 } 6386 6387 /// Returns the largest constant divisor of the trip count of this loop as a 6388 /// normal unsigned value, if possible. This means that the actual trip count is 6389 /// always a multiple of the returned value (don't forget the trip count could 6390 /// very well be zero as well!). 6391 /// 6392 /// Returns 1 if the trip count is unknown or not guaranteed to be the 6393 /// multiple of a constant (which is also the case if the trip count is simply 6394 /// constant, use getSmallConstantTripCount for that case), Will also return 1 6395 /// if the trip count is very large (>= 2^32). 6396 /// 6397 /// As explained in the comments for getSmallConstantTripCount, this assumes 6398 /// that control exits the loop via ExitingBlock. 6399 unsigned 6400 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 6401 BasicBlock *ExitingBlock) { 6402 assert(ExitingBlock && "Must pass a non-null exiting block!"); 6403 assert(L->isLoopExiting(ExitingBlock) && 6404 "Exiting block must actually branch out of the loop!"); 6405 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 6406 if (ExitCount == getCouldNotCompute()) 6407 return 1; 6408 6409 // Get the trip count from the BE count by adding 1. 6410 const SCEV *TCExpr = getAddExpr(ExitCount, getOne(ExitCount->getType())); 6411 6412 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 6413 if (!TC) 6414 // Attempt to factor more general cases. Returns the greatest power of 6415 // two divisor. If overflow happens, the trip count expression is still 6416 // divisible by the greatest power of 2 divisor returned. 6417 return 1U << std::min((uint32_t)31, GetMinTrailingZeros(TCExpr)); 6418 6419 ConstantInt *Result = TC->getValue(); 6420 6421 // Guard against huge trip counts (this requires checking 6422 // for zero to handle the case where the trip count == -1 and the 6423 // addition wraps). 6424 if (!Result || Result->getValue().getActiveBits() > 32 || 6425 Result->getValue().getActiveBits() == 0) 6426 return 1; 6427 6428 return (unsigned)Result->getZExtValue(); 6429 } 6430 6431 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 6432 BasicBlock *ExitingBlock, 6433 ExitCountKind Kind) { 6434 switch (Kind) { 6435 case Exact: 6436 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 6437 case ConstantMaximum: 6438 return getBackedgeTakenInfo(L).getMax(ExitingBlock, this); 6439 }; 6440 llvm_unreachable("Invalid ExitCountKind!"); 6441 } 6442 6443 const SCEV * 6444 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 6445 SCEVUnionPredicate &Preds) { 6446 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 6447 } 6448 6449 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 6450 ExitCountKind Kind) { 6451 switch (Kind) { 6452 case Exact: 6453 return getBackedgeTakenInfo(L).getExact(L, this); 6454 case ConstantMaximum: 6455 return getBackedgeTakenInfo(L).getMax(this); 6456 }; 6457 llvm_unreachable("Invalid ExitCountKind!"); 6458 } 6459 6460 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 6461 return getBackedgeTakenInfo(L).isMaxOrZero(this); 6462 } 6463 6464 /// Push PHI nodes in the header of the given loop onto the given Worklist. 6465 static void 6466 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 6467 BasicBlock *Header = L->getHeader(); 6468 6469 // Push all Loop-header PHIs onto the Worklist stack. 6470 for (PHINode &PN : Header->phis()) 6471 Worklist.push_back(&PN); 6472 } 6473 6474 const ScalarEvolution::BackedgeTakenInfo & 6475 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 6476 auto &BTI = getBackedgeTakenInfo(L); 6477 if (BTI.hasFullInfo()) 6478 return BTI; 6479 6480 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6481 6482 if (!Pair.second) 6483 return Pair.first->second; 6484 6485 BackedgeTakenInfo Result = 6486 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 6487 6488 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 6489 } 6490 6491 const ScalarEvolution::BackedgeTakenInfo & 6492 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 6493 // Initially insert an invalid entry for this loop. If the insertion 6494 // succeeds, proceed to actually compute a backedge-taken count and 6495 // update the value. The temporary CouldNotCompute value tells SCEV 6496 // code elsewhere that it shouldn't attempt to request a new 6497 // backedge-taken count, which could result in infinite recursion. 6498 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 6499 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 6500 if (!Pair.second) 6501 return Pair.first->second; 6502 6503 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 6504 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 6505 // must be cleared in this scope. 6506 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 6507 6508 // In product build, there are no usage of statistic. 6509 (void)NumTripCountsComputed; 6510 (void)NumTripCountsNotComputed; 6511 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 6512 const SCEV *BEExact = Result.getExact(L, this); 6513 if (BEExact != getCouldNotCompute()) { 6514 assert(isLoopInvariant(BEExact, L) && 6515 isLoopInvariant(Result.getMax(this), L) && 6516 "Computed backedge-taken count isn't loop invariant for loop!"); 6517 ++NumTripCountsComputed; 6518 } 6519 else if (Result.getMax(this) == getCouldNotCompute() && 6520 isa<PHINode>(L->getHeader()->begin())) { 6521 // Only count loops that have phi nodes as not being computable. 6522 ++NumTripCountsNotComputed; 6523 } 6524 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 6525 6526 // Now that we know more about the trip count for this loop, forget any 6527 // existing SCEV values for PHI nodes in this loop since they are only 6528 // conservative estimates made without the benefit of trip count 6529 // information. This is similar to the code in forgetLoop, except that 6530 // it handles SCEVUnknown PHI nodes specially. 6531 if (Result.hasAnyInfo()) { 6532 SmallVector<Instruction *, 16> Worklist; 6533 PushLoopPHIs(L, Worklist); 6534 6535 SmallPtrSet<Instruction *, 8> Discovered; 6536 while (!Worklist.empty()) { 6537 Instruction *I = Worklist.pop_back_val(); 6538 6539 ValueExprMapType::iterator It = 6540 ValueExprMap.find_as(static_cast<Value *>(I)); 6541 if (It != ValueExprMap.end()) { 6542 const SCEV *Old = It->second; 6543 6544 // SCEVUnknown for a PHI either means that it has an unrecognized 6545 // structure, or it's a PHI that's in the progress of being computed 6546 // by createNodeForPHI. In the former case, additional loop trip 6547 // count information isn't going to change anything. In the later 6548 // case, createNodeForPHI will perform the necessary updates on its 6549 // own when it gets to that point. 6550 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 6551 eraseValueFromMap(It->first); 6552 forgetMemoizedResults(Old); 6553 } 6554 if (PHINode *PN = dyn_cast<PHINode>(I)) 6555 ConstantEvolutionLoopExitValue.erase(PN); 6556 } 6557 6558 // Since we don't need to invalidate anything for correctness and we're 6559 // only invalidating to make SCEV's results more precise, we get to stop 6560 // early to avoid invalidating too much. This is especially important in 6561 // cases like: 6562 // 6563 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 6564 // loop0: 6565 // %pn0 = phi 6566 // ... 6567 // loop1: 6568 // %pn1 = phi 6569 // ... 6570 // 6571 // where both loop0 and loop1's backedge taken count uses the SCEV 6572 // expression for %v. If we don't have the early stop below then in cases 6573 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 6574 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 6575 // count for loop1, effectively nullifying SCEV's trip count cache. 6576 for (auto *U : I->users()) 6577 if (auto *I = dyn_cast<Instruction>(U)) { 6578 auto *LoopForUser = LI.getLoopFor(I->getParent()); 6579 if (LoopForUser && L->contains(LoopForUser) && 6580 Discovered.insert(I).second) 6581 Worklist.push_back(I); 6582 } 6583 } 6584 } 6585 6586 // Re-lookup the insert position, since the call to 6587 // computeBackedgeTakenCount above could result in a 6588 // recusive call to getBackedgeTakenInfo (on a different 6589 // loop), which would invalidate the iterator computed 6590 // earlier. 6591 return BackedgeTakenCounts.find(L)->second = std::move(Result); 6592 } 6593 6594 void ScalarEvolution::forgetAllLoops() { 6595 // This method is intended to forget all info about loops. It should 6596 // invalidate caches as if the following happened: 6597 // - The trip counts of all loops have changed arbitrarily 6598 // - Every llvm::Value has been updated in place to produce a different 6599 // result. 6600 BackedgeTakenCounts.clear(); 6601 PredicatedBackedgeTakenCounts.clear(); 6602 LoopPropertiesCache.clear(); 6603 ConstantEvolutionLoopExitValue.clear(); 6604 ValueExprMap.clear(); 6605 ValuesAtScopes.clear(); 6606 LoopDispositions.clear(); 6607 BlockDispositions.clear(); 6608 UnsignedRanges.clear(); 6609 SignedRanges.clear(); 6610 ExprValueMap.clear(); 6611 HasRecMap.clear(); 6612 MinTrailingZerosCache.clear(); 6613 PredicatedSCEVRewrites.clear(); 6614 } 6615 6616 void ScalarEvolution::forgetLoop(const Loop *L) { 6617 // Drop any stored trip count value. 6618 auto RemoveLoopFromBackedgeMap = 6619 [](DenseMap<const Loop *, BackedgeTakenInfo> &Map, const Loop *L) { 6620 auto BTCPos = Map.find(L); 6621 if (BTCPos != Map.end()) { 6622 BTCPos->second.clear(); 6623 Map.erase(BTCPos); 6624 } 6625 }; 6626 6627 SmallVector<const Loop *, 16> LoopWorklist(1, L); 6628 SmallVector<Instruction *, 32> Worklist; 6629 SmallPtrSet<Instruction *, 16> Visited; 6630 6631 // Iterate over all the loops and sub-loops to drop SCEV information. 6632 while (!LoopWorklist.empty()) { 6633 auto *CurrL = LoopWorklist.pop_back_val(); 6634 6635 RemoveLoopFromBackedgeMap(BackedgeTakenCounts, CurrL); 6636 RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts, CurrL); 6637 6638 // Drop information about predicated SCEV rewrites for this loop. 6639 for (auto I = PredicatedSCEVRewrites.begin(); 6640 I != PredicatedSCEVRewrites.end();) { 6641 std::pair<const SCEV *, const Loop *> Entry = I->first; 6642 if (Entry.second == CurrL) 6643 PredicatedSCEVRewrites.erase(I++); 6644 else 6645 ++I; 6646 } 6647 6648 auto LoopUsersItr = LoopUsers.find(CurrL); 6649 if (LoopUsersItr != LoopUsers.end()) { 6650 for (auto *S : LoopUsersItr->second) 6651 forgetMemoizedResults(S); 6652 LoopUsers.erase(LoopUsersItr); 6653 } 6654 6655 // Drop information about expressions based on loop-header PHIs. 6656 PushLoopPHIs(CurrL, Worklist); 6657 6658 while (!Worklist.empty()) { 6659 Instruction *I = Worklist.pop_back_val(); 6660 if (!Visited.insert(I).second) 6661 continue; 6662 6663 ValueExprMapType::iterator It = 6664 ValueExprMap.find_as(static_cast<Value *>(I)); 6665 if (It != ValueExprMap.end()) { 6666 eraseValueFromMap(It->first); 6667 forgetMemoizedResults(It->second); 6668 if (PHINode *PN = dyn_cast<PHINode>(I)) 6669 ConstantEvolutionLoopExitValue.erase(PN); 6670 } 6671 6672 PushDefUseChildren(I, Worklist); 6673 } 6674 6675 LoopPropertiesCache.erase(CurrL); 6676 // Forget all contained loops too, to avoid dangling entries in the 6677 // ValuesAtScopes map. 6678 LoopWorklist.append(CurrL->begin(), CurrL->end()); 6679 } 6680 } 6681 6682 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 6683 while (Loop *Parent = L->getParentLoop()) 6684 L = Parent; 6685 forgetLoop(L); 6686 } 6687 6688 void ScalarEvolution::forgetValue(Value *V) { 6689 Instruction *I = dyn_cast<Instruction>(V); 6690 if (!I) return; 6691 6692 // Drop information about expressions based on loop-header PHIs. 6693 SmallVector<Instruction *, 16> Worklist; 6694 Worklist.push_back(I); 6695 6696 SmallPtrSet<Instruction *, 8> Visited; 6697 while (!Worklist.empty()) { 6698 I = Worklist.pop_back_val(); 6699 if (!Visited.insert(I).second) 6700 continue; 6701 6702 ValueExprMapType::iterator It = 6703 ValueExprMap.find_as(static_cast<Value *>(I)); 6704 if (It != ValueExprMap.end()) { 6705 eraseValueFromMap(It->first); 6706 forgetMemoizedResults(It->second); 6707 if (PHINode *PN = dyn_cast<PHINode>(I)) 6708 ConstantEvolutionLoopExitValue.erase(PN); 6709 } 6710 6711 PushDefUseChildren(I, Worklist); 6712 } 6713 } 6714 6715 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 6716 LoopDispositions.clear(); 6717 } 6718 6719 /// Get the exact loop backedge taken count considering all loop exits. A 6720 /// computable result can only be returned for loops with all exiting blocks 6721 /// dominating the latch. howFarToZero assumes that the limit of each loop test 6722 /// is never skipped. This is a valid assumption as long as the loop exits via 6723 /// that test. For precise results, it is the caller's responsibility to specify 6724 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 6725 const SCEV * 6726 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 6727 SCEVUnionPredicate *Preds) const { 6728 // If any exits were not computable, the loop is not computable. 6729 if (!isComplete() || ExitNotTaken.empty()) 6730 return SE->getCouldNotCompute(); 6731 6732 const BasicBlock *Latch = L->getLoopLatch(); 6733 // All exiting blocks we have collected must dominate the only backedge. 6734 if (!Latch) 6735 return SE->getCouldNotCompute(); 6736 6737 // All exiting blocks we have gathered dominate loop's latch, so exact trip 6738 // count is simply a minimum out of all these calculated exit counts. 6739 SmallVector<const SCEV *, 2> Ops; 6740 for (auto &ENT : ExitNotTaken) { 6741 const SCEV *BECount = ENT.ExactNotTaken; 6742 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 6743 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 6744 "We should only have known counts for exiting blocks that dominate " 6745 "latch!"); 6746 6747 Ops.push_back(BECount); 6748 6749 if (Preds && !ENT.hasAlwaysTruePredicate()) 6750 Preds->add(ENT.Predicate.get()); 6751 6752 assert((Preds || ENT.hasAlwaysTruePredicate()) && 6753 "Predicate should be always true!"); 6754 } 6755 6756 return SE->getUMinFromMismatchedTypes(Ops); 6757 } 6758 6759 /// Get the exact not taken count for this loop exit. 6760 const SCEV * 6761 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock, 6762 ScalarEvolution *SE) const { 6763 for (auto &ENT : ExitNotTaken) 6764 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6765 return ENT.ExactNotTaken; 6766 6767 return SE->getCouldNotCompute(); 6768 } 6769 6770 const SCEV * 6771 ScalarEvolution::BackedgeTakenInfo::getMax(BasicBlock *ExitingBlock, 6772 ScalarEvolution *SE) const { 6773 for (auto &ENT : ExitNotTaken) 6774 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 6775 return ENT.MaxNotTaken; 6776 6777 return SE->getCouldNotCompute(); 6778 } 6779 6780 /// getMax - Get the max backedge taken count for the loop. 6781 const SCEV * 6782 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const { 6783 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6784 return !ENT.hasAlwaysTruePredicate(); 6785 }; 6786 6787 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax()) 6788 return SE->getCouldNotCompute(); 6789 6790 assert((isa<SCEVCouldNotCompute>(getMax()) || isa<SCEVConstant>(getMax())) && 6791 "No point in having a non-constant max backedge taken count!"); 6792 return getMax(); 6793 } 6794 6795 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const { 6796 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 6797 return !ENT.hasAlwaysTruePredicate(); 6798 }; 6799 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 6800 } 6801 6802 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S, 6803 ScalarEvolution *SE) const { 6804 if (getMax() && getMax() != SE->getCouldNotCompute() && 6805 SE->hasOperand(getMax(), S)) 6806 return true; 6807 6808 for (auto &ENT : ExitNotTaken) 6809 if (ENT.ExactNotTaken != SE->getCouldNotCompute() && 6810 SE->hasOperand(ENT.ExactNotTaken, S)) 6811 return true; 6812 6813 return false; 6814 } 6815 6816 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 6817 : ExactNotTaken(E), MaxNotTaken(E) { 6818 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6819 isa<SCEVConstant>(MaxNotTaken)) && 6820 "No point in having a non-constant max backedge taken count!"); 6821 } 6822 6823 ScalarEvolution::ExitLimit::ExitLimit( 6824 const SCEV *E, const SCEV *M, bool MaxOrZero, 6825 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 6826 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 6827 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 6828 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 6829 "Exact is not allowed to be less precise than Max"); 6830 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6831 isa<SCEVConstant>(MaxNotTaken)) && 6832 "No point in having a non-constant max backedge taken count!"); 6833 for (auto *PredSet : PredSetList) 6834 for (auto *P : *PredSet) 6835 addPredicate(P); 6836 } 6837 6838 ScalarEvolution::ExitLimit::ExitLimit( 6839 const SCEV *E, const SCEV *M, bool MaxOrZero, 6840 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 6841 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 6842 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6843 isa<SCEVConstant>(MaxNotTaken)) && 6844 "No point in having a non-constant max backedge taken count!"); 6845 } 6846 6847 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 6848 bool MaxOrZero) 6849 : ExitLimit(E, M, MaxOrZero, None) { 6850 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 6851 isa<SCEVConstant>(MaxNotTaken)) && 6852 "No point in having a non-constant max backedge taken count!"); 6853 } 6854 6855 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 6856 /// computable exit into a persistent ExitNotTakenInfo array. 6857 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 6858 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> 6859 ExitCounts, 6860 bool Complete, const SCEV *MaxCount, bool MaxOrZero) 6861 : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) { 6862 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6863 6864 ExitNotTaken.reserve(ExitCounts.size()); 6865 std::transform( 6866 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 6867 [&](const EdgeExitInfo &EEI) { 6868 BasicBlock *ExitBB = EEI.first; 6869 const ExitLimit &EL = EEI.second; 6870 if (EL.Predicates.empty()) 6871 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6872 nullptr); 6873 6874 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 6875 for (auto *Pred : EL.Predicates) 6876 Predicate->add(Pred); 6877 6878 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 6879 std::move(Predicate)); 6880 }); 6881 assert((isa<SCEVCouldNotCompute>(MaxCount) || isa<SCEVConstant>(MaxCount)) && 6882 "No point in having a non-constant max backedge taken count!"); 6883 } 6884 6885 /// Invalidate this result and free the ExitNotTakenInfo array. 6886 void ScalarEvolution::BackedgeTakenInfo::clear() { 6887 ExitNotTaken.clear(); 6888 } 6889 6890 /// Compute the number of times the backedge of the specified loop will execute. 6891 ScalarEvolution::BackedgeTakenInfo 6892 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 6893 bool AllowPredicates) { 6894 SmallVector<BasicBlock *, 8> ExitingBlocks; 6895 L->getExitingBlocks(ExitingBlocks); 6896 6897 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 6898 6899 SmallVector<EdgeExitInfo, 4> ExitCounts; 6900 bool CouldComputeBECount = true; 6901 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 6902 const SCEV *MustExitMaxBECount = nullptr; 6903 const SCEV *MayExitMaxBECount = nullptr; 6904 bool MustExitMaxOrZero = false; 6905 6906 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 6907 // and compute maxBECount. 6908 // Do a union of all the predicates here. 6909 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 6910 BasicBlock *ExitBB = ExitingBlocks[i]; 6911 6912 // We canonicalize untaken exits to br (constant), ignore them so that 6913 // proving an exit untaken doesn't negatively impact our ability to reason 6914 // about the loop as whole. 6915 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 6916 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 6917 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6918 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 6919 continue; 6920 } 6921 6922 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 6923 6924 assert((AllowPredicates || EL.Predicates.empty()) && 6925 "Predicated exit limit when predicates are not allowed!"); 6926 6927 // 1. For each exit that can be computed, add an entry to ExitCounts. 6928 // CouldComputeBECount is true only if all exits can be computed. 6929 if (EL.ExactNotTaken == getCouldNotCompute()) 6930 // We couldn't compute an exact value for this exit, so 6931 // we won't be able to compute an exact value for the loop. 6932 CouldComputeBECount = false; 6933 else 6934 ExitCounts.emplace_back(ExitBB, EL); 6935 6936 // 2. Derive the loop's MaxBECount from each exit's max number of 6937 // non-exiting iterations. Partition the loop exits into two kinds: 6938 // LoopMustExits and LoopMayExits. 6939 // 6940 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 6941 // is a LoopMayExit. If any computable LoopMustExit is found, then 6942 // MaxBECount is the minimum EL.MaxNotTaken of computable 6943 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 6944 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 6945 // computable EL.MaxNotTaken. 6946 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 6947 DT.dominates(ExitBB, Latch)) { 6948 if (!MustExitMaxBECount) { 6949 MustExitMaxBECount = EL.MaxNotTaken; 6950 MustExitMaxOrZero = EL.MaxOrZero; 6951 } else { 6952 MustExitMaxBECount = 6953 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 6954 } 6955 } else if (MayExitMaxBECount != getCouldNotCompute()) { 6956 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 6957 MayExitMaxBECount = EL.MaxNotTaken; 6958 else { 6959 MayExitMaxBECount = 6960 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 6961 } 6962 } 6963 } 6964 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 6965 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 6966 // The loop backedge will be taken the maximum or zero times if there's 6967 // a single exit that must be taken the maximum or zero times. 6968 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 6969 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 6970 MaxBECount, MaxOrZero); 6971 } 6972 6973 ScalarEvolution::ExitLimit 6974 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 6975 bool AllowPredicates) { 6976 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 6977 // If our exiting block does not dominate the latch, then its connection with 6978 // loop's exit limit may be far from trivial. 6979 const BasicBlock *Latch = L->getLoopLatch(); 6980 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 6981 return getCouldNotCompute(); 6982 6983 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 6984 Instruction *Term = ExitingBlock->getTerminator(); 6985 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 6986 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 6987 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 6988 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 6989 "It should have one successor in loop and one exit block!"); 6990 // Proceed to the next level to examine the exit condition expression. 6991 return computeExitLimitFromCond( 6992 L, BI->getCondition(), ExitIfTrue, 6993 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 6994 } 6995 6996 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 6997 // For switch, make sure that there is a single exit from the loop. 6998 BasicBlock *Exit = nullptr; 6999 for (auto *SBB : successors(ExitingBlock)) 7000 if (!L->contains(SBB)) { 7001 if (Exit) // Multiple exit successors. 7002 return getCouldNotCompute(); 7003 Exit = SBB; 7004 } 7005 assert(Exit && "Exiting block must have at least one exit"); 7006 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7007 /*ControlsExit=*/IsOnlyExit); 7008 } 7009 7010 return getCouldNotCompute(); 7011 } 7012 7013 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7014 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7015 bool ControlsExit, bool AllowPredicates) { 7016 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7017 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7018 ControlsExit, AllowPredicates); 7019 } 7020 7021 Optional<ScalarEvolution::ExitLimit> 7022 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7023 bool ExitIfTrue, bool ControlsExit, 7024 bool AllowPredicates) { 7025 (void)this->L; 7026 (void)this->ExitIfTrue; 7027 (void)this->AllowPredicates; 7028 7029 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7030 this->AllowPredicates == AllowPredicates && 7031 "Variance in assumed invariant key components!"); 7032 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7033 if (Itr == TripCountMap.end()) 7034 return None; 7035 return Itr->second; 7036 } 7037 7038 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7039 bool ExitIfTrue, 7040 bool ControlsExit, 7041 bool AllowPredicates, 7042 const ExitLimit &EL) { 7043 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7044 this->AllowPredicates == AllowPredicates && 7045 "Variance in assumed invariant key components!"); 7046 7047 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7048 assert(InsertResult.second && "Expected successful insertion!"); 7049 (void)InsertResult; 7050 (void)ExitIfTrue; 7051 } 7052 7053 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7054 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7055 bool ControlsExit, bool AllowPredicates) { 7056 7057 if (auto MaybeEL = 7058 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7059 return *MaybeEL; 7060 7061 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7062 ControlsExit, AllowPredicates); 7063 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7064 return EL; 7065 } 7066 7067 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7068 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7069 bool ControlsExit, bool AllowPredicates) { 7070 // Check if the controlling expression for this loop is an And or Or. 7071 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) { 7072 if (BO->getOpcode() == Instruction::And) { 7073 // Recurse on the operands of the and. 7074 bool EitherMayExit = !ExitIfTrue; 7075 ExitLimit EL0 = computeExitLimitFromCondCached( 7076 Cache, L, BO->getOperand(0), ExitIfTrue, 7077 ControlsExit && !EitherMayExit, AllowPredicates); 7078 ExitLimit EL1 = computeExitLimitFromCondCached( 7079 Cache, L, BO->getOperand(1), ExitIfTrue, 7080 ControlsExit && !EitherMayExit, AllowPredicates); 7081 // Be robust against unsimplified IR for the form "and i1 X, true" 7082 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7083 return CI->isOne() ? EL0 : EL1; 7084 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7085 return CI->isOne() ? EL1 : EL0; 7086 const SCEV *BECount = getCouldNotCompute(); 7087 const SCEV *MaxBECount = getCouldNotCompute(); 7088 if (EitherMayExit) { 7089 // Both conditions must be true for the loop to continue executing. 7090 // Choose the less conservative count. 7091 if (EL0.ExactNotTaken == getCouldNotCompute() || 7092 EL1.ExactNotTaken == getCouldNotCompute()) 7093 BECount = getCouldNotCompute(); 7094 else 7095 BECount = 7096 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7097 if (EL0.MaxNotTaken == getCouldNotCompute()) 7098 MaxBECount = EL1.MaxNotTaken; 7099 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7100 MaxBECount = EL0.MaxNotTaken; 7101 else 7102 MaxBECount = 7103 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7104 } else { 7105 // Both conditions must be true at the same time for the loop to exit. 7106 // For now, be conservative. 