1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the implementation of the scalar evolution analysis 10 // engine, which is used primarily to analyze expressions involving induction 11 // variables in loops. 12 // 13 // There are several aspects to this library. First is the representation of 14 // scalar expressions, which are represented as subclasses of the SCEV class. 15 // These classes are used to represent certain types of subexpressions that we 16 // can handle. We only create one SCEV of a particular shape, so 17 // pointer-comparisons for equality are legal. 18 // 19 // One important aspect of the SCEV objects is that they are never cyclic, even 20 // if there is a cycle in the dataflow for an expression (ie, a PHI node). If 21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial 22 // recurrence) then we represent it directly as a recurrence node, otherwise we 23 // represent it as a SCEVUnknown node. 24 // 25 // In addition to being able to represent expressions of various types, we also 26 // have folders that are used to build the *canonical* representation for a 27 // particular expression. These folders are capable of using a variety of 28 // rewrite rules to simplify the expressions. 29 // 30 // Once the folders are defined, we can implement the more interesting 31 // higher-level code, such as the code that recognizes PHI nodes of various 32 // types, computes the execution count of a loop, etc. 33 // 34 // TODO: We should use these routines and value representations to implement 35 // dependence analysis! 36 // 37 //===----------------------------------------------------------------------===// 38 // 39 // There are several good references for the techniques used in this analysis. 40 // 41 // Chains of recurrences -- a method to expedite the evaluation 42 // of closed-form functions 43 // Olaf Bachmann, Paul S. Wang, Eugene V. Zima 44 // 45 // On computational properties of chains of recurrences 46 // Eugene V. Zima 47 // 48 // Symbolic Evaluation of Chains of Recurrences for Loop Optimization 49 // Robert A. van Engelen 50 // 51 // Efficient Symbolic Analysis for Optimizing Compilers 52 // Robert A. van Engelen 53 // 54 // Using the chains of recurrences algebra for data dependence testing and 55 // induction variable substitution 56 // MS Thesis, Johnie Birch 57 // 58 //===----------------------------------------------------------------------===// 59 60 #include "llvm/Analysis/ScalarEvolution.h" 61 #include "llvm/ADT/APInt.h" 62 #include "llvm/ADT/ArrayRef.h" 63 #include "llvm/ADT/DenseMap.h" 64 #include "llvm/ADT/DepthFirstIterator.h" 65 #include "llvm/ADT/EquivalenceClasses.h" 66 #include "llvm/ADT/FoldingSet.h" 67 #include "llvm/ADT/None.h" 68 #include "llvm/ADT/Optional.h" 69 #include "llvm/ADT/STLExtras.h" 70 #include "llvm/ADT/ScopeExit.h" 71 #include "llvm/ADT/Sequence.h" 72 #include "llvm/ADT/SetVector.h" 73 #include "llvm/ADT/SmallPtrSet.h" 74 #include "llvm/ADT/SmallSet.h" 75 #include "llvm/ADT/SmallVector.h" 76 #include "llvm/ADT/Statistic.h" 77 #include "llvm/ADT/StringRef.h" 78 #include "llvm/Analysis/AssumptionCache.h" 79 #include "llvm/Analysis/ConstantFolding.h" 80 #include "llvm/Analysis/InstructionSimplify.h" 81 #include "llvm/Analysis/LoopInfo.h" 82 #include "llvm/Analysis/ScalarEvolutionDivision.h" 83 #include "llvm/Analysis/ScalarEvolutionExpressions.h" 84 #include "llvm/Analysis/TargetLibraryInfo.h" 85 #include "llvm/Analysis/ValueTracking.h" 86 #include "llvm/Config/llvm-config.h" 87 #include "llvm/IR/Argument.h" 88 #include "llvm/IR/BasicBlock.h" 89 #include "llvm/IR/CFG.h" 90 #include "llvm/IR/Constant.h" 91 #include "llvm/IR/ConstantRange.h" 92 #include "llvm/IR/Constants.h" 93 #include "llvm/IR/DataLayout.h" 94 #include "llvm/IR/DerivedTypes.h" 95 #include "llvm/IR/Dominators.h" 96 #include "llvm/IR/Function.h" 97 #include "llvm/IR/GlobalAlias.h" 98 #include "llvm/IR/GlobalValue.h" 99 #include "llvm/IR/GlobalVariable.h" 100 #include "llvm/IR/InstIterator.h" 101 #include "llvm/IR/InstrTypes.h" 102 #include "llvm/IR/Instruction.h" 103 #include "llvm/IR/Instructions.h" 104 #include "llvm/IR/IntrinsicInst.h" 105 #include "llvm/IR/Intrinsics.h" 106 #include "llvm/IR/LLVMContext.h" 107 #include "llvm/IR/Metadata.h" 108 #include "llvm/IR/Operator.h" 109 #include "llvm/IR/PatternMatch.h" 110 #include "llvm/IR/Type.h" 111 #include "llvm/IR/Use.h" 112 #include "llvm/IR/User.h" 113 #include "llvm/IR/Value.h" 114 #include "llvm/IR/Verifier.h" 115 #include "llvm/InitializePasses.h" 116 #include "llvm/Pass.h" 117 #include "llvm/Support/Casting.h" 118 #include "llvm/Support/CommandLine.h" 119 #include "llvm/Support/Compiler.h" 120 #include "llvm/Support/Debug.h" 121 #include "llvm/Support/ErrorHandling.h" 122 #include "llvm/Support/KnownBits.h" 123 #include "llvm/Support/SaveAndRestore.h" 124 #include "llvm/Support/raw_ostream.h" 125 #include <algorithm> 126 #include <cassert> 127 #include <climits> 128 #include <cstddef> 129 #include <cstdint> 130 #include <cstdlib> 131 #include <map> 132 #include <memory> 133 #include <tuple> 134 #include <utility> 135 #include <vector> 136 137 using namespace llvm; 138 using namespace PatternMatch; 139 140 #define DEBUG_TYPE "scalar-evolution" 141 142 STATISTIC(NumArrayLenItCounts, 143 "Number of trip counts computed with array length"); 144 STATISTIC(NumTripCountsComputed, 145 "Number of loops with predictable loop counts"); 146 STATISTIC(NumTripCountsNotComputed, 147 "Number of loops without predictable loop counts"); 148 STATISTIC(NumBruteForceTripCountsComputed, 149 "Number of loops with trip counts computed by force"); 150 151 static cl::opt<unsigned> 152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden, 153 cl::ZeroOrMore, 154 cl::desc("Maximum number of iterations SCEV will " 155 "symbolically execute a constant " 156 "derived loop"), 157 cl::init(100)); 158 159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean. 160 static cl::opt<bool> VerifySCEV( 161 "verify-scev", cl::Hidden, 162 cl::desc("Verify ScalarEvolution's backedge taken counts (slow)")); 163 static cl::opt<bool> VerifySCEVStrict( 164 "verify-scev-strict", cl::Hidden, 165 cl::desc("Enable stricter verification with -verify-scev is passed")); 166 static cl::opt<bool> 167 VerifySCEVMap("verify-scev-maps", cl::Hidden, 168 cl::desc("Verify no dangling value in ScalarEvolution's " 169 "ExprValueMap (slow)")); 170 171 static cl::opt<bool> VerifyIR( 172 "scev-verify-ir", cl::Hidden, 173 cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"), 174 cl::init(false)); 175 176 static cl::opt<unsigned> MulOpsInlineThreshold( 177 "scev-mulops-inline-threshold", cl::Hidden, 178 cl::desc("Threshold for inlining multiplication operands into a SCEV"), 179 cl::init(32)); 180 181 static cl::opt<unsigned> AddOpsInlineThreshold( 182 "scev-addops-inline-threshold", cl::Hidden, 183 cl::desc("Threshold for inlining addition operands into a SCEV"), 184 cl::init(500)); 185 186 static cl::opt<unsigned> MaxSCEVCompareDepth( 187 "scalar-evolution-max-scev-compare-depth", cl::Hidden, 188 cl::desc("Maximum depth of recursive SCEV complexity comparisons"), 189 cl::init(32)); 190 191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth( 192 "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden, 193 cl::desc("Maximum depth of recursive SCEV operations implication analysis"), 194 cl::init(2)); 195 196 static cl::opt<unsigned> MaxValueCompareDepth( 197 "scalar-evolution-max-value-compare-depth", cl::Hidden, 198 cl::desc("Maximum depth of recursive value complexity comparisons"), 199 cl::init(2)); 200 201 static cl::opt<unsigned> 202 MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden, 203 cl::desc("Maximum depth of recursive arithmetics"), 204 cl::init(32)); 205 206 static cl::opt<unsigned> MaxConstantEvolvingDepth( 207 "scalar-evolution-max-constant-evolving-depth", cl::Hidden, 208 cl::desc("Maximum depth of recursive constant evolving"), cl::init(32)); 209 210 static cl::opt<unsigned> 211 MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden, 212 cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"), 213 cl::init(8)); 214 215 static cl::opt<unsigned> 216 MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden, 217 cl::desc("Max coefficients in AddRec during evolving"), 218 cl::init(8)); 219 220 static cl::opt<unsigned> 221 HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden, 222 cl::desc("Size of the expression which is considered huge"), 223 cl::init(4096)); 224 225 static cl::opt<bool> 226 ClassifyExpressions("scalar-evolution-classify-expressions", 227 cl::Hidden, cl::init(true), 228 cl::desc("When printing analysis, include information on every instruction")); 229 230 static cl::opt<bool> UseExpensiveRangeSharpening( 231 "scalar-evolution-use-expensive-range-sharpening", cl::Hidden, 232 cl::init(false), 233 cl::desc("Use more powerful methods of sharpening expression ranges. May " 234 "be costly in terms of compile time")); 235 236 //===----------------------------------------------------------------------===// 237 // SCEV class definitions 238 //===----------------------------------------------------------------------===// 239 240 //===----------------------------------------------------------------------===// 241 // Implementation of the SCEV class. 