1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the implementation of the scalar evolution analysis
11 // engine, which is used primarily to analyze expressions involving induction
12 // variables in loops.
13 //
14 // There are several aspects to this library.  First is the representation of
15 // scalar expressions, which are represented as subclasses of the SCEV class.
16 // These classes are used to represent certain types of subexpressions that we
17 // can handle. We only create one SCEV of a particular shape, so
18 // pointer-comparisons for equality are legal.
19 //
20 // One important aspect of the SCEV objects is that they are never cyclic, even
21 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
22 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
23 // recurrence) then we represent it directly as a recurrence node, otherwise we
24 // represent it as a SCEVUnknown node.
25 //
26 // In addition to being able to represent expressions of various types, we also
27 // have folders that are used to build the *canonical* representation for a
28 // particular expression.  These folders are capable of using a variety of
29 // rewrite rules to simplify the expressions.
30 //
31 // Once the folders are defined, we can implement the more interesting
32 // higher-level code, such as the code that recognizes PHI nodes of various
33 // types, computes the execution count of a loop, etc.
34 //
35 // TODO: We should use these routines and value representations to implement
36 // dependence analysis!
37 //
38 //===----------------------------------------------------------------------===//
39 //
40 // There are several good references for the techniques used in this analysis.
41 //
42 //  Chains of recurrences -- a method to expedite the evaluation
43 //  of closed-form functions
44 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
45 //
46 //  On computational properties of chains of recurrences
47 //  Eugene V. Zima
48 //
49 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
50 //  Robert A. van Engelen
51 //
52 //  Efficient Symbolic Analysis for Optimizing Compilers
53 //  Robert A. van Engelen
54 //
55 //  Using the chains of recurrences algebra for data dependence testing and
56 //  induction variable substitution
57 //  MS Thesis, Johnie Birch
58 //
59 //===----------------------------------------------------------------------===//
60 
61 #include "llvm/Analysis/ScalarEvolution.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/ScopeExit.h"
65 #include "llvm/ADT/Sequence.h"
66 #include "llvm/ADT/SmallPtrSet.h"
67 #include "llvm/ADT/Statistic.h"
68 #include "llvm/Analysis/AssumptionCache.h"
69 #include "llvm/Analysis/ConstantFolding.h"
70 #include "llvm/Analysis/InstructionSimplify.h"
71 #include "llvm/Analysis/LoopInfo.h"
72 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
73 #include "llvm/Analysis/TargetLibraryInfo.h"
74 #include "llvm/Analysis/ValueTracking.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DerivedTypes.h"
79 #include "llvm/IR/Dominators.h"
80 #include "llvm/IR/GetElementPtrTypeIterator.h"
81 #include "llvm/IR/GlobalAlias.h"
82 #include "llvm/IR/GlobalVariable.h"
83 #include "llvm/IR/InstIterator.h"
84 #include "llvm/IR/Instructions.h"
85 #include "llvm/IR/LLVMContext.h"
86 #include "llvm/IR/Metadata.h"
87 #include "llvm/IR/Operator.h"
88 #include "llvm/IR/PatternMatch.h"
89 #include "llvm/Support/CommandLine.h"
90 #include "llvm/Support/Debug.h"
91 #include "llvm/Support/ErrorHandling.h"
92 #include "llvm/Support/MathExtras.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/Support/SaveAndRestore.h"
95 #include <algorithm>
96 using namespace llvm;
97 
98 #define DEBUG_TYPE "scalar-evolution"
99 
100 STATISTIC(NumArrayLenItCounts,
101           "Number of trip counts computed with array length");
102 STATISTIC(NumTripCountsComputed,
103           "Number of loops with predictable loop counts");
104 STATISTIC(NumTripCountsNotComputed,
105           "Number of loops without predictable loop counts");
106 STATISTIC(NumBruteForceTripCountsComputed,
107           "Number of loops with trip counts computed by force");
108 
109 static cl::opt<unsigned>
110 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
111                         cl::desc("Maximum number of iterations SCEV will "
112                                  "symbolically execute a constant "
113                                  "derived loop"),
114                         cl::init(100));
115 
116 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
117 static cl::opt<bool>
118 VerifySCEV("verify-scev",
119            cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
120 static cl::opt<bool>
121     VerifySCEVMap("verify-scev-maps",
122                   cl::desc("Verify no dangling value in ScalarEvolution's "
123                            "ExprValueMap (slow)"));
124 
125 static cl::opt<unsigned> MulOpsInlineThreshold(
126     "scev-mulops-inline-threshold", cl::Hidden,
127     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
128     cl::init(1000));
129 
130 static cl::opt<unsigned>
131     MaxCompareDepth("scalar-evolution-max-compare-depth", cl::Hidden,
132                     cl::desc("Maximum depth of recursive compare complexity"),
133                     cl::init(32));
134 
135 static cl::opt<unsigned> MaxConstantEvolvingDepth(
136     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
137     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
138 
139 //===----------------------------------------------------------------------===//
140 //                           SCEV class definitions
141 //===----------------------------------------------------------------------===//
142 
143 //===----------------------------------------------------------------------===//
144 // Implementation of the SCEV class.
145 //
146 
147 LLVM_DUMP_METHOD
148 void SCEV::dump() const {
149   print(dbgs());
150   dbgs() << '\n';
151 }
152 
153 void SCEV::print(raw_ostream &OS) const {
154   switch (static_cast<SCEVTypes>(getSCEVType())) {
155   case scConstant:
156     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
157     return;
158   case scTruncate: {
159     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
160     const SCEV *Op = Trunc->getOperand();
161     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
162        << *Trunc->getType() << ")";
163     return;
164   }
165   case scZeroExtend: {
166     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
167     const SCEV *Op = ZExt->getOperand();
168     OS << "(zext " << *Op->getType() << " " << *Op << " to "
169        << *ZExt->getType() << ")";
170     return;
171   }
172   case scSignExtend: {
173     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
174     const SCEV *Op = SExt->getOperand();
175     OS << "(sext " << *Op->getType() << " " << *Op << " to "
176        << *SExt->getType() << ")";
177     return;
178   }
179   case scAddRecExpr: {
180     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
181     OS << "{" << *AR->getOperand(0);
182     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
183       OS << ",+," << *AR->getOperand(i);
184     OS << "}<";
185     if (AR->hasNoUnsignedWrap())
186       OS << "nuw><";
187     if (AR->hasNoSignedWrap())
188       OS << "nsw><";
189     if (AR->hasNoSelfWrap() &&
190         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
191       OS << "nw><";
192     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
193     OS << ">";
194     return;
195   }
196   case scAddExpr:
197   case scMulExpr:
198   case scUMaxExpr:
199   case scSMaxExpr: {
200     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
201     const char *OpStr = nullptr;
202     switch (NAry->getSCEVType()) {
203     case scAddExpr: OpStr = " + "; break;
204     case scMulExpr: OpStr = " * "; break;
205     case scUMaxExpr: OpStr = " umax "; break;
206     case scSMaxExpr: OpStr = " smax "; break;
207     }
208     OS << "(";
209     for (SCEVNAryExpr::op_iterator I = NAry->op_begin(), E = NAry->op_end();
210          I != E; ++I) {
211       OS << **I;
212       if (std::next(I) != E)
213         OS << OpStr;
214     }
215     OS << ")";
216     switch (NAry->getSCEVType()) {
217     case scAddExpr:
218     case scMulExpr:
219       if (NAry->hasNoUnsignedWrap())
220         OS << "<nuw>";
221       if (NAry->hasNoSignedWrap())
222         OS << "<nsw>";
223     }
224     return;
225   }
226   case scUDivExpr: {
227     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
228     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
229     return;
230   }
231   case scUnknown: {
232     const SCEVUnknown *U = cast<SCEVUnknown>(this);
233     Type *AllocTy;
234     if (U->isSizeOf(AllocTy)) {
235       OS << "sizeof(" << *AllocTy << ")";
236       return;
237     }
238     if (U->isAlignOf(AllocTy)) {
239       OS << "alignof(" << *AllocTy << ")";
240       return;
241     }
242 
243     Type *CTy;
244     Constant *FieldNo;
245     if (U->isOffsetOf(CTy, FieldNo)) {
246       OS << "offsetof(" << *CTy << ", ";
247       FieldNo->printAsOperand(OS, false);
248       OS << ")";
249       return;
250     }
251 
252     // Otherwise just print it normally.
253     U->getValue()->printAsOperand(OS, false);
254     return;
255   }
256   case scCouldNotCompute:
257     OS << "***COULDNOTCOMPUTE***";
258     return;
259   }
260   llvm_unreachable("Unknown SCEV kind!");
261 }
262 
263 Type *SCEV::getType() const {
264   switch (static_cast<SCEVTypes>(getSCEVType())) {
265   case scConstant:
266     return cast<SCEVConstant>(this)->getType();
267   case scTruncate:
268   case scZeroExtend:
269   case scSignExtend:
270     return cast<SCEVCastExpr>(this)->getType();
271   case scAddRecExpr:
272   case scMulExpr:
273   case scUMaxExpr:
274   case scSMaxExpr:
275     return cast<SCEVNAryExpr>(this)->getType();
276   case scAddExpr:
277     return cast<SCEVAddExpr>(this)->getType();
278   case scUDivExpr:
279     return cast<SCEVUDivExpr>(this)->getType();
280   case scUnknown:
281     return cast<SCEVUnknown>(this)->getType();
282   case scCouldNotCompute:
283     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
284   }
285   llvm_unreachable("Unknown SCEV kind!");
286 }
287 
288 bool SCEV::isZero() const {
289   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
290     return SC->getValue()->isZero();
291   return false;
292 }
293 
294 bool SCEV::isOne() const {
295   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
296     return SC->getValue()->isOne();
297   return false;
298 }
299 
300 bool SCEV::isAllOnesValue() const {
301   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
302     return SC->getValue()->isAllOnesValue();
303   return false;
304 }
305 
306 bool SCEV::isNonConstantNegative() const {
307   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
308   if (!Mul) return false;
309 
310   // If there is a constant factor, it will be first.
311   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
312   if (!SC) return false;
313 
314   // Return true if the value is negative, this matches things like (-42 * V).
315   return SC->getAPInt().isNegative();
316 }
317 
318 SCEVCouldNotCompute::SCEVCouldNotCompute() :
319   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute) {}
320 
321 bool SCEVCouldNotCompute::classof(const SCEV *S) {
322   return S->getSCEVType() == scCouldNotCompute;
323 }
324 
325 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
326   FoldingSetNodeID ID;
327   ID.AddInteger(scConstant);
328   ID.AddPointer(V);
329   void *IP = nullptr;
330   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
331   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
332   UniqueSCEVs.InsertNode(S, IP);
333   return S;
334 }
335 
336 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
337   return getConstant(ConstantInt::get(getContext(), Val));
338 }
339 
340 const SCEV *
341 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
342   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
343   return getConstant(ConstantInt::get(ITy, V, isSigned));
344 }
345 
346 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID,
347                            unsigned SCEVTy, const SCEV *op, Type *ty)
348   : SCEV(ID, SCEVTy), Op(op), Ty(ty) {}
349 
350 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
351                                    const SCEV *op, Type *ty)
352   : SCEVCastExpr(ID, scTruncate, op, ty) {
353   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
354          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
355          "Cannot truncate non-integer value!");
356 }
357 
358 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
359                                        const SCEV *op, Type *ty)
360   : SCEVCastExpr(ID, scZeroExtend, op, ty) {
361   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
362          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
363          "Cannot zero extend non-integer value!");
364 }
365 
366 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
367                                        const SCEV *op, Type *ty)
368   : SCEVCastExpr(ID, scSignExtend, op, ty) {
369   assert((Op->getType()->isIntegerTy() || Op->getType()->isPointerTy()) &&
370          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
371          "Cannot sign extend non-integer value!");
372 }
373 
374 void SCEVUnknown::deleted() {
375   // Clear this SCEVUnknown from various maps.
376   SE->forgetMemoizedResults(this);
377 
378   // Remove this SCEVUnknown from the uniquing map.
379   SE->UniqueSCEVs.RemoveNode(this);
380 
381   // Release the value.
382   setValPtr(nullptr);
383 }
384 
385 void SCEVUnknown::allUsesReplacedWith(Value *New) {
386   // Clear this SCEVUnknown from various maps.
387   SE->forgetMemoizedResults(this);
388 
389   // Remove this SCEVUnknown from the uniquing map.
390   SE->UniqueSCEVs.RemoveNode(this);
391 
392   // Update this SCEVUnknown to point to the new value. This is needed
393   // because there may still be outstanding SCEVs which still point to
394   // this SCEVUnknown.
395   setValPtr(New);
396 }
397 
398 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
399   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
400     if (VCE->getOpcode() == Instruction::PtrToInt)
401       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
402         if (CE->getOpcode() == Instruction::GetElementPtr &&
403             CE->getOperand(0)->isNullValue() &&
404             CE->getNumOperands() == 2)
405           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
406             if (CI->isOne()) {
407               AllocTy = cast<PointerType>(CE->getOperand(0)->getType())
408                                  ->getElementType();
409               return true;
410             }
411 
412   return false;
413 }
414 
415 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
416   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
417     if (VCE->getOpcode() == Instruction::PtrToInt)
418       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
419         if (CE->getOpcode() == Instruction::GetElementPtr &&
420             CE->getOperand(0)->isNullValue()) {
421           Type *Ty =
422             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
423           if (StructType *STy = dyn_cast<StructType>(Ty))
424             if (!STy->isPacked() &&
425                 CE->getNumOperands() == 3 &&
426                 CE->getOperand(1)->isNullValue()) {
427               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
428                 if (CI->isOne() &&
429                     STy->getNumElements() == 2 &&
430                     STy->getElementType(0)->isIntegerTy(1)) {
431                   AllocTy = STy->getElementType(1);
432                   return true;
433                 }
434             }
435         }
436 
437   return false;
438 }
439 
440 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
441   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
442     if (VCE->getOpcode() == Instruction::PtrToInt)
443       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
444         if (CE->getOpcode() == Instruction::GetElementPtr &&
445             CE->getNumOperands() == 3 &&
446             CE->getOperand(0)->isNullValue() &&
447             CE->getOperand(1)->isNullValue()) {
448           Type *Ty =
449             cast<PointerType>(CE->getOperand(0)->getType())->getElementType();
450           // Ignore vector types here so that ScalarEvolutionExpander doesn't
451           // emit getelementptrs that index into vectors.
452           if (Ty->isStructTy() || Ty->isArrayTy()) {
453             CTy = Ty;
454             FieldNo = CE->getOperand(2);
455             return true;
456           }
457         }
458 
459   return false;
460 }
461 
462 //===----------------------------------------------------------------------===//
463 //                               SCEV Utilities
464 //===----------------------------------------------------------------------===//
465 
466 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
467 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
468 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
469 /// have been previously deemed to be "equally complex" by this routine.  It is
470 /// intended to avoid exponential time complexity in cases like:
471 ///
472 ///   %a = f(%x, %y)
473 ///   %b = f(%a, %a)
474 ///   %c = f(%b, %b)
475 ///
476 ///   %d = f(%x, %y)
477 ///   %e = f(%d, %d)
478 ///   %f = f(%e, %e)
479 ///
480 ///   CompareValueComplexity(%f, %c)
481 ///
482 /// Since we do not continue running this routine on expression trees once we
483 /// have seen unequal values, there is no need to track them in the cache.
484 static int
485 CompareValueComplexity(SmallSet<std::pair<Value *, Value *>, 8> &EqCache,
486                        const LoopInfo *const LI, Value *LV, Value *RV,
487                        unsigned Depth) {
488   if (Depth > MaxCompareDepth || EqCache.count({LV, RV}))
489     return 0;
490 
491   // Order pointer values after integer values. This helps SCEVExpander form
492   // GEPs.
493   bool LIsPointer = LV->getType()->isPointerTy(),
494        RIsPointer = RV->getType()->isPointerTy();
495   if (LIsPointer != RIsPointer)
496     return (int)LIsPointer - (int)RIsPointer;
497 
498   // Compare getValueID values.
499   unsigned LID = LV->getValueID(), RID = RV->getValueID();
500   if (LID != RID)
501     return (int)LID - (int)RID;
502 
503   // Sort arguments by their position.
504   if (const auto *LA = dyn_cast<Argument>(LV)) {
505     const auto *RA = cast<Argument>(RV);
506     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
507     return (int)LArgNo - (int)RArgNo;
508   }
509 
510   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
511     const auto *RGV = cast<GlobalValue>(RV);
512 
513     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
514       auto LT = GV->getLinkage();
515       return !(GlobalValue::isPrivateLinkage(LT) ||
516                GlobalValue::isInternalLinkage(LT));
517     };
518 
519     // Use the names to distinguish the two values, but only if the
520     // names are semantically important.
521     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
522       return LGV->getName().compare(RGV->getName());
523   }
524 
525   // For instructions, compare their loop depth, and their operand count.  This
526   // is pretty loose.
527   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
528     const auto *RInst = cast<Instruction>(RV);
529 
530     // Compare loop depths.
531     const BasicBlock *LParent = LInst->getParent(),
532                      *RParent = RInst->getParent();
533     if (LParent != RParent) {
534       unsigned LDepth = LI->getLoopDepth(LParent),
535                RDepth = LI->getLoopDepth(RParent);
536       if (LDepth != RDepth)
537         return (int)LDepth - (int)RDepth;
538     }
539 
540     // Compare the number of operands.
541     unsigned LNumOps = LInst->getNumOperands(),
542              RNumOps = RInst->getNumOperands();
543     if (LNumOps != RNumOps)
544       return (int)LNumOps - (int)RNumOps;
545 
546     for (unsigned Idx : seq(0u, LNumOps)) {
547       int Result =
548           CompareValueComplexity(EqCache, LI, LInst->getOperand(Idx),
549                                  RInst->getOperand(Idx), Depth + 1);
550       if (Result != 0)
551         return Result;
552     }
553   }
554 
555   EqCache.insert({LV, RV});
556   return 0;
557 }
558 
559 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
560 // than RHS, respectively. A three-way result allows recursive comparisons to be
561 // more efficient.
562 static int CompareSCEVComplexity(
563     SmallSet<std::pair<const SCEV *, const SCEV *>, 8> &EqCacheSCEV,
564     const LoopInfo *const LI, const SCEV *LHS, const SCEV *RHS,
565     unsigned Depth = 0) {
566   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
567   if (LHS == RHS)
568     return 0;
569 
570   // Primarily, sort the SCEVs by their getSCEVType().
571   unsigned LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
572   if (LType != RType)
573     return (int)LType - (int)RType;
574 
575   if (Depth > MaxCompareDepth || EqCacheSCEV.count({LHS, RHS}))
576     return 0;
577   // Aside from the getSCEVType() ordering, the particular ordering
578   // isn't very important except that it's beneficial to be consistent,
579   // so that (a + b) and (b + a) don't end up as different expressions.
580   switch (static_cast<SCEVTypes>(LType)) {
581   case scUnknown: {
582     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
583     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
584 
585     SmallSet<std::pair<Value *, Value *>, 8> EqCache;
586     int X = CompareValueComplexity(EqCache, LI, LU->getValue(), RU->getValue(),
587                                    Depth + 1);
588     if (X == 0)
589       EqCacheSCEV.insert({LHS, RHS});
590     return X;
591   }
592 
593   case scConstant: {
594     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
595     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
596 
597     // Compare constant values.
598     const APInt &LA = LC->getAPInt();
599     const APInt &RA = RC->getAPInt();
600     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
601     if (LBitWidth != RBitWidth)
602       return (int)LBitWidth - (int)RBitWidth;
603     return LA.ult(RA) ? -1 : 1;
604   }
605 
606   case scAddRecExpr: {
607     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
608     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
609 
610     // Compare addrec loop depths.
611     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
612     if (LLoop != RLoop) {
613       unsigned LDepth = LLoop->getLoopDepth(), RDepth = RLoop->getLoopDepth();
614       if (LDepth != RDepth)
615         return (int)LDepth - (int)RDepth;
616     }
617 
618     // Addrec complexity grows with operand count.
619     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
620     if (LNumOps != RNumOps)
621       return (int)LNumOps - (int)RNumOps;
622 
623     // Lexicographically compare.
624     for (unsigned i = 0; i != LNumOps; ++i) {
625       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LA->getOperand(i),
626                                     RA->getOperand(i), Depth + 1);
627       if (X != 0)
628         return X;
629     }
630     EqCacheSCEV.insert({LHS, RHS});
631     return 0;
632   }
633 
634   case scAddExpr:
635   case scMulExpr:
636   case scSMaxExpr:
637   case scUMaxExpr: {
638     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
639     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
640 
641     // Lexicographically compare n-ary expressions.
642     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
643     if (LNumOps != RNumOps)
644       return (int)LNumOps - (int)RNumOps;
645 
646     for (unsigned i = 0; i != LNumOps; ++i) {
647       if (i >= RNumOps)
648         return 1;
649       int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(i),
650                                     RC->getOperand(i), Depth + 1);
651       if (X != 0)
652         return X;
653     }
654     EqCacheSCEV.insert({LHS, RHS});
655     return 0;
656   }
657 
658   case scUDivExpr: {
659     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
660     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
661 
662     // Lexicographically compare udiv expressions.
663     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getLHS(), RC->getLHS(),
664                                   Depth + 1);
665     if (X != 0)
666       return X;
667     X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getRHS(), RC->getRHS(),
668                               Depth + 1);
669     if (X == 0)
670       EqCacheSCEV.insert({LHS, RHS});
671     return X;
672   }
673 
674   case scTruncate:
675   case scZeroExtend:
676   case scSignExtend: {
677     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
678     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
679 
680     // Compare cast expressions by operand.
681     int X = CompareSCEVComplexity(EqCacheSCEV, LI, LC->getOperand(),
682                                   RC->getOperand(), Depth + 1);
683     if (X == 0)
684       EqCacheSCEV.insert({LHS, RHS});
685     return X;
686   }
687 
688   case scCouldNotCompute:
689     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
690   }
691   llvm_unreachable("Unknown SCEV kind!");
692 }
693 
694 /// Given a list of SCEV objects, order them by their complexity, and group
695 /// objects of the same complexity together by value.  When this routine is
696 /// finished, we know that any duplicates in the vector are consecutive and that
697 /// complexity is monotonically increasing.
698 ///
699 /// Note that we go take special precautions to ensure that we get deterministic
700 /// results from this routine.  In other words, we don't want the results of
701 /// this to depend on where the addresses of various SCEV objects happened to
702 /// land in memory.
703 ///
704 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
705                               LoopInfo *LI) {
706   if (Ops.size() < 2) return;  // Noop
707 
708   SmallSet<std::pair<const SCEV *, const SCEV *>, 8> EqCache;
709   if (Ops.size() == 2) {
710     // This is the common case, which also happens to be trivially simple.
711     // Special case it.
712     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
713     if (CompareSCEVComplexity(EqCache, LI, RHS, LHS) < 0)
714       std::swap(LHS, RHS);
715     return;
716   }
717 
718   // Do the rough sort by complexity.
719   std::stable_sort(Ops.begin(), Ops.end(),
720                    [&EqCache, LI](const SCEV *LHS, const SCEV *RHS) {
721                      return CompareSCEVComplexity(EqCache, LI, LHS, RHS) < 0;
722                    });
723 
724   // Now that we are sorted by complexity, group elements of the same
725   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
726   // be extremely short in practice.  Note that we take this approach because we
727   // do not want to depend on the addresses of the objects we are grouping.
728   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
729     const SCEV *S = Ops[i];
730     unsigned Complexity = S->getSCEVType();
731 
732     // If there are any objects of the same complexity and same value as this
733     // one, group them.
734     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
735       if (Ops[j] == S) { // Found a duplicate.
736         // Move it to immediately after i'th element.
737         std::swap(Ops[i+1], Ops[j]);
738         ++i;   // no need to rescan it.
739         if (i == e-2) return;  // Done!
740       }
741     }
742   }
743 }
744 
745 // Returns the size of the SCEV S.
746 static inline int sizeOfSCEV(const SCEV *S) {
747   struct FindSCEVSize {
748     int Size;
749     FindSCEVSize() : Size(0) {}
750 
751     bool follow(const SCEV *S) {
752       ++Size;
753       // Keep looking at all operands of S.
754       return true;
755     }
756     bool isDone() const {
757       return false;
758     }
759   };
760 
761   FindSCEVSize F;
762   SCEVTraversal<FindSCEVSize> ST(F);
763   ST.visitAll(S);
764   return F.Size;
765 }
766 
767 namespace {
768 
769 struct SCEVDivision : public SCEVVisitor<SCEVDivision, void> {
770 public:
771   // Computes the Quotient and Remainder of the division of Numerator by
772   // Denominator.
773   static void divide(ScalarEvolution &SE, const SCEV *Numerator,
774                      const SCEV *Denominator, const SCEV **Quotient,
775                      const SCEV **Remainder) {
776     assert(Numerator && Denominator && "Uninitialized SCEV");
777 
778     SCEVDivision D(SE, Numerator, Denominator);
779 
780     // Check for the trivial case here to avoid having to check for it in the
781     // rest of the code.
782     if (Numerator == Denominator) {
783       *Quotient = D.One;
784       *Remainder = D.Zero;
785       return;
786     }
787 
788     if (Numerator->isZero()) {
789       *Quotient = D.Zero;
790       *Remainder = D.Zero;
791       return;
792     }
793 
794     // A simple case when N/1. The quotient is N.
795     if (Denominator->isOne()) {
796       *Quotient = Numerator;
797       *Remainder = D.Zero;
798       return;
799     }
800 
801     // Split the Denominator when it is a product.
802     if (const SCEVMulExpr *T = dyn_cast<SCEVMulExpr>(Denominator)) {
803       const SCEV *Q, *R;
804       *Quotient = Numerator;
805       for (const SCEV *Op : T->operands()) {
806         divide(SE, *Quotient, Op, &Q, &R);
807         *Quotient = Q;
808 
809         // Bail out when the Numerator is not divisible by one of the terms of
810         // the Denominator.
811         if (!R->isZero()) {
812           *Quotient = D.Zero;
813           *Remainder = Numerator;
814           return;
815         }
816       }
817       *Remainder = D.Zero;
818       return;
819     }
820 
821     D.visit(Numerator);
822     *Quotient = D.Quotient;
823     *Remainder = D.Remainder;
824   }
825 
826   // Except in the trivial case described above, we do not know how to divide
827   // Expr by Denominator for the following functions with empty implementation.
828   void visitTruncateExpr(const SCEVTruncateExpr *Numerator) {}
829   void visitZeroExtendExpr(const SCEVZeroExtendExpr *Numerator) {}
830   void visitSignExtendExpr(const SCEVSignExtendExpr *Numerator) {}
831   void visitUDivExpr(const SCEVUDivExpr *Numerator) {}
832   void visitSMaxExpr(const SCEVSMaxExpr *Numerator) {}
833   void visitUMaxExpr(const SCEVUMaxExpr *Numerator) {}
834   void visitUnknown(const SCEVUnknown *Numerator) {}
835   void visitCouldNotCompute(const SCEVCouldNotCompute *Numerator) {}
836 
837   void visitConstant(const SCEVConstant *Numerator) {
838     if (const SCEVConstant *D = dyn_cast<SCEVConstant>(Denominator)) {
839       APInt NumeratorVal = Numerator->getAPInt();
840       APInt DenominatorVal = D->getAPInt();
841       uint32_t NumeratorBW = NumeratorVal.getBitWidth();
842       uint32_t DenominatorBW = DenominatorVal.getBitWidth();
843 
844       if (NumeratorBW > DenominatorBW)
845         DenominatorVal = DenominatorVal.sext(NumeratorBW);
846       else if (NumeratorBW < DenominatorBW)
847         NumeratorVal = NumeratorVal.sext(DenominatorBW);
848 
849       APInt QuotientVal(NumeratorVal.getBitWidth(), 0);
850       APInt RemainderVal(NumeratorVal.getBitWidth(), 0);
851       APInt::sdivrem(NumeratorVal, DenominatorVal, QuotientVal, RemainderVal);
852       Quotient = SE.getConstant(QuotientVal);
853       Remainder = SE.getConstant(RemainderVal);
854       return;
855     }
856   }
857 
858   void visitAddRecExpr(const SCEVAddRecExpr *Numerator) {
859     const SCEV *StartQ, *StartR, *StepQ, *StepR;
860     if (!Numerator->isAffine())
861       return cannotDivide(Numerator);
862     divide(SE, Numerator->getStart(), Denominator, &StartQ, &StartR);
863     divide(SE, Numerator->getStepRecurrence(SE), Denominator, &StepQ, &StepR);
864     // Bail out if the types do not match.
865     Type *Ty = Denominator->getType();
866     if (Ty != StartQ->getType() || Ty != StartR->getType() ||
867         Ty != StepQ->getType() || Ty != StepR->getType())
868       return cannotDivide(Numerator);
869     Quotient = SE.getAddRecExpr(StartQ, StepQ, Numerator->getLoop(),
870                                 Numerator->getNoWrapFlags());
871     Remainder = SE.getAddRecExpr(StartR, StepR, Numerator->getLoop(),
872                                  Numerator->getNoWrapFlags());
873   }
874 
875   void visitAddExpr(const SCEVAddExpr *Numerator) {
876     SmallVector<const SCEV *, 2> Qs, Rs;
877     Type *Ty = Denominator->getType();
878 
879     for (const SCEV *Op : Numerator->operands()) {
880       const SCEV *Q, *R;
881       divide(SE, Op, Denominator, &Q, &R);
882 
883       // Bail out if types do not match.
884       if (Ty != Q->getType() || Ty != R->getType())
885         return cannotDivide(Numerator);
886 
887       Qs.push_back(Q);
888       Rs.push_back(R);
889     }
890 
891     if (Qs.size() == 1) {
892       Quotient = Qs[0];
893       Remainder = Rs[0];
894       return;
895     }
896 
897     Quotient = SE.getAddExpr(Qs);
898     Remainder = SE.getAddExpr(Rs);
899   }
900 
901   void visitMulExpr(const SCEVMulExpr *Numerator) {
902     SmallVector<const SCEV *, 2> Qs;
903     Type *Ty = Denominator->getType();
904 
905     bool FoundDenominatorTerm = false;
906     for (const SCEV *Op : Numerator->operands()) {
907       // Bail out if types do not match.
908       if (Ty != Op->getType())
909         return cannotDivide(Numerator);
910 
911       if (FoundDenominatorTerm) {
912         Qs.push_back(Op);
913         continue;
914       }
915 
916       // Check whether Denominator divides one of the product operands.
917       const SCEV *Q, *R;
918       divide(SE, Op, Denominator, &Q, &R);
919       if (!R->isZero()) {
920         Qs.push_back(Op);
921         continue;
922       }
923 
924       // Bail out if types do not match.
925       if (Ty != Q->getType())
926         return cannotDivide(Numerator);
927 
928       FoundDenominatorTerm = true;
929       Qs.push_back(Q);
930     }
931 
932     if (FoundDenominatorTerm) {
933       Remainder = Zero;
934       if (Qs.size() == 1)
935         Quotient = Qs[0];
936       else
937         Quotient = SE.getMulExpr(Qs);
938       return;
939     }
940 
941     if (!isa<SCEVUnknown>(Denominator))
942       return cannotDivide(Numerator);
943 
944     // The Remainder is obtained by replacing Denominator by 0 in Numerator.
945     ValueToValueMap RewriteMap;
946     RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
947         cast<SCEVConstant>(Zero)->getValue();
948     Remainder = SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
949 
950     if (Remainder->isZero()) {
951       // The Quotient is obtained by replacing Denominator by 1 in Numerator.
952       RewriteMap[cast<SCEVUnknown>(Denominator)->getValue()] =
953           cast<SCEVConstant>(One)->getValue();
954       Quotient =
955           SCEVParameterRewriter::rewrite(Numerator, SE, RewriteMap, true);
956       return;
957     }
958 
959     // Quotient is (Numerator - Remainder) divided by Denominator.
960     const SCEV *Q, *R;
961     const SCEV *Diff = SE.getMinusSCEV(Numerator, Remainder);
962     // This SCEV does not seem to simplify: fail the division here.
963     if (sizeOfSCEV(Diff) > sizeOfSCEV(Numerator))
964       return cannotDivide(Numerator);
965     divide(SE, Diff, Denominator, &Q, &R);
966     if (R != Zero)
967       return cannotDivide(Numerator);
968     Quotient = Q;
969   }
970 
971 private:
972   SCEVDivision(ScalarEvolution &S, const SCEV *Numerator,
973                const SCEV *Denominator)
974       : SE(S), Denominator(Denominator) {
975     Zero = SE.getZero(Denominator->getType());
976     One = SE.getOne(Denominator->getType());
977 
978     // We generally do not know how to divide Expr by Denominator. We
979     // initialize the division to a "cannot divide" state to simplify the rest
980     // of the code.
981     cannotDivide(Numerator);
982   }
983 
984   // Convenience function for giving up on the division. We set the quotient to
985   // be equal to zero and the remainder to be equal to the numerator.
986   void cannotDivide(const SCEV *Numerator) {
987     Quotient = Zero;
988     Remainder = Numerator;
989   }
990 
991   ScalarEvolution &SE;
992   const SCEV *Denominator, *Quotient, *Remainder, *Zero, *One;
993 };
994 
995 }
996 
997 //===----------------------------------------------------------------------===//
998 //                      Simple SCEV method implementations
999 //===----------------------------------------------------------------------===//
1000 
1001 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
1002 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
1003                                        ScalarEvolution &SE,
1004                                        Type *ResultTy) {
1005   // Handle the simplest case efficiently.
1006   if (K == 1)
1007     return SE.getTruncateOrZeroExtend(It, ResultTy);
1008 
1009   // We are using the following formula for BC(It, K):
1010   //
1011   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
1012   //
1013   // Suppose, W is the bitwidth of the return value.  We must be prepared for
1014   // overflow.  Hence, we must assure that the result of our computation is
1015   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
1016   // safe in modular arithmetic.
1017   //
1018   // However, this code doesn't use exactly that formula; the formula it uses
1019   // is something like the following, where T is the number of factors of 2 in
1020   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
1021   // exponentiation:
1022   //
1023   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
1024   //
1025   // This formula is trivially equivalent to the previous formula.  However,
1026   // this formula can be implemented much more efficiently.  The trick is that
1027   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
1028   // arithmetic.  To do exact division in modular arithmetic, all we have
1029   // to do is multiply by the inverse.  Therefore, this step can be done at
1030   // width W.
1031   //
1032   // The next issue is how to safely do the division by 2^T.  The way this
1033   // is done is by doing the multiplication step at a width of at least W + T
1034   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
1035   // when we perform the division by 2^T (which is equivalent to a right shift
1036   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
1037   // truncated out after the division by 2^T.
1038   //
1039   // In comparison to just directly using the first formula, this technique
1040   // is much more efficient; using the first formula requires W * K bits,
1041   // but this formula less than W + K bits. Also, the first formula requires
1042   // a division step, whereas this formula only requires multiplies and shifts.
1043   //
1044   // It doesn't matter whether the subtraction step is done in the calculation
1045   // width or the input iteration count's width; if the subtraction overflows,
1046   // the result must be zero anyway.  We prefer here to do it in the width of
1047   // the induction variable because it helps a lot for certain cases; CodeGen
1048   // isn't smart enough to ignore the overflow, which leads to much less
1049   // efficient code if the width of the subtraction is wider than the native
1050   // register width.
1051   //
1052   // (It's possible to not widen at all by pulling out factors of 2 before
1053   // the multiplication; for example, K=2 can be calculated as
1054   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
1055   // extra arithmetic, so it's not an obvious win, and it gets
1056   // much more complicated for K > 3.)
1057 
1058   // Protection from insane SCEVs; this bound is conservative,
1059   // but it probably doesn't matter.
1060   if (K > 1000)
1061     return SE.getCouldNotCompute();
1062 
1063   unsigned W = SE.getTypeSizeInBits(ResultTy);
1064 
1065   // Calculate K! / 2^T and T; we divide out the factors of two before
1066   // multiplying for calculating K! / 2^T to avoid overflow.
1067   // Other overflow doesn't matter because we only care about the bottom
1068   // W bits of the result.
1069   APInt OddFactorial(W, 1);
1070   unsigned T = 1;
1071   for (unsigned i = 3; i <= K; ++i) {
1072     APInt Mult(W, i);
1073     unsigned TwoFactors = Mult.countTrailingZeros();
1074     T += TwoFactors;
1075     Mult = Mult.lshr(TwoFactors);
1076     OddFactorial *= Mult;
1077   }
1078 
1079   // We need at least W + T bits for the multiplication step
1080   unsigned CalculationBits = W + T;
1081 
1082   // Calculate 2^T, at width T+W.
1083   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
1084 
1085   // Calculate the multiplicative inverse of K! / 2^T;
1086   // this multiplication factor will perform the exact division by
1087   // K! / 2^T.
1088   APInt Mod = APInt::getSignedMinValue(W+1);
1089   APInt MultiplyFactor = OddFactorial.zext(W+1);
1090   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
1091   MultiplyFactor = MultiplyFactor.trunc(W);
1092 
1093   // Calculate the product, at width T+W
1094   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1095                                                       CalculationBits);
1096   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1097   for (unsigned i = 1; i != K; ++i) {
1098     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1099     Dividend = SE.getMulExpr(Dividend,
1100                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1101   }
1102 
1103   // Divide by 2^T
1104   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1105 
1106   // Truncate the result, and divide by K! / 2^T.
1107 
1108   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1109                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1110 }
1111 
1112 /// Return the value of this chain of recurrences at the specified iteration
1113 /// number.  We can evaluate this recurrence by multiplying each element in the
1114 /// chain by the binomial coefficient corresponding to it.  In other words, we
1115 /// can evaluate {A,+,B,+,C,+,D} as:
1116 ///
1117 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1118 ///
1119 /// where BC(It, k) stands for binomial coefficient.
1120 ///
1121 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1122                                                 ScalarEvolution &SE) const {
1123   const SCEV *Result = getStart();
1124   for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1125     // The computation is correct in the face of overflow provided that the
1126     // multiplication is performed _after_ the evaluation of the binomial
1127     // coefficient.
1128     const SCEV *Coeff = BinomialCoefficient(It, i, SE, getType());
1129     if (isa<SCEVCouldNotCompute>(Coeff))
1130       return Coeff;
1131 
1132     Result = SE.getAddExpr(Result, SE.getMulExpr(getOperand(i), Coeff));
1133   }
1134   return Result;
1135 }
1136 
1137 //===----------------------------------------------------------------------===//
1138 //                    SCEV Expression folder implementations
1139 //===----------------------------------------------------------------------===//
1140 
1141 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op,
1142                                              Type *Ty) {
1143   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1144          "This is not a truncating conversion!");
1145   assert(isSCEVable(Ty) &&
1146          "This is not a conversion to a SCEVable type!");
1147   Ty = getEffectiveSCEVType(Ty);
1148 
1149   FoldingSetNodeID ID;
1150   ID.AddInteger(scTruncate);
1151   ID.AddPointer(Op);
1152   ID.AddPointer(Ty);
1153   void *IP = nullptr;
1154   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1155 
1156   // Fold if the operand is constant.
1157   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1158     return getConstant(
1159       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1160 
1161   // trunc(trunc(x)) --> trunc(x)
1162   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1163     return getTruncateExpr(ST->getOperand(), Ty);
1164 
1165   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1166   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1167     return getTruncateOrSignExtend(SS->getOperand(), Ty);
1168 
1169   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1170   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1171     return getTruncateOrZeroExtend(SZ->getOperand(), Ty);
1172 
1173   // trunc(x1+x2+...+xN) --> trunc(x1)+trunc(x2)+...+trunc(xN) if we can
1174   // eliminate all the truncates, or we replace other casts with truncates.
1175   if (const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Op)) {
1176     SmallVector<const SCEV *, 4> Operands;
1177     bool hasTrunc = false;
1178     for (unsigned i = 0, e = SA->getNumOperands(); i != e && !hasTrunc; ++i) {
1179       const SCEV *S = getTruncateExpr(SA->getOperand(i), Ty);
1180       if (!isa<SCEVCastExpr>(SA->getOperand(i)))
1181         hasTrunc = isa<SCEVTruncateExpr>(S);
1182       Operands.push_back(S);
1183     }
1184     if (!hasTrunc)
1185       return getAddExpr(Operands);
1186     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1187   }
1188 
1189   // trunc(x1*x2*...*xN) --> trunc(x1)*trunc(x2)*...*trunc(xN) if we can
1190   // eliminate all the truncates, or we replace other casts with truncates.
1191   if (const SCEVMulExpr *SM = dyn_cast<SCEVMulExpr>(Op)) {
1192     SmallVector<const SCEV *, 4> Operands;
1193     bool hasTrunc = false;
1194     for (unsigned i = 0, e = SM->getNumOperands(); i != e && !hasTrunc; ++i) {
1195       const SCEV *S = getTruncateExpr(SM->getOperand(i), Ty);
1196       if (!isa<SCEVCastExpr>(SM->getOperand(i)))
1197         hasTrunc = isa<SCEVTruncateExpr>(S);
1198       Operands.push_back(S);
1199     }
1200     if (!hasTrunc)
1201       return getMulExpr(Operands);
1202     UniqueSCEVs.FindNodeOrInsertPos(ID, IP);  // Mutates IP, returns NULL.
1203   }
1204 
1205   // If the input value is a chrec scev, truncate the chrec's operands.
1206   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1207     SmallVector<const SCEV *, 4> Operands;
1208     for (const SCEV *Op : AddRec->operands())
1209       Operands.push_back(getTruncateExpr(Op, Ty));
1210     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1211   }
1212 
1213   // The cast wasn't folded; create an explicit cast node. We can reuse
1214   // the existing insert position since if we get here, we won't have
1215   // made any changes which would invalidate it.
1216   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1217                                                  Op, Ty);
1218   UniqueSCEVs.InsertNode(S, IP);
1219   return S;
1220 }
1221 
1222 // Get the limit of a recurrence such that incrementing by Step cannot cause
1223 // signed overflow as long as the value of the recurrence within the
1224 // loop does not exceed this limit before incrementing.
1225 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1226                                                  ICmpInst::Predicate *Pred,
1227                                                  ScalarEvolution *SE) {
1228   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1229   if (SE->isKnownPositive(Step)) {
1230     *Pred = ICmpInst::ICMP_SLT;
1231     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1232                            SE->getSignedRange(Step).getSignedMax());
1233   }
1234   if (SE->isKnownNegative(Step)) {
1235     *Pred = ICmpInst::ICMP_SGT;
1236     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1237                            SE->getSignedRange(Step).getSignedMin());
1238   }
1239   return nullptr;
1240 }
1241 
1242 // Get the limit of a recurrence such that incrementing by Step cannot cause
1243 // unsigned overflow as long as the value of the recurrence within the loop does
1244 // not exceed this limit before incrementing.
1245 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1246                                                    ICmpInst::Predicate *Pred,
1247                                                    ScalarEvolution *SE) {
1248   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1249   *Pred = ICmpInst::ICMP_ULT;
1250 
1251   return SE->getConstant(APInt::getMinValue(BitWidth) -
1252                          SE->getUnsignedRange(Step).getUnsignedMax());
1253 }
1254 
1255 namespace {
1256 
1257 struct ExtendOpTraitsBase {
1258   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *);
1259 };
1260 
1261 // Used to make code generic over signed and unsigned overflow.
1262 template <typename ExtendOp> struct ExtendOpTraits {
1263   // Members present:
1264   //
1265   // static const SCEV::NoWrapFlags WrapType;
1266   //
1267   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1268   //
1269   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1270   //                                           ICmpInst::Predicate *Pred,
1271   //                                           ScalarEvolution *SE);
1272 };
1273 
1274 template <>
1275 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1276   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1277 
1278   static const GetExtendExprTy GetExtendExpr;
1279 
1280   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1281                                              ICmpInst::Predicate *Pred,
1282                                              ScalarEvolution *SE) {
1283     return getSignedOverflowLimitForStep(Step, Pred, SE);
1284   }
1285 };
1286 
1287 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1288     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1289 
1290 template <>
1291 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1292   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1293 
1294   static const GetExtendExprTy GetExtendExpr;
1295 
1296   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1297                                              ICmpInst::Predicate *Pred,
1298                                              ScalarEvolution *SE) {
1299     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1300   }
1301 };
1302 
1303 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1304     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1305 }
1306 
1307 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1308 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1309 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1310 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1311 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1312 // expression "Step + sext/zext(PreIncAR)" is congruent with
1313 // "sext/zext(PostIncAR)"
1314 template <typename ExtendOpTy>
1315 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1316                                         ScalarEvolution *SE) {
1317   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1318   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1319 
1320   const Loop *L = AR->getLoop();
1321   const SCEV *Start = AR->getStart();
1322   const SCEV *Step = AR->getStepRecurrence(*SE);
1323 
1324   // Check for a simple looking step prior to loop entry.
1325   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1326   if (!SA)
1327     return nullptr;
1328 
1329   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1330   // subtraction is expensive. For this purpose, perform a quick and dirty
1331   // difference, by checking for Step in the operand list.
1332   SmallVector<const SCEV *, 4> DiffOps;
1333   for (const SCEV *Op : SA->operands())
1334     if (Op != Step)
1335       DiffOps.push_back(Op);
1336 
1337   if (DiffOps.size() == SA->getNumOperands())
1338     return nullptr;
1339 
1340   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1341   // `Step`:
1342 
1343   // 1. NSW/NUW flags on the step increment.
1344   auto PreStartFlags =
1345     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1346   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1347   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1348       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1349 
1350   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1351   // "S+X does not sign/unsign-overflow".
1352   //
1353 
1354   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1355   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1356       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1357     return PreStart;
1358 
1359   // 2. Direct overflow check on the step operation's expression.