7107 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7108 MaxBECount = EL0.MaxNotTaken; 7109 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7110 BECount = EL0.ExactNotTaken; 7111 } 7112 7113 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7114 // to be more aggressive when computing BECount than when computing 7115 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7116 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7117 // to not. 7118 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7119 !isa<SCEVCouldNotCompute>(BECount)) 7120 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7121 7122 return ExitLimit(BECount, MaxBECount, false, 7123 {&EL0.Predicates, &EL1.Predicates}); 7124 } 7125 if (BO->getOpcode() == Instruction::Or) { 7126 // Recurse on the operands of the or. 7127 bool EitherMayExit = ExitIfTrue; 7128 ExitLimit EL0 = computeExitLimitFromCondCached( 7129 Cache, L, BO->getOperand(0), ExitIfTrue, 7130 ControlsExit && !EitherMayExit, AllowPredicates); 7131 ExitLimit EL1 = computeExitLimitFromCondCached( 7132 Cache, L, BO->getOperand(1), ExitIfTrue, 7133 ControlsExit && !EitherMayExit, AllowPredicates); 7134 // Be robust against unsimplified IR for the form "or i1 X, true" 7135 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) 7136 return CI->isZero() ? EL0 : EL1; 7137 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(0))) 7138 return CI->isZero() ? EL1 : EL0; 7139 const SCEV *BECount = getCouldNotCompute(); 7140 const SCEV *MaxBECount = getCouldNotCompute(); 7141 if (EitherMayExit) { 7142 // Both conditions must be false for the loop to continue executing. 7143 // Choose the less conservative count. 7144 if (EL0.ExactNotTaken == getCouldNotCompute() || 7145 EL1.ExactNotTaken == getCouldNotCompute()) 7146 BECount = getCouldNotCompute(); 7147 else 7148 BECount = 7149 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 7150 if (EL0.MaxNotTaken == getCouldNotCompute()) 7151 MaxBECount = EL1.MaxNotTaken; 7152 else if (EL1.MaxNotTaken == getCouldNotCompute()) 7153 MaxBECount = EL0.MaxNotTaken; 7154 else 7155 MaxBECount = 7156 getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 7157 } else { 7158 // Both conditions must be false at the same time for the loop to exit. 7159 // For now, be conservative. 7160 if (EL0.MaxNotTaken == EL1.MaxNotTaken) 7161 MaxBECount = EL0.MaxNotTaken; 7162 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 7163 BECount = EL0.ExactNotTaken; 7164 } 7165 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 7166 // to be more aggressive when computing BECount than when computing 7167 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 7168 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 7169 // to not. 7170 if (isa<SCEVCouldNotCompute>(MaxBECount) && 7171 !isa<SCEVCouldNotCompute>(BECount)) 7172 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 7173 7174 return ExitLimit(BECount, MaxBECount, false, 7175 {&EL0.Predicates, &EL1.Predicates}); 7176 } 7177 } 7178 7179 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7180 // Proceed to the next level to examine the icmp. 7181 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7182 ExitLimit EL = 7183 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7184 if (EL.hasFullInfo() || !AllowPredicates) 7185 return EL; 7186 7187 // Try again, but use SCEV predicates this time. 7188 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7189 /*AllowPredicates=*/true); 7190 } 7191 7192 // Check for a constant condition. These are normally stripped out by 7193 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7194 // preserve the CFG and is temporarily leaving constant conditions 7195 // in place. 7196 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7197 if (ExitIfTrue == !CI->getZExtValue()) 7198 // The backedge is always taken. 7199 return getCouldNotCompute(); 7200 else 7201 // The backedge is never taken. 7202 return getZero(CI->getType()); 7203 } 7204 7205 // If it's not an integer or pointer comparison then compute it the hard way. 7206 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7207 } 7208 7209 ScalarEvolution::ExitLimit 7210 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 7211 ICmpInst *ExitCond, 7212 bool ExitIfTrue, 7213 bool ControlsExit, 7214 bool AllowPredicates) { 7215 // If the condition was exit on true, convert the condition to exit on false 7216 ICmpInst::Predicate Pred; 7217 if (!ExitIfTrue) 7218 Pred = ExitCond->getPredicate(); 7219 else 7220 Pred = ExitCond->getInversePredicate(); 7221 const ICmpInst::Predicate OriginalPred = Pred; 7222 7223 // Handle common loops like: for (X = "string"; *X; ++X) 7224 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 7225 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 7226 ExitLimit ItCnt = 7227 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 7228 if (ItCnt.hasAnyInfo()) 7229 return ItCnt; 7230 } 7231 7232 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 7233 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 7234 7235 // Try to evaluate any dependencies out of the loop. 7236 LHS = getSCEVAtScope(LHS, L); 7237 RHS = getSCEVAtScope(RHS, L); 7238 7239 // At this point, we would like to compute how many iterations of the 7240 // loop the predicate will return true for these inputs. 7241 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 7242 // If there is a loop-invariant, force it into the RHS. 7243 std::swap(LHS, RHS); 7244 Pred = ICmpInst::getSwappedPredicate(Pred); 7245 } 7246 7247 // Simplify the operands before analyzing them. 7248 (void)SimplifyICmpOperands(Pred, LHS, RHS); 7249 7250 // If we have a comparison of a chrec against a constant, try to use value 7251 // ranges to answer this query. 7252 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 7253 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 7254 if (AddRec->getLoop() == L) { 7255 // Form the constant range. 7256 ConstantRange CompRange = 7257 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 7258 7259 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 7260 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 7261 } 7262 7263 switch (Pred) { 7264 case ICmpInst::ICMP_NE: { // while (X != Y) 7265 // Convert to: while (X-Y != 0) 7266 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 7267 AllowPredicates); 7268 if (EL.hasAnyInfo()) return EL; 7269 break; 7270 } 7271 case ICmpInst::ICMP_EQ: { // while (X == Y) 7272 // Convert to: while (X-Y == 0) 7273 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 7274 if (EL.hasAnyInfo()) return EL; 7275 break; 7276 } 7277 case ICmpInst::ICMP_SLT: 7278 case ICmpInst::ICMP_ULT: { // while (X < Y) 7279 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 7280 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 7281 AllowPredicates); 7282 if (EL.hasAnyInfo()) return EL; 7283 break; 7284 } 7285 case ICmpInst::ICMP_SGT: 7286 case ICmpInst::ICMP_UGT: { // while (X > Y) 7287 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 7288 ExitLimit EL = 7289 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 7290 AllowPredicates); 7291 if (EL.hasAnyInfo()) return EL; 7292 break; 7293 } 7294 default: 7295 break; 7296 } 7297 7298 auto *ExhaustiveCount = 7299 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7300 7301 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 7302 return ExhaustiveCount; 7303 7304 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 7305 ExitCond->getOperand(1), L, OriginalPred); 7306 } 7307 7308 ScalarEvolution::ExitLimit 7309 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 7310 SwitchInst *Switch, 7311 BasicBlock *ExitingBlock, 7312 bool ControlsExit) { 7313 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 7314 7315 // Give up if the exit is the default dest of a switch. 7316 if (Switch->getDefaultDest() == ExitingBlock) 7317 return getCouldNotCompute(); 7318 7319 assert(L->contains(Switch->getDefaultDest()) && 7320 "Default case must not exit the loop!"); 7321 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 7322 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 7323 7324 // while (X != Y) --> while (X-Y != 0) 7325 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 7326 if (EL.hasAnyInfo()) 7327 return EL; 7328 7329 return getCouldNotCompute(); 7330 } 7331 7332 static ConstantInt * 7333 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 7334 ScalarEvolution &SE) { 7335 const SCEV *InVal = SE.getConstant(C); 7336 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 7337 assert(isa<SCEVConstant>(Val) && 7338 "Evaluation of SCEV at constant didn't fold correctly?"); 7339 return cast<SCEVConstant>(Val)->getValue(); 7340 } 7341 7342 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 7343 /// compute the backedge execution count. 7344 ScalarEvolution::ExitLimit 7345 ScalarEvolution::computeLoadConstantCompareExitLimit( 7346 LoadInst *LI, 7347 Constant *RHS, 7348 const Loop *L, 7349 ICmpInst::Predicate predicate) { 7350 if (LI->isVolatile()) return getCouldNotCompute(); 7351 7352 // Check to see if the loaded pointer is a getelementptr of a global. 7353 // TODO: Use SCEV instead of manually grubbing with GEPs. 7354 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 7355 if (!GEP) return getCouldNotCompute(); 7356 7357 // Make sure that it is really a constant global we are gepping, with an 7358 // initializer, and make sure the first IDX is really 0. 7359 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 7360 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 7361 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 7362 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 7363 return getCouldNotCompute(); 7364 7365 // Okay, we allow one non-constant index into the GEP instruction. 7366 Value *VarIdx = nullptr; 7367 std::vector<Constant*> Indexes; 7368 unsigned VarIdxNum = 0; 7369 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 7370 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 7371 Indexes.push_back(CI); 7372 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 7373 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 7374 VarIdx = GEP->getOperand(i); 7375 VarIdxNum = i-2; 7376 Indexes.push_back(nullptr); 7377 } 7378 7379 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 7380 if (!VarIdx) 7381 return getCouldNotCompute(); 7382 7383 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 7384 // Check to see if X is a loop variant variable value now. 7385 const SCEV *Idx = getSCEV(VarIdx); 7386 Idx = getSCEVAtScope(Idx, L); 7387 7388 // We can only recognize very limited forms of loop index expressions, in 7389 // particular, only affine AddRec's like {C1,+,C2}. 7390 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 7391 if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) || 7392 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 7393 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 7394 return getCouldNotCompute(); 7395 7396 unsigned MaxSteps = MaxBruteForceIterations; 7397 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 7398 ConstantInt *ItCst = ConstantInt::get( 7399 cast<IntegerType>(IdxExpr->getType()), IterationNum); 7400 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 7401 7402 // Form the GEP offset. 7403 Indexes[VarIdxNum] = Val; 7404 7405 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 7406 Indexes); 7407 if (!Result) break; // Cannot compute! 7408 7409 // Evaluate the condition for this iteration. 7410 Result = ConstantExpr::getICmp(predicate, Result, RHS); 7411 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 7412 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 7413 ++NumArrayLenItCounts; 7414 return getConstant(ItCst); // Found terminating iteration! 7415 } 7416 } 7417 return getCouldNotCompute(); 7418 } 7419 7420 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 7421 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 7422 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 7423 if (!RHS) 7424 return getCouldNotCompute(); 7425 7426 const BasicBlock *Latch = L->getLoopLatch(); 7427 if (!Latch) 7428 return getCouldNotCompute(); 7429 7430 const BasicBlock *Predecessor = L->getLoopPredecessor(); 7431 if (!Predecessor) 7432 return getCouldNotCompute(); 7433 7434 // Return true if V is of the form "LHS `shift_op` <positive constant>". 7435 // Return LHS in OutLHS and shift_opt in OutOpCode. 7436 auto MatchPositiveShift = 7437 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 7438 7439 using namespace PatternMatch; 7440 7441 ConstantInt *ShiftAmt; 7442 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7443 OutOpCode = Instruction::LShr; 7444 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7445 OutOpCode = Instruction::AShr; 7446 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 7447 OutOpCode = Instruction::Shl; 7448 else 7449 return false; 7450 7451 return ShiftAmt->getValue().isStrictlyPositive(); 7452 }; 7453 7454 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 7455 // 7456 // loop: 7457 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 7458 // %iv.shifted = lshr i32 %iv, <positive constant> 7459 // 7460 // Return true on a successful match. Return the corresponding PHI node (%iv 7461 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 7462 auto MatchShiftRecurrence = 7463 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 7464 Optional<Instruction::BinaryOps> PostShiftOpCode; 7465 7466 { 7467 Instruction::BinaryOps OpC; 7468 Value *V; 7469 7470 // If we encounter a shift instruction, "peel off" the shift operation, 7471 // and remember that we did so. Later when we inspect %iv's backedge 7472 // value, we will make sure that the backedge value uses the same 7473 // operation. 7474 // 7475 // Note: the peeled shift operation does not have to be the same 7476 // instruction as the one feeding into the PHI's backedge value. We only 7477 // really care about it being the same *kind* of shift instruction -- 7478 // that's all that is required for our later inferences to hold. 7479 if (MatchPositiveShift(LHS, V, OpC)) { 7480 PostShiftOpCode = OpC; 7481 LHS = V; 7482 } 7483 } 7484 7485 PNOut = dyn_cast<PHINode>(LHS); 7486 if (!PNOut || PNOut->getParent() != L->getHeader()) 7487 return false; 7488 7489 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 7490 Value *OpLHS; 7491 7492 return 7493 // The backedge value for the PHI node must be a shift by a positive 7494 // amount 7495 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 7496 7497 // of the PHI node itself 7498 OpLHS == PNOut && 7499 7500 // and the kind of shift should be match the kind of shift we peeled 7501 // off, if any. 7502 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 7503 }; 7504 7505 PHINode *PN; 7506 Instruction::BinaryOps OpCode; 7507 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 7508 return getCouldNotCompute(); 7509 7510 const DataLayout &DL = getDataLayout(); 7511 7512 // The key rationale for this optimization is that for some kinds of shift 7513 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 7514 // within a finite number of iterations. If the condition guarding the 7515 // backedge (in the sense that the backedge is taken if the condition is true) 7516 // is false for the value the shift recurrence stabilizes to, then we know 7517 // that the backedge is taken only a finite number of times. 7518 7519 ConstantInt *StableValue = nullptr; 7520 switch (OpCode) { 7521 default: 7522 llvm_unreachable("Impossible case!"); 7523 7524 case Instruction::AShr: { 7525 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 7526 // bitwidth(K) iterations. 7527 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 7528 KnownBits Known = computeKnownBits(FirstValue, DL, 0, nullptr, 7529 Predecessor->getTerminator(), &DT); 7530 auto *Ty = cast<IntegerType>(RHS->getType()); 7531 if (Known.isNonNegative()) 7532 StableValue = ConstantInt::get(Ty, 0); 7533 else if (Known.isNegative()) 7534 StableValue = ConstantInt::get(Ty, -1, true); 7535 else 7536 return getCouldNotCompute(); 7537 7538 break; 7539 } 7540 case Instruction::LShr: 7541 case Instruction::Shl: 7542 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 7543 // stabilize to 0 in at most bitwidth(K) iterations. 7544 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 7545 break; 7546 } 7547 7548 auto *Result = 7549 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 7550 assert(Result->getType()->isIntegerTy(1) && 7551 "Otherwise cannot be an operand to a branch instruction"); 7552 7553 if (Result->isZeroValue()) { 7554 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 7555 const SCEV *UpperBound = 7556 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 7557 return ExitLimit(getCouldNotCompute(), UpperBound, false); 7558 } 7559 7560 return getCouldNotCompute(); 7561 } 7562 7563 /// Return true if we can constant fold an instruction of the specified type, 7564 /// assuming that all operands were constants. 7565 static bool CanConstantFold(const Instruction *I) { 7566 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 7567 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 7568 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 7569 return true; 7570 7571 if (const CallInst *CI = dyn_cast<CallInst>(I)) 7572 if (const Function *F = CI->getCalledFunction()) 7573 return canConstantFoldCallTo(CI, F); 7574 return false; 7575 } 7576 7577 /// Determine whether this instruction can constant evolve within this loop 7578 /// assuming its operands can all constant evolve. 7579 static bool canConstantEvolve(Instruction *I, const Loop *L) { 7580 // An instruction outside of the loop can't be derived from a loop PHI. 7581 if (!L->contains(I)) return false; 7582 7583 if (isa<PHINode>(I)) { 7584 // We don't currently keep track of the control flow needed to evaluate 7585 // PHIs, so we cannot handle PHIs inside of loops. 7586 return L->getHeader() == I->getParent(); 7587 } 7588 7589 // If we won't be able to constant fold this expression even if the operands 7590 // are constants, bail early. 7591 return CanConstantFold(I); 7592 } 7593 7594 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 7595 /// recursing through each instruction operand until reaching a loop header phi. 7596 static PHINode * 7597 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 7598 DenseMap<Instruction *, PHINode *> &PHIMap, 7599 unsigned Depth) { 7600 if (Depth > MaxConstantEvolvingDepth) 7601 return nullptr; 7602 7603 // Otherwise, we can evaluate this instruction if all of its operands are 7604 // constant or derived from a PHI node themselves. 7605 PHINode *PHI = nullptr; 7606 for (Value *Op : UseInst->operands()) { 7607 if (isa<Constant>(Op)) continue; 7608 7609 Instruction *OpInst = dyn_cast<Instruction>(Op); 7610 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 7611 7612 PHINode *P = dyn_cast<PHINode>(OpInst); 7613 if (!P) 7614 // If this operand is already visited, reuse the prior result. 7615 // We may have P != PHI if this is the deepest point at which the 7616 // inconsistent paths meet. 7617 P = PHIMap.lookup(OpInst); 7618 if (!P) { 7619 // Recurse and memoize the results, whether a phi is found or not. 7620 // This recursive call invalidates pointers into PHIMap. 7621 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 7622 PHIMap[OpInst] = P; 7623 } 7624 if (!P) 7625 return nullptr; // Not evolving from PHI 7626 if (PHI && PHI != P) 7627 return nullptr; // Evolving from multiple different PHIs. 7628 PHI = P; 7629 } 7630 // This is a expression evolving from a constant PHI! 7631 return PHI; 7632 } 7633 7634 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 7635 /// in the loop that V is derived from. We allow arbitrary operations along the 7636 /// way, but the operands of an operation must either be constants or a value 7637 /// derived from a constant PHI. If this expression does not fit with these 7638 /// constraints, return null. 7639 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 7640 Instruction *I = dyn_cast<Instruction>(V); 7641 if (!I || !canConstantEvolve(I, L)) return nullptr; 7642 7643 if (PHINode *PN = dyn_cast<PHINode>(I)) 7644 return PN; 7645 7646 // Record non-constant instructions contained by the loop. 7647 DenseMap<Instruction *, PHINode *> PHIMap; 7648 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 7649 } 7650 7651 /// EvaluateExpression - Given an expression that passes the 7652 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 7653 /// in the loop has the value PHIVal. If we can't fold this expression for some 7654 /// reason, return null. 7655 static Constant *EvaluateExpression(Value *V, const Loop *L, 7656 DenseMap<Instruction *, Constant *> &Vals, 7657 const DataLayout &DL, 7658 const TargetLibraryInfo *TLI) { 7659 // Convenient constant check, but redundant for recursive calls. 7660 if (Constant *C = dyn_cast<Constant>(V)) return C; 7661 Instruction *I = dyn_cast<Instruction>(V); 7662 if (!I) return nullptr; 7663 7664 if (Constant *C = Vals.lookup(I)) return C; 7665 7666 // An instruction inside the loop depends on a value outside the loop that we 7667 // weren't given a mapping for, or a value such as a call inside the loop. 7668 if (!canConstantEvolve(I, L)) return nullptr; 7669 7670 // An unmapped PHI can be due to a branch or another loop inside this loop, 7671 // or due to this not being the initial iteration through a loop where we 7672 // couldn't compute the evolution of this particular PHI last time. 7673 if (isa<PHINode>(I)) return nullptr; 7674 7675 std::vector<Constant*> Operands(I->getNumOperands()); 7676 7677 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 7678 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 7679 if (!Operand) { 7680 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 7681 if (!Operands[i]) return nullptr; 7682 continue; 7683 } 7684 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 7685 Vals[Operand] = C; 7686 if (!C) return nullptr; 7687 Operands[i] = C; 7688 } 7689 7690 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 7691 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 7692 Operands[1], DL, TLI); 7693 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 7694 if (!LI->isVolatile()) 7695 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 7696 } 7697 return ConstantFoldInstOperands(I, Operands, DL, TLI); 7698 } 7699 7700 7701 // If every incoming value to PN except the one for BB is a specific Constant, 7702 // return that, else return nullptr. 7703 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 7704 Constant *IncomingVal = nullptr; 7705 7706 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 7707 if (PN->getIncomingBlock(i) == BB) 7708 continue; 7709 7710 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 7711 if (!CurrentVal) 7712 return nullptr; 7713 7714 if (IncomingVal != CurrentVal) { 7715 if (IncomingVal) 7716 return nullptr; 7717 IncomingVal = CurrentVal; 7718 } 7719 } 7720 7721 return IncomingVal; 7722 } 7723 7724 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 7725 /// in the header of its containing loop, we know the loop executes a 7726 /// constant number of times, and the PHI node is just a recurrence 7727 /// involving constants, fold it. 7728 Constant * 7729 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 7730 const APInt &BEs, 7731 const Loop *L) { 7732 auto I = ConstantEvolutionLoopExitValue.find(PN); 7733 if (I != ConstantEvolutionLoopExitValue.end()) 7734 return I->second; 7735 7736 if (BEs.ugt(MaxBruteForceIterations)) 7737 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 7738 7739 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 7740 7741 DenseMap<Instruction *, Constant *> CurrentIterVals; 7742 BasicBlock *Header = L->getHeader(); 7743 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7744 7745 BasicBlock *Latch = L->getLoopLatch(); 7746 if (!Latch) 7747 return nullptr; 7748 7749 for (PHINode &PHI : Header->phis()) { 7750 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7751 CurrentIterVals[&PHI] = StartCST; 7752 } 7753 if (!CurrentIterVals.count(PN)) 7754 return RetVal = nullptr; 7755 7756 Value *BEValue = PN->getIncomingValueForBlock(Latch); 7757 7758 // Execute the loop symbolically to determine the exit value. 7759 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 7760 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 7761 7762 unsigned NumIterations = BEs.getZExtValue(); // must be in range 7763 unsigned IterationNum = 0; 7764 const DataLayout &DL = getDataLayout(); 7765 for (; ; ++IterationNum) { 7766 if (IterationNum == NumIterations) 7767 return RetVal = CurrentIterVals[PN]; // Got exit value! 7768 7769 // Compute the value of the PHIs for the next iteration. 7770 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 7771 DenseMap<Instruction *, Constant *> NextIterVals; 7772 Constant *NextPHI = 7773 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7774 if (!NextPHI) 7775 return nullptr; // Couldn't evaluate! 7776 NextIterVals[PN] = NextPHI; 7777 7778 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 7779 7780 // Also evaluate the other PHI nodes. However, we don't get to stop if we 7781 // cease to be able to evaluate one of them or if they stop evolving, 7782 // because that doesn't necessarily prevent us from computing PN. 7783 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 7784 for (const auto &I : CurrentIterVals) { 7785 PHINode *PHI = dyn_cast<PHINode>(I.first); 7786 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 7787 PHIsToCompute.emplace_back(PHI, I.second); 7788 } 7789 // We use two distinct loops because EvaluateExpression may invalidate any 7790 // iterators into CurrentIterVals. 7791 for (const auto &I : PHIsToCompute) { 7792 PHINode *PHI = I.first; 7793 Constant *&NextPHI = NextIterVals[PHI]; 7794 if (!NextPHI) { // Not already computed. 7795 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7796 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7797 } 7798 if (NextPHI != I.second) 7799 StoppedEvolving = false; 7800 } 7801 7802 // If all entries in CurrentIterVals == NextIterVals then we can stop 7803 // iterating, the loop can't continue to change. 7804 if (StoppedEvolving) 7805 return RetVal = CurrentIterVals[PN]; 7806 7807 CurrentIterVals.swap(NextIterVals); 7808 } 7809 } 7810 7811 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 7812 Value *Cond, 7813 bool ExitWhen) { 7814 PHINode *PN = getConstantEvolvingPHI(Cond, L); 7815 if (!PN) return getCouldNotCompute(); 7816 7817 // If the loop is canonicalized, the PHI will have exactly two entries. 7818 // That's the only form we support here. 7819 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 7820 7821 DenseMap<Instruction *, Constant *> CurrentIterVals; 7822 BasicBlock *Header = L->getHeader(); 7823 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 7824 7825 BasicBlock *Latch = L->getLoopLatch(); 7826 assert(Latch && "Should follow from NumIncomingValues == 2!"); 7827 7828 for (PHINode &PHI : Header->phis()) { 7829 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 7830 CurrentIterVals[&PHI] = StartCST; 7831 } 7832 if (!CurrentIterVals.count(PN)) 7833 return getCouldNotCompute(); 7834 7835 // Okay, we find a PHI node that defines the trip count of this loop. Execute 7836 // the loop symbolically to determine when the condition gets a value of 7837 // "ExitWhen". 7838 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 7839 const DataLayout &DL = getDataLayout(); 7840 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 7841 auto *CondVal = dyn_cast_or_null<ConstantInt>( 7842 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 7843 7844 // Couldn't symbolically evaluate. 7845 if (!CondVal) return getCouldNotCompute(); 7846 7847 if (CondVal->getValue() == uint64_t(ExitWhen)) { 7848 ++NumBruteForceTripCountsComputed; 7849 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 7850 } 7851 7852 // Update all the PHI nodes for the next iteration. 7853 DenseMap<Instruction *, Constant *> NextIterVals; 7854 7855 // Create a list of which PHIs we need to compute. We want to do this before 7856 // calling EvaluateExpression on them because that may invalidate iterators 7857 // into CurrentIterVals. 