242 // 243 244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 245 LLVM_DUMP_METHOD void SCEV::dump() const { 246 print(dbgs()); 247 dbgs() << '\n'; 248 } 249 #endif 250 251 void SCEV::print(raw_ostream &OS) const { 252 switch (getSCEVType()) { 253 case scConstant: 254 cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false); 255 return; 256 case scPtrToInt: { 257 const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this); 258 const SCEV *Op = PtrToInt->getOperand(); 259 OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to " 260 << *PtrToInt->getType() << ")"; 261 return; 262 } 263 case scTruncate: { 264 const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this); 265 const SCEV *Op = Trunc->getOperand(); 266 OS << "(trunc " << *Op->getType() << " " << *Op << " to " 267 << *Trunc->getType() << ")"; 268 return; 269 } 270 case scZeroExtend: { 271 const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this); 272 const SCEV *Op = ZExt->getOperand(); 273 OS << "(zext " << *Op->getType() << " " << *Op << " to " 274 << *ZExt->getType() << ")"; 275 return; 276 } 277 case scSignExtend: { 278 const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this); 279 const SCEV *Op = SExt->getOperand(); 280 OS << "(sext " << *Op->getType() << " " << *Op << " to " 281 << *SExt->getType() << ")"; 282 return; 283 } 284 case scAddRecExpr: { 285 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this); 286 OS << "{" << *AR->getOperand(0); 287 for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i) 288 OS << ",+," << *AR->getOperand(i); 289 OS << "}<"; 290 if (AR->hasNoUnsignedWrap()) 291 OS << "nuw><"; 292 if (AR->hasNoSignedWrap()) 293 OS << "nsw><"; 294 if (AR->hasNoSelfWrap() && 295 !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW))) 296 OS << "nw><"; 297 AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false); 298 OS << ">"; 299 return; 300 } 301 case scAddExpr: 302 case scMulExpr: 303 case scUMaxExpr: 304 case scSMaxExpr: 305 case scUMinExpr: 306 case scSMinExpr: { 307 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this); 308 const char *OpStr = nullptr; 309 switch (NAry->getSCEVType()) { 310 case scAddExpr: OpStr = " + "; break; 311 case scMulExpr: OpStr = " * "; break; 312 case scUMaxExpr: OpStr = " umax "; break; 313 case scSMaxExpr: OpStr = " smax "; break; 314 case scUMinExpr: 315 OpStr = " umin "; 316 break; 317 case scSMinExpr: 318 OpStr = " smin "; 319 break; 320 default: 321 llvm_unreachable("There are no other nary expression types."); 322 } 323 OS << "("; 324 ListSeparator LS(OpStr); 325 for (const SCEV *Op : NAry->operands()) 326 OS << LS << *Op; 327 OS << ")"; 328 switch (NAry->getSCEVType()) { 329 case scAddExpr: 330 case scMulExpr: 331 if (NAry->hasNoUnsignedWrap()) 332 OS << "<nuw>"; 333 if (NAry->hasNoSignedWrap()) 334 OS << "<nsw>"; 335 break; 336 default: 337 // Nothing to print for other nary expressions. 338 break; 339 } 340 return; 341 } 342 case scUDivExpr: { 343 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this); 344 OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")"; 345 return; 346 } 347 case scUnknown: { 348 const SCEVUnknown *U = cast<SCEVUnknown>(this); 349 Type *AllocTy; 350 if (U->isSizeOf(AllocTy)) { 351 OS << "sizeof(" << *AllocTy << ")"; 352 return; 353 } 354 if (U->isAlignOf(AllocTy)) { 355 OS << "alignof(" << *AllocTy << ")"; 356 return; 357 } 358 359 Type *CTy; 360 Constant *FieldNo; 361 if (U->isOffsetOf(CTy, FieldNo)) { 362 OS << "offsetof(" << *CTy << ", "; 363 FieldNo->printAsOperand(OS, false); 364 OS << ")"; 365 return; 366 } 367 368 // Otherwise just print it normally. 369 U->getValue()->printAsOperand(OS, false); 370 return; 371 } 372 case scCouldNotCompute: 373 OS << "***COULDNOTCOMPUTE***"; 374 return; 375 } 376 llvm_unreachable("Unknown SCEV kind!"); 377 } 378 379 Type *SCEV::getType() const { 380 switch (getSCEVType()) { 381 case scConstant: 382 return cast<SCEVConstant>(this)->getType(); 383 case scPtrToInt: 384 case scTruncate: 385 case scZeroExtend: 386 case scSignExtend: 387 return cast<SCEVCastExpr>(this)->getType(); 388 case scAddRecExpr: 389 return cast<SCEVAddRecExpr>(this)->getType(); 390 case scMulExpr: 391 return cast<SCEVMulExpr>(this)->getType(); 392 case scUMaxExpr: 393 case scSMaxExpr: 394 case scUMinExpr: 395 case scSMinExpr: 396 return cast<SCEVMinMaxExpr>(this)->getType(); 397 case scAddExpr: 398 return cast<SCEVAddExpr>(this)->getType(); 399 case scUDivExpr: 400 return cast<SCEVUDivExpr>(this)->getType(); 401 case scUnknown: 402 return cast<SCEVUnknown>(this)->getType(); 403 case scCouldNotCompute: 404 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 405 } 406 llvm_unreachable("Unknown SCEV kind!"); 407 } 408 409 bool SCEV::isZero() const { 410 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 411 return SC->getValue()->isZero(); 412 return false; 413 } 414 415 bool SCEV::isOne() const { 416 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 417 return SC->getValue()->isOne(); 418 return false; 419 } 420 421 bool SCEV::isAllOnesValue() const { 422 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this)) 423 return SC->getValue()->isMinusOne(); 424 return false; 425 } 426 427 bool SCEV::isNonConstantNegative() const { 428 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this); 429 if (!Mul) return false; 430 431 // If there is a constant factor, it will be first. 432 const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0)); 433 if (!SC) return false; 434 435 // Return true if the value is negative, this matches things like (-42 * V). 436 return SC->getAPInt().isNegative(); 437 } 438 439 SCEVCouldNotCompute::SCEVCouldNotCompute() : 440 SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {} 441 442 bool SCEVCouldNotCompute::classof(const SCEV *S) { 443 return S->getSCEVType() == scCouldNotCompute; 444 } 445 446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) { 447 FoldingSetNodeID ID; 448 ID.AddInteger(scConstant); 449 ID.AddPointer(V); 450 void *IP = nullptr; 451 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 452 SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V); 453 UniqueSCEVs.InsertNode(S, IP); 454 return S; 455 } 456 457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) { 458 return getConstant(ConstantInt::get(getContext(), Val)); 459 } 460 461 const SCEV * 462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) { 463 IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty)); 464 return getConstant(ConstantInt::get(ITy, V, isSigned)); 465 } 466 467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy, 468 const SCEV *op, Type *ty) 469 : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) { 470 Operands[0] = op; 471 } 472 473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op, 474 Type *ITy) 475 : SCEVCastExpr(ID, scPtrToInt, Op, ITy) { 476 assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() && 477 "Must be a non-bit-width-changing pointer-to-integer cast!"); 478 } 479 480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID, 481 SCEVTypes SCEVTy, const SCEV *op, 482 Type *ty) 483 : SCEVCastExpr(ID, SCEVTy, op, ty) {} 484 485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op, 486 Type *ty) 487 : SCEVIntegralCastExpr(ID, scTruncate, op, ty) { 488 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 489 "Cannot truncate non-integer value!"); 490 } 491 492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID, 493 const SCEV *op, Type *ty) 494 : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) { 495 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 496 "Cannot zero extend non-integer value!"); 497 } 498 499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID, 500 const SCEV *op, Type *ty) 501 : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) { 502 assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 503 "Cannot sign extend non-integer value!"); 504 } 505 506 void SCEVUnknown::deleted() { 507 // Clear this SCEVUnknown from various maps. 508 SE->forgetMemoizedResults(this); 509 510 // Remove this SCEVUnknown from the uniquing map. 511 SE->UniqueSCEVs.RemoveNode(this); 512 513 // Release the value. 514 setValPtr(nullptr); 515 } 516 517 void SCEVUnknown::allUsesReplacedWith(Value *New) { 518 // Remove this SCEVUnknown from the uniquing map. 519 SE->UniqueSCEVs.RemoveNode(this); 520 521 // Update this SCEVUnknown to point to the new value. This is needed 522 // because there may still be outstanding SCEVs which still point to 523 // this SCEVUnknown. 524 setValPtr(New); 525 } 526 527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const { 528 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 529 if (VCE->getOpcode() == Instruction::PtrToInt) 530 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 531 if (CE->getOpcode() == Instruction::GetElementPtr && 532 CE->getOperand(0)->isNullValue() && 533 CE->getNumOperands() == 2) 534 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1))) 535 if (CI->isOne()) { 536 AllocTy = cast<GEPOperator>(CE)->getSourceElementType(); 537 return true; 538 } 539 540 return false; 541 } 542 543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const { 544 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 545 if (VCE->getOpcode() == Instruction::PtrToInt) 546 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 547 if (CE->getOpcode() == Instruction::GetElementPtr && 548 CE->getOperand(0)->isNullValue()) { 549 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 550 if (StructType *STy = dyn_cast<StructType>(Ty)) 551 if (!STy->isPacked() && 552 CE->getNumOperands() == 3 && 553 CE->getOperand(1)->isNullValue()) { 554 if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2))) 555 if (CI->isOne() && 556 STy->getNumElements() == 2 && 557 STy->getElementType(0)->isIntegerTy(1)) { 558 AllocTy = STy->getElementType(1); 559 return true; 560 } 561 } 562 } 563 564 return false; 565 } 566 567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const { 568 if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue())) 569 if (VCE->getOpcode() == Instruction::PtrToInt) 570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0))) 571 if (CE->getOpcode() == Instruction::GetElementPtr && 572 CE->getNumOperands() == 3 && 573 CE->getOperand(0)->isNullValue() && 574 CE->getOperand(1)->isNullValue()) { 575 Type *Ty = cast<GEPOperator>(CE)->getSourceElementType(); 576 // Ignore vector types here so that ScalarEvolutionExpander doesn't 577 // emit getelementptrs that index into vectors. 