1360   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1361   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1362   const SCEV *OperandExtendedStart =
1363       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy),
1364                      (SE->*GetExtendExpr)(Step, WideTy));
1365   if ((SE->*GetExtendExpr)(Start, WideTy) == OperandExtendedStart) {
1366     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1367       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1368       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1369       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1370       const_cast<SCEVAddRecExpr *>(PreAR)->setNoWrapFlags(WrapType);
1371     }
1372     return PreStart;
1373   }
1374 
1375   // 3. Loop precondition.
1376   ICmpInst::Predicate Pred;
1377   const SCEV *OverflowLimit =
1378       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1379 
1380   if (OverflowLimit &&
1381       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1382     return PreStart;
1383 
1384   return nullptr;
1385 }
1386 
1387 // Get the normalized zero or sign extended expression for this AddRec's Start.
1388 template <typename ExtendOpTy>
1389 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1390                                         ScalarEvolution *SE) {
1391   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1392 
1393   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE);
1394   if (!PreStart)
1395     return (SE->*GetExtendExpr)(AR->getStart(), Ty);
1396 
1397   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty),
1398                         (SE->*GetExtendExpr)(PreStart, Ty));
1399 }
1400 
1401 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1402 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1403 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1404 //
1405 // Formally:
1406 //
1407 //     {S,+,X} == {S-T,+,X} + T
1408 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1409 //
1410 // If ({S-T,+,X} + T) does not overflow  ... (1)
1411 //
1412 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1413 //
1414 // If {S-T,+,X} does not overflow  ... (2)
1415 //
1416 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1417 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1418 //
1419 // If (S-T)+T does not overflow  ... (3)
1420 //
1421 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1422 //      == {Ext(S),+,Ext(X)} == LHS
1423 //
1424 // Thus, if (1), (2) and (3) are true for some T, then
1425 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1426 //
1427 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1428 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1429 // to check for (1) and (2).
1430 //
1431 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1432 // is `Delta` (defined below).
1433 //
1434 template <typename ExtendOpTy>
1435 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1436                                                 const SCEV *Step,
1437                                                 const Loop *L) {
1438   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1439 
1440   // We restrict `Start` to a constant to prevent SCEV from spending too much
1441   // time here.  It is correct (but more expensive) to continue with a
1442   // non-constant `Start` and do a general SCEV subtraction to compute
1443   // `PreStart` below.
1444   //
1445   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1446   if (!StartC)
1447     return false;
1448 
1449   APInt StartAI = StartC->getAPInt();
1450 
1451   for (unsigned Delta : {-2, -1, 1, 2}) {
1452     const SCEV *PreStart = getConstant(StartAI - Delta);
1453 
1454     FoldingSetNodeID ID;
1455     ID.AddInteger(scAddRecExpr);
1456     ID.AddPointer(PreStart);
1457     ID.AddPointer(Step);
1458     ID.AddPointer(L);
1459     void *IP = nullptr;
1460     const auto *PreAR =
1461       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1462 
1463     // Give up if we don't already have the add recurrence we need because
1464     // actually constructing an add recurrence is relatively expensive.
1465     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1466       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1467       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1468       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1469           DeltaS, &Pred, this);
1470       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1471         return true;
1472     }
1473   }
1474 
1475   return false;
1476 }
1477 
1478 const SCEV *ScalarEvolution::getZeroExtendExpr(const SCEV *Op,
1479                                                Type *Ty) {
1480   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1481          "This is not an extending conversion!");
1482   assert(isSCEVable(Ty) &&
1483          "This is not a conversion to a SCEVable type!");
1484   Ty = getEffectiveSCEVType(Ty);
1485 
1486   // Fold if the operand is constant.
1487   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1488     return getConstant(
1489       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1490 
1491   // zext(zext(x)) --> zext(x)
1492   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1493     return getZeroExtendExpr(SZ->getOperand(), Ty);
1494 
1495   // Before doing any expensive analysis, check to see if we've already
1496   // computed a SCEV for this Op and Ty.
1497   FoldingSetNodeID ID;
1498   ID.AddInteger(scZeroExtend);
1499   ID.AddPointer(Op);
1500   ID.AddPointer(Ty);
1501   void *IP = nullptr;
1502   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1503 
1504   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1505   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1506     // It's possible the bits taken off by the truncate were all zero bits. If
1507     // so, we should be able to simplify this further.
1508     const SCEV *X = ST->getOperand();
1509     ConstantRange CR = getUnsignedRange(X);
1510     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1511     unsigned NewBits = getTypeSizeInBits(Ty);
1512     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1513             CR.zextOrTrunc(NewBits)))
1514       return getTruncateOrZeroExtend(X, Ty);
1515   }
1516 
1517   // If the input value is a chrec scev, and we can prove that the value
1518   // did not overflow the old, smaller, value, we can zero extend all of the
1519   // operands (often constants).  This allows analysis of something like
1520   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1521   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1522     if (AR->isAffine()) {
1523       const SCEV *Start = AR->getStart();
1524       const SCEV *Step = AR->getStepRecurrence(*this);
1525       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1526       const Loop *L = AR->getLoop();
1527 
1528       if (!AR->hasNoUnsignedWrap()) {
1529         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1530         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1531       }
1532 
1533       // If we have special knowledge that this addrec won't overflow,
1534       // we don't need to do any further analysis.
1535       if (AR->hasNoUnsignedWrap())
1536         return getAddRecExpr(
1537             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1538             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1539 
1540       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1541       // Note that this serves two purposes: It filters out loops that are
1542       // simply not analyzable, and it covers the case where this code is
1543       // being called from within backedge-taken count analysis, such that
1544       // attempting to ask for the backedge-taken count would likely result
1545       // in infinite recursion. In the later case, the analysis code will
1546       // cope with a conservative value, and it will take care to purge
1547       // that value once it has finished.
1548       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1549       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1550         // Manually compute the final value for AR, checking for
1551         // overflow.
1552 
1553         // Check whether the backedge-taken count can be losslessly casted to
1554         // the addrec's type. The count is always unsigned.
1555         const SCEV *CastedMaxBECount =
1556           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1557         const SCEV *RecastedMaxBECount =
1558           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1559         if (MaxBECount == RecastedMaxBECount) {
1560           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1561           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1562           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step);
1563           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul), WideTy);
1564           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy);
1565           const SCEV *WideMaxBECount =
1566             getZeroExtendExpr(CastedMaxBECount, WideTy);
1567           const SCEV *OperandExtendedAdd =
1568             getAddExpr(WideStart,
1569                        getMulExpr(WideMaxBECount,
1570                                   getZeroExtendExpr(Step, WideTy)));
1571           if (ZAdd == OperandExtendedAdd) {
1572             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1573             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1574             // Return the expression with the addrec on the outside.
1575             return getAddRecExpr(
1576                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1577                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1578           }
1579           // Similar to above, only this time treat the step value as signed.
1580           // This covers loops that count down.
1581           OperandExtendedAdd =
1582             getAddExpr(WideStart,
1583                        getMulExpr(WideMaxBECount,
1584                                   getSignExtendExpr(Step, WideTy)));
1585           if (ZAdd == OperandExtendedAdd) {
1586             // Cache knowledge of AR NW, which is propagated to this AddRec.
1587             // Negative step causes unsigned wrap, but it still can't self-wrap.
1588             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1589             // Return the expression with the addrec on the outside.
1590             return getAddRecExpr(
1591                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1592                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1593           }
1594         }
1595       }
1596 
1597       // Normally, in the cases we can prove no-overflow via a
1598       // backedge guarding condition, we can also compute a backedge
1599       // taken count for the loop.  The exceptions are assumptions and
1600       // guards present in the loop -- SCEV is not great at exploiting
1601       // these to compute max backedge taken counts, but can still use
1602       // these to prove lack of overflow.  Use this fact to avoid
1603       // doing extra work that may not pay off.
1604       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1605           !AC.assumptions().empty()) {
1606         // If the backedge is guarded by a comparison with the pre-inc
1607         // value the addrec is safe. Also, if the entry is guarded by
1608         // a comparison with the start value and the backedge is
1609         // guarded by a comparison with the post-inc value, the addrec
1610         // is safe.
1611         if (isKnownPositive(Step)) {
1612           const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
1613                                       getUnsignedRange(Step).getUnsignedMax());
1614           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
1615               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_ULT, Start, N) &&
1616                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT,
1617                                            AR->getPostIncExpr(*this), N))) {
1618             // Cache knowledge of AR NUW, which is propagated to this
1619             // AddRec.
1620             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1621             // Return the expression with the addrec on the outside.
1622             return getAddRecExpr(
1623                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1624                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1625           }
1626         } else if (isKnownNegative(Step)) {
1627           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1628                                       getSignedRange(Step).getSignedMin());
1629           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1630               (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_UGT, Start, N) &&
1631                isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT,
1632                                            AR->getPostIncExpr(*this), N))) {
1633             // Cache knowledge of AR NW, which is propagated to this
1634             // AddRec.  Negative step causes unsigned wrap, but it
1635             // still can't self-wrap.
1636             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1637             // Return the expression with the addrec on the outside.
1638             return getAddRecExpr(
1639                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1640                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1641           }
1642         }
1643       }
1644 
1645       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1646         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNUW);
1647         return getAddRecExpr(
1648             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this),
1649             getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1650       }
1651     }
1652 
1653   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1654     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1655     if (SA->hasNoUnsignedWrap()) {
1656       // If the addition does not unsign overflow then we can, by definition,
1657       // commute the zero extension with the addition operation.
1658       SmallVector<const SCEV *, 4> Ops;
1659       for (const auto *Op : SA->operands())
1660         Ops.push_back(getZeroExtendExpr(Op, Ty));
1661       return getAddExpr(Ops, SCEV::FlagNUW);
1662     }
1663   }
1664 
1665   // The cast wasn't folded; create an explicit cast node.
1666   // Recompute the insert position, as it may have been invalidated.
1667   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1668   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1669                                                    Op, Ty);
1670   UniqueSCEVs.InsertNode(S, IP);
1671   return S;
1672 }
1673 
1674 const SCEV *ScalarEvolution::getSignExtendExpr(const SCEV *Op,
1675                                                Type *Ty) {
1676   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1677          "This is not an extending conversion!");
1678   assert(isSCEVable(Ty) &&
1679          "This is not a conversion to a SCEVable type!");
1680   Ty = getEffectiveSCEVType(Ty);
1681 
1682   // Fold if the operand is constant.
1683   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1684     return getConstant(
1685       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1686 
1687   // sext(sext(x)) --> sext(x)
1688   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1689     return getSignExtendExpr(SS->getOperand(), Ty);
1690 
1691   // sext(zext(x)) --> zext(x)
1692   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1693     return getZeroExtendExpr(SZ->getOperand(), Ty);
1694 
1695   // Before doing any expensive analysis, check to see if we've already
1696   // computed a SCEV for this Op and Ty.
1697   FoldingSetNodeID ID;
1698   ID.AddInteger(scSignExtend);
1699   ID.AddPointer(Op);
1700   ID.AddPointer(Ty);
1701   void *IP = nullptr;
1702   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1703 
1704   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1705   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1706     // It's possible the bits taken off by the truncate were all sign bits. If
1707     // so, we should be able to simplify this further.
1708     const SCEV *X = ST->getOperand();
1709     ConstantRange CR = getSignedRange(X);
1710     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1711     unsigned NewBits = getTypeSizeInBits(Ty);
1712     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1713             CR.sextOrTrunc(NewBits)))
1714       return getTruncateOrSignExtend(X, Ty);
1715   }
1716 
1717   // sext(C1 + (C2 * x)) --> C1 + sext(C2 * x) if C1 < C2
1718   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1719     if (SA->getNumOperands() == 2) {
1720       auto *SC1 = dyn_cast<SCEVConstant>(SA->getOperand(0));
1721       auto *SMul = dyn_cast<SCEVMulExpr>(SA->getOperand(1));
1722       if (SMul && SC1) {
1723         if (auto *SC2 = dyn_cast<SCEVConstant>(SMul->getOperand(0))) {
1724           const APInt &C1 = SC1->getAPInt();
1725           const APInt &C2 = SC2->getAPInt();
1726           if (C1.isStrictlyPositive() && C2.isStrictlyPositive() &&
1727               C2.ugt(C1) && C2.isPowerOf2())
1728             return getAddExpr(getSignExtendExpr(SC1, Ty),
1729                               getSignExtendExpr(SMul, Ty));
1730         }
1731       }
1732     }
1733 
1734     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1735     if (SA->hasNoSignedWrap()) {
1736       // If the addition does not sign overflow then we can, by definition,
1737       // commute the sign extension with the addition operation.
1738       SmallVector<const SCEV *, 4> Ops;
1739       for (const auto *Op : SA->operands())
1740         Ops.push_back(getSignExtendExpr(Op, Ty));
1741       return getAddExpr(Ops, SCEV::FlagNSW);
1742     }
1743   }
1744   // If the input value is a chrec scev, and we can prove that the value
1745   // did not overflow the old, smaller, value, we can sign extend all of the
1746   // operands (often constants).  This allows analysis of something like
1747   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1748   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1749     if (AR->isAffine()) {
1750       const SCEV *Start = AR->getStart();
1751       const SCEV *Step = AR->getStepRecurrence(*this);
1752       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1753       const Loop *L = AR->getLoop();
1754 
1755       if (!AR->hasNoSignedWrap()) {
1756         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1757         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(NewFlags);
1758       }
1759 
1760       // If we have special knowledge that this addrec won't overflow,
1761       // we don't need to do any further analysis.
1762       if (AR->hasNoSignedWrap())
1763         return getAddRecExpr(
1764             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1765             getSignExtendExpr(Step, Ty), L, SCEV::FlagNSW);
1766 
1767       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1768       // Note that this serves two purposes: It filters out loops that are
1769       // simply not analyzable, and it covers the case where this code is
1770       // being called from within backedge-taken count analysis, such that
1771       // attempting to ask for the backedge-taken count would likely result
1772       // in infinite recursion. In the later case, the analysis code will
1773       // cope with a conservative value, and it will take care to purge
1774       // that value once it has finished.
1775       const SCEV *MaxBECount = getMaxBackedgeTakenCount(L);
1776       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1777         // Manually compute the final value for AR, checking for
1778         // overflow.
1779 
1780         // Check whether the backedge-taken count can be losslessly casted to
1781         // the addrec's type. The count is always unsigned.
1782         const SCEV *CastedMaxBECount =
1783           getTruncateOrZeroExtend(MaxBECount, Start->getType());
1784         const SCEV *RecastedMaxBECount =
1785           getTruncateOrZeroExtend(CastedMaxBECount, MaxBECount->getType());
1786         if (MaxBECount == RecastedMaxBECount) {
1787           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1788           // Check whether Start+Step*MaxBECount has no signed overflow.
1789           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step);
1790           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul), WideTy);
1791           const SCEV *WideStart = getSignExtendExpr(Start, WideTy);
1792           const SCEV *WideMaxBECount =
1793             getZeroExtendExpr(CastedMaxBECount, WideTy);
1794           const SCEV *OperandExtendedAdd =
1795             getAddExpr(WideStart,
1796                        getMulExpr(WideMaxBECount,
1797                                   getSignExtendExpr(Step, WideTy)));
1798           if (SAdd == OperandExtendedAdd) {
1799             // Cache knowledge of AR NSW, which is propagated to this AddRec.
1800             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1801             // Return the expression with the addrec on the outside.
1802             return getAddRecExpr(
1803                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1804                 getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1805           }
1806           // Similar to above, only this time treat the step value as unsigned.
1807           // This covers loops that count up with an unsigned step.
1808           OperandExtendedAdd =
1809             getAddExpr(WideStart,
1810                        getMulExpr(WideMaxBECount,
1811                                   getZeroExtendExpr(Step, WideTy)));
1812           if (SAdd == OperandExtendedAdd) {
1813             // If AR wraps around then
1814             //
1815             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
1816             // => SAdd != OperandExtendedAdd
1817             //
1818             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
1819             // (SAdd == OperandExtendedAdd => AR is NW)
1820 
1821             const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNW);
1822 
1823             // Return the expression with the addrec on the outside.
1824             return getAddRecExpr(
1825                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1826                 getZeroExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1827           }
1828         }
1829       }
1830 
1831       // Normally, in the cases we can prove no-overflow via a
1832       // backedge guarding condition, we can also compute a backedge
1833       // taken count for the loop.  The exceptions are assumptions and
1834       // guards present in the loop -- SCEV is not great at exploiting
1835       // these to compute max backedge taken counts, but can still use
1836       // these to prove lack of overflow.  Use this fact to avoid
1837       // doing extra work that may not pay off.
1838 
1839       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1840           !AC.assumptions().empty()) {
1841         // If the backedge is guarded by a comparison with the pre-inc
1842         // value the addrec is safe. Also, if the entry is guarded by
1843         // a comparison with the start value and the backedge is
1844         // guarded by a comparison with the post-inc value, the addrec
1845         // is safe.
1846         ICmpInst::Predicate Pred;
1847         const SCEV *OverflowLimit =
1848             getSignedOverflowLimitForStep(Step, &Pred, this);
1849         if (OverflowLimit &&
1850             (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
1851              (isLoopEntryGuardedByCond(L, Pred, Start, OverflowLimit) &&
1852               isLoopBackedgeGuardedByCond(L, Pred, AR->getPostIncExpr(*this),
1853                                           OverflowLimit)))) {
1854           // Cache knowledge of AR NSW, then propagate NSW to the wide AddRec.
1855           const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1856           return getAddRecExpr(
1857               getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1858               getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1859         }
1860       }
1861 
1862       // If Start and Step are constants, check if we can apply this
1863       // transformation:
1864       // sext{C1,+,C2} --> C1 + sext{0,+,C2} if C1 < C2
1865       auto *SC1 = dyn_cast<SCEVConstant>(Start);
1866       auto *SC2 = dyn_cast<SCEVConstant>(Step);
1867       if (SC1 && SC2) {
1868         const APInt &C1 = SC1->getAPInt();
1869         const APInt &C2 = SC2->getAPInt();
1870         if (C1.isStrictlyPositive() && C2.isStrictlyPositive() && C2.ugt(C1) &&
1871             C2.isPowerOf2()) {
1872           Start = getSignExtendExpr(Start, Ty);
1873           const SCEV *NewAR = getAddRecExpr(getZero(AR->getType()), Step, L,
1874                                             AR->getNoWrapFlags());
1875           return getAddExpr(Start, getSignExtendExpr(NewAR, Ty));
1876         }
1877       }
1878 
1879       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
1880         const_cast<SCEVAddRecExpr *>(AR)->setNoWrapFlags(SCEV::FlagNSW);
1881         return getAddRecExpr(
1882             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this),
1883             getSignExtendExpr(Step, Ty), L, AR->getNoWrapFlags());
1884       }
1885     }
1886 
1887   // If the input value is provably positive and we could not simplify
1888   // away the sext build a zext instead.
1889   if (isKnownNonNegative(Op))
1890     return getZeroExtendExpr(Op, Ty);
1891 
1892   // The cast wasn't folded; create an explicit cast node.
1893   // Recompute the insert position, as it may have been invalidated.
1894   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1895   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1896                                                    Op, Ty);
1897   UniqueSCEVs.InsertNode(S, IP);
1898   return S;
1899 }
1900 
1901 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
1902 /// unspecified bits out to the given type.
1903 ///
1904 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
1905                                               Type *Ty) {
1906   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1907          "This is not an extending conversion!");
1908   assert(isSCEVable(Ty) &&
1909          "This is not a conversion to a SCEVable type!");
1910   Ty = getEffectiveSCEVType(Ty);
1911 
1912   // Sign-extend negative constants.
1913   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1914     if (SC->getAPInt().isNegative())
1915       return getSignExtendExpr(Op, Ty);
1916 
1917   // Peel off a truncate cast.
1918   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
1919     const SCEV *NewOp = T->getOperand();
1920     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
1921       return getAnyExtendExpr(NewOp, Ty);
1922     return getTruncateOrNoop(NewOp, Ty);
1923   }
1924 
1925   // Next try a zext cast. If the cast is folded, use it.
1926   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
1927   if (!isa<SCEVZeroExtendExpr>(ZExt))
1928     return ZExt;
1929 
1930   // Next try a sext cast. If the cast is folded, use it.
1931   const SCEV *SExt = getSignExtendExpr(Op, Ty);
1932   if (!isa<SCEVSignExtendExpr>(SExt))
1933     return SExt;
1934 
1935   // Force the cast to be folded into the operands of an addrec.
1936   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
1937     SmallVector<const SCEV *, 4> Ops;
1938     for (const SCEV *Op : AR->operands())
1939       Ops.push_back(getAnyExtendExpr(Op, Ty));
1940     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
1941   }
1942 
1943   // If the expression is obviously signed, use the sext cast value.
1944   if (isa<SCEVSMaxExpr>(Op))
1945     return SExt;
1946 
1947   // Absent any other information, use the zext cast value.
1948   return ZExt;
1949 }
1950 
1951 /// Process the given Ops list, which is a list of operands to be added under
1952 /// the given scale, update the given map. This is a helper function for
1953 /// getAddRecExpr. As an example of what it does, given a sequence of operands
1954 /// that would form an add expression like this:
1955 ///
1956 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
1957 ///
1958 /// where A and B are constants, update the map with these values:
1959 ///
1960 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
1961 ///
1962 /// and add 13 + A*B*29 to AccumulatedConstant.
1963 /// This will allow getAddRecExpr to produce this:
1964 ///
1965 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
1966 ///
1967 /// This form often exposes folding opportunities that are hidden in
1968 /// the original operand list.
1969 ///
1970 /// Return true iff it appears that any interesting folding opportunities
1971 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
1972 /// the common case where no interesting opportunities are present, and
1973 /// is also used as a check to avoid infinite recursion.
1974 ///
1975 static bool
1976 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
1977                              SmallVectorImpl<const SCEV *> &NewOps,
1978                              APInt &AccumulatedConstant,
1979                              const SCEV *const *Ops, size_t NumOperands,
1980                              const APInt &Scale,
1981                              ScalarEvolution &SE) {
1982   bool Interesting = false;
1983 
1984   // Iterate over the add operands. They are sorted, with constants first.
1985   unsigned i = 0;
1986   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
1987     ++i;
1988     // Pull a buried constant out to the outside.
1989     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
1990       Interesting = true;
1991     AccumulatedConstant += Scale * C->getAPInt();
1992   }
1993 
1994   // Next comes everything else. We're especially interested in multiplies
1995   // here, but they're in the middle, so just visit the rest with one loop.
1996   for (; i != NumOperands; ++i) {
1997     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
1998     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
1999       APInt NewScale =
2000           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2001       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2002         // A multiplication of a constant with another add; recurse.
2003         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2004         Interesting |=
2005           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2006                                        Add->op_begin(), Add->getNumOperands(),
2007                                        NewScale, SE);
2008       } else {
2009         // A multiplication of a constant with some other value. Update
2010         // the map.
2011         SmallVector<const SCEV *, 4> MulOps(Mul->op_begin()+1, Mul->op_end());
2012         const SCEV *Key = SE.getMulExpr(MulOps);
2013         auto Pair = M.insert({Key, NewScale});
2014         if (Pair.second) {
2015           NewOps.push_back(Pair.first->first);
2016         } else {
2017           Pair.first->second += NewScale;
2018           // The map already had an entry for this value, which may indicate
2019           // a folding opportunity.
2020           Interesting = true;
2021         }
2022       }
2023     } else {
2024       // An ordinary operand. Update the map.
2025       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2026           M.insert({Ops[i], Scale});
2027       if (Pair.second) {
2028         NewOps.push_back(Pair.first->first);
2029       } else {
2030         Pair.first->second += Scale;
2031         // The map already had an entry for this value, which may indicate
2032         // a folding opportunity.
2033         Interesting = true;
2034       }
2035     }
2036   }
2037 
2038   return Interesting;
2039 }
2040 
2041 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2042 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2043 // can't-overflow flags for the operation if possible.
2044 static SCEV::NoWrapFlags
2045 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2046                       const SmallVectorImpl<const SCEV *> &Ops,
2047                       SCEV::NoWrapFlags Flags) {
2048   using namespace std::placeholders;
2049   typedef OverflowingBinaryOperator OBO;
2050 
2051   bool CanAnalyze =
2052       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2053   (void)CanAnalyze;
2054   assert(CanAnalyze && "don't call from other places!");
2055 
2056   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2057   SCEV::NoWrapFlags SignOrUnsignWrap =
2058       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2059 
2060   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2061   auto IsKnownNonNegative = [&](const SCEV *S) {
2062     return SE->isKnownNonNegative(S);
2063   };
2064 
2065   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2066     Flags =
2067         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2068 
2069   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2070 
2071   if (SignOrUnsignWrap != SignOrUnsignMask && Type == scAddExpr &&
2072       Ops.size() == 2 && isa<SCEVConstant>(Ops[0])) {
2073 
2074     // (A + C) --> (A + C)<nsw> if the addition does not sign overflow
2075     // (A + C) --> (A + C)<nuw> if the addition does not unsign overflow
2076 
2077     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2078     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2079       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2080           Instruction::Add, C, OBO::NoSignedWrap);
2081       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2082         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2083     }
2084     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2085       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2086           Instruction::Add, C, OBO::NoUnsignedWrap);
2087       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2088         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2089     }
2090   }
2091 
2092   return Flags;
2093 }
2094 
2095 /// Get a canonical add expression, or something simpler if possible.
2096 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2097                                         SCEV::NoWrapFlags Flags) {
2098   assert(!(Flags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2099          "only nuw or nsw allowed");
2100   assert(!Ops.empty() && "Cannot get empty add!");
2101   if (Ops.size() == 1) return Ops[0];
2102 #ifndef NDEBUG
2103   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2104   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2105     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2106            "SCEVAddExpr operand types don't match!");
2107 #endif
2108 
2109   // Sort by complexity, this groups all similar expression types together.
2110   GroupByComplexity(Ops, &LI);
2111 
2112   Flags = StrengthenNoWrapFlags(this, scAddExpr, Ops, Flags);
2113 
2114   // If there are any constants, fold them together.
2115   unsigned Idx = 0;
2116   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2117     ++Idx;
2118     assert(Idx < Ops.size());
2119     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2120       // We found two constants, fold them together!
2121       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2122       if (Ops.size() == 2) return Ops[0];
2123       Ops.erase(Ops.begin()+1);  // Erase the folded element
2124       LHSC = cast<SCEVConstant>(Ops[0]);
2125     }
2126 
2127     // If we are left with a constant zero being added, strip it off.
2128     if (LHSC->getValue()->isZero()) {
2129       Ops.erase(Ops.begin());
2130       --Idx;
2131     }
2132 
2133     if (Ops.size() == 1) return Ops[0];
2134   }
2135 
2136   // Okay, check to see if the same value occurs in the operand list more than
2137   // once.  If so, merge them together into an multiply expression.  Since we
2138   // sorted the list, these values are required to be adjacent.
2139   Type *Ty = Ops[0]->getType();
2140   bool FoundMatch = false;
2141   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2142     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2143       // Scan ahead to count how many equal operands there are.
2144       unsigned Count = 2;
2145       while (i+Count != e && Ops[i+Count] == Ops[i])
2146         ++Count;
2147       // Merge the values into a multiply.
2148       const SCEV *Scale = getConstant(Ty, Count);
2149       const SCEV *Mul = getMulExpr(Scale, Ops[i]);
2150       if (Ops.size() == Count)
2151         return Mul;
2152       Ops[i] = Mul;
2153       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2154       --i; e -= Count - 1;
2155       FoundMatch = true;
2156     }
2157   if (FoundMatch)
2158     return getAddExpr(Ops, Flags);
2159 
2160   // Check for truncates. If all the operands are truncated from the same
2161   // type, see if factoring out the truncate would permit the result to be
2162   // folded. eg., trunc(x) + m*trunc(n) --> trunc(x + trunc(m)*n)
2163   // if the contents of the resulting outer trunc fold to something simple.
2164   for (; Idx < Ops.size() && isa<SCEVTruncateExpr>(Ops[Idx]); ++Idx) {
2165     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(Ops[Idx]);
2166     Type *DstType = Trunc->getType();
2167     Type *SrcType = Trunc->getOperand()->getType();
2168     SmallVector<const SCEV *, 8> LargeOps;
2169     bool Ok = true;
2170     // Check all the operands to see if they can be represented in the
2171     // source type of the truncate.
2172     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2173       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2174         if (T->getOperand()->getType() != SrcType) {
2175           Ok = false;
2176           break;
2177         }
2178         LargeOps.push_back(T->getOperand());
2179       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2180         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2181       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2182         SmallVector<const SCEV *, 8> LargeMulOps;
2183         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2184           if (const SCEVTruncateExpr *T =
2185                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2186             if (T->getOperand()->getType() != SrcType) {
2187               Ok = false;
2188               break;
2189             }
2190             LargeMulOps.push_back(T->getOperand());
2191           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2192             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2193           } else {
2194             Ok = false;
2195             break;
2196           }
2197         }
2198         if (Ok)
2199           LargeOps.push_back(getMulExpr(LargeMulOps));
2200       } else {
2201         Ok = false;
2202         break;
2203       }
2204     }
2205     if (Ok) {
2206       // Evaluate the expression in the larger type.
2207       const SCEV *Fold = getAddExpr(LargeOps, Flags);
2208       // If it folds to something simple, use it. Otherwise, don't.
2209       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2210         return getTruncateExpr(Fold, DstType);
2211     }
2212   }
2213 
2214   // Skip past any other cast SCEVs.
2215   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2216     ++Idx;
2217 
2218   // If there are add operands they would be next.
2219   if (Idx < Ops.size()) {
2220     bool DeletedAdd = false;
2221     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2222       // If we have an add, expand the add operands onto the end of the operands
2223       // list.
2224       Ops.erase(Ops.begin()+Idx);
2225       Ops.append(Add->op_begin(), Add->op_end());
2226       DeletedAdd = true;
2227     }
2228 
2229     // If we deleted at least one add, we added operands to the end of the list,
2230     // and they are not necessarily sorted.  Recurse to resort and resimplify
2231     // any operands we just acquired.
2232     if (DeletedAdd)
2233       return getAddExpr(Ops);
2234   }
2235 
2236   // Skip over the add expression until we get to a multiply.
2237   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2238     ++Idx;
2239 
2240   // Check to see if there are any folding opportunities present with
2241   // operands multiplied by constant values.
2242   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2243     uint64_t BitWidth = getTypeSizeInBits(Ty);
2244     DenseMap<const SCEV *, APInt> M;
2245     SmallVector<const SCEV *, 8> NewOps;
2246     APInt AccumulatedConstant(BitWidth, 0);
2247     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2248                                      Ops.data(), Ops.size(),
2249                                      APInt(BitWidth, 1), *this)) {
2250       struct APIntCompare {
2251         bool operator()(const APInt &LHS, const APInt &RHS) const {
2252           return LHS.ult(RHS);
2253         }
2254       };
2255 
2256       // Some interesting folding opportunity is present, so its worthwhile to
2257       // re-generate the operands list. Group the operands by constant scale,
2258       // to avoid multiplying by the same constant scale multiple times.
2259       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2260       for (const SCEV *NewOp : NewOps)
2261         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2262       // Re-generate the operands list.
2263       Ops.clear();
2264       if (AccumulatedConstant != 0)
2265         Ops.push_back(getConstant(AccumulatedConstant));
2266       for (auto &MulOp : MulOpLists)
2267         if (MulOp.first != 0)
2268           Ops.push_back(getMulExpr(getConstant(MulOp.first),
2269                                    getAddExpr(MulOp.second)));
2270       if (Ops.empty())
2271         return getZero(Ty);
2272       if (Ops.size() == 1)
2273         return Ops[0];
2274       return getAddExpr(Ops);
2275     }
2276   }
2277 
2278   // If we are adding something to a multiply expression, make sure the
2279   // something is not already an operand of the multiply.  If so, merge it into
2280   // the multiply.
2281   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2282     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2283     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2284       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2285       if (isa<SCEVConstant>(MulOpSCEV))
2286         continue;
2287       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2288         if (MulOpSCEV == Ops[AddOp]) {
2289           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2290           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2291           if (Mul->getNumOperands() != 2) {
2292             // If the multiply has more than two operands, we must get the
2293             // Y*Z term.
2294             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2295                                                 Mul->op_begin()+MulOp);
2296             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2297             InnerMul = getMulExpr(MulOps);
2298           }
2299           const SCEV *One = getOne(Ty);
2300           const SCEV *AddOne = getAddExpr(One, InnerMul);
2301           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV);
2302           if (Ops.size() == 2) return OuterMul;
2303           if (AddOp < Idx) {
2304             Ops.erase(Ops.begin()+AddOp);
2305             Ops.erase(Ops.begin()+Idx-1);
2306           } else {
2307             Ops.erase(Ops.begin()+Idx);
2308             Ops.erase(Ops.begin()+AddOp-1);
2309           }
2310           Ops.push_back(OuterMul);
2311           return getAddExpr(Ops);
2312         }
2313 
2314       // Check this multiply against other multiplies being added together.
2315       for (unsigned OtherMulIdx = Idx+1;
2316            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2317            ++OtherMulIdx) {
2318         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2319         // If MulOp occurs in OtherMul, we can fold the two multiplies
2320         // together.
2321         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2322              OMulOp != e; ++OMulOp)
2323           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2324             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2325             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2326             if (Mul->getNumOperands() != 2) {
2327               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2328                                                   Mul->op_begin()+MulOp);
2329               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2330               InnerMul1 = getMulExpr(MulOps);
2331             }
2332             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2333             if (OtherMul->getNumOperands() != 2) {
2334               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2335                                                   OtherMul->op_begin()+OMulOp);
2336               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2337               InnerMul2 = getMulExpr(MulOps);
2338             }
2339             const SCEV *InnerMulSum = getAddExpr(InnerMul1,InnerMul2);
2340             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum);
2341             if (Ops.size() == 2) return OuterMul;
2342             Ops.erase(Ops.begin()+Idx);
2343             Ops.erase(Ops.begin()+OtherMulIdx-1);
2344             Ops.push_back(OuterMul);
2345             return getAddExpr(Ops);
2346           }
2347       }
2348     }
2349   }
2350 
2351   // If there are any add recurrences in the operands list, see if any other
2352   // added values are loop invariant.  If so, we can fold them into the
2353   // recurrence.
2354   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2355     ++Idx;
2356 
2357   // Scan over all recurrences, trying to fold loop invariants into them.
2358   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2359     // Scan all of the other operands to this add and add them to the vector if
2360     // they are loop invariant w.r.t. the recurrence.
2361     SmallVector<const SCEV *, 8> LIOps;
2362     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2363     const Loop *AddRecLoop = AddRec->getLoop();
2364     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2365       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2366         LIOps.push_back(Ops[i]);
2367         Ops.erase(Ops.begin()+i);
2368         --i; --e;
2369       }
2370 
2371     // If we found some loop invariants, fold them into the recurrence.
2372     if (!LIOps.empty()) {
2373       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2374       LIOps.push_back(AddRec->getStart());
2375 
2376       SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2377                                              AddRec->op_end());
2378       // This follows from the fact that the no-wrap flags on the outer add
2379       // expression are applicable on the 0th iteration, when the add recurrence
2380       // will be equal to its start value.
2381       AddRecOps[0] = getAddExpr(LIOps, Flags);
2382 
2383       // Build the new addrec. Propagate the NUW and NSW flags if both the
2384       // outer add and the inner addrec are guaranteed to have no overflow.
2385       // Always propagate NW.
2386       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2387       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2388 
2389       // If all of the other operands were loop invariant, we are done.
2390       if (Ops.size() == 1) return NewRec;
2391 
2392       // Otherwise, add the folded AddRec by the non-invariant parts.
2393       for (unsigned i = 0;; ++i)
2394         if (Ops[i] == AddRec) {
2395           Ops[i] = NewRec;
2396           break;
2397         }
2398       return getAddExpr(Ops);
2399     }
2400 
2401     // Okay, if there weren't any loop invariants to be folded, check to see if
2402     // there are multiple AddRec's with the same loop induction variable being
2403     // added together.  If so, we can fold them.
2404     for (unsigned OtherIdx = Idx+1;
2405          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2406          ++OtherIdx)
2407       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2408         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2409         SmallVector<const SCEV *, 4> AddRecOps(AddRec->op_begin(),
2410                                                AddRec->op_end());
2411         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2412              ++OtherIdx)
2413           if (const auto *OtherAddRec = dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]))
2414             if (OtherAddRec->getLoop() == AddRecLoop) {
2415               for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2416                    i != e; ++i) {
2417                 if (i >= AddRecOps.size()) {
2418                   AddRecOps.append(OtherAddRec->op_begin()+i,
2419                                    OtherAddRec->op_end());
2420                   break;
2421                 }
2422                 AddRecOps[i] = getAddExpr(AddRecOps[i],
2423                                           OtherAddRec->getOperand(i));
2424               }
2425               Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2426             }
2427         // Step size has changed, so we cannot guarantee no self-wraparound.
2428         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2429         return getAddExpr(Ops);
2430       }
2431 
2432     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2433     // next one.
2434   }
2435 
2436   // Okay, it looks like we really DO need an add expr.  Check to see if we
2437   // already have one, otherwise create a new one.
2438   FoldingSetNodeID ID;
2439   ID.AddInteger(scAddExpr);
2440   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2441     ID.AddPointer(Ops[i]);
2442   void *IP = nullptr;
2443   SCEVAddExpr *S =
2444     static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2445   if (!S) {
2446     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2447     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2448     S = new (SCEVAllocator) SCEVAddExpr(ID.Intern(SCEVAllocator),
2449                                         O, Ops.size());
2450     UniqueSCEVs.InsertNode(S, IP);
2451   }
2452   S->setNoWrapFlags(Flags);
2453   return S;
2454 }
2455 
2456 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2457   uint64_t k = i*j;
2458   if (j > 1 && k / j != i) Overflow = true;
2459   return k;
2460 }
2461 
2462 /// Compute the result of "n choose k", the binomial coefficient.  If an
2463 /// intermediate computation overflows, Overflow will be set and the return will
2464 /// be garbage. Overflow is not cleared on absence of overflow.
2465 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2466   // We use the multiplicative formula:
2467   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2468   // At each iteration, we take the n-th term of the numeral and divide by the
2469   // (k-n)th term of the denominator.  This division will always produce an
2470   // integral result, and helps reduce the chance of overflow in the
2471   // intermediate computations. However, we can still overflow even when the
2472   // final result would fit.
2473 
2474   if (n == 0 || n == k) return 1;
2475   if (k > n) return 0;
2476 
2477   if (k > n/2)
2478     k = n-k;
2479 
2480   uint64_t r = 1;
2481   for (uint64_t i = 1; i <= k; ++i) {
2482     r = umul_ov(r, n-(i-1), Overflow);
2483     r /= i;
2484   }
2485   return r;
2486 }
2487 
2488 /// Determine if any of the operands in this SCEV are a constant or if
2489 /// any of the add or multiply expressions in this SCEV contain a constant.
2490 static bool containsConstantSomewhere(const SCEV *StartExpr) {
2491   SmallVector<const SCEV *, 4> Ops;
2492   Ops.push_back(StartExpr);
2493   while (!Ops.empty()) {
2494     const SCEV *CurrentExpr = Ops.pop_back_val();
2495     if (isa<SCEVConstant>(*CurrentExpr))
2496       return true;
2497 
2498     if (isa<SCEVAddExpr>(*CurrentExpr) || isa<SCEVMulExpr>(*CurrentExpr)) {
2499       const auto *CurrentNAry = cast<SCEVNAryExpr>(CurrentExpr);
2500       Ops.append(CurrentNAry->op_begin(), CurrentNAry->op_end());
2501     }
2502   }
2503   return false;
2504 }
2505 
2506 /// Get a canonical multiply expression, or something simpler if possible.
2507 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2508                                         SCEV::NoWrapFlags Flags) {
2509   assert(Flags == maskFlags(Flags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2510          "only nuw or nsw allowed");
2511   assert(!Ops.empty() && "Cannot get empty mul!");
2512   if (Ops.size() == 1) return Ops[0];
2513 #ifndef NDEBUG
2514   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2515   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2516     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2517            "SCEVMulExpr operand types don't match!");
2518 #endif
2519 
2520   // Sort by complexity, this groups all similar expression types together.
2521   GroupByComplexity(Ops, &LI);
2522 
2523   Flags = StrengthenNoWrapFlags(this, scMulExpr, Ops, Flags);
2524 
2525   // If there are any constants, fold them together.
2526   unsigned Idx = 0;
2527   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2528 
2529     // C1*(C2+V) -> C1*C2 + C1*V
2530     if (Ops.size() == 2)
2531         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
2532           // If any of Add's ops are Adds or Muls with a constant,
2533           // apply this transformation as well.
2534           if (Add->getNumOperands() == 2)
2535             if (containsConstantSomewhere(Add))
2536               return getAddExpr(getMulExpr(LHSC, Add->getOperand(0)),
2537                                 getMulExpr(LHSC, Add->getOperand(1)));
2538 
2539     ++Idx;
2540     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2541       // We found two constants, fold them together!
2542       ConstantInt *Fold =
2543           ConstantInt::get(getContext(), LHSC->getAPInt() * RHSC->getAPInt());
2544       Ops[0] = getConstant(Fold);
2545       Ops.erase(Ops.begin()+1);  // Erase the folded element
2546       if (Ops.size() == 1) return Ops[0];
2547       LHSC = cast<SCEVConstant>(Ops[0]);
2548     }
2549 
2550     // If we are left with a constant one being multiplied, strip it off.
2551     if (cast<SCEVConstant>(Ops[0])->getValue()->equalsInt(1)) {
2552       Ops.erase(Ops.begin());
2553       --Idx;
2554     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isZero()) {
2555       // If we have a multiply of zero, it will always be zero.
2556       return Ops[0];
2557     } else if (Ops[0]->isAllOnesValue()) {
2558       // If we have a mul by -1 of an add, try distributing the -1 among the
2559       // add operands.
2560       if (Ops.size() == 2) {
2561         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
2562           SmallVector<const SCEV *, 4> NewOps;
2563           bool AnyFolded = false;
2564           for (const SCEV *AddOp : Add->operands()) {
2565             const SCEV *Mul = getMulExpr(Ops[0], AddOp);
2566             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
2567             NewOps.push_back(Mul);
2568           }
2569           if (AnyFolded)
2570             return getAddExpr(NewOps);
2571         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
2572           // Negation preserves a recurrence's no self-wrap property.
2573           SmallVector<const SCEV *, 4> Operands;
2574           for (const SCEV *AddRecOp : AddRec->operands())
2575             Operands.push_back(getMulExpr(Ops[0], AddRecOp));
2576 
2577           return getAddRecExpr(Operands, AddRec->getLoop(),
2578                                AddRec->getNoWrapFlags(SCEV::FlagNW));
2579         }
2580       }
2581     }
2582 
2583     if (Ops.size() == 1)
2584       return Ops[0];
2585   }
2586 
2587   // Skip over the add expression until we get to a multiply.
2588   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2589     ++Idx;
2590 
2591   // If there are mul operands inline them all into this expression.
2592   if (Idx < Ops.size()) {
2593     bool DeletedMul = false;
2594     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2595       if (Ops.size() > MulOpsInlineThreshold)
2596         break;
2597       // If we have an mul, expand the mul operands onto the end of the operands
2598       // list.
2599       Ops.erase(Ops.begin()+Idx);
2600       Ops.append(Mul->op_begin(), Mul->op_end());
2601       DeletedMul = true;
2602     }
2603 
2604     // If we deleted at least one mul, we added operands to the end of the list,
2605     // and they are not necessarily sorted.  Recurse to resort and resimplify
2606     // any operands we just acquired.
2607     if (DeletedMul)
2608       return getMulExpr(Ops);
2609   }
2610 
2611   // If there are any add recurrences in the operands list, see if any other
2612   // added values are loop invariant.  If so, we can fold them into the
2613   // recurrence.
2614   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2615     ++Idx;
2616 
2617   // Scan over all recurrences, trying to fold loop invariants into them.
2618   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2619     // Scan all of the other operands to this mul and add them to the vector if
2620     // they are loop invariant w.r.t. the recurrence.
2621     SmallVector<const SCEV *, 8> LIOps;
2622     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2623     const Loop *AddRecLoop = AddRec->getLoop();
2624     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2625       if (isLoopInvariant(Ops[i], AddRecLoop)) {
2626         LIOps.push_back(Ops[i]);
2627         Ops.erase(Ops.begin()+i);
2628         --i; --e;
2629       }
2630 
2631     // If we found some loop invariants, fold them into the recurrence.
2632     if (!LIOps.empty()) {
2633       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
2634       SmallVector<const SCEV *, 4> NewOps;
2635       NewOps.reserve(AddRec->getNumOperands());
2636       const SCEV *Scale = getMulExpr(LIOps);
2637       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
2638         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i)));
2639 
2640       // Build the new addrec. Propagate the NUW and NSW flags if both the
2641       // outer mul and the inner addrec are guaranteed to have no overflow.
2642       //
2643       // No self-wrap cannot be guaranteed after changing the step size, but
2644       // will be inferred if either NUW or NSW is true.
2645       Flags = AddRec->getNoWrapFlags(clearFlags(Flags, SCEV::FlagNW));
2646       const SCEV *NewRec = getAddRecExpr(NewOps, AddRecLoop, Flags);
2647 
2648       // If all of the other operands were loop invariant, we are done.
2649       if (Ops.size() == 1) return NewRec;
2650 
2651       // Otherwise, multiply the folded AddRec by the non-invariant parts.
2652       for (unsigned i = 0;; ++i)
2653         if (Ops[i] == AddRec) {
2654           Ops[i] = NewRec;
2655           break;
2656         }
2657       return getMulExpr(Ops);
2658     }
2659 
2660     // Okay, if there weren't any loop invariants to be folded, check to see if
2661     // there are multiple AddRec's with the same loop induction variable being
2662     // multiplied together.  If so, we can fold them.