7858 SmallVector<PHINode *, 8> PHIsToCompute; 7859 for (const auto &I : CurrentIterVals) { 7860 PHINode *PHI = dyn_cast<PHINode>(I.first); 7861 if (!PHI || PHI->getParent() != Header) continue; 7862 PHIsToCompute.push_back(PHI); 7863 } 7864 for (PHINode *PHI : PHIsToCompute) { 7865 Constant *&NextPHI = NextIterVals[PHI]; 7866 if (NextPHI) continue; // Already computed! 7867 7868 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 7869 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 7870 } 7871 CurrentIterVals.swap(NextIterVals); 7872 } 7873 7874 // Too many iterations were needed to evaluate. 7875 return getCouldNotCompute(); 7876 } 7877 7878 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 7879 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 7880 ValuesAtScopes[V]; 7881 // Check to see if we've folded this expression at this loop before. 7882 for (auto &LS : Values) 7883 if (LS.first == L) 7884 return LS.second ? LS.second : V; 7885 7886 Values.emplace_back(L, nullptr); 7887 7888 // Otherwise compute it. 7889 const SCEV *C = computeSCEVAtScope(V, L); 7890 for (auto &LS : reverse(ValuesAtScopes[V])) 7891 if (LS.first == L) { 7892 LS.second = C; 7893 break; 7894 } 7895 return C; 7896 } 7897 7898 /// This builds up a Constant using the ConstantExpr interface. That way, we 7899 /// will return Constants for objects which aren't represented by a 7900 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 7901 /// Returns NULL if the SCEV isn't representable as a Constant. 7902 static Constant *BuildConstantFromSCEV(const SCEV *V) { 7903 switch (static_cast<SCEVTypes>(V->getSCEVType())) { 7904 case scCouldNotCompute: 7905 case scAddRecExpr: 7906 break; 7907 case scConstant: 7908 return cast<SCEVConstant>(V)->getValue(); 7909 case scUnknown: 7910 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 7911 case scSignExtend: { 7912 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 7913 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 7914 return ConstantExpr::getSExt(CastOp, SS->getType()); 7915 break; 7916 } 7917 case scZeroExtend: { 7918 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 7919 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 7920 return ConstantExpr::getZExt(CastOp, SZ->getType()); 7921 break; 7922 } 7923 case scTruncate: { 7924 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 7925 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 7926 return ConstantExpr::getTrunc(CastOp, ST->getType()); 7927 break; 7928 } 7929 case scAddExpr: { 7930 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 7931 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 7932 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7933 unsigned AS = PTy->getAddressSpace(); 7934 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7935 C = ConstantExpr::getBitCast(C, DestPtrTy); 7936 } 7937 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 7938 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 7939 if (!C2) return nullptr; 7940 7941 // First pointer! 7942 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 7943 unsigned AS = C2->getType()->getPointerAddressSpace(); 7944 std::swap(C, C2); 7945 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 7946 // The offsets have been converted to bytes. We can add bytes to an 7947 // i8* by GEP with the byte count in the first index. 7948 C = ConstantExpr::getBitCast(C, DestPtrTy); 7949 } 7950 7951 // Don't bother trying to sum two pointers. We probably can't 7952 // statically compute a load that results from it anyway. 7953 if (C2->getType()->isPointerTy()) 7954 return nullptr; 7955 7956 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 7957 if (PTy->getElementType()->isStructTy()) 7958 C2 = ConstantExpr::getIntegerCast( 7959 C2, Type::getInt32Ty(C->getContext()), true); 7960 C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2); 7961 } else 7962 C = ConstantExpr::getAdd(C, C2); 7963 } 7964 return C; 7965 } 7966 break; 7967 } 7968 case scMulExpr: { 7969 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 7970 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 7971 // Don't bother with pointers at all. 7972 if (C->getType()->isPointerTy()) return nullptr; 7973 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 7974 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 7975 if (!C2 || C2->getType()->isPointerTy()) return nullptr; 7976 C = ConstantExpr::getMul(C, C2); 7977 } 7978 return C; 7979 } 7980 break; 7981 } 7982 case scUDivExpr: { 7983 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 7984 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 7985 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 7986 if (LHS->getType() == RHS->getType()) 7987 return ConstantExpr::getUDiv(LHS, RHS); 7988 break; 7989 } 7990 case scSMaxExpr: 7991 case scUMaxExpr: 7992 case scSMinExpr: 7993 case scUMinExpr: 7994 break; // TODO: smax, umax, smin, umax. 7995 } 7996 return nullptr; 7997 } 7998 7999 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8000 if (isa<SCEVConstant>(V)) return V; 8001 8002 // If this instruction is evolved from a constant-evolving PHI, compute the 8003 // exit value from the loop without using SCEVs. 8004 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8005 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8006 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8007 const Loop *LI = this->LI[I->getParent()]; 8008 // Looking for loop exit value. 8009 if (LI && LI->getParentLoop() == L && 8010 PN->getParent() == LI->getHeader()) { 8011 // Okay, there is no closed form solution for the PHI node. Check 8012 // to see if the loop that contains it has a known backedge-taken 8013 // count. If so, we may be able to force computation of the exit 8014 // value. 8015 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI); 8016 // This trivial case can show up in some degenerate cases where 8017 // the incoming IR has not yet been fully simplified. 8018 if (BackedgeTakenCount->isZero()) { 8019 Value *InitValue = nullptr; 8020 bool MultipleInitValues = false; 8021 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8022 if (!LI->contains(PN->getIncomingBlock(i))) { 8023 if (!InitValue) 8024 InitValue = PN->getIncomingValue(i); 8025 else if (InitValue != PN->getIncomingValue(i)) { 8026 MultipleInitValues = true; 8027 break; 8028 } 8029 } 8030 } 8031 if (!MultipleInitValues && InitValue) 8032 return getSCEV(InitValue); 8033 } 8034 // Do we have a loop invariant value flowing around the backedge 8035 // for a loop which must execute the backedge? 8036 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8037 isKnownPositive(BackedgeTakenCount) && 8038 PN->getNumIncomingValues() == 2) { 8039 8040 unsigned InLoopPred = LI->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8041 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8042 if (LI->isLoopInvariant(BackedgeVal)) 8043 return getSCEV(BackedgeVal); 8044 } 8045 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8046 // Okay, we know how many times the containing loop executes. If 8047 // this is a constant evolving PHI node, get the final value at 8048 // the specified iteration number. 8049 Constant *RV = 8050 getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI); 8051 if (RV) return getSCEV(RV); 8052 } 8053 } 8054 8055 // If there is a single-input Phi, evaluate it at our scope. If we can 8056 // prove that this replacement does not break LCSSA form, use new value. 8057 if (PN->getNumOperands() == 1) { 8058 const SCEV *Input = getSCEV(PN->getOperand(0)); 8059 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8060 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8061 // for the simplest case just support constants. 8062 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8063 } 8064 } 8065 8066 // Okay, this is an expression that we cannot symbolically evaluate 8067 // into a SCEV. Check to see if it's possible to symbolically evaluate 8068 // the arguments into constants, and if so, try to constant propagate the 8069 // result. This is particularly useful for computing loop exit values. 8070 if (CanConstantFold(I)) { 8071 SmallVector<Constant *, 4> Operands; 8072 bool MadeImprovement = false; 8073 for (Value *Op : I->operands()) { 8074 if (Constant *C = dyn_cast<Constant>(Op)) { 8075 Operands.push_back(C); 8076 continue; 8077 } 8078 8079 // If any of the operands is non-constant and if they are 8080 // non-integer and non-pointer, don't even try to analyze them 8081 // with scev techniques. 8082 if (!isSCEVable(Op->getType())) 8083 return V; 8084 8085 const SCEV *OrigV = getSCEV(Op); 8086 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8087 MadeImprovement |= OrigV != OpV; 8088 8089 Constant *C = BuildConstantFromSCEV(OpV); 8090 if (!C) return V; 8091 if (C->getType() != Op->getType()) 8092 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8093 Op->getType(), 8094 false), 8095 C, Op->getType()); 8096 Operands.push_back(C); 8097 } 8098 8099 // Check to see if getSCEVAtScope actually made an improvement. 8100 if (MadeImprovement) { 8101 Constant *C = nullptr; 8102 const DataLayout &DL = getDataLayout(); 8103 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8104 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8105 Operands[1], DL, &TLI); 8106 else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) { 8107 if (!LI->isVolatile()) 8108 C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8109 } else 8110 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8111 if (!C) return V; 8112 return getSCEV(C); 8113 } 8114 } 8115 } 8116 8117 // This is some other type of SCEVUnknown, just return it. 8118 return V; 8119 } 8120 8121 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8122 // Avoid performing the look-up in the common case where the specified 8123 // expression has no loop-variant portions. 8124 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8125 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8126 if (OpAtScope != Comm->getOperand(i)) { 8127 // Okay, at least one of these operands is loop variant but might be 8128 // foldable. Build a new instance of the folded commutative expression. 8129 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8130 Comm->op_begin()+i); 8131 NewOps.push_back(OpAtScope); 8132 8133 for (++i; i != e; ++i) { 8134 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8135 NewOps.push_back(OpAtScope); 8136 } 8137 if (isa<SCEVAddExpr>(Comm)) 8138 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8139 if (isa<SCEVMulExpr>(Comm)) 8140 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 8141 if (isa<SCEVMinMaxExpr>(Comm)) 8142 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 8143 llvm_unreachable("Unknown commutative SCEV type!"); 8144 } 8145 } 8146 // If we got here, all operands are loop invariant. 8147 return Comm; 8148 } 8149 8150 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 8151 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 8152 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 8153 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 8154 return Div; // must be loop invariant 8155 return getUDivExpr(LHS, RHS); 8156 } 8157 8158 // If this is a loop recurrence for a loop that does not contain L, then we 8159 // are dealing with the final value computed by the loop. 8160 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 8161 // First, attempt to evaluate each operand. 8162 // Avoid performing the look-up in the common case where the specified 8163 // expression has no loop-variant portions. 8164 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 8165 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 8166 if (OpAtScope == AddRec->getOperand(i)) 8167 continue; 8168 8169 // Okay, at least one of these operands is loop variant but might be 8170 // foldable. Build a new instance of the folded commutative expression. 8171 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 8172 AddRec->op_begin()+i); 8173 NewOps.push_back(OpAtScope); 8174 for (++i; i != e; ++i) 8175 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 8176 8177 const SCEV *FoldedRec = 8178 getAddRecExpr(NewOps, AddRec->getLoop(), 8179 AddRec->getNoWrapFlags(SCEV::FlagNW)); 8180 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 8181 // The addrec may be folded to a nonrecurrence, for example, if the 8182 // induction variable is multiplied by zero after constant folding. Go 8183 // ahead and return the folded value. 8184 if (!AddRec) 8185 return FoldedRec; 8186 break; 8187 } 8188 8189 // If the scope is outside the addrec's loop, evaluate it by using the 8190 // loop exit value of the addrec. 8191 if (!AddRec->getLoop()->contains(L)) { 8192 // To evaluate this recurrence, we need to know how many times the AddRec 8193 // loop iterates. Compute this now. 8194 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 8195 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 8196 8197 // Then, evaluate the AddRec. 8198 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 8199 } 8200 8201 return AddRec; 8202 } 8203 8204 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 8205 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8206 if (Op == Cast->getOperand()) 8207 return Cast; // must be loop invariant 8208 return getZeroExtendExpr(Op, Cast->getType()); 8209 } 8210 8211 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 8212 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8213 if (Op == Cast->getOperand()) 8214 return Cast; // must be loop invariant 8215 return getSignExtendExpr(Op, Cast->getType()); 8216 } 8217 8218 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 8219 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 8220 if (Op == Cast->getOperand()) 8221 return Cast; // must be loop invariant 8222 return getTruncateExpr(Op, Cast->getType()); 8223 } 8224 8225 llvm_unreachable("Unknown SCEV type!"); 8226 } 8227 8228 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 8229 return getSCEVAtScope(getSCEV(V), L); 8230 } 8231 8232 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 8233 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 8234 return stripInjectiveFunctions(ZExt->getOperand()); 8235 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 8236 return stripInjectiveFunctions(SExt->getOperand()); 8237 return S; 8238 } 8239 8240 /// Finds the minimum unsigned root of the following equation: 8241 /// 8242 /// A * X = B (mod N) 8243 /// 8244 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 8245 /// A and B isn't important. 8246 /// 8247 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 8248 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 8249 ScalarEvolution &SE) { 8250 uint32_t BW = A.getBitWidth(); 8251 assert(BW == SE.getTypeSizeInBits(B->getType())); 8252 assert(A != 0 && "A must be non-zero."); 8253 8254 // 1. D = gcd(A, N) 8255 // 8256 // The gcd of A and N may have only one prime factor: 2. The number of 8257 // trailing zeros in A is its multiplicity 8258 uint32_t Mult2 = A.countTrailingZeros(); 8259 // D = 2^Mult2 8260 8261 // 2. Check if B is divisible by D. 8262 // 8263 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 8264 // is not less than multiplicity of this prime factor for D. 8265 if (SE.GetMinTrailingZeros(B) < Mult2) 8266 return SE.getCouldNotCompute(); 8267 8268 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 8269 // modulo (N / D). 8270 // 8271 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 8272 // (N / D) in general. The inverse itself always fits into BW bits, though, 8273 // so we immediately truncate it. 8274 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 8275 APInt Mod(BW + 1, 0); 8276 Mod.setBit(BW - Mult2); // Mod = N / D 8277 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 8278 8279 // 4. Compute the minimum unsigned root of the equation: 8280 // I * (B / D) mod (N / D) 8281 // To simplify the computation, we factor out the divide by D: 8282 // (I * B mod N) / D 8283 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 8284 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 8285 } 8286 8287 /// For a given quadratic addrec, generate coefficients of the corresponding 8288 /// quadratic equation, multiplied by a common value to ensure that they are 8289 /// integers. 8290 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 8291 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 8292 /// were multiplied by, and BitWidth is the bit width of the original addrec 8293 /// coefficients. 8294 /// This function returns None if the addrec coefficients are not compile- 8295 /// time constants. 8296 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 8297 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 8298 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 8299 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 8300 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 8301 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 8302 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 8303 << *AddRec << '\n'); 8304 8305 // We currently can only solve this if the coefficients are constants. 8306 if (!LC || !MC || !NC) { 8307 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 8308 return None; 8309 } 8310 8311 APInt L = LC->getAPInt(); 8312 APInt M = MC->getAPInt(); 8313 APInt N = NC->getAPInt(); 8314 assert(!N.isNullValue() && "This is not a quadratic addrec"); 8315 8316 unsigned BitWidth = LC->getAPInt().getBitWidth(); 8317 unsigned NewWidth = BitWidth + 1; 8318 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 8319 << BitWidth << '\n'); 8320 // The sign-extension (as opposed to a zero-extension) here matches the 8321 // extension used in SolveQuadraticEquationWrap (with the same motivation). 8322 N = N.sext(NewWidth); 8323 M = M.sext(NewWidth); 8324 L = L.sext(NewWidth); 8325 8326 // The increments are M, M+N, M+2N, ..., so the accumulated values are 8327 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 8328 // L+M, L+2M+N, L+3M+3N, ... 8329 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 8330 // 8331 // The equation Acc = 0 is then 8332 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 8333 // In a quadratic form it becomes: 8334 // N n^2 + (2M-N) n + 2L = 0. 8335 8336 APInt A = N; 8337 APInt B = 2 * M - A; 8338 APInt C = 2 * L; 8339 APInt T = APInt(NewWidth, 2); 8340 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 8341 << "x + " << C << ", coeff bw: " << NewWidth 8342 << ", multiplied by " << T << '\n'); 8343 return std::make_tuple(A, B, C, T, BitWidth); 8344 } 8345 8346 /// Helper function to compare optional APInts: 8347 /// (a) if X and Y both exist, return min(X, Y), 8348 /// (b) if neither X nor Y exist, return None, 8349 /// (c) if exactly one of X and Y exists, return that value. 8350 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 8351 if (X.hasValue() && Y.hasValue()) { 8352 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 8353 APInt XW = X->sextOrSelf(W); 8354 APInt YW = Y->sextOrSelf(W); 8355 return XW.slt(YW) ? *X : *Y; 8356 } 8357 if (!X.hasValue() && !Y.hasValue()) 8358 return None; 8359 return X.hasValue() ? *X : *Y; 8360 } 8361 8362 /// Helper function to truncate an optional APInt to a given BitWidth. 8363 /// When solving addrec-related equations, it is preferable to return a value 8364 /// that has the same bit width as the original addrec's coefficients. If the 8365 /// solution fits in the original bit width, truncate it (except for i1). 8366 /// Returning a value of a different bit width may inhibit some optimizations. 8367 /// 8368 /// In general, a solution to a quadratic equation generated from an addrec 8369 /// may require BW+1 bits, where BW is the bit width of the addrec's 8370 /// coefficients. The reason is that the coefficients of the quadratic 8371 /// equation are BW+1 bits wide (to avoid truncation when converting from 8372 /// the addrec to the equation). 8373 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 8374 if (!X.hasValue()) 8375 return None; 8376 unsigned W = X->getBitWidth(); 8377 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 8378 return X->trunc(BitWidth); 8379 return X; 8380 } 8381 8382 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 8383 /// iterations. The values L, M, N are assumed to be signed, and they 8384 /// should all have the same bit widths. 8385 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 8386 /// where BW is the bit width of the addrec's coefficients. 8387 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 8388 /// returned as such, otherwise the bit width of the returned value may 8389 /// be greater than BW. 8390 /// 8391 /// This function returns None if 8392 /// (a) the addrec coefficients are not constant, or 8393 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 8394 /// like x^2 = 5, no integer solutions exist, in other cases an integer 8395 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 8396 static Optional<APInt> 8397 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 8398 APInt A, B, C, M; 8399 unsigned BitWidth; 8400 auto T = GetQuadraticEquation(AddRec); 8401 if (!T.hasValue()) 8402 return None; 8403 8404 std::tie(A, B, C, M, BitWidth) = *T; 8405 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 8406 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 8407 if (!X.hasValue()) 8408 return None; 8409 8410 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 8411 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 8412 if (!V->isZero()) 8413 return None; 8414 8415 return TruncIfPossible(X, BitWidth); 8416 } 8417 8418 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 8419 /// iterations. The values M, N are assumed to be signed, and they 8420 /// should all have the same bit widths. 8421 /// Find the least n such that c(n) does not belong to the given range, 8422 /// while c(n-1) does. 8423 /// 8424 /// This function returns None if 8425 /// (a) the addrec coefficients are not constant, or 8426 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 8427 /// bounds of the range. 8428 static Optional<APInt> 8429 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 8430 const ConstantRange &Range, ScalarEvolution &SE) { 8431 assert(AddRec->getOperand(0)->isZero() && 8432 "Starting value of addrec should be 0"); 8433 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 8434 << Range << ", addrec " << *AddRec << '\n'); 8435 // This case is handled in getNumIterationsInRange. Here we can assume that 8436 // we start in the range. 8437 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 8438 "Addrec's initial value should be in range"); 8439 8440 APInt A, B, C, M; 8441 unsigned BitWidth; 8442 auto T = GetQuadraticEquation(AddRec); 8443 if (!T.hasValue()) 8444 return None; 8445 8446 // Be careful about the return value: there can be two reasons for not 8447 // returning an actual number. First, if no solutions to the equations 8448 // were found, and second, if the solutions don't leave the given range. 8449 // The first case means that the actual solution is "unknown", the second 8450 // means that it's known, but not valid. If the solution is unknown, we 8451 // cannot make any conclusions. 8452 // Return a pair: the optional solution and a flag indicating if the 8453 // solution was found. 8454 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 8455 // Solve for signed overflow and unsigned overflow, pick the lower 8456 // solution. 8457 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 8458 << Bound << " (before multiplying by " << M << ")\n"); 8459 Bound *= M; // The quadratic equation multiplier. 8460 8461 Optional<APInt> SO = None; 8462 if (BitWidth > 1) { 8463 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8464 "signed overflow\n"); 8465 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 8466 } 8467 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 8468 "unsigned overflow\n"); 8469 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 8470 BitWidth+1); 8471 8472 auto LeavesRange = [&] (const APInt &X) { 8473 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 8474 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 8475 if (Range.contains(V0->getValue())) 8476 return false; 8477 // X should be at least 1, so X-1 is non-negative. 8478 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 8479 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 8480 if (Range.contains(V1->getValue())) 8481 return true; 8482 return false; 8483 }; 8484 8485 // If SolveQuadraticEquationWrap returns None, it means that there can 8486 // be a solution, but the function failed to find it. We cannot treat it 8487 // as "no solution". 8488 if (!SO.hasValue() || !UO.hasValue()) 8489 return { None, false }; 8490 8491 // Check the smaller value first to see if it leaves the range. 8492 // At this point, both SO and UO must have values. 8493 Optional<APInt> Min = MinOptional(SO, UO); 8494 if (LeavesRange(*Min)) 8495 return { Min, true }; 8496 Optional<APInt> Max = Min == SO ? UO : SO; 8497 if (LeavesRange(*Max)) 8498 return { Max, true }; 8499 8500 // Solutions were found, but were eliminated, hence the "true". 8501 return { None, true }; 8502 }; 8503 8504 std::tie(A, B, C, M, BitWidth) = *T; 8505 // Lower bound is inclusive, subtract 1 to represent the exiting value. 8506 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 8507 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 8508 auto SL = SolveForBoundary(Lower); 8509 auto SU = SolveForBoundary(Upper); 8510 // If any of the solutions was unknown, no meaninigful conclusions can 8511 // be made. 8512 if (!SL.second || !SU.second) 8513 return None; 8514 8515 // Claim: The correct solution is not some value between Min and Max. 8516 // 8517 // Justification: Assuming that Min and Max are different values, one of 8518 // them is when the first signed overflow happens, the other is when the 8519 // first unsigned overflow happens. Crossing the range boundary is only 8520 // possible via an overflow (treating 0 as a special case of it, modeling 8521 // an overflow as crossing k*2^W for some k). 8522 // 8523 // The interesting case here is when Min was eliminated as an invalid 8524 // solution, but Max was not. The argument is that if there was another 8525 // overflow between Min and Max, it would also have been eliminated if 8526 // it was considered. 8527 // 8528 // For a given boundary, it is possible to have two overflows of the same 8529 // type (signed/unsigned) without having the other type in between: this 8530 // can happen when the vertex of the parabola is between the iterations 8531 // corresponding to the overflows. This is only possible when the two 8532 // overflows cross k*2^W for the same k. In such case, if the second one 8533 // left the range (and was the first one to do so), the first overflow 8534 // would have to enter the range, which would mean that either we had left 8535 // the range before or that we started outside of it. Both of these cases 8536 // are contradictions. 8537 // 8538 // Claim: In the case where SolveForBoundary returns None, the correct 8539 // solution is not some value between the Max for this boundary and the 8540 // Min of the other boundary. 8541 // 8542 // Justification: Assume that we had such Max_A and Min_B corresponding 8543 // to range boundaries A and B and such that Max_A < Min_B. If there was 8544 // a solution between Max_A and Min_B, it would have to be caused by an 8545 // overflow corresponding to either A or B. It cannot correspond to B, 8546 // since Min_B is the first occurrence of such an overflow. If it 8547 // corresponded to A, it would have to be either a signed or an unsigned 8548 // overflow that is larger than both eliminated overflows for A. But 8549 // between the eliminated overflows and this overflow, the values would 8550 // cover the entire value space, thus crossing the other boundary, which 8551 // is a contradiction. 