578 if (Ty->isStructTy() || Ty->isArrayTy()) { 579 CTy = Ty; 580 FieldNo = CE->getOperand(2); 581 return true; 582 } 583 } 584 585 return false; 586 } 587 588 //===----------------------------------------------------------------------===// 589 // SCEV Utilities 590 //===----------------------------------------------------------------------===// 591 592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where 593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order 594 /// operands in SCEV expressions. \p EqCache is a set of pairs of values that 595 /// have been previously deemed to be "equally complex" by this routine. It is 596 /// intended to avoid exponential time complexity in cases like: 597 /// 598 /// %a = f(%x, %y) 599 /// %b = f(%a, %a) 600 /// %c = f(%b, %b) 601 /// 602 /// %d = f(%x, %y) 603 /// %e = f(%d, %d) 604 /// %f = f(%e, %e) 605 /// 606 /// CompareValueComplexity(%f, %c) 607 /// 608 /// Since we do not continue running this routine on expression trees once we 609 /// have seen unequal values, there is no need to track them in the cache. 610 static int 611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue, 612 const LoopInfo *const LI, Value *LV, Value *RV, 613 unsigned Depth) { 614 if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV)) 615 return 0; 616 617 // Order pointer values after integer values. This helps SCEVExpander form 618 // GEPs. 619 bool LIsPointer = LV->getType()->isPointerTy(), 620 RIsPointer = RV->getType()->isPointerTy(); 621 if (LIsPointer != RIsPointer) 622 return (int)LIsPointer - (int)RIsPointer; 623 624 // Compare getValueID values. 625 unsigned LID = LV->getValueID(), RID = RV->getValueID(); 626 if (LID != RID) 627 return (int)LID - (int)RID; 628 629 // Sort arguments by their position. 630 if (const auto *LA = dyn_cast<Argument>(LV)) { 631 const auto *RA = cast<Argument>(RV); 632 unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo(); 633 return (int)LArgNo - (int)RArgNo; 634 } 635 636 if (const auto *LGV = dyn_cast<GlobalValue>(LV)) { 637 const auto *RGV = cast<GlobalValue>(RV); 638 639 const auto IsGVNameSemantic = [&](const GlobalValue *GV) { 640 auto LT = GV->getLinkage(); 641 return !(GlobalValue::isPrivateLinkage(LT) || 642 GlobalValue::isInternalLinkage(LT)); 643 }; 644 645 // Use the names to distinguish the two values, but only if the 646 // names are semantically important. 647 if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV)) 648 return LGV->getName().compare(RGV->getName()); 649 } 650 651 // For instructions, compare their loop depth, and their operand count. This 652 // is pretty loose. 653 if (const auto *LInst = dyn_cast<Instruction>(LV)) { 654 const auto *RInst = cast<Instruction>(RV); 655 656 // Compare loop depths. 657 const BasicBlock *LParent = LInst->getParent(), 658 *RParent = RInst->getParent(); 659 if (LParent != RParent) { 660 unsigned LDepth = LI->getLoopDepth(LParent), 661 RDepth = LI->getLoopDepth(RParent); 662 if (LDepth != RDepth) 663 return (int)LDepth - (int)RDepth; 664 } 665 666 // Compare the number of operands. 667 unsigned LNumOps = LInst->getNumOperands(), 668 RNumOps = RInst->getNumOperands(); 669 if (LNumOps != RNumOps) 670 return (int)LNumOps - (int)RNumOps; 671 672 for (unsigned Idx : seq(0u, LNumOps)) { 673 int Result = 674 CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx), 675 RInst->getOperand(Idx), Depth + 1); 676 if (Result != 0) 677 return Result; 678 } 679 } 680 681 EqCacheValue.unionSets(LV, RV); 682 return 0; 683 } 684 685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater 686 // than RHS, respectively. A three-way result allows recursive comparisons to be 687 // more efficient. 688 // If the max analysis depth was reached, return None, assuming we do not know 689 // if they are equivalent for sure. 690 static Optional<int> 691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV, 692 EquivalenceClasses<const Value *> &EqCacheValue, 693 const LoopInfo *const LI, const SCEV *LHS, 694 const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) { 695 // Fast-path: SCEVs are uniqued so we can do a quick equality check. 696 if (LHS == RHS) 697 return 0; 698 699 // Primarily, sort the SCEVs by their getSCEVType(). 700 SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType(); 701 if (LType != RType) 702 return (int)LType - (int)RType; 703 704 if (EqCacheSCEV.isEquivalent(LHS, RHS)) 705 return 0; 706 707 if (Depth > MaxSCEVCompareDepth) 708 return None; 709 710 // Aside from the getSCEVType() ordering, the particular ordering 711 // isn't very important except that it's beneficial to be consistent, 712 // so that (a + b) and (b + a) don't end up as different expressions. 713 switch (LType) { 714 case scUnknown: { 715 const SCEVUnknown *LU = cast<SCEVUnknown>(LHS); 716 const SCEVUnknown *RU = cast<SCEVUnknown>(RHS); 717 718 int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(), 719 RU->getValue(), Depth + 1); 720 if (X == 0) 721 EqCacheSCEV.unionSets(LHS, RHS); 722 return X; 723 } 724 725 case scConstant: { 726 const SCEVConstant *LC = cast<SCEVConstant>(LHS); 727 const SCEVConstant *RC = cast<SCEVConstant>(RHS); 728 729 // Compare constant values. 730 const APInt &LA = LC->getAPInt(); 731 const APInt &RA = RC->getAPInt(); 732 unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth(); 733 if (LBitWidth != RBitWidth) 734 return (int)LBitWidth - (int)RBitWidth; 735 return LA.ult(RA) ? -1 : 1; 736 } 737 738 case scAddRecExpr: { 739 const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS); 740 const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS); 741 742 // There is always a dominance between two recs that are used by one SCEV, 743 // so we can safely sort recs by loop header dominance. We require such 744 // order in getAddExpr. 745 const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop(); 746 if (LLoop != RLoop) { 747 const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader(); 748 assert(LHead != RHead && "Two loops share the same header?"); 749 if (DT.dominates(LHead, RHead)) 750 return 1; 751 else 752 assert(DT.dominates(RHead, LHead) && 753 "No dominance between recurrences used by one SCEV?"); 754 return -1; 755 } 756 757 // Addrec complexity grows with operand count. 758 unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands(); 759 if (LNumOps != RNumOps) 760 return (int)LNumOps - (int)RNumOps; 761 762 // Lexicographically compare. 763 for (unsigned i = 0; i != LNumOps; ++i) { 764 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 765 LA->getOperand(i), RA->getOperand(i), DT, 766 Depth + 1); 767 if (X != 0) 768 return X; 769 } 770 EqCacheSCEV.unionSets(LHS, RHS); 771 return 0; 772 } 773 774 case scAddExpr: 775 case scMulExpr: 776 case scSMaxExpr: 777 case scUMaxExpr: 778 case scSMinExpr: 779 case scUMinExpr: { 780 const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS); 781 const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS); 782 783 // Lexicographically compare n-ary expressions. 784 unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands(); 785 if (LNumOps != RNumOps) 786 return (int)LNumOps - (int)RNumOps; 787 788 for (unsigned i = 0; i != LNumOps; ++i) { 789 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, 790 LC->getOperand(i), RC->getOperand(i), DT, 791 Depth + 1); 792 if (X != 0) 793 return X; 794 } 795 EqCacheSCEV.unionSets(LHS, RHS); 796 return 0; 797 } 798 799 case scUDivExpr: { 800 const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS); 801 const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS); 802 803 // Lexicographically compare udiv expressions. 804 auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(), 805 RC->getLHS(), DT, Depth + 1); 806 if (X != 0) 807 return X; 808 X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(), 809 RC->getRHS(), DT, Depth + 1); 810 if (X == 0) 811 EqCacheSCEV.unionSets(LHS, RHS); 812 return X; 813 } 814 815 case scPtrToInt: 816 case scTruncate: 817 case scZeroExtend: 818 case scSignExtend: { 819 const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS); 820 const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS); 821 822 // Compare cast expressions by operand. 823 auto X = 824 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(), 825 RC->getOperand(), DT, Depth + 1); 826 if (X == 0) 827 EqCacheSCEV.unionSets(LHS, RHS); 828 return X; 829 } 830 831 case scCouldNotCompute: 832 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 833 } 834 llvm_unreachable("Unknown SCEV kind!"); 835 } 836 837 /// Given a list of SCEV objects, order them by their complexity, and group 838 /// objects of the same complexity together by value. When this routine is 839 /// finished, we know that any duplicates in the vector are consecutive and that 840 /// complexity is monotonically increasing. 841 /// 842 /// Note that we go take special precautions to ensure that we get deterministic 843 /// results from this routine. In other words, we don't want the results of 844 /// this to depend on where the addresses of various SCEV objects happened to 845 /// land in memory. 846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops, 847 LoopInfo *LI, DominatorTree &DT) { 848 if (Ops.size() < 2) return; // Noop 849 850 EquivalenceClasses<const SCEV *> EqCacheSCEV; 851 EquivalenceClasses<const Value *> EqCacheValue; 852 853 // Whether LHS has provably less complexity than RHS. 854 auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) { 855 auto Complexity = 856 CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT); 857 return Complexity && *Complexity < 0; 858 }; 859 if (Ops.size() == 2) { 860 // This is the common case, which also happens to be trivially simple. 