2663 
2664     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
2665     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
2666     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
2667     //   ]]],+,...up to x=2n}.
2668     // Note that the arguments to choose() are always integers with values
2669     // known at compile time, never SCEV objects.
2670     //
2671     // The implementation avoids pointless extra computations when the two
2672     // addrec's are of different length (mathematically, it's equivalent to
2673     // an infinite stream of zeros on the right).
2674     bool OpsModified = false;
2675     for (unsigned OtherIdx = Idx+1;
2676          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2677          ++OtherIdx) {
2678       const SCEVAddRecExpr *OtherAddRec =
2679         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2680       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
2681         continue;
2682 
2683       bool Overflow = false;
2684       Type *Ty = AddRec->getType();
2685       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
2686       SmallVector<const SCEV*, 7> AddRecOps;
2687       for (int x = 0, xe = AddRec->getNumOperands() +
2688              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
2689         const SCEV *Term = getZero(Ty);
2690         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
2691           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
2692           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
2693                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
2694                z < ze && !Overflow; ++z) {
2695             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
2696             uint64_t Coeff;
2697             if (LargerThan64Bits)
2698               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
2699             else
2700               Coeff = Coeff1*Coeff2;
2701             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
2702             const SCEV *Term1 = AddRec->getOperand(y-z);
2703             const SCEV *Term2 = OtherAddRec->getOperand(z);
2704             Term = getAddExpr(Term, getMulExpr(CoeffTerm, Term1,Term2));
2705           }
2706         }
2707         AddRecOps.push_back(Term);
2708       }
2709       if (!Overflow) {
2710         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRec->getLoop(),
2711                                               SCEV::FlagAnyWrap);
2712         if (Ops.size() == 2) return NewAddRec;
2713         Ops[Idx] = NewAddRec;
2714         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2715         OpsModified = true;
2716         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
2717         if (!AddRec)
2718           break;
2719       }
2720     }
2721     if (OpsModified)
2722       return getMulExpr(Ops);
2723 
2724     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2725     // next one.
2726   }
2727 
2728   // Okay, it looks like we really DO need an mul expr.  Check to see if we
2729   // already have one, otherwise create a new one.
2730   FoldingSetNodeID ID;
2731   ID.AddInteger(scMulExpr);
2732   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2733     ID.AddPointer(Ops[i]);
2734   void *IP = nullptr;
2735   SCEVMulExpr *S =
2736     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2737   if (!S) {
2738     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2739     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2740     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2741                                         O, Ops.size());
2742     UniqueSCEVs.InsertNode(S, IP);
2743   }
2744   S->setNoWrapFlags(Flags);
2745   return S;
2746 }
2747 
2748 /// Get a canonical unsigned division expression, or something simpler if
2749 /// possible.
2750 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
2751                                          const SCEV *RHS) {
2752   assert(getEffectiveSCEVType(LHS->getType()) ==
2753          getEffectiveSCEVType(RHS->getType()) &&
2754          "SCEVUDivExpr operand types don't match!");
2755 
2756   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
2757     if (RHSC->getValue()->equalsInt(1))
2758       return LHS;                               // X udiv 1 --> x
2759     // If the denominator is zero, the result of the udiv is undefined. Don't
2760     // try to analyze it, because the resolution chosen here may differ from
2761     // the resolution chosen in other parts of the compiler.
2762     if (!RHSC->getValue()->isZero()) {
2763       // Determine if the division can be folded into the operands of
2764       // its operands.
2765       // TODO: Generalize this to non-constants by using known-bits information.
2766       Type *Ty = LHS->getType();
2767       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
2768       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
2769       // For non-power-of-two values, effectively round the value up to the
2770       // nearest power of two.
2771       if (!RHSC->getAPInt().isPowerOf2())
2772         ++MaxShiftAmt;
2773       IntegerType *ExtTy =
2774         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
2775       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
2776         if (const SCEVConstant *Step =
2777             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
2778           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
2779           const APInt &StepInt = Step->getAPInt();
2780           const APInt &DivInt = RHSC->getAPInt();
2781           if (!StepInt.urem(DivInt) &&
2782               getZeroExtendExpr(AR, ExtTy) ==
2783               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2784                             getZeroExtendExpr(Step, ExtTy),
2785                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2786             SmallVector<const SCEV *, 4> Operands;
2787             for (const SCEV *Op : AR->operands())
2788               Operands.push_back(getUDivExpr(Op, RHS));
2789             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
2790           }
2791           /// Get a canonical UDivExpr for a recurrence.
2792           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
2793           // We can currently only fold X%N if X is constant.
2794           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
2795           if (StartC && !DivInt.urem(StepInt) &&
2796               getZeroExtendExpr(AR, ExtTy) ==
2797               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
2798                             getZeroExtendExpr(Step, ExtTy),
2799                             AR->getLoop(), SCEV::FlagAnyWrap)) {
2800             const APInt &StartInt = StartC->getAPInt();
2801             const APInt &StartRem = StartInt.urem(StepInt);
2802             if (StartRem != 0)
2803               LHS = getAddRecExpr(getConstant(StartInt - StartRem), Step,
2804                                   AR->getLoop(), SCEV::FlagNW);
2805           }
2806         }
2807       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
2808       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
2809         SmallVector<const SCEV *, 4> Operands;
2810         for (const SCEV *Op : M->operands())
2811           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2812         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
2813           // Find an operand that's safely divisible.
2814           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
2815             const SCEV *Op = M->getOperand(i);
2816             const SCEV *Div = getUDivExpr(Op, RHSC);
2817             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
2818               Operands = SmallVector<const SCEV *, 4>(M->op_begin(),
2819                                                       M->op_end());
2820               Operands[i] = Div;
2821               return getMulExpr(Operands);
2822             }
2823           }
2824       }
2825       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
2826       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
2827         SmallVector<const SCEV *, 4> Operands;
2828         for (const SCEV *Op : A->operands())
2829           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
2830         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
2831           Operands.clear();
2832           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
2833             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
2834             if (isa<SCEVUDivExpr>(Op) ||
2835                 getMulExpr(Op, RHS) != A->getOperand(i))
2836               break;
2837             Operands.push_back(Op);
2838           }
2839           if (Operands.size() == A->getNumOperands())
2840             return getAddExpr(Operands);
2841         }
2842       }
2843 
2844       // Fold if both operands are constant.
2845       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
2846         Constant *LHSCV = LHSC->getValue();
2847         Constant *RHSCV = RHSC->getValue();
2848         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
2849                                                                    RHSCV)));
2850       }
2851     }
2852   }
2853 
2854   FoldingSetNodeID ID;
2855   ID.AddInteger(scUDivExpr);
2856   ID.AddPointer(LHS);
2857   ID.AddPointer(RHS);
2858   void *IP = nullptr;
2859   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2860   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
2861                                              LHS, RHS);
2862   UniqueSCEVs.InsertNode(S, IP);
2863   return S;
2864 }
2865 
2866 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
2867   APInt A = C1->getAPInt().abs();
2868   APInt B = C2->getAPInt().abs();
2869   uint32_t ABW = A.getBitWidth();
2870   uint32_t BBW = B.getBitWidth();
2871 
2872   if (ABW > BBW)
2873     B = B.zext(ABW);
2874   else if (ABW < BBW)
2875     A = A.zext(BBW);
2876 
2877   return APIntOps::GreatestCommonDivisor(A, B);
2878 }
2879 
2880 /// Get a canonical unsigned division expression, or something simpler if
2881 /// possible. There is no representation for an exact udiv in SCEV IR, but we
2882 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
2883 /// it's not exact because the udiv may be clearing bits.
2884 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
2885                                               const SCEV *RHS) {
2886   // TODO: we could try to find factors in all sorts of things, but for now we
2887   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
2888   // end of this file for inspiration.
2889 
2890   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
2891   if (!Mul || !Mul->hasNoUnsignedWrap())
2892     return getUDivExpr(LHS, RHS);
2893 
2894   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
2895     // If the mulexpr multiplies by a constant, then that constant must be the
2896     // first element of the mulexpr.
2897     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
2898       if (LHSCst == RHSCst) {
2899         SmallVector<const SCEV *, 2> Operands;
2900         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2901         return getMulExpr(Operands);
2902       }
2903 
2904       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
2905       // that there's a factor provided by one of the other terms. We need to
2906       // check.
2907       APInt Factor = gcd(LHSCst, RHSCst);
2908       if (!Factor.isIntN(1)) {
2909         LHSCst =
2910             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
2911         RHSCst =
2912             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
2913         SmallVector<const SCEV *, 2> Operands;
2914         Operands.push_back(LHSCst);
2915         Operands.append(Mul->op_begin() + 1, Mul->op_end());
2916         LHS = getMulExpr(Operands);
2917         RHS = RHSCst;
2918         Mul = dyn_cast<SCEVMulExpr>(LHS);
2919         if (!Mul)
2920           return getUDivExactExpr(LHS, RHS);
2921       }
2922     }
2923   }
2924 
2925   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
2926     if (Mul->getOperand(i) == RHS) {
2927       SmallVector<const SCEV *, 2> Operands;
2928       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
2929       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
2930       return getMulExpr(Operands);
2931     }
2932   }
2933 
2934   return getUDivExpr(LHS, RHS);
2935 }
2936 
2937 /// Get an add recurrence expression for the specified loop.  Simplify the
2938 /// expression as much as possible.
2939 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
2940                                            const Loop *L,
2941                                            SCEV::NoWrapFlags Flags) {
2942   SmallVector<const SCEV *, 4> Operands;
2943   Operands.push_back(Start);
2944   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
2945     if (StepChrec->getLoop() == L) {
2946       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
2947       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
2948     }
2949 
2950   Operands.push_back(Step);
2951   return getAddRecExpr(Operands, L, Flags);
2952 }
2953 
2954 /// Get an add recurrence expression for the specified loop.  Simplify the
2955 /// expression as much as possible.
2956 const SCEV *
2957 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
2958                                const Loop *L, SCEV::NoWrapFlags Flags) {
2959   if (Operands.size() == 1) return Operands[0];
2960 #ifndef NDEBUG
2961   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
2962   for (unsigned i = 1, e = Operands.size(); i != e; ++i)
2963     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
2964            "SCEVAddRecExpr operand types don't match!");
2965   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
2966     assert(isLoopInvariant(Operands[i], L) &&
2967            "SCEVAddRecExpr operand is not loop-invariant!");
2968 #endif
2969 
2970   if (Operands.back()->isZero()) {
2971     Operands.pop_back();
2972     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
2973   }
2974 
2975   // It's tempting to want to call getMaxBackedgeTakenCount count here and
2976   // use that information to infer NUW and NSW flags. However, computing a
2977   // BE count requires calling getAddRecExpr, so we may not yet have a
2978   // meaningful BE count at this point (and if we don't, we'd be stuck
2979   // with a SCEVCouldNotCompute as the cached BE count).
2980 
2981   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
2982 
2983   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
2984   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
2985     const Loop *NestedLoop = NestedAR->getLoop();
2986     if (L->contains(NestedLoop)
2987             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
2988             : (!NestedLoop->contains(L) &&
2989                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
2990       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->op_begin(),
2991                                                   NestedAR->op_end());
2992       Operands[0] = NestedAR->getStart();
2993       // AddRecs require their operands be loop-invariant with respect to their
2994       // loops. Don't perform this transformation if it would break this
2995       // requirement.
2996       bool AllInvariant = all_of(
2997           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
2998 
2999       if (AllInvariant) {
3000         // Create a recurrence for the outer loop with the same step size.
3001         //
3002         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3003         // inner recurrence has the same property.
3004         SCEV::NoWrapFlags OuterFlags =
3005           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3006 
3007         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3008         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3009           return isLoopInvariant(Op, NestedLoop);
3010         });
3011 
3012         if (AllInvariant) {
3013           // Ok, both add recurrences are valid after the transformation.
3014           //
3015           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3016           // the outer recurrence has the same property.
3017           SCEV::NoWrapFlags InnerFlags =
3018             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3019           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3020         }
3021       }
3022       // Reset Operands to its original state.
3023       Operands[0] = NestedAR;
3024     }
3025   }
3026 
3027   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3028   // already have one, otherwise create a new one.
3029   FoldingSetNodeID ID;
3030   ID.AddInteger(scAddRecExpr);
3031   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3032     ID.AddPointer(Operands[i]);
3033   ID.AddPointer(L);
3034   void *IP = nullptr;
3035   SCEVAddRecExpr *S =
3036     static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
3037   if (!S) {
3038     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Operands.size());
3039     std::uninitialized_copy(Operands.begin(), Operands.end(), O);
3040     S = new (SCEVAllocator) SCEVAddRecExpr(ID.Intern(SCEVAllocator),
3041                                            O, Operands.size(), L);
3042     UniqueSCEVs.InsertNode(S, IP);
3043   }
3044   S->setNoWrapFlags(Flags);
3045   return S;
3046 }
3047 
3048 const SCEV *
3049 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3050                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3051   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3052   // getSCEV(Base)->getType() has the same address space as Base->getType()
3053   // because SCEV::getType() preserves the address space.
3054   Type *IntPtrTy = getEffectiveSCEVType(BaseExpr->getType());
3055   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3056   // instruction to its SCEV, because the Instruction may be guarded by control
3057   // flow and the no-overflow bits may not be valid for the expression in any
3058   // context. This can be fixed similarly to how these flags are handled for
3059   // adds.
3060   SCEV::NoWrapFlags Wrap = GEP->isInBounds() ? SCEV::FlagNSW
3061                                              : SCEV::FlagAnyWrap;
3062 
3063   const SCEV *TotalOffset = getZero(IntPtrTy);
3064   // The array size is unimportant. The first thing we do on CurTy is getting
3065   // its element type.
3066   Type *CurTy = ArrayType::get(GEP->getSourceElementType(), 0);
3067   for (const SCEV *IndexExpr : IndexExprs) {
3068     // Compute the (potentially symbolic) offset in bytes for this index.
3069     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3070       // For a struct, add the member offset.
3071       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3072       unsigned FieldNo = Index->getZExtValue();
3073       const SCEV *FieldOffset = getOffsetOfExpr(IntPtrTy, STy, FieldNo);
3074 
3075       // Add the field offset to the running total offset.
3076       TotalOffset = getAddExpr(TotalOffset, FieldOffset);
3077 
3078       // Update CurTy to the type of the field at Index.
3079       CurTy = STy->getTypeAtIndex(Index);
3080     } else {
3081       // Update CurTy to its element type.
3082       CurTy = cast<SequentialType>(CurTy)->getElementType();
3083       // For an array, add the element offset, explicitly scaled.
3084       const SCEV *ElementSize = getSizeOfExpr(IntPtrTy, CurTy);
3085       // Getelementptr indices are signed.
3086       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntPtrTy);
3087 
3088       // Multiply the index by the element size to compute the element offset.
3089       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, Wrap);
3090 
3091       // Add the element offset to the running total offset.
3092       TotalOffset = getAddExpr(TotalOffset, LocalOffset);
3093     }
3094   }
3095 
3096   // Add the total offset from all the GEP indices to the base.
3097   return getAddExpr(BaseExpr, TotalOffset, Wrap);
3098 }
3099 
3100 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS,
3101                                          const SCEV *RHS) {
3102   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3103   return getSMaxExpr(Ops);
3104 }
3105 
3106 const SCEV *
3107 ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3108   assert(!Ops.empty() && "Cannot get empty smax!");
3109   if (Ops.size() == 1) return Ops[0];
3110 #ifndef NDEBUG
3111   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3112   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3113     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3114            "SCEVSMaxExpr operand types don't match!");
3115 #endif
3116 
3117   // Sort by complexity, this groups all similar expression types together.
3118   GroupByComplexity(Ops, &LI);
3119 
3120   // If there are any constants, fold them together.
3121   unsigned Idx = 0;
3122   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3123     ++Idx;
3124     assert(Idx < Ops.size());
3125     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3126       // We found two constants, fold them together!
3127       ConstantInt *Fold = ConstantInt::get(
3128           getContext(), APIntOps::smax(LHSC->getAPInt(), RHSC->getAPInt()));
3129       Ops[0] = getConstant(Fold);
3130       Ops.erase(Ops.begin()+1);  // Erase the folded element
3131       if (Ops.size() == 1) return Ops[0];
3132       LHSC = cast<SCEVConstant>(Ops[0]);
3133     }
3134 
3135     // If we are left with a constant minimum-int, strip it off.
3136     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(true)) {
3137       Ops.erase(Ops.begin());
3138       --Idx;
3139     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(true)) {
3140       // If we have an smax with a constant maximum-int, it will always be
3141       // maximum-int.
3142       return Ops[0];
3143     }
3144 
3145     if (Ops.size() == 1) return Ops[0];
3146   }
3147 
3148   // Find the first SMax
3149   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scSMaxExpr)
3150     ++Idx;
3151 
3152   // Check to see if one of the operands is an SMax. If so, expand its operands
3153   // onto our operand list, and recurse to simplify.
3154   if (Idx < Ops.size()) {
3155     bool DeletedSMax = false;
3156     while (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(Ops[Idx])) {
3157       Ops.erase(Ops.begin()+Idx);
3158       Ops.append(SMax->op_begin(), SMax->op_end());
3159       DeletedSMax = true;
3160     }
3161 
3162     if (DeletedSMax)
3163       return getSMaxExpr(Ops);
3164   }
3165 
3166   // Okay, check to see if the same value occurs in the operand list twice.  If
3167   // so, delete one.  Since we sorted the list, these values are required to
3168   // be adjacent.
3169   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3170     //  X smax Y smax Y  -->  X smax Y
3171     //  X smax Y         -->  X, if X is always greater than Y
3172     if (Ops[i] == Ops[i+1] ||
3173         isKnownPredicate(ICmpInst::ICMP_SGE, Ops[i], Ops[i+1])) {
3174       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3175       --i; --e;
3176     } else if (isKnownPredicate(ICmpInst::ICMP_SLE, Ops[i], Ops[i+1])) {
3177       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3178       --i; --e;
3179     }
3180 
3181   if (Ops.size() == 1) return Ops[0];
3182 
3183   assert(!Ops.empty() && "Reduced smax down to nothing!");
3184 
3185   // Okay, it looks like we really DO need an smax expr.  Check to see if we
3186   // already have one, otherwise create a new one.
3187   FoldingSetNodeID ID;
3188   ID.AddInteger(scSMaxExpr);
3189   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3190     ID.AddPointer(Ops[i]);
3191   void *IP = nullptr;
3192   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3193   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3194   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3195   SCEV *S = new (SCEVAllocator) SCEVSMaxExpr(ID.Intern(SCEVAllocator),
3196                                              O, Ops.size());
3197   UniqueSCEVs.InsertNode(S, IP);
3198   return S;
3199 }
3200 
3201 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS,
3202                                          const SCEV *RHS) {
3203   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3204   return getUMaxExpr(Ops);
3205 }
3206 
3207 const SCEV *
3208 ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3209   assert(!Ops.empty() && "Cannot get empty umax!");
3210   if (Ops.size() == 1) return Ops[0];
3211 #ifndef NDEBUG
3212   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3213   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
3214     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3215            "SCEVUMaxExpr operand types don't match!");
3216 #endif
3217 
3218   // Sort by complexity, this groups all similar expression types together.
3219   GroupByComplexity(Ops, &LI);
3220 
3221   // If there are any constants, fold them together.
3222   unsigned Idx = 0;
3223   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3224     ++Idx;
3225     assert(Idx < Ops.size());
3226     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3227       // We found two constants, fold them together!
3228       ConstantInt *Fold = ConstantInt::get(
3229           getContext(), APIntOps::umax(LHSC->getAPInt(), RHSC->getAPInt()));
3230       Ops[0] = getConstant(Fold);
3231       Ops.erase(Ops.begin()+1);  // Erase the folded element
3232       if (Ops.size() == 1) return Ops[0];
3233       LHSC = cast<SCEVConstant>(Ops[0]);
3234     }
3235 
3236     // If we are left with a constant minimum-int, strip it off.
3237     if (cast<SCEVConstant>(Ops[0])->getValue()->isMinValue(false)) {
3238       Ops.erase(Ops.begin());
3239       --Idx;
3240     } else if (cast<SCEVConstant>(Ops[0])->getValue()->isMaxValue(false)) {
3241       // If we have an umax with a constant maximum-int, it will always be
3242       // maximum-int.
3243       return Ops[0];
3244     }
3245 
3246     if (Ops.size() == 1) return Ops[0];
3247   }
3248 
3249   // Find the first UMax
3250   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scUMaxExpr)
3251     ++Idx;
3252 
3253   // Check to see if one of the operands is a UMax. If so, expand its operands
3254   // onto our operand list, and recurse to simplify.
3255   if (Idx < Ops.size()) {
3256     bool DeletedUMax = false;
3257     while (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(Ops[Idx])) {
3258       Ops.erase(Ops.begin()+Idx);
3259       Ops.append(UMax->op_begin(), UMax->op_end());
3260       DeletedUMax = true;
3261     }
3262 
3263     if (DeletedUMax)
3264       return getUMaxExpr(Ops);
3265   }
3266 
3267   // Okay, check to see if the same value occurs in the operand list twice.  If
3268   // so, delete one.  Since we sorted the list, these values are required to
3269   // be adjacent.
3270   for (unsigned i = 0, e = Ops.size()-1; i != e; ++i)
3271     //  X umax Y umax Y  -->  X umax Y
3272     //  X umax Y         -->  X, if X is always greater than Y
3273     if (Ops[i] == Ops[i+1] ||
3274         isKnownPredicate(ICmpInst::ICMP_UGE, Ops[i], Ops[i+1])) {
3275       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+2);
3276       --i; --e;
3277     } else if (isKnownPredicate(ICmpInst::ICMP_ULE, Ops[i], Ops[i+1])) {
3278       Ops.erase(Ops.begin()+i, Ops.begin()+i+1);
3279       --i; --e;
3280     }
3281 
3282   if (Ops.size() == 1) return Ops[0];
3283 
3284   assert(!Ops.empty() && "Reduced umax down to nothing!");
3285 
3286   // Okay, it looks like we really DO need a umax expr.  Check to see if we
3287   // already have one, otherwise create a new one.
3288   FoldingSetNodeID ID;
3289   ID.AddInteger(scUMaxExpr);
3290   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3291     ID.AddPointer(Ops[i]);
3292   void *IP = nullptr;
3293   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3294   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3295   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3296   SCEV *S = new (SCEVAllocator) SCEVUMaxExpr(ID.Intern(SCEVAllocator),
3297                                              O, Ops.size());
3298   UniqueSCEVs.InsertNode(S, IP);
3299   return S;
3300 }
3301 
3302 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3303                                          const SCEV *RHS) {
3304   // ~smax(~x, ~y) == smin(x, y).
3305   return getNotSCEV(getSMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3306 }
3307 
3308 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3309                                          const SCEV *RHS) {
3310   // ~umax(~x, ~y) == umin(x, y)
3311   return getNotSCEV(getUMaxExpr(getNotSCEV(LHS), getNotSCEV(RHS)));
3312 }
3313 
3314 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3315   // We can bypass creating a target-independent
3316   // constant expression and then folding it back into a ConstantInt.
3317   // This is just a compile-time optimization.
3318   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3319 }
3320 
3321 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3322                                              StructType *STy,
3323                                              unsigned FieldNo) {
3324   // We can bypass creating a target-independent
3325   // constant expression and then folding it back into a ConstantInt.
3326   // This is just a compile-time optimization.
3327   return getConstant(
3328       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3329 }
3330 
3331 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3332   // Don't attempt to do anything other than create a SCEVUnknown object
3333   // here.  createSCEV only calls getUnknown after checking for all other
3334   // interesting possibilities, and any other code that calls getUnknown
3335   // is doing so in order to hide a value from SCEV canonicalization.
3336 
3337   FoldingSetNodeID ID;
3338   ID.AddInteger(scUnknown);
3339   ID.AddPointer(V);
3340   void *IP = nullptr;
3341   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3342     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3343            "Stale SCEVUnknown in uniquing map!");
3344     return S;
3345   }
3346   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3347                                             FirstUnknown);
3348   FirstUnknown = cast<SCEVUnknown>(S);
3349   UniqueSCEVs.InsertNode(S, IP);
3350   return S;
3351 }
3352 
3353 //===----------------------------------------------------------------------===//
3354 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3355 //
3356 
3357 /// Test if values of the given type are analyzable within the SCEV
3358 /// framework. This primarily includes integer types, and it can optionally
3359 /// include pointer types if the ScalarEvolution class has access to
3360 /// target-specific information.
3361 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3362   // Integers and pointers are always SCEVable.
3363   return Ty->isIntegerTy() || Ty->isPointerTy();
3364 }
3365 
3366 /// Return the size in bits of the specified type, for which isSCEVable must
3367 /// return true.
3368 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3369   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3370   return getDataLayout().getTypeSizeInBits(Ty);
3371 }
3372 
3373 /// Return a type with the same bitwidth as the given type and which represents
3374 /// how SCEV will treat the given type, for which isSCEVable must return
3375 /// true. For pointer types, this is the pointer-sized integer type.
3376 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3377   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3378 
3379   if (Ty->isIntegerTy())
3380     return Ty;
3381 
3382   // The only other support type is pointer.
3383   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3384   return getDataLayout().getIntPtrType(Ty);
3385 }
3386 
3387 const SCEV *ScalarEvolution::getCouldNotCompute() {
3388   return CouldNotCompute.get();
3389 }
3390 
3391 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3392   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3393     auto *SU = dyn_cast<SCEVUnknown>(S);
3394     return SU && SU->getValue() == nullptr;
3395   });
3396 
3397   return !ContainsNulls;
3398 }
3399 
3400 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3401   HasRecMapType::iterator I = HasRecMap.find(S);
3402   if (I != HasRecMap.end())
3403     return I->second;
3404 
3405   bool FoundAddRec = SCEVExprContains(S, isa<SCEVAddRecExpr, const SCEV *>);
3406   HasRecMap.insert({S, FoundAddRec});
3407   return FoundAddRec;
3408 }
3409 
3410 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3411 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3412 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3413 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3414   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3415   if (!Add)
3416     return {S, nullptr};
3417 
3418   if (Add->getNumOperands() != 2)
3419     return {S, nullptr};
3420 
3421   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
3422   if (!ConstOp)
3423     return {S, nullptr};
3424 
3425   return {Add->getOperand(1), ConstOp->getValue()};
3426 }
3427 
3428 /// Return the ValueOffsetPair set for \p S. \p S can be represented
3429 /// by the value and offset from any ValueOffsetPair in the set.
3430 SetVector<ScalarEvolution::ValueOffsetPair> *
3431 ScalarEvolution::getSCEVValues(const SCEV *S) {
3432   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
3433   if (SI == ExprValueMap.end())
3434     return nullptr;
3435 #ifndef NDEBUG
3436   if (VerifySCEVMap) {
3437     // Check there is no dangling Value in the set returned.
3438     for (const auto &VE : SI->second)
3439       assert(ValueExprMap.count(VE.first));
3440   }
3441 #endif
3442   return &SI->second;
3443 }
3444 
3445 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
3446 /// cannot be used separately. eraseValueFromMap should be used to remove
3447 /// V from ValueExprMap and ExprValueMap at the same time.
3448 void ScalarEvolution::eraseValueFromMap(Value *V) {
3449   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3450   if (I != ValueExprMap.end()) {
3451     const SCEV *S = I->second;
3452     // Remove {V, 0} from the set of ExprValueMap[S]
3453     if (SetVector<ValueOffsetPair> *SV = getSCEVValues(S))
3454       SV->remove({V, nullptr});
3455 
3456     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
3457     const SCEV *Stripped;
3458     ConstantInt *Offset;
3459     std::tie(Stripped, Offset) = splitAddExpr(S);
3460     if (Offset != nullptr) {
3461       if (SetVector<ValueOffsetPair> *SV = getSCEVValues(Stripped))
3462         SV->remove({V, Offset});
3463     }
3464     ValueExprMap.erase(V);
3465   }
3466 }
3467 
3468 /// Return an existing SCEV if it exists, otherwise analyze the expression and
3469 /// create a new one.
3470 const SCEV *ScalarEvolution::getSCEV(Value *V) {
3471   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3472 
3473   const SCEV *S = getExistingSCEV(V);
3474   if (S == nullptr) {
3475     S = createSCEV(V);
3476     // During PHI resolution, it is possible to create two SCEVs for the same
3477     // V, so it is needed to double check whether V->S is inserted into
3478     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
3479     std::pair<ValueExprMapType::iterator, bool> Pair =
3480         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
3481     if (Pair.second) {
3482       ExprValueMap[S].insert({V, nullptr});
3483 
3484       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
3485       // ExprValueMap.
3486       const SCEV *Stripped = S;
3487       ConstantInt *Offset = nullptr;
3488       std::tie(Stripped, Offset) = splitAddExpr(S);
3489       // If stripped is SCEVUnknown, don't bother to save
3490       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
3491       // increase the complexity of the expansion code.
3492       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
3493       // because it may generate add/sub instead of GEP in SCEV expansion.
3494       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
3495           !isa<GetElementPtrInst>(V))
3496         ExprValueMap[Stripped].insert({V, Offset});
3497     }
3498   }
3499   return S;
3500 }
3501 
3502 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
3503   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
3504 
3505   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
3506   if (I != ValueExprMap.end()) {
3507     const SCEV *S = I->second;
3508     if (checkValidity(S))
3509       return S;
3510     eraseValueFromMap(V);
3511     forgetMemoizedResults(S);
3512   }
3513   return nullptr;
3514 }
3515 
3516 /// Return a SCEV corresponding to -V = -1*V
3517 ///
3518 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
3519                                              SCEV::NoWrapFlags Flags) {
3520   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3521     return getConstant(
3522                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
3523 
3524   Type *Ty = V->getType();
3525   Ty = getEffectiveSCEVType(Ty);
3526   return getMulExpr(
3527       V, getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty))), Flags);
3528 }
3529 
3530 /// Return a SCEV corresponding to ~V = -1-V
3531 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
3532   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
3533     return getConstant(
3534                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
3535 
3536   Type *Ty = V->getType();
3537   Ty = getEffectiveSCEVType(Ty);
3538   const SCEV *AllOnes =
3539                    getConstant(cast<ConstantInt>(Constant::getAllOnesValue(Ty)));
3540   return getMinusSCEV(AllOnes, V);
3541 }
3542 
3543 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
3544                                           SCEV::NoWrapFlags Flags) {
3545   // Fast path: X - X --> 0.
3546   if (LHS == RHS)
3547     return getZero(LHS->getType());
3548 
3549   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
3550   // makes it so that we cannot make much use of NUW.
3551   auto AddFlags = SCEV::FlagAnyWrap;
3552   const bool RHSIsNotMinSigned =
3553       !getSignedRange(RHS).getSignedMin().isMinSignedValue();
3554   if (maskFlags(Flags, SCEV::FlagNSW) == SCEV::FlagNSW) {
3555     // Let M be the minimum representable signed value. Then (-1)*RHS
3556     // signed-wraps if and only if RHS is M. That can happen even for
3557     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
3558     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
3559     // (-1)*RHS, we need to prove that RHS != M.
3560     //
3561     // If LHS is non-negative and we know that LHS - RHS does not
3562     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
3563     // either by proving that RHS > M or that LHS >= 0.
3564     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
3565       AddFlags = SCEV::FlagNSW;
3566     }
3567   }
3568 
3569   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
3570   // RHS is NSW and LHS >= 0.
3571   //
3572   // The difficulty here is that the NSW flag may have been proven
3573   // relative to a loop that is to be found in a recurrence in LHS and
3574   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
3575   // larger scope than intended.
3576   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3577 
3578   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags);
3579 }
3580 
3581 const SCEV *
3582 ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty) {
3583   Type *SrcTy = V->getType();
3584   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3585          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3586          "Cannot truncate or zero extend with non-integer arguments!");
3587   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3588     return V;  // No conversion
3589   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3590     return getTruncateExpr(V, Ty);
3591   return getZeroExtendExpr(V, Ty);
3592 }
3593 
3594 const SCEV *
3595 ScalarEvolution::getTruncateOrSignExtend(const SCEV *V,
3596                                          Type *Ty) {
3597   Type *SrcTy = V->getType();
3598   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3599          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3600          "Cannot truncate or zero extend with non-integer arguments!");
3601   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3602     return V;  // No conversion
3603   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
3604     return getTruncateExpr(V, Ty);
3605   return getSignExtendExpr(V, Ty);
3606 }
3607 
3608 const SCEV *
3609 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
3610   Type *SrcTy = V->getType();
3611   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3612          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3613          "Cannot noop or zero extend with non-integer arguments!");
3614   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3615          "getNoopOrZeroExtend cannot truncate!");
3616   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3617     return V;  // No conversion
3618   return getZeroExtendExpr(V, Ty);
3619 }
3620 
3621 const SCEV *
3622 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
3623   Type *SrcTy = V->getType();
3624   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3625          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3626          "Cannot noop or sign extend with non-integer arguments!");
3627   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3628          "getNoopOrSignExtend cannot truncate!");
3629   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3630     return V;  // No conversion
3631   return getSignExtendExpr(V, Ty);
3632 }
3633 
3634 const SCEV *
3635 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
3636   Type *SrcTy = V->getType();
3637   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3638          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3639          "Cannot noop or any extend with non-integer arguments!");
3640   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
3641          "getNoopOrAnyExtend cannot truncate!");
3642   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3643     return V;  // No conversion
3644   return getAnyExtendExpr(V, Ty);
3645 }
3646 
3647 const SCEV *
3648 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
3649   Type *SrcTy = V->getType();
3650   assert((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
3651          (Ty->isIntegerTy() || Ty->isPointerTy()) &&
3652          "Cannot truncate or noop with non-integer arguments!");
3653   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
3654          "getTruncateOrNoop cannot extend!");
3655   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
3656     return V;  // No conversion
3657   return getTruncateExpr(V, Ty);
3658 }
3659 
3660 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
3661                                                         const SCEV *RHS) {
3662   const SCEV *PromotedLHS = LHS;
3663   const SCEV *PromotedRHS = RHS;
3664 
3665   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3666     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3667   else
3668     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3669 
3670   return getUMaxExpr(PromotedLHS, PromotedRHS);
3671 }
3672 
3673 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
3674                                                         const SCEV *RHS) {
3675   const SCEV *PromotedLHS = LHS;
3676   const SCEV *PromotedRHS = RHS;
3677 
3678   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
3679     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
3680   else
3681     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
3682 
3683   return getUMinExpr(PromotedLHS, PromotedRHS);
3684 }
3685 
3686 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
3687   // A pointer operand may evaluate to a nonpointer expression, such as null.
3688   if (!V->getType()->isPointerTy())
3689     return V;
3690 
3691   if (const SCEVCastExpr *Cast = dyn_cast<SCEVCastExpr>(V)) {
3692     return getPointerBase(Cast->getOperand());
3693   } else if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(V)) {
3694     const SCEV *PtrOp = nullptr;
3695     for (const SCEV *NAryOp : NAry->operands()) {
3696       if (NAryOp->getType()->isPointerTy()) {
3697         // Cannot find the base of an expression with multiple pointer operands.
3698         if (PtrOp)
3699           return V;
3700         PtrOp = NAryOp;
3701       }
3702     }
3703     if (!PtrOp)
3704       return V;
3705     return getPointerBase(PtrOp);
3706   }
3707   return V;
3708 }
3709 
3710 /// Push users of the given Instruction onto the given Worklist.
3711 static void
3712 PushDefUseChildren(Instruction *I,
3713                    SmallVectorImpl<Instruction *> &Worklist) {
3714   // Push the def-use children onto the Worklist stack.
3715   for (User *U : I->users())
3716     Worklist.push_back(cast<Instruction>(U));
3717 }
3718 
3719 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
3720   SmallVector<Instruction *, 16> Worklist;
3721   PushDefUseChildren(PN, Worklist);
3722 
3723   SmallPtrSet<Instruction *, 8> Visited;
3724   Visited.insert(PN);
3725   while (!Worklist.empty()) {
3726     Instruction *I = Worklist.pop_back_val();
3727     if (!Visited.insert(I).second)
3728       continue;
3729 
3730     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
3731     if (It != ValueExprMap.end()) {
3732       const SCEV *Old = It->second;
3733 
3734       // Short-circuit the def-use traversal if the symbolic name
3735       // ceases to appear in expressions.
3736       if (Old != SymName && !hasOperand(Old, SymName))
3737         continue;
3738 
3739       // SCEVUnknown for a PHI either means that it has an unrecognized
3740       // structure, it's a PHI that's in the progress of being computed
3741       // by createNodeForPHI, or it's a single-value PHI. In the first case,
3742       // additional loop trip count information isn't going to change anything.
3743       // In the second case, createNodeForPHI will perform the necessary
3744       // updates on its own when it gets to that point. In the third, we do
3745       // want to forget the SCEVUnknown.
3746       if (!isa<PHINode>(I) ||
3747           !isa<SCEVUnknown>(Old) ||
3748           (I != PN && Old == SymName)) {
3749         eraseValueFromMap(It->first);
3750         forgetMemoizedResults(Old);
3751       }
3752     }
3753 
3754     PushDefUseChildren(I, Worklist);
3755   }
3756 }
3757 
3758 namespace {
3759 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
3760 public:
3761   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3762                              ScalarEvolution &SE) {
3763     SCEVInitRewriter Rewriter(L, SE);
3764     const SCEV *Result = Rewriter.visit(S);
3765     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3766   }
3767 
3768   SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
3769       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3770 
3771   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3772     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3773       Valid = false;
3774     return Expr;
3775   }
3776 
3777   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3778     // Only allow AddRecExprs for this loop.
3779     if (Expr->getLoop() == L)
3780       return Expr->getStart();
3781     Valid = false;
3782     return Expr;
3783   }
3784 
3785   bool isValid() { return Valid; }
3786 
3787 private:
3788   const Loop *L;
3789   bool Valid;
3790 };
3791 
3792 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
3793 public:
3794   static const SCEV *rewrite(const SCEV *S, const Loop *L,
3795                              ScalarEvolution &SE) {
3796     SCEVShiftRewriter Rewriter(L, SE);
3797     const SCEV *Result = Rewriter.visit(S);
3798     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
3799   }
3800 
3801   SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
3802       : SCEVRewriteVisitor(SE), L(L), Valid(true) {}
3803 
3804   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
3805     // Only allow AddRecExprs for this loop.
3806     if (!(SE.getLoopDisposition(Expr, L) == ScalarEvolution::LoopInvariant))
3807       Valid = false;
3808     return Expr;
3809   }
3810 
3811   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
3812     if (Expr->getLoop() == L && Expr->isAffine())
3813       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
3814     Valid = false;
3815     return Expr;
3816   }
3817   bool isValid() { return Valid; }
3818 
3819 private:
3820   const Loop *L;
3821   bool Valid;
3822 };
3823 } // end anonymous namespace
3824 
3825 SCEV::NoWrapFlags
3826 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
3827   if (!AR->isAffine())
3828     return SCEV::FlagAnyWrap;
3829 
3830   typedef OverflowingBinaryOperator OBO;
3831   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
3832 
3833   if (!AR->hasNoSignedWrap()) {
3834     ConstantRange AddRecRange = getSignedRange(AR);
3835     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
3836 
3837     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3838         Instruction::Add, IncRange, OBO::NoSignedWrap);
3839     if (NSWRegion.contains(AddRecRange))
3840       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
3841   }
3842 
3843   if (!AR->hasNoUnsignedWrap()) {
3844     ConstantRange AddRecRange = getUnsignedRange(AR);
3845     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
3846 
3847     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
3848         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
3849     if (NUWRegion.contains(AddRecRange))
3850       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
3851   }
3852 
3853   return Result;
3854 }
3855 
3856 namespace {
3857 /// Represents an abstract binary operation.  This may exist as a
3858 /// normal instruction or constant expression, or may have been
3859 /// derived from an expression tree.
3860 struct BinaryOp {
3861   unsigned Opcode;
3862   Value *LHS;
3863   Value *RHS;
3864   bool IsNSW;
3865   bool IsNUW;
3866 
3867   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
3868   /// constant expression.
3869   Operator *Op;
3870 
3871   explicit BinaryOp(Operator *Op)
3872       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
3873         IsNSW(false), IsNUW(false), Op(Op) {
3874     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
3875       IsNSW = OBO->hasNoSignedWrap();
3876       IsNUW = OBO->hasNoUnsignedWrap();
3877     }
3878   }
3879 
3880   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
3881                     bool IsNUW = false)
3882       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW),
3883         Op(nullptr) {}
3884 };
3885 }
3886 
3887 
3888 /// Try to map \p V into a BinaryOp, and return \c None on failure.
3889 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
3890   auto *Op = dyn_cast<Operator>(V);
3891   if (!Op)
3892     return None;
3893 
3894   // Implementation detail: all the cleverness here should happen without
3895   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
3896   // SCEV expressions when possible, and we should not break that.
3897 
3898   switch (Op->getOpcode()) {
3899   case Instruction::Add:
3900   case Instruction::Sub:
3901   case Instruction::Mul:
3902   case Instruction::UDiv:
3903   case Instruction::And:
3904   case Instruction::Or:
3905   case Instruction::AShr:
3906   case Instruction::Shl:
3907     return BinaryOp(Op);
3908 
3909   case Instruction::Xor:
3910     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
3911       // If the RHS of the xor is a signbit, then this is just an add.
3912       // Instcombine turns add of signbit into xor as a strength reduction step.
3913       if (RHSC->getValue().isSignBit())
3914         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
3915     return BinaryOp(Op);
3916 
3917   case Instruction::LShr:
3918     // Turn logical shift right of a constant into a unsigned divide.
3919     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
3920       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
3921 
3922       // If the shift count is not less than the bitwidth, the result of
3923       // the shift is undefined. Don't try to analyze it, because the
3924       // resolution chosen here may differ from the resolution chosen in
3925       // other parts of the compiler.
3926       if (SA->getValue().ult(BitWidth)) {
3927         Constant *X =
3928             ConstantInt::get(SA->getContext(),
3929                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
3930         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
3931       }
3932     }
3933     return BinaryOp(Op);
3934 
3935   case Instruction::ExtractValue: {
3936     auto *EVI = cast<ExtractValueInst>(Op);
3937     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
3938       break;
3939 
3940     auto *CI = dyn_cast<CallInst>(EVI->getAggregateOperand());
3941     if (!CI)
3942       break;
3943 
3944     if (auto *F = CI->getCalledFunction())
3945       switch (F->getIntrinsicID()) {
3946       case Intrinsic::sadd_with_overflow:
3947       case Intrinsic::uadd_with_overflow: {
3948         if (!isOverflowIntrinsicNoWrap(cast<IntrinsicInst>(CI), DT))
3949           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3950                           CI->getArgOperand(1));
3951 
3952         // Now that we know that all uses of the arithmetic-result component of
3953         // CI are guarded by the overflow check, we can go ahead and pretend
3954         // that the arithmetic is non-overflowing.
3955         if (F->getIntrinsicID() == Intrinsic::sadd_with_overflow)
3956           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3957                           CI->getArgOperand(1), /* IsNSW = */ true,
3958                           /* IsNUW = */ false);
3959         else
3960           return BinaryOp(Instruction::Add, CI->getArgOperand(0),
3961                           CI->getArgOperand(1), /* IsNSW = */ false,
3962                           /* IsNUW*/ true);
3963       }
3964 
3965       case Intrinsic::ssub_with_overflow:
3966       case Intrinsic::usub_with_overflow:
3967         return BinaryOp(Instruction::Sub, CI->getArgOperand(0),
3968                         CI->getArgOperand(1));
3969 
3970       case Intrinsic::smul_with_overflow:
3971       case Intrinsic::umul_with_overflow:
3972         return BinaryOp(Instruction::Mul, CI->getArgOperand(0),
3973                         CI->getArgOperand(1));
3974       default:
3975         break;
3976       }
3977   }
3978 
3979   default:
3980     break;
3981   }
3982 
3983   return None;
3984 }
3985 
3986 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
3987   const Loop *L = LI.getLoopFor(PN->getParent());
3988   if (!L || L->getHeader() != PN->getParent())
3989     return nullptr;
3990 
3991   // The loop may have multiple entrances or multiple exits; we can analyze
3992   // this phi as an addrec if it has a unique entry value and a unique
3993   // backedge value.
3994   Value *BEValueV = nullptr, *StartValueV = nullptr;
3995   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
3996     Value *V = PN->getIncomingValue(i);
3997     if (L->contains(PN->getIncomingBlock(i))) {
3998       if (!BEValueV) {
3999         BEValueV = V;
4000       } else if (BEValueV != V) {
4001         BEValueV = nullptr;
4002         break;
4003       }
4004     } else if (!StartValueV) {
4005       StartValueV = V;
4006     } else if (StartValueV != V) {
4007       StartValueV = nullptr;
4008       break;
4009     }
4010   }
4011   if (BEValueV && StartValueV) {
4012     // While we are analyzing this PHI node, handle its value symbolically.
4013     const SCEV *SymbolicName = getUnknown(PN);
4014     assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
4015            "PHI node already processed?");
4016     ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
4017 
4018     // Using this symbolic name for the PHI, analyze the value coming around
4019     // the back-edge.
4020     const SCEV *BEValue = getSCEV(BEValueV);
4021 
4022     // NOTE: If BEValue is loop invariant, we know that the PHI node just
4023     // has a special value for the first iteration of the loop.
4024 
4025     // If the value coming around the backedge is an add with the symbolic
4026     // value we just inserted, then we found a simple induction variable!
4027     if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
4028       // If there is a single occurrence of the symbolic value, replace it
4029       // with a recurrence.