8552 8553 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 8554 } 8555 8556 ScalarEvolution::ExitLimit 8557 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 8558 bool AllowPredicates) { 8559 8560 // This is only used for loops with a "x != y" exit test. The exit condition 8561 // is now expressed as a single expression, V = x-y. So the exit test is 8562 // effectively V != 0. We know and take advantage of the fact that this 8563 // expression only being used in a comparison by zero context. 8564 8565 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 8566 // If the value is a constant 8567 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8568 // If the value is already zero, the branch will execute zero times. 8569 if (C->getValue()->isZero()) return C; 8570 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8571 } 8572 8573 const SCEVAddRecExpr *AddRec = 8574 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 8575 8576 if (!AddRec && AllowPredicates) 8577 // Try to make this an AddRec using runtime tests, in the first X 8578 // iterations of this loop, where X is the SCEV expression found by the 8579 // algorithm below. 8580 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 8581 8582 if (!AddRec || AddRec->getLoop() != L) 8583 return getCouldNotCompute(); 8584 8585 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 8586 // the quadratic equation to solve it. 8587 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 8588 // We can only use this value if the chrec ends up with an exact zero 8589 // value at this index. When solving for "X*X != 5", for example, we 8590 // should not accept a root of 2. 8591 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 8592 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 8593 return ExitLimit(R, R, false, Predicates); 8594 } 8595 return getCouldNotCompute(); 8596 } 8597 8598 // Otherwise we can only handle this if it is affine. 8599 if (!AddRec->isAffine()) 8600 return getCouldNotCompute(); 8601 8602 // If this is an affine expression, the execution count of this branch is 8603 // the minimum unsigned root of the following equation: 8604 // 8605 // Start + Step*N = 0 (mod 2^BW) 8606 // 8607 // equivalent to: 8608 // 8609 // Step*N = -Start (mod 2^BW) 8610 // 8611 // where BW is the common bit width of Start and Step. 8612 8613 // Get the initial value for the loop. 8614 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 8615 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 8616 8617 // For now we handle only constant steps. 8618 // 8619 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 8620 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 8621 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 8622 // We have not yet seen any such cases. 8623 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 8624 if (!StepC || StepC->getValue()->isZero()) 8625 return getCouldNotCompute(); 8626 8627 // For positive steps (counting up until unsigned overflow): 8628 // N = -Start/Step (as unsigned) 8629 // For negative steps (counting down to zero): 8630 // N = Start/-Step 8631 // First compute the unsigned distance from zero in the direction of Step. 8632 bool CountDown = StepC->getAPInt().isNegative(); 8633 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 8634 8635 // Handle unitary steps, which cannot wraparound. 8636 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 8637 // N = Distance (as unsigned) 8638 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 8639 APInt MaxBECount = getUnsignedRangeMax(Distance); 8640 8641 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 8642 // we end up with a loop whose backedge-taken count is n - 1. Detect this 8643 // case, and see if we can improve the bound. 8644 // 8645 // Explicitly handling this here is necessary because getUnsignedRange 8646 // isn't context-sensitive; it doesn't know that we only care about the 8647 // range inside the loop. 8648 const SCEV *Zero = getZero(Distance->getType()); 8649 const SCEV *One = getOne(Distance->getType()); 8650 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 8651 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 8652 // If Distance + 1 doesn't overflow, we can compute the maximum distance 8653 // as "unsigned_max(Distance + 1) - 1". 8654 ConstantRange CR = getUnsignedRange(DistancePlusOne); 8655 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 8656 } 8657 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 8658 } 8659 8660 // If the condition controls loop exit (the loop exits only if the expression 8661 // is true) and the addition is no-wrap we can use unsigned divide to 8662 // compute the backedge count. In this case, the step may not divide the 8663 // distance, but we don't care because if the condition is "missed" the loop 8664 // will have undefined behavior due to wrapping. 8665 if (ControlsExit && AddRec->hasNoSelfWrap() && 8666 loopHasNoAbnormalExits(AddRec->getLoop())) { 8667 const SCEV *Exact = 8668 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 8669 const SCEV *Max = 8670 Exact == getCouldNotCompute() 8671 ? Exact 8672 : getConstant(getUnsignedRangeMax(Exact)); 8673 return ExitLimit(Exact, Max, false, Predicates); 8674 } 8675 8676 // Solve the general equation. 8677 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 8678 getNegativeSCEV(Start), *this); 8679 const SCEV *M = E == getCouldNotCompute() 8680 ? E 8681 : getConstant(getUnsignedRangeMax(E)); 8682 return ExitLimit(E, M, false, Predicates); 8683 } 8684 8685 ScalarEvolution::ExitLimit 8686 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 8687 // Loops that look like: while (X == 0) are very strange indeed. We don't 8688 // handle them yet except for the trivial case. This could be expanded in the 8689 // future as needed. 8690 8691 // If the value is a constant, check to see if it is known to be non-zero 8692 // already. If so, the backedge will execute zero times. 8693 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 8694 if (!C->getValue()->isZero()) 8695 return getZero(C->getType()); 8696 return getCouldNotCompute(); // Otherwise it will loop infinitely. 8697 } 8698 8699 // We could implement others, but I really doubt anyone writes loops like 8700 // this, and if they did, they would already be constant folded. 8701 return getCouldNotCompute(); 8702 } 8703 8704 std::pair<BasicBlock *, BasicBlock *> 8705 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) { 8706 // If the block has a unique predecessor, then there is no path from the 8707 // predecessor to the block that does not go through the direct edge 8708 // from the predecessor to the block. 8709 if (BasicBlock *Pred = BB->getSinglePredecessor()) 8710 return {Pred, BB}; 8711 8712 // A loop's header is defined to be a block that dominates the loop. 8713 // If the header has a unique predecessor outside the loop, it must be 8714 // a block that has exactly one successor that can reach the loop. 8715 if (Loop *L = LI.getLoopFor(BB)) 8716 return {L->getLoopPredecessor(), L->getHeader()}; 8717 8718 return {nullptr, nullptr}; 8719 } 8720 8721 /// SCEV structural equivalence is usually sufficient for testing whether two 8722 /// expressions are equal, however for the purposes of looking for a condition 8723 /// guarding a loop, it can be useful to be a little more general, since a 8724 /// front-end may have replicated the controlling expression. 8725 static bool HasSameValue(const SCEV *A, const SCEV *B) { 8726 // Quick check to see if they are the same SCEV. 8727 if (A == B) return true; 8728 8729 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 8730 // Not all instructions that are "identical" compute the same value. For 8731 // instance, two distinct alloca instructions allocating the same type are 8732 // identical and do not read memory; but compute distinct values. 8733 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 8734 }; 8735 8736 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 8737 // two different instructions with the same value. Check for this case. 8738 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 8739 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 8740 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 8741 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 8742 if (ComputesEqualValues(AI, BI)) 8743 return true; 8744 8745 // Otherwise assume they may have a different value. 8746 return false; 8747 } 8748 8749 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 8750 const SCEV *&LHS, const SCEV *&RHS, 8751 unsigned Depth) { 8752 bool Changed = false; 8753 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 8754 // '0 != 0'. 8755 auto TrivialCase = [&](bool TriviallyTrue) { 8756 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 8757 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 8758 return true; 8759 }; 8760 // If we hit the max recursion limit bail out. 8761 if (Depth >= 3) 8762 return false; 8763 8764 // Canonicalize a constant to the right side. 8765 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 8766 // Check for both operands constant. 8767 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 8768 if (ConstantExpr::getICmp(Pred, 8769 LHSC->getValue(), 8770 RHSC->getValue())->isNullValue()) 8771 return TrivialCase(false); 8772 else 8773 return TrivialCase(true); 8774 } 8775 // Otherwise swap the operands to put the constant on the right. 8776 std::swap(LHS, RHS); 8777 Pred = ICmpInst::getSwappedPredicate(Pred); 8778 Changed = true; 8779 } 8780 8781 // If we're comparing an addrec with a value which is loop-invariant in the 8782 // addrec's loop, put the addrec on the left. Also make a dominance check, 8783 // as both operands could be addrecs loop-invariant in each other's loop. 8784 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 8785 const Loop *L = AR->getLoop(); 8786 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 8787 std::swap(LHS, RHS); 8788 Pred = ICmpInst::getSwappedPredicate(Pred); 8789 Changed = true; 8790 } 8791 } 8792 8793 // If there's a constant operand, canonicalize comparisons with boundary 8794 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 8795 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 8796 const APInt &RA = RC->getAPInt(); 8797 8798 bool SimplifiedByConstantRange = false; 8799 8800 if (!ICmpInst::isEquality(Pred)) { 8801 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 8802 if (ExactCR.isFullSet()) 8803 return TrivialCase(true); 8804 else if (ExactCR.isEmptySet()) 8805 return TrivialCase(false); 8806 8807 APInt NewRHS; 8808 CmpInst::Predicate NewPred; 8809 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 8810 ICmpInst::isEquality(NewPred)) { 8811 // We were able to convert an inequality to an equality. 8812 Pred = NewPred; 8813 RHS = getConstant(NewRHS); 8814 Changed = SimplifiedByConstantRange = true; 8815 } 8816 } 8817 8818 if (!SimplifiedByConstantRange) { 8819 switch (Pred) { 8820 default: 8821 break; 8822 case ICmpInst::ICMP_EQ: 8823 case ICmpInst::ICMP_NE: 8824 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 8825 if (!RA) 8826 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 8827 if (const SCEVMulExpr *ME = 8828 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 8829 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 8830 ME->getOperand(0)->isAllOnesValue()) { 8831 RHS = AE->getOperand(1); 8832 LHS = ME->getOperand(1); 8833 Changed = true; 8834 } 8835 break; 8836 8837 8838 // The "Should have been caught earlier!" messages refer to the fact 8839 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 8840 // should have fired on the corresponding cases, and canonicalized the 8841 // check to trivial case. 8842 8843 case ICmpInst::ICMP_UGE: 8844 assert(!RA.isMinValue() && "Should have been caught earlier!"); 8845 Pred = ICmpInst::ICMP_UGT; 8846 RHS = getConstant(RA - 1); 8847 Changed = true; 8848 break; 8849 case ICmpInst::ICMP_ULE: 8850 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 8851 Pred = ICmpInst::ICMP_ULT; 8852 RHS = getConstant(RA + 1); 8853 Changed = true; 8854 break; 8855 case ICmpInst::ICMP_SGE: 8856 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 8857 Pred = ICmpInst::ICMP_SGT; 8858 RHS = getConstant(RA - 1); 8859 Changed = true; 8860 break; 8861 case ICmpInst::ICMP_SLE: 8862 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 8863 Pred = ICmpInst::ICMP_SLT; 8864 RHS = getConstant(RA + 1); 8865 Changed = true; 8866 break; 8867 } 8868 } 8869 } 8870 8871 // Check for obvious equality. 8872 if (HasSameValue(LHS, RHS)) { 8873 if (ICmpInst::isTrueWhenEqual(Pred)) 8874 return TrivialCase(true); 8875 if (ICmpInst::isFalseWhenEqual(Pred)) 8876 return TrivialCase(false); 8877 } 8878 8879 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 8880 // adding or subtracting 1 from one of the operands. 8881 switch (Pred) { 8882 case ICmpInst::ICMP_SLE: 8883 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 8884 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8885 SCEV::FlagNSW); 8886 Pred = ICmpInst::ICMP_SLT; 8887 Changed = true; 8888 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 8889 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 8890 SCEV::FlagNSW); 8891 Pred = ICmpInst::ICMP_SLT; 8892 Changed = true; 8893 } 8894 break; 8895 case ICmpInst::ICMP_SGE: 8896 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 8897 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 8898 SCEV::FlagNSW); 8899 Pred = ICmpInst::ICMP_SGT; 8900 Changed = true; 8901 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 8902 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8903 SCEV::FlagNSW); 8904 Pred = ICmpInst::ICMP_SGT; 8905 Changed = true; 8906 } 8907 break; 8908 case ICmpInst::ICMP_ULE: 8909 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 8910 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 8911 SCEV::FlagNUW); 8912 Pred = ICmpInst::ICMP_ULT; 8913 Changed = true; 8914 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 8915 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 8916 Pred = ICmpInst::ICMP_ULT; 8917 Changed = true; 8918 } 8919 break; 8920 case ICmpInst::ICMP_UGE: 8921 if (!getUnsignedRangeMin(RHS).isMinValue()) { 8922 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 8923 Pred = ICmpInst::ICMP_UGT; 8924 Changed = true; 8925 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 8926 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 8927 SCEV::FlagNUW); 8928 Pred = ICmpInst::ICMP_UGT; 8929 Changed = true; 8930 } 8931 break; 8932 default: 8933 break; 8934 } 8935 8936 // TODO: More simplifications are possible here. 8937 8938 // Recursively simplify until we either hit a recursion limit or nothing 8939 // changes. 8940 if (Changed) 8941 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 8942 8943 return Changed; 8944 } 8945 8946 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 8947 return getSignedRangeMax(S).isNegative(); 8948 } 8949 8950 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 8951 return getSignedRangeMin(S).isStrictlyPositive(); 8952 } 8953 8954 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 8955 return !getSignedRangeMin(S).isNegative(); 8956 } 8957 8958 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 8959 return !getSignedRangeMax(S).isStrictlyPositive(); 8960 } 8961 8962 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 8963 return isKnownNegative(S) || isKnownPositive(S); 8964 } 8965 8966 std::pair<const SCEV *, const SCEV *> 8967 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 8968 // Compute SCEV on entry of loop L. 8969 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 8970 if (Start == getCouldNotCompute()) 8971 return { Start, Start }; 8972 // Compute post increment SCEV for loop L. 8973 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 8974 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 8975 return { Start, PostInc }; 8976 } 8977 8978 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 8979 const SCEV *LHS, const SCEV *RHS) { 8980 // First collect all loops. 8981 SmallPtrSet<const Loop *, 8> LoopsUsed; 8982 getUsedLoops(LHS, LoopsUsed); 8983 getUsedLoops(RHS, LoopsUsed); 8984 8985 if (LoopsUsed.empty()) 8986 return false; 8987 8988 // Domination relationship must be a linear order on collected loops. 8989 #ifndef NDEBUG 8990 for (auto *L1 : LoopsUsed) 8991 for (auto *L2 : LoopsUsed) 8992 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 8993 DT.dominates(L2->getHeader(), L1->getHeader())) && 8994 "Domination relationship is not a linear order"); 8995 #endif 8996 8997 const Loop *MDL = 8998 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 8999 [&](const Loop *L1, const Loop *L2) { 9000 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9001 }); 9002 9003 // Get init and post increment value for LHS. 9004 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9005 // if LHS contains unknown non-invariant SCEV then bail out. 9006 if (SplitLHS.first == getCouldNotCompute()) 9007 return false; 9008 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9009 // Get init and post increment value for RHS. 9010 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9011 // if RHS contains unknown non-invariant SCEV then bail out. 9012 if (SplitRHS.first == getCouldNotCompute()) 9013 return false; 9014 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9015 // It is possible that init SCEV contains an invariant load but it does 9016 // not dominate MDL and is not available at MDL loop entry, so we should 9017 // check it here. 9018 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9019 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9020 return false; 9021 9022 // It seems backedge guard check is faster than entry one so in some cases 9023 // it can speed up whole estimation by short circuit 9024 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9025 SplitRHS.second) && 9026 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9027 } 9028 9029 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9030 const SCEV *LHS, const SCEV *RHS) { 9031 // Canonicalize the inputs first. 9032 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9033 9034 if (isKnownViaInduction(Pred, LHS, RHS)) 9035 return true; 9036 9037 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9038 return true; 9039 9040 // Otherwise see what can be done with some simple reasoning. 9041 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9042 } 9043 9044 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9045 const SCEVAddRecExpr *LHS, 9046 const SCEV *RHS) { 9047 const Loop *L = LHS->getLoop(); 9048 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9049 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9050 } 9051 9052 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS, 9053 ICmpInst::Predicate Pred, 9054 bool &Increasing) { 9055 bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing); 9056 9057 #ifndef NDEBUG 9058 // Verify an invariant: inverting the predicate should turn a monotonically 9059 // increasing change to a monotonically decreasing one, and vice versa. 9060 bool IncreasingSwapped; 9061 bool ResultSwapped = isMonotonicPredicateImpl( 9062 LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped); 9063 9064 assert(Result == ResultSwapped && "should be able to analyze both!"); 9065 if (ResultSwapped) 9066 assert(Increasing == !IncreasingSwapped && 9067 "monotonicity should flip as we flip the predicate"); 9068 #endif 9069 9070 return Result; 9071 } 9072 9073 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS, 9074 ICmpInst::Predicate Pred, 9075 bool &Increasing) { 9076 9077 // A zero step value for LHS means the induction variable is essentially a 9078 // loop invariant value. We don't really depend on the predicate actually 9079 // flipping from false to true (for increasing predicates, and the other way 9080 // around for decreasing predicates), all we care about is that *if* the 9081 // predicate changes then it only changes from false to true. 9082 // 9083 // A zero step value in itself is not very useful, but there may be places 9084 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9085 // as general as possible. 9086 9087 switch (Pred) { 9088 default: 9089 return false; // Conservative answer 9090 9091 case ICmpInst::ICMP_UGT: 9092 case ICmpInst::ICMP_UGE: 9093 case ICmpInst::ICMP_ULT: 9094 case ICmpInst::ICMP_ULE: 9095 if (!LHS->hasNoUnsignedWrap()) 9096 return false; 9097 9098 Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE; 9099 return true; 9100 9101 case ICmpInst::ICMP_SGT: 9102 case ICmpInst::ICMP_SGE: 9103 case ICmpInst::ICMP_SLT: 9104 case ICmpInst::ICMP_SLE: { 9105 if (!LHS->hasNoSignedWrap()) 9106 return false; 9107 9108 const SCEV *Step = LHS->getStepRecurrence(*this); 9109 9110 if (isKnownNonNegative(Step)) { 9111 Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE; 9112 return true; 9113 } 9114 9115 if (isKnownNonPositive(Step)) { 9116 Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE; 9117 return true; 9118 } 9119 9120 return false; 9121 } 9122 9123 } 9124 9125 llvm_unreachable("switch has default clause!"); 9126 } 9127 9128 bool ScalarEvolution::isLoopInvariantPredicate( 9129 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 9130 ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS, 9131 const SCEV *&InvariantRHS) { 9132 9133 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 9134 if (!isLoopInvariant(RHS, L)) { 9135 if (!isLoopInvariant(LHS, L)) 9136 return false; 9137 9138 std::swap(LHS, RHS); 9139 Pred = ICmpInst::getSwappedPredicate(Pred); 9140 } 9141 9142 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9143 if (!ArLHS || ArLHS->getLoop() != L) 9144 return false; 9145 9146 bool Increasing; 9147 if (!isMonotonicPredicate(ArLHS, Pred, Increasing)) 9148 return false; 9149 9150 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 9151 // true as the loop iterates, and the backedge is control dependent on 9152 // "ArLHS `Pred` RHS" == true then we can reason as follows: 9153 // 9154 // * if the predicate was false in the first iteration then the predicate 9155 // is never evaluated again, since the loop exits without taking the 9156 // backedge. 9157 // * if the predicate was true in the first iteration then it will 9158 // continue to be true for all future iterations since it is 9159 // monotonically increasing. 9160 // 9161 // For both the above possibilities, we can replace the loop varying 9162 // predicate with its value on the first iteration of the loop (which is 9163 // loop invariant). 9164 // 9165 // A similar reasoning applies for a monotonically decreasing predicate, by 9166 // replacing true with false and false with true in the above two bullets. 9167 9168 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 9169 9170 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 9171 return false; 9172 9173 InvariantPred = Pred; 9174 InvariantLHS = ArLHS->getStart(); 9175 InvariantRHS = RHS; 9176 return true; 9177 } 9178 9179 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 9180 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 9181 if (HasSameValue(LHS, RHS)) 9182 return ICmpInst::isTrueWhenEqual(Pred); 9183 9184 // This code is split out from isKnownPredicate because it is called from 9185 // within isLoopEntryGuardedByCond. 9186 9187 auto CheckRanges = 9188 [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) { 9189 return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS) 9190 .contains(RangeLHS); 9191 }; 9192 9193 // The check at the top of the function catches the case where the values are 9194 // known to be equal. 9195 if (Pred == CmpInst::ICMP_EQ) 9196 return false; 9197 9198 if (Pred == CmpInst::ICMP_NE) 9199 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 9200 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) || 9201 isKnownNonZero(getMinusSCEV(LHS, RHS)); 9202 9203 if (CmpInst::isSigned(Pred)) 9204 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 9205 9206 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 9207 } 9208 9209 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 9210 const SCEV *LHS, 9211 const SCEV *RHS) { 9212 // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer. 9213 // Return Y via OutY. 9214 auto MatchBinaryAddToConst = 9215 [this](const SCEV *Result, const SCEV *X, APInt &OutY, 9216 SCEV::NoWrapFlags ExpectedFlags) { 9217 const SCEV *NonConstOp, *ConstOp; 9218 SCEV::NoWrapFlags FlagsPresent; 9219 9220 if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) || 9221 !isa<SCEVConstant>(ConstOp) || NonConstOp != X) 9222 return false; 9223 9224 OutY = cast<SCEVConstant>(ConstOp)->getAPInt(); 9225 return (FlagsPresent & ExpectedFlags) == ExpectedFlags; 9226 }; 9227 9228 APInt C; 9229 9230 switch (Pred) { 9231 default: 9232 break; 9233 9234 case ICmpInst::ICMP_SGE: 9235 std::swap(LHS, RHS); 9236 LLVM_FALLTHROUGH; 9237 case ICmpInst::ICMP_SLE: 9238 // X s<= (X + C)<nsw> if C >= 0 9239 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative()) 9240 return true; 9241 9242 // (X + C)<nsw> s<= X if C <= 0 9243 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && 9244 !C.isStrictlyPositive()) 9245 return true; 9246 break; 9247 9248 case ICmpInst::ICMP_SGT: 9249 std::swap(LHS, RHS); 9250 LLVM_FALLTHROUGH; 9251 case ICmpInst::ICMP_SLT: 9252 // X s< (X + C)<nsw> if C > 0 9253 if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && 9254 C.isStrictlyPositive()) 9255 return true; 9256 9257 // (X + C)<nsw> s< X if C < 0 9258 if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative()) 9259 return true; 9260 break; 9261 } 9262 9263 return false; 9264 } 9265 9266 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 9267 const SCEV *LHS, 9268 const SCEV *RHS) { 9269 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 9270 return false; 9271 9272 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 9273 // the stack can result in exponential time complexity. 9274 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 9275 9276 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 9277 // 9278 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 9279 // isKnownPredicate. isKnownPredicate is more powerful, but also more 9280 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 9281 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 9282 // use isKnownPredicate later if needed. 9283 return isKnownNonNegative(RHS) && 9284 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 9285 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 9286 } 9287 9288 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB, 9289 ICmpInst::Predicate Pred, 9290 const SCEV *LHS, const SCEV *RHS) { 9291 // No need to even try if we know the module has no guards. 9292 if (!HasGuards) 9293 return false; 9294 9295 return any_of(*BB, [&](Instruction &I) { 9296 using namespace llvm::PatternMatch; 9297 9298 Value *Condition; 9299 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 9300 m_Value(Condition))) && 9301 isImpliedCond(Pred, LHS, RHS, Condition, false); 9302 }); 9303 } 9304 9305 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 9306 /// protected by a conditional between LHS and RHS. This is used to 9307 /// to eliminate casts. 9308 bool 9309 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 9310 ICmpInst::Predicate Pred, 9311 const SCEV *LHS, const SCEV *RHS) { 9312 // Interpret a null as meaning no loop, where there is obviously no guard 9313 // (interprocedural conditions notwithstanding). 9314 if (!L) return true; 9315 9316 if (VerifyIR) 9317 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9318 "This cannot be done on broken IR!"); 9319 9320 9321 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9322 return true; 9323 9324 BasicBlock *Latch = L->getLoopLatch(); 9325 if (!Latch) 9326 return false; 9327 9328 BranchInst *LoopContinuePredicate = 9329 dyn_cast<BranchInst>(Latch->getTerminator()); 9330 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 9331 isImpliedCond(Pred, LHS, RHS, 9332 LoopContinuePredicate->getCondition(), 9333 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 9334 return true; 9335 9336 // We don't want more than one activation of the following loops on the stack 9337 // -- that can lead to O(n!) time complexity. 