861 // Special case it. 862 const SCEV *&LHS = Ops[0], *&RHS = Ops[1]; 863 if (IsLessComplex(RHS, LHS)) 864 std::swap(LHS, RHS); 865 return; 866 } 867 868 // Do the rough sort by complexity. 869 llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) { 870 return IsLessComplex(LHS, RHS); 871 }); 872 873 // Now that we are sorted by complexity, group elements of the same 874 // complexity. Note that this is, at worst, N^2, but the vector is likely to 875 // be extremely short in practice. Note that we take this approach because we 876 // do not want to depend on the addresses of the objects we are grouping. 877 for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) { 878 const SCEV *S = Ops[i]; 879 unsigned Complexity = S->getSCEVType(); 880 881 // If there are any objects of the same complexity and same value as this 882 // one, group them. 883 for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) { 884 if (Ops[j] == S) { // Found a duplicate. 885 // Move it to immediately after i'th element. 886 std::swap(Ops[i+1], Ops[j]); 887 ++i; // no need to rescan it. 888 if (i == e-2) return; // Done! 889 } 890 } 891 } 892 } 893 894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at 895 /// least HugeExprThreshold nodes). 896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) { 897 return any_of(Ops, [](const SCEV *S) { 898 return S->getExpressionSize() >= HugeExprThreshold; 899 }); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Simple SCEV method implementations 904 //===----------------------------------------------------------------------===// 905 906 /// Compute BC(It, K). The result has width W. Assume, K > 0. 907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K, 908 ScalarEvolution &SE, 909 Type *ResultTy) { 910 // Handle the simplest case efficiently. 911 if (K == 1) 912 return SE.getTruncateOrZeroExtend(It, ResultTy); 913 914 // We are using the following formula for BC(It, K): 915 // 916 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K! 917 // 918 // Suppose, W is the bitwidth of the return value. We must be prepared for 919 // overflow. Hence, we must assure that the result of our computation is 920 // equal to the accurate one modulo 2^W. Unfortunately, division isn't 921 // safe in modular arithmetic. 922 // 923 // However, this code doesn't use exactly that formula; the formula it uses 924 // is something like the following, where T is the number of factors of 2 in 925 // K! (i.e. trailing zeros in the binary representation of K!), and ^ is 926 // exponentiation: 927 // 928 // BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T) 929 // 930 // This formula is trivially equivalent to the previous formula. However, 931 // this formula can be implemented much more efficiently. The trick is that 932 // K! / 2^T is odd, and exact division by an odd number *is* safe in modular 933 // arithmetic. To do exact division in modular arithmetic, all we have 934 // to do is multiply by the inverse. Therefore, this step can be done at 935 // width W. 936 // 937 // The next issue is how to safely do the division by 2^T. The way this 938 // is done is by doing the multiplication step at a width of at least W + T 939 // bits. This way, the bottom W+T bits of the product are accurate. Then, 940 // when we perform the division by 2^T (which is equivalent to a right shift 941 // by T), the bottom W bits are accurate. Extra bits are okay; they'll get 942 // truncated out after the division by 2^T. 943 // 944 // In comparison to just directly using the first formula, this technique 945 // is much more efficient; using the first formula requires W * K bits, 946 // but this formula less than W + K bits. Also, the first formula requires 947 // a division step, whereas this formula only requires multiplies and shifts. 948 // 949 // It doesn't matter whether the subtraction step is done in the calculation 950 // width or the input iteration count's width; if the subtraction overflows, 951 // the result must be zero anyway. We prefer here to do it in the width of 952 // the induction variable because it helps a lot for certain cases; CodeGen 953 // isn't smart enough to ignore the overflow, which leads to much less 954 // efficient code if the width of the subtraction is wider than the native 955 // register width. 956 // 957 // (It's possible to not widen at all by pulling out factors of 2 before 958 // the multiplication; for example, K=2 can be calculated as 959 // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires 960 // extra arithmetic, so it's not an obvious win, and it gets 961 // much more complicated for K > 3.) 962 963 // Protection from insane SCEVs; this bound is conservative, 964 // but it probably doesn't matter. 965 if (K > 1000) 966 return SE.getCouldNotCompute(); 967 968 unsigned W = SE.getTypeSizeInBits(ResultTy); 969 970 // Calculate K! / 2^T and T; we divide out the factors of two before 971 // multiplying for calculating K! / 2^T to avoid overflow. 972 // Other overflow doesn't matter because we only care about the bottom 973 // W bits of the result. 974 APInt OddFactorial(W, 1); 975 unsigned T = 1; 976 for (unsigned i = 3; i <= K; ++i) { 977 APInt Mult(W, i); 978 unsigned TwoFactors = Mult.countTrailingZeros(); 979 T += TwoFactors; 980 Mult.lshrInPlace(TwoFactors); 981 OddFactorial *= Mult; 982 } 983 984 // We need at least W + T bits for the multiplication step 985 unsigned CalculationBits = W + T; 986 987 // Calculate 2^T, at width T+W. 988 APInt DivFactor = APInt::getOneBitSet(CalculationBits, T); 989 990 // Calculate the multiplicative inverse of K! / 2^T; 991 // this multiplication factor will perform the exact division by 992 // K! / 2^T. 993 APInt Mod = APInt::getSignedMinValue(W+1); 994 APInt MultiplyFactor = OddFactorial.zext(W+1); 995 MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod); 996 MultiplyFactor = MultiplyFactor.trunc(W); 997 998 // Calculate the product, at width T+W 999 IntegerType *CalculationTy = IntegerType::get(SE.getContext(), 1000 CalculationBits); 1001 const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy); 1002 for (unsigned i = 1; i != K; ++i) { 1003 const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i)); 1004 Dividend = SE.getMulExpr(Dividend, 1005 SE.getTruncateOrZeroExtend(S, CalculationTy)); 1006 } 1007 1008 // Divide by 2^T 1009 const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor)); 1010 1011 // Truncate the result, and divide by K! / 2^T. 1012 1013 return SE.getMulExpr(SE.getConstant(MultiplyFactor), 1014 SE.getTruncateOrZeroExtend(DivResult, ResultTy)); 1015 } 1016 1017 /// Return the value of this chain of recurrences at the specified iteration 1018 /// number. We can evaluate this recurrence by multiplying each element in the 1019 /// chain by the binomial coefficient corresponding to it. In other words, we 1020 /// can evaluate {A,+,B,+,C,+,D} as: 1021 /// 1022 /// A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3) 1023 /// 1024 /// where BC(It, k) stands for binomial coefficient. 1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It, 1026 ScalarEvolution &SE) const { 1027 return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE); 1028 } 1029 1030 const SCEV * 1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands, 1032 const SCEV *It, ScalarEvolution &SE) { 1033 assert(Operands.size() > 0); 1034 const SCEV *Result = Operands[0]; 1035 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 1036 // The computation is correct in the face of overflow provided that the 1037 // multiplication is performed _after_ the evaluation of the binomial 1038 // coefficient. 1039 const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType()); 1040 if (isa<SCEVCouldNotCompute>(Coeff)) 1041 return Coeff; 1042 1043 Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff)); 1044 } 1045 return Result; 1046 } 1047 1048 //===----------------------------------------------------------------------===// 1049 // SCEV Expression folder implementations 1050 //===----------------------------------------------------------------------===// 1051 1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op, 1053 unsigned Depth) { 1054 assert(Depth <= 1 && 1055 "getLosslessPtrToIntExpr() should self-recurse at most once."); 1056 1057 // We could be called with an integer-typed operands during SCEV rewrites. 1058 // Since the operand is an integer already, just perform zext/trunc/self cast. 1059 if (!Op->getType()->isPointerTy()) 1060 return Op; 1061 1062 // What would be an ID for such a SCEV cast expression? 1063 FoldingSetNodeID ID; 1064 ID.AddInteger(scPtrToInt); 1065 ID.AddPointer(Op); 1066 1067 void *IP = nullptr; 1068 1069 // Is there already an expression for such a cast? 1070 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1071 return S; 1072 1073 // It isn't legal for optimizations to construct new ptrtoint expressions 1074 // for non-integral pointers. 1075 if (getDataLayout().isNonIntegralPointerType(Op->getType())) 1076 return getCouldNotCompute(); 1077 1078 Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType()); 1079 1080 // We can only trivially model ptrtoint if SCEV's effective (integer) type 1081 // is sufficiently wide to represent all possible pointer values. 1082 // We could theoretically teach SCEV to truncate wider pointers, but 1083 // that isn't implemented for now. 1084 if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) != 1085 getDataLayout().getTypeSizeInBits(IntPtrTy)) 1086 return getCouldNotCompute(); 1087 1088 // If not, is this expression something we can't reduce any further? 