4030       unsigned FoundIndex = Add->getNumOperands();
4031       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4032         if (Add->getOperand(i) == SymbolicName)
4033           if (FoundIndex == e) {
4034             FoundIndex = i;
4035             break;
4036           }
4037 
4038       if (FoundIndex != Add->getNumOperands()) {
4039         // Create an add with everything but the specified operand.
4040         SmallVector<const SCEV *, 8> Ops;
4041         for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
4042           if (i != FoundIndex)
4043             Ops.push_back(Add->getOperand(i));
4044         const SCEV *Accum = getAddExpr(Ops);
4045 
4046         // This is not a valid addrec if the step amount is varying each
4047         // loop iteration, but is not itself an addrec in this loop.
4048         if (isLoopInvariant(Accum, L) ||
4049             (isa<SCEVAddRecExpr>(Accum) &&
4050              cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
4051           SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4052 
4053           if (auto BO = MatchBinaryOp(BEValueV, DT)) {
4054             if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
4055               if (BO->IsNUW)
4056                 Flags = setFlags(Flags, SCEV::FlagNUW);
4057               if (BO->IsNSW)
4058                 Flags = setFlags(Flags, SCEV::FlagNSW);
4059             }
4060           } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
4061             // If the increment is an inbounds GEP, then we know the address
4062             // space cannot be wrapped around. We cannot make any guarantee
4063             // about signed or unsigned overflow because pointers are
4064             // unsigned but we may have a negative index from the base
4065             // pointer. We can guarantee that no unsigned wrap occurs if the
4066             // indices form a positive value.
4067             if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
4068               Flags = setFlags(Flags, SCEV::FlagNW);
4069 
4070               const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
4071               if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
4072                 Flags = setFlags(Flags, SCEV::FlagNUW);
4073             }
4074 
4075             // We cannot transfer nuw and nsw flags from subtraction
4076             // operations -- sub nuw X, Y is not the same as add nuw X, -Y
4077             // for instance.
4078           }
4079 
4080           const SCEV *StartVal = getSCEV(StartValueV);
4081           const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
4082 
4083           // Okay, for the entire analysis of this edge we assumed the PHI
4084           // to be symbolic.  We now need to go back and purge all of the
4085           // entries for the scalars that use the symbolic expression.
4086           forgetSymbolicName(PN, SymbolicName);
4087           ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
4088 
4089           // We can add Flags to the post-inc expression only if we
4090           // know that it us *undefined behavior* for BEValueV to
4091           // overflow.
4092           if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
4093             if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
4094               (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
4095 
4096           return PHISCEV;
4097         }
4098       }
4099     } else {
4100       // Otherwise, this could be a loop like this:
4101       //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
4102       // In this case, j = {1,+,1}  and BEValue is j.
4103       // Because the other in-value of i (0) fits the evolution of BEValue
4104       // i really is an addrec evolution.
4105       //
4106       // We can generalize this saying that i is the shifted value of BEValue
4107       // by one iteration:
4108       //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
4109       const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
4110       const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this);
4111       if (Shifted != getCouldNotCompute() &&
4112           Start != getCouldNotCompute()) {
4113         const SCEV *StartVal = getSCEV(StartValueV);
4114         if (Start == StartVal) {
4115           // Okay, for the entire analysis of this edge we assumed the PHI
4116           // to be symbolic.  We now need to go back and purge all of the
4117           // entries for the scalars that use the symbolic expression.
4118           forgetSymbolicName(PN, SymbolicName);
4119           ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
4120           return Shifted;
4121         }
4122       }
4123     }
4124 
4125     // Remove the temporary PHI node SCEV that has been inserted while intending
4126     // to create an AddRecExpr for this PHI node. We can not keep this temporary
4127     // as it will prevent later (possibly simpler) SCEV expressions to be added
4128     // to the ValueExprMap.
4129     eraseValueFromMap(PN);
4130   }
4131 
4132   return nullptr;
4133 }
4134 
4135 // Checks if the SCEV S is available at BB.  S is considered available at BB
4136 // if S can be materialized at BB without introducing a fault.
4137 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
4138                                BasicBlock *BB) {
4139   struct CheckAvailable {
4140     bool TraversalDone = false;
4141     bool Available = true;
4142 
4143     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
4144     BasicBlock *BB = nullptr;
4145     DominatorTree &DT;
4146 
4147     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
4148       : L(L), BB(BB), DT(DT) {}
4149 
4150     bool setUnavailable() {
4151       TraversalDone = true;
4152       Available = false;
4153       return false;
4154     }
4155 
4156     bool follow(const SCEV *S) {
4157       switch (S->getSCEVType()) {
4158       case scConstant: case scTruncate: case scZeroExtend: case scSignExtend:
4159       case scAddExpr: case scMulExpr: case scUMaxExpr: case scSMaxExpr:
4160         // These expressions are available if their operand(s) is/are.
4161         return true;
4162 
4163       case scAddRecExpr: {
4164         // We allow add recurrences that are on the loop BB is in, or some
4165         // outer loop.  This guarantees availability because the value of the
4166         // add recurrence at BB is simply the "current" value of the induction
4167         // variable.  We can relax this in the future; for instance an add
4168         // recurrence on a sibling dominating loop is also available at BB.
4169         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
4170         if (L && (ARLoop == L || ARLoop->contains(L)))
4171           return true;
4172 
4173         return setUnavailable();
4174       }
4175 
4176       case scUnknown: {
4177         // For SCEVUnknown, we check for simple dominance.
4178         const auto *SU = cast<SCEVUnknown>(S);
4179         Value *V = SU->getValue();
4180 
4181         if (isa<Argument>(V))
4182           return false;
4183 
4184         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
4185           return false;
4186 
4187         return setUnavailable();
4188       }
4189 
4190       case scUDivExpr:
4191       case scCouldNotCompute:
4192         // We do not try to smart about these at all.
4193         return setUnavailable();
4194       }
4195       llvm_unreachable("switch should be fully covered!");
4196     }
4197 
4198     bool isDone() { return TraversalDone; }
4199   };
4200 
4201   CheckAvailable CA(L, BB, DT);
4202   SCEVTraversal<CheckAvailable> ST(CA);
4203 
4204   ST.visitAll(S);
4205   return CA.Available;
4206 }
4207 
4208 // Try to match a control flow sequence that branches out at BI and merges back
4209 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
4210 // match.
4211 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
4212                           Value *&C, Value *&LHS, Value *&RHS) {
4213   C = BI->getCondition();
4214 
4215   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
4216   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
4217 
4218   if (!LeftEdge.isSingleEdge())
4219     return false;
4220 
4221   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
4222 
4223   Use &LeftUse = Merge->getOperandUse(0);
4224   Use &RightUse = Merge->getOperandUse(1);
4225 
4226   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
4227     LHS = LeftUse;
4228     RHS = RightUse;
4229     return true;
4230   }
4231 
4232   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
4233     LHS = RightUse;
4234     RHS = LeftUse;
4235     return true;
4236   }
4237 
4238   return false;
4239 }
4240 
4241 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
4242   auto IsReachable =
4243       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
4244   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
4245     const Loop *L = LI.getLoopFor(PN->getParent());
4246 
4247     // We don't want to break LCSSA, even in a SCEV expression tree.
4248     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
4249       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
4250         return nullptr;
4251 
4252     // Try to match
4253     //
4254     //  br %cond, label %left, label %right
4255     // left:
4256     //  br label %merge
4257     // right:
4258     //  br label %merge
4259     // merge:
4260     //  V = phi [ %x, %left ], [ %y, %right ]
4261     //
4262     // as "select %cond, %x, %y"
4263 
4264     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
4265     assert(IDom && "At least the entry block should dominate PN");
4266 
4267     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
4268     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
4269 
4270     if (BI && BI->isConditional() &&
4271         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
4272         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
4273         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
4274       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
4275   }
4276 
4277   return nullptr;
4278 }
4279 
4280 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
4281   if (const SCEV *S = createAddRecFromPHI(PN))
4282     return S;
4283 
4284   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
4285     return S;
4286 
4287   // If the PHI has a single incoming value, follow that value, unless the
4288   // PHI's incoming blocks are in a different loop, in which case doing so
4289   // risks breaking LCSSA form. Instcombine would normally zap these, but
4290   // it doesn't have DominatorTree information, so it may miss cases.
4291   if (Value *V = SimplifyInstruction(PN, getDataLayout(), &TLI, &DT, &AC))
4292     if (LI.replacementPreservesLCSSAForm(PN, V))
4293       return getSCEV(V);
4294 
4295   // If it's not a loop phi, we can't handle it yet.
4296   return getUnknown(PN);
4297 }
4298 
4299 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
4300                                                       Value *Cond,
4301                                                       Value *TrueVal,
4302                                                       Value *FalseVal) {
4303   // Handle "constant" branch or select. This can occur for instance when a
4304   // loop pass transforms an inner loop and moves on to process the outer loop.
4305   if (auto *CI = dyn_cast<ConstantInt>(Cond))
4306     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
4307 
4308   // Try to match some simple smax or umax patterns.
4309   auto *ICI = dyn_cast<ICmpInst>(Cond);
4310   if (!ICI)
4311     return getUnknown(I);
4312 
4313   Value *LHS = ICI->getOperand(0);
4314   Value *RHS = ICI->getOperand(1);
4315 
4316   switch (ICI->getPredicate()) {
4317   case ICmpInst::ICMP_SLT:
4318   case ICmpInst::ICMP_SLE:
4319     std::swap(LHS, RHS);
4320     LLVM_FALLTHROUGH;
4321   case ICmpInst::ICMP_SGT:
4322   case ICmpInst::ICMP_SGE:
4323     // a >s b ? a+x : b+x  ->  smax(a, b)+x
4324     // a >s b ? b+x : a+x  ->  smin(a, b)+x
4325     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4326       const SCEV *LS = getNoopOrSignExtend(getSCEV(LHS), I->getType());
4327       const SCEV *RS = getNoopOrSignExtend(getSCEV(RHS), I->getType());
4328       const SCEV *LA = getSCEV(TrueVal);
4329       const SCEV *RA = getSCEV(FalseVal);
4330       const SCEV *LDiff = getMinusSCEV(LA, LS);
4331       const SCEV *RDiff = getMinusSCEV(RA, RS);
4332       if (LDiff == RDiff)
4333         return getAddExpr(getSMaxExpr(LS, RS), LDiff);
4334       LDiff = getMinusSCEV(LA, RS);
4335       RDiff = getMinusSCEV(RA, LS);
4336       if (LDiff == RDiff)
4337         return getAddExpr(getSMinExpr(LS, RS), LDiff);
4338     }
4339     break;
4340   case ICmpInst::ICMP_ULT:
4341   case ICmpInst::ICMP_ULE:
4342     std::swap(LHS, RHS);
4343     LLVM_FALLTHROUGH;
4344   case ICmpInst::ICMP_UGT:
4345   case ICmpInst::ICMP_UGE:
4346     // a >u b ? a+x : b+x  ->  umax(a, b)+x
4347     // a >u b ? b+x : a+x  ->  umin(a, b)+x
4348     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
4349       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4350       const SCEV *RS = getNoopOrZeroExtend(getSCEV(RHS), I->getType());
4351       const SCEV *LA = getSCEV(TrueVal);
4352       const SCEV *RA = getSCEV(FalseVal);
4353       const SCEV *LDiff = getMinusSCEV(LA, LS);
4354       const SCEV *RDiff = getMinusSCEV(RA, RS);
4355       if (LDiff == RDiff)
4356         return getAddExpr(getUMaxExpr(LS, RS), LDiff);
4357       LDiff = getMinusSCEV(LA, RS);
4358       RDiff = getMinusSCEV(RA, LS);
4359       if (LDiff == RDiff)
4360         return getAddExpr(getUMinExpr(LS, RS), LDiff);
4361     }
4362     break;
4363   case ICmpInst::ICMP_NE:
4364     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
4365     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4366         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4367       const SCEV *One = getOne(I->getType());
4368       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4369       const SCEV *LA = getSCEV(TrueVal);
4370       const SCEV *RA = getSCEV(FalseVal);
4371       const SCEV *LDiff = getMinusSCEV(LA, LS);
4372       const SCEV *RDiff = getMinusSCEV(RA, One);
4373       if (LDiff == RDiff)
4374         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4375     }
4376     break;
4377   case ICmpInst::ICMP_EQ:
4378     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
4379     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
4380         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
4381       const SCEV *One = getOne(I->getType());
4382       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
4383       const SCEV *LA = getSCEV(TrueVal);
4384       const SCEV *RA = getSCEV(FalseVal);
4385       const SCEV *LDiff = getMinusSCEV(LA, One);
4386       const SCEV *RDiff = getMinusSCEV(RA, LS);
4387       if (LDiff == RDiff)
4388         return getAddExpr(getUMaxExpr(One, LS), LDiff);
4389     }
4390     break;
4391   default:
4392     break;
4393   }
4394 
4395   return getUnknown(I);
4396 }
4397 
4398 /// Expand GEP instructions into add and multiply operations. This allows them
4399 /// to be analyzed by regular SCEV code.
4400 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
4401   // Don't attempt to analyze GEPs over unsized objects.
4402   if (!GEP->getSourceElementType()->isSized())
4403     return getUnknown(GEP);
4404 
4405   SmallVector<const SCEV *, 4> IndexExprs;
4406   for (auto Index = GEP->idx_begin(); Index != GEP->idx_end(); ++Index)
4407     IndexExprs.push_back(getSCEV(*Index));
4408   return getGEPExpr(GEP, IndexExprs);
4409 }
4410 
4411 uint32_t
4412 ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
4413   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4414     return C->getAPInt().countTrailingZeros();
4415 
4416   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
4417     return std::min(GetMinTrailingZeros(T->getOperand()),
4418                     (uint32_t)getTypeSizeInBits(T->getType()));
4419 
4420   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
4421     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4422     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4423              getTypeSizeInBits(E->getType()) : OpRes;
4424   }
4425 
4426   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
4427     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
4428     return OpRes == getTypeSizeInBits(E->getOperand()->getType()) ?
4429              getTypeSizeInBits(E->getType()) : OpRes;
4430   }
4431 
4432   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
4433     // The result is the min of all operands results.
4434     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4435     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4436       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4437     return MinOpRes;
4438   }
4439 
4440   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
4441     // The result is the sum of all operands results.
4442     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
4443     uint32_t BitWidth = getTypeSizeInBits(M->getType());
4444     for (unsigned i = 1, e = M->getNumOperands();
4445          SumOpRes != BitWidth && i != e; ++i)
4446       SumOpRes = std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)),
4447                           BitWidth);
4448     return SumOpRes;
4449   }
4450 
4451   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
4452     // The result is the min of all operands results.
4453     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
4454     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
4455       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
4456     return MinOpRes;
4457   }
4458 
4459   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
4460     // The result is the min of all operands results.
4461     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4462     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4463       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4464     return MinOpRes;
4465   }
4466 
4467   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
4468     // The result is the min of all operands results.
4469     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
4470     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
4471       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
4472     return MinOpRes;
4473   }
4474 
4475   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4476     // For a SCEVUnknown, ask ValueTracking.
4477     unsigned BitWidth = getTypeSizeInBits(U->getType());
4478     APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4479     computeKnownBits(U->getValue(), Zeros, Ones, getDataLayout(), 0, &AC,
4480                      nullptr, &DT);
4481     return Zeros.countTrailingOnes();
4482   }
4483 
4484   // SCEVUDivExpr
4485   return 0;
4486 }
4487 
4488 /// Helper method to assign a range to V from metadata present in the IR.
4489 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
4490   if (Instruction *I = dyn_cast<Instruction>(V))
4491     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
4492       return getConstantRangeFromMetadata(*MD);
4493 
4494   return None;
4495 }
4496 
4497 /// Determine the range for a particular SCEV.  If SignHint is
4498 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
4499 /// with a "cleaner" unsigned (resp. signed) representation.
4500 ConstantRange
4501 ScalarEvolution::getRange(const SCEV *S,
4502                           ScalarEvolution::RangeSignHint SignHint) {
4503   DenseMap<const SCEV *, ConstantRange> &Cache =
4504       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
4505                                                        : SignedRanges;
4506 
4507   // See if we've computed this range already.
4508   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
4509   if (I != Cache.end())
4510     return I->second;
4511 
4512   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
4513     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
4514 
4515   unsigned BitWidth = getTypeSizeInBits(S->getType());
4516   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
4517 
4518   // If the value has known zeros, the maximum value will have those known zeros
4519   // as well.
4520   uint32_t TZ = GetMinTrailingZeros(S);
4521   if (TZ != 0) {
4522     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
4523       ConservativeResult =
4524           ConstantRange(APInt::getMinValue(BitWidth),
4525                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
4526     else
4527       ConservativeResult = ConstantRange(
4528           APInt::getSignedMinValue(BitWidth),
4529           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
4530   }
4531 
4532   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
4533     ConstantRange X = getRange(Add->getOperand(0), SignHint);
4534     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
4535       X = X.add(getRange(Add->getOperand(i), SignHint));
4536     return setRange(Add, SignHint, ConservativeResult.intersectWith(X));
4537   }
4538 
4539   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
4540     ConstantRange X = getRange(Mul->getOperand(0), SignHint);
4541     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
4542       X = X.multiply(getRange(Mul->getOperand(i), SignHint));
4543     return setRange(Mul, SignHint, ConservativeResult.intersectWith(X));
4544   }
4545 
4546   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
4547     ConstantRange X = getRange(SMax->getOperand(0), SignHint);
4548     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
4549       X = X.smax(getRange(SMax->getOperand(i), SignHint));
4550     return setRange(SMax, SignHint, ConservativeResult.intersectWith(X));
4551   }
4552 
4553   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
4554     ConstantRange X = getRange(UMax->getOperand(0), SignHint);
4555     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
4556       X = X.umax(getRange(UMax->getOperand(i), SignHint));
4557     return setRange(UMax, SignHint, ConservativeResult.intersectWith(X));
4558   }
4559 
4560   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
4561     ConstantRange X = getRange(UDiv->getLHS(), SignHint);
4562     ConstantRange Y = getRange(UDiv->getRHS(), SignHint);
4563     return setRange(UDiv, SignHint,
4564                     ConservativeResult.intersectWith(X.udiv(Y)));
4565   }
4566 
4567   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
4568     ConstantRange X = getRange(ZExt->getOperand(), SignHint);
4569     return setRange(ZExt, SignHint,
4570                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth)));
4571   }
4572 
4573   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
4574     ConstantRange X = getRange(SExt->getOperand(), SignHint);
4575     return setRange(SExt, SignHint,
4576                     ConservativeResult.intersectWith(X.signExtend(BitWidth)));
4577   }
4578 
4579   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
4580     ConstantRange X = getRange(Trunc->getOperand(), SignHint);
4581     return setRange(Trunc, SignHint,
4582                     ConservativeResult.intersectWith(X.truncate(BitWidth)));
4583   }
4584 
4585   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
4586     // If there's no unsigned wrap, the value will never be less than its
4587     // initial value.
4588     if (AddRec->hasNoUnsignedWrap())
4589       if (const SCEVConstant *C = dyn_cast<SCEVConstant>(AddRec->getStart()))
4590         if (!C->getValue()->isZero())
4591           ConservativeResult = ConservativeResult.intersectWith(
4592               ConstantRange(C->getAPInt(), APInt(BitWidth, 0)));
4593 
4594     // If there's no signed wrap, and all the operands have the same sign or
4595     // zero, the value won't ever change sign.
4596     if (AddRec->hasNoSignedWrap()) {
4597       bool AllNonNeg = true;
4598       bool AllNonPos = true;
4599       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
4600         if (!isKnownNonNegative(AddRec->getOperand(i))) AllNonNeg = false;
4601         if (!isKnownNonPositive(AddRec->getOperand(i))) AllNonPos = false;
4602       }
4603       if (AllNonNeg)
4604         ConservativeResult = ConservativeResult.intersectWith(
4605           ConstantRange(APInt(BitWidth, 0),
4606                         APInt::getSignedMinValue(BitWidth)));
4607       else if (AllNonPos)
4608         ConservativeResult = ConservativeResult.intersectWith(
4609           ConstantRange(APInt::getSignedMinValue(BitWidth),
4610                         APInt(BitWidth, 1)));
4611     }
4612 
4613     // TODO: non-affine addrec
4614     if (AddRec->isAffine()) {
4615       const SCEV *MaxBECount = getMaxBackedgeTakenCount(AddRec->getLoop());
4616       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
4617           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
4618         auto RangeFromAffine = getRangeForAffineAR(
4619             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4620             BitWidth);
4621         if (!RangeFromAffine.isFullSet())
4622           ConservativeResult =
4623               ConservativeResult.intersectWith(RangeFromAffine);
4624 
4625         auto RangeFromFactoring = getRangeViaFactoring(
4626             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
4627             BitWidth);
4628         if (!RangeFromFactoring.isFullSet())
4629           ConservativeResult =
4630               ConservativeResult.intersectWith(RangeFromFactoring);
4631       }
4632     }
4633 
4634     return setRange(AddRec, SignHint, ConservativeResult);
4635   }
4636 
4637   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
4638     // Check if the IR explicitly contains !range metadata.
4639     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
4640     if (MDRange.hasValue())
4641       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue());
4642 
4643     // Split here to avoid paying the compile-time cost of calling both
4644     // computeKnownBits and ComputeNumSignBits.  This restriction can be lifted
4645     // if needed.
4646     const DataLayout &DL = getDataLayout();
4647     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) {
4648       // For a SCEVUnknown, ask ValueTracking.
4649       APInt Zeros(BitWidth, 0), Ones(BitWidth, 0);
4650       computeKnownBits(U->getValue(), Zeros, Ones, DL, 0, &AC, nullptr, &DT);
4651       if (Ones != ~Zeros + 1)
4652         ConservativeResult =
4653             ConservativeResult.intersectWith(ConstantRange(Ones, ~Zeros + 1));
4654     } else {
4655       assert(SignHint == ScalarEvolution::HINT_RANGE_SIGNED &&
4656              "generalize as needed!");
4657       unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
4658       if (NS > 1)
4659         ConservativeResult = ConservativeResult.intersectWith(
4660             ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
4661                           APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1));
4662     }
4663 
4664     return setRange(U, SignHint, ConservativeResult);
4665   }
4666 
4667   return setRange(S, SignHint, ConservativeResult);
4668 }
4669 
4670 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
4671                                                    const SCEV *Step,
4672                                                    const SCEV *MaxBECount,
4673                                                    unsigned BitWidth) {
4674   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
4675          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
4676          "Precondition!");
4677 
4678   ConstantRange Result(BitWidth, /* isFullSet = */ true);
4679 
4680   // Check for overflow.  This must be done with ConstantRange arithmetic
4681   // because we could be called from within the ScalarEvolution overflow
4682   // checking code.
4683 
4684   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
4685   ConstantRange MaxBECountRange = getUnsignedRange(MaxBECount);
4686   ConstantRange ZExtMaxBECountRange = MaxBECountRange.zextOrTrunc(BitWidth * 2);
4687 
4688   ConstantRange StepSRange = getSignedRange(Step);
4689   ConstantRange SExtStepSRange = StepSRange.sextOrTrunc(BitWidth * 2);
4690 
4691   ConstantRange StartURange = getUnsignedRange(Start);
4692   ConstantRange EndURange =
4693       StartURange.add(MaxBECountRange.multiply(StepSRange));
4694 
4695   // Check for unsigned overflow.
4696   ConstantRange ZExtStartURange = StartURange.zextOrTrunc(BitWidth * 2);
4697   ConstantRange ZExtEndURange = EndURange.zextOrTrunc(BitWidth * 2);
4698   if (ZExtStartURange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4699       ZExtEndURange) {
4700     APInt Min = APIntOps::umin(StartURange.getUnsignedMin(),
4701                                EndURange.getUnsignedMin());
4702     APInt Max = APIntOps::umax(StartURange.getUnsignedMax(),
4703                                EndURange.getUnsignedMax());
4704     bool IsFullRange = Min.isMinValue() && Max.isMaxValue();
4705     if (!IsFullRange)
4706       Result =
4707           Result.intersectWith(ConstantRange(Min, Max + 1));
4708   }
4709 
4710   ConstantRange StartSRange = getSignedRange(Start);
4711   ConstantRange EndSRange =
4712       StartSRange.add(MaxBECountRange.multiply(StepSRange));
4713 
4714   // Check for signed overflow. This must be done with ConstantRange
4715   // arithmetic because we could be called from within the ScalarEvolution
4716   // overflow checking code.
4717   ConstantRange SExtStartSRange = StartSRange.sextOrTrunc(BitWidth * 2);
4718   ConstantRange SExtEndSRange = EndSRange.sextOrTrunc(BitWidth * 2);
4719   if (SExtStartSRange.add(ZExtMaxBECountRange.multiply(SExtStepSRange)) ==
4720       SExtEndSRange) {
4721     APInt Min =
4722         APIntOps::smin(StartSRange.getSignedMin(), EndSRange.getSignedMin());
4723     APInt Max =
4724         APIntOps::smax(StartSRange.getSignedMax(), EndSRange.getSignedMax());
4725     bool IsFullRange = Min.isMinSignedValue() && Max.isMaxSignedValue();
4726     if (!IsFullRange)
4727       Result =
4728           Result.intersectWith(ConstantRange(Min, Max + 1));
4729   }
4730 
4731   return Result;
4732 }
4733 
4734 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
4735                                                     const SCEV *Step,
4736                                                     const SCEV *MaxBECount,
4737                                                     unsigned BitWidth) {
4738   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
4739   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
4740 
4741   struct SelectPattern {
4742     Value *Condition = nullptr;
4743     APInt TrueValue;
4744     APInt FalseValue;
4745 
4746     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
4747                            const SCEV *S) {
4748       Optional<unsigned> CastOp;
4749       APInt Offset(BitWidth, 0);
4750 
4751       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
4752              "Should be!");
4753 
4754       // Peel off a constant offset:
4755       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
4756         // In the future we could consider being smarter here and handle
4757         // {Start+Step,+,Step} too.
4758         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
4759           return;
4760 
4761         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
4762         S = SA->getOperand(1);
4763       }
4764 
4765       // Peel off a cast operation
4766       if (auto *SCast = dyn_cast<SCEVCastExpr>(S)) {
4767         CastOp = SCast->getSCEVType();
4768         S = SCast->getOperand();
4769       }
4770 
4771       using namespace llvm::PatternMatch;
4772 
4773       auto *SU = dyn_cast<SCEVUnknown>(S);
4774       const APInt *TrueVal, *FalseVal;
4775       if (!SU ||
4776           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
4777                                           m_APInt(FalseVal)))) {
4778         Condition = nullptr;
4779         return;
4780       }
4781 
4782       TrueValue = *TrueVal;
4783       FalseValue = *FalseVal;
4784 
4785       // Re-apply the cast we peeled off earlier
4786       if (CastOp.hasValue())
4787         switch (*CastOp) {
4788         default:
4789           llvm_unreachable("Unknown SCEV cast type!");
4790 
4791         case scTruncate:
4792           TrueValue = TrueValue.trunc(BitWidth);
4793           FalseValue = FalseValue.trunc(BitWidth);
4794           break;
4795         case scZeroExtend:
4796           TrueValue = TrueValue.zext(BitWidth);
4797           FalseValue = FalseValue.zext(BitWidth);
4798           break;
4799         case scSignExtend:
4800           TrueValue = TrueValue.sext(BitWidth);
4801           FalseValue = FalseValue.sext(BitWidth);
4802           break;
4803         }
4804 
4805       // Re-apply the constant offset we peeled off earlier
4806       TrueValue += Offset;
4807       FalseValue += Offset;
4808     }
4809 
4810     bool isRecognized() { return Condition != nullptr; }
4811   };
4812 
4813   SelectPattern StartPattern(*this, BitWidth, Start);
4814   if (!StartPattern.isRecognized())
4815     return ConstantRange(BitWidth, /* isFullSet = */ true);
4816 
4817   SelectPattern StepPattern(*this, BitWidth, Step);
4818   if (!StepPattern.isRecognized())
4819     return ConstantRange(BitWidth, /* isFullSet = */ true);
4820 
4821   if (StartPattern.Condition != StepPattern.Condition) {
4822     // We don't handle this case today; but we could, by considering four
4823     // possibilities below instead of two. I'm not sure if there are cases where
4824     // that will help over what getRange already does, though.
4825     return ConstantRange(BitWidth, /* isFullSet = */ true);
4826   }
4827 
4828   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
4829   // construct arbitrary general SCEV expressions here.  This function is called
4830   // from deep in the call stack, and calling getSCEV (on a sext instruction,
4831   // say) can end up caching a suboptimal value.
4832 
4833   // FIXME: without the explicit `this` receiver below, MSVC errors out with
4834   // C2352 and C2512 (otherwise it isn't needed).
4835 
4836   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
4837   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
4838   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
4839   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
4840 
4841   ConstantRange TrueRange =
4842       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
4843   ConstantRange FalseRange =
4844       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
4845 
4846   return TrueRange.unionWith(FalseRange);
4847 }
4848 
4849 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
4850   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
4851   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
4852 
4853   // Return early if there are no flags to propagate to the SCEV.
4854   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
4855   if (BinOp->hasNoUnsignedWrap())
4856     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
4857   if (BinOp->hasNoSignedWrap())
4858     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
4859   if (Flags == SCEV::FlagAnyWrap)
4860     return SCEV::FlagAnyWrap;
4861 
4862   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
4863 }
4864 
4865 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
4866   // Here we check that I is in the header of the innermost loop containing I,
4867   // since we only deal with instructions in the loop header. The actual loop we
4868   // need to check later will come from an add recurrence, but getting that
4869   // requires computing the SCEV of the operands, which can be expensive. This
4870   // check we can do cheaply to rule out some cases early.
4871   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
4872   if (InnermostContainingLoop == nullptr ||
4873       InnermostContainingLoop->getHeader() != I->getParent())
4874     return false;
4875 
4876   // Only proceed if we can prove that I does not yield poison.
4877   if (!isKnownNotFullPoison(I)) return false;
4878 
4879   // At this point we know that if I is executed, then it does not wrap
4880   // according to at least one of NSW or NUW. If I is not executed, then we do
4881   // not know if the calculation that I represents would wrap. Multiple
4882   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
4883   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
4884   // derived from other instructions that map to the same SCEV. We cannot make
4885   // that guarantee for cases where I is not executed. So we need to find the
4886   // loop that I is considered in relation to and prove that I is executed for
4887   // every iteration of that loop. That implies that the value that I
4888   // calculates does not wrap anywhere in the loop, so then we can apply the
4889   // flags to the SCEV.
4890   //
4891   // We check isLoopInvariant to disambiguate in case we are adding recurrences
4892   // from different loops, so that we know which loop to prove that I is
4893   // executed in.
4894   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
4895     // I could be an extractvalue from a call to an overflow intrinsic.
4896     // TODO: We can do better here in some cases.
4897     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
4898       return false;
4899     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
4900     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
4901       bool AllOtherOpsLoopInvariant = true;
4902       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
4903            ++OtherOpIndex) {
4904         if (OtherOpIndex != OpIndex) {
4905           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
4906           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
4907             AllOtherOpsLoopInvariant = false;
4908             break;
4909           }
4910         }
4911       }
4912       if (AllOtherOpsLoopInvariant &&
4913           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
4914         return true;
4915     }
4916   }
4917   return false;
4918 }
4919 
4920 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
4921   // If we know that \c I can never be poison period, then that's enough.
4922   if (isSCEVExprNeverPoison(I))
4923     return true;
4924 
4925   // For an add recurrence specifically, we assume that infinite loops without
4926   // side effects are undefined behavior, and then reason as follows:
4927   //
4928   // If the add recurrence is poison in any iteration, it is poison on all
4929   // future iterations (since incrementing poison yields poison). If the result
4930   // of the add recurrence is fed into the loop latch condition and the loop
4931   // does not contain any throws or exiting blocks other than the latch, we now
4932   // have the ability to "choose" whether the backedge is taken or not (by
4933   // choosing a sufficiently evil value for the poison feeding into the branch)
4934   // for every iteration including and after the one in which \p I first became
4935   // poison.  There are two possibilities (let's call the iteration in which \p
4936   // I first became poison as K):
4937   //
4938   //  1. In the set of iterations including and after K, the loop body executes
4939   //     no side effects.  In this case executing the backege an infinte number
4940   //     of times will yield undefined behavior.
4941   //
4942   //  2. In the set of iterations including and after K, the loop body executes
4943   //     at least one side effect.  In this case, that specific instance of side
4944   //     effect is control dependent on poison, which also yields undefined
4945   //     behavior.
4946 
4947   auto *ExitingBB = L->getExitingBlock();
4948   auto *LatchBB = L->getLoopLatch();
4949   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
4950     return false;
4951 
4952   SmallPtrSet<const Instruction *, 16> Pushed;
4953   SmallVector<const Instruction *, 8> PoisonStack;
4954 
4955   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
4956   // things that are known to be fully poison under that assumption go on the
4957   // PoisonStack.
4958   Pushed.insert(I);
4959   PoisonStack.push_back(I);
4960 
4961   bool LatchControlDependentOnPoison = false;
4962   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
4963     const Instruction *Poison = PoisonStack.pop_back_val();
4964 
4965     for (auto *PoisonUser : Poison->users()) {
4966       if (propagatesFullPoison(cast<Instruction>(PoisonUser))) {
4967         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
4968           PoisonStack.push_back(cast<Instruction>(PoisonUser));
4969       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
4970         assert(BI->isConditional() && "Only possibility!");
4971         if (BI->getParent() == LatchBB) {
4972           LatchControlDependentOnPoison = true;
4973           break;
4974         }
4975       }
4976     }
4977   }
4978 
4979   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
4980 }
4981 
4982 ScalarEvolution::LoopProperties
4983 ScalarEvolution::getLoopProperties(const Loop *L) {
4984   typedef ScalarEvolution::LoopProperties LoopProperties;
4985 
4986   auto Itr = LoopPropertiesCache.find(L);
4987   if (Itr == LoopPropertiesCache.end()) {
4988     auto HasSideEffects = [](Instruction *I) {
4989       if (auto *SI = dyn_cast<StoreInst>(I))
4990         return !SI->isSimple();
4991 
4992       return I->mayHaveSideEffects();
4993     };
4994 
4995     LoopProperties LP = {/* HasNoAbnormalExits */ true,
4996                          /*HasNoSideEffects*/ true};
4997 
4998     for (auto *BB : L->getBlocks())
4999       for (auto &I : *BB) {
5000         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
5001           LP.HasNoAbnormalExits = false;
5002         if (HasSideEffects(&I))
5003           LP.HasNoSideEffects = false;
5004         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
5005           break; // We're already as pessimistic as we can get.
5006       }
5007 
5008     auto InsertPair = LoopPropertiesCache.insert({L, LP});
5009     assert(InsertPair.second && "We just checked!");
5010     Itr = InsertPair.first;
5011   }
5012 
5013   return Itr->second;
5014 }
5015 
5016 const SCEV *ScalarEvolution::createSCEV(Value *V) {
5017   if (!isSCEVable(V->getType()))
5018     return getUnknown(V);
5019 
5020   if (Instruction *I = dyn_cast<Instruction>(V)) {
5021     // Don't attempt to analyze instructions in blocks that aren't
5022     // reachable. Such instructions don't matter, and they aren't required
5023     // to obey basic rules for definitions dominating uses which this
5024     // analysis depends on.
5025     if (!DT.isReachableFromEntry(I->getParent()))
5026       return getUnknown(V);
5027   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
5028     return getConstant(CI);
5029   else if (isa<ConstantPointerNull>(V))
5030     return getZero(V->getType());
5031   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
5032     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
5033   else if (!isa<ConstantExpr>(V))
5034     return getUnknown(V);
5035 
5036   Operator *U = cast<Operator>(V);
5037   if (auto BO = MatchBinaryOp(U, DT)) {
5038     switch (BO->Opcode) {
5039     case Instruction::Add: {
5040       // The simple thing to do would be to just call getSCEV on both operands
5041       // and call getAddExpr with the result. However if we're looking at a
5042       // bunch of things all added together, this can be quite inefficient,
5043       // because it leads to N-1 getAddExpr calls for N ultimate operands.
5044       // Instead, gather up all the operands and make a single getAddExpr call.
5045       // LLVM IR canonical form means we need only traverse the left operands.
5046       SmallVector<const SCEV *, 4> AddOps;
5047       do {
5048         if (BO->Op) {
5049           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5050             AddOps.push_back(OpSCEV);
5051             break;
5052           }
5053 
5054           // If a NUW or NSW flag can be applied to the SCEV for this
5055           // addition, then compute the SCEV for this addition by itself
5056           // with a separate call to getAddExpr. We need to do that
5057           // instead of pushing the operands of the addition onto AddOps,
5058           // since the flags are only known to apply to this particular
5059           // addition - they may not apply to other additions that can be
5060           // formed with operands from AddOps.
5061           const SCEV *RHS = getSCEV(BO->RHS);
5062           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5063           if (Flags != SCEV::FlagAnyWrap) {
5064             const SCEV *LHS = getSCEV(BO->LHS);
5065             if (BO->Opcode == Instruction::Sub)
5066               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
5067             else
5068               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
5069             break;
5070           }
5071         }
5072 
5073         if (BO->Opcode == Instruction::Sub)
5074           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
5075         else
5076           AddOps.push_back(getSCEV(BO->RHS));
5077 
5078         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5079         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
5080                        NewBO->Opcode != Instruction::Sub)) {
5081           AddOps.push_back(getSCEV(BO->LHS));
5082           break;
5083         }
5084         BO = NewBO;
5085       } while (true);
5086 
5087       return getAddExpr(AddOps);
5088     }
5089 
5090     case Instruction::Mul: {
5091       SmallVector<const SCEV *, 4> MulOps;
5092       do {
5093         if (BO->Op) {
5094           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
5095             MulOps.push_back(OpSCEV);
5096             break;
5097           }
5098 
5099           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
5100           if (Flags != SCEV::FlagAnyWrap) {
5101             MulOps.push_back(
5102                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
5103             break;
5104           }
5105         }
5106 
5107         MulOps.push_back(getSCEV(BO->RHS));
5108         auto NewBO = MatchBinaryOp(BO->LHS, DT);
5109         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
5110           MulOps.push_back(getSCEV(BO->LHS));
5111           break;
5112         }
5113         BO = NewBO;
5114       } while (true);
5115 
5116       return getMulExpr(MulOps);
5117     }
5118     case Instruction::UDiv:
5119       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
5120     case Instruction::Sub: {
5121       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5122       if (BO->Op)
5123         Flags = getNoWrapFlagsFromUB(BO->Op);
5124       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
5125     }
5126     case Instruction::And:
5127       // For an expression like x&255 that merely masks off the high bits,
5128       // use zext(trunc(x)) as the SCEV expression.
5129       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5130         if (CI->isNullValue())
5131           return getSCEV(BO->RHS);
5132         if (CI->isAllOnesValue())
5133           return getSCEV(BO->LHS);
5134         const APInt &A = CI->getValue();
5135 
5136         // Instcombine's ShrinkDemandedConstant may strip bits out of
5137         // constants, obscuring what would otherwise be a low-bits mask.
5138         // Use computeKnownBits to compute what ShrinkDemandedConstant
5139         // knew about to reconstruct a low-bits mask value.
5140         unsigned LZ = A.countLeadingZeros();
5141         unsigned TZ = A.countTrailingZeros();
5142         unsigned BitWidth = A.getBitWidth();
5143         APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
5144         computeKnownBits(BO->LHS, KnownZero, KnownOne, getDataLayout(),
5145                          0, &AC, nullptr, &DT);
5146 
5147         APInt EffectiveMask =
5148             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
5149         if ((LZ != 0 || TZ != 0) && !((~A & ~KnownZero) & EffectiveMask)) {
5150           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
5151           const SCEV *LHS = getSCEV(BO->LHS);
5152           const SCEV *ShiftedLHS = nullptr;
5153           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
5154             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
5155               // For an expression like (x * 8) & 8, simplify the multiply.
5156               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
5157               unsigned GCD = std::min(MulZeros, TZ);
5158               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
5159               SmallVector<const SCEV*, 4> MulOps;
5160               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
5161               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
5162               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
5163               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
5164             }
5165           }
5166           if (!ShiftedLHS)
5167             ShiftedLHS = getUDivExpr(LHS, MulCount);
5168           return getMulExpr(
5169               getZeroExtendExpr(
5170                   getTruncateExpr(ShiftedLHS,
5171                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
5172                   BO->LHS->getType()),
5173               MulCount);
5174         }
5175       }
5176       break;
5177 
5178     case Instruction::Or:
5179       // If the RHS of the Or is a constant, we may have something like:
5180       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
5181       // optimizations will transparently handle this case.
5182       //
5183       // In order for this transformation to be safe, the LHS must be of the
5184       // form X*(2^n) and the Or constant must be less than 2^n.
5185       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5186         const SCEV *LHS = getSCEV(BO->LHS);
5187         const APInt &CIVal = CI->getValue();
5188         if (GetMinTrailingZeros(LHS) >=
5189             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
5190           // Build a plain add SCEV.
5191           const SCEV *S = getAddExpr(LHS, getSCEV(CI));
5192           // If the LHS of the add was an addrec and it has no-wrap flags,
5193           // transfer the no-wrap flags, since an or won't introduce a wrap.
5194           if (const SCEVAddRecExpr *NewAR = dyn_cast<SCEVAddRecExpr>(S)) {
5195             const SCEVAddRecExpr *OldAR = cast<SCEVAddRecExpr>(LHS);
5196             const_cast<SCEVAddRecExpr *>(NewAR)->setNoWrapFlags(
5197                 OldAR->getNoWrapFlags());
5198           }
5199           return S;
5200         }
5201       }
5202       break;
5203 
5204     case Instruction::Xor:
5205       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
5206         // If the RHS of xor is -1, then this is a not operation.
5207         if (CI->isAllOnesValue())
5208           return getNotSCEV(getSCEV(BO->LHS));
5209 
5210         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
5211         // This is a variant of the check for xor with -1, and it handles
5212         // the case where instcombine has trimmed non-demanded bits out
5213         // of an xor with -1.
5214         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
5215           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
5216             if (LBO->getOpcode() == Instruction::And &&
5217                 LCI->getValue() == CI->getValue())
5218               if (const SCEVZeroExtendExpr *Z =
5219                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
5220                 Type *UTy = BO->LHS->getType();
5221                 const SCEV *Z0 = Z->getOperand();
5222                 Type *Z0Ty = Z0->getType();
5223                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
5224 
5225                 // If C is a low-bits mask, the zero extend is serving to
5226                 // mask off the high bits. Complement the operand and
5227                 // re-apply the zext.
5228                 if (APIntOps::isMask(Z0TySize, CI->getValue()))
5229                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
5230 
5231                 // If C is a single bit, it may be in the sign-bit position
5232                 // before the zero-extend. In this case, represent the xor
5233                 // using an add, which is equivalent, and re-apply the zext.
5234                 APInt Trunc = CI->getValue().trunc(Z0TySize);
5235                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
5236                     Trunc.isSignBit())
5237                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
5238                                            UTy);
5239               }
5240       }
5241       break;
5242 
5243   case Instruction::Shl:
5244     // Turn shift left of a constant amount into a multiply.
5245     if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
5246       uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
5247 
5248       // If the shift count is not less than the bitwidth, the result of
5249       // the shift is undefined. Don't try to analyze it, because the
5250       // resolution chosen here may differ from the resolution chosen in
5251       // other parts of the compiler.
5252       if (SA->getValue().uge(BitWidth))
5253         break;
5254 
5255       // It is currently not resolved how to interpret NSW for left
5256       // shift by BitWidth - 1, so we avoid applying flags in that
5257       // case. Remove this check (or this comment) once the situation
5258       // is resolved. See
5259       // http://lists.llvm.org/pipermail/llvm-dev/2015-April/084195.html
5260       // and http://reviews.llvm.org/D8890 .
5261       auto Flags = SCEV::FlagAnyWrap;
5262       if (BO->Op && SA->getValue().ult(BitWidth - 1))
5263         Flags = getNoWrapFlagsFromUB(BO->Op);
5264 
5265       Constant *X = ConstantInt::get(getContext(),
5266         APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
5267       return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
5268     }
5269     break;
5270 
5271     case Instruction::AShr:
5272       // For a two-shift sext-inreg, use sext(trunc(x)) as the SCEV expression.
5273       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS))
5274         if (Operator *L = dyn_cast<Operator>(BO->LHS))
5275           if (L->getOpcode() == Instruction::Shl &&
5276               L->getOperand(1) == BO->RHS) {
5277             uint64_t BitWidth = getTypeSizeInBits(BO->LHS->getType());
5278 
5279             // If the shift count is not less than the bitwidth, the result of
5280             // the shift is undefined. Don't try to analyze it, because the
5281             // resolution chosen here may differ from the resolution chosen in
5282             // other parts of the compiler.
5283             if (CI->getValue().uge(BitWidth))
5284               break;
5285 
5286             uint64_t Amt = BitWidth - CI->getZExtValue();
5287             if (Amt == BitWidth)
5288               return getSCEV(L->getOperand(0)); // shift by zero --> noop
5289             return getSignExtendExpr(
5290                 getTruncateExpr(getSCEV(L->getOperand(0)),
5291                                 IntegerType::get(getContext(), Amt)),
5292                 BO->LHS->getType());
5293           }
5294       break;
5295     }
5296   }
5297 
5298   switch (U->getOpcode()) {
5299   case Instruction::Trunc:
5300     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
5301 
5302   case Instruction::ZExt:
5303     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5304 
5305   case Instruction::SExt:
5306     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
5307 
5308   case Instruction::BitCast:
5309     // BitCasts are no-op casts so we just eliminate the cast.