9338 if (WalkingBEDominatingConds) 9339 return false; 9340 9341 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 9342 9343 // See if we can exploit a trip count to prove the predicate. 9344 const auto &BETakenInfo = getBackedgeTakenInfo(L); 9345 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 9346 if (LatchBECount != getCouldNotCompute()) { 9347 // We know that Latch branches back to the loop header exactly 9348 // LatchBECount times. This means the backdege condition at Latch is 9349 // equivalent to "{0,+,1} u< LatchBECount". 9350 Type *Ty = LatchBECount->getType(); 9351 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 9352 const SCEV *LoopCounter = 9353 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 9354 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 9355 LatchBECount)) 9356 return true; 9357 } 9358 9359 // Check conditions due to any @llvm.assume intrinsics. 9360 for (auto &AssumeVH : AC.assumptions()) { 9361 if (!AssumeVH) 9362 continue; 9363 auto *CI = cast<CallInst>(AssumeVH); 9364 if (!DT.dominates(CI, Latch->getTerminator())) 9365 continue; 9366 9367 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 9368 return true; 9369 } 9370 9371 // If the loop is not reachable from the entry block, we risk running into an 9372 // infinite loop as we walk up into the dom tree. These loops do not matter 9373 // anyway, so we just return a conservative answer when we see them. 9374 if (!DT.isReachableFromEntry(L->getHeader())) 9375 return false; 9376 9377 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 9378 return true; 9379 9380 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 9381 DTN != HeaderDTN; DTN = DTN->getIDom()) { 9382 assert(DTN && "should reach the loop header before reaching the root!"); 9383 9384 BasicBlock *BB = DTN->getBlock(); 9385 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 9386 return true; 9387 9388 BasicBlock *PBB = BB->getSinglePredecessor(); 9389 if (!PBB) 9390 continue; 9391 9392 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 9393 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 9394 continue; 9395 9396 Value *Condition = ContinuePredicate->getCondition(); 9397 9398 // If we have an edge `E` within the loop body that dominates the only 9399 // latch, the condition guarding `E` also guards the backedge. This 9400 // reasoning works only for loops with a single latch. 9401 9402 BasicBlockEdge DominatingEdge(PBB, BB); 9403 if (DominatingEdge.isSingleEdge()) { 9404 // We're constructively (and conservatively) enumerating edges within the 9405 // loop body that dominate the latch. The dominator tree better agree 9406 // with us on this: 9407 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 9408 9409 if (isImpliedCond(Pred, LHS, RHS, Condition, 9410 BB != ContinuePredicate->getSuccessor(0))) 9411 return true; 9412 } 9413 } 9414 9415 return false; 9416 } 9417 9418 bool 9419 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 9420 ICmpInst::Predicate Pred, 9421 const SCEV *LHS, const SCEV *RHS) { 9422 // Interpret a null as meaning no loop, where there is obviously no guard 9423 // (interprocedural conditions notwithstanding). 9424 if (!L) return false; 9425 9426 if (VerifyIR) 9427 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 9428 "This cannot be done on broken IR!"); 9429 9430 // Both LHS and RHS must be available at loop entry. 9431 assert(isAvailableAtLoopEntry(LHS, L) && 9432 "LHS is not available at Loop Entry"); 9433 assert(isAvailableAtLoopEntry(RHS, L) && 9434 "RHS is not available at Loop Entry"); 9435 9436 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 9437 return true; 9438 9439 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 9440 // the facts (a >= b && a != b) separately. A typical situation is when the 9441 // non-strict comparison is known from ranges and non-equality is known from 9442 // dominating predicates. If we are proving strict comparison, we always try 9443 // to prove non-equality and non-strict comparison separately. 9444 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 9445 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 9446 bool ProvedNonStrictComparison = false; 9447 bool ProvedNonEquality = false; 9448 9449 if (ProvingStrictComparison) { 9450 ProvedNonStrictComparison = 9451 isKnownViaNonRecursiveReasoning(NonStrictPredicate, LHS, RHS); 9452 ProvedNonEquality = 9453 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_NE, LHS, RHS); 9454 if (ProvedNonStrictComparison && ProvedNonEquality) 9455 return true; 9456 } 9457 9458 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 9459 auto ProveViaGuard = [&](BasicBlock *Block) { 9460 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 9461 return true; 9462 if (ProvingStrictComparison) { 9463 if (!ProvedNonStrictComparison) 9464 ProvedNonStrictComparison = 9465 isImpliedViaGuard(Block, NonStrictPredicate, LHS, RHS); 9466 if (!ProvedNonEquality) 9467 ProvedNonEquality = 9468 isImpliedViaGuard(Block, ICmpInst::ICMP_NE, LHS, RHS); 9469 if (ProvedNonStrictComparison && ProvedNonEquality) 9470 return true; 9471 } 9472 return false; 9473 }; 9474 9475 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 9476 auto ProveViaCond = [&](Value *Condition, bool Inverse) { 9477 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse)) 9478 return true; 9479 if (ProvingStrictComparison) { 9480 if (!ProvedNonStrictComparison) 9481 ProvedNonStrictComparison = 9482 isImpliedCond(NonStrictPredicate, LHS, RHS, Condition, Inverse); 9483 if (!ProvedNonEquality) 9484 ProvedNonEquality = 9485 isImpliedCond(ICmpInst::ICMP_NE, LHS, RHS, Condition, Inverse); 9486 if (ProvedNonStrictComparison && ProvedNonEquality) 9487 return true; 9488 } 9489 return false; 9490 }; 9491 9492 // Starting at the loop predecessor, climb up the predecessor chain, as long 9493 // as there are predecessors that can be found that have unique successors 9494 // leading to the original header. 9495 for (std::pair<BasicBlock *, BasicBlock *> 9496 Pair(L->getLoopPredecessor(), L->getHeader()); 9497 Pair.first; 9498 Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 9499 9500 if (ProveViaGuard(Pair.first)) 9501 return true; 9502 9503 BranchInst *LoopEntryPredicate = 9504 dyn_cast<BranchInst>(Pair.first->getTerminator()); 9505 if (!LoopEntryPredicate || 9506 LoopEntryPredicate->isUnconditional()) 9507 continue; 9508 9509 if (ProveViaCond(LoopEntryPredicate->getCondition(), 9510 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 9511 return true; 9512 } 9513 9514 // Check conditions due to any @llvm.assume intrinsics. 9515 for (auto &AssumeVH : AC.assumptions()) { 9516 if (!AssumeVH) 9517 continue; 9518 auto *CI = cast<CallInst>(AssumeVH); 9519 if (!DT.dominates(CI, L->getHeader())) 9520 continue; 9521 9522 if (ProveViaCond(CI->getArgOperand(0), false)) 9523 return true; 9524 } 9525 9526 return false; 9527 } 9528 9529 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, 9530 const SCEV *LHS, const SCEV *RHS, 9531 Value *FoundCondValue, 9532 bool Inverse) { 9533 if (!PendingLoopPredicates.insert(FoundCondValue).second) 9534 return false; 9535 9536 auto ClearOnExit = 9537 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 9538 9539 // Recursively handle And and Or conditions. 9540 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) { 9541 if (BO->getOpcode() == Instruction::And) { 9542 if (!Inverse) 9543 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9544 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9545 } else if (BO->getOpcode() == Instruction::Or) { 9546 if (Inverse) 9547 return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) || 9548 isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse); 9549 } 9550 } 9551 9552 ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 9553 if (!ICI) return false; 9554 9555 // Now that we found a conditional branch that dominates the loop or controls 9556 // the loop latch. Check to see if it is the comparison we are looking for. 9557 ICmpInst::Predicate FoundPred; 9558 if (Inverse) 9559 FoundPred = ICI->getInversePredicate(); 9560 else 9561 FoundPred = ICI->getPredicate(); 9562 9563 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 9564 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 9565 9566 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS); 9567 } 9568 9569 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 9570 const SCEV *RHS, 9571 ICmpInst::Predicate FoundPred, 9572 const SCEV *FoundLHS, 9573 const SCEV *FoundRHS) { 9574 // Balance the types. 9575 if (getTypeSizeInBits(LHS->getType()) < 9576 getTypeSizeInBits(FoundLHS->getType())) { 9577 if (CmpInst::isSigned(Pred)) { 9578 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 9579 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 9580 } else { 9581 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 9582 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 9583 } 9584 } else if (getTypeSizeInBits(LHS->getType()) > 9585 getTypeSizeInBits(FoundLHS->getType())) { 9586 if (CmpInst::isSigned(FoundPred)) { 9587 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 9588 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 9589 } else { 9590 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 9591 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 9592 } 9593 } 9594 9595 // Canonicalize the query to match the way instcombine will have 9596 // canonicalized the comparison. 9597 if (SimplifyICmpOperands(Pred, LHS, RHS)) 9598 if (LHS == RHS) 9599 return CmpInst::isTrueWhenEqual(Pred); 9600 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 9601 if (FoundLHS == FoundRHS) 9602 return CmpInst::isFalseWhenEqual(FoundPred); 9603 9604 // Check to see if we can make the LHS or RHS match. 9605 if (LHS == FoundRHS || RHS == FoundLHS) { 9606 if (isa<SCEVConstant>(RHS)) { 9607 std::swap(FoundLHS, FoundRHS); 9608 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 9609 } else { 9610 std::swap(LHS, RHS); 9611 Pred = ICmpInst::getSwappedPredicate(Pred); 9612 } 9613 } 9614 9615 // Check whether the found predicate is the same as the desired predicate. 9616 if (FoundPred == Pred) 9617 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9618 9619 // Check whether swapping the found predicate makes it the same as the 9620 // desired predicate. 9621 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 9622 if (isa<SCEVConstant>(RHS)) 9623 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS); 9624 else 9625 return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred), 9626 RHS, LHS, FoundLHS, FoundRHS); 9627 } 9628 9629 // Unsigned comparison is the same as signed comparison when both the operands 9630 // are non-negative. 9631 if (CmpInst::isUnsigned(FoundPred) && 9632 CmpInst::getSignedPredicate(FoundPred) == Pred && 9633 isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) 9634 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS); 9635 9636 // Check if we can make progress by sharpening ranges. 9637 if (FoundPred == ICmpInst::ICMP_NE && 9638 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 9639 9640 const SCEVConstant *C = nullptr; 9641 const SCEV *V = nullptr; 9642 9643 if (isa<SCEVConstant>(FoundLHS)) { 9644 C = cast<SCEVConstant>(FoundLHS); 9645 V = FoundRHS; 9646 } else { 9647 C = cast<SCEVConstant>(FoundRHS); 9648 V = FoundLHS; 9649 } 9650 9651 // The guarding predicate tells us that C != V. If the known range 9652 // of V is [C, t), we can sharpen the range to [C + 1, t). The 9653 // range we consider has to correspond to same signedness as the 9654 // predicate we're interested in folding. 9655 9656 APInt Min = ICmpInst::isSigned(Pred) ? 9657 getSignedRangeMin(V) : getUnsignedRangeMin(V); 9658 9659 if (Min == C->getAPInt()) { 9660 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 9661 // This is true even if (Min + 1) wraps around -- in case of 9662 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 9663 9664 APInt SharperMin = Min + 1; 9665 9666 switch (Pred) { 9667 case ICmpInst::ICMP_SGE: 9668 case ICmpInst::ICMP_UGE: 9669 // We know V `Pred` SharperMin. If this implies LHS `Pred` 9670 // RHS, we're done. 9671 if (isImpliedCondOperands(Pred, LHS, RHS, V, 9672 getConstant(SharperMin))) 9673 return true; 9674 LLVM_FALLTHROUGH; 9675 9676 case ICmpInst::ICMP_SGT: 9677 case ICmpInst::ICMP_UGT: 9678 // We know from the range information that (V `Pred` Min || 9679 // V == Min). We know from the guarding condition that !(V 9680 // == Min). This gives us 9681 // 9682 // V `Pred` Min || V == Min && !(V == Min) 9683 // => V `Pred` Min 9684 // 9685 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 9686 9687 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min))) 9688 return true; 9689 LLVM_FALLTHROUGH; 9690 9691 default: 9692 // No change 9693 break; 9694 } 9695 } 9696 } 9697 9698 // Check whether the actual condition is beyond sufficient. 9699 if (FoundPred == ICmpInst::ICMP_EQ) 9700 if (ICmpInst::isTrueWhenEqual(Pred)) 9701 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9702 return true; 9703 if (Pred == ICmpInst::ICMP_NE) 9704 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 9705 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS)) 9706 return true; 9707 9708 // Otherwise assume the worst. 9709 return false; 9710 } 9711 9712 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 9713 const SCEV *&L, const SCEV *&R, 9714 SCEV::NoWrapFlags &Flags) { 9715 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 9716 if (!AE || AE->getNumOperands() != 2) 9717 return false; 9718 9719 L = AE->getOperand(0); 9720 R = AE->getOperand(1); 9721 Flags = AE->getNoWrapFlags(); 9722 return true; 9723 } 9724 9725 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 9726 const SCEV *Less) { 9727 // We avoid subtracting expressions here because this function is usually 9728 // fairly deep in the call stack (i.e. is called many times). 9729 9730 // X - X = 0. 9731 if (More == Less) 9732 return APInt(getTypeSizeInBits(More->getType()), 0); 9733 9734 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 9735 const auto *LAR = cast<SCEVAddRecExpr>(Less); 9736 const auto *MAR = cast<SCEVAddRecExpr>(More); 9737 9738 if (LAR->getLoop() != MAR->getLoop()) 9739 return None; 9740 9741 // We look at affine expressions only; not for correctness but to keep 9742 // getStepRecurrence cheap. 9743 if (!LAR->isAffine() || !MAR->isAffine()) 9744 return None; 9745 9746 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 9747 return None; 9748 9749 Less = LAR->getStart(); 9750 More = MAR->getStart(); 9751 9752 // fall through 9753 } 9754 9755 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 9756 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 9757 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 9758 return M - L; 9759 } 9760 9761 SCEV::NoWrapFlags Flags; 9762 const SCEV *LLess = nullptr, *RLess = nullptr; 9763 const SCEV *LMore = nullptr, *RMore = nullptr; 9764 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 9765 // Compare (X + C1) vs X. 9766 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 9767 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 9768 if (RLess == More) 9769 return -(C1->getAPInt()); 9770 9771 // Compare X vs (X + C2). 9772 if (splitBinaryAdd(More, LMore, RMore, Flags)) 9773 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 9774 if (RMore == Less) 9775 return C2->getAPInt(); 9776 9777 // Compare (X + C1) vs (X + C2). 9778 if (C1 && C2 && RLess == RMore) 9779 return C2->getAPInt() - C1->getAPInt(); 9780 9781 return None; 9782 } 9783 9784 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 9785 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 9786 const SCEV *FoundLHS, const SCEV *FoundRHS) { 9787 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 9788 return false; 9789 9790 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 9791 if (!AddRecLHS) 9792 return false; 9793 9794 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 9795 if (!AddRecFoundLHS) 9796 return false; 9797 9798 // We'd like to let SCEV reason about control dependencies, so we constrain 9799 // both the inequalities to be about add recurrences on the same loop. This 9800 // way we can use isLoopEntryGuardedByCond later. 9801 9802 const Loop *L = AddRecFoundLHS->getLoop(); 9803 if (L != AddRecLHS->getLoop()) 9804 return false; 9805 9806 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 9807 // 9808 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 9809 // ... (2) 9810 // 9811 // Informal proof for (2), assuming (1) [*]: 9812 // 9813 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 9814 // 9815 // Then 9816 // 9817 // FoundLHS s< FoundRHS s< INT_MIN - C 9818 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 9819 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 9820 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 9821 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 9822 // <=> FoundLHS + C s< FoundRHS + C 9823 // 9824 // [*]: (1) can be proved by ruling out overflow. 9825 // 9826 // [**]: This can be proved by analyzing all the four possibilities: 9827 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 9828 // (A s>= 0, B s>= 0). 9829 // 9830 // Note: 9831 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 9832 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 9833 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 9834 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 9835 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 9836 // C)". 9837 9838 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 9839 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 9840 if (!LDiff || !RDiff || *LDiff != *RDiff) 9841 return false; 9842 9843 if (LDiff->isMinValue()) 9844 return true; 9845 9846 APInt FoundRHSLimit; 9847 9848 if (Pred == CmpInst::ICMP_ULT) { 9849 FoundRHSLimit = -(*RDiff); 9850 } else { 9851 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 9852 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 9853 } 9854 9855 // Try to prove (1) or (2), as needed. 9856 return isAvailableAtLoopEntry(FoundRHS, L) && 9857 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 9858 getConstant(FoundRHSLimit)); 9859 } 9860 9861 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 9862 const SCEV *LHS, const SCEV *RHS, 9863 const SCEV *FoundLHS, 9864 const SCEV *FoundRHS, unsigned Depth) { 9865 const PHINode *LPhi = nullptr, *RPhi = nullptr; 9866 9867 auto ClearOnExit = make_scope_exit([&]() { 9868 if (LPhi) { 9869 bool Erased = PendingMerges.erase(LPhi); 9870 assert(Erased && "Failed to erase LPhi!"); 9871 (void)Erased; 9872 } 9873 if (RPhi) { 9874 bool Erased = PendingMerges.erase(RPhi); 9875 assert(Erased && "Failed to erase RPhi!"); 9876 (void)Erased; 9877 } 9878 }); 9879 9880 // Find respective Phis and check that they are not being pending. 9881 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 9882 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 9883 if (!PendingMerges.insert(Phi).second) 9884 return false; 9885 LPhi = Phi; 9886 } 9887 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 9888 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 9889 // If we detect a loop of Phi nodes being processed by this method, for 9890 // example: 9891 // 9892 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 9893 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 9894 // 9895 // we don't want to deal with a case that complex, so return conservative 9896 // answer false. 9897 if (!PendingMerges.insert(Phi).second) 9898 return false; 9899 RPhi = Phi; 9900 } 9901 9902 // If none of LHS, RHS is a Phi, nothing to do here. 9903 if (!LPhi && !RPhi) 9904 return false; 9905 9906 // If there is a SCEVUnknown Phi we are interested in, make it left. 9907 if (!LPhi) { 9908 std::swap(LHS, RHS); 9909 std::swap(FoundLHS, FoundRHS); 9910 std::swap(LPhi, RPhi); 9911 Pred = ICmpInst::getSwappedPredicate(Pred); 9912 } 9913 9914 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 9915 const BasicBlock *LBB = LPhi->getParent(); 9916 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 9917 9918 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 9919 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 9920 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 9921 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 9922 }; 9923 9924 if (RPhi && RPhi->getParent() == LBB) { 9925 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 9926 // If we compare two Phis from the same block, and for each entry block 9927 // the predicate is true for incoming values from this block, then the 9928 // predicate is also true for the Phis. 9929 for (const BasicBlock *IncBB : predecessors(LBB)) { 9930 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9931 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 9932 if (!ProvedEasily(L, R)) 9933 return false; 9934 } 9935 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 9936 // Case two: RHS is also a Phi from the same basic block, and it is an 9937 // AddRec. It means that there is a loop which has both AddRec and Unknown 9938 // PHIs, for it we can compare incoming values of AddRec from above the loop 9939 // and latch with their respective incoming values of LPhi. 9940 // TODO: Generalize to handle loops with many inputs in a header. 9941 if (LPhi->getNumIncomingValues() != 2) return false; 9942 9943 auto *RLoop = RAR->getLoop(); 9944 auto *Predecessor = RLoop->getLoopPredecessor(); 9945 assert(Predecessor && "Loop with AddRec with no predecessor?"); 9946 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 9947 if (!ProvedEasily(L1, RAR->getStart())) 9948 return false; 9949 auto *Latch = RLoop->getLoopLatch(); 9950 assert(Latch && "Loop with AddRec with no latch?"); 9951 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 9952 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 9953 return false; 9954 } else { 9955 // In all other cases go over inputs of LHS and compare each of them to RHS, 9956 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 9957 // At this point RHS is either a non-Phi, or it is a Phi from some block 9958 // different from LBB. 9959 for (const BasicBlock *IncBB : predecessors(LBB)) { 9960 // Check that RHS is available in this block. 9961 if (!dominates(RHS, IncBB)) 9962 return false; 9963 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 9964 if (!ProvedEasily(L, RHS)) 9965 return false; 9966 } 9967 } 9968 return true; 9969 } 9970 9971 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 9972 const SCEV *LHS, const SCEV *RHS, 9973 const SCEV *FoundLHS, 9974 const SCEV *FoundRHS) { 9975 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9976 return true; 9977 9978 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 9979 return true; 9980 9981 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 9982 FoundLHS, FoundRHS) || 9983 // ~x < ~y --> x > y 9984 isImpliedCondOperandsHelper(Pred, LHS, RHS, 9985 getNotSCEV(FoundRHS), 9986 getNotSCEV(FoundLHS)); 9987 } 9988 9989 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 9990 template <typename MinMaxExprType> 9991 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 9992 const SCEV *Candidate) { 9993 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 9994 if (!MinMaxExpr) 9995 return false; 9996 9997 return find(MinMaxExpr->operands(), Candidate) != MinMaxExpr->op_end(); 9998 } 9999 10000 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 10001 ICmpInst::Predicate Pred, 10002 const SCEV *LHS, const SCEV *RHS) { 10003 // If both sides are affine addrecs for the same loop, with equal 10004 // steps, and we know the recurrences don't wrap, then we only 10005 // need to check the predicate on the starting values. 10006 10007 if (!ICmpInst::isRelational(Pred)) 10008 return false; 10009 10010 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 10011 if (!LAR) 10012 return false; 10013 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 10014 if (!RAR) 10015 return false; 10016 if (LAR->getLoop() != RAR->getLoop()) 10017 return false; 10018 if (!LAR->isAffine() || !RAR->isAffine()) 10019 return false; 10020 10021 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 10022 return false; 10023 10024 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 10025 SCEV::FlagNSW : SCEV::FlagNUW; 10026 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 10027 return false; 10028 10029 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 10030 } 10031 10032 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 10033 /// expression? 10034 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 10035 ICmpInst::Predicate Pred, 10036 const SCEV *LHS, const SCEV *RHS) { 10037 switch (Pred) { 10038 default: 10039 return false; 10040 10041 case ICmpInst::ICMP_SGE: 10042 std::swap(LHS, RHS); 10043 LLVM_FALLTHROUGH; 10044 case ICmpInst::ICMP_SLE: 10045 return 10046 // min(A, ...) <= A 10047 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 10048 // A <= max(A, ...) 10049 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 10050 10051 case ICmpInst::ICMP_UGE: 10052 std::swap(LHS, RHS); 10053 LLVM_FALLTHROUGH; 10054 case ICmpInst::ICMP_ULE: 10055 return 10056 // min(A, ...) <= A 10057 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 10058 // A <= max(A, ...) 10059 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 10060 } 10061 10062 llvm_unreachable("covered switch fell through?!"); 10063 } 10064 10065 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 10066 const SCEV *LHS, const SCEV *RHS, 10067 const SCEV *FoundLHS, 10068 const SCEV *FoundRHS, 10069 unsigned Depth) { 10070 assert(getTypeSizeInBits(LHS->getType()) == 10071 getTypeSizeInBits(RHS->getType()) && 10072 "LHS and RHS have different sizes?"); 10073 assert(getTypeSizeInBits(FoundLHS->getType()) == 10074 getTypeSizeInBits(FoundRHS->getType()) && 10075 "FoundLHS and FoundRHS have different sizes?"); 10076 // We want to avoid hurting the compile time with analysis of too big trees. 10077 if (Depth > MaxSCEVOperationsImplicationDepth) 10078 return false; 10079 // We only want to work with ICMP_SGT comparison so far. 10080 // TODO: Extend to ICMP_UGT? 10081 if (Pred == ICmpInst::ICMP_SLT) { 10082 Pred = ICmpInst::ICMP_SGT; 10083 std::swap(LHS, RHS); 10084 std::swap(FoundLHS, FoundRHS); 10085 } 10086 if (Pred != ICmpInst::ICMP_SGT) 10087 return false; 10088 10089 auto GetOpFromSExt = [&](const SCEV *S) { 10090 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 10091 return Ext->getOperand(); 10092 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 10093 // the constant in some cases. 10094 return S; 10095 }; 10096 10097 // Acquire values from extensions. 10098 auto *OrigLHS = LHS; 10099 auto *OrigFoundLHS = FoundLHS; 10100 LHS = GetOpFromSExt(LHS); 10101 FoundLHS = GetOpFromSExt(FoundLHS); 10102 10103 // Is the SGT predicate can be proved trivially or using the found context. 10104 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 10105 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 10106 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 10107 FoundRHS, Depth + 1); 10108 }; 10109 10110 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 10111 // We want to avoid creation of any new non-constant SCEV. Since we are 10112 // going to compare the operands to RHS, we should be certain that we don't 10113 // need any size extensions for this. So let's decline all cases when the 10114 // sizes of types of LHS and RHS do not match. 10115 // TODO: Maybe try to get RHS from sext to catch more cases? 10116 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 10117 return false; 10118 10119 // Should not overflow. 