1089 if (auto *U = dyn_cast<SCEVUnknown>(Op)) { 1090 // Perform some basic constant folding. If the operand of the ptr2int cast 1091 // is a null pointer, don't create a ptr2int SCEV expression (that will be 1092 // left as-is), but produce a zero constant. 1093 // NOTE: We could handle a more general case, but lack motivational cases. 1094 if (isa<ConstantPointerNull>(U->getValue())) 1095 return getZero(IntPtrTy); 1096 1097 // Create an explicit cast node. 1098 // We can reuse the existing insert position since if we get here, 1099 // we won't have made any changes which would invalidate it. 1100 SCEV *S = new (SCEVAllocator) 1101 SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy); 1102 UniqueSCEVs.InsertNode(S, IP); 1103 addToLoopUseLists(S); 1104 return S; 1105 } 1106 1107 assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for " 1108 "non-SCEVUnknown's."); 1109 1110 // Otherwise, we've got some expression that is more complex than just a 1111 // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an 1112 // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown 1113 // only, and the expressions must otherwise be integer-typed. 1114 // So sink the cast down to the SCEVUnknown's. 1115 1116 /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression, 1117 /// which computes a pointer-typed value, and rewrites the whole expression 1118 /// tree so that *all* the computations are done on integers, and the only 1119 /// pointer-typed operands in the expression are SCEVUnknown. 1120 class SCEVPtrToIntSinkingRewriter 1121 : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> { 1122 using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>; 1123 1124 public: 1125 SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {} 1126 1127 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) { 1128 SCEVPtrToIntSinkingRewriter Rewriter(SE); 1129 return Rewriter.visit(Scev); 1130 } 1131 1132 const SCEV *visit(const SCEV *S) { 1133 Type *STy = S->getType(); 1134 // If the expression is not pointer-typed, just keep it as-is. 1135 if (!STy->isPointerTy()) 1136 return S; 1137 // Else, recursively sink the cast down into it. 1138 return Base::visit(S); 1139 } 1140 1141 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) { 1142 SmallVector<const SCEV *, 2> Operands; 1143 bool Changed = false; 1144 for (auto *Op : Expr->operands()) { 1145 Operands.push_back(visit(Op)); 1146 Changed |= Op != Operands.back(); 1147 } 1148 return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags()); 1149 } 1150 1151 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) { 1152 SmallVector<const SCEV *, 2> Operands; 1153 bool Changed = false; 1154 for (auto *Op : Expr->operands()) { 1155 Operands.push_back(visit(Op)); 1156 Changed |= Op != Operands.back(); 1157 } 1158 return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags()); 1159 } 1160 1161 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 1162 assert(Expr->getType()->isPointerTy() && 1163 "Should only reach pointer-typed SCEVUnknown's."); 1164 return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1); 1165 } 1166 }; 1167 1168 // And actually perform the cast sinking. 1169 const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this); 1170 assert(IntOp->getType()->isIntegerTy() && 1171 "We must have succeeded in sinking the cast, " 1172 "and ending up with an integer-typed expression!"); 1173 return IntOp; 1174 } 1175 1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) { 1177 assert(Ty->isIntegerTy() && "Target type must be an integer type!"); 1178 1179 const SCEV *IntOp = getLosslessPtrToIntExpr(Op); 1180 if (isa<SCEVCouldNotCompute>(IntOp)) 1181 return IntOp; 1182 1183 return getTruncateOrZeroExtend(IntOp, Ty); 1184 } 1185 1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty, 1187 unsigned Depth) { 1188 assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) && 1189 "This is not a truncating conversion!"); 1190 assert(isSCEVable(Ty) && 1191 "This is not a conversion to a SCEVable type!"); 1192 assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!"); 1193 Ty = getEffectiveSCEVType(Ty); 1194 1195 FoldingSetNodeID ID; 1196 ID.AddInteger(scTruncate); 1197 ID.AddPointer(Op); 1198 ID.AddPointer(Ty); 1199 void *IP = nullptr; 1200 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1201 1202 // Fold if the operand is constant. 1203 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1204 return getConstant( 1205 cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty))); 1206 1207 // trunc(trunc(x)) --> trunc(x) 1208 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) 1209 return getTruncateExpr(ST->getOperand(), Ty, Depth + 1); 1210 1211 // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing 1212 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1213 return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1); 1214 1215 // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing 1216 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1217 return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1); 1218 1219 if (Depth > MaxCastDepth) { 1220 SCEV *S = 1221 new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty); 1222 UniqueSCEVs.InsertNode(S, IP); 1223 addToLoopUseLists(S); 1224 return S; 1225 } 1226 1227 // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and 1228 // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN), 1229 // if after transforming we have at most one truncate, not counting truncates 1230 // that replace other casts. 1231 if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) { 1232 auto *CommOp = cast<SCEVCommutativeExpr>(Op); 1233 SmallVector<const SCEV *, 4> Operands; 1234 unsigned numTruncs = 0; 1235 for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2; 1236 ++i) { 1237 const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1); 1238 if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) && 1239 isa<SCEVTruncateExpr>(S)) 1240 numTruncs++; 1241 Operands.push_back(S); 1242 } 1243 if (numTruncs < 2) { 1244 if (isa<SCEVAddExpr>(Op)) 1245 return getAddExpr(Operands); 1246 else if (isa<SCEVMulExpr>(Op)) 1247 return getMulExpr(Operands); 1248 else 1249 llvm_unreachable("Unexpected SCEV type for Op."); 1250 } 1251 // Although we checked in the beginning that ID is not in the cache, it is 1252 // possible that during recursion and different modification ID was inserted 1253 // into the cache. So if we find it, just return it. 1254 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 1255 return S; 1256 } 1257 1258 // If the input value is a chrec scev, truncate the chrec's operands. 1259 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 1260 SmallVector<const SCEV *, 4> Operands; 1261 for (const SCEV *Op : AddRec->operands()) 1262 Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1)); 1263 return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap); 1264 } 1265 1266 // Return zero if truncating to known zeros. 1267 uint32_t MinTrailingZeros = GetMinTrailingZeros(Op); 1268 if (MinTrailingZeros >= getTypeSizeInBits(Ty)) 1269 return getZero(Ty); 1270 1271 // The cast wasn't folded; create an explicit cast node. We can reuse 1272 // the existing insert position since if we get here, we won't have 1273 // made any changes which would invalidate it. 1274 SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), 1275 Op, Ty); 1276 UniqueSCEVs.InsertNode(S, IP); 1277 addToLoopUseLists(S); 1278 return S; 1279 } 1280 1281 // Get the limit of a recurrence such that incrementing by Step cannot cause 1282 // signed overflow as long as the value of the recurrence within the 1283 // loop does not exceed this limit before incrementing. 1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step, 1285 ICmpInst::Predicate *Pred, 1286 ScalarEvolution *SE) { 1287 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1288 if (SE->isKnownPositive(Step)) { 1289 *Pred = ICmpInst::ICMP_SLT; 1290 return SE->getConstant(APInt::getSignedMinValue(BitWidth) - 1291 SE->getSignedRangeMax(Step)); 1292 } 1293 if (SE->isKnownNegative(Step)) { 1294 *Pred = ICmpInst::ICMP_SGT; 1295 return SE->getConstant(APInt::getSignedMaxValue(BitWidth) - 1296 SE->getSignedRangeMin(Step)); 1297 } 1298 return nullptr; 1299 } 1300 1301 // Get the limit of a recurrence such that incrementing by Step cannot cause 1302 // unsigned overflow as long as the value of the recurrence within the loop does 1303 // not exceed this limit before incrementing. 1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step, 1305 ICmpInst::Predicate *Pred, 1306 ScalarEvolution *SE) { 1307 unsigned BitWidth = SE->getTypeSizeInBits(Step->getType()); 1308 *Pred = ICmpInst::ICMP_ULT; 1309 1310 return SE->getConstant(APInt::getMinValue(BitWidth) - 1311 SE->getUnsignedRangeMax(Step)); 1312 } 1313 1314 namespace { 1315 1316 struct ExtendOpTraitsBase { 1317 typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *, 1318 unsigned); 1319 }; 1320 1321 // Used to make code generic over signed and unsigned overflow. 