5310     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
5311       return getSCEV(U->getOperand(0));
5312     break;
5313 
5314   // It's tempting to handle inttoptr and ptrtoint as no-ops, however this can
5315   // lead to pointer expressions which cannot safely be expanded to GEPs,
5316   // because ScalarEvolution doesn't respect the GEP aliasing rules when
5317   // simplifying integer expressions.
5318 
5319   case Instruction::GetElementPtr:
5320     return createNodeForGEP(cast<GEPOperator>(U));
5321 
5322   case Instruction::PHI:
5323     return createNodeForPHI(cast<PHINode>(U));
5324 
5325   case Instruction::Select:
5326     // U can also be a select constant expr, which let fall through.  Since
5327     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
5328     // constant expressions cannot have instructions as operands, we'd have
5329     // returned getUnknown for a select constant expressions anyway.
5330     if (isa<Instruction>(U))
5331       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
5332                                       U->getOperand(1), U->getOperand(2));
5333     break;
5334 
5335   case Instruction::Call:
5336   case Instruction::Invoke:
5337     if (Value *RV = CallSite(U).getReturnedArgOperand())
5338       return getSCEV(RV);
5339     break;
5340   }
5341 
5342   return getUnknown(V);
5343 }
5344 
5345 
5346 
5347 //===----------------------------------------------------------------------===//
5348 //                   Iteration Count Computation Code
5349 //
5350 
5351 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
5352   if (!ExitCount)
5353     return 0;
5354 
5355   ConstantInt *ExitConst = ExitCount->getValue();
5356 
5357   // Guard against huge trip counts.
5358   if (ExitConst->getValue().getActiveBits() > 32)
5359     return 0;
5360 
5361   // In case of integer overflow, this returns 0, which is correct.
5362   return ((unsigned)ExitConst->getZExtValue()) + 1;
5363 }
5364 
5365 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L) {
5366   if (BasicBlock *ExitingBB = L->getExitingBlock())
5367     return getSmallConstantTripCount(L, ExitingBB);
5368 
5369   // No trip count information for multiple exits.
5370   return 0;
5371 }
5372 
5373 unsigned ScalarEvolution::getSmallConstantTripCount(Loop *L,
5374                                                     BasicBlock *ExitingBlock) {
5375   assert(ExitingBlock && "Must pass a non-null exiting block!");
5376   assert(L->isLoopExiting(ExitingBlock) &&
5377          "Exiting block must actually branch out of the loop!");
5378   const SCEVConstant *ExitCount =
5379       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
5380   return getConstantTripCount(ExitCount);
5381 }
5382 
5383 unsigned ScalarEvolution::getSmallConstantMaxTripCount(Loop *L) {
5384   const auto *MaxExitCount =
5385       dyn_cast<SCEVConstant>(getMaxBackedgeTakenCount(L));
5386   return getConstantTripCount(MaxExitCount);
5387 }
5388 
5389 unsigned ScalarEvolution::getSmallConstantTripMultiple(Loop *L) {
5390   if (BasicBlock *ExitingBB = L->getExitingBlock())
5391     return getSmallConstantTripMultiple(L, ExitingBB);
5392 
5393   // No trip multiple information for multiple exits.
5394   return 0;
5395 }
5396 
5397 /// Returns the largest constant divisor of the trip count of this loop as a
5398 /// normal unsigned value, if possible. This means that the actual trip count is
5399 /// always a multiple of the returned value (don't forget the trip count could
5400 /// very well be zero as well!).
5401 ///
5402 /// Returns 1 if the trip count is unknown or not guaranteed to be the
5403 /// multiple of a constant (which is also the case if the trip count is simply
5404 /// constant, use getSmallConstantTripCount for that case), Will also return 1
5405 /// if the trip count is very large (>= 2^32).
5406 ///
5407 /// As explained in the comments for getSmallConstantTripCount, this assumes
5408 /// that control exits the loop via ExitingBlock.
5409 unsigned
5410 ScalarEvolution::getSmallConstantTripMultiple(Loop *L,
5411                                               BasicBlock *ExitingBlock) {
5412   assert(ExitingBlock && "Must pass a non-null exiting block!");
5413   assert(L->isLoopExiting(ExitingBlock) &&
5414          "Exiting block must actually branch out of the loop!");
5415   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
5416   if (ExitCount == getCouldNotCompute())
5417     return 1;
5418 
5419   // Get the trip count from the BE count by adding 1.
5420   const SCEV *TCMul = getAddExpr(ExitCount, getOne(ExitCount->getType()));
5421   // FIXME: SCEV distributes multiplication as V1*C1 + V2*C1. We could attempt
5422   // to factor simple cases.
5423   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(TCMul))
5424     TCMul = Mul->getOperand(0);
5425 
5426   const SCEVConstant *MulC = dyn_cast<SCEVConstant>(TCMul);
5427   if (!MulC)
5428     return 1;
5429 
5430   ConstantInt *Result = MulC->getValue();
5431 
5432   // Guard against huge trip counts (this requires checking
5433   // for zero to handle the case where the trip count == -1 and the
5434   // addition wraps).
5435   if (!Result || Result->getValue().getActiveBits() > 32 ||
5436       Result->getValue().getActiveBits() == 0)
5437     return 1;
5438 
5439   return (unsigned)Result->getZExtValue();
5440 }
5441 
5442 /// Get the expression for the number of loop iterations for which this loop is
5443 /// guaranteed not to exit via ExitingBlock. Otherwise return
5444 /// SCEVCouldNotCompute.
5445 const SCEV *ScalarEvolution::getExitCount(Loop *L, BasicBlock *ExitingBlock) {
5446   return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
5447 }
5448 
5449 const SCEV *
5450 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
5451                                                  SCEVUnionPredicate &Preds) {
5452   return getPredicatedBackedgeTakenInfo(L).getExact(this, &Preds);
5453 }
5454 
5455 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L) {
5456   return getBackedgeTakenInfo(L).getExact(this);
5457 }
5458 
5459 /// Similar to getBackedgeTakenCount, except return the least SCEV value that is
5460 /// known never to be less than the actual backedge taken count.
5461 const SCEV *ScalarEvolution::getMaxBackedgeTakenCount(const Loop *L) {
5462   return getBackedgeTakenInfo(L).getMax(this);
5463 }
5464 
5465 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
5466   return getBackedgeTakenInfo(L).isMaxOrZero(this);
5467 }
5468 
5469 /// Push PHI nodes in the header of the given loop onto the given Worklist.
5470 static void
5471 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
5472   BasicBlock *Header = L->getHeader();
5473 
5474   // Push all Loop-header PHIs onto the Worklist stack.
5475   for (BasicBlock::iterator I = Header->begin();
5476        PHINode *PN = dyn_cast<PHINode>(I); ++I)
5477     Worklist.push_back(PN);
5478 }
5479 
5480 const ScalarEvolution::BackedgeTakenInfo &
5481 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
5482   auto &BTI = getBackedgeTakenInfo(L);
5483   if (BTI.hasFullInfo())
5484     return BTI;
5485 
5486   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5487 
5488   if (!Pair.second)
5489     return Pair.first->second;
5490 
5491   BackedgeTakenInfo Result =
5492       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
5493 
5494   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
5495 }
5496 
5497 const ScalarEvolution::BackedgeTakenInfo &
5498 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
5499   // Initially insert an invalid entry for this loop. If the insertion
5500   // succeeds, proceed to actually compute a backedge-taken count and
5501   // update the value. The temporary CouldNotCompute value tells SCEV
5502   // code elsewhere that it shouldn't attempt to request a new
5503   // backedge-taken count, which could result in infinite recursion.
5504   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
5505       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
5506   if (!Pair.second)
5507     return Pair.first->second;
5508 
5509   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
5510   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
5511   // must be cleared in this scope.
5512   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
5513 
5514   if (Result.getExact(this) != getCouldNotCompute()) {
5515     assert(isLoopInvariant(Result.getExact(this), L) &&
5516            isLoopInvariant(Result.getMax(this), L) &&
5517            "Computed backedge-taken count isn't loop invariant for loop!");
5518     ++NumTripCountsComputed;
5519   }
5520   else if (Result.getMax(this) == getCouldNotCompute() &&
5521            isa<PHINode>(L->getHeader()->begin())) {
5522     // Only count loops that have phi nodes as not being computable.
5523     ++NumTripCountsNotComputed;
5524   }
5525 
5526   // Now that we know more about the trip count for this loop, forget any
5527   // existing SCEV values for PHI nodes in this loop since they are only
5528   // conservative estimates made without the benefit of trip count
5529   // information. This is similar to the code in forgetLoop, except that
5530   // it handles SCEVUnknown PHI nodes specially.
5531   if (Result.hasAnyInfo()) {
5532     SmallVector<Instruction *, 16> Worklist;
5533     PushLoopPHIs(L, Worklist);
5534 
5535     SmallPtrSet<Instruction *, 8> Visited;
5536     while (!Worklist.empty()) {
5537       Instruction *I = Worklist.pop_back_val();
5538       if (!Visited.insert(I).second)
5539         continue;
5540 
5541       ValueExprMapType::iterator It =
5542         ValueExprMap.find_as(static_cast<Value *>(I));
5543       if (It != ValueExprMap.end()) {
5544         const SCEV *Old = It->second;
5545 
5546         // SCEVUnknown for a PHI either means that it has an unrecognized
5547         // structure, or it's a PHI that's in the progress of being computed
5548         // by createNodeForPHI.  In the former case, additional loop trip
5549         // count information isn't going to change anything. In the later
5550         // case, createNodeForPHI will perform the necessary updates on its
5551         // own when it gets to that point.
5552         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
5553           eraseValueFromMap(It->first);
5554           forgetMemoizedResults(Old);
5555         }
5556         if (PHINode *PN = dyn_cast<PHINode>(I))
5557           ConstantEvolutionLoopExitValue.erase(PN);
5558       }
5559 
5560       PushDefUseChildren(I, Worklist);
5561     }
5562   }
5563 
5564   // Re-lookup the insert position, since the call to
5565   // computeBackedgeTakenCount above could result in a
5566   // recusive call to getBackedgeTakenInfo (on a different
5567   // loop), which would invalidate the iterator computed
5568   // earlier.
5569   return BackedgeTakenCounts.find(L)->second = std::move(Result);
5570 }
5571 
5572 void ScalarEvolution::forgetLoop(const Loop *L) {
5573   // Drop any stored trip count value.
5574   auto RemoveLoopFromBackedgeMap =
5575       [L](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
5576         auto BTCPos = Map.find(L);
5577         if (BTCPos != Map.end()) {
5578           BTCPos->second.clear();
5579           Map.erase(BTCPos);
5580         }
5581       };
5582 
5583   RemoveLoopFromBackedgeMap(BackedgeTakenCounts);
5584   RemoveLoopFromBackedgeMap(PredicatedBackedgeTakenCounts);
5585 
5586   // Drop information about expressions based on loop-header PHIs.
5587   SmallVector<Instruction *, 16> Worklist;
5588   PushLoopPHIs(L, Worklist);
5589 
5590   SmallPtrSet<Instruction *, 8> Visited;
5591   while (!Worklist.empty()) {
5592     Instruction *I = Worklist.pop_back_val();
5593     if (!Visited.insert(I).second)
5594       continue;
5595 
5596     ValueExprMapType::iterator It =
5597       ValueExprMap.find_as(static_cast<Value *>(I));
5598     if (It != ValueExprMap.end()) {
5599       eraseValueFromMap(It->first);
5600       forgetMemoizedResults(It->second);
5601       if (PHINode *PN = dyn_cast<PHINode>(I))
5602         ConstantEvolutionLoopExitValue.erase(PN);
5603     }
5604 
5605     PushDefUseChildren(I, Worklist);
5606   }
5607 
5608   // Forget all contained loops too, to avoid dangling entries in the
5609   // ValuesAtScopes map.
5610   for (Loop *I : *L)
5611     forgetLoop(I);
5612 
5613   LoopPropertiesCache.erase(L);
5614 }
5615 
5616 void ScalarEvolution::forgetValue(Value *V) {
5617   Instruction *I = dyn_cast<Instruction>(V);
5618   if (!I) return;
5619 
5620   // Drop information about expressions based on loop-header PHIs.
5621   SmallVector<Instruction *, 16> Worklist;
5622   Worklist.push_back(I);
5623 
5624   SmallPtrSet<Instruction *, 8> Visited;
5625   while (!Worklist.empty()) {
5626     I = Worklist.pop_back_val();
5627     if (!Visited.insert(I).second)
5628       continue;
5629 
5630     ValueExprMapType::iterator It =
5631       ValueExprMap.find_as(static_cast<Value *>(I));
5632     if (It != ValueExprMap.end()) {
5633       eraseValueFromMap(It->first);
5634       forgetMemoizedResults(It->second);
5635       if (PHINode *PN = dyn_cast<PHINode>(I))
5636         ConstantEvolutionLoopExitValue.erase(PN);
5637     }
5638 
5639     PushDefUseChildren(I, Worklist);
5640   }
5641 }
5642 
5643 /// Get the exact loop backedge taken count considering all loop exits. A
5644 /// computable result can only be returned for loops with a single exit.
5645 /// Returning the minimum taken count among all exits is incorrect because one
5646 /// of the loop's exit limit's may have been skipped. howFarToZero assumes that
5647 /// the limit of each loop test is never skipped. This is a valid assumption as
5648 /// long as the loop exits via that test. For precise results, it is the
5649 /// caller's responsibility to specify the relevant loop exit using
5650 /// getExact(ExitingBlock, SE).
5651 const SCEV *
5652 ScalarEvolution::BackedgeTakenInfo::getExact(ScalarEvolution *SE,
5653                                              SCEVUnionPredicate *Preds) const {
5654   // If any exits were not computable, the loop is not computable.
5655   if (!isComplete() || ExitNotTaken.empty())
5656     return SE->getCouldNotCompute();
5657 
5658   const SCEV *BECount = nullptr;
5659   for (auto &ENT : ExitNotTaken) {
5660     assert(ENT.ExactNotTaken != SE->getCouldNotCompute() && "bad exit SCEV");
5661 
5662     if (!BECount)
5663       BECount = ENT.ExactNotTaken;
5664     else if (BECount != ENT.ExactNotTaken)
5665       return SE->getCouldNotCompute();
5666     if (Preds && !ENT.hasAlwaysTruePredicate())
5667       Preds->add(ENT.Predicate.get());
5668 
5669     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
5670            "Predicate should be always true!");
5671   }
5672 
5673   assert(BECount && "Invalid not taken count for loop exit");
5674   return BECount;
5675 }
5676 
5677 /// Get the exact not taken count for this loop exit.
5678 const SCEV *
5679 ScalarEvolution::BackedgeTakenInfo::getExact(BasicBlock *ExitingBlock,
5680                                              ScalarEvolution *SE) const {
5681   for (auto &ENT : ExitNotTaken)
5682     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
5683       return ENT.ExactNotTaken;
5684 
5685   return SE->getCouldNotCompute();
5686 }
5687 
5688 /// getMax - Get the max backedge taken count for the loop.
5689 const SCEV *
5690 ScalarEvolution::BackedgeTakenInfo::getMax(ScalarEvolution *SE) const {
5691   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5692     return !ENT.hasAlwaysTruePredicate();
5693   };
5694 
5695   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getMax())
5696     return SE->getCouldNotCompute();
5697 
5698   return getMax();
5699 }
5700 
5701 bool ScalarEvolution::BackedgeTakenInfo::isMaxOrZero(ScalarEvolution *SE) const {
5702   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
5703     return !ENT.hasAlwaysTruePredicate();
5704   };
5705   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
5706 }
5707 
5708 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S,
5709                                                     ScalarEvolution *SE) const {
5710   if (getMax() && getMax() != SE->getCouldNotCompute() &&
5711       SE->hasOperand(getMax(), S))
5712     return true;
5713 
5714   for (auto &ENT : ExitNotTaken)
5715     if (ENT.ExactNotTaken != SE->getCouldNotCompute() &&
5716         SE->hasOperand(ENT.ExactNotTaken, S))
5717       return true;
5718 
5719   return false;
5720 }
5721 
5722 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
5723 /// computable exit into a persistent ExitNotTakenInfo array.
5724 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
5725     SmallVectorImpl<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo>
5726         &&ExitCounts,
5727     bool Complete, const SCEV *MaxCount, bool MaxOrZero)
5728     : MaxAndComplete(MaxCount, Complete), MaxOrZero(MaxOrZero) {
5729   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5730   ExitNotTaken.reserve(ExitCounts.size());
5731   std::transform(
5732       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
5733       [&](const EdgeExitInfo &EEI) {
5734         BasicBlock *ExitBB = EEI.first;
5735         const ExitLimit &EL = EEI.second;
5736         if (EL.Predicates.empty())
5737           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, nullptr);
5738 
5739         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
5740         for (auto *Pred : EL.Predicates)
5741           Predicate->add(Pred);
5742 
5743         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, std::move(Predicate));
5744       });
5745 }
5746 
5747 /// Invalidate this result and free the ExitNotTakenInfo array.
5748 void ScalarEvolution::BackedgeTakenInfo::clear() {
5749   ExitNotTaken.clear();
5750 }
5751 
5752 /// Compute the number of times the backedge of the specified loop will execute.
5753 ScalarEvolution::BackedgeTakenInfo
5754 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
5755                                            bool AllowPredicates) {
5756   SmallVector<BasicBlock *, 8> ExitingBlocks;
5757   L->getExitingBlocks(ExitingBlocks);
5758 
5759   typedef ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo EdgeExitInfo;
5760 
5761   SmallVector<EdgeExitInfo, 4> ExitCounts;
5762   bool CouldComputeBECount = true;
5763   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
5764   const SCEV *MustExitMaxBECount = nullptr;
5765   const SCEV *MayExitMaxBECount = nullptr;
5766   bool MustExitMaxOrZero = false;
5767 
5768   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
5769   // and compute maxBECount.
5770   // Do a union of all the predicates here.
5771   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
5772     BasicBlock *ExitBB = ExitingBlocks[i];
5773     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
5774 
5775     assert((AllowPredicates || EL.Predicates.empty()) &&
5776            "Predicated exit limit when predicates are not allowed!");
5777 
5778     // 1. For each exit that can be computed, add an entry to ExitCounts.
5779     // CouldComputeBECount is true only if all exits can be computed.
5780     if (EL.ExactNotTaken == getCouldNotCompute())
5781       // We couldn't compute an exact value for this exit, so
5782       // we won't be able to compute an exact value for the loop.
5783       CouldComputeBECount = false;
5784     else
5785       ExitCounts.emplace_back(ExitBB, EL);
5786 
5787     // 2. Derive the loop's MaxBECount from each exit's max number of
5788     // non-exiting iterations. Partition the loop exits into two kinds:
5789     // LoopMustExits and LoopMayExits.
5790     //
5791     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
5792     // is a LoopMayExit.  If any computable LoopMustExit is found, then
5793     // MaxBECount is the minimum EL.MaxNotTaken of computable
5794     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
5795     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
5796     // computable EL.MaxNotTaken.
5797     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
5798         DT.dominates(ExitBB, Latch)) {
5799       if (!MustExitMaxBECount) {
5800         MustExitMaxBECount = EL.MaxNotTaken;
5801         MustExitMaxOrZero = EL.MaxOrZero;
5802       } else {
5803         MustExitMaxBECount =
5804             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
5805       }
5806     } else if (MayExitMaxBECount != getCouldNotCompute()) {
5807       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
5808         MayExitMaxBECount = EL.MaxNotTaken;
5809       else {
5810         MayExitMaxBECount =
5811             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
5812       }
5813     }
5814   }
5815   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
5816     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
5817   // The loop backedge will be taken the maximum or zero times if there's
5818   // a single exit that must be taken the maximum or zero times.
5819   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
5820   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
5821                            MaxBECount, MaxOrZero);
5822 }
5823 
5824 ScalarEvolution::ExitLimit
5825 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
5826                                   bool AllowPredicates) {
5827 
5828   // Okay, we've chosen an exiting block.  See what condition causes us to exit
5829   // at this block and remember the exit block and whether all other targets
5830   // lead to the loop header.
5831   bool MustExecuteLoopHeader = true;
5832   BasicBlock *Exit = nullptr;
5833   for (auto *SBB : successors(ExitingBlock))
5834     if (!L->contains(SBB)) {
5835       if (Exit) // Multiple exit successors.
5836         return getCouldNotCompute();
5837       Exit = SBB;
5838     } else if (SBB != L->getHeader()) {
5839       MustExecuteLoopHeader = false;
5840     }
5841 
5842   // At this point, we know we have a conditional branch that determines whether
5843   // the loop is exited.  However, we don't know if the branch is executed each
5844   // time through the loop.  If not, then the execution count of the branch will
5845   // not be equal to the trip count of the loop.
5846   //
5847   // Currently we check for this by checking to see if the Exit branch goes to
5848   // the loop header.  If so, we know it will always execute the same number of
5849   // times as the loop.  We also handle the case where the exit block *is* the
5850   // loop header.  This is common for un-rotated loops.
5851   //
5852   // If both of those tests fail, walk up the unique predecessor chain to the
5853   // header, stopping if there is an edge that doesn't exit the loop. If the
5854   // header is reached, the execution count of the branch will be equal to the
5855   // trip count of the loop.
5856   //
5857   //  More extensive analysis could be done to handle more cases here.
5858   //
5859   if (!MustExecuteLoopHeader && ExitingBlock != L->getHeader()) {
5860     // The simple checks failed, try climbing the unique predecessor chain
5861     // up to the header.
5862     bool Ok = false;
5863     for (BasicBlock *BB = ExitingBlock; BB; ) {
5864       BasicBlock *Pred = BB->getUniquePredecessor();
5865       if (!Pred)
5866         return getCouldNotCompute();
5867       TerminatorInst *PredTerm = Pred->getTerminator();
5868       for (const BasicBlock *PredSucc : PredTerm->successors()) {
5869         if (PredSucc == BB)
5870           continue;
5871         // If the predecessor has a successor that isn't BB and isn't
5872         // outside the loop, assume the worst.
5873         if (L->contains(PredSucc))
5874           return getCouldNotCompute();
5875       }
5876       if (Pred == L->getHeader()) {
5877         Ok = true;
5878         break;
5879       }
5880       BB = Pred;
5881     }
5882     if (!Ok)
5883       return getCouldNotCompute();
5884   }
5885 
5886   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
5887   TerminatorInst *Term = ExitingBlock->getTerminator();
5888   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
5889     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
5890     // Proceed to the next level to examine the exit condition expression.
5891     return computeExitLimitFromCond(
5892         L, BI->getCondition(), BI->getSuccessor(0), BI->getSuccessor(1),
5893         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
5894   }
5895 
5896   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term))
5897     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
5898                                                 /*ControlsExit=*/IsOnlyExit);
5899 
5900   return getCouldNotCompute();
5901 }
5902 
5903 ScalarEvolution::ExitLimit
5904 ScalarEvolution::computeExitLimitFromCond(const Loop *L,
5905                                           Value *ExitCond,
5906                                           BasicBlock *TBB,
5907                                           BasicBlock *FBB,
5908                                           bool ControlsExit,
5909                                           bool AllowPredicates) {
5910   // Check if the controlling expression for this loop is an And or Or.
5911   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(ExitCond)) {
5912     if (BO->getOpcode() == Instruction::And) {
5913       // Recurse on the operands of the and.
5914       bool EitherMayExit = L->contains(TBB);
5915       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5916                                                ControlsExit && !EitherMayExit,
5917                                                AllowPredicates);
5918       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5919                                                ControlsExit && !EitherMayExit,
5920                                                AllowPredicates);
5921       const SCEV *BECount = getCouldNotCompute();
5922       const SCEV *MaxBECount = getCouldNotCompute();
5923       if (EitherMayExit) {
5924         // Both conditions must be true for the loop to continue executing.
5925         // Choose the less conservative count.
5926         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5927             EL1.ExactNotTaken == getCouldNotCompute())
5928           BECount = getCouldNotCompute();
5929         else
5930           BECount =
5931               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5932         if (EL0.MaxNotTaken == getCouldNotCompute())
5933           MaxBECount = EL1.MaxNotTaken;
5934         else if (EL1.MaxNotTaken == getCouldNotCompute())
5935           MaxBECount = EL0.MaxNotTaken;
5936         else
5937           MaxBECount =
5938               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5939       } else {
5940         // Both conditions must be true at the same time for the loop to exit.
5941         // For now, be conservative.
5942         assert(L->contains(FBB) && "Loop block has no successor in loop!");
5943         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5944           MaxBECount = EL0.MaxNotTaken;
5945         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5946           BECount = EL0.ExactNotTaken;
5947       }
5948 
5949       // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
5950       // to be more aggressive when computing BECount than when computing
5951       // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
5952       // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
5953       // to not.
5954       if (isa<SCEVCouldNotCompute>(MaxBECount) &&
5955           !isa<SCEVCouldNotCompute>(BECount))
5956         MaxBECount = BECount;
5957 
5958       return ExitLimit(BECount, MaxBECount, false,
5959                        {&EL0.Predicates, &EL1.Predicates});
5960     }
5961     if (BO->getOpcode() == Instruction::Or) {
5962       // Recurse on the operands of the or.
5963       bool EitherMayExit = L->contains(FBB);
5964       ExitLimit EL0 = computeExitLimitFromCond(L, BO->getOperand(0), TBB, FBB,
5965                                                ControlsExit && !EitherMayExit,
5966                                                AllowPredicates);
5967       ExitLimit EL1 = computeExitLimitFromCond(L, BO->getOperand(1), TBB, FBB,
5968                                                ControlsExit && !EitherMayExit,
5969                                                AllowPredicates);
5970       const SCEV *BECount = getCouldNotCompute();
5971       const SCEV *MaxBECount = getCouldNotCompute();
5972       if (EitherMayExit) {
5973         // Both conditions must be false for the loop to continue executing.
5974         // Choose the less conservative count.
5975         if (EL0.ExactNotTaken == getCouldNotCompute() ||
5976             EL1.ExactNotTaken == getCouldNotCompute())
5977           BECount = getCouldNotCompute();
5978         else
5979           BECount =
5980               getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
5981         if (EL0.MaxNotTaken == getCouldNotCompute())
5982           MaxBECount = EL1.MaxNotTaken;
5983         else if (EL1.MaxNotTaken == getCouldNotCompute())
5984           MaxBECount = EL0.MaxNotTaken;
5985         else
5986           MaxBECount =
5987               getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
5988       } else {
5989         // Both conditions must be false at the same time for the loop to exit.
5990         // For now, be conservative.
5991         assert(L->contains(TBB) && "Loop block has no successor in loop!");
5992         if (EL0.MaxNotTaken == EL1.MaxNotTaken)
5993           MaxBECount = EL0.MaxNotTaken;
5994         if (EL0.ExactNotTaken == EL1.ExactNotTaken)
5995           BECount = EL0.ExactNotTaken;
5996       }
5997 
5998       return ExitLimit(BECount, MaxBECount, false,
5999                        {&EL0.Predicates, &EL1.Predicates});
6000     }
6001   }
6002 
6003   // With an icmp, it may be feasible to compute an exact backedge-taken count.
6004   // Proceed to the next level to examine the icmp.
6005   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
6006     ExitLimit EL =
6007         computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit);
6008     if (EL.hasFullInfo() || !AllowPredicates)
6009       return EL;
6010 
6011     // Try again, but use SCEV predicates this time.
6012     return computeExitLimitFromICmp(L, ExitCondICmp, TBB, FBB, ControlsExit,
6013                                     /*AllowPredicates=*/true);
6014   }
6015 
6016   // Check for a constant condition. These are normally stripped out by
6017   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
6018   // preserve the CFG and is temporarily leaving constant conditions
6019   // in place.
6020   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
6021     if (L->contains(FBB) == !CI->getZExtValue())
6022       // The backedge is always taken.
6023       return getCouldNotCompute();
6024     else
6025       // The backedge is never taken.
6026       return getZero(CI->getType());
6027   }
6028 
6029   // If it's not an integer or pointer comparison then compute it the hard way.
6030   return computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6031 }
6032 
6033 ScalarEvolution::ExitLimit
6034 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
6035                                           ICmpInst *ExitCond,
6036                                           BasicBlock *TBB,
6037                                           BasicBlock *FBB,
6038                                           bool ControlsExit,
6039                                           bool AllowPredicates) {
6040 
6041   // If the condition was exit on true, convert the condition to exit on false
6042   ICmpInst::Predicate Cond;
6043   if (!L->contains(FBB))
6044     Cond = ExitCond->getPredicate();
6045   else
6046     Cond = ExitCond->getInversePredicate();
6047 
6048   // Handle common loops like: for (X = "string"; *X; ++X)
6049   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
6050     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
6051       ExitLimit ItCnt =
6052         computeLoadConstantCompareExitLimit(LI, RHS, L, Cond);
6053       if (ItCnt.hasAnyInfo())
6054         return ItCnt;
6055     }
6056 
6057   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
6058   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
6059 
6060   // Try to evaluate any dependencies out of the loop.
6061   LHS = getSCEVAtScope(LHS, L);
6062   RHS = getSCEVAtScope(RHS, L);
6063 
6064   // At this point, we would like to compute how many iterations of the
6065   // loop the predicate will return true for these inputs.
6066   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
6067     // If there is a loop-invariant, force it into the RHS.
6068     std::swap(LHS, RHS);
6069     Cond = ICmpInst::getSwappedPredicate(Cond);
6070   }
6071 
6072   // Simplify the operands before analyzing them.
6073   (void)SimplifyICmpOperands(Cond, LHS, RHS);
6074 
6075   // If we have a comparison of a chrec against a constant, try to use value
6076   // ranges to answer this query.
6077   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
6078     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
6079       if (AddRec->getLoop() == L) {
6080         // Form the constant range.
6081         ConstantRange CompRange =
6082             ConstantRange::makeExactICmpRegion(Cond, RHSC->getAPInt());
6083 
6084         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
6085         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
6086       }
6087 
6088   switch (Cond) {
6089   case ICmpInst::ICMP_NE: {                     // while (X != Y)
6090     // Convert to: while (X-Y != 0)
6091     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
6092                                 AllowPredicates);
6093     if (EL.hasAnyInfo()) return EL;
6094     break;
6095   }
6096   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
6097     // Convert to: while (X-Y == 0)
6098     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
6099     if (EL.hasAnyInfo()) return EL;
6100     break;
6101   }
6102   case ICmpInst::ICMP_SLT:
6103   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
6104     bool IsSigned = Cond == ICmpInst::ICMP_SLT;
6105     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
6106                                     AllowPredicates);
6107     if (EL.hasAnyInfo()) return EL;
6108     break;
6109   }
6110   case ICmpInst::ICMP_SGT:
6111   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
6112     bool IsSigned = Cond == ICmpInst::ICMP_SGT;
6113     ExitLimit EL =
6114         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
6115                             AllowPredicates);
6116     if (EL.hasAnyInfo()) return EL;
6117     break;
6118   }
6119   default:
6120     break;
6121   }
6122 
6123   auto *ExhaustiveCount =
6124       computeExitCountExhaustively(L, ExitCond, !L->contains(TBB));
6125 
6126   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
6127     return ExhaustiveCount;
6128 
6129   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
6130                                       ExitCond->getOperand(1), L, Cond);
6131 }
6132 
6133 ScalarEvolution::ExitLimit
6134 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
6135                                                       SwitchInst *Switch,
6136                                                       BasicBlock *ExitingBlock,
6137                                                       bool ControlsExit) {
6138   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
6139 
6140   // Give up if the exit is the default dest of a switch.
6141   if (Switch->getDefaultDest() == ExitingBlock)
6142     return getCouldNotCompute();
6143 
6144   assert(L->contains(Switch->getDefaultDest()) &&
6145          "Default case must not exit the loop!");
6146   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
6147   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
6148 
6149   // while (X != Y) --> while (X-Y != 0)
6150   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
6151   if (EL.hasAnyInfo())
6152     return EL;
6153 
6154   return getCouldNotCompute();
6155 }
6156 
6157 static ConstantInt *
6158 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
6159                                 ScalarEvolution &SE) {
6160   const SCEV *InVal = SE.getConstant(C);
6161   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
6162   assert(isa<SCEVConstant>(Val) &&
6163          "Evaluation of SCEV at constant didn't fold correctly?");
6164   return cast<SCEVConstant>(Val)->getValue();
6165 }
6166 
6167 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
6168 /// compute the backedge execution count.
6169 ScalarEvolution::ExitLimit
6170 ScalarEvolution::computeLoadConstantCompareExitLimit(
6171   LoadInst *LI,
6172   Constant *RHS,
6173   const Loop *L,
6174   ICmpInst::Predicate predicate) {
6175 
6176   if (LI->isVolatile()) return getCouldNotCompute();
6177 
6178   // Check to see if the loaded pointer is a getelementptr of a global.
6179   // TODO: Use SCEV instead of manually grubbing with GEPs.
6180   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
6181   if (!GEP) return getCouldNotCompute();
6182 
6183   // Make sure that it is really a constant global we are gepping, with an
6184   // initializer, and make sure the first IDX is really 0.
6185   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
6186   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
6187       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
6188       !cast<Constant>(GEP->getOperand(1))->isNullValue())
6189     return getCouldNotCompute();
6190 
6191   // Okay, we allow one non-constant index into the GEP instruction.
6192   Value *VarIdx = nullptr;
6193   std::vector<Constant*> Indexes;
6194   unsigned VarIdxNum = 0;
6195   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
6196     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
6197       Indexes.push_back(CI);
6198     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
6199       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
6200       VarIdx = GEP->getOperand(i);
6201       VarIdxNum = i-2;
6202       Indexes.push_back(nullptr);
6203     }
6204 
6205   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
6206   if (!VarIdx)
6207     return getCouldNotCompute();
6208 
6209   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
6210   // Check to see if X is a loop variant variable value now.
6211   const SCEV *Idx = getSCEV(VarIdx);
6212   Idx = getSCEVAtScope(Idx, L);
6213 
6214   // We can only recognize very limited forms of loop index expressions, in
6215   // particular, only affine AddRec's like {C1,+,C2}.
6216   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
6217   if (!IdxExpr || !IdxExpr->isAffine() || isLoopInvariant(IdxExpr, L) ||
6218       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
6219       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
6220     return getCouldNotCompute();
6221 
6222   unsigned MaxSteps = MaxBruteForceIterations;
6223   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
6224     ConstantInt *ItCst = ConstantInt::get(
6225                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
6226     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
6227 
6228     // Form the GEP offset.
6229     Indexes[VarIdxNum] = Val;
6230 
6231     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
6232                                                          Indexes);
6233     if (!Result) break;  // Cannot compute!
6234 
6235     // Evaluate the condition for this iteration.
6236     Result = ConstantExpr::getICmp(predicate, Result, RHS);
6237     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
6238     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
6239       ++NumArrayLenItCounts;
6240       return getConstant(ItCst);   // Found terminating iteration!
6241     }
6242   }
6243   return getCouldNotCompute();
6244 }
6245 
6246 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
6247     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
6248   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
6249   if (!RHS)
6250     return getCouldNotCompute();
6251 
6252   const BasicBlock *Latch = L->getLoopLatch();
6253   if (!Latch)
6254     return getCouldNotCompute();
6255 
6256   const BasicBlock *Predecessor = L->getLoopPredecessor();
6257   if (!Predecessor)
6258     return getCouldNotCompute();
6259 
6260   // Return true if V is of the form "LHS `shift_op` <positive constant>".
6261   // Return LHS in OutLHS and shift_opt in OutOpCode.
6262   auto MatchPositiveShift =
6263       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
6264 
6265     using namespace PatternMatch;
6266 
6267     ConstantInt *ShiftAmt;
6268     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6269       OutOpCode = Instruction::LShr;
6270     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6271       OutOpCode = Instruction::AShr;
6272     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
6273       OutOpCode = Instruction::Shl;
6274     else
6275       return false;
6276 
6277     return ShiftAmt->getValue().isStrictlyPositive();
6278   };
6279 
6280   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
6281   //
6282   // loop:
6283   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
6284   //   %iv.shifted = lshr i32 %iv, <positive constant>
6285   //
6286   // Return true on a successful match.  Return the corresponding PHI node (%iv
6287   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
6288   auto MatchShiftRecurrence =
6289       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
6290     Optional<Instruction::BinaryOps> PostShiftOpCode;
6291 
6292     {
6293       Instruction::BinaryOps OpC;
6294       Value *V;
6295 
6296       // If we encounter a shift instruction, "peel off" the shift operation,
6297       // and remember that we did so.  Later when we inspect %iv's backedge
6298       // value, we will make sure that the backedge value uses the same
6299       // operation.
6300       //
6301       // Note: the peeled shift operation does not have to be the same
6302       // instruction as the one feeding into the PHI's backedge value.  We only
6303       // really care about it being the same *kind* of shift instruction --
6304       // that's all that is required for our later inferences to hold.
6305       if (MatchPositiveShift(LHS, V, OpC)) {
6306         PostShiftOpCode = OpC;
6307         LHS = V;
6308       }
6309     }
6310 
6311     PNOut = dyn_cast<PHINode>(LHS);
6312     if (!PNOut || PNOut->getParent() != L->getHeader())
6313       return false;
6314 
6315     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
6316     Value *OpLHS;
6317 
6318     return
6319         // The backedge value for the PHI node must be a shift by a positive
6320         // amount
6321         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
6322 
6323         // of the PHI node itself
6324         OpLHS == PNOut &&
6325 
6326         // and the kind of shift should be match the kind of shift we peeled
6327         // off, if any.
6328         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
6329   };
6330 
6331   PHINode *PN;
6332   Instruction::BinaryOps OpCode;
6333   if (!MatchShiftRecurrence(LHS, PN, OpCode))
6334     return getCouldNotCompute();
6335 
6336   const DataLayout &DL = getDataLayout();
6337 
6338   // The key rationale for this optimization is that for some kinds of shift
6339   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
6340   // within a finite number of iterations.  If the condition guarding the
6341   // backedge (in the sense that the backedge is taken if the condition is true)
6342   // is false for the value the shift recurrence stabilizes to, then we know
6343   // that the backedge is taken only a finite number of times.
6344 
6345   ConstantInt *StableValue = nullptr;
6346   switch (OpCode) {
6347   default:
6348     llvm_unreachable("Impossible case!");
6349 
6350   case Instruction::AShr: {
6351     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
6352     // bitwidth(K) iterations.
6353     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
6354     bool KnownZero, KnownOne;
6355     ComputeSignBit(FirstValue, KnownZero, KnownOne, DL, 0, nullptr,
6356                    Predecessor->getTerminator(), &DT);
6357     auto *Ty = cast<IntegerType>(RHS->getType());
6358     if (KnownZero)
6359       StableValue = ConstantInt::get(Ty, 0);
6360     else if (KnownOne)
6361       StableValue = ConstantInt::get(Ty, -1, true);
6362     else
6363       return getCouldNotCompute();
6364 
6365     break;
6366   }
6367   case Instruction::LShr:
6368   case Instruction::Shl:
6369     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
6370     // stabilize to 0 in at most bitwidth(K) iterations.
6371     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
6372     break;
6373   }
6374 
6375   auto *Result =
6376       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
6377   assert(Result->getType()->isIntegerTy(1) &&
6378          "Otherwise cannot be an operand to a branch instruction");
6379 
6380   if (Result->isZeroValue()) {
6381     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
6382     const SCEV *UpperBound =
6383         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
6384     return ExitLimit(getCouldNotCompute(), UpperBound, false);
6385   }
6386 
6387   return getCouldNotCompute();
6388 }
6389 
6390 /// Return true if we can constant fold an instruction of the specified type,
6391 /// assuming that all operands were constants.
6392 static bool CanConstantFold(const Instruction *I) {
6393   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
6394       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
6395       isa<LoadInst>(I))
6396     return true;
6397 
6398   if (const CallInst *CI = dyn_cast<CallInst>(I))
6399     if (const Function *F = CI->getCalledFunction())
6400       return canConstantFoldCallTo(F);
6401   return false;
6402 }
6403 
6404 /// Determine whether this instruction can constant evolve within this loop
6405 /// assuming its operands can all constant evolve.
6406 static bool canConstantEvolve(Instruction *I, const Loop *L) {
6407   // An instruction outside of the loop can't be derived from a loop PHI.
6408   if (!L->contains(I)) return false;
6409 
6410   if (isa<PHINode>(I)) {
6411     // We don't currently keep track of the control flow needed to evaluate
6412     // PHIs, so we cannot handle PHIs inside of loops.
6413     return L->getHeader() == I->getParent();
6414   }
6415 
6416   // If we won't be able to constant fold this expression even if the operands
6417   // are constants, bail early.
6418   return CanConstantFold(I);
6419 }
6420 
6421 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
6422 /// recursing through each instruction operand until reaching a loop header phi.
6423 static PHINode *
6424 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
6425                                DenseMap<Instruction *, PHINode *> &PHIMap,
6426                                unsigned Depth) {
6427   if (Depth > MaxConstantEvolvingDepth)
6428     return nullptr;
6429 
6430   // Otherwise, we can evaluate this instruction if all of its operands are
6431   // constant or derived from a PHI node themselves.
6432   PHINode *PHI = nullptr;
6433   for (Value *Op : UseInst->operands()) {
6434     if (isa<Constant>(Op)) continue;
6435 
6436     Instruction *OpInst = dyn_cast<Instruction>(Op);
6437     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
6438 
6439     PHINode *P = dyn_cast<PHINode>(OpInst);
6440     if (!P)
6441       // If this operand is already visited, reuse the prior result.
6442       // We may have P != PHI if this is the deepest point at which the
6443       // inconsistent paths meet.
6444       P = PHIMap.lookup(OpInst);
6445     if (!P) {
6446       // Recurse and memoize the results, whether a phi is found or not.
6447       // This recursive call invalidates pointers into PHIMap.
6448       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
6449       PHIMap[OpInst] = P;
6450     }
6451     if (!P)
6452       return nullptr;  // Not evolving from PHI
6453     if (PHI && PHI != P)
6454       return nullptr;  // Evolving from multiple different PHIs.
6455     PHI = P;
6456   }
6457   // This is a expression evolving from a constant PHI!
6458   return PHI;
6459 }
6460 
6461 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
6462 /// in the loop that V is derived from.  We allow arbitrary operations along the
6463 /// way, but the operands of an operation must either be constants or a value
6464 /// derived from a constant PHI.  If this expression does not fit with these
6465 /// constraints, return null.
6466 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
6467   Instruction *I = dyn_cast<Instruction>(V);
6468   if (!I || !canConstantEvolve(I, L)) return nullptr;
6469 
6470   if (PHINode *PN = dyn_cast<PHINode>(I))
6471     return PN;
6472 
6473   // Record non-constant instructions contained by the loop.
6474   DenseMap<Instruction *, PHINode *> PHIMap;
6475   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
6476 }
6477 
6478 /// EvaluateExpression - Given an expression that passes the
6479 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
6480 /// in the loop has the value PHIVal.  If we can't fold this expression for some
6481 /// reason, return null.
6482 static Constant *EvaluateExpression(Value *V, const Loop *L,
6483                                     DenseMap<Instruction *, Constant *> &Vals,
6484                                     const DataLayout &DL,
6485                                     const TargetLibraryInfo *TLI) {
6486   // Convenient constant check, but redundant for recursive calls.
6487   if (Constant *C = dyn_cast<Constant>(V)) return C;
6488   Instruction *I = dyn_cast<Instruction>(V);
6489   if (!I) return nullptr;
6490 
6491   if (Constant *C = Vals.lookup(I)) return C;
6492 
6493   // An instruction inside the loop depends on a value outside the loop that we
6494   // weren't given a mapping for, or a value such as a call inside the loop.
6495   if (!canConstantEvolve(I, L)) return nullptr;
6496 
6497   // An unmapped PHI can be due to a branch or another loop inside this loop,
6498   // or due to this not being the initial iteration through a loop where we
6499   // couldn't compute the evolution of this particular PHI last time.
6500   if (isa<PHINode>(I)) return nullptr;
6501 
6502   std::vector<Constant*> Operands(I->getNumOperands());
6503 
6504   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
6505     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
6506     if (!Operand) {
6507       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
6508       if (!Operands[i]) return nullptr;
6509       continue;
6510     }
6511     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
6512     Vals[Operand] = C;
6513     if (!C) return nullptr;
6514     Operands[i] = C;
6515   }
6516 
6517   if (CmpInst *CI = dyn_cast<CmpInst>(I))
6518     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6519                                            Operands[1], DL, TLI);
6520   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
6521     if (!LI->isVolatile())
6522       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6523   }
6524   return ConstantFoldInstOperands(I, Operands, DL, TLI);
6525 }
6526 
6527 
6528 // If every incoming value to PN except the one for BB is a specific Constant,
6529 // return that, else return nullptr.
6530 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
6531   Constant *IncomingVal = nullptr;
6532 
6533   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
6534     if (PN->getIncomingBlock(i) == BB)
6535       continue;
6536 
6537     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
6538     if (!CurrentVal)
6539       return nullptr;
6540 
6541     if (IncomingVal != CurrentVal) {
6542       if (IncomingVal)
6543         return nullptr;
6544       IncomingVal = CurrentVal;
6545     }
6546   }
6547 
6548   return IncomingVal;
6549 }
6550 
6551 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
6552 /// in the header of its containing loop, we know the loop executes a
6553 /// constant number of times, and the PHI node is just a recurrence
6554 /// involving constants, fold it.