10120 if (!LHSAddExpr->hasNoSignedWrap()) 10121 return false; 10122 10123 auto *LL = LHSAddExpr->getOperand(0); 10124 auto *LR = LHSAddExpr->getOperand(1); 10125 auto *MinusOne = getNegativeSCEV(getOne(RHS->getType())); 10126 10127 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 10128 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 10129 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 10130 }; 10131 // Try to prove the following rule: 10132 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 10133 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 10134 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 10135 return true; 10136 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 10137 Value *LL, *LR; 10138 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 10139 10140 using namespace llvm::PatternMatch; 10141 10142 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 10143 // Rules for division. 10144 // We are going to perform some comparisons with Denominator and its 10145 // derivative expressions. In general case, creating a SCEV for it may 10146 // lead to a complex analysis of the entire graph, and in particular it 10147 // can request trip count recalculation for the same loop. This would 10148 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 10149 // this, we only want to create SCEVs that are constants in this section. 10150 // So we bail if Denominator is not a constant. 10151 if (!isa<ConstantInt>(LR)) 10152 return false; 10153 10154 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 10155 10156 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 10157 // then a SCEV for the numerator already exists and matches with FoundLHS. 10158 auto *Numerator = getExistingSCEV(LL); 10159 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 10160 return false; 10161 10162 // Make sure that the numerator matches with FoundLHS and the denominator 10163 // is positive. 10164 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 10165 return false; 10166 10167 auto *DTy = Denominator->getType(); 10168 auto *FRHSTy = FoundRHS->getType(); 10169 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 10170 // One of types is a pointer and another one is not. We cannot extend 10171 // them properly to a wider type, so let us just reject this case. 10172 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 10173 // to avoid this check. 10174 return false; 10175 10176 // Given that: 10177 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 10178 auto *WTy = getWiderType(DTy, FRHSTy); 10179 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 10180 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 10181 10182 // Try to prove the following rule: 10183 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 10184 // For example, given that FoundLHS > 2. It means that FoundLHS is at 10185 // least 3. If we divide it by Denominator < 4, we will have at least 1. 10186 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 10187 if (isKnownNonPositive(RHS) && 10188 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 10189 return true; 10190 10191 // Try to prove the following rule: 10192 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 10193 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 10194 // If we divide it by Denominator > 2, then: 10195 // 1. If FoundLHS is negative, then the result is 0. 10196 // 2. If FoundLHS is non-negative, then the result is non-negative. 10197 // Anyways, the result is non-negative. 10198 auto *MinusOne = getNegativeSCEV(getOne(WTy)); 10199 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 10200 if (isKnownNegative(RHS) && 10201 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 10202 return true; 10203 } 10204 } 10205 10206 // If our expression contained SCEVUnknown Phis, and we split it down and now 10207 // need to prove something for them, try to prove the predicate for every 10208 // possible incoming values of those Phis. 10209 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 10210 return true; 10211 10212 return false; 10213 } 10214 10215 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 10216 const SCEV *LHS, const SCEV *RHS) { 10217 // zext x u<= sext x, sext x s<= zext x 10218 switch (Pred) { 10219 case ICmpInst::ICMP_SGE: 10220 std::swap(LHS, RHS); 10221 LLVM_FALLTHROUGH; 10222 case ICmpInst::ICMP_SLE: { 10223 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 10224 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 10225 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 10226 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10227 return true; 10228 break; 10229 } 10230 case ICmpInst::ICMP_UGE: 10231 std::swap(LHS, RHS); 10232 LLVM_FALLTHROUGH; 10233 case ICmpInst::ICMP_ULE: { 10234 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 10235 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 10236 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 10237 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 10238 return true; 10239 break; 10240 } 10241 default: 10242 break; 10243 }; 10244 return false; 10245 } 10246 10247 bool 10248 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 10249 const SCEV *LHS, const SCEV *RHS) { 10250 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 10251 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 10252 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 10253 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 10254 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 10255 } 10256 10257 bool 10258 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 10259 const SCEV *LHS, const SCEV *RHS, 10260 const SCEV *FoundLHS, 10261 const SCEV *FoundRHS) { 10262 switch (Pred) { 10263 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 10264 case ICmpInst::ICMP_EQ: 10265 case ICmpInst::ICMP_NE: 10266 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 10267 return true; 10268 break; 10269 case ICmpInst::ICMP_SLT: 10270 case ICmpInst::ICMP_SLE: 10271 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 10272 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 10273 return true; 10274 break; 10275 case ICmpInst::ICMP_SGT: 10276 case ICmpInst::ICMP_SGE: 10277 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 10278 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 10279 return true; 10280 break; 10281 case ICmpInst::ICMP_ULT: 10282 case ICmpInst::ICMP_ULE: 10283 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 10284 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 10285 return true; 10286 break; 10287 case ICmpInst::ICMP_UGT: 10288 case ICmpInst::ICMP_UGE: 10289 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 10290 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 10291 return true; 10292 break; 10293 } 10294 10295 // Maybe it can be proved via operations? 10296 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 10297 return true; 10298 10299 return false; 10300 } 10301 10302 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 10303 const SCEV *LHS, 10304 const SCEV *RHS, 10305 const SCEV *FoundLHS, 10306 const SCEV *FoundRHS) { 10307 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 10308 // The restriction on `FoundRHS` be lifted easily -- it exists only to 10309 // reduce the compile time impact of this optimization. 10310 return false; 10311 10312 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 10313 if (!Addend) 10314 return false; 10315 10316 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 10317 10318 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 10319 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 10320 ConstantRange FoundLHSRange = 10321 ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS); 10322 10323 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 10324 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 10325 10326 // We can also compute the range of values for `LHS` that satisfy the 10327 // consequent, "`LHS` `Pred` `RHS`": 10328 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 10329 ConstantRange SatisfyingLHSRange = 10330 ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS); 10331 10332 // The antecedent implies the consequent if every value of `LHS` that 10333 // satisfies the antecedent also satisfies the consequent. 10334 return SatisfyingLHSRange.contains(LHSRange); 10335 } 10336 10337 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 10338 bool IsSigned, bool NoWrap) { 10339 assert(isKnownPositive(Stride) && "Positive stride expected!"); 10340 10341 if (NoWrap) return false; 10342 10343 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10344 const SCEV *One = getOne(Stride->getType()); 10345 10346 if (IsSigned) { 10347 APInt MaxRHS = getSignedRangeMax(RHS); 10348 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 10349 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10350 10351 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 10352 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 10353 } 10354 10355 APInt MaxRHS = getUnsignedRangeMax(RHS); 10356 APInt MaxValue = APInt::getMaxValue(BitWidth); 10357 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10358 10359 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 10360 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 10361 } 10362 10363 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 10364 bool IsSigned, bool NoWrap) { 10365 if (NoWrap) return false; 10366 10367 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 10368 const SCEV *One = getOne(Stride->getType()); 10369 10370 if (IsSigned) { 10371 APInt MinRHS = getSignedRangeMin(RHS); 10372 APInt MinValue = APInt::getSignedMinValue(BitWidth); 10373 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 10374 10375 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 10376 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 10377 } 10378 10379 APInt MinRHS = getUnsignedRangeMin(RHS); 10380 APInt MinValue = APInt::getMinValue(BitWidth); 10381 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 10382 10383 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 10384 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 10385 } 10386 10387 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step, 10388 bool Equality) { 10389 const SCEV *One = getOne(Step->getType()); 10390 Delta = Equality ? getAddExpr(Delta, Step) 10391 : getAddExpr(Delta, getMinusSCEV(Step, One)); 10392 return getUDivExpr(Delta, Step); 10393 } 10394 10395 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 10396 const SCEV *Stride, 10397 const SCEV *End, 10398 unsigned BitWidth, 10399 bool IsSigned) { 10400 10401 assert(!isKnownNonPositive(Stride) && 10402 "Stride is expected strictly positive!"); 10403 // Calculate the maximum backedge count based on the range of values 10404 // permitted by Start, End, and Stride. 10405 const SCEV *MaxBECount; 10406 APInt MinStart = 10407 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 10408 10409 APInt StrideForMaxBECount = 10410 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 10411 10412 // We already know that the stride is positive, so we paper over conservatism 10413 // in our range computation by forcing StrideForMaxBECount to be at least one. 10414 // In theory this is unnecessary, but we expect MaxBECount to be a 10415 // SCEVConstant, and (udiv <constant> 0) is not constant folded by SCEV (there 10416 // is nothing to constant fold it to). 10417 APInt One(BitWidth, 1, IsSigned); 10418 StrideForMaxBECount = APIntOps::smax(One, StrideForMaxBECount); 10419 10420 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 10421 : APInt::getMaxValue(BitWidth); 10422 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 10423 10424 // Although End can be a MAX expression we estimate MaxEnd considering only 10425 // the case End = RHS of the loop termination condition. This is safe because 10426 // in the other case (End - Start) is zero, leading to a zero maximum backedge 10427 // taken count. 10428 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 10429 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 10430 10431 MaxBECount = computeBECount(getConstant(MaxEnd - MinStart) /* Delta */, 10432 getConstant(StrideForMaxBECount) /* Step */, 10433 false /* Equality */); 10434 10435 return MaxBECount; 10436 } 10437 10438 ScalarEvolution::ExitLimit 10439 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 10440 const Loop *L, bool IsSigned, 10441 bool ControlsExit, bool AllowPredicates) { 10442 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10443 10444 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10445 bool PredicatedIV = false; 10446 10447 if (!IV && AllowPredicates) { 10448 // Try to make this an AddRec using runtime tests, in the first X 10449 // iterations of this loop, where X is the SCEV expression found by the 10450 // algorithm below. 10451 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10452 PredicatedIV = true; 10453 } 10454 10455 // Avoid weird loops 10456 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10457 return getCouldNotCompute(); 10458 10459 bool NoWrap = ControlsExit && 10460 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10461 10462 const SCEV *Stride = IV->getStepRecurrence(*this); 10463 10464 bool PositiveStride = isKnownPositive(Stride); 10465 10466 // Avoid negative or zero stride values. 10467 if (!PositiveStride) { 10468 // We can compute the correct backedge taken count for loops with unknown 10469 // strides if we can prove that the loop is not an infinite loop with side 10470 // effects. Here's the loop structure we are trying to handle - 10471 // 10472 // i = start 10473 // do { 10474 // A[i] = i; 10475 // i += s; 10476 // } while (i < end); 10477 // 10478 // The backedge taken count for such loops is evaluated as - 10479 // (max(end, start + stride) - start - 1) /u stride 10480 // 10481 // The additional preconditions that we need to check to prove correctness 10482 // of the above formula is as follows - 10483 // 10484 // a) IV is either nuw or nsw depending upon signedness (indicated by the 10485 // NoWrap flag). 10486 // b) loop is single exit with no side effects. 10487 // 10488 // 10489 // Precondition a) implies that if the stride is negative, this is a single 10490 // trip loop. The backedge taken count formula reduces to zero in this case. 10491 // 10492 // Precondition b) implies that the unknown stride cannot be zero otherwise 10493 // we have UB. 10494 // 10495 // The positive stride case is the same as isKnownPositive(Stride) returning 10496 // true (original behavior of the function). 10497 // 10498 // We want to make sure that the stride is truly unknown as there are edge 10499 // cases where ScalarEvolution propagates no wrap flags to the 10500 // post-increment/decrement IV even though the increment/decrement operation 10501 // itself is wrapping. The computed backedge taken count may be wrong in 10502 // such cases. This is prevented by checking that the stride is not known to 10503 // be either positive or non-positive. For example, no wrap flags are 10504 // propagated to the post-increment IV of this loop with a trip count of 2 - 10505 // 10506 // unsigned char i; 10507 // for(i=127; i<128; i+=129) 10508 // A[i] = i; 10509 // 10510 if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) || 10511 !loopHasNoSideEffects(L)) 10512 return getCouldNotCompute(); 10513 } else if (!Stride->isOne() && 10514 doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap)) 10515 // Avoid proven overflow cases: this will ensure that the backedge taken 10516 // count will not generate any unsigned overflow. Relaxed no-overflow 10517 // conditions exploit NoWrapFlags, allowing to optimize in presence of 10518 // undefined behaviors like the case of C language. 10519 return getCouldNotCompute(); 10520 10521 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT 10522 : ICmpInst::ICMP_ULT; 10523 const SCEV *Start = IV->getStart(); 10524 const SCEV *End = RHS; 10525 // When the RHS is not invariant, we do not know the end bound of the loop and 10526 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 10527 // calculate the MaxBECount, given the start, stride and max value for the end 10528 // bound of the loop (RHS), and the fact that IV does not overflow (which is 10529 // checked above). 10530 if (!isLoopInvariant(RHS, L)) { 10531 const SCEV *MaxBECount = computeMaxBECountForLT( 10532 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10533 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 10534 false /*MaxOrZero*/, Predicates); 10535 } 10536 // If the backedge is taken at least once, then it will be taken 10537 // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start 10538 // is the LHS value of the less-than comparison the first time it is evaluated 10539 // and End is the RHS. 10540 const SCEV *BECountIfBackedgeTaken = 10541 computeBECount(getMinusSCEV(End, Start), Stride, false); 10542 // If the loop entry is guarded by the result of the backedge test of the 10543 // first loop iteration, then we know the backedge will be taken at least 10544 // once and so the backedge taken count is as above. If not then we use the 10545 // expression (max(End,Start)-Start)/Stride to describe the backedge count, 10546 // as if the backedge is taken at least once max(End,Start) is End and so the 10547 // result is as above, and if not max(End,Start) is Start so we get a backedge 10548 // count of zero. 10549 const SCEV *BECount; 10550 if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS)) 10551 BECount = BECountIfBackedgeTaken; 10552 else { 10553 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 10554 BECount = computeBECount(getMinusSCEV(End, Start), Stride, false); 10555 } 10556 10557 const SCEV *MaxBECount; 10558 bool MaxOrZero = false; 10559 if (isa<SCEVConstant>(BECount)) 10560 MaxBECount = BECount; 10561 else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) { 10562 // If we know exactly how many times the backedge will be taken if it's 10563 // taken at least once, then the backedge count will either be that or 10564 // zero. 10565 MaxBECount = BECountIfBackedgeTaken; 10566 MaxOrZero = true; 10567 } else { 10568 MaxBECount = computeMaxBECountForLT( 10569 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 10570 } 10571 10572 if (isa<SCEVCouldNotCompute>(MaxBECount) && 10573 !isa<SCEVCouldNotCompute>(BECount)) 10574 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 10575 10576 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 10577 } 10578 10579 ScalarEvolution::ExitLimit 10580 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 10581 const Loop *L, bool IsSigned, 10582 bool ControlsExit, bool AllowPredicates) { 10583 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 10584 // We handle only IV > Invariant 10585 if (!isLoopInvariant(RHS, L)) 10586 return getCouldNotCompute(); 10587 10588 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 10589 if (!IV && AllowPredicates) 10590 // Try to make this an AddRec using runtime tests, in the first X 10591 // iterations of this loop, where X is the SCEV expression found by the 10592 // algorithm below. 10593 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 10594 10595 // Avoid weird loops 10596 if (!IV || IV->getLoop() != L || !IV->isAffine()) 10597 return getCouldNotCompute(); 10598 10599 bool NoWrap = ControlsExit && 10600 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW); 10601 10602 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 10603 10604 // Avoid negative or zero stride values 10605 if (!isKnownPositive(Stride)) 10606 return getCouldNotCompute(); 10607 10608 // Avoid proven overflow cases: this will ensure that the backedge taken count 10609 // will not generate any unsigned overflow. Relaxed no-overflow conditions 10610 // exploit NoWrapFlags, allowing to optimize in presence of undefined 10611 // behaviors like the case of C language. 10612 if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap)) 10613 return getCouldNotCompute(); 10614 10615 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT 10616 : ICmpInst::ICMP_UGT; 10617 10618 const SCEV *Start = IV->getStart(); 10619 const SCEV *End = RHS; 10620 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) 10621 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 10622 10623 const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false); 10624 10625 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 10626 : getUnsignedRangeMax(Start); 10627 10628 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 10629 : getUnsignedRangeMin(Stride); 10630 10631 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 10632 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 10633 : APInt::getMinValue(BitWidth) + (MinStride - 1); 10634 10635 // Although End can be a MIN expression we estimate MinEnd considering only 10636 // the case End = RHS. This is safe because in the other case (Start - End) 10637 // is zero, leading to a zero maximum backedge taken count. 10638 APInt MinEnd = 10639 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 10640 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 10641 10642 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 10643 ? BECount 10644 : computeBECount(getConstant(MaxStart - MinEnd), 10645 getConstant(MinStride), false); 10646 10647 if (isa<SCEVCouldNotCompute>(MaxBECount)) 10648 MaxBECount = BECount; 10649 10650 return ExitLimit(BECount, MaxBECount, false, Predicates); 10651 } 10652 10653 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 10654 ScalarEvolution &SE) const { 10655 if (Range.isFullSet()) // Infinite loop. 10656 return SE.getCouldNotCompute(); 10657 10658 // If the start is a non-zero constant, shift the range to simplify things. 10659 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 10660 if (!SC->getValue()->isZero()) { 10661 SmallVector<const SCEV *, 4> Operands(op_begin(), op_end()); 10662 Operands[0] = SE.getZero(SC->getType()); 10663 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 10664 getNoWrapFlags(FlagNW)); 10665 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 10666 return ShiftedAddRec->getNumIterationsInRange( 10667 Range.subtract(SC->getAPInt()), SE); 10668 // This is strange and shouldn't happen. 10669 return SE.getCouldNotCompute(); 10670 } 10671 10672 // The only time we can solve this is when we have all constant indices. 10673 // Otherwise, we cannot determine the overflow conditions. 10674 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 10675 return SE.getCouldNotCompute(); 10676 10677 // Okay at this point we know that all elements of the chrec are constants and 10678 // that the start element is zero. 10679 10680 // First check to see if the range contains zero. If not, the first 10681 // iteration exits. 10682 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 10683 if (!Range.contains(APInt(BitWidth, 0))) 10684 return SE.getZero(getType()); 10685 10686 if (isAffine()) { 10687 // If this is an affine expression then we have this situation: 10688 // Solve {0,+,A} in Range === Ax in Range 10689 10690 // We know that zero is in the range. If A is positive then we know that 10691 // the upper value of the range must be the first possible exit value. 10692 // If A is negative then the lower of the range is the last possible loop 10693 // value. Also note that we already checked for a full range. 10694 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 10695 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 10696 10697 // The exit value should be (End+A)/A. 10698 APInt ExitVal = (End + A).udiv(A); 10699 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 10700 10701 // Evaluate at the exit value. If we really did fall out of the valid 10702 // range, then we computed our trip count, otherwise wrap around or other 10703 // things must have happened. 10704 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 10705 if (Range.contains(Val->getValue())) 10706 return SE.getCouldNotCompute(); // Something strange happened 10707 10708 // Ensure that the previous value is in the range. This is a sanity check. 10709 assert(Range.contains( 10710 EvaluateConstantChrecAtConstant(this, 10711 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 10712 "Linear scev computation is off in a bad way!"); 10713 return SE.getConstant(ExitValue); 10714 } 10715 10716 if (isQuadratic()) { 10717 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 10718 return SE.getConstant(S.getValue()); 10719 } 10720 10721 return SE.getCouldNotCompute(); 10722 } 10723 10724 const SCEVAddRecExpr * 10725 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 10726 assert(getNumOperands() > 1 && "AddRec with zero step?"); 10727 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 10728 // but in this case we cannot guarantee that the value returned will be an 10729 // AddRec because SCEV does not have a fixed point where it stops 10730 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 10731 // may happen if we reach arithmetic depth limit while simplifying. So we 10732 // construct the returned value explicitly. 10733 SmallVector<const SCEV *, 3> Ops; 10734 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 10735 // (this + Step) is {A+B,+,B+C,+...,+,N}. 10736 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 10737 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 10738 // We know that the last operand is not a constant zero (otherwise it would 10739 // have been popped out earlier). This guarantees us that if the result has 10740 // the same last operand, then it will also not be popped out, meaning that 10741 // the returned value will be an AddRec. 10742 const SCEV *Last = getOperand(getNumOperands() - 1); 10743 assert(!Last->isZero() && "Recurrency with zero step?"); 10744 Ops.push_back(Last); 10745 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 10746 SCEV::FlagAnyWrap)); 10747 } 10748 10749 // Return true when S contains at least an undef value. 10750 static inline bool containsUndefs(const SCEV *S) { 10751 return SCEVExprContains(S, [](const SCEV *S) { 10752 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 10753 return isa<UndefValue>(SU->getValue()); 10754 return false; 10755 }); 10756 } 10757 10758 namespace { 10759 10760 // Collect all steps of SCEV expressions. 10761 struct SCEVCollectStrides { 10762 ScalarEvolution &SE; 10763 SmallVectorImpl<const SCEV *> &Strides; 10764 10765 SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S) 10766 : SE(SE), Strides(S) {} 10767 10768 bool follow(const SCEV *S) { 10769 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) 10770 Strides.push_back(AR->getStepRecurrence(SE)); 10771 return true; 10772 } 10773 10774 bool isDone() const { return false; } 10775 }; 10776 10777 // Collect all SCEVUnknown and SCEVMulExpr expressions. 10778 struct SCEVCollectTerms { 10779 SmallVectorImpl<const SCEV *> &Terms; 10780 10781 SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T) : Terms(T) {} 10782 10783 bool follow(const SCEV *S) { 10784 if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) || 10785 isa<SCEVSignExtendExpr>(S)) { 10786 if (!containsUndefs(S)) 10787 Terms.push_back(S); 10788 10789 // Stop recursion: once we collected a term, do not walk its operands. 10790 return false; 10791 } 10792 10793 // Keep looking. 10794 return true; 10795 } 10796 10797 bool isDone() const { return false; } 10798 }; 10799 10800 // Check if a SCEV contains an AddRecExpr. 10801 struct SCEVHasAddRec { 10802 bool &ContainsAddRec; 10803 10804 SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) { 10805 ContainsAddRec = false; 10806 } 10807 10808 bool follow(const SCEV *S) { 10809 if (isa<SCEVAddRecExpr>(S)) { 10810 ContainsAddRec = true; 10811 10812 // Stop recursion: once we collected a term, do not walk its operands. 10813 return false; 10814 } 10815 10816 // Keep looking. 10817 return true; 10818 } 10819 10820 bool isDone() const { return false; } 10821 }; 10822 10823 // Find factors that are multiplied with an expression that (possibly as a 10824 // subexpression) contains an AddRecExpr. In the expression: 10825 // 10826 // 8 * (100 + %p * %q * (%a + {0, +, 1}_loop)) 10827 // 10828 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)" 10829 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size 10830 // parameters as they form a product with an induction variable. 