1322 template <typename ExtendOp> struct ExtendOpTraits { 1323 // Members present: 1324 // 1325 // static const SCEV::NoWrapFlags WrapType; 1326 // 1327 // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr; 1328 // 1329 // static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1330 // ICmpInst::Predicate *Pred, 1331 // ScalarEvolution *SE); 1332 }; 1333 1334 template <> 1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase { 1336 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW; 1337 1338 static const GetExtendExprTy GetExtendExpr; 1339 1340 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1341 ICmpInst::Predicate *Pred, 1342 ScalarEvolution *SE) { 1343 return getSignedOverflowLimitForStep(Step, Pred, SE); 1344 } 1345 }; 1346 1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1348 SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr; 1349 1350 template <> 1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase { 1352 static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW; 1353 1354 static const GetExtendExprTy GetExtendExpr; 1355 1356 static const SCEV *getOverflowLimitForStep(const SCEV *Step, 1357 ICmpInst::Predicate *Pred, 1358 ScalarEvolution *SE) { 1359 return getUnsignedOverflowLimitForStep(Step, Pred, SE); 1360 } 1361 }; 1362 1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits< 1364 SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr; 1365 1366 } // end anonymous namespace 1367 1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something 1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as 1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This 1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step + 1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the 1373 // expression "Step + sext/zext(PreIncAR)" is congruent with 1374 // "sext/zext(PostIncAR)" 1375 template <typename ExtendOpTy> 1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty, 1377 ScalarEvolution *SE, unsigned Depth) { 1378 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1379 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1380 1381 const Loop *L = AR->getLoop(); 1382 const SCEV *Start = AR->getStart(); 1383 const SCEV *Step = AR->getStepRecurrence(*SE); 1384 1385 // Check for a simple looking step prior to loop entry. 1386 const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start); 1387 if (!SA) 1388 return nullptr; 1389 1390 // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV 1391 // subtraction is expensive. For this purpose, perform a quick and dirty 1392 // difference, by checking for Step in the operand list. 1393 SmallVector<const SCEV *, 4> DiffOps; 1394 for (const SCEV *Op : SA->operands()) 1395 if (Op != Step) 1396 DiffOps.push_back(Op); 1397 1398 if (DiffOps.size() == SA->getNumOperands()) 1399 return nullptr; 1400 1401 // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` + 1402 // `Step`: 1403 1404 // 1. NSW/NUW flags on the step increment. 1405 auto PreStartFlags = 1406 ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW); 1407 const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags); 1408 const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>( 1409 SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap)); 1410 1411 // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies 1412 // "S+X does not sign/unsign-overflow". 1413 // 1414 1415 const SCEV *BECount = SE->getBackedgeTakenCount(L); 1416 if (PreAR && PreAR->getNoWrapFlags(WrapType) && 1417 !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount)) 1418 return PreStart; 1419 1420 // 2. Direct overflow check on the step operation's expression. 1421 unsigned BitWidth = SE->getTypeSizeInBits(AR->getType()); 1422 Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2); 1423 const SCEV *OperandExtendedStart = 1424 SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth), 1425 (SE->*GetExtendExpr)(Step, WideTy, Depth)); 1426 if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) { 1427 if (PreAR && AR->getNoWrapFlags(WrapType)) { 1428 // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW 1429 // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then 1430 // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`. Cache this fact. 1431 SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType); 1432 } 1433 return PreStart; 1434 } 1435 1436 // 3. Loop precondition. 1437 ICmpInst::Predicate Pred; 1438 const SCEV *OverflowLimit = 1439 ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE); 1440 1441 if (OverflowLimit && 1442 SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit)) 1443 return PreStart; 1444 1445 return nullptr; 1446 } 1447 1448 // Get the normalized zero or sign extended expression for this AddRec's Start. 1449 template <typename ExtendOpTy> 1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty, 1451 ScalarEvolution *SE, 1452 unsigned Depth) { 1453 auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr; 1454 1455 const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth); 1456 if (!PreStart) 1457 return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth); 1458 1459 return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty, 1460 Depth), 1461 (SE->*GetExtendExpr)(PreStart, Ty, Depth)); 1462 } 1463 1464 // Try to prove away overflow by looking at "nearby" add recurrences. A 1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it 1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`. 1467 // 1468 // Formally: 1469 // 1470 // {S,+,X} == {S-T,+,X} + T 1471 // => Ext({S,+,X}) == Ext({S-T,+,X} + T) 1472 // 1473 // If ({S-T,+,X} + T) does not overflow ... (1) 1474 // 1475 // RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T) 1476 // 1477 // If {S-T,+,X} does not overflow ... (2) 1478 // 1479 // RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T) 1480 // == {Ext(S-T)+Ext(T),+,Ext(X)} 1481 // 1482 // If (S-T)+T does not overflow ... (3) 1483 // 1484 // RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)} 1485 // == {Ext(S),+,Ext(X)} == LHS 1486 // 1487 // Thus, if (1), (2) and (3) are true for some T, then 1488 // Ext({S,+,X}) == {Ext(S),+,Ext(X)} 1489 // 1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T) 1491 // does not overflow" restricted to the 0th iteration. Therefore we only need 1492 // to check for (1) and (2). 1493 // 1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T 1495 // is `Delta` (defined below). 1496 template <typename ExtendOpTy> 1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start, 1498 const SCEV *Step, 1499 const Loop *L) { 1500 auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType; 1501 1502 // We restrict `Start` to a constant to prevent SCEV from spending too much 1503 // time here. It is correct (but more expensive) to continue with a 1504 // non-constant `Start` and do a general SCEV subtraction to compute 1505 // `PreStart` below. 1506 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start); 1507 if (!StartC) 1508 return false; 1509 1510 APInt StartAI = StartC->getAPInt(); 1511 1512 for (unsigned Delta : {-2, -1, 1, 2}) { 1513 const SCEV *PreStart = getConstant(StartAI - Delta); 1514 1515 FoldingSetNodeID ID; 1516 ID.AddInteger(scAddRecExpr); 1517 ID.AddPointer(PreStart); 1518 ID.AddPointer(Step); 1519 ID.AddPointer(L); 1520 void *IP = nullptr; 1521 const auto *PreAR = 1522 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 1523 1524 // Give up if we don't already have the add recurrence we need because 1525 // actually constructing an add recurrence is relatively expensive. 1526 if (PreAR && PreAR->getNoWrapFlags(WrapType)) { // proves (2) 1527 const SCEV *DeltaS = getConstant(StartC->getType(), Delta); 1528 ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE; 1529 const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep( 1530 DeltaS, &Pred, this); 1531 if (Limit && isKnownPredicate(Pred, PreAR, Limit)) // proves (1) 1532 return true; 1533 } 1534 } 1535 1536 return false; 1537 } 1538 1539 // Finds an integer D for an expression (C + x + y + ...) such that the top 1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or 1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is 1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and 1543 // the (C + x + y + ...) expression is \p WholeAddExpr. 1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1545 const SCEVConstant *ConstantTerm, 1546 const SCEVAddExpr *WholeAddExpr) { 1547 const APInt &C = ConstantTerm->getAPInt(); 1548 const unsigned BitWidth = C.getBitWidth(); 1549 // Find number of trailing zeros of (x + y + ...) w/o the C first: 1550 uint32_t TZ = BitWidth; 1551 for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I) 1552 TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I))); 1553 if (TZ) { 1554 // Set D to be as many least significant bits of C as possible while still 1555 // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap: 1556 return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C; 1557 } 1558 return APInt(BitWidth, 0); 1559 } 1560 1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top 1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the 1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p 1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count. 1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE, 1566 const APInt &ConstantStart, 1567 const SCEV *Step) { 1568 const unsigned BitWidth = ConstantStart.getBitWidth(); 1569 const uint32_t TZ = SE.GetMinTrailingZeros(Step); 1570 if (TZ) 1571 return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth) 1572 : ConstantStart; 1573 return APInt(BitWidth, 0); 1574 } 1575 1576 const SCEV * 1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1578 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1579 "This is not an extending conversion!"); 1580 assert(isSCEVable(Ty) && 1581 "This is not a conversion to a SCEVable type!"); 1582 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1583 Ty = getEffectiveSCEVType(Ty); 1584 1585 // Fold if the operand is constant. 1586 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1587 return getConstant( 1588 cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty))); 1589 1590 // zext(zext(x)) --> zext(x) 1591 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1592 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1593 1594 // Before doing any expensive analysis, check to see if we've already 1595 // computed a SCEV for this Op and Ty. 1596 FoldingSetNodeID ID; 1597 ID.AddInteger(scZeroExtend); 1598 ID.AddPointer(Op); 1599 ID.AddPointer(Ty); 1600 void *IP = nullptr; 1601 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1602 if (Depth > MaxCastDepth) { 1603 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1604 Op, Ty); 1605 UniqueSCEVs.InsertNode(S, IP); 1606 addToLoopUseLists(S); 1607 return S; 1608 } 1609 1610 // zext(trunc(x)) --> zext(x) or x or trunc(x) 1611 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1612 // It's possible the bits taken off by the truncate were all zero bits. If 1613 // so, we should be able to simplify this further. 