6555 Constant *
6556 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
6557                                                    const APInt &BEs,
6558                                                    const Loop *L) {
6559   auto I = ConstantEvolutionLoopExitValue.find(PN);
6560   if (I != ConstantEvolutionLoopExitValue.end())
6561     return I->second;
6562 
6563   if (BEs.ugt(MaxBruteForceIterations))
6564     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
6565 
6566   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
6567 
6568   DenseMap<Instruction *, Constant *> CurrentIterVals;
6569   BasicBlock *Header = L->getHeader();
6570   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6571 
6572   BasicBlock *Latch = L->getLoopLatch();
6573   if (!Latch)
6574     return nullptr;
6575 
6576   for (auto &I : *Header) {
6577     PHINode *PHI = dyn_cast<PHINode>(&I);
6578     if (!PHI) break;
6579     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6580     if (!StartCST) continue;
6581     CurrentIterVals[PHI] = StartCST;
6582   }
6583   if (!CurrentIterVals.count(PN))
6584     return RetVal = nullptr;
6585 
6586   Value *BEValue = PN->getIncomingValueForBlock(Latch);
6587 
6588   // Execute the loop symbolically to determine the exit value.
6589   if (BEs.getActiveBits() >= 32)
6590     return RetVal = nullptr; // More than 2^32-1 iterations?? Not doing it!
6591 
6592   unsigned NumIterations = BEs.getZExtValue(); // must be in range
6593   unsigned IterationNum = 0;
6594   const DataLayout &DL = getDataLayout();
6595   for (; ; ++IterationNum) {
6596     if (IterationNum == NumIterations)
6597       return RetVal = CurrentIterVals[PN];  // Got exit value!
6598 
6599     // Compute the value of the PHIs for the next iteration.
6600     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
6601     DenseMap<Instruction *, Constant *> NextIterVals;
6602     Constant *NextPHI =
6603         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6604     if (!NextPHI)
6605       return nullptr;        // Couldn't evaluate!
6606     NextIterVals[PN] = NextPHI;
6607 
6608     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
6609 
6610     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
6611     // cease to be able to evaluate one of them or if they stop evolving,
6612     // because that doesn't necessarily prevent us from computing PN.
6613     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
6614     for (const auto &I : CurrentIterVals) {
6615       PHINode *PHI = dyn_cast<PHINode>(I.first);
6616       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
6617       PHIsToCompute.emplace_back(PHI, I.second);
6618     }
6619     // We use two distinct loops because EvaluateExpression may invalidate any
6620     // iterators into CurrentIterVals.
6621     for (const auto &I : PHIsToCompute) {
6622       PHINode *PHI = I.first;
6623       Constant *&NextPHI = NextIterVals[PHI];
6624       if (!NextPHI) {   // Not already computed.
6625         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6626         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6627       }
6628       if (NextPHI != I.second)
6629         StoppedEvolving = false;
6630     }
6631 
6632     // If all entries in CurrentIterVals == NextIterVals then we can stop
6633     // iterating, the loop can't continue to change.
6634     if (StoppedEvolving)
6635       return RetVal = CurrentIterVals[PN];
6636 
6637     CurrentIterVals.swap(NextIterVals);
6638   }
6639 }
6640 
6641 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
6642                                                           Value *Cond,
6643                                                           bool ExitWhen) {
6644   PHINode *PN = getConstantEvolvingPHI(Cond, L);
6645   if (!PN) return getCouldNotCompute();
6646 
6647   // If the loop is canonicalized, the PHI will have exactly two entries.
6648   // That's the only form we support here.
6649   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
6650 
6651   DenseMap<Instruction *, Constant *> CurrentIterVals;
6652   BasicBlock *Header = L->getHeader();
6653   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
6654 
6655   BasicBlock *Latch = L->getLoopLatch();
6656   assert(Latch && "Should follow from NumIncomingValues == 2!");
6657 
6658   for (auto &I : *Header) {
6659     PHINode *PHI = dyn_cast<PHINode>(&I);
6660     if (!PHI)
6661       break;
6662     auto *StartCST = getOtherIncomingValue(PHI, Latch);
6663     if (!StartCST) continue;
6664     CurrentIterVals[PHI] = StartCST;
6665   }
6666   if (!CurrentIterVals.count(PN))
6667     return getCouldNotCompute();
6668 
6669   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
6670   // the loop symbolically to determine when the condition gets a value of
6671   // "ExitWhen".
6672   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
6673   const DataLayout &DL = getDataLayout();
6674   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
6675     auto *CondVal = dyn_cast_or_null<ConstantInt>(
6676         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
6677 
6678     // Couldn't symbolically evaluate.
6679     if (!CondVal) return getCouldNotCompute();
6680 
6681     if (CondVal->getValue() == uint64_t(ExitWhen)) {
6682       ++NumBruteForceTripCountsComputed;
6683       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
6684     }
6685 
6686     // Update all the PHI nodes for the next iteration.
6687     DenseMap<Instruction *, Constant *> NextIterVals;
6688 
6689     // Create a list of which PHIs we need to compute. We want to do this before
6690     // calling EvaluateExpression on them because that may invalidate iterators
6691     // into CurrentIterVals.
6692     SmallVector<PHINode *, 8> PHIsToCompute;
6693     for (const auto &I : CurrentIterVals) {
6694       PHINode *PHI = dyn_cast<PHINode>(I.first);
6695       if (!PHI || PHI->getParent() != Header) continue;
6696       PHIsToCompute.push_back(PHI);
6697     }
6698     for (PHINode *PHI : PHIsToCompute) {
6699       Constant *&NextPHI = NextIterVals[PHI];
6700       if (NextPHI) continue;    // Already computed!
6701 
6702       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
6703       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
6704     }
6705     CurrentIterVals.swap(NextIterVals);
6706   }
6707 
6708   // Too many iterations were needed to evaluate.
6709   return getCouldNotCompute();
6710 }
6711 
6712 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
6713   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
6714       ValuesAtScopes[V];
6715   // Check to see if we've folded this expression at this loop before.
6716   for (auto &LS : Values)
6717     if (LS.first == L)
6718       return LS.second ? LS.second : V;
6719 
6720   Values.emplace_back(L, nullptr);
6721 
6722   // Otherwise compute it.
6723   const SCEV *C = computeSCEVAtScope(V, L);
6724   for (auto &LS : reverse(ValuesAtScopes[V]))
6725     if (LS.first == L) {
6726       LS.second = C;
6727       break;
6728     }
6729   return C;
6730 }
6731 
6732 /// This builds up a Constant using the ConstantExpr interface.  That way, we
6733 /// will return Constants for objects which aren't represented by a
6734 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
6735 /// Returns NULL if the SCEV isn't representable as a Constant.
6736 static Constant *BuildConstantFromSCEV(const SCEV *V) {
6737   switch (static_cast<SCEVTypes>(V->getSCEVType())) {
6738     case scCouldNotCompute:
6739     case scAddRecExpr:
6740       break;
6741     case scConstant:
6742       return cast<SCEVConstant>(V)->getValue();
6743     case scUnknown:
6744       return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
6745     case scSignExtend: {
6746       const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
6747       if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
6748         return ConstantExpr::getSExt(CastOp, SS->getType());
6749       break;
6750     }
6751     case scZeroExtend: {
6752       const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
6753       if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
6754         return ConstantExpr::getZExt(CastOp, SZ->getType());
6755       break;
6756     }
6757     case scTruncate: {
6758       const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
6759       if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
6760         return ConstantExpr::getTrunc(CastOp, ST->getType());
6761       break;
6762     }
6763     case scAddExpr: {
6764       const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
6765       if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
6766         if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6767           unsigned AS = PTy->getAddressSpace();
6768           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6769           C = ConstantExpr::getBitCast(C, DestPtrTy);
6770         }
6771         for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
6772           Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
6773           if (!C2) return nullptr;
6774 
6775           // First pointer!
6776           if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
6777             unsigned AS = C2->getType()->getPointerAddressSpace();
6778             std::swap(C, C2);
6779             Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
6780             // The offsets have been converted to bytes.  We can add bytes to an
6781             // i8* by GEP with the byte count in the first index.
6782             C = ConstantExpr::getBitCast(C, DestPtrTy);
6783           }
6784 
6785           // Don't bother trying to sum two pointers. We probably can't
6786           // statically compute a load that results from it anyway.
6787           if (C2->getType()->isPointerTy())
6788             return nullptr;
6789 
6790           if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
6791             if (PTy->getElementType()->isStructTy())
6792               C2 = ConstantExpr::getIntegerCast(
6793                   C2, Type::getInt32Ty(C->getContext()), true);
6794             C = ConstantExpr::getGetElementPtr(PTy->getElementType(), C, C2);
6795           } else
6796             C = ConstantExpr::getAdd(C, C2);
6797         }
6798         return C;
6799       }
6800       break;
6801     }
6802     case scMulExpr: {
6803       const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
6804       if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
6805         // Don't bother with pointers at all.
6806         if (C->getType()->isPointerTy()) return nullptr;
6807         for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
6808           Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
6809           if (!C2 || C2->getType()->isPointerTy()) return nullptr;
6810           C = ConstantExpr::getMul(C, C2);
6811         }
6812         return C;
6813       }
6814       break;
6815     }
6816     case scUDivExpr: {
6817       const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
6818       if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
6819         if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
6820           if (LHS->getType() == RHS->getType())
6821             return ConstantExpr::getUDiv(LHS, RHS);
6822       break;
6823     }
6824     case scSMaxExpr:
6825     case scUMaxExpr:
6826       break; // TODO: smax, umax.
6827   }
6828   return nullptr;
6829 }
6830 
6831 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
6832   if (isa<SCEVConstant>(V)) return V;
6833 
6834   // If this instruction is evolved from a constant-evolving PHI, compute the
6835   // exit value from the loop without using SCEVs.
6836   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
6837     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
6838       const Loop *LI = this->LI[I->getParent()];
6839       if (LI && LI->getParentLoop() == L)  // Looking for loop exit value.
6840         if (PHINode *PN = dyn_cast<PHINode>(I))
6841           if (PN->getParent() == LI->getHeader()) {
6842             // Okay, there is no closed form solution for the PHI node.  Check
6843             // to see if the loop that contains it has a known backedge-taken
6844             // count.  If so, we may be able to force computation of the exit
6845             // value.
6846             const SCEV *BackedgeTakenCount = getBackedgeTakenCount(LI);
6847             if (const SCEVConstant *BTCC =
6848                   dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
6849               // Okay, we know how many times the containing loop executes.  If
6850               // this is a constant evolving PHI node, get the final value at
6851               // the specified iteration number.
6852               Constant *RV =
6853                   getConstantEvolutionLoopExitValue(PN, BTCC->getAPInt(), LI);
6854               if (RV) return getSCEV(RV);
6855             }
6856           }
6857 
6858       // Okay, this is an expression that we cannot symbolically evaluate
6859       // into a SCEV.  Check to see if it's possible to symbolically evaluate
6860       // the arguments into constants, and if so, try to constant propagate the
6861       // result.  This is particularly useful for computing loop exit values.
6862       if (CanConstantFold(I)) {
6863         SmallVector<Constant *, 4> Operands;
6864         bool MadeImprovement = false;
6865         for (Value *Op : I->operands()) {
6866           if (Constant *C = dyn_cast<Constant>(Op)) {
6867             Operands.push_back(C);
6868             continue;
6869           }
6870 
6871           // If any of the operands is non-constant and if they are
6872           // non-integer and non-pointer, don't even try to analyze them
6873           // with scev techniques.
6874           if (!isSCEVable(Op->getType()))
6875             return V;
6876 
6877           const SCEV *OrigV = getSCEV(Op);
6878           const SCEV *OpV = getSCEVAtScope(OrigV, L);
6879           MadeImprovement |= OrigV != OpV;
6880 
6881           Constant *C = BuildConstantFromSCEV(OpV);
6882           if (!C) return V;
6883           if (C->getType() != Op->getType())
6884             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
6885                                                               Op->getType(),
6886                                                               false),
6887                                       C, Op->getType());
6888           Operands.push_back(C);
6889         }
6890 
6891         // Check to see if getSCEVAtScope actually made an improvement.
6892         if (MadeImprovement) {
6893           Constant *C = nullptr;
6894           const DataLayout &DL = getDataLayout();
6895           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
6896             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
6897                                                 Operands[1], DL, &TLI);
6898           else if (const LoadInst *LI = dyn_cast<LoadInst>(I)) {
6899             if (!LI->isVolatile())
6900               C = ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
6901           } else
6902             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
6903           if (!C) return V;
6904           return getSCEV(C);
6905         }
6906       }
6907     }
6908 
6909     // This is some other type of SCEVUnknown, just return it.
6910     return V;
6911   }
6912 
6913   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
6914     // Avoid performing the look-up in the common case where the specified
6915     // expression has no loop-variant portions.
6916     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
6917       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6918       if (OpAtScope != Comm->getOperand(i)) {
6919         // Okay, at least one of these operands is loop variant but might be
6920         // foldable.  Build a new instance of the folded commutative expression.
6921         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
6922                                             Comm->op_begin()+i);
6923         NewOps.push_back(OpAtScope);
6924 
6925         for (++i; i != e; ++i) {
6926           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
6927           NewOps.push_back(OpAtScope);
6928         }
6929         if (isa<SCEVAddExpr>(Comm))
6930           return getAddExpr(NewOps);
6931         if (isa<SCEVMulExpr>(Comm))
6932           return getMulExpr(NewOps);
6933         if (isa<SCEVSMaxExpr>(Comm))
6934           return getSMaxExpr(NewOps);
6935         if (isa<SCEVUMaxExpr>(Comm))
6936           return getUMaxExpr(NewOps);
6937         llvm_unreachable("Unknown commutative SCEV type!");
6938       }
6939     }
6940     // If we got here, all operands are loop invariant.
6941     return Comm;
6942   }
6943 
6944   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
6945     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
6946     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
6947     if (LHS == Div->getLHS() && RHS == Div->getRHS())
6948       return Div;   // must be loop invariant
6949     return getUDivExpr(LHS, RHS);
6950   }
6951 
6952   // If this is a loop recurrence for a loop that does not contain L, then we
6953   // are dealing with the final value computed by the loop.
6954   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
6955     // First, attempt to evaluate each operand.
6956     // Avoid performing the look-up in the common case where the specified
6957     // expression has no loop-variant portions.
6958     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
6959       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
6960       if (OpAtScope == AddRec->getOperand(i))
6961         continue;
6962 
6963       // Okay, at least one of these operands is loop variant but might be
6964       // foldable.  Build a new instance of the folded commutative expression.
6965       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
6966                                           AddRec->op_begin()+i);
6967       NewOps.push_back(OpAtScope);
6968       for (++i; i != e; ++i)
6969         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
6970 
6971       const SCEV *FoldedRec =
6972         getAddRecExpr(NewOps, AddRec->getLoop(),
6973                       AddRec->getNoWrapFlags(SCEV::FlagNW));
6974       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
6975       // The addrec may be folded to a nonrecurrence, for example, if the
6976       // induction variable is multiplied by zero after constant folding. Go
6977       // ahead and return the folded value.
6978       if (!AddRec)
6979         return FoldedRec;
6980       break;
6981     }
6982 
6983     // If the scope is outside the addrec's loop, evaluate it by using the
6984     // loop exit value of the addrec.
6985     if (!AddRec->getLoop()->contains(L)) {
6986       // To evaluate this recurrence, we need to know how many times the AddRec
6987       // loop iterates.  Compute this now.
6988       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
6989       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
6990 
6991       // Then, evaluate the AddRec.
6992       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
6993     }
6994 
6995     return AddRec;
6996   }
6997 
6998   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
6999     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7000     if (Op == Cast->getOperand())
7001       return Cast;  // must be loop invariant
7002     return getZeroExtendExpr(Op, Cast->getType());
7003   }
7004 
7005   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
7006     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7007     if (Op == Cast->getOperand())
7008       return Cast;  // must be loop invariant
7009     return getSignExtendExpr(Op, Cast->getType());
7010   }
7011 
7012   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
7013     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
7014     if (Op == Cast->getOperand())
7015       return Cast;  // must be loop invariant
7016     return getTruncateExpr(Op, Cast->getType());
7017   }
7018 
7019   llvm_unreachable("Unknown SCEV type!");
7020 }
7021 
7022 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
7023   return getSCEVAtScope(getSCEV(V), L);
7024 }
7025 
7026 /// Finds the minimum unsigned root of the following equation:
7027 ///
7028 ///     A * X = B (mod N)
7029 ///
7030 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
7031 /// A and B isn't important.
7032 ///
7033 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
7034 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const APInt &B,
7035                                                ScalarEvolution &SE) {
7036   uint32_t BW = A.getBitWidth();
7037   assert(BW == B.getBitWidth() && "Bit widths must be the same.");
7038   assert(A != 0 && "A must be non-zero.");
7039 
7040   // 1. D = gcd(A, N)
7041   //
7042   // The gcd of A and N may have only one prime factor: 2. The number of
7043   // trailing zeros in A is its multiplicity
7044   uint32_t Mult2 = A.countTrailingZeros();
7045   // D = 2^Mult2
7046 
7047   // 2. Check if B is divisible by D.
7048   //
7049   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
7050   // is not less than multiplicity of this prime factor for D.
7051   if (B.countTrailingZeros() < Mult2)
7052     return SE.getCouldNotCompute();
7053 
7054   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
7055   // modulo (N / D).
7056   //
7057   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
7058   // (N / D) in general. The inverse itself always fits into BW bits, though,
7059   // so we immediately truncate it.
7060   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
7061   APInt Mod(BW + 1, 0);
7062   Mod.setBit(BW - Mult2);  // Mod = N / D
7063   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
7064 
7065   // 4. Compute the minimum unsigned root of the equation:
7066   // I * (B / D) mod (N / D)
7067   // To simplify the computation, we factor out the divide by D:
7068   // (I * B mod N) / D
7069   APInt Result = (I * B).lshr(Mult2);
7070 
7071   return SE.getConstant(Result);
7072 }
7073 
7074 /// Find the roots of the quadratic equation for the given quadratic chrec
7075 /// {L,+,M,+,N}.  This returns either the two roots (which might be the same) or
7076 /// two SCEVCouldNotCompute objects.
7077 ///
7078 static Optional<std::pair<const SCEVConstant *,const SCEVConstant *>>
7079 SolveQuadraticEquation(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
7080   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
7081   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
7082   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
7083   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
7084 
7085   // We currently can only solve this if the coefficients are constants.
7086   if (!LC || !MC || !NC)
7087     return None;
7088 
7089   uint32_t BitWidth = LC->getAPInt().getBitWidth();
7090   const APInt &L = LC->getAPInt();
7091   const APInt &M = MC->getAPInt();
7092   const APInt &N = NC->getAPInt();
7093   APInt Two(BitWidth, 2);
7094   APInt Four(BitWidth, 4);
7095 
7096   {
7097     using namespace APIntOps;
7098     const APInt& C = L;
7099     // Convert from chrec coefficients to polynomial coefficients AX^2+BX+C
7100     // The B coefficient is M-N/2
7101     APInt B(M);
7102     B -= sdiv(N,Two);
7103 
7104     // The A coefficient is N/2
7105     APInt A(N.sdiv(Two));
7106 
7107     // Compute the B^2-4ac term.
7108     APInt SqrtTerm(B);
7109     SqrtTerm *= B;
7110     SqrtTerm -= Four * (A * C);
7111 
7112     if (SqrtTerm.isNegative()) {
7113       // The loop is provably infinite.
7114       return None;
7115     }
7116 
7117     // Compute sqrt(B^2-4ac). This is guaranteed to be the nearest
7118     // integer value or else APInt::sqrt() will assert.
7119     APInt SqrtVal(SqrtTerm.sqrt());
7120 
7121     // Compute the two solutions for the quadratic formula.
7122     // The divisions must be performed as signed divisions.
7123     APInt NegB(-B);
7124     APInt TwoA(A << 1);
7125     if (TwoA.isMinValue())
7126       return None;
7127 
7128     LLVMContext &Context = SE.getContext();
7129 
7130     ConstantInt *Solution1 =
7131       ConstantInt::get(Context, (NegB + SqrtVal).sdiv(TwoA));
7132     ConstantInt *Solution2 =
7133       ConstantInt::get(Context, (NegB - SqrtVal).sdiv(TwoA));
7134 
7135     return std::make_pair(cast<SCEVConstant>(SE.getConstant(Solution1)),
7136                           cast<SCEVConstant>(SE.getConstant(Solution2)));
7137   } // end APIntOps namespace
7138 }
7139 
7140 ScalarEvolution::ExitLimit
7141 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
7142                               bool AllowPredicates) {
7143 
7144   // This is only used for loops with a "x != y" exit test. The exit condition
7145   // is now expressed as a single expression, V = x-y. So the exit test is
7146   // effectively V != 0.  We know and take advantage of the fact that this
7147   // expression only being used in a comparison by zero context.
7148 
7149   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
7150   // If the value is a constant
7151   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7152     // If the value is already zero, the branch will execute zero times.
7153     if (C->getValue()->isZero()) return C;
7154     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7155   }
7156 
7157   const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V);
7158   if (!AddRec && AllowPredicates)
7159     // Try to make this an AddRec using runtime tests, in the first X
7160     // iterations of this loop, where X is the SCEV expression found by the
7161     // algorithm below.
7162     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
7163 
7164   if (!AddRec || AddRec->getLoop() != L)
7165     return getCouldNotCompute();
7166 
7167   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
7168   // the quadratic equation to solve it.
7169   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
7170     if (auto Roots = SolveQuadraticEquation(AddRec, *this)) {
7171       const SCEVConstant *R1 = Roots->first;
7172       const SCEVConstant *R2 = Roots->second;
7173       // Pick the smallest positive root value.
7174       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
7175               CmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
7176         if (!CB->getZExtValue())
7177           std::swap(R1, R2); // R1 is the minimum root now.
7178 
7179         // We can only use this value if the chrec ends up with an exact zero
7180         // value at this index.  When solving for "X*X != 5", for example, we
7181         // should not accept a root of 2.
7182         const SCEV *Val = AddRec->evaluateAtIteration(R1, *this);
7183         if (Val->isZero())
7184           // We found a quadratic root!
7185           return ExitLimit(R1, R1, false, Predicates);
7186       }
7187     }
7188     return getCouldNotCompute();
7189   }
7190 
7191   // Otherwise we can only handle this if it is affine.
7192   if (!AddRec->isAffine())
7193     return getCouldNotCompute();
7194 
7195   // If this is an affine expression, the execution count of this branch is
7196   // the minimum unsigned root of the following equation:
7197   //
7198   //     Start + Step*N = 0 (mod 2^BW)
7199   //
7200   // equivalent to:
7201   //
7202   //             Step*N = -Start (mod 2^BW)
7203   //
7204   // where BW is the common bit width of Start and Step.
7205 
7206   // Get the initial value for the loop.
7207   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
7208   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
7209 
7210   // For now we handle only constant steps.
7211   //
7212   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
7213   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
7214   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
7215   // We have not yet seen any such cases.
7216   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
7217   if (!StepC || StepC->getValue()->equalsInt(0))
7218     return getCouldNotCompute();
7219 
7220   // For positive steps (counting up until unsigned overflow):
7221   //   N = -Start/Step (as unsigned)
7222   // For negative steps (counting down to zero):
7223   //   N = Start/-Step
7224   // First compute the unsigned distance from zero in the direction of Step.
7225   bool CountDown = StepC->getAPInt().isNegative();
7226   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
7227 
7228   // Handle unitary steps, which cannot wraparound.
7229   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
7230   //   N = Distance (as unsigned)
7231   if (StepC->getValue()->equalsInt(1) || StepC->getValue()->isAllOnesValue()) {
7232     APInt MaxBECount = getUnsignedRange(Distance).getUnsignedMax();
7233 
7234     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
7235     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
7236     // case, and see if we can improve the bound.
7237     //
7238     // Explicitly handling this here is necessary because getUnsignedRange
7239     // isn't context-sensitive; it doesn't know that we only care about the
7240     // range inside the loop.
7241     const SCEV *Zero = getZero(Distance->getType());
7242     const SCEV *One = getOne(Distance->getType());
7243     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
7244     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
7245       // If Distance + 1 doesn't overflow, we can compute the maximum distance
7246       // as "unsigned_max(Distance + 1) - 1".
7247       ConstantRange CR = getUnsignedRange(DistancePlusOne);
7248       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
7249     }
7250     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
7251   }
7252 
7253   // As a special case, handle the instance where Step is a positive power of
7254   // two. In this case, determining whether Step divides Distance evenly can be
7255   // done by counting and comparing the number of trailing zeros of Step and
7256   // Distance.
7257   if (!CountDown) {
7258     const APInt &StepV = StepC->getAPInt();
7259     // StepV.isPowerOf2() returns true if StepV is an positive power of two.  It
7260     // also returns true if StepV is maximally negative (eg, INT_MIN), but that
7261     // case is not handled as this code is guarded by !CountDown.
7262     if (StepV.isPowerOf2() &&
7263         GetMinTrailingZeros(Distance) >= StepV.countTrailingZeros()) {
7264       // Here we've constrained the equation to be of the form
7265       //
7266       //   2^(N + k) * Distance' = (StepV == 2^N) * X (mod 2^W)  ... (0)
7267       //
7268       // where we're operating on a W bit wide integer domain and k is
7269       // non-negative.  The smallest unsigned solution for X is the trip count.
7270       //
7271       // (0) is equivalent to:
7272       //
7273       //      2^(N + k) * Distance' - 2^N * X = L * 2^W
7274       // <=>  2^N(2^k * Distance' - X) = L * 2^(W - N) * 2^N
7275       // <=>  2^k * Distance' - X = L * 2^(W - N)
7276       // <=>  2^k * Distance'     = L * 2^(W - N) + X    ... (1)
7277       //
7278       // The smallest X satisfying (1) is unsigned remainder of dividing the LHS
7279       // by 2^(W - N).
7280       //
7281       // <=>  X = 2^k * Distance' URem 2^(W - N)   ... (2)
7282       //
7283       // E.g. say we're solving
7284       //
7285       //   2 * Val = 2 * X  (in i8)   ... (3)
7286       //
7287       // then from (2), we get X = Val URem i8 128 (k = 0 in this case).
7288       //
7289       // Note: It is tempting to solve (3) by setting X = Val, but Val is not
7290       // necessarily the smallest unsigned value of X that satisfies (3).
7291       // E.g. if Val is i8 -127 then the smallest value of X that satisfies (3)
7292       // is i8 1, not i8 -127
7293 
7294       const auto *Limit = getUDivExactExpr(Distance, Step);
7295       return ExitLimit(Limit, Limit, false, Predicates);
7296     }
7297   }
7298 
7299   // If the condition controls loop exit (the loop exits only if the expression
7300   // is true) and the addition is no-wrap we can use unsigned divide to
7301   // compute the backedge count.  In this case, the step may not divide the
7302   // distance, but we don't care because if the condition is "missed" the loop
7303   // will have undefined behavior due to wrapping.
7304   if (ControlsExit && AddRec->hasNoSelfWrap() &&
7305       loopHasNoAbnormalExits(AddRec->getLoop())) {
7306     const SCEV *Exact =
7307         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
7308     return ExitLimit(Exact, Exact, false, Predicates);
7309   }
7310 
7311   // Then, try to solve the above equation provided that Start is constant.
7312   if (const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start)) {
7313     const SCEV *E = SolveLinEquationWithOverflow(
7314         StepC->getValue()->getValue(), -StartC->getValue()->getValue(), *this);
7315     return ExitLimit(E, E, false, Predicates);
7316   }
7317   return getCouldNotCompute();
7318 }
7319 
7320 ScalarEvolution::ExitLimit
7321 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
7322   // Loops that look like: while (X == 0) are very strange indeed.  We don't
7323   // handle them yet except for the trivial case.  This could be expanded in the
7324   // future as needed.
7325 
7326   // If the value is a constant, check to see if it is known to be non-zero
7327   // already.  If so, the backedge will execute zero times.
7328   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
7329     if (!C->getValue()->isNullValue())
7330       return getZero(C->getType());
7331     return getCouldNotCompute();  // Otherwise it will loop infinitely.
7332   }
7333 
7334   // We could implement others, but I really doubt anyone writes loops like
7335   // this, and if they did, they would already be constant folded.
7336   return getCouldNotCompute();
7337 }
7338 
7339 std::pair<BasicBlock *, BasicBlock *>
7340 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(BasicBlock *BB) {
7341   // If the block has a unique predecessor, then there is no path from the
7342   // predecessor to the block that does not go through the direct edge
7343   // from the predecessor to the block.
7344   if (BasicBlock *Pred = BB->getSinglePredecessor())
7345     return {Pred, BB};
7346 
7347   // A loop's header is defined to be a block that dominates the loop.
7348   // If the header has a unique predecessor outside the loop, it must be
7349   // a block that has exactly one successor that can reach the loop.
7350   if (Loop *L = LI.getLoopFor(BB))
7351     return {L->getLoopPredecessor(), L->getHeader()};
7352 
7353   return {nullptr, nullptr};
7354 }
7355 
7356 /// SCEV structural equivalence is usually sufficient for testing whether two
7357 /// expressions are equal, however for the purposes of looking for a condition
7358 /// guarding a loop, it can be useful to be a little more general, since a
7359 /// front-end may have replicated the controlling expression.
7360 ///
7361 static bool HasSameValue(const SCEV *A, const SCEV *B) {
7362   // Quick check to see if they are the same SCEV.
7363   if (A == B) return true;
7364 
7365   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
7366     // Not all instructions that are "identical" compute the same value.  For
7367     // instance, two distinct alloca instructions allocating the same type are
7368     // identical and do not read memory; but compute distinct values.
7369     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
7370   };
7371 
7372   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
7373   // two different instructions with the same value. Check for this case.
7374   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
7375     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
7376       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
7377         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
7378           if (ComputesEqualValues(AI, BI))
7379             return true;
7380 
7381   // Otherwise assume they may have a different value.
7382   return false;
7383 }
7384 
7385 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
7386                                            const SCEV *&LHS, const SCEV *&RHS,
7387                                            unsigned Depth) {
7388   bool Changed = false;
7389 
7390   // If we hit the max recursion limit bail out.
7391   if (Depth >= 3)
7392     return false;
7393 
7394   // Canonicalize a constant to the right side.
7395   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
7396     // Check for both operands constant.
7397     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
7398       if (ConstantExpr::getICmp(Pred,
7399                                 LHSC->getValue(),
7400                                 RHSC->getValue())->isNullValue())
7401         goto trivially_false;
7402       else
7403         goto trivially_true;
7404     }
7405     // Otherwise swap the operands to put the constant on the right.
7406     std::swap(LHS, RHS);
7407     Pred = ICmpInst::getSwappedPredicate(Pred);
7408     Changed = true;
7409   }
7410 
7411   // If we're comparing an addrec with a value which is loop-invariant in the
7412   // addrec's loop, put the addrec on the left. Also make a dominance check,
7413   // as both operands could be addrecs loop-invariant in each other's loop.
7414   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
7415     const Loop *L = AR->getLoop();
7416     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
7417       std::swap(LHS, RHS);
7418       Pred = ICmpInst::getSwappedPredicate(Pred);
7419       Changed = true;
7420     }
7421   }
7422 
7423   // If there's a constant operand, canonicalize comparisons with boundary
7424   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
7425   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
7426     const APInt &RA = RC->getAPInt();
7427 
7428     bool SimplifiedByConstantRange = false;
7429 
7430     if (!ICmpInst::isEquality(Pred)) {
7431       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
7432       if (ExactCR.isFullSet())
7433         goto trivially_true;
7434       else if (ExactCR.isEmptySet())
7435         goto trivially_false;
7436 
7437       APInt NewRHS;
7438       CmpInst::Predicate NewPred;
7439       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
7440           ICmpInst::isEquality(NewPred)) {
7441         // We were able to convert an inequality to an equality.
7442         Pred = NewPred;
7443         RHS = getConstant(NewRHS);
7444         Changed = SimplifiedByConstantRange = true;
7445       }
7446     }
7447 
7448     if (!SimplifiedByConstantRange) {
7449       switch (Pred) {
7450       default:
7451         break;
7452       case ICmpInst::ICMP_EQ:
7453       case ICmpInst::ICMP_NE:
7454         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
7455         if (!RA)
7456           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
7457             if (const SCEVMulExpr *ME =
7458                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
7459               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
7460                   ME->getOperand(0)->isAllOnesValue()) {
7461                 RHS = AE->getOperand(1);
7462                 LHS = ME->getOperand(1);
7463                 Changed = true;
7464               }
7465         break;
7466 
7467 
7468         // The "Should have been caught earlier!" messages refer to the fact
7469         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
7470         // should have fired on the corresponding cases, and canonicalized the
7471         // check to trivially_true or trivially_false.
7472 
7473       case ICmpInst::ICMP_UGE:
7474         assert(!RA.isMinValue() && "Should have been caught earlier!");
7475         Pred = ICmpInst::ICMP_UGT;
7476         RHS = getConstant(RA - 1);
7477         Changed = true;
7478         break;
7479       case ICmpInst::ICMP_ULE:
7480         assert(!RA.isMaxValue() && "Should have been caught earlier!");
7481         Pred = ICmpInst::ICMP_ULT;
7482         RHS = getConstant(RA + 1);
7483         Changed = true;
7484         break;
7485       case ICmpInst::ICMP_SGE:
7486         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
7487         Pred = ICmpInst::ICMP_SGT;
7488         RHS = getConstant(RA - 1);
7489         Changed = true;
7490         break;
7491       case ICmpInst::ICMP_SLE:
7492         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
7493         Pred = ICmpInst::ICMP_SLT;
7494         RHS = getConstant(RA + 1);
7495         Changed = true;
7496         break;
7497       }
7498     }
7499   }
7500 
7501   // Check for obvious equality.
7502   if (HasSameValue(LHS, RHS)) {
7503     if (ICmpInst::isTrueWhenEqual(Pred))
7504       goto trivially_true;
7505     if (ICmpInst::isFalseWhenEqual(Pred))
7506       goto trivially_false;
7507   }
7508 
7509   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
7510   // adding or subtracting 1 from one of the operands.
7511   switch (Pred) {
7512   case ICmpInst::ICMP_SLE:
7513     if (!getSignedRange(RHS).getSignedMax().isMaxSignedValue()) {
7514       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7515                        SCEV::FlagNSW);
7516       Pred = ICmpInst::ICMP_SLT;
7517       Changed = true;
7518     } else if (!getSignedRange(LHS).getSignedMin().isMinSignedValue()) {
7519       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
7520                        SCEV::FlagNSW);
7521       Pred = ICmpInst::ICMP_SLT;
7522       Changed = true;
7523     }
7524     break;
7525   case ICmpInst::ICMP_SGE:
7526     if (!getSignedRange(RHS).getSignedMin().isMinSignedValue()) {
7527       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
7528                        SCEV::FlagNSW);
7529       Pred = ICmpInst::ICMP_SGT;
7530       Changed = true;
7531     } else if (!getSignedRange(LHS).getSignedMax().isMaxSignedValue()) {
7532       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7533                        SCEV::FlagNSW);
7534       Pred = ICmpInst::ICMP_SGT;
7535       Changed = true;
7536     }
7537     break;
7538   case ICmpInst::ICMP_ULE:
7539     if (!getUnsignedRange(RHS).getUnsignedMax().isMaxValue()) {
7540       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
7541                        SCEV::FlagNUW);
7542       Pred = ICmpInst::ICMP_ULT;
7543       Changed = true;
7544     } else if (!getUnsignedRange(LHS).getUnsignedMin().isMinValue()) {
7545       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
7546       Pred = ICmpInst::ICMP_ULT;
7547       Changed = true;
7548     }
7549     break;
7550   case ICmpInst::ICMP_UGE:
7551     if (!getUnsignedRange(RHS).getUnsignedMin().isMinValue()) {
7552       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
7553       Pred = ICmpInst::ICMP_UGT;
7554       Changed = true;
7555     } else if (!getUnsignedRange(LHS).getUnsignedMax().isMaxValue()) {
7556       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
7557                        SCEV::FlagNUW);
7558       Pred = ICmpInst::ICMP_UGT;
7559       Changed = true;
7560     }
7561     break;
7562   default:
7563     break;
7564   }
7565 
7566   // TODO: More simplifications are possible here.
7567 
7568   // Recursively simplify until we either hit a recursion limit or nothing
7569   // changes.
7570   if (Changed)
7571     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
7572 
7573   return Changed;
7574 
7575 trivially_true:
7576   // Return 0 == 0.
7577   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7578   Pred = ICmpInst::ICMP_EQ;
7579   return true;
7580 
7581 trivially_false:
7582   // Return 0 != 0.
7583   LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
7584   Pred = ICmpInst::ICMP_NE;
7585   return true;
7586 }
7587 
7588 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
7589   return getSignedRange(S).getSignedMax().isNegative();
7590 }
7591 
7592 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
7593   return getSignedRange(S).getSignedMin().isStrictlyPositive();
7594 }
7595 
7596 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
7597   return !getSignedRange(S).getSignedMin().isNegative();
7598 }
7599 
7600 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
7601   return !getSignedRange(S).getSignedMax().isStrictlyPositive();
7602 }
7603 
7604 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
7605   return isKnownNegative(S) || isKnownPositive(S);
7606 }
7607 
7608 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
7609                                        const SCEV *LHS, const SCEV *RHS) {
7610   // Canonicalize the inputs first.
7611   (void)SimplifyICmpOperands(Pred, LHS, RHS);
7612 
7613   // If LHS or RHS is an addrec, check to see if the condition is true in
7614   // every iteration of the loop.
7615   // If LHS and RHS are both addrec, both conditions must be true in
7616   // every iteration of the loop.
7617   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
7618   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
7619   bool LeftGuarded = false;
7620   bool RightGuarded = false;
7621   if (LAR) {
7622     const Loop *L = LAR->getLoop();
7623     if (isLoopEntryGuardedByCond(L, Pred, LAR->getStart(), RHS) &&
7624         isLoopBackedgeGuardedByCond(L, Pred, LAR->getPostIncExpr(*this), RHS)) {
7625       if (!RAR) return true;
7626       LeftGuarded = true;
7627     }
7628   }
7629   if (RAR) {
7630     const Loop *L = RAR->getLoop();
7631     if (isLoopEntryGuardedByCond(L, Pred, LHS, RAR->getStart()) &&
7632         isLoopBackedgeGuardedByCond(L, Pred, LHS, RAR->getPostIncExpr(*this))) {
7633       if (!LAR) return true;
7634       RightGuarded = true;
7635     }
7636   }
7637   if (LeftGuarded && RightGuarded)
7638     return true;
7639 
7640   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
7641     return true;
7642 
7643   // Otherwise see what can be done with known constant ranges.
7644   return isKnownPredicateViaConstantRanges(Pred, LHS, RHS);
7645 }
7646 
7647 bool ScalarEvolution::isMonotonicPredicate(const SCEVAddRecExpr *LHS,
7648                                            ICmpInst::Predicate Pred,
7649                                            bool &Increasing) {
7650   bool Result = isMonotonicPredicateImpl(LHS, Pred, Increasing);
7651 
7652 #ifndef NDEBUG
7653   // Verify an invariant: inverting the predicate should turn a monotonically
7654   // increasing change to a monotonically decreasing one, and vice versa.
7655   bool IncreasingSwapped;
7656   bool ResultSwapped = isMonotonicPredicateImpl(
7657       LHS, ICmpInst::getSwappedPredicate(Pred), IncreasingSwapped);
7658 
7659   assert(Result == ResultSwapped && "should be able to analyze both!");
7660   if (ResultSwapped)
7661     assert(Increasing == !IncreasingSwapped &&
7662            "monotonicity should flip as we flip the predicate");
7663 #endif
7664 
7665   return Result;
7666 }
7667 
7668 bool ScalarEvolution::isMonotonicPredicateImpl(const SCEVAddRecExpr *LHS,
7669                                                ICmpInst::Predicate Pred,
7670                                                bool &Increasing) {
7671 
7672   // A zero step value for LHS means the induction variable is essentially a
7673   // loop invariant value. We don't really depend on the predicate actually
7674   // flipping from false to true (for increasing predicates, and the other way
7675   // around for decreasing predicates), all we care about is that *if* the
7676   // predicate changes then it only changes from false to true.
7677   //
7678   // A zero step value in itself is not very useful, but there may be places
7679   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
7680   // as general as possible.
7681 
7682   switch (Pred) {
7683   default:
7684     return false; // Conservative answer
7685 
7686   case ICmpInst::ICMP_UGT:
7687   case ICmpInst::ICMP_UGE:
7688   case ICmpInst::ICMP_ULT:
7689   case ICmpInst::ICMP_ULE:
7690     if (!LHS->hasNoUnsignedWrap())
7691       return false;
7692 
7693     Increasing = Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE;
7694     return true;
7695 
7696   case ICmpInst::ICMP_SGT:
7697   case ICmpInst::ICMP_SGE:
7698   case ICmpInst::ICMP_SLT:
7699   case ICmpInst::ICMP_SLE: {
7700     if (!LHS->hasNoSignedWrap())
7701       return false;
7702 
7703     const SCEV *Step = LHS->getStepRecurrence(*this);
7704 
7705     if (isKnownNonNegative(Step)) {
7706       Increasing = Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE;
7707       return true;
7708     }
7709 
7710     if (isKnownNonPositive(Step)) {
7711       Increasing = Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE;
7712       return true;
7713     }
7714 
7715     return false;
7716   }
7717 
7718   }
7719 
7720   llvm_unreachable("switch has default clause!");
7721 }
7722 
7723 bool ScalarEvolution::isLoopInvariantPredicate(
7724     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
7725     ICmpInst::Predicate &InvariantPred, const SCEV *&InvariantLHS,
7726     const SCEV *&InvariantRHS) {
7727 
7728   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
7729   if (!isLoopInvariant(RHS, L)) {
7730     if (!isLoopInvariant(LHS, L))
7731       return false;
7732 
7733     std::swap(LHS, RHS);
7734     Pred = ICmpInst::getSwappedPredicate(Pred);
7735   }
7736 
7737   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
7738   if (!ArLHS || ArLHS->getLoop() != L)
7739     return false;
7740 
7741   bool Increasing;
7742   if (!isMonotonicPredicate(ArLHS, Pred, Increasing))
7743     return false;
7744 
7745   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
7746   // true as the loop iterates, and the backedge is control dependent on
7747   // "ArLHS `Pred` RHS" == true then we can reason as follows:
7748   //
7749   //   * if the predicate was false in the first iteration then the predicate
7750   //     is never evaluated again, since the loop exits without taking the
7751   //     backedge.
7752   //   * if the predicate was true in the first iteration then it will
7753   //     continue to be true for all future iterations since it is
7754   //     monotonically increasing.
7755   //
7756   // For both the above possibilities, we can replace the loop varying
7757   // predicate with its value on the first iteration of the loop (which is
7758   // loop invariant).
7759   //
7760   // A similar reasoning applies for a monotonically decreasing predicate, by
7761   // replacing true with false and false with true in the above two bullets.
7762 
7763   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
7764 
7765   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
7766     return false;
7767 
7768   InvariantPred = Pred;
7769   InvariantLHS = ArLHS->getStart();
7770   InvariantRHS = RHS;
7771   return true;
7772 }
7773 
7774 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
7775     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
7776   if (HasSameValue(LHS, RHS))
7777     return ICmpInst::isTrueWhenEqual(Pred);
7778 
7779   // This code is split out from isKnownPredicate because it is called from
7780   // within isLoopEntryGuardedByCond.
7781 
7782   auto CheckRanges =
7783       [&](const ConstantRange &RangeLHS, const ConstantRange &RangeRHS) {
7784     return ConstantRange::makeSatisfyingICmpRegion(Pred, RangeRHS)
7785         .contains(RangeLHS);
7786   };
7787 
7788   // The check at the top of the function catches the case where the values are
7789   // known to be equal.
7790   if (Pred == CmpInst::ICMP_EQ)
7791     return false;
7792 
7793   if (Pred == CmpInst::ICMP_NE)
7794     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
7795            CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)) ||
7796            isKnownNonZero(getMinusSCEV(LHS, RHS));
7797 
7798   if (CmpInst::isSigned(Pred))
7799     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
7800 
7801   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
7802 }
7803 
7804 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
7805                                                     const SCEV *LHS,
7806                                                     const SCEV *RHS) {
7807 
7808   // Match Result to (X + Y)<ExpectedFlags> where Y is a constant integer.
7809   // Return Y via OutY.
7810   auto MatchBinaryAddToConst =
7811       [this](const SCEV *Result, const SCEV *X, APInt &OutY,
7812              SCEV::NoWrapFlags ExpectedFlags) {
7813     const SCEV *NonConstOp, *ConstOp;
7814     SCEV::NoWrapFlags FlagsPresent;
7815 
7816     if (!splitBinaryAdd(Result, ConstOp, NonConstOp, FlagsPresent) ||
7817         !isa<SCEVConstant>(ConstOp) || NonConstOp != X)
7818       return false;
7819 
7820     OutY = cast<SCEVConstant>(ConstOp)->getAPInt();
7821     return (FlagsPresent & ExpectedFlags) == ExpectedFlags;
7822   };
7823 
7824   APInt C;
7825 
7826   switch (Pred) {
7827   default:
7828     break;
7829 
7830   case ICmpInst::ICMP_SGE:
7831     std::swap(LHS, RHS);
7832   case ICmpInst::ICMP_SLE:
7833     // X s<= (X + C)<nsw> if C >= 0
7834     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) && C.isNonNegative())
7835       return true;
7836 
7837     // (X + C)<nsw> s<= X if C <= 0
7838     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) &&
7839         !C.isStrictlyPositive())
7840       return true;
7841     break;
7842 
7843   case ICmpInst::ICMP_SGT:
7844     std::swap(LHS, RHS);
7845   case ICmpInst::ICMP_SLT:
7846     // X s< (X + C)<nsw> if C > 0
7847     if (MatchBinaryAddToConst(RHS, LHS, C, SCEV::FlagNSW) &&
7848         C.isStrictlyPositive())
7849       return true;
7850 
7851     // (X + C)<nsw> s< X if C < 0
7852     if (MatchBinaryAddToConst(LHS, RHS, C, SCEV::FlagNSW) && C.isNegative())
7853       return true;
7854     break;
7855   }
7856 
7857   return false;
7858 }
7859 
7860 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
7861                                                    const SCEV *LHS,
7862                                                    const SCEV *RHS) {
7863   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
7864     return false;
7865 
7866   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
7867   // the stack can result in exponential time complexity.