10831 // 10832 // This collector expects all array size parameters to be in the same MulExpr. 10833 // It might be necessary to later add support for collecting parameters that are 10834 // spread over different nested MulExpr. 10835 struct SCEVCollectAddRecMultiplies { 10836 SmallVectorImpl<const SCEV *> &Terms; 10837 ScalarEvolution &SE; 10838 10839 SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE) 10840 : Terms(T), SE(SE) {} 10841 10842 bool follow(const SCEV *S) { 10843 if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) { 10844 bool HasAddRec = false; 10845 SmallVector<const SCEV *, 0> Operands; 10846 for (auto Op : Mul->operands()) { 10847 const SCEVUnknown *Unknown = dyn_cast<SCEVUnknown>(Op); 10848 if (Unknown && !isa<CallInst>(Unknown->getValue())) { 10849 Operands.push_back(Op); 10850 } else if (Unknown) { 10851 HasAddRec = true; 10852 } else { 10853 bool ContainsAddRec = false; 10854 SCEVHasAddRec ContiansAddRec(ContainsAddRec); 10855 visitAll(Op, ContiansAddRec); 10856 HasAddRec |= ContainsAddRec; 10857 } 10858 } 10859 if (Operands.size() == 0) 10860 return true; 10861 10862 if (!HasAddRec) 10863 return false; 10864 10865 Terms.push_back(SE.getMulExpr(Operands)); 10866 // Stop recursion: once we collected a term, do not walk its operands. 10867 return false; 10868 } 10869 10870 // Keep looking. 10871 return true; 10872 } 10873 10874 bool isDone() const { return false; } 10875 }; 10876 10877 } // end anonymous namespace 10878 10879 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in 10880 /// two places: 10881 /// 1) The strides of AddRec expressions. 10882 /// 2) Unknowns that are multiplied with AddRec expressions. 10883 void ScalarEvolution::collectParametricTerms(const SCEV *Expr, 10884 SmallVectorImpl<const SCEV *> &Terms) { 10885 SmallVector<const SCEV *, 4> Strides; 10886 SCEVCollectStrides StrideCollector(*this, Strides); 10887 visitAll(Expr, StrideCollector); 10888 10889 LLVM_DEBUG({ 10890 dbgs() << "Strides:\n"; 10891 for (const SCEV *S : Strides) 10892 dbgs() << *S << "\n"; 10893 }); 10894 10895 for (const SCEV *S : Strides) { 10896 SCEVCollectTerms TermCollector(Terms); 10897 visitAll(S, TermCollector); 10898 } 10899 10900 LLVM_DEBUG({ 10901 dbgs() << "Terms:\n"; 10902 for (const SCEV *T : Terms) 10903 dbgs() << *T << "\n"; 10904 }); 10905 10906 SCEVCollectAddRecMultiplies MulCollector(Terms, *this); 10907 visitAll(Expr, MulCollector); 10908 } 10909 10910 static bool findArrayDimensionsRec(ScalarEvolution &SE, 10911 SmallVectorImpl<const SCEV *> &Terms, 10912 SmallVectorImpl<const SCEV *> &Sizes) { 10913 int Last = Terms.size() - 1; 10914 const SCEV *Step = Terms[Last]; 10915 10916 // End of recursion. 10917 if (Last == 0) { 10918 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) { 10919 SmallVector<const SCEV *, 2> Qs; 10920 for (const SCEV *Op : M->operands()) 10921 if (!isa<SCEVConstant>(Op)) 10922 Qs.push_back(Op); 10923 10924 Step = SE.getMulExpr(Qs); 10925 } 10926 10927 Sizes.push_back(Step); 10928 return true; 10929 } 10930 10931 for (const SCEV *&Term : Terms) { 10932 // Normalize the terms before the next call to findArrayDimensionsRec. 10933 const SCEV *Q, *R; 10934 SCEVDivision::divide(SE, Term, Step, &Q, &R); 10935 10936 // Bail out when GCD does not evenly divide one of the terms. 10937 if (!R->isZero()) 10938 return false; 10939 10940 Term = Q; 10941 } 10942 10943 // Remove all SCEVConstants. 10944 Terms.erase( 10945 remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }), 10946 Terms.end()); 10947 10948 if (Terms.size() > 0) 10949 if (!findArrayDimensionsRec(SE, Terms, Sizes)) 10950 return false; 10951 10952 Sizes.push_back(Step); 10953 return true; 10954 } 10955 10956 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter. 10957 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) { 10958 for (const SCEV *T : Terms) 10959 if (SCEVExprContains(T, [](const SCEV *S) { return isa<SCEVUnknown>(S); })) 10960 return true; 10961 10962 return false; 10963 } 10964 10965 // Return the number of product terms in S. 10966 static inline int numberOfTerms(const SCEV *S) { 10967 if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S)) 10968 return Expr->getNumOperands(); 10969 return 1; 10970 } 10971 10972 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) { 10973 if (isa<SCEVConstant>(T)) 10974 return nullptr; 10975 10976 if (isa<SCEVUnknown>(T)) 10977 return T; 10978 10979 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) { 10980 SmallVector<const SCEV *, 2> Factors; 10981 for (const SCEV *Op : M->operands()) 10982 if (!isa<SCEVConstant>(Op)) 10983 Factors.push_back(Op); 10984 10985 return SE.getMulExpr(Factors); 10986 } 10987 10988 return T; 10989 } 10990 10991 /// Return the size of an element read or written by Inst. 10992 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 10993 Type *Ty; 10994 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 10995 Ty = Store->getValueOperand()->getType(); 10996 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 10997 Ty = Load->getType(); 10998 else 10999 return nullptr; 11000 11001 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 11002 return getSizeOfExpr(ETy, Ty); 11003 } 11004 11005 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms, 11006 SmallVectorImpl<const SCEV *> &Sizes, 11007 const SCEV *ElementSize) { 11008 if (Terms.size() < 1 || !ElementSize) 11009 return; 11010 11011 // Early return when Terms do not contain parameters: we do not delinearize 11012 // non parametric SCEVs. 11013 if (!containsParameters(Terms)) 11014 return; 11015 11016 LLVM_DEBUG({ 11017 dbgs() << "Terms:\n"; 11018 for (const SCEV *T : Terms) 11019 dbgs() << *T << "\n"; 11020 }); 11021 11022 // Remove duplicates. 11023 array_pod_sort(Terms.begin(), Terms.end()); 11024 Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end()); 11025 11026 // Put larger terms first. 11027 llvm::sort(Terms, [](const SCEV *LHS, const SCEV *RHS) { 11028 return numberOfTerms(LHS) > numberOfTerms(RHS); 11029 }); 11030 11031 // Try to divide all terms by the element size. If term is not divisible by 11032 // element size, proceed with the original term. 11033 for (const SCEV *&Term : Terms) { 11034 const SCEV *Q, *R; 11035 SCEVDivision::divide(*this, Term, ElementSize, &Q, &R); 11036 if (!Q->isZero()) 11037 Term = Q; 11038 } 11039 11040 SmallVector<const SCEV *, 4> NewTerms; 11041 11042 // Remove constant factors. 11043 for (const SCEV *T : Terms) 11044 if (const SCEV *NewT = removeConstantFactors(*this, T)) 11045 NewTerms.push_back(NewT); 11046 11047 LLVM_DEBUG({ 11048 dbgs() << "Terms after sorting:\n"; 11049 for (const SCEV *T : NewTerms) 11050 dbgs() << *T << "\n"; 11051 }); 11052 11053 if (NewTerms.empty() || !findArrayDimensionsRec(*this, NewTerms, Sizes)) { 11054 Sizes.clear(); 11055 return; 11056 } 11057 11058 // The last element to be pushed into Sizes is the size of an element. 11059 Sizes.push_back(ElementSize); 11060 11061 LLVM_DEBUG({ 11062 dbgs() << "Sizes:\n"; 11063 for (const SCEV *S : Sizes) 11064 dbgs() << *S << "\n"; 11065 }); 11066 } 11067 11068 void ScalarEvolution::computeAccessFunctions( 11069 const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts, 11070 SmallVectorImpl<const SCEV *> &Sizes) { 11071 // Early exit in case this SCEV is not an affine multivariate function. 11072 if (Sizes.empty()) 11073 return; 11074 11075 if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr)) 11076 if (!AR->isAffine()) 11077 return; 11078 11079 const SCEV *Res = Expr; 11080 int Last = Sizes.size() - 1; 11081 for (int i = Last; i >= 0; i--) { 11082 const SCEV *Q, *R; 11083 SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R); 11084 11085 LLVM_DEBUG({ 11086 dbgs() << "Res: " << *Res << "\n"; 11087 dbgs() << "Sizes[i]: " << *Sizes[i] << "\n"; 11088 dbgs() << "Res divided by Sizes[i]:\n"; 11089 dbgs() << "Quotient: " << *Q << "\n"; 11090 dbgs() << "Remainder: " << *R << "\n"; 11091 }); 11092 11093 Res = Q; 11094 11095 // Do not record the last subscript corresponding to the size of elements in 11096 // the array. 11097 if (i == Last) { 11098 11099 // Bail out if the remainder is too complex. 11100 if (isa<SCEVAddRecExpr>(R)) { 11101 Subscripts.clear(); 11102 Sizes.clear(); 11103 return; 11104 } 11105 11106 continue; 11107 } 11108 11109 // Record the access function for the current subscript. 11110 Subscripts.push_back(R); 11111 } 11112 11113 // Also push in last position the remainder of the last division: it will be 11114 // the access function of the innermost dimension. 11115 Subscripts.push_back(Res); 11116 11117 std::reverse(Subscripts.begin(), Subscripts.end()); 11118 11119 LLVM_DEBUG({ 11120 dbgs() << "Subscripts:\n"; 11121 for (const SCEV *S : Subscripts) 11122 dbgs() << *S << "\n"; 11123 }); 11124 } 11125 11126 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and 11127 /// sizes of an array access. Returns the remainder of the delinearization that 11128 /// is the offset start of the array. The SCEV->delinearize algorithm computes 11129 /// the multiples of SCEV coefficients: that is a pattern matching of sub 11130 /// expressions in the stride and base of a SCEV corresponding to the 11131 /// computation of a GCD (greatest common divisor) of base and stride. When 11132 /// SCEV->delinearize fails, it returns the SCEV unchanged. 11133 /// 11134 /// For example: when analyzing the memory access A[i][j][k] in this loop nest 11135 /// 11136 /// void foo(long n, long m, long o, double A[n][m][o]) { 11137 /// 11138 /// for (long i = 0; i < n; i++) 11139 /// for (long j = 0; j < m; j++) 11140 /// for (long k = 0; k < o; k++) 11141 /// A[i][j][k] = 1.0; 11142 /// } 11143 /// 11144 /// the delinearization input is the following AddRec SCEV: 11145 /// 11146 /// AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k> 11147 /// 11148 /// From this SCEV, we are able to say that the base offset of the access is %A 11149 /// because it appears as an offset that does not divide any of the strides in 11150 /// the loops: 11151 /// 11152 /// CHECK: Base offset: %A 11153 /// 11154 /// and then SCEV->delinearize determines the size of some of the dimensions of 11155 /// the array as these are the multiples by which the strides are happening: 11156 /// 11157 /// CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes. 11158 /// 11159 /// Note that the outermost dimension remains of UnknownSize because there are 11160 /// no strides that would help identifying the size of the last dimension: when 11161 /// the array has been statically allocated, one could compute the size of that 11162 /// dimension by dividing the overall size of the array by the size of the known 11163 /// dimensions: %m * %o * 8. 11164 /// 11165 /// Finally delinearize provides the access functions for the array reference 11166 /// that does correspond to A[i][j][k] of the above C testcase: 11167 /// 11168 /// CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>] 11169 /// 11170 /// The testcases are checking the output of a function pass: 11171 /// DelinearizationPass that walks through all loads and stores of a function 11172 /// asking for the SCEV of the memory access with respect to all enclosing 11173 /// loops, calling SCEV->delinearize on that and printing the results. 11174 void ScalarEvolution::delinearize(const SCEV *Expr, 11175 SmallVectorImpl<const SCEV *> &Subscripts, 11176 SmallVectorImpl<const SCEV *> &Sizes, 11177 const SCEV *ElementSize) { 11178 // First step: collect parametric terms. 11179 SmallVector<const SCEV *, 4> Terms; 11180 collectParametricTerms(Expr, Terms); 11181 11182 if (Terms.empty()) 11183 return; 11184 11185 // Second step: find subscript sizes. 11186 findArrayDimensions(Terms, Sizes, ElementSize); 11187 11188 if (Sizes.empty()) 11189 return; 11190 11191 // Third step: compute the access functions for each subscript. 11192 computeAccessFunctions(Expr, Subscripts, Sizes); 11193 11194 if (Subscripts.empty()) 11195 return; 11196 11197 LLVM_DEBUG({ 11198 dbgs() << "succeeded to delinearize " << *Expr << "\n"; 11199 dbgs() << "ArrayDecl[UnknownSize]"; 11200 for (const SCEV *S : Sizes) 11201 dbgs() << "[" << *S << "]"; 11202 11203 dbgs() << "\nArrayRef"; 11204 for (const SCEV *S : Subscripts) 11205 dbgs() << "[" << *S << "]"; 11206 dbgs() << "\n"; 11207 }); 11208 } 11209 11210 bool ScalarEvolution::getIndexExpressionsFromGEP( 11211 const GetElementPtrInst *GEP, SmallVectorImpl<const SCEV *> &Subscripts, 11212 SmallVectorImpl<int> &Sizes) { 11213 assert(Subscripts.empty() && Sizes.empty() && 11214 "Expected output lists to be empty on entry to this function."); 11215 assert(GEP && "getIndexExpressionsFromGEP called with a null GEP"); 11216 Type *Ty = GEP->getPointerOperandType(); 11217 bool DroppedFirstDim = false; 11218 for (unsigned i = 1; i < GEP->getNumOperands(); i++) { 11219 const SCEV *Expr = getSCEV(GEP->getOperand(i)); 11220 if (i == 1) { 11221 if (auto *PtrTy = dyn_cast<PointerType>(Ty)) { 11222 Ty = PtrTy->getElementType(); 11223 } else if (auto *ArrayTy = dyn_cast<ArrayType>(Ty)) { 11224 Ty = ArrayTy->getElementType(); 11225 } else { 11226 Subscripts.clear(); 11227 Sizes.clear(); 11228 return false; 11229 } 11230 if (auto *Const = dyn_cast<SCEVConstant>(Expr)) 11231 if (Const->getValue()->isZero()) { 11232 DroppedFirstDim = true; 11233 continue; 11234 } 11235 Subscripts.push_back(Expr); 11236 continue; 11237 } 11238 11239 auto *ArrayTy = dyn_cast<ArrayType>(Ty); 11240 if (!ArrayTy) { 11241 Subscripts.clear(); 11242 Sizes.clear(); 11243 return false; 11244 } 11245 11246 Subscripts.push_back(Expr); 11247 if (!(DroppedFirstDim && i == 2)) 11248 Sizes.push_back(ArrayTy->getNumElements()); 11249 11250 Ty = ArrayTy->getElementType(); 11251 } 11252 return !Subscripts.empty(); 11253 } 11254 11255 //===----------------------------------------------------------------------===// 11256 // SCEVCallbackVH Class Implementation 11257 //===----------------------------------------------------------------------===// 11258 11259 void ScalarEvolution::SCEVCallbackVH::deleted() { 11260 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11261 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 11262 SE->ConstantEvolutionLoopExitValue.erase(PN); 11263 SE->eraseValueFromMap(getValPtr()); 11264 // this now dangles! 11265 } 11266 11267 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 11268 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 11269 11270 // Forget all the expressions associated with users of the old value, 11271 // so that future queries will recompute the expressions using the new 11272 // value. 11273 Value *Old = getValPtr(); 11274 SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end()); 11275 SmallPtrSet<User *, 8> Visited; 11276 while (!Worklist.empty()) { 11277 User *U = Worklist.pop_back_val(); 11278 // Deleting the Old value will cause this to dangle. Postpone 11279 // that until everything else is done. 11280 if (U == Old) 11281 continue; 11282 if (!Visited.insert(U).second) 11283 continue; 11284 if (PHINode *PN = dyn_cast<PHINode>(U)) 11285 SE->ConstantEvolutionLoopExitValue.erase(PN); 11286 SE->eraseValueFromMap(U); 11287 Worklist.insert(Worklist.end(), U->user_begin(), U->user_end()); 11288 } 11289 // Delete the Old value. 11290 if (PHINode *PN = dyn_cast<PHINode>(Old)) 11291 SE->ConstantEvolutionLoopExitValue.erase(PN); 11292 SE->eraseValueFromMap(Old); 11293 // this now dangles! 11294 } 11295 11296 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 11297 : CallbackVH(V), SE(se) {} 11298 11299 //===----------------------------------------------------------------------===// 11300 // ScalarEvolution Class Implementation 11301 //===----------------------------------------------------------------------===// 11302 11303 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 11304 AssumptionCache &AC, DominatorTree &DT, 11305 LoopInfo &LI) 11306 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 11307 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 11308 LoopDispositions(64), BlockDispositions(64) { 11309 // To use guards for proving predicates, we need to scan every instruction in 11310 // relevant basic blocks, and not just terminators. Doing this is a waste of 11311 // time if the IR does not actually contain any calls to 11312 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 11313 // 11314 // This pessimizes the case where a pass that preserves ScalarEvolution wants 11315 // to _add_ guards to the module when there weren't any before, and wants 11316 // ScalarEvolution to optimize based on those guards. For now we prefer to be 11317 // efficient in lieu of being smart in that rather obscure case. 11318 11319 auto *GuardDecl = F.getParent()->getFunction( 11320 Intrinsic::getName(Intrinsic::experimental_guard)); 11321 HasGuards = GuardDecl && !GuardDecl->use_empty(); 11322 } 11323 11324 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 11325 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 11326 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 11327 ValueExprMap(std::move(Arg.ValueExprMap)), 11328 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 11329 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 11330 PendingMerges(std::move(Arg.PendingMerges)), 11331 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 11332 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 11333 PredicatedBackedgeTakenCounts( 11334 std::move(Arg.PredicatedBackedgeTakenCounts)), 11335 ConstantEvolutionLoopExitValue( 11336 std::move(Arg.ConstantEvolutionLoopExitValue)), 11337 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 11338 LoopDispositions(std::move(Arg.LoopDispositions)), 11339 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 11340 BlockDispositions(std::move(Arg.BlockDispositions)), 11341 UnsignedRanges(std::move(Arg.UnsignedRanges)), 11342 SignedRanges(std::move(Arg.SignedRanges)), 11343 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 11344 UniquePreds(std::move(Arg.UniquePreds)), 11345 SCEVAllocator(std::move(Arg.SCEVAllocator)), 11346 LoopUsers(std::move(Arg.LoopUsers)), 11347 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 11348 FirstUnknown(Arg.FirstUnknown) { 11349 Arg.FirstUnknown = nullptr; 11350 } 11351 11352 ScalarEvolution::~ScalarEvolution() { 11353 // Iterate through all the SCEVUnknown instances and call their 11354 // destructors, so that they release their references to their values. 11355 for (SCEVUnknown *U = FirstUnknown; U;) { 11356 SCEVUnknown *Tmp = U; 11357 U = U->Next; 11358 Tmp->~SCEVUnknown(); 11359 } 11360 FirstUnknown = nullptr; 11361 11362 ExprValueMap.clear(); 11363 ValueExprMap.clear(); 11364 HasRecMap.clear(); 11365 11366 // Free any extra memory created for ExitNotTakenInfo in the unlikely event 11367 // that a loop had multiple computable exits. 11368 for (auto &BTCI : BackedgeTakenCounts) 11369 BTCI.second.clear(); 11370 for (auto &BTCI : PredicatedBackedgeTakenCounts) 11371 BTCI.second.clear(); 11372 11373 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 11374 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 11375 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 11376 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 11377 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 11378 } 11379 11380 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 11381 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 11382 } 11383 11384 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 11385 const Loop *L) { 11386 // Print all inner loops first 11387 for (Loop *I : *L) 11388 PrintLoopInfo(OS, SE, I); 11389 11390 OS << "Loop "; 11391 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11392 OS << ": "; 11393 11394 SmallVector<BasicBlock *, 8> ExitingBlocks; 11395 L->getExitingBlocks(ExitingBlocks); 11396 if (ExitingBlocks.size() != 1) 11397 OS << "<multiple exits> "; 11398 11399 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 11400 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 11401 else 11402 OS << "Unpredictable backedge-taken count.\n"; 11403 11404 if (ExitingBlocks.size() > 1) 11405 for (BasicBlock *ExitingBlock : ExitingBlocks) { 11406 OS << " exit count for " << ExitingBlock->getName() << ": " 11407 << *SE->getExitCount(L, ExitingBlock) << "\n"; 11408 } 11409 11410 OS << "Loop "; 11411 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11412 OS << ": "; 11413 11414 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 11415 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 11416 if (SE->isBackedgeTakenCountMaxOrZero(L)) 11417 OS << ", actual taken count either this or zero."; 11418 } else { 11419 OS << "Unpredictable max backedge-taken count. "; 11420 } 11421 11422 OS << "\n" 11423 "Loop "; 11424 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11425 OS << ": "; 11426 11427 SCEVUnionPredicate Pred; 11428 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 11429 if (!isa<SCEVCouldNotCompute>(PBT)) { 11430 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 11431 OS << " Predicates:\n"; 11432 Pred.print(OS, 4); 11433 } else { 11434 OS << "Unpredictable predicated backedge-taken count. "; 11435 } 11436 OS << "\n"; 11437 11438 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 11439 OS << "Loop "; 11440 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11441 OS << ": "; 11442 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 11443 } 11444 } 11445 11446 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 11447 switch (LD) { 11448 case ScalarEvolution::LoopVariant: 11449 return "Variant"; 11450 case ScalarEvolution::LoopInvariant: 11451 return "Invariant"; 11452 case ScalarEvolution::LoopComputable: 11453 return "Computable"; 11454 } 11455 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 11456 } 11457 11458 void ScalarEvolution::print(raw_ostream &OS) const { 11459 // ScalarEvolution's implementation of the print method is to print 11460 // out SCEV values of all instructions that are interesting. Doing 11461 // this potentially causes it to create new SCEV objects though, 11462 // which technically conflicts with the const qualifier. This isn't 11463 // observable from outside the class though, so casting away the 11464 // const isn't dangerous. 11465 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11466 11467 if (ClassifyExpressions) { 11468 OS << "Classifying expressions for: "; 11469 F.printAsOperand(OS, /*PrintType=*/false); 11470 OS << "\n"; 11471 for (Instruction &I : instructions(F)) 11472 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 11473 OS << I << '\n'; 11474 OS << " --> "; 11475 const SCEV *SV = SE.getSCEV(&I); 11476 SV->print(OS); 11477 if (!isa<SCEVCouldNotCompute>(SV)) { 11478 OS << " U: "; 11479 SE.getUnsignedRange(SV).print(OS); 11480 OS << " S: "; 11481 SE.getSignedRange(SV).print(OS); 11482 } 11483 11484 const Loop *L = LI.getLoopFor(I.getParent()); 11485 11486 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 11487 if (AtUse != SV) { 11488 OS << " --> "; 11489 AtUse->print(OS); 11490 if (!isa<SCEVCouldNotCompute>(AtUse)) { 11491 OS << " U: "; 11492 SE.getUnsignedRange(AtUse).print(OS); 11493 OS << " S: "; 11494 SE.getSignedRange(AtUse).print(OS); 11495 } 11496 } 11497 11498 if (L) { 11499 OS << "\t\t" "Exits: "; 11500 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 11501 if (!SE.isLoopInvariant(ExitValue, L)) { 11502 OS << "<<Unknown>>"; 11503 } else { 11504 OS << *ExitValue; 11505 } 11506 11507 bool First = true; 11508 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 11509 if (First) { 11510 OS << "\t\t" "LoopDispositions: { "; 11511 First = false; 11512 } else { 11513 OS << ", "; 11514 } 11515 11516 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11517 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 11518 } 11519 11520 for (auto *InnerL : depth_first(L)) { 11521 if (InnerL == L) 11522 continue; 11523 if (First) { 11524 OS << "\t\t" "LoopDispositions: { "; 11525 First = false; 11526 } else { 11527 OS << ", "; 11528 } 11529 11530 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 11531 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 11532 } 11533 11534 OS << " }"; 11535 } 11536 11537 OS << "\n"; 11538 } 11539 } 11540 11541 OS << "Determining loop execution counts for: "; 11542 F.printAsOperand(OS, /*PrintType=*/false); 11543 OS << "\n"; 11544 for (Loop *I : LI) 11545 PrintLoopInfo(OS, &SE, I); 11546 } 11547 11548 ScalarEvolution::LoopDisposition 11549 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 11550 auto &Values = LoopDispositions[S]; 11551 for (auto &V : Values) { 11552 if (V.getPointer() == L) 11553 return V.getInt(); 11554 } 11555 Values.emplace_back(L, LoopVariant); 11556 LoopDisposition D = computeLoopDisposition(S, L); 11557 auto &Values2 = LoopDispositions[S]; 11558 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11559 if (V.getPointer() == L) { 11560 V.setInt(D); 11561 break; 11562 } 11563 } 11564 return D; 11565 } 11566 11567 ScalarEvolution::LoopDisposition 11568 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 11569 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11570 case scConstant: 11571 return LoopInvariant; 11572 case scTruncate: 11573 case scZeroExtend: 11574 case scSignExtend: 11575 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 11576 case scAddRecExpr: { 11577 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11578 11579 // If L is the addrec's loop, it's computable. 11580 if (AR->getLoop() == L) 11581 return LoopComputable; 11582 11583 // Add recurrences are never invariant in the function-body (null loop). 11584 if (!L) 11585 return LoopVariant; 11586 11587 // Everything that is not defined at loop entry is variant. 11588 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 11589 return LoopVariant; 11590 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 11591 " dominate the contained loop's header?"); 11592 11593 // This recurrence is invariant w.r.t. L if AR's loop contains L. 11594 if (AR->getLoop()->contains(L)) 11595 return LoopInvariant; 11596 11597 // This recurrence is variant w.r.t. L if any of its operands 11598 // are variant. 11599 for (auto *Op : AR->operands()) 11600 if (!isLoopInvariant(Op, L)) 11601 return LoopVariant; 11602 11603 // Otherwise it's loop-invariant. 11604 return LoopInvariant; 11605 } 11606 case scAddExpr: 11607 case scMulExpr: 11608 case scUMaxExpr: 11609 case scSMaxExpr: 11610 case scUMinExpr: 11611 case scSMinExpr: { 11612 bool HasVarying = false; 11613 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 11614 LoopDisposition D = getLoopDisposition(Op, L); 11615 if (D == LoopVariant) 11616 return LoopVariant; 11617 if (D == LoopComputable) 11618 HasVarying = true; 11619 } 11620 return HasVarying ? LoopComputable : LoopInvariant; 11621 } 11622 case scUDivExpr: { 11623 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11624 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 11625 if (LD == LoopVariant) 11626 return LoopVariant; 11627 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 11628 if (RD == LoopVariant) 11629 return LoopVariant; 11630 return (LD == LoopInvariant && RD == LoopInvariant) ? 11631 LoopInvariant : LoopComputable; 11632 } 11633 case scUnknown: 11634 // All non-instruction values are loop invariant. All instructions are loop 11635 // invariant if they are not contained in the specified loop. 11636 // Instructions are never considered invariant in the function body 11637 // (null loop) because they are defined within the "loop". 