1614 const SCEV *X = ST->getOperand(); 1615 ConstantRange CR = getUnsignedRange(X); 1616 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1617 unsigned NewBits = getTypeSizeInBits(Ty); 1618 if (CR.truncate(TruncBits).zeroExtend(NewBits).contains( 1619 CR.zextOrTrunc(NewBits))) 1620 return getTruncateOrZeroExtend(X, Ty, Depth); 1621 } 1622 1623 // If the input value is a chrec scev, and we can prove that the value 1624 // did not overflow the old, smaller, value, we can zero extend all of the 1625 // operands (often constants). This allows analysis of something like 1626 // this: for (unsigned char X = 0; X < 100; ++X) { int Y = X; } 1627 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1628 if (AR->isAffine()) { 1629 const SCEV *Start = AR->getStart(); 1630 const SCEV *Step = AR->getStepRecurrence(*this); 1631 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1632 const Loop *L = AR->getLoop(); 1633 1634 if (!AR->hasNoUnsignedWrap()) { 1635 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1636 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1637 } 1638 1639 // If we have special knowledge that this addrec won't overflow, 1640 // we don't need to do any further analysis. 1641 if (AR->hasNoUnsignedWrap()) 1642 return getAddRecExpr( 1643 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1644 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1645 1646 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1647 // Note that this serves two purposes: It filters out loops that are 1648 // simply not analyzable, and it covers the case where this code is 1649 // being called from within backedge-taken count analysis, such that 1650 // attempting to ask for the backedge-taken count would likely result 1651 // in infinite recursion. In the later case, the analysis code will 1652 // cope with a conservative value, and it will take care to purge 1653 // that value once it has finished. 1654 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1655 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1656 // Manually compute the final value for AR, checking for overflow. 1657 1658 // Check whether the backedge-taken count can be losslessly casted to 1659 // the addrec's type. The count is always unsigned. 1660 const SCEV *CastedMaxBECount = 1661 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 1662 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 1663 CastedMaxBECount, MaxBECount->getType(), Depth); 1664 if (MaxBECount == RecastedMaxBECount) { 1665 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 1666 // Check whether Start+Step*MaxBECount has no unsigned overflow. 1667 const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step, 1668 SCEV::FlagAnyWrap, Depth + 1); 1669 const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul, 1670 SCEV::FlagAnyWrap, 1671 Depth + 1), 1672 WideTy, Depth + 1); 1673 const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1); 1674 const SCEV *WideMaxBECount = 1675 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 1676 const SCEV *OperandExtendedAdd = 1677 getAddExpr(WideStart, 1678 getMulExpr(WideMaxBECount, 1679 getZeroExtendExpr(Step, WideTy, Depth + 1), 1680 SCEV::FlagAnyWrap, Depth + 1), 1681 SCEV::FlagAnyWrap, Depth + 1); 1682 if (ZAdd == OperandExtendedAdd) { 1683 // Cache knowledge of AR NUW, which is propagated to this AddRec. 1684 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1685 // Return the expression with the addrec on the outside. 1686 return getAddRecExpr( 1687 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1688 Depth + 1), 1689 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1690 AR->getNoWrapFlags()); 1691 } 1692 // Similar to above, only this time treat the step value as signed. 1693 // This covers loops that count down. 1694 OperandExtendedAdd = 1695 getAddExpr(WideStart, 1696 getMulExpr(WideMaxBECount, 1697 getSignExtendExpr(Step, WideTy, Depth + 1), 1698 SCEV::FlagAnyWrap, Depth + 1), 1699 SCEV::FlagAnyWrap, Depth + 1); 1700 if (ZAdd == OperandExtendedAdd) { 1701 // Cache knowledge of AR NW, which is propagated to this AddRec. 1702 // Negative step causes unsigned wrap, but it still can't self-wrap. 1703 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1704 // Return the expression with the addrec on the outside. 1705 return getAddRecExpr( 1706 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1707 Depth + 1), 1708 getSignExtendExpr(Step, Ty, Depth + 1), L, 1709 AR->getNoWrapFlags()); 1710 } 1711 } 1712 } 1713 1714 // Normally, in the cases we can prove no-overflow via a 1715 // backedge guarding condition, we can also compute a backedge 1716 // taken count for the loop. The exceptions are assumptions and 1717 // guards present in the loop -- SCEV is not great at exploiting 1718 // these to compute max backedge taken counts, but can still use 1719 // these to prove lack of overflow. Use this fact to avoid 1720 // doing extra work that may not pay off. 1721 if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards || 1722 !AC.assumptions().empty()) { 1723 1724 auto NewFlags = proveNoUnsignedWrapViaInduction(AR); 1725 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1726 if (AR->hasNoUnsignedWrap()) { 1727 // Same as nuw case above - duplicated here to avoid a compile time 1728 // issue. It's not clear that the order of checks does matter, but 1729 // it's one of two issue possible causes for a change which was 1730 // reverted. Be conservative for the moment. 1731 return getAddRecExpr( 1732 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1733 Depth + 1), 1734 getZeroExtendExpr(Step, Ty, Depth + 1), L, 1735 AR->getNoWrapFlags()); 1736 } 1737 1738 // For a negative step, we can extend the operands iff doing so only 1739 // traverses values in the range zext([0,UINT_MAX]). 1740 if (isKnownNegative(Step)) { 1741 const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) - 1742 getSignedRangeMin(Step)); 1743 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) || 1744 isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) { 1745 // Cache knowledge of AR NW, which is propagated to this 1746 // AddRec. Negative step causes unsigned wrap, but it 1747 // still can't self-wrap. 1748 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 1749 // Return the expression with the addrec on the outside. 1750 return getAddRecExpr( 1751 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 1752 Depth + 1), 1753 getSignExtendExpr(Step, Ty, Depth + 1), L, 1754 AR->getNoWrapFlags()); 1755 } 1756 } 1757 } 1758 1759 // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw> 1760 // if D + (C - D + Step * n) could be proven to not unsigned wrap 1761 // where D maximizes the number of trailing zeros of (C - D + Step * n) 1762 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 1763 const APInt &C = SC->getAPInt(); 1764 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 1765 if (D != 0) { 1766 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1767 const SCEV *SResidual = 1768 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 1769 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1770 return getAddExpr(SZExtD, SZExtR, 1771 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1772 Depth + 1); 1773 } 1774 } 1775 1776 if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) { 1777 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW); 1778 return getAddRecExpr( 1779 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1), 1780 getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 1781 } 1782 } 1783 1784 // zext(A % B) --> zext(A) % zext(B) 1785 { 1786 const SCEV *LHS; 1787 const SCEV *RHS; 1788 if (matchURem(Op, LHS, RHS)) 1789 return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1), 1790 getZeroExtendExpr(RHS, Ty, Depth + 1)); 1791 } 1792 1793 // zext(A / B) --> zext(A) / zext(B). 1794 if (auto *Div = dyn_cast<SCEVUDivExpr>(Op)) 1795 return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1), 1796 getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1)); 1797 1798 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1799 // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw> 1800 if (SA->hasNoUnsignedWrap()) { 1801 // If the addition does not unsign overflow then we can, by definition, 1802 // commute the zero extension with the addition operation. 1803 SmallVector<const SCEV *, 4> Ops; 1804 for (const auto *Op : SA->operands()) 1805 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1806 return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1); 1807 } 1808 1809 // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...)) 1810 // if D + (C - D + x + y + ...) could be proven to not unsigned wrap 1811 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1812 // 1813 // Often address arithmetics contain expressions like 1814 // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))). 