7868   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
7869 
7870   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
7871   //
7872   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
7873   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
7874   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
7875   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
7876   // use isKnownPredicate later if needed.
7877   return isKnownNonNegative(RHS) &&
7878          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
7879          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
7880 }
7881 
7882 bool ScalarEvolution::isImpliedViaGuard(BasicBlock *BB,
7883                                         ICmpInst::Predicate Pred,
7884                                         const SCEV *LHS, const SCEV *RHS) {
7885   // No need to even try if we know the module has no guards.
7886   if (!HasGuards)
7887     return false;
7888 
7889   return any_of(*BB, [&](Instruction &I) {
7890     using namespace llvm::PatternMatch;
7891 
7892     Value *Condition;
7893     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
7894                          m_Value(Condition))) &&
7895            isImpliedCond(Pred, LHS, RHS, Condition, false);
7896   });
7897 }
7898 
7899 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
7900 /// protected by a conditional between LHS and RHS.  This is used to
7901 /// to eliminate casts.
7902 bool
7903 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
7904                                              ICmpInst::Predicate Pred,
7905                                              const SCEV *LHS, const SCEV *RHS) {
7906   // Interpret a null as meaning no loop, where there is obviously no guard
7907   // (interprocedural conditions notwithstanding).
7908   if (!L) return true;
7909 
7910   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
7911     return true;
7912 
7913   BasicBlock *Latch = L->getLoopLatch();
7914   if (!Latch)
7915     return false;
7916 
7917   BranchInst *LoopContinuePredicate =
7918     dyn_cast<BranchInst>(Latch->getTerminator());
7919   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
7920       isImpliedCond(Pred, LHS, RHS,
7921                     LoopContinuePredicate->getCondition(),
7922                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
7923     return true;
7924 
7925   // We don't want more than one activation of the following loops on the stack
7926   // -- that can lead to O(n!) time complexity.
7927   if (WalkingBEDominatingConds)
7928     return false;
7929 
7930   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
7931 
7932   // See if we can exploit a trip count to prove the predicate.
7933   const auto &BETakenInfo = getBackedgeTakenInfo(L);
7934   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
7935   if (LatchBECount != getCouldNotCompute()) {
7936     // We know that Latch branches back to the loop header exactly
7937     // LatchBECount times.  This means the backdege condition at Latch is
7938     // equivalent to  "{0,+,1} u< LatchBECount".
7939     Type *Ty = LatchBECount->getType();
7940     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
7941     const SCEV *LoopCounter =
7942       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
7943     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
7944                       LatchBECount))
7945       return true;
7946   }
7947 
7948   // Check conditions due to any @llvm.assume intrinsics.
7949   for (auto &AssumeVH : AC.assumptions()) {
7950     if (!AssumeVH)
7951       continue;
7952     auto *CI = cast<CallInst>(AssumeVH);
7953     if (!DT.dominates(CI, Latch->getTerminator()))
7954       continue;
7955 
7956     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
7957       return true;
7958   }
7959 
7960   // If the loop is not reachable from the entry block, we risk running into an
7961   // infinite loop as we walk up into the dom tree.  These loops do not matter
7962   // anyway, so we just return a conservative answer when we see them.
7963   if (!DT.isReachableFromEntry(L->getHeader()))
7964     return false;
7965 
7966   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
7967     return true;
7968 
7969   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
7970        DTN != HeaderDTN; DTN = DTN->getIDom()) {
7971 
7972     assert(DTN && "should reach the loop header before reaching the root!");
7973 
7974     BasicBlock *BB = DTN->getBlock();
7975     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
7976       return true;
7977 
7978     BasicBlock *PBB = BB->getSinglePredecessor();
7979     if (!PBB)
7980       continue;
7981 
7982     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
7983     if (!ContinuePredicate || !ContinuePredicate->isConditional())
7984       continue;
7985 
7986     Value *Condition = ContinuePredicate->getCondition();
7987 
7988     // If we have an edge `E` within the loop body that dominates the only
7989     // latch, the condition guarding `E` also guards the backedge.  This
7990     // reasoning works only for loops with a single latch.
7991 
7992     BasicBlockEdge DominatingEdge(PBB, BB);
7993     if (DominatingEdge.isSingleEdge()) {
7994       // We're constructively (and conservatively) enumerating edges within the
7995       // loop body that dominate the latch.  The dominator tree better agree
7996       // with us on this:
7997       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
7998 
7999       if (isImpliedCond(Pred, LHS, RHS, Condition,
8000                         BB != ContinuePredicate->getSuccessor(0)))
8001         return true;
8002     }
8003   }
8004 
8005   return false;
8006 }
8007 
8008 bool
8009 ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
8010                                           ICmpInst::Predicate Pred,
8011                                           const SCEV *LHS, const SCEV *RHS) {
8012   // Interpret a null as meaning no loop, where there is obviously no guard
8013   // (interprocedural conditions notwithstanding).
8014   if (!L) return false;
8015 
8016   if (isKnownPredicateViaConstantRanges(Pred, LHS, RHS))
8017     return true;
8018 
8019   // Starting at the loop predecessor, climb up the predecessor chain, as long
8020   // as there are predecessors that can be found that have unique successors
8021   // leading to the original header.
8022   for (std::pair<BasicBlock *, BasicBlock *>
8023          Pair(L->getLoopPredecessor(), L->getHeader());
8024        Pair.first;
8025        Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
8026 
8027     if (isImpliedViaGuard(Pair.first, Pred, LHS, RHS))
8028       return true;
8029 
8030     BranchInst *LoopEntryPredicate =
8031       dyn_cast<BranchInst>(Pair.first->getTerminator());
8032     if (!LoopEntryPredicate ||
8033         LoopEntryPredicate->isUnconditional())
8034       continue;
8035 
8036     if (isImpliedCond(Pred, LHS, RHS,
8037                       LoopEntryPredicate->getCondition(),
8038                       LoopEntryPredicate->getSuccessor(0) != Pair.second))
8039       return true;
8040   }
8041 
8042   // Check conditions due to any @llvm.assume intrinsics.
8043   for (auto &AssumeVH : AC.assumptions()) {
8044     if (!AssumeVH)
8045       continue;
8046     auto *CI = cast<CallInst>(AssumeVH);
8047     if (!DT.dominates(CI, L->getHeader()))
8048       continue;
8049 
8050     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
8051       return true;
8052   }
8053 
8054   return false;
8055 }
8056 
8057 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred,
8058                                     const SCEV *LHS, const SCEV *RHS,
8059                                     Value *FoundCondValue,
8060                                     bool Inverse) {
8061   if (!PendingLoopPredicates.insert(FoundCondValue).second)
8062     return false;
8063 
8064   auto ClearOnExit =
8065       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
8066 
8067   // Recursively handle And and Or conditions.
8068   if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FoundCondValue)) {
8069     if (BO->getOpcode() == Instruction::And) {
8070       if (!Inverse)
8071         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8072                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8073     } else if (BO->getOpcode() == Instruction::Or) {
8074       if (Inverse)
8075         return isImpliedCond(Pred, LHS, RHS, BO->getOperand(0), Inverse) ||
8076                isImpliedCond(Pred, LHS, RHS, BO->getOperand(1), Inverse);
8077     }
8078   }
8079 
8080   ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
8081   if (!ICI) return false;
8082 
8083   // Now that we found a conditional branch that dominates the loop or controls
8084   // the loop latch. Check to see if it is the comparison we are looking for.
8085   ICmpInst::Predicate FoundPred;
8086   if (Inverse)
8087     FoundPred = ICI->getInversePredicate();
8088   else
8089     FoundPred = ICI->getPredicate();
8090 
8091   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
8092   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
8093 
8094   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS);
8095 }
8096 
8097 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
8098                                     const SCEV *RHS,
8099                                     ICmpInst::Predicate FoundPred,
8100                                     const SCEV *FoundLHS,
8101                                     const SCEV *FoundRHS) {
8102   // Balance the types.
8103   if (getTypeSizeInBits(LHS->getType()) <
8104       getTypeSizeInBits(FoundLHS->getType())) {
8105     if (CmpInst::isSigned(Pred)) {
8106       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
8107       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
8108     } else {
8109       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
8110       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
8111     }
8112   } else if (getTypeSizeInBits(LHS->getType()) >
8113       getTypeSizeInBits(FoundLHS->getType())) {
8114     if (CmpInst::isSigned(FoundPred)) {
8115       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
8116       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
8117     } else {
8118       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
8119       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
8120     }
8121   }
8122 
8123   // Canonicalize the query to match the way instcombine will have
8124   // canonicalized the comparison.
8125   if (SimplifyICmpOperands(Pred, LHS, RHS))
8126     if (LHS == RHS)
8127       return CmpInst::isTrueWhenEqual(Pred);
8128   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
8129     if (FoundLHS == FoundRHS)
8130       return CmpInst::isFalseWhenEqual(FoundPred);
8131 
8132   // Check to see if we can make the LHS or RHS match.
8133   if (LHS == FoundRHS || RHS == FoundLHS) {
8134     if (isa<SCEVConstant>(RHS)) {
8135       std::swap(FoundLHS, FoundRHS);
8136       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
8137     } else {
8138       std::swap(LHS, RHS);
8139       Pred = ICmpInst::getSwappedPredicate(Pred);
8140     }
8141   }
8142 
8143   // Check whether the found predicate is the same as the desired predicate.
8144   if (FoundPred == Pred)
8145     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8146 
8147   // Check whether swapping the found predicate makes it the same as the
8148   // desired predicate.
8149   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
8150     if (isa<SCEVConstant>(RHS))
8151       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS);
8152     else
8153       return isImpliedCondOperands(ICmpInst::getSwappedPredicate(Pred),
8154                                    RHS, LHS, FoundLHS, FoundRHS);
8155   }
8156 
8157   // Unsigned comparison is the same as signed comparison when both the operands
8158   // are non-negative.
8159   if (CmpInst::isUnsigned(FoundPred) &&
8160       CmpInst::getSignedPredicate(FoundPred) == Pred &&
8161       isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS))
8162     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS);
8163 
8164   // Check if we can make progress by sharpening ranges.
8165   if (FoundPred == ICmpInst::ICMP_NE &&
8166       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
8167 
8168     const SCEVConstant *C = nullptr;
8169     const SCEV *V = nullptr;
8170 
8171     if (isa<SCEVConstant>(FoundLHS)) {
8172       C = cast<SCEVConstant>(FoundLHS);
8173       V = FoundRHS;
8174     } else {
8175       C = cast<SCEVConstant>(FoundRHS);
8176       V = FoundLHS;
8177     }
8178 
8179     // The guarding predicate tells us that C != V. If the known range
8180     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
8181     // range we consider has to correspond to same signedness as the
8182     // predicate we're interested in folding.
8183 
8184     APInt Min = ICmpInst::isSigned(Pred) ?
8185         getSignedRange(V).getSignedMin() : getUnsignedRange(V).getUnsignedMin();
8186 
8187     if (Min == C->getAPInt()) {
8188       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
8189       // This is true even if (Min + 1) wraps around -- in case of
8190       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
8191 
8192       APInt SharperMin = Min + 1;
8193 
8194       switch (Pred) {
8195         case ICmpInst::ICMP_SGE:
8196         case ICmpInst::ICMP_UGE:
8197           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
8198           // RHS, we're done.
8199           if (isImpliedCondOperands(Pred, LHS, RHS, V,
8200                                     getConstant(SharperMin)))
8201             return true;
8202 
8203         case ICmpInst::ICMP_SGT:
8204         case ICmpInst::ICMP_UGT:
8205           // We know from the range information that (V `Pred` Min ||
8206           // V == Min).  We know from the guarding condition that !(V
8207           // == Min).  This gives us
8208           //
8209           //       V `Pred` Min || V == Min && !(V == Min)
8210           //   =>  V `Pred` Min
8211           //
8212           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
8213 
8214           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min)))
8215             return true;
8216 
8217         default:
8218           // No change
8219           break;
8220       }
8221     }
8222   }
8223 
8224   // Check whether the actual condition is beyond sufficient.
8225   if (FoundPred == ICmpInst::ICMP_EQ)
8226     if (ICmpInst::isTrueWhenEqual(Pred))
8227       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS))
8228         return true;
8229   if (Pred == ICmpInst::ICMP_NE)
8230     if (!ICmpInst::isTrueWhenEqual(FoundPred))
8231       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS))
8232         return true;
8233 
8234   // Otherwise assume the worst.
8235   return false;
8236 }
8237 
8238 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
8239                                      const SCEV *&L, const SCEV *&R,
8240                                      SCEV::NoWrapFlags &Flags) {
8241   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
8242   if (!AE || AE->getNumOperands() != 2)
8243     return false;
8244 
8245   L = AE->getOperand(0);
8246   R = AE->getOperand(1);
8247   Flags = AE->getNoWrapFlags();
8248   return true;
8249 }
8250 
8251 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
8252                                                            const SCEV *Less) {
8253   // We avoid subtracting expressions here because this function is usually
8254   // fairly deep in the call stack (i.e. is called many times).
8255 
8256   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
8257     const auto *LAR = cast<SCEVAddRecExpr>(Less);
8258     const auto *MAR = cast<SCEVAddRecExpr>(More);
8259 
8260     if (LAR->getLoop() != MAR->getLoop())
8261       return None;
8262 
8263     // We look at affine expressions only; not for correctness but to keep
8264     // getStepRecurrence cheap.
8265     if (!LAR->isAffine() || !MAR->isAffine())
8266       return None;
8267 
8268     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
8269       return None;
8270 
8271     Less = LAR->getStart();
8272     More = MAR->getStart();
8273 
8274     // fall through
8275   }
8276 
8277   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
8278     const auto &M = cast<SCEVConstant>(More)->getAPInt();
8279     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
8280     return M - L;
8281   }
8282 
8283   const SCEV *L, *R;
8284   SCEV::NoWrapFlags Flags;
8285   if (splitBinaryAdd(Less, L, R, Flags))
8286     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8287       if (R == More)
8288         return -(LC->getAPInt());
8289 
8290   if (splitBinaryAdd(More, L, R, Flags))
8291     if (const auto *LC = dyn_cast<SCEVConstant>(L))
8292       if (R == Less)
8293         return LC->getAPInt();
8294 
8295   return None;
8296 }
8297 
8298 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
8299     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
8300     const SCEV *FoundLHS, const SCEV *FoundRHS) {
8301   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
8302     return false;
8303 
8304   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
8305   if (!AddRecLHS)
8306     return false;
8307 
8308   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
8309   if (!AddRecFoundLHS)
8310     return false;
8311 
8312   // We'd like to let SCEV reason about control dependencies, so we constrain
8313   // both the inequalities to be about add recurrences on the same loop.  This
8314   // way we can use isLoopEntryGuardedByCond later.
8315 
8316   const Loop *L = AddRecFoundLHS->getLoop();
8317   if (L != AddRecLHS->getLoop())
8318     return false;
8319 
8320   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
8321   //
8322   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
8323   //                                                                  ... (2)
8324   //
8325   // Informal proof for (2), assuming (1) [*]:
8326   //
8327   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
8328   //
8329   // Then
8330   //
8331   //       FoundLHS s< FoundRHS s< INT_MIN - C
8332   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
8333   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
8334   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
8335   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
8336   // <=>  FoundLHS + C s< FoundRHS + C
8337   //
8338   // [*]: (1) can be proved by ruling out overflow.
8339   //
8340   // [**]: This can be proved by analyzing all the four possibilities:
8341   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
8342   //    (A s>= 0, B s>= 0).
8343   //
8344   // Note:
8345   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
8346   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
8347   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
8348   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
8349   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
8350   // C)".
8351 
8352   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
8353   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
8354   if (!LDiff || !RDiff || *LDiff != *RDiff)
8355     return false;
8356 
8357   if (LDiff->isMinValue())
8358     return true;
8359 
8360   APInt FoundRHSLimit;
8361 
8362   if (Pred == CmpInst::ICMP_ULT) {
8363     FoundRHSLimit = -(*RDiff);
8364   } else {
8365     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
8366     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
8367   }
8368 
8369   // Try to prove (1) or (2), as needed.
8370   return isLoopEntryGuardedByCond(L, Pred, FoundRHS,
8371                                   getConstant(FoundRHSLimit));
8372 }
8373 
8374 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
8375                                             const SCEV *LHS, const SCEV *RHS,
8376                                             const SCEV *FoundLHS,
8377                                             const SCEV *FoundRHS) {
8378   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
8379     return true;
8380 
8381   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
8382     return true;
8383 
8384   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
8385                                      FoundLHS, FoundRHS) ||
8386          // ~x < ~y --> x > y
8387          isImpliedCondOperandsHelper(Pred, LHS, RHS,
8388                                      getNotSCEV(FoundRHS),
8389                                      getNotSCEV(FoundLHS));
8390 }
8391 
8392 
8393 /// If Expr computes ~A, return A else return nullptr
8394 static const SCEV *MatchNotExpr(const SCEV *Expr) {
8395   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
8396   if (!Add || Add->getNumOperands() != 2 ||
8397       !Add->getOperand(0)->isAllOnesValue())
8398     return nullptr;
8399 
8400   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
8401   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
8402       !AddRHS->getOperand(0)->isAllOnesValue())
8403     return nullptr;
8404 
8405   return AddRHS->getOperand(1);
8406 }
8407 
8408 
8409 /// Is MaybeMaxExpr an SMax or UMax of Candidate and some other values?
8410 template<typename MaxExprType>
8411 static bool IsMaxConsistingOf(const SCEV *MaybeMaxExpr,
8412                               const SCEV *Candidate) {
8413   const MaxExprType *MaxExpr = dyn_cast<MaxExprType>(MaybeMaxExpr);
8414   if (!MaxExpr) return false;
8415 
8416   return find(MaxExpr->operands(), Candidate) != MaxExpr->op_end();
8417 }
8418 
8419 
8420 /// Is MaybeMinExpr an SMin or UMin of Candidate and some other values?
8421 template<typename MaxExprType>
8422 static bool IsMinConsistingOf(ScalarEvolution &SE,
8423                               const SCEV *MaybeMinExpr,
8424                               const SCEV *Candidate) {
8425   const SCEV *MaybeMaxExpr = MatchNotExpr(MaybeMinExpr);
8426   if (!MaybeMaxExpr)
8427     return false;
8428 
8429   return IsMaxConsistingOf<MaxExprType>(MaybeMaxExpr, SE.getNotSCEV(Candidate));
8430 }
8431 
8432 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
8433                                            ICmpInst::Predicate Pred,
8434                                            const SCEV *LHS, const SCEV *RHS) {
8435 
8436   // If both sides are affine addrecs for the same loop, with equal
8437   // steps, and we know the recurrences don't wrap, then we only
8438   // need to check the predicate on the starting values.
8439 
8440   if (!ICmpInst::isRelational(Pred))
8441     return false;
8442 
8443   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
8444   if (!LAR)
8445     return false;
8446   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
8447   if (!RAR)
8448     return false;
8449   if (LAR->getLoop() != RAR->getLoop())
8450     return false;
8451   if (!LAR->isAffine() || !RAR->isAffine())
8452     return false;
8453 
8454   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
8455     return false;
8456 
8457   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
8458                          SCEV::FlagNSW : SCEV::FlagNUW;
8459   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
8460     return false;
8461 
8462   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
8463 }
8464 
8465 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
8466 /// expression?
8467 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
8468                                         ICmpInst::Predicate Pred,
8469                                         const SCEV *LHS, const SCEV *RHS) {
8470   switch (Pred) {
8471   default:
8472     return false;
8473 
8474   case ICmpInst::ICMP_SGE:
8475     std::swap(LHS, RHS);
8476     LLVM_FALLTHROUGH;
8477   case ICmpInst::ICMP_SLE:
8478     return
8479       // min(A, ...) <= A
8480       IsMinConsistingOf<SCEVSMaxExpr>(SE, LHS, RHS) ||
8481       // A <= max(A, ...)
8482       IsMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
8483 
8484   case ICmpInst::ICMP_UGE:
8485     std::swap(LHS, RHS);
8486     LLVM_FALLTHROUGH;
8487   case ICmpInst::ICMP_ULE:
8488     return
8489       // min(A, ...) <= A
8490       IsMinConsistingOf<SCEVUMaxExpr>(SE, LHS, RHS) ||
8491       // A <= max(A, ...)
8492       IsMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
8493   }
8494 
8495   llvm_unreachable("covered switch fell through?!");
8496 }
8497 
8498 bool
8499 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
8500                                              const SCEV *LHS, const SCEV *RHS,
8501                                              const SCEV *FoundLHS,
8502                                              const SCEV *FoundRHS) {
8503   auto IsKnownPredicateFull =
8504       [this](ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
8505     return isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
8506            IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
8507            IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
8508            isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
8509   };
8510 
8511   switch (Pred) {
8512   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
8513   case ICmpInst::ICMP_EQ:
8514   case ICmpInst::ICMP_NE:
8515     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
8516       return true;
8517     break;
8518   case ICmpInst::ICMP_SLT:
8519   case ICmpInst::ICMP_SLE:
8520     if (IsKnownPredicateFull(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
8521         IsKnownPredicateFull(ICmpInst::ICMP_SGE, RHS, FoundRHS))
8522       return true;
8523     break;
8524   case ICmpInst::ICMP_SGT:
8525   case ICmpInst::ICMP_SGE:
8526     if (IsKnownPredicateFull(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
8527         IsKnownPredicateFull(ICmpInst::ICMP_SLE, RHS, FoundRHS))
8528       return true;
8529     break;
8530   case ICmpInst::ICMP_ULT:
8531   case ICmpInst::ICMP_ULE:
8532     if (IsKnownPredicateFull(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
8533         IsKnownPredicateFull(ICmpInst::ICMP_UGE, RHS, FoundRHS))
8534       return true;
8535     break;
8536   case ICmpInst::ICMP_UGT:
8537   case ICmpInst::ICMP_UGE:
8538     if (IsKnownPredicateFull(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
8539         IsKnownPredicateFull(ICmpInst::ICMP_ULE, RHS, FoundRHS))
8540       return true;
8541     break;
8542   }
8543 
8544   return false;
8545 }
8546 
8547 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
8548                                                      const SCEV *LHS,
8549                                                      const SCEV *RHS,
8550                                                      const SCEV *FoundLHS,
8551                                                      const SCEV *FoundRHS) {
8552   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
8553     // The restriction on `FoundRHS` be lifted easily -- it exists only to
8554     // reduce the compile time impact of this optimization.
8555     return false;
8556 
8557   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
8558   if (!Addend)
8559     return false;
8560 
8561   APInt ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
8562 
8563   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
8564   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
8565   ConstantRange FoundLHSRange =
8566       ConstantRange::makeAllowedICmpRegion(Pred, ConstFoundRHS);
8567 
8568   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
8569   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
8570 
8571   // We can also compute the range of values for `LHS` that satisfy the
8572   // consequent, "`LHS` `Pred` `RHS`":
8573   APInt ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
8574   ConstantRange SatisfyingLHSRange =
8575       ConstantRange::makeSatisfyingICmpRegion(Pred, ConstRHS);
8576 
8577   // The antecedent implies the consequent if every value of `LHS` that
8578   // satisfies the antecedent also satisfies the consequent.
8579   return SatisfyingLHSRange.contains(LHSRange);
8580 }
8581 
8582 bool ScalarEvolution::doesIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
8583                                          bool IsSigned, bool NoWrap) {
8584   assert(isKnownPositive(Stride) && "Positive stride expected!");
8585 
8586   if (NoWrap) return false;
8587 
8588   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8589   const SCEV *One = getOne(Stride->getType());
8590 
8591   if (IsSigned) {
8592     APInt MaxRHS = getSignedRange(RHS).getSignedMax();
8593     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
8594     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8595                                 .getSignedMax();
8596 
8597     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
8598     return (MaxValue - MaxStrideMinusOne).slt(MaxRHS);
8599   }
8600 
8601   APInt MaxRHS = getUnsignedRange(RHS).getUnsignedMax();
8602   APInt MaxValue = APInt::getMaxValue(BitWidth);
8603   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8604                               .getUnsignedMax();
8605 
8606   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
8607   return (MaxValue - MaxStrideMinusOne).ult(MaxRHS);
8608 }
8609 
8610 bool ScalarEvolution::doesIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
8611                                          bool IsSigned, bool NoWrap) {
8612   if (NoWrap) return false;
8613 
8614   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8615   const SCEV *One = getOne(Stride->getType());
8616 
8617   if (IsSigned) {
8618     APInt MinRHS = getSignedRange(RHS).getSignedMin();
8619     APInt MinValue = APInt::getSignedMinValue(BitWidth);
8620     APInt MaxStrideMinusOne = getSignedRange(getMinusSCEV(Stride, One))
8621                                .getSignedMax();
8622 
8623     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
8624     return (MinValue + MaxStrideMinusOne).sgt(MinRHS);
8625   }
8626 
8627   APInt MinRHS = getUnsignedRange(RHS).getUnsignedMin();
8628   APInt MinValue = APInt::getMinValue(BitWidth);
8629   APInt MaxStrideMinusOne = getUnsignedRange(getMinusSCEV(Stride, One))
8630                             .getUnsignedMax();
8631 
8632   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
8633   return (MinValue + MaxStrideMinusOne).ugt(MinRHS);
8634 }
8635 
8636 const SCEV *ScalarEvolution::computeBECount(const SCEV *Delta, const SCEV *Step,
8637                                             bool Equality) {
8638   const SCEV *One = getOne(Step->getType());
8639   Delta = Equality ? getAddExpr(Delta, Step)
8640                    : getAddExpr(Delta, getMinusSCEV(Step, One));
8641   return getUDivExpr(Delta, Step);
8642 }
8643 
8644 ScalarEvolution::ExitLimit
8645 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
8646                                   const Loop *L, bool IsSigned,
8647                                   bool ControlsExit, bool AllowPredicates) {
8648   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8649   // We handle only IV < Invariant
8650   if (!isLoopInvariant(RHS, L))
8651     return getCouldNotCompute();
8652 
8653   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8654   bool PredicatedIV = false;
8655 
8656   if (!IV && AllowPredicates) {
8657     // Try to make this an AddRec using runtime tests, in the first X
8658     // iterations of this loop, where X is the SCEV expression found by the
8659     // algorithm below.
8660     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8661     PredicatedIV = true;
8662   }
8663 
8664   // Avoid weird loops
8665   if (!IV || IV->getLoop() != L || !IV->isAffine())
8666     return getCouldNotCompute();
8667 
8668   bool NoWrap = ControlsExit &&
8669                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8670 
8671   const SCEV *Stride = IV->getStepRecurrence(*this);
8672 
8673   bool PositiveStride = isKnownPositive(Stride);
8674 
8675   // Avoid negative or zero stride values.
8676   if (!PositiveStride) {
8677     // We can compute the correct backedge taken count for loops with unknown
8678     // strides if we can prove that the loop is not an infinite loop with side
8679     // effects. Here's the loop structure we are trying to handle -
8680     //
8681     // i = start
8682     // do {
8683     //   A[i] = i;
8684     //   i += s;
8685     // } while (i < end);
8686     //
8687     // The backedge taken count for such loops is evaluated as -
8688     // (max(end, start + stride) - start - 1) /u stride
8689     //
8690     // The additional preconditions that we need to check to prove correctness
8691     // of the above formula is as follows -
8692     //
8693     // a) IV is either nuw or nsw depending upon signedness (indicated by the
8694     //    NoWrap flag).
8695     // b) loop is single exit with no side effects.
8696     //
8697     //
8698     // Precondition a) implies that if the stride is negative, this is a single
8699     // trip loop. The backedge taken count formula reduces to zero in this case.
8700     //
8701     // Precondition b) implies that the unknown stride cannot be zero otherwise
8702     // we have UB.
8703     //
8704     // The positive stride case is the same as isKnownPositive(Stride) returning
8705     // true (original behavior of the function).
8706     //
8707     // We want to make sure that the stride is truly unknown as there are edge
8708     // cases where ScalarEvolution propagates no wrap flags to the
8709     // post-increment/decrement IV even though the increment/decrement operation
8710     // itself is wrapping. The computed backedge taken count may be wrong in
8711     // such cases. This is prevented by checking that the stride is not known to
8712     // be either positive or non-positive. For example, no wrap flags are
8713     // propagated to the post-increment IV of this loop with a trip count of 2 -
8714     //
8715     // unsigned char i;
8716     // for(i=127; i<128; i+=129)
8717     //   A[i] = i;
8718     //
8719     if (PredicatedIV || !NoWrap || isKnownNonPositive(Stride) ||
8720         !loopHasNoSideEffects(L))
8721       return getCouldNotCompute();
8722 
8723   } else if (!Stride->isOne() &&
8724              doesIVOverflowOnLT(RHS, Stride, IsSigned, NoWrap))
8725     // Avoid proven overflow cases: this will ensure that the backedge taken
8726     // count will not generate any unsigned overflow. Relaxed no-overflow
8727     // conditions exploit NoWrapFlags, allowing to optimize in presence of
8728     // undefined behaviors like the case of C language.
8729     return getCouldNotCompute();
8730 
8731   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT
8732                                       : ICmpInst::ICMP_ULT;
8733   const SCEV *Start = IV->getStart();
8734   const SCEV *End = RHS;
8735   // If the backedge is taken at least once, then it will be taken
8736   // (End-Start)/Stride times (rounded up to a multiple of Stride), where Start
8737   // is the LHS value of the less-than comparison the first time it is evaluated
8738   // and End is the RHS.
8739   const SCEV *BECountIfBackedgeTaken =
8740     computeBECount(getMinusSCEV(End, Start), Stride, false);
8741   // If the loop entry is guarded by the result of the backedge test of the
8742   // first loop iteration, then we know the backedge will be taken at least
8743   // once and so the backedge taken count is as above. If not then we use the
8744   // expression (max(End,Start)-Start)/Stride to describe the backedge count,
8745   // as if the backedge is taken at least once max(End,Start) is End and so the
8746   // result is as above, and if not max(End,Start) is Start so we get a backedge
8747   // count of zero.
8748   const SCEV *BECount;
8749   if (isLoopEntryGuardedByCond(L, Cond, getMinusSCEV(Start, Stride), RHS))
8750     BECount = BECountIfBackedgeTaken;
8751   else {
8752     End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
8753     BECount = computeBECount(getMinusSCEV(End, Start), Stride, false);
8754   }
8755 
8756   const SCEV *MaxBECount;
8757   bool MaxOrZero = false;
8758   if (isa<SCEVConstant>(BECount))
8759     MaxBECount = BECount;
8760   else if (isa<SCEVConstant>(BECountIfBackedgeTaken)) {
8761     // If we know exactly how many times the backedge will be taken if it's
8762     // taken at least once, then the backedge count will either be that or
8763     // zero.
8764     MaxBECount = BECountIfBackedgeTaken;
8765     MaxOrZero = true;
8766   } else {
8767     // Calculate the maximum backedge count based on the range of values
8768     // permitted by Start, End, and Stride.
8769     APInt MinStart = IsSigned ? getSignedRange(Start).getSignedMin()
8770                               : getUnsignedRange(Start).getUnsignedMin();
8771 
8772     unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8773 
8774     APInt StrideForMaxBECount;
8775 
8776     if (PositiveStride)
8777       StrideForMaxBECount =
8778         IsSigned ? getSignedRange(Stride).getSignedMin()
8779                  : getUnsignedRange(Stride).getUnsignedMin();
8780     else
8781       // Using a stride of 1 is safe when computing max backedge taken count for
8782       // a loop with unknown stride.
8783       StrideForMaxBECount = APInt(BitWidth, 1, IsSigned);
8784 
8785     APInt Limit =
8786       IsSigned ? APInt::getSignedMaxValue(BitWidth) - (StrideForMaxBECount - 1)
8787                : APInt::getMaxValue(BitWidth) - (StrideForMaxBECount - 1);
8788 
8789     // Although End can be a MAX expression we estimate MaxEnd considering only
8790     // the case End = RHS. This is safe because in the other case (End - Start)
8791     // is zero, leading to a zero maximum backedge taken count.
8792     APInt MaxEnd =
8793       IsSigned ? APIntOps::smin(getSignedRange(RHS).getSignedMax(), Limit)
8794                : APIntOps::umin(getUnsignedRange(RHS).getUnsignedMax(), Limit);
8795 
8796     MaxBECount = computeBECount(getConstant(MaxEnd - MinStart),
8797                                 getConstant(StrideForMaxBECount), false);
8798   }
8799 
8800   if (isa<SCEVCouldNotCompute>(MaxBECount))
8801     MaxBECount = BECount;
8802 
8803   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
8804 }
8805 
8806 ScalarEvolution::ExitLimit
8807 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
8808                                      const Loop *L, bool IsSigned,
8809                                      bool ControlsExit, bool AllowPredicates) {
8810   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
8811   // We handle only IV > Invariant
8812   if (!isLoopInvariant(RHS, L))
8813     return getCouldNotCompute();
8814 
8815   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
8816   if (!IV && AllowPredicates)
8817     // Try to make this an AddRec using runtime tests, in the first X
8818     // iterations of this loop, where X is the SCEV expression found by the
8819     // algorithm below.
8820     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
8821 
8822   // Avoid weird loops
8823   if (!IV || IV->getLoop() != L || !IV->isAffine())
8824     return getCouldNotCompute();
8825 
8826   bool NoWrap = ControlsExit &&
8827                 IV->getNoWrapFlags(IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW);
8828 
8829   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
8830 
8831   // Avoid negative or zero stride values
8832   if (!isKnownPositive(Stride))
8833     return getCouldNotCompute();
8834 
8835   // Avoid proven overflow cases: this will ensure that the backedge taken count
8836   // will not generate any unsigned overflow. Relaxed no-overflow conditions
8837   // exploit NoWrapFlags, allowing to optimize in presence of undefined
8838   // behaviors like the case of C language.
8839   if (!Stride->isOne() && doesIVOverflowOnGT(RHS, Stride, IsSigned, NoWrap))
8840     return getCouldNotCompute();
8841 
8842   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT
8843                                       : ICmpInst::ICMP_UGT;
8844 
8845   const SCEV *Start = IV->getStart();
8846   const SCEV *End = RHS;
8847   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS))
8848     End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
8849 
8850   const SCEV *BECount = computeBECount(getMinusSCEV(Start, End), Stride, false);
8851 
8852   APInt MaxStart = IsSigned ? getSignedRange(Start).getSignedMax()
8853                             : getUnsignedRange(Start).getUnsignedMax();
8854 
8855   APInt MinStride = IsSigned ? getSignedRange(Stride).getSignedMin()
8856                              : getUnsignedRange(Stride).getUnsignedMin();
8857 
8858   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
8859   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
8860                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
8861 
8862   // Although End can be a MIN expression we estimate MinEnd considering only
8863   // the case End = RHS. This is safe because in the other case (Start - End)
8864   // is zero, leading to a zero maximum backedge taken count.
8865   APInt MinEnd =
8866     IsSigned ? APIntOps::smax(getSignedRange(RHS).getSignedMin(), Limit)
8867              : APIntOps::umax(getUnsignedRange(RHS).getUnsignedMin(), Limit);
8868 
8869 
8870   const SCEV *MaxBECount = getCouldNotCompute();
8871   if (isa<SCEVConstant>(BECount))
8872     MaxBECount = BECount;
8873   else
8874     MaxBECount = computeBECount(getConstant(MaxStart - MinEnd),
8875                                 getConstant(MinStride), false);
8876 
8877   if (isa<SCEVCouldNotCompute>(MaxBECount))
8878     MaxBECount = BECount;
8879 
8880   return ExitLimit(BECount, MaxBECount, false, Predicates);
8881 }
8882 
8883 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
8884                                                     ScalarEvolution &SE) const {
8885   if (Range.isFullSet())  // Infinite loop.
8886     return SE.getCouldNotCompute();
8887 
8888   // If the start is a non-zero constant, shift the range to simplify things.
8889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
8890     if (!SC->getValue()->isZero()) {
8891       SmallVector<const SCEV *, 4> Operands(op_begin(), op_end());
8892       Operands[0] = SE.getZero(SC->getType());
8893       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
8894                                              getNoWrapFlags(FlagNW));
8895       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
8896         return ShiftedAddRec->getNumIterationsInRange(
8897             Range.subtract(SC->getAPInt()), SE);
8898       // This is strange and shouldn't happen.
8899       return SE.getCouldNotCompute();
8900     }
8901 
8902   // The only time we can solve this is when we have all constant indices.
8903   // Otherwise, we cannot determine the overflow conditions.
8904   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
8905     return SE.getCouldNotCompute();
8906 
8907   // Okay at this point we know that all elements of the chrec are constants and
8908   // that the start element is zero.
8909 
8910   // First check to see if the range contains zero.  If not, the first
8911   // iteration exits.
8912   unsigned BitWidth = SE.getTypeSizeInBits(getType());
8913   if (!Range.contains(APInt(BitWidth, 0)))
8914     return SE.getZero(getType());
8915 
8916   if (isAffine()) {
8917     // If this is an affine expression then we have this situation:
8918     //   Solve {0,+,A} in Range  ===  Ax in Range
8919 
8920     // We know that zero is in the range.  If A is positive then we know that
8921     // the upper value of the range must be the first possible exit value.
8922     // If A is negative then the lower of the range is the last possible loop
8923     // value.  Also note that we already checked for a full range.
8924     APInt One(BitWidth,1);
8925     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
8926     APInt End = A.sge(One) ? (Range.getUpper() - One) : Range.getLower();
8927 
8928     // The exit value should be (End+A)/A.
8929     APInt ExitVal = (End + A).udiv(A);
8930     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
8931 
8932     // Evaluate at the exit value.  If we really did fall out of the valid
8933     // range, then we computed our trip count, otherwise wrap around or other
8934     // things must have happened.
8935     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
8936     if (Range.contains(Val->getValue()))
8937       return SE.getCouldNotCompute();  // Something strange happened
8938 
8939     // Ensure that the previous value is in the range.  This is a sanity check.
8940     assert(Range.contains(
8941            EvaluateConstantChrecAtConstant(this,
8942            ConstantInt::get(SE.getContext(), ExitVal - One), SE)->getValue()) &&
8943            "Linear scev computation is off in a bad way!");
8944     return SE.getConstant(ExitValue);
8945   } else if (isQuadratic()) {
8946     // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of the
8947     // quadratic equation to solve it.  To do this, we must frame our problem in
8948     // terms of figuring out when zero is crossed, instead of when
8949     // Range.getUpper() is crossed.
8950     SmallVector<const SCEV *, 4> NewOps(op_begin(), op_end());
8951     NewOps[0] = SE.getNegativeSCEV(SE.getConstant(Range.getUpper()));
8952     const SCEV *NewAddRec = SE.getAddRecExpr(NewOps, getLoop(), FlagAnyWrap);
8953 
8954     // Next, solve the constructed addrec
8955     if (auto Roots =
8956             SolveQuadraticEquation(cast<SCEVAddRecExpr>(NewAddRec), SE)) {
8957       const SCEVConstant *R1 = Roots->first;
8958       const SCEVConstant *R2 = Roots->second;
8959       // Pick the smallest positive root value.
8960       if (ConstantInt *CB = dyn_cast<ConstantInt>(ConstantExpr::getICmp(
8961               ICmpInst::ICMP_ULT, R1->getValue(), R2->getValue()))) {
8962         if (!CB->getZExtValue())
8963           std::swap(R1, R2); // R1 is the minimum root now.
8964 
8965         // Make sure the root is not off by one.  The returned iteration should
8966         // not be in the range, but the previous one should be.  When solving
8967         // for "X*X < 5", for example, we should not return a root of 2.
8968         ConstantInt *R1Val =
8969             EvaluateConstantChrecAtConstant(this, R1->getValue(), SE);
8970         if (Range.contains(R1Val->getValue())) {
8971           // The next iteration must be out of the range...
8972           ConstantInt *NextVal =
8973               ConstantInt::get(SE.getContext(), R1->getAPInt() + 1);
8974 
8975           R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8976           if (!Range.contains(R1Val->getValue()))
8977             return SE.getConstant(NextVal);
8978           return SE.getCouldNotCompute(); // Something strange happened
8979         }
8980 
8981         // If R1 was not in the range, then it is a good return value.  Make
8982         // sure that R1-1 WAS in the range though, just in case.
8983         ConstantInt *NextVal =
8984             ConstantInt::get(SE.getContext(), R1->getAPInt() - 1);
8985         R1Val = EvaluateConstantChrecAtConstant(this, NextVal, SE);
8986         if (Range.contains(R1Val->getValue()))
8987           return R1;
8988         return SE.getCouldNotCompute(); // Something strange happened
8989       }
8990     }
8991   }
8992 
8993   return SE.getCouldNotCompute();
8994 }
8995 
8996 // Return true when S contains at least an undef value.
8997 static inline bool containsUndefs(const SCEV *S) {
8998   return SCEVExprContains(S, [](const SCEV *S) {
8999     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
9000       return isa<UndefValue>(SU->getValue());
9001     else if (const auto *SC = dyn_cast<SCEVConstant>(S))
9002       return isa<UndefValue>(SC->getValue());
9003     return false;
9004   });
9005 }
9006 
9007 namespace {
9008 // Collect all steps of SCEV expressions.
9009 struct SCEVCollectStrides {
9010   ScalarEvolution &SE;
9011   SmallVectorImpl<const SCEV *> &Strides;
9012 
9013   SCEVCollectStrides(ScalarEvolution &SE, SmallVectorImpl<const SCEV *> &S)
9014       : SE(SE), Strides(S) {}
9015 
9016   bool follow(const SCEV *S) {
9017     if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
9018       Strides.push_back(AR->getStepRecurrence(SE));
9019     return true;
9020   }
9021   bool isDone() const { return false; }
9022 };
9023 
9024 // Collect all SCEVUnknown and SCEVMulExpr expressions.
9025 struct SCEVCollectTerms {
9026   SmallVectorImpl<const SCEV *> &Terms;
9027 
9028   SCEVCollectTerms(SmallVectorImpl<const SCEV *> &T)
9029       : Terms(T) {}
9030 
9031   bool follow(const SCEV *S) {
9032     if (isa<SCEVUnknown>(S) || isa<SCEVMulExpr>(S) ||
9033         isa<SCEVSignExtendExpr>(S)) {
9034       if (!containsUndefs(S))
9035         Terms.push_back(S);
9036 
9037       // Stop recursion: once we collected a term, do not walk its operands.
9038       return false;
9039     }
9040 
9041     // Keep looking.
9042     return true;
9043   }
9044   bool isDone() const { return false; }
9045 };
9046 
9047 // Check if a SCEV contains an AddRecExpr.
9048 struct SCEVHasAddRec {
9049   bool &ContainsAddRec;
9050 
9051   SCEVHasAddRec(bool &ContainsAddRec) : ContainsAddRec(ContainsAddRec) {
9052    ContainsAddRec = false;
9053   }
9054 
9055   bool follow(const SCEV *S) {
9056     if (isa<SCEVAddRecExpr>(S)) {
9057       ContainsAddRec = true;
9058 
9059       // Stop recursion: once we collected a term, do not walk its operands.
9060       return false;
9061     }
9062 
9063     // Keep looking.
9064     return true;
9065   }
9066   bool isDone() const { return false; }
9067 };
9068 
9069 // Find factors that are multiplied with an expression that (possibly as a
9070 // subexpression) contains an AddRecExpr. In the expression:
9071 //
9072 //  8 * (100 +  %p * %q * (%a + {0, +, 1}_loop))
9073 //
9074 // "%p * %q" are factors multiplied by the expression "(%a + {0, +, 1}_loop)"
9075 // that contains the AddRec {0, +, 1}_loop. %p * %q are likely to be array size
9076 // parameters as they form a product with an induction variable.
9077 //
9078 // This collector expects all array size parameters to be in the same MulExpr.
9079 // It might be necessary to later add support for collecting parameters that are
9080 // spread over different nested MulExpr.
9081 struct SCEVCollectAddRecMultiplies {
9082   SmallVectorImpl<const SCEV *> &Terms;
9083   ScalarEvolution &SE;
9084 
9085   SCEVCollectAddRecMultiplies(SmallVectorImpl<const SCEV *> &T, ScalarEvolution &SE)
9086       : Terms(T), SE(SE) {}
9087 
9088   bool follow(const SCEV *S) {
9089     if (auto *Mul = dyn_cast<SCEVMulExpr>(S)) {
9090       bool HasAddRec = false;
9091       SmallVector<const SCEV *, 0> Operands;
9092       for (auto Op : Mul->operands()) {
9093         if (isa<SCEVUnknown>(Op)) {
9094           Operands.push_back(Op);
9095         } else {
9096           bool ContainsAddRec;
9097           SCEVHasAddRec ContiansAddRec(ContainsAddRec);
9098           visitAll(Op, ContiansAddRec);
9099           HasAddRec |= ContainsAddRec;
9100         }
9101       }
9102       if (Operands.size() == 0)
9103         return true;
9104 
9105       if (!HasAddRec)
9106         return false;
9107 
9108       Terms.push_back(SE.getMulExpr(Operands));
9109       // Stop recursion: once we collected a term, do not walk its operands.
9110       return false;
9111     }
9112 
9113     // Keep looking.
9114     return true;
9115   }
9116   bool isDone() const { return false; }
9117 };
9118 }
9119 
9120 /// Find parametric terms in this SCEVAddRecExpr. We first for parameters in
9121 /// two places:
9122 ///   1) The strides of AddRec expressions.
9123 ///   2) Unknowns that are multiplied with AddRec expressions.