11638 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 11639 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 11640 return LoopInvariant; 11641 case scCouldNotCompute: 11642 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11643 } 11644 llvm_unreachable("Unknown SCEV kind!"); 11645 } 11646 11647 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 11648 return getLoopDisposition(S, L) == LoopInvariant; 11649 } 11650 11651 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 11652 return getLoopDisposition(S, L) == LoopComputable; 11653 } 11654 11655 ScalarEvolution::BlockDisposition 11656 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11657 auto &Values = BlockDispositions[S]; 11658 for (auto &V : Values) { 11659 if (V.getPointer() == BB) 11660 return V.getInt(); 11661 } 11662 Values.emplace_back(BB, DoesNotDominateBlock); 11663 BlockDisposition D = computeBlockDisposition(S, BB); 11664 auto &Values2 = BlockDispositions[S]; 11665 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 11666 if (V.getPointer() == BB) { 11667 V.setInt(D); 11668 break; 11669 } 11670 } 11671 return D; 11672 } 11673 11674 ScalarEvolution::BlockDisposition 11675 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 11676 switch (static_cast<SCEVTypes>(S->getSCEVType())) { 11677 case scConstant: 11678 return ProperlyDominatesBlock; 11679 case scTruncate: 11680 case scZeroExtend: 11681 case scSignExtend: 11682 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 11683 case scAddRecExpr: { 11684 // This uses a "dominates" query instead of "properly dominates" query 11685 // to test for proper dominance too, because the instruction which 11686 // produces the addrec's value is a PHI, and a PHI effectively properly 11687 // dominates its entire containing block. 11688 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 11689 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 11690 return DoesNotDominateBlock; 11691 11692 // Fall through into SCEVNAryExpr handling. 11693 LLVM_FALLTHROUGH; 11694 } 11695 case scAddExpr: 11696 case scMulExpr: 11697 case scUMaxExpr: 11698 case scSMaxExpr: 11699 case scUMinExpr: 11700 case scSMinExpr: { 11701 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 11702 bool Proper = true; 11703 for (const SCEV *NAryOp : NAry->operands()) { 11704 BlockDisposition D = getBlockDisposition(NAryOp, BB); 11705 if (D == DoesNotDominateBlock) 11706 return DoesNotDominateBlock; 11707 if (D == DominatesBlock) 11708 Proper = false; 11709 } 11710 return Proper ? ProperlyDominatesBlock : DominatesBlock; 11711 } 11712 case scUDivExpr: { 11713 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 11714 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 11715 BlockDisposition LD = getBlockDisposition(LHS, BB); 11716 if (LD == DoesNotDominateBlock) 11717 return DoesNotDominateBlock; 11718 BlockDisposition RD = getBlockDisposition(RHS, BB); 11719 if (RD == DoesNotDominateBlock) 11720 return DoesNotDominateBlock; 11721 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 11722 ProperlyDominatesBlock : DominatesBlock; 11723 } 11724 case scUnknown: 11725 if (Instruction *I = 11726 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 11727 if (I->getParent() == BB) 11728 return DominatesBlock; 11729 if (DT.properlyDominates(I->getParent(), BB)) 11730 return ProperlyDominatesBlock; 11731 return DoesNotDominateBlock; 11732 } 11733 return ProperlyDominatesBlock; 11734 case scCouldNotCompute: 11735 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 11736 } 11737 llvm_unreachable("Unknown SCEV kind!"); 11738 } 11739 11740 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 11741 return getBlockDisposition(S, BB) >= DominatesBlock; 11742 } 11743 11744 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 11745 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 11746 } 11747 11748 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 11749 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 11750 } 11751 11752 bool ScalarEvolution::ExitLimit::hasOperand(const SCEV *S) const { 11753 auto IsS = [&](const SCEV *X) { return S == X; }; 11754 auto ContainsS = [&](const SCEV *X) { 11755 return !isa<SCEVCouldNotCompute>(X) && SCEVExprContains(X, IsS); 11756 }; 11757 return ContainsS(ExactNotTaken) || ContainsS(MaxNotTaken); 11758 } 11759 11760 void 11761 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 11762 ValuesAtScopes.erase(S); 11763 LoopDispositions.erase(S); 11764 BlockDispositions.erase(S); 11765 UnsignedRanges.erase(S); 11766 SignedRanges.erase(S); 11767 ExprValueMap.erase(S); 11768 HasRecMap.erase(S); 11769 MinTrailingZerosCache.erase(S); 11770 11771 for (auto I = PredicatedSCEVRewrites.begin(); 11772 I != PredicatedSCEVRewrites.end();) { 11773 std::pair<const SCEV *, const Loop *> Entry = I->first; 11774 if (Entry.first == S) 11775 PredicatedSCEVRewrites.erase(I++); 11776 else 11777 ++I; 11778 } 11779 11780 auto RemoveSCEVFromBackedgeMap = 11781 [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 11782 for (auto I = Map.begin(), E = Map.end(); I != E;) { 11783 BackedgeTakenInfo &BEInfo = I->second; 11784 if (BEInfo.hasOperand(S, this)) { 11785 BEInfo.clear(); 11786 Map.erase(I++); 11787 } else 11788 ++I; 11789 } 11790 }; 11791 11792 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 11793 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 11794 } 11795 11796 void 11797 ScalarEvolution::getUsedLoops(const SCEV *S, 11798 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 11799 struct FindUsedLoops { 11800 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 11801 : LoopsUsed(LoopsUsed) {} 11802 SmallPtrSetImpl<const Loop *> &LoopsUsed; 11803 bool follow(const SCEV *S) { 11804 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 11805 LoopsUsed.insert(AR->getLoop()); 11806 return true; 11807 } 11808 11809 bool isDone() const { return false; } 11810 }; 11811 11812 FindUsedLoops F(LoopsUsed); 11813 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 11814 } 11815 11816 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 11817 SmallPtrSet<const Loop *, 8> LoopsUsed; 11818 getUsedLoops(S, LoopsUsed); 11819 for (auto *L : LoopsUsed) 11820 LoopUsers[L].push_back(S); 11821 } 11822 11823 void ScalarEvolution::verify() const { 11824 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 11825 ScalarEvolution SE2(F, TLI, AC, DT, LI); 11826 11827 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 11828 11829 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 11830 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 11831 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 11832 11833 const SCEV *visitConstant(const SCEVConstant *Constant) { 11834 return SE.getConstant(Constant->getAPInt()); 11835 } 11836 11837 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 11838 return SE.getUnknown(Expr->getValue()); 11839 } 11840 11841 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 11842 return SE.getCouldNotCompute(); 11843 } 11844 }; 11845 11846 SCEVMapper SCM(SE2); 11847 11848 while (!LoopStack.empty()) { 11849 auto *L = LoopStack.pop_back_val(); 11850 LoopStack.insert(LoopStack.end(), L->begin(), L->end()); 11851 11852 auto *CurBECount = SCM.visit( 11853 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 11854 auto *NewBECount = SE2.getBackedgeTakenCount(L); 11855 11856 if (CurBECount == SE2.getCouldNotCompute() || 11857 NewBECount == SE2.getCouldNotCompute()) { 11858 // NB! This situation is legal, but is very suspicious -- whatever pass 11859 // change the loop to make a trip count go from could not compute to 11860 // computable or vice-versa *should have* invalidated SCEV. However, we 11861 // choose not to assert here (for now) since we don't want false 11862 // positives. 11863 continue; 11864 } 11865 11866 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 11867 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 11868 // not propagate undef aggressively). This means we can (and do) fail 11869 // verification in cases where a transform makes the trip count of a loop 11870 // go from "undef" to "undef+1" (say). The transform is fine, since in 11871 // both cases the loop iterates "undef" times, but SCEV thinks we 11872 // increased the trip count of the loop by 1 incorrectly. 11873 continue; 11874 } 11875 11876 if (SE.getTypeSizeInBits(CurBECount->getType()) > 11877 SE.getTypeSizeInBits(NewBECount->getType())) 11878 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 11879 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 11880 SE.getTypeSizeInBits(NewBECount->getType())) 11881 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 11882 11883 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 11884 11885 // Unless VerifySCEVStrict is set, we only compare constant deltas. 11886 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 11887 dbgs() << "Trip Count for " << *L << " Changed!\n"; 11888 dbgs() << "Old: " << *CurBECount << "\n"; 11889 dbgs() << "New: " << *NewBECount << "\n"; 11890 dbgs() << "Delta: " << *Delta << "\n"; 11891 std::abort(); 11892 } 11893 } 11894 } 11895 11896 bool ScalarEvolution::invalidate( 11897 Function &F, const PreservedAnalyses &PA, 11898 FunctionAnalysisManager::Invalidator &Inv) { 11899 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 11900 // of its dependencies is invalidated. 11901 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 11902 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 11903 Inv.invalidate<AssumptionAnalysis>(F, PA) || 11904 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 11905 Inv.invalidate<LoopAnalysis>(F, PA); 11906 } 11907 11908 AnalysisKey ScalarEvolutionAnalysis::Key; 11909 11910 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 11911 FunctionAnalysisManager &AM) { 11912 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 11913 AM.getResult<AssumptionAnalysis>(F), 11914 AM.getResult<DominatorTreeAnalysis>(F), 11915 AM.getResult<LoopAnalysis>(F)); 11916 } 11917 11918 PreservedAnalyses 11919 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 11920 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 11921 return PreservedAnalyses::all(); 11922 } 11923 11924 PreservedAnalyses 11925 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 11926 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 11927 return PreservedAnalyses::all(); 11928 } 11929 11930 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 11931 "Scalar Evolution Analysis", false, true) 11932 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 11933 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 11934 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 11935 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 11936 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 11937 "Scalar Evolution Analysis", false, true) 11938 11939 char ScalarEvolutionWrapperPass::ID = 0; 11940 11941 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 11942 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 11943 } 11944 11945 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 11946 SE.reset(new ScalarEvolution( 11947 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 11948 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 11949 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 11950 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 11951 return false; 11952 } 11953 11954 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 11955 11956 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 11957 SE->print(OS); 11958 } 11959 11960 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 11961 if (!VerifySCEV) 11962 return; 11963 11964 SE->verify(); 11965 } 11966 11967 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 11968 AU.setPreservesAll(); 11969 AU.addRequiredTransitive<AssumptionCacheTracker>(); 11970 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 11971 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 11972 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 11973 } 11974 11975 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 11976 const SCEV *RHS) { 11977 FoldingSetNodeID ID; 11978 assert(LHS->getType() == RHS->getType() && 11979 "Type mismatch between LHS and RHS"); 11980 // Unique this node based on the arguments 11981 ID.AddInteger(SCEVPredicate::P_Equal); 11982 ID.AddPointer(LHS); 11983 ID.AddPointer(RHS); 11984 void *IP = nullptr; 11985 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 11986 return S; 11987 SCEVEqualPredicate *Eq = new (SCEVAllocator) 11988 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 11989 UniquePreds.InsertNode(Eq, IP); 11990 return Eq; 11991 } 11992 11993 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 11994 const SCEVAddRecExpr *AR, 11995 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 11996 FoldingSetNodeID ID; 11997 // Unique this node based on the arguments 11998 ID.AddInteger(SCEVPredicate::P_Wrap); 11999 ID.AddPointer(AR); 12000 ID.AddInteger(AddedFlags); 12001 void *IP = nullptr; 12002 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12003 return S; 12004 auto *OF = new (SCEVAllocator) 12005 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12006 UniquePreds.InsertNode(OF, IP); 12007 return OF; 12008 } 12009 12010 namespace { 12011 12012 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 12013 public: 12014 12015 /// Rewrites \p S in the context of a loop L and the SCEV predication 12016 /// infrastructure. 12017 /// 12018 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 12019 /// equivalences present in \p Pred. 12020 /// 12021 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 12022 /// \p NewPreds such that the result will be an AddRecExpr. 12023 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 12024 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12025 SCEVUnionPredicate *Pred) { 12026 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 12027 return Rewriter.visit(S); 12028 } 12029 12030 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12031 if (Pred) { 12032 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 12033 for (auto *Pred : ExprPreds) 12034 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 12035 if (IPred->getLHS() == Expr) 12036 return IPred->getRHS(); 12037 } 12038 return convertToAddRecWithPreds(Expr); 12039 } 12040 12041 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 12042 const SCEV *Operand = visit(Expr->getOperand()); 12043 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12044 if (AR && AR->getLoop() == L && AR->isAffine()) { 12045 // This couldn't be folded because the operand didn't have the nuw 12046 // flag. Add the nusw flag as an assumption that we could make. 12047 const SCEV *Step = AR->getStepRecurrence(SE); 12048 Type *Ty = Expr->getType(); 12049 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 12050 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 12051 SE.getSignExtendExpr(Step, Ty), L, 12052 AR->getNoWrapFlags()); 12053 } 12054 return SE.getZeroExtendExpr(Operand, Expr->getType()); 12055 } 12056 12057 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 12058 const SCEV *Operand = visit(Expr->getOperand()); 12059 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 12060 if (AR && AR->getLoop() == L && AR->isAffine()) { 12061 // This couldn't be folded because the operand didn't have the nsw 12062 // flag. Add the nssw flag as an assumption that we could make. 12063 const SCEV *Step = AR->getStepRecurrence(SE); 12064 Type *Ty = Expr->getType(); 12065 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 12066 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 12067 SE.getSignExtendExpr(Step, Ty), L, 12068 AR->getNoWrapFlags()); 12069 } 12070 return SE.getSignExtendExpr(Operand, Expr->getType()); 12071 } 12072 12073 private: 12074 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 12075 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 12076 SCEVUnionPredicate *Pred) 12077 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 12078 12079 bool addOverflowAssumption(const SCEVPredicate *P) { 12080 if (!NewPreds) { 12081 // Check if we've already made this assumption. 12082 return Pred && Pred->implies(P); 12083 } 12084 NewPreds->insert(P); 12085 return true; 12086 } 12087 12088 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 12089 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12090 auto *A = SE.getWrapPredicate(AR, AddedFlags); 12091 return addOverflowAssumption(A); 12092 } 12093 12094 // If \p Expr represents a PHINode, we try to see if it can be represented 12095 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 12096 // to add this predicate as a runtime overflow check, we return the AddRec. 12097 // If \p Expr does not meet these conditions (is not a PHI node, or we 12098 // couldn't create an AddRec for it, or couldn't add the predicate), we just 12099 // return \p Expr. 12100 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 12101 if (!isa<PHINode>(Expr->getValue())) 12102 return Expr; 12103 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 12104 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 12105 if (!PredicatedRewrite) 12106 return Expr; 12107 for (auto *P : PredicatedRewrite->second){ 12108 // Wrap predicates from outer loops are not supported. 12109 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 12110 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 12111 if (L != AR->getLoop()) 12112 return Expr; 12113 } 12114 if (!addOverflowAssumption(P)) 12115 return Expr; 12116 } 12117 return PredicatedRewrite->first; 12118 } 12119 12120 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 12121 SCEVUnionPredicate *Pred; 12122 const Loop *L; 12123 }; 12124 12125 } // end anonymous namespace 12126 12127 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 12128 SCEVUnionPredicate &Preds) { 12129 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 12130 } 12131 12132 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 12133 const SCEV *S, const Loop *L, 12134 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 12135 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 12136 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 12137 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 12138 12139 if (!AddRec) 12140 return nullptr; 12141 12142 // Since the transformation was successful, we can now transfer the SCEV 12143 // predicates. 12144 for (auto *P : TransformPreds) 12145 Preds.insert(P); 12146 12147 return AddRec; 12148 } 12149 12150 /// SCEV predicates 12151 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 12152 SCEVPredicateKind Kind) 12153 : FastID(ID), Kind(Kind) {} 12154 12155 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 12156 const SCEV *LHS, const SCEV *RHS) 12157 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 12158 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 12159 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 12160 } 12161 12162 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 12163 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 12164 12165 if (!Op) 12166 return false; 12167 12168 return Op->LHS == LHS && Op->RHS == RHS; 12169 } 12170 12171 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 12172 12173 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 12174 12175 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 12176 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 12177 } 12178 12179 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 12180 const SCEVAddRecExpr *AR, 12181 IncrementWrapFlags Flags) 12182 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 12183 12184 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 12185 12186 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 12187 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 12188 12189 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 12190 } 12191 12192 bool SCEVWrapPredicate::isAlwaysTrue() const { 12193 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 12194 IncrementWrapFlags IFlags = Flags; 12195 12196 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 12197 IFlags = clearFlags(IFlags, IncrementNSSW); 12198 12199 return IFlags == IncrementAnyWrap; 12200 } 12201 12202 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 12203 OS.indent(Depth) << *getExpr() << " Added Flags: "; 12204 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 12205 OS << "<nusw>"; 12206 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 12207 OS << "<nssw>"; 12208 OS << "\n"; 12209 } 12210 12211 SCEVWrapPredicate::IncrementWrapFlags 12212 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 12213 ScalarEvolution &SE) { 12214 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 12215 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 12216 12217 // We can safely transfer the NSW flag as NSSW. 12218 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 12219 ImpliedFlags = IncrementNSSW; 12220 12221 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 12222 // If the increment is positive, the SCEV NUW flag will also imply the 12223 // WrapPredicate NUSW flag. 12224 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 12225 if (Step->getValue()->getValue().isNonNegative()) 12226 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 12227 } 12228 12229 return ImpliedFlags; 12230 } 12231 12232 /// Union predicates don't get cached so create a dummy set ID for it. 12233 SCEVUnionPredicate::SCEVUnionPredicate() 12234 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 12235 12236 bool SCEVUnionPredicate::isAlwaysTrue() const { 12237 return all_of(Preds, 12238 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 12239 } 12240 12241 ArrayRef<const SCEVPredicate *> 12242 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 12243 auto I = SCEVToPreds.find(Expr); 12244 if (I == SCEVToPreds.end()) 12245 return ArrayRef<const SCEVPredicate *>(); 12246 return I->second; 12247 } 12248 12249 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 12250 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 12251 return all_of(Set->Preds, 12252 [this](const SCEVPredicate *I) { return this->implies(I); }); 12253 12254 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 12255 if (ScevPredsIt == SCEVToPreds.end()) 12256 return false; 12257 auto &SCEVPreds = ScevPredsIt->second; 12258 12259 return any_of(SCEVPreds, 12260 [N](const SCEVPredicate *I) { return I->implies(N); }); 12261 } 12262 12263 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 12264 12265 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 12266 for (auto Pred : Preds) 12267 Pred->print(OS, Depth); 12268 } 12269 12270 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 12271 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 12272 for (auto Pred : Set->Preds) 12273 add(Pred); 12274 return; 12275 } 12276 12277 if (implies(N)) 12278 return; 12279 12280 const SCEV *Key = N->getExpr(); 12281 assert(Key && "Only SCEVUnionPredicate doesn't have an " 12282 " associated expression!"); 12283 12284 SCEVToPreds[Key].push_back(N); 12285 Preds.push_back(N); 12286 } 12287 12288 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 12289 Loop &L) 12290 : SE(SE), L(L) {} 12291 12292 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 12293 const SCEV *Expr = SE.getSCEV(V); 12294 RewriteEntry &Entry = RewriteMap[Expr]; 12295 12296 // If we already have an entry and the version matches, return it. 12297 if (Entry.second && Generation == Entry.first) 12298 return Entry.second; 12299 12300 // We found an entry but it's stale. Rewrite the stale entry 12301 // according to the current predicate. 12302 if (Entry.second) 12303 Expr = Entry.second; 12304 12305 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 12306 Entry = {Generation, NewSCEV}; 12307 12308 return NewSCEV; 12309 } 12310 12311 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 12312 if (!BackedgeCount) { 12313 SCEVUnionPredicate BackedgePred; 12314 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 12315 addPredicate(BackedgePred); 12316 } 12317 return BackedgeCount; 12318 } 12319 12320 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 12321 if (Preds.implies(&Pred)) 12322 return; 12323 Preds.add(&Pred); 12324 updateGeneration(); 12325 } 12326 12327 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 12328 return Preds; 12329 } 12330 12331 void PredicatedScalarEvolution::updateGeneration() { 12332 // If the generation number wrapped recompute everything. 12333 if (++Generation == 0) { 12334 for (auto &II : RewriteMap) { 12335 const SCEV *Rewritten = II.second.second; 12336 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 12337 } 12338 } 12339 } 12340 12341 void PredicatedScalarEvolution::setNoOverflow( 12342 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12343 const SCEV *Expr = getSCEV(V); 12344 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12345 12346 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 12347 12348 // Clear the statically implied flags. 12349 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 12350 addPredicate(*SE.getWrapPredicate(AR, Flags)); 12351 12352 auto II = FlagsMap.insert({V, Flags}); 12353 if (!II.second) 12354 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 12355 } 12356 12357 bool PredicatedScalarEvolution::hasNoOverflow( 12358 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 12359 const SCEV *Expr = getSCEV(V); 12360 const auto *AR = cast<SCEVAddRecExpr>(Expr); 12361 12362 Flags = SCEVWrapPredicate::clearFlags( 12363 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 12364 12365 auto II = FlagsMap.find(V); 12366 12367 if (II != FlagsMap.end()) 12368 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 12369 12370 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 12371 } 12372 12373 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 12374 const SCEV *Expr = this->getSCEV(V); 12375 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 12376 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 12377 12378 if (!New) 12379 return nullptr; 12380 12381 for (auto *P : NewPreds) 12382 Preds.add(P); 12383 12384 updateGeneration(); 12385 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 12386 return New; 12387 } 12388 12389 PredicatedScalarEvolution::PredicatedScalarEvolution( 12390 const PredicatedScalarEvolution &Init) 12391 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 12392 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 12393 for (auto I : Init.FlagsMap) 12394 FlagsMap.insert(I); 12395 } 12396 12397 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 12398 // For each block. 12399 for (auto *BB : L.getBlocks()) 12400 for (auto &I : *BB) { 12401 if (!SE.isSCEVable(I.getType())) 12402 continue; 12403 12404 auto *Expr = SE.getSCEV(&I); 12405 auto II = RewriteMap.find(Expr); 12406 12407 if (II == RewriteMap.end()) 12408 continue; 12409 12410 // Don't print things that are not interesting. 12411 if (II->second.second == Expr) 12412 continue; 12413 12414 OS.indent(Depth) << "[PSE]" << I << ":\n"; 12415 OS.indent(Depth + 2) << *Expr << "\n"; 12416 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 12417 } 12418 } 12419 12420 // Match the mathematical pattern A - (A / B) * B, where A and B can be 12421 // arbitrary expressions. 12422 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 12423 // 4, A / B becomes X / 8). 12424 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 12425 const SCEV *&RHS) { 12426 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 12427 if (Add == nullptr || Add->getNumOperands() != 2) 12428 return false; 12429 12430 const SCEV *A = Add->getOperand(1); 12431 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 12432 12433 if (Mul == nullptr) 12434 return false; 12435 12436 const auto MatchURemWithDivisor = [&](const SCEV *B) { 12437 // (SomeExpr + (-(SomeExpr / B) * B)). 12438 if (Expr == getURemExpr(A, B)) { 12439 LHS = A; 12440 RHS = B; 12441 return true; 12442 } 12443 return false; 12444 }; 12445 12446 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 12447 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 12448 return MatchURemWithDivisor(Mul->getOperand(1)) || 12449 MatchURemWithDivisor(Mul->getOperand(2)); 12450 12451 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 12452 if (Mul->getNumOperands() == 2) 12453 return MatchURemWithDivisor(Mul->getOperand(1)) || 12454 MatchURemWithDivisor(Mul->getOperand(0)) || 12455 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 12456 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 12457 return false; 12458 } 12459