9124 void ScalarEvolution::collectParametricTerms(const SCEV *Expr,
9125     SmallVectorImpl<const SCEV *> &Terms) {
9126   SmallVector<const SCEV *, 4> Strides;
9127   SCEVCollectStrides StrideCollector(*this, Strides);
9128   visitAll(Expr, StrideCollector);
9129 
9130   DEBUG({
9131       dbgs() << "Strides:\n";
9132       for (const SCEV *S : Strides)
9133         dbgs() << *S << "\n";
9134     });
9135 
9136   for (const SCEV *S : Strides) {
9137     SCEVCollectTerms TermCollector(Terms);
9138     visitAll(S, TermCollector);
9139   }
9140 
9141   DEBUG({
9142       dbgs() << "Terms:\n";
9143       for (const SCEV *T : Terms)
9144         dbgs() << *T << "\n";
9145     });
9146 
9147   SCEVCollectAddRecMultiplies MulCollector(Terms, *this);
9148   visitAll(Expr, MulCollector);
9149 }
9150 
9151 static bool findArrayDimensionsRec(ScalarEvolution &SE,
9152                                    SmallVectorImpl<const SCEV *> &Terms,
9153                                    SmallVectorImpl<const SCEV *> &Sizes) {
9154   int Last = Terms.size() - 1;
9155   const SCEV *Step = Terms[Last];
9156 
9157   // End of recursion.
9158   if (Last == 0) {
9159     if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Step)) {
9160       SmallVector<const SCEV *, 2> Qs;
9161       for (const SCEV *Op : M->operands())
9162         if (!isa<SCEVConstant>(Op))
9163           Qs.push_back(Op);
9164 
9165       Step = SE.getMulExpr(Qs);
9166     }
9167 
9168     Sizes.push_back(Step);
9169     return true;
9170   }
9171 
9172   for (const SCEV *&Term : Terms) {
9173     // Normalize the terms before the next call to findArrayDimensionsRec.
9174     const SCEV *Q, *R;
9175     SCEVDivision::divide(SE, Term, Step, &Q, &R);
9176 
9177     // Bail out when GCD does not evenly divide one of the terms.
9178     if (!R->isZero())
9179       return false;
9180 
9181     Term = Q;
9182   }
9183 
9184   // Remove all SCEVConstants.
9185   Terms.erase(
9186       remove_if(Terms, [](const SCEV *E) { return isa<SCEVConstant>(E); }),
9187       Terms.end());
9188 
9189   if (Terms.size() > 0)
9190     if (!findArrayDimensionsRec(SE, Terms, Sizes))
9191       return false;
9192 
9193   Sizes.push_back(Step);
9194   return true;
9195 }
9196 
9197 
9198 // Returns true when one of the SCEVs of Terms contains a SCEVUnknown parameter.
9199 static inline bool containsParameters(SmallVectorImpl<const SCEV *> &Terms) {
9200   for (const SCEV *T : Terms)
9201     if (SCEVExprContains(T, isa<SCEVUnknown, const SCEV *>))
9202       return true;
9203   return false;
9204 }
9205 
9206 // Return the number of product terms in S.
9207 static inline int numberOfTerms(const SCEV *S) {
9208   if (const SCEVMulExpr *Expr = dyn_cast<SCEVMulExpr>(S))
9209     return Expr->getNumOperands();
9210   return 1;
9211 }
9212 
9213 static const SCEV *removeConstantFactors(ScalarEvolution &SE, const SCEV *T) {
9214   if (isa<SCEVConstant>(T))
9215     return nullptr;
9216 
9217   if (isa<SCEVUnknown>(T))
9218     return T;
9219 
9220   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(T)) {
9221     SmallVector<const SCEV *, 2> Factors;
9222     for (const SCEV *Op : M->operands())
9223       if (!isa<SCEVConstant>(Op))
9224         Factors.push_back(Op);
9225 
9226     return SE.getMulExpr(Factors);
9227   }
9228 
9229   return T;
9230 }
9231 
9232 /// Return the size of an element read or written by Inst.
9233 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
9234   Type *Ty;
9235   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
9236     Ty = Store->getValueOperand()->getType();
9237   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
9238     Ty = Load->getType();
9239   else
9240     return nullptr;
9241 
9242   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
9243   return getSizeOfExpr(ETy, Ty);
9244 }
9245 
9246 void ScalarEvolution::findArrayDimensions(SmallVectorImpl<const SCEV *> &Terms,
9247                                           SmallVectorImpl<const SCEV *> &Sizes,
9248                                           const SCEV *ElementSize) const {
9249   if (Terms.size() < 1 || !ElementSize)
9250     return;
9251 
9252   // Early return when Terms do not contain parameters: we do not delinearize
9253   // non parametric SCEVs.
9254   if (!containsParameters(Terms))
9255     return;
9256 
9257   DEBUG({
9258       dbgs() << "Terms:\n";
9259       for (const SCEV *T : Terms)
9260         dbgs() << *T << "\n";
9261     });
9262 
9263   // Remove duplicates.
9264   std::sort(Terms.begin(), Terms.end());
9265   Terms.erase(std::unique(Terms.begin(), Terms.end()), Terms.end());
9266 
9267   // Put larger terms first.
9268   std::sort(Terms.begin(), Terms.end(), [](const SCEV *LHS, const SCEV *RHS) {
9269     return numberOfTerms(LHS) > numberOfTerms(RHS);
9270   });
9271 
9272   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9273 
9274   // Try to divide all terms by the element size. If term is not divisible by
9275   // element size, proceed with the original term.
9276   for (const SCEV *&Term : Terms) {
9277     const SCEV *Q, *R;
9278     SCEVDivision::divide(SE, Term, ElementSize, &Q, &R);
9279     if (!Q->isZero())
9280       Term = Q;
9281   }
9282 
9283   SmallVector<const SCEV *, 4> NewTerms;
9284 
9285   // Remove constant factors.
9286   for (const SCEV *T : Terms)
9287     if (const SCEV *NewT = removeConstantFactors(SE, T))
9288       NewTerms.push_back(NewT);
9289 
9290   DEBUG({
9291       dbgs() << "Terms after sorting:\n";
9292       for (const SCEV *T : NewTerms)
9293         dbgs() << *T << "\n";
9294     });
9295 
9296   if (NewTerms.empty() ||
9297       !findArrayDimensionsRec(SE, NewTerms, Sizes)) {
9298     Sizes.clear();
9299     return;
9300   }
9301 
9302   // The last element to be pushed into Sizes is the size of an element.
9303   Sizes.push_back(ElementSize);
9304 
9305   DEBUG({
9306       dbgs() << "Sizes:\n";
9307       for (const SCEV *S : Sizes)
9308         dbgs() << *S << "\n";
9309     });
9310 }
9311 
9312 void ScalarEvolution::computeAccessFunctions(
9313     const SCEV *Expr, SmallVectorImpl<const SCEV *> &Subscripts,
9314     SmallVectorImpl<const SCEV *> &Sizes) {
9315 
9316   // Early exit in case this SCEV is not an affine multivariate function.
9317   if (Sizes.empty())
9318     return;
9319 
9320   if (auto *AR = dyn_cast<SCEVAddRecExpr>(Expr))
9321     if (!AR->isAffine())
9322       return;
9323 
9324   const SCEV *Res = Expr;
9325   int Last = Sizes.size() - 1;
9326   for (int i = Last; i >= 0; i--) {
9327     const SCEV *Q, *R;
9328     SCEVDivision::divide(*this, Res, Sizes[i], &Q, &R);
9329 
9330     DEBUG({
9331         dbgs() << "Res: " << *Res << "\n";
9332         dbgs() << "Sizes[i]: " << *Sizes[i] << "\n";
9333         dbgs() << "Res divided by Sizes[i]:\n";
9334         dbgs() << "Quotient: " << *Q << "\n";
9335         dbgs() << "Remainder: " << *R << "\n";
9336       });
9337 
9338     Res = Q;
9339 
9340     // Do not record the last subscript corresponding to the size of elements in
9341     // the array.
9342     if (i == Last) {
9343 
9344       // Bail out if the remainder is too complex.
9345       if (isa<SCEVAddRecExpr>(R)) {
9346         Subscripts.clear();
9347         Sizes.clear();
9348         return;
9349       }
9350 
9351       continue;
9352     }
9353 
9354     // Record the access function for the current subscript.
9355     Subscripts.push_back(R);
9356   }
9357 
9358   // Also push in last position the remainder of the last division: it will be
9359   // the access function of the innermost dimension.
9360   Subscripts.push_back(Res);
9361 
9362   std::reverse(Subscripts.begin(), Subscripts.end());
9363 
9364   DEBUG({
9365       dbgs() << "Subscripts:\n";
9366       for (const SCEV *S : Subscripts)
9367         dbgs() << *S << "\n";
9368     });
9369 }
9370 
9371 /// Splits the SCEV into two vectors of SCEVs representing the subscripts and
9372 /// sizes of an array access. Returns the remainder of the delinearization that
9373 /// is the offset start of the array.  The SCEV->delinearize algorithm computes
9374 /// the multiples of SCEV coefficients: that is a pattern matching of sub
9375 /// expressions in the stride and base of a SCEV corresponding to the
9376 /// computation of a GCD (greatest common divisor) of base and stride.  When
9377 /// SCEV->delinearize fails, it returns the SCEV unchanged.
9378 ///
9379 /// For example: when analyzing the memory access A[i][j][k] in this loop nest
9380 ///
9381 ///  void foo(long n, long m, long o, double A[n][m][o]) {
9382 ///
9383 ///    for (long i = 0; i < n; i++)
9384 ///      for (long j = 0; j < m; j++)
9385 ///        for (long k = 0; k < o; k++)
9386 ///          A[i][j][k] = 1.0;
9387 ///  }
9388 ///
9389 /// the delinearization input is the following AddRec SCEV:
9390 ///
9391 ///  AddRec: {{{%A,+,(8 * %m * %o)}<%for.i>,+,(8 * %o)}<%for.j>,+,8}<%for.k>
9392 ///
9393 /// From this SCEV, we are able to say that the base offset of the access is %A
9394 /// because it appears as an offset that does not divide any of the strides in
9395 /// the loops:
9396 ///
9397 ///  CHECK: Base offset: %A
9398 ///
9399 /// and then SCEV->delinearize determines the size of some of the dimensions of
9400 /// the array as these are the multiples by which the strides are happening:
9401 ///
9402 ///  CHECK: ArrayDecl[UnknownSize][%m][%o] with elements of sizeof(double) bytes.
9403 ///
9404 /// Note that the outermost dimension remains of UnknownSize because there are
9405 /// no strides that would help identifying the size of the last dimension: when
9406 /// the array has been statically allocated, one could compute the size of that
9407 /// dimension by dividing the overall size of the array by the size of the known
9408 /// dimensions: %m * %o * 8.
9409 ///
9410 /// Finally delinearize provides the access functions for the array reference
9411 /// that does correspond to A[i][j][k] of the above C testcase:
9412 ///
9413 ///  CHECK: ArrayRef[{0,+,1}<%for.i>][{0,+,1}<%for.j>][{0,+,1}<%for.k>]
9414 ///
9415 /// The testcases are checking the output of a function pass:
9416 /// DelinearizationPass that walks through all loads and stores of a function
9417 /// asking for the SCEV of the memory access with respect to all enclosing
9418 /// loops, calling SCEV->delinearize on that and printing the results.
9419 
9420 void ScalarEvolution::delinearize(const SCEV *Expr,
9421                                  SmallVectorImpl<const SCEV *> &Subscripts,
9422                                  SmallVectorImpl<const SCEV *> &Sizes,
9423                                  const SCEV *ElementSize) {
9424   // First step: collect parametric terms.
9425   SmallVector<const SCEV *, 4> Terms;
9426   collectParametricTerms(Expr, Terms);
9427 
9428   if (Terms.empty())
9429     return;
9430 
9431   // Second step: find subscript sizes.
9432   findArrayDimensions(Terms, Sizes, ElementSize);
9433 
9434   if (Sizes.empty())
9435     return;
9436 
9437   // Third step: compute the access functions for each subscript.
9438   computeAccessFunctions(Expr, Subscripts, Sizes);
9439 
9440   if (Subscripts.empty())
9441     return;
9442 
9443   DEBUG({
9444       dbgs() << "succeeded to delinearize " << *Expr << "\n";
9445       dbgs() << "ArrayDecl[UnknownSize]";
9446       for (const SCEV *S : Sizes)
9447         dbgs() << "[" << *S << "]";
9448 
9449       dbgs() << "\nArrayRef";
9450       for (const SCEV *S : Subscripts)
9451         dbgs() << "[" << *S << "]";
9452       dbgs() << "\n";
9453     });
9454 }
9455 
9456 //===----------------------------------------------------------------------===//
9457 //                   SCEVCallbackVH Class Implementation
9458 //===----------------------------------------------------------------------===//
9459 
9460 void ScalarEvolution::SCEVCallbackVH::deleted() {
9461   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9462   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
9463     SE->ConstantEvolutionLoopExitValue.erase(PN);
9464   SE->eraseValueFromMap(getValPtr());
9465   // this now dangles!
9466 }
9467 
9468 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
9469   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
9470 
9471   // Forget all the expressions associated with users of the old value,
9472   // so that future queries will recompute the expressions using the new
9473   // value.
9474   Value *Old = getValPtr();
9475   SmallVector<User *, 16> Worklist(Old->user_begin(), Old->user_end());
9476   SmallPtrSet<User *, 8> Visited;
9477   while (!Worklist.empty()) {
9478     User *U = Worklist.pop_back_val();
9479     // Deleting the Old value will cause this to dangle. Postpone
9480     // that until everything else is done.
9481     if (U == Old)
9482       continue;
9483     if (!Visited.insert(U).second)
9484       continue;
9485     if (PHINode *PN = dyn_cast<PHINode>(U))
9486       SE->ConstantEvolutionLoopExitValue.erase(PN);
9487     SE->eraseValueFromMap(U);
9488     Worklist.insert(Worklist.end(), U->user_begin(), U->user_end());
9489   }
9490   // Delete the Old value.
9491   if (PHINode *PN = dyn_cast<PHINode>(Old))
9492     SE->ConstantEvolutionLoopExitValue.erase(PN);
9493   SE->eraseValueFromMap(Old);
9494   // this now dangles!
9495 }
9496 
9497 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
9498   : CallbackVH(V), SE(se) {}
9499 
9500 //===----------------------------------------------------------------------===//
9501 //                   ScalarEvolution Class Implementation
9502 //===----------------------------------------------------------------------===//
9503 
9504 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
9505                                  AssumptionCache &AC, DominatorTree &DT,
9506                                  LoopInfo &LI)
9507     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
9508       CouldNotCompute(new SCEVCouldNotCompute()),
9509       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9510       ValuesAtScopes(64), LoopDispositions(64), BlockDispositions(64),
9511       FirstUnknown(nullptr) {
9512 
9513   // To use guards for proving predicates, we need to scan every instruction in
9514   // relevant basic blocks, and not just terminators.  Doing this is a waste of
9515   // time if the IR does not actually contain any calls to
9516   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
9517   //
9518   // This pessimizes the case where a pass that preserves ScalarEvolution wants
9519   // to _add_ guards to the module when there weren't any before, and wants
9520   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
9521   // efficient in lieu of being smart in that rather obscure case.
9522 
9523   auto *GuardDecl = F.getParent()->getFunction(
9524       Intrinsic::getName(Intrinsic::experimental_guard));
9525   HasGuards = GuardDecl && !GuardDecl->use_empty();
9526 }
9527 
9528 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
9529     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
9530       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
9531       ValueExprMap(std::move(Arg.ValueExprMap)),
9532       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
9533       WalkingBEDominatingConds(false), ProvingSplitPredicate(false),
9534       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
9535       PredicatedBackedgeTakenCounts(
9536           std::move(Arg.PredicatedBackedgeTakenCounts)),
9537       ConstantEvolutionLoopExitValue(
9538           std::move(Arg.ConstantEvolutionLoopExitValue)),
9539       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
9540       LoopDispositions(std::move(Arg.LoopDispositions)),
9541       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
9542       BlockDispositions(std::move(Arg.BlockDispositions)),
9543       UnsignedRanges(std::move(Arg.UnsignedRanges)),
9544       SignedRanges(std::move(Arg.SignedRanges)),
9545       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
9546       UniquePreds(std::move(Arg.UniquePreds)),
9547       SCEVAllocator(std::move(Arg.SCEVAllocator)),
9548       FirstUnknown(Arg.FirstUnknown) {
9549   Arg.FirstUnknown = nullptr;
9550 }
9551 
9552 ScalarEvolution::~ScalarEvolution() {
9553   // Iterate through all the SCEVUnknown instances and call their
9554   // destructors, so that they release their references to their values.
9555   for (SCEVUnknown *U = FirstUnknown; U;) {
9556     SCEVUnknown *Tmp = U;
9557     U = U->Next;
9558     Tmp->~SCEVUnknown();
9559   }
9560   FirstUnknown = nullptr;
9561 
9562   ExprValueMap.clear();
9563   ValueExprMap.clear();
9564   HasRecMap.clear();
9565 
9566   // Free any extra memory created for ExitNotTakenInfo in the unlikely event
9567   // that a loop had multiple computable exits.
9568   for (auto &BTCI : BackedgeTakenCounts)
9569     BTCI.second.clear();
9570   for (auto &BTCI : PredicatedBackedgeTakenCounts)
9571     BTCI.second.clear();
9572 
9573   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
9574   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
9575   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
9576 }
9577 
9578 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
9579   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
9580 }
9581 
9582 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
9583                           const Loop *L) {
9584   // Print all inner loops first
9585   for (Loop *I : *L)
9586     PrintLoopInfo(OS, SE, I);
9587 
9588   OS << "Loop ";
9589   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9590   OS << ": ";
9591 
9592   SmallVector<BasicBlock *, 8> ExitBlocks;
9593   L->getExitBlocks(ExitBlocks);
9594   if (ExitBlocks.size() != 1)
9595     OS << "<multiple exits> ";
9596 
9597   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
9598     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L);
9599   } else {
9600     OS << "Unpredictable backedge-taken count. ";
9601   }
9602 
9603   OS << "\n"
9604         "Loop ";
9605   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9606   OS << ": ";
9607 
9608   if (!isa<SCEVCouldNotCompute>(SE->getMaxBackedgeTakenCount(L))) {
9609     OS << "max backedge-taken count is " << *SE->getMaxBackedgeTakenCount(L);
9610     if (SE->isBackedgeTakenCountMaxOrZero(L))
9611       OS << ", actual taken count either this or zero.";
9612   } else {
9613     OS << "Unpredictable max backedge-taken count. ";
9614   }
9615 
9616   OS << "\n"
9617         "Loop ";
9618   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9619   OS << ": ";
9620 
9621   SCEVUnionPredicate Pred;
9622   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
9623   if (!isa<SCEVCouldNotCompute>(PBT)) {
9624     OS << "Predicated backedge-taken count is " << *PBT << "\n";
9625     OS << " Predicates:\n";
9626     Pred.print(OS, 4);
9627   } else {
9628     OS << "Unpredictable predicated backedge-taken count. ";
9629   }
9630   OS << "\n";
9631 }
9632 
9633 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
9634   switch (LD) {
9635   case ScalarEvolution::LoopVariant:
9636     return "Variant";
9637   case ScalarEvolution::LoopInvariant:
9638     return "Invariant";
9639   case ScalarEvolution::LoopComputable:
9640     return "Computable";
9641   }
9642   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
9643 }
9644 
9645 void ScalarEvolution::print(raw_ostream &OS) const {
9646   // ScalarEvolution's implementation of the print method is to print
9647   // out SCEV values of all instructions that are interesting. Doing
9648   // this potentially causes it to create new SCEV objects though,
9649   // which technically conflicts with the const qualifier. This isn't
9650   // observable from outside the class though, so casting away the
9651   // const isn't dangerous.
9652   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9653 
9654   OS << "Classifying expressions for: ";
9655   F.printAsOperand(OS, /*PrintType=*/false);
9656   OS << "\n";
9657   for (Instruction &I : instructions(F))
9658     if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
9659       OS << I << '\n';
9660       OS << "  -->  ";
9661       const SCEV *SV = SE.getSCEV(&I);
9662       SV->print(OS);
9663       if (!isa<SCEVCouldNotCompute>(SV)) {
9664         OS << " U: ";
9665         SE.getUnsignedRange(SV).print(OS);
9666         OS << " S: ";
9667         SE.getSignedRange(SV).print(OS);
9668       }
9669 
9670       const Loop *L = LI.getLoopFor(I.getParent());
9671 
9672       const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
9673       if (AtUse != SV) {
9674         OS << "  -->  ";
9675         AtUse->print(OS);
9676         if (!isa<SCEVCouldNotCompute>(AtUse)) {
9677           OS << " U: ";
9678           SE.getUnsignedRange(AtUse).print(OS);
9679           OS << " S: ";
9680           SE.getSignedRange(AtUse).print(OS);
9681         }
9682       }
9683 
9684       if (L) {
9685         OS << "\t\t" "Exits: ";
9686         const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
9687         if (!SE.isLoopInvariant(ExitValue, L)) {
9688           OS << "<<Unknown>>";
9689         } else {
9690           OS << *ExitValue;
9691         }
9692 
9693         bool First = true;
9694         for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
9695           if (First) {
9696             OS << "\t\t" "LoopDispositions: { ";
9697             First = false;
9698           } else {
9699             OS << ", ";
9700           }
9701 
9702           Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9703           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
9704         }
9705 
9706         for (auto *InnerL : depth_first(L)) {
9707           if (InnerL == L)
9708             continue;
9709           if (First) {
9710             OS << "\t\t" "LoopDispositions: { ";
9711             First = false;
9712           } else {
9713             OS << ", ";
9714           }
9715 
9716           InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
9717           OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
9718         }
9719 
9720         OS << " }";
9721       }
9722 
9723       OS << "\n";
9724     }
9725 
9726   OS << "Determining loop execution counts for: ";
9727   F.printAsOperand(OS, /*PrintType=*/false);
9728   OS << "\n";
9729   for (Loop *I : LI)
9730     PrintLoopInfo(OS, &SE, I);
9731 }
9732 
9733 ScalarEvolution::LoopDisposition
9734 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
9735   auto &Values = LoopDispositions[S];
9736   for (auto &V : Values) {
9737     if (V.getPointer() == L)
9738       return V.getInt();
9739   }
9740   Values.emplace_back(L, LoopVariant);
9741   LoopDisposition D = computeLoopDisposition(S, L);
9742   auto &Values2 = LoopDispositions[S];
9743   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9744     if (V.getPointer() == L) {
9745       V.setInt(D);
9746       break;
9747     }
9748   }
9749   return D;
9750 }
9751 
9752 ScalarEvolution::LoopDisposition
9753 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
9754   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9755   case scConstant:
9756     return LoopInvariant;
9757   case scTruncate:
9758   case scZeroExtend:
9759   case scSignExtend:
9760     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
9761   case scAddRecExpr: {
9762     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9763 
9764     // If L is the addrec's loop, it's computable.
9765     if (AR->getLoop() == L)
9766       return LoopComputable;
9767 
9768     // Add recurrences are never invariant in the function-body (null loop).
9769     if (!L)
9770       return LoopVariant;
9771 
9772     // This recurrence is variant w.r.t. L if L contains AR's loop.
9773     if (L->contains(AR->getLoop()))
9774       return LoopVariant;
9775 
9776     // This recurrence is invariant w.r.t. L if AR's loop contains L.
9777     if (AR->getLoop()->contains(L))
9778       return LoopInvariant;
9779 
9780     // This recurrence is variant w.r.t. L if any of its operands
9781     // are variant.
9782     for (auto *Op : AR->operands())
9783       if (!isLoopInvariant(Op, L))
9784         return LoopVariant;
9785 
9786     // Otherwise it's loop-invariant.
9787     return LoopInvariant;
9788   }
9789   case scAddExpr:
9790   case scMulExpr:
9791   case scUMaxExpr:
9792   case scSMaxExpr: {
9793     bool HasVarying = false;
9794     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
9795       LoopDisposition D = getLoopDisposition(Op, L);
9796       if (D == LoopVariant)
9797         return LoopVariant;
9798       if (D == LoopComputable)
9799         HasVarying = true;
9800     }
9801     return HasVarying ? LoopComputable : LoopInvariant;
9802   }
9803   case scUDivExpr: {
9804     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9805     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
9806     if (LD == LoopVariant)
9807       return LoopVariant;
9808     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
9809     if (RD == LoopVariant)
9810       return LoopVariant;
9811     return (LD == LoopInvariant && RD == LoopInvariant) ?
9812            LoopInvariant : LoopComputable;
9813   }
9814   case scUnknown:
9815     // All non-instruction values are loop invariant.  All instructions are loop
9816     // invariant if they are not contained in the specified loop.
9817     // Instructions are never considered invariant in the function body
9818     // (null loop) because they are defined within the "loop".
9819     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
9820       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
9821     return LoopInvariant;
9822   case scCouldNotCompute:
9823     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9824   }
9825   llvm_unreachable("Unknown SCEV kind!");
9826 }
9827 
9828 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
9829   return getLoopDisposition(S, L) == LoopInvariant;
9830 }
9831 
9832 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
9833   return getLoopDisposition(S, L) == LoopComputable;
9834 }
9835 
9836 ScalarEvolution::BlockDisposition
9837 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9838   auto &Values = BlockDispositions[S];
9839   for (auto &V : Values) {
9840     if (V.getPointer() == BB)
9841       return V.getInt();
9842   }
9843   Values.emplace_back(BB, DoesNotDominateBlock);
9844   BlockDisposition D = computeBlockDisposition(S, BB);
9845   auto &Values2 = BlockDispositions[S];
9846   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
9847     if (V.getPointer() == BB) {
9848       V.setInt(D);
9849       break;
9850     }
9851   }
9852   return D;
9853 }
9854 
9855 ScalarEvolution::BlockDisposition
9856 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
9857   switch (static_cast<SCEVTypes>(S->getSCEVType())) {
9858   case scConstant:
9859     return ProperlyDominatesBlock;
9860   case scTruncate:
9861   case scZeroExtend:
9862   case scSignExtend:
9863     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
9864   case scAddRecExpr: {
9865     // This uses a "dominates" query instead of "properly dominates" query
9866     // to test for proper dominance too, because the instruction which
9867     // produces the addrec's value is a PHI, and a PHI effectively properly
9868     // dominates its entire containing block.
9869     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
9870     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
9871       return DoesNotDominateBlock;
9872 
9873     // Fall through into SCEVNAryExpr handling.
9874     LLVM_FALLTHROUGH;
9875   }
9876   case scAddExpr:
9877   case scMulExpr:
9878   case scUMaxExpr:
9879   case scSMaxExpr: {
9880     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
9881     bool Proper = true;
9882     for (const SCEV *NAryOp : NAry->operands()) {
9883       BlockDisposition D = getBlockDisposition(NAryOp, BB);
9884       if (D == DoesNotDominateBlock)
9885         return DoesNotDominateBlock;
9886       if (D == DominatesBlock)
9887         Proper = false;
9888     }
9889     return Proper ? ProperlyDominatesBlock : DominatesBlock;
9890   }
9891   case scUDivExpr: {
9892     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
9893     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
9894     BlockDisposition LD = getBlockDisposition(LHS, BB);
9895     if (LD == DoesNotDominateBlock)
9896       return DoesNotDominateBlock;
9897     BlockDisposition RD = getBlockDisposition(RHS, BB);
9898     if (RD == DoesNotDominateBlock)
9899       return DoesNotDominateBlock;
9900     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
9901       ProperlyDominatesBlock : DominatesBlock;
9902   }
9903   case scUnknown:
9904     if (Instruction *I =
9905           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
9906       if (I->getParent() == BB)
9907         return DominatesBlock;
9908       if (DT.properlyDominates(I->getParent(), BB))
9909         return ProperlyDominatesBlock;
9910       return DoesNotDominateBlock;
9911     }
9912     return ProperlyDominatesBlock;
9913   case scCouldNotCompute:
9914     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
9915   }
9916   llvm_unreachable("Unknown SCEV kind!");
9917 }
9918 
9919 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
9920   return getBlockDisposition(S, BB) >= DominatesBlock;
9921 }
9922 
9923 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
9924   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
9925 }
9926 
9927 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
9928   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
9929 }
9930 
9931 void ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
9932   ValuesAtScopes.erase(S);
9933   LoopDispositions.erase(S);
9934   BlockDispositions.erase(S);
9935   UnsignedRanges.erase(S);
9936   SignedRanges.erase(S);
9937   ExprValueMap.erase(S);
9938   HasRecMap.erase(S);
9939 
9940   auto RemoveSCEVFromBackedgeMap =
9941       [S, this](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
9942         for (auto I = Map.begin(), E = Map.end(); I != E;) {
9943           BackedgeTakenInfo &BEInfo = I->second;
9944           if (BEInfo.hasOperand(S, this)) {
9945             BEInfo.clear();
9946             Map.erase(I++);
9947           } else
9948             ++I;
9949         }
9950       };
9951 
9952   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
9953   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
9954 }
9955 
9956 typedef DenseMap<const Loop *, std::string> VerifyMap;
9957 
9958 /// replaceSubString - Replaces all occurrences of From in Str with To.
9959 static void replaceSubString(std::string &Str, StringRef From, StringRef To) {
9960   size_t Pos = 0;
9961   while ((Pos = Str.find(From, Pos)) != std::string::npos) {
9962     Str.replace(Pos, From.size(), To.data(), To.size());
9963     Pos += To.size();
9964   }
9965 }
9966 
9967 /// getLoopBackedgeTakenCounts - Helper method for verifyAnalysis.
9968 static void
9969 getLoopBackedgeTakenCounts(Loop *L, VerifyMap &Map, ScalarEvolution &SE) {
9970   std::string &S = Map[L];
9971   if (S.empty()) {
9972     raw_string_ostream OS(S);
9973     SE.getBackedgeTakenCount(L)->print(OS);
9974 
9975     // false and 0 are semantically equivalent. This can happen in dead loops.
9976     replaceSubString(OS.str(), "false", "0");
9977     // Remove wrap flags, their use in SCEV is highly fragile.
9978     // FIXME: Remove this when SCEV gets smarter about them.
9979     replaceSubString(OS.str(), "<nw>", "");
9980     replaceSubString(OS.str(), "<nsw>", "");
9981     replaceSubString(OS.str(), "<nuw>", "");
9982   }
9983 
9984   for (auto *R : reverse(*L))
9985     getLoopBackedgeTakenCounts(R, Map, SE); // recurse.
9986 }
9987 
9988 void ScalarEvolution::verify() const {
9989   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
9990 
9991   // Gather stringified backedge taken counts for all loops using SCEV's caches.
9992   // FIXME: It would be much better to store actual values instead of strings,
9993   //        but SCEV pointers will change if we drop the caches.
9994   VerifyMap BackedgeDumpsOld, BackedgeDumpsNew;
9995   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
9996     getLoopBackedgeTakenCounts(*I, BackedgeDumpsOld, SE);
9997 
9998   // Gather stringified backedge taken counts for all loops using a fresh
9999   // ScalarEvolution object.
10000   ScalarEvolution SE2(F, TLI, AC, DT, LI);
10001   for (LoopInfo::reverse_iterator I = LI.rbegin(), E = LI.rend(); I != E; ++I)
10002     getLoopBackedgeTakenCounts(*I, BackedgeDumpsNew, SE2);
10003 
10004   // Now compare whether they're the same with and without caches. This allows
10005   // verifying that no pass changed the cache.
10006   assert(BackedgeDumpsOld.size() == BackedgeDumpsNew.size() &&
10007          "New loops suddenly appeared!");
10008 
10009   for (VerifyMap::iterator OldI = BackedgeDumpsOld.begin(),
10010                            OldE = BackedgeDumpsOld.end(),
10011                            NewI = BackedgeDumpsNew.begin();
10012        OldI != OldE; ++OldI, ++NewI) {
10013     assert(OldI->first == NewI->first && "Loop order changed!");
10014 
10015     // Compare the stringified SCEVs. We don't care if undef backedgetaken count
10016     // changes.
10017     // FIXME: We currently ignore SCEV changes from/to CouldNotCompute. This
10018     // means that a pass is buggy or SCEV has to learn a new pattern but is
10019     // usually not harmful.
10020     if (OldI->second != NewI->second &&
10021         OldI->second.find("undef") == std::string::npos &&
10022         NewI->second.find("undef") == std::string::npos &&
10023         OldI->second != "***COULDNOTCOMPUTE***" &&
10024         NewI->second != "***COULDNOTCOMPUTE***") {
10025       dbgs() << "SCEVValidator: SCEV for loop '"
10026              << OldI->first->getHeader()->getName()
10027              << "' changed from '" << OldI->second
10028              << "' to '" << NewI->second << "'!\n";
10029       std::abort();
10030     }
10031   }
10032 
10033   // TODO: Verify more things.
10034 }
10035 
10036 bool ScalarEvolution::invalidate(
10037     Function &F, const PreservedAnalyses &PA,
10038     FunctionAnalysisManager::Invalidator &Inv) {
10039   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
10040   // of its dependencies is invalidated.
10041   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
10042   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
10043          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
10044          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
10045          Inv.invalidate<LoopAnalysis>(F, PA);
10046 }
10047 
10048 AnalysisKey ScalarEvolutionAnalysis::Key;
10049 
10050 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
10051                                              FunctionAnalysisManager &AM) {
10052   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
10053                          AM.getResult<AssumptionAnalysis>(F),
10054                          AM.getResult<DominatorTreeAnalysis>(F),
10055                          AM.getResult<LoopAnalysis>(F));
10056 }
10057 
10058 PreservedAnalyses
10059 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
10060   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
10061   return PreservedAnalyses::all();
10062 }
10063 
10064 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
10065                       "Scalar Evolution Analysis", false, true)
10066 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
10067 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
10068 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
10069 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
10070 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
10071                     "Scalar Evolution Analysis", false, true)
10072 char ScalarEvolutionWrapperPass::ID = 0;
10073 
10074 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
10075   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
10076 }
10077 
10078 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
10079   SE.reset(new ScalarEvolution(
10080       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
10081       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
10082       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
10083       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
10084   return false;
10085 }
10086 
10087 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
10088 
10089 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
10090   SE->print(OS);
10091 }
10092 
10093 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
10094   if (!VerifySCEV)
10095     return;
10096 
10097   SE->verify();
10098 }
10099 
10100 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
10101   AU.setPreservesAll();
10102   AU.addRequiredTransitive<AssumptionCacheTracker>();
10103   AU.addRequiredTransitive<LoopInfoWrapperPass>();
10104   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
10105   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
10106 }
10107 
10108 const SCEVPredicate *
10109 ScalarEvolution::getEqualPredicate(const SCEVUnknown *LHS,
10110                                    const SCEVConstant *RHS) {
10111   FoldingSetNodeID ID;
10112   // Unique this node based on the arguments
10113   ID.AddInteger(SCEVPredicate::P_Equal);
10114   ID.AddPointer(LHS);
10115   ID.AddPointer(RHS);
10116   void *IP = nullptr;
10117   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10118     return S;
10119   SCEVEqualPredicate *Eq = new (SCEVAllocator)
10120       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
10121   UniquePreds.InsertNode(Eq, IP);
10122   return Eq;
10123 }
10124 
10125 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
10126     const SCEVAddRecExpr *AR,
10127     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10128   FoldingSetNodeID ID;
10129   // Unique this node based on the arguments
10130   ID.AddInteger(SCEVPredicate::P_Wrap);
10131   ID.AddPointer(AR);
10132   ID.AddInteger(AddedFlags);
10133   void *IP = nullptr;
10134   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
10135     return S;
10136   auto *OF = new (SCEVAllocator)
10137       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
10138   UniquePreds.InsertNode(OF, IP);
10139   return OF;
10140 }
10141 
10142 namespace {
10143 
10144 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
10145 public:
10146   /// Rewrites \p S in the context of a loop L and the SCEV predication
10147   /// infrastructure.
10148   ///
10149   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
10150   /// equivalences present in \p Pred.
10151   ///
10152   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
10153   /// \p NewPreds such that the result will be an AddRecExpr.
10154   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
10155                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10156                              SCEVUnionPredicate *Pred) {
10157     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
10158     return Rewriter.visit(S);
10159   }
10160 
10161   SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
10162                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
10163                         SCEVUnionPredicate *Pred)
10164       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
10165 
10166   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
10167     if (Pred) {
10168       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
10169       for (auto *Pred : ExprPreds)
10170         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
10171           if (IPred->getLHS() == Expr)
10172             return IPred->getRHS();
10173     }
10174 
10175     return Expr;
10176   }
10177 
10178   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
10179     const SCEV *Operand = visit(Expr->getOperand());
10180     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10181     if (AR && AR->getLoop() == L && AR->isAffine()) {
10182       // This couldn't be folded because the operand didn't have the nuw
10183       // flag. Add the nusw flag as an assumption that we could make.
10184       const SCEV *Step = AR->getStepRecurrence(SE);
10185       Type *Ty = Expr->getType();
10186       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
10187         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
10188                                 SE.getSignExtendExpr(Step, Ty), L,
10189                                 AR->getNoWrapFlags());
10190     }
10191     return SE.getZeroExtendExpr(Operand, Expr->getType());
10192   }
10193 
10194   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
10195     const SCEV *Operand = visit(Expr->getOperand());
10196     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
10197     if (AR && AR->getLoop() == L && AR->isAffine()) {
10198       // This couldn't be folded because the operand didn't have the nsw
10199       // flag. Add the nssw flag as an assumption that we could make.
10200       const SCEV *Step = AR->getStepRecurrence(SE);
10201       Type *Ty = Expr->getType();
10202       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
10203         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
10204                                 SE.getSignExtendExpr(Step, Ty), L,
10205                                 AR->getNoWrapFlags());
10206     }
10207     return SE.getSignExtendExpr(Operand, Expr->getType());
10208   }
10209 
10210 private:
10211   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
10212                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
10213     auto *A = SE.getWrapPredicate(AR, AddedFlags);
10214     if (!NewPreds) {
10215       // Check if we've already made this assumption.
10216       return Pred && Pred->implies(A);
10217     }
10218     NewPreds->insert(A);
10219     return true;
10220   }
10221 
10222   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
10223   SCEVUnionPredicate *Pred;
10224   const Loop *L;
10225 };
10226 } // end anonymous namespace
10227 
10228 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
10229                                                    SCEVUnionPredicate &Preds) {
10230   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
10231 }
10232 
10233 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
10234     const SCEV *S, const Loop *L,
10235     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
10236 
10237   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
10238   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
10239   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
10240 
10241   if (!AddRec)
10242     return nullptr;
10243 
10244   // Since the transformation was successful, we can now transfer the SCEV
10245   // predicates.
10246   for (auto *P : TransformPreds)
10247     Preds.insert(P);
10248 
10249   return AddRec;
10250 }
10251 
10252 /// SCEV predicates
10253 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
10254                              SCEVPredicateKind Kind)
10255     : FastID(ID), Kind(Kind) {}
10256 
10257 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
10258                                        const SCEVUnknown *LHS,
10259                                        const SCEVConstant *RHS)
10260     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {}
10261 
10262 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
10263   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
10264 
10265   if (!Op)
10266     return false;
10267 
10268   return Op->LHS == LHS && Op->RHS == RHS;
10269 }
10270 
10271 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
10272 
10273 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
10274 
10275 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
10276   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
10277 }
10278 
10279 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
10280                                      const SCEVAddRecExpr *AR,
10281                                      IncrementWrapFlags Flags)
10282     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
10283 
10284 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
10285 
10286 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
10287   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
10288 
10289   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
10290 }
10291 
10292 bool SCEVWrapPredicate::isAlwaysTrue() const {
10293   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
10294   IncrementWrapFlags IFlags = Flags;
10295 
10296   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
10297     IFlags = clearFlags(IFlags, IncrementNSSW);
10298 
10299   return IFlags == IncrementAnyWrap;
10300 }
10301 
10302 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
10303   OS.indent(Depth) << *getExpr() << " Added Flags: ";
10304   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
10305     OS << "<nusw>";
10306   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
10307     OS << "<nssw>";
10308   OS << "\n";
10309 }
10310 
10311 SCEVWrapPredicate::IncrementWrapFlags
10312 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
10313                                    ScalarEvolution &SE) {
10314   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
10315   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
10316 
10317   // We can safely transfer the NSW flag as NSSW.
10318   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
10319     ImpliedFlags = IncrementNSSW;
10320 
10321   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
10322     // If the increment is positive, the SCEV NUW flag will also imply the
10323     // WrapPredicate NUSW flag.
10324     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
10325       if (Step->getValue()->getValue().isNonNegative())
10326         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
10327   }
10328 
10329   return ImpliedFlags;
10330 }
10331 
10332 /// Union predicates don't get cached so create a dummy set ID for it.
10333 SCEVUnionPredicate::SCEVUnionPredicate()
10334     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
10335 
10336 bool SCEVUnionPredicate::isAlwaysTrue() const {
10337   return all_of(Preds,
10338                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
10339 }
10340 
10341 ArrayRef<const SCEVPredicate *>
10342 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
10343   auto I = SCEVToPreds.find(Expr);
10344   if (I == SCEVToPreds.end())
10345     return ArrayRef<const SCEVPredicate *>();
10346   return I->second;
10347 }
10348 
10349 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
10350   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
10351     return all_of(Set->Preds,
10352                   [this](const SCEVPredicate *I) { return this->implies(I); });
10353 
10354   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
10355   if (ScevPredsIt == SCEVToPreds.end())
10356     return false;
10357   auto &SCEVPreds = ScevPredsIt->second;
10358 
10359   return any_of(SCEVPreds,
10360                 [N](const SCEVPredicate *I) { return I->implies(N); });
10361 }
10362 
10363 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
10364 
10365 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
10366   for (auto Pred : Preds)
10367     Pred->print(OS, Depth);
10368 }
10369 
10370 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
10371   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
10372     for (auto Pred : Set->Preds)
10373       add(Pred);
10374     return;
10375   }
10376 
10377   if (implies(N))
10378     return;
10379 
10380   const SCEV *Key = N->getExpr();
10381   assert(Key && "Only SCEVUnionPredicate doesn't have an "
10382                 " associated expression!");
10383 
10384   SCEVToPreds[Key].push_back(N);
10385   Preds.push_back(N);
10386 }
10387 
10388 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
10389                                                      Loop &L)
10390     : SE(SE), L(L), Generation(0), BackedgeCount(nullptr) {}
10391 
10392 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
10393   const SCEV *Expr = SE.getSCEV(V);
10394   RewriteEntry &Entry = RewriteMap[Expr];
10395 
10396   // If we already have an entry and the version matches, return it.
10397   if (Entry.second && Generation == Entry.first)
10398     return Entry.second;
10399 
10400   // We found an entry but it's stale. Rewrite the stale entry
10401   // according to the current predicate.
10402   if (Entry.second)
10403     Expr = Entry.second;
10404 
10405   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
10406   Entry = {Generation, NewSCEV};
10407 
10408   return NewSCEV;
10409 }
10410 
10411 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
10412   if (!BackedgeCount) {
10413     SCEVUnionPredicate BackedgePred;
10414     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
10415     addPredicate(BackedgePred);
10416   }
10417   return BackedgeCount;
10418 }
10419 
10420 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
10421   if (Preds.implies(&Pred))
10422     return;
10423   Preds.add(&Pred);
10424   updateGeneration();
10425 }
10426 
10427 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
10428   return Preds;
10429 }
10430 
10431 void PredicatedScalarEvolution::updateGeneration() {
10432   // If the generation number wrapped recompute everything.
10433   if (++Generation == 0) {
10434     for (auto &II : RewriteMap) {
10435       const SCEV *Rewritten = II.second.second;
10436       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
10437     }
10438   }
10439 }
10440 
10441 void PredicatedScalarEvolution::setNoOverflow(
10442     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10443   const SCEV *Expr = getSCEV(V);
10444   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10445 
10446   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
10447 
10448   // Clear the statically implied flags.
10449   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
10450   addPredicate(*SE.getWrapPredicate(AR, Flags));
10451 
10452   auto II = FlagsMap.insert({V, Flags});
10453   if (!II.second)
10454     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
10455 }
10456 
10457 bool PredicatedScalarEvolution::hasNoOverflow(
10458     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
10459   const SCEV *Expr = getSCEV(V);
10460   const auto *AR = cast<SCEVAddRecExpr>(Expr);
10461 
10462   Flags = SCEVWrapPredicate::clearFlags(
10463       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
10464 
10465   auto II = FlagsMap.find(V);
10466 
10467   if (II != FlagsMap.end())
10468     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
10469 
10470   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
10471 }
10472 
10473 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
10474   const SCEV *Expr = this->getSCEV(V);
10475   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
10476   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
10477 
10478   if (!New)
10479     return nullptr;
10480 
10481   for (auto *P : NewPreds)
10482     Preds.add(P);
10483 
10484   updateGeneration();
10485   RewriteMap[SE.getSCEV(V)] = {Generation, New};
10486   return New;
10487 }
10488 
10489 PredicatedScalarEvolution::PredicatedScalarEvolution(
10490     const PredicatedScalarEvolution &Init)
10491     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
10492       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
10493   for (const auto &I : Init.FlagsMap)
10494     FlagsMap.insert(I);
10495 }
10496 
10497 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
10498   // For each block.
10499   for (auto *BB : L.getBlocks())
10500     for (auto &I : *BB) {
10501       if (!SE.isSCEVable(I.getType()))
10502         continue;
10503 
10504       auto *Expr = SE.getSCEV(&I);
10505       auto II = RewriteMap.find(Expr);
10506 
10507       if (II == RewriteMap.end())
10508         continue;
10509 
10510       // Don't print things that are not interesting.
10511       if (II->second.second == Expr)
10512         continue;
10513 
10514       OS.indent(Depth) << "[PSE]" << I << ":\n";
10515       OS.indent(Depth + 2) << *Expr << "\n";
10516       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
10517     }
10518 }
10519