1815 // This transformation is useful while proving that such expressions are 1816 // equal or differ by a small constant amount, see LoadStoreVectorizer pass. 1817 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1818 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1819 if (D != 0) { 1820 const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth); 1821 const SCEV *SResidual = 1822 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1823 const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1); 1824 return getAddExpr(SZExtD, SZExtR, 1825 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1826 Depth + 1); 1827 } 1828 } 1829 } 1830 1831 if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) { 1832 // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw> 1833 if (SM->hasNoUnsignedWrap()) { 1834 // If the multiply does not unsign overflow then we can, by definition, 1835 // commute the zero extension with the multiply operation. 1836 SmallVector<const SCEV *, 4> Ops; 1837 for (const auto *Op : SM->operands()) 1838 Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1)); 1839 return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1); 1840 } 1841 1842 // zext(2^K * (trunc X to iN)) to iM -> 1843 // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw> 1844 // 1845 // Proof: 1846 // 1847 // zext(2^K * (trunc X to iN)) to iM 1848 // = zext((trunc X to iN) << K) to iM 1849 // = zext((trunc X to i{N-K}) << K)<nuw> to iM 1850 // (because shl removes the top K bits) 1851 // = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM 1852 // = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>. 1853 // 1854 if (SM->getNumOperands() == 2) 1855 if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0))) 1856 if (MulLHS->getAPInt().isPowerOf2()) 1857 if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) { 1858 int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) - 1859 MulLHS->getAPInt().logBase2(); 1860 Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits); 1861 return getMulExpr( 1862 getZeroExtendExpr(MulLHS, Ty), 1863 getZeroExtendExpr( 1864 getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty), 1865 SCEV::FlagNUW, Depth + 1); 1866 } 1867 } 1868 1869 // The cast wasn't folded; create an explicit cast node. 1870 // Recompute the insert position, as it may have been invalidated. 1871 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1872 SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator), 1873 Op, Ty); 1874 UniqueSCEVs.InsertNode(S, IP); 1875 addToLoopUseLists(S); 1876 return S; 1877 } 1878 1879 const SCEV * 1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) { 1881 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 1882 "This is not an extending conversion!"); 1883 assert(isSCEVable(Ty) && 1884 "This is not a conversion to a SCEVable type!"); 1885 assert(!Op->getType()->isPointerTy() && "Can't extend pointer!"); 1886 Ty = getEffectiveSCEVType(Ty); 1887 1888 // Fold if the operand is constant. 1889 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 1890 return getConstant( 1891 cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty))); 1892 1893 // sext(sext(x)) --> sext(x) 1894 if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op)) 1895 return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1); 1896 1897 // sext(zext(x)) --> zext(x) 1898 if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op)) 1899 return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1); 1900 1901 // Before doing any expensive analysis, check to see if we've already 1902 // computed a SCEV for this Op and Ty. 1903 FoldingSetNodeID ID; 1904 ID.AddInteger(scSignExtend); 1905 ID.AddPointer(Op); 1906 ID.AddPointer(Ty); 1907 void *IP = nullptr; 1908 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 1909 // Limit recursion depth. 1910 if (Depth > MaxCastDepth) { 1911 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 1912 Op, Ty); 1913 UniqueSCEVs.InsertNode(S, IP); 1914 addToLoopUseLists(S); 1915 return S; 1916 } 1917 1918 // sext(trunc(x)) --> sext(x) or x or trunc(x) 1919 if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) { 1920 // It's possible the bits taken off by the truncate were all sign bits. If 1921 // so, we should be able to simplify this further. 1922 const SCEV *X = ST->getOperand(); 1923 ConstantRange CR = getSignedRange(X); 1924 unsigned TruncBits = getTypeSizeInBits(ST->getType()); 1925 unsigned NewBits = getTypeSizeInBits(Ty); 1926 if (CR.truncate(TruncBits).signExtend(NewBits).contains( 1927 CR.sextOrTrunc(NewBits))) 1928 return getTruncateOrSignExtend(X, Ty, Depth); 1929 } 1930 1931 if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) { 1932 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 1933 if (SA->hasNoSignedWrap()) { 1934 // If the addition does not sign overflow then we can, by definition, 1935 // commute the sign extension with the addition operation. 1936 SmallVector<const SCEV *, 4> Ops; 1937 for (const auto *Op : SA->operands()) 1938 Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1)); 1939 return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1); 1940 } 1941 1942 // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...)) 1943 // if D + (C - D + x + y + ...) could be proven to not signed wrap 1944 // where D maximizes the number of trailing zeros of (C - D + x + y + ...) 1945 // 1946 // For instance, this will bring two seemingly different expressions: 1947 // 1 + sext(5 + 20 * %x + 24 * %y) and 1948 // sext(6 + 20 * %x + 24 * %y) 1949 // to the same form: 1950 // 2 + sext(4 + 20 * %x + 24 * %y) 1951 if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) { 1952 const APInt &D = extractConstantWithoutWrapping(*this, SC, SA); 1953 if (D != 0) { 1954 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 1955 const SCEV *SResidual = 1956 getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth); 1957 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 1958 return getAddExpr(SSExtD, SSExtR, 1959 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 1960 Depth + 1); 1961 } 1962 } 1963 } 1964 // If the input value is a chrec scev, and we can prove that the value 1965 // did not overflow the old, smaller, value, we can sign extend all of the 1966 // operands (often constants). This allows analysis of something like 1967 // this: for (signed char X = 0; X < 100; ++X) { int Y = X; } 1968 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) 1969 if (AR->isAffine()) { 1970 const SCEV *Start = AR->getStart(); 1971 const SCEV *Step = AR->getStepRecurrence(*this); 1972 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 1973 const Loop *L = AR->getLoop(); 1974 1975 if (!AR->hasNoSignedWrap()) { 1976 auto NewFlags = proveNoWrapViaConstantRanges(AR); 1977 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 1978 } 1979 1980 // If we have special knowledge that this addrec won't overflow, 1981 // we don't need to do any further analysis. 1982 if (AR->hasNoSignedWrap()) 1983 return getAddRecExpr( 1984 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 1985 getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW); 1986 1987 // Check whether the backedge-taken count is SCEVCouldNotCompute. 1988 // Note that this serves two purposes: It filters out loops that are 1989 // simply not analyzable, and it covers the case where this code is 1990 // being called from within backedge-taken count analysis, such that 1991 // attempting to ask for the backedge-taken count would likely result 1992 // in infinite recursion. In the later case, the analysis code will 1993 // cope with a conservative value, and it will take care to purge 1994 // that value once it has finished. 1995 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 1996 if (!isa<SCEVCouldNotCompute>(MaxBECount)) { 1997 // Manually compute the final value for AR, checking for 1998 // overflow. 1999 2000 // Check whether the backedge-taken count can be losslessly casted to 2001 // the addrec's type. The count is always unsigned. 2002 const SCEV *CastedMaxBECount = 2003 getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth); 2004 const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend( 2005 CastedMaxBECount, MaxBECount->getType(), Depth); 2006 if (MaxBECount == RecastedMaxBECount) { 2007 Type *WideTy = IntegerType::get(getContext(), BitWidth * 2); 2008 // Check whether Start+Step*MaxBECount has no signed overflow. 2009 const SCEV *SMul = getMulExpr(CastedMaxBECount, Step, 2010 SCEV::FlagAnyWrap, Depth + 1); 2011 const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul, 2012 SCEV::FlagAnyWrap, 2013 Depth + 1), 2014 WideTy, Depth + 1); 2015 const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1); 2016 const SCEV *WideMaxBECount = 2017 getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1); 2018 const SCEV *OperandExtendedAdd = 2019 getAddExpr(WideStart, 2020 getMulExpr(WideMaxBECount, 2021 getSignExtendExpr(Step, WideTy, Depth + 1), 2022 SCEV::FlagAnyWrap, Depth + 1), 2023 SCEV::FlagAnyWrap, Depth + 1); 2024 if (SAdd == OperandExtendedAdd) { 2025 // Cache knowledge of AR NSW, which is propagated to this AddRec. 2026 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2027 // Return the expression with the addrec on the outside. 2028 return getAddRecExpr( 2029 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2030 Depth + 1), 2031 getSignExtendExpr(Step, Ty, Depth + 1), L, 2032 AR->getNoWrapFlags()); 2033 } 2034 // Similar to above, only this time treat the step value as unsigned. 2035 // This covers loops that count up with an unsigned step. 2036 OperandExtendedAdd = 2037 getAddExpr(WideStart, 2038 getMulExpr(WideMaxBECount, 2039 getZeroExtendExpr(Step, WideTy, Depth + 1), 2040 SCEV::FlagAnyWrap, Depth + 1), 2041 SCEV::FlagAnyWrap, Depth + 1); 2042 if (SAdd == OperandExtendedAdd) { 2043 // If AR wraps around then 2044 // 2045 // abs(Step) * MaxBECount > unsigned-max(AR->getType()) 2046 // => SAdd != OperandExtendedAdd 2047 // 2048 // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=> 2049 // (SAdd == OperandExtendedAdd => AR is NW) 2050 2051 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW); 2052 2053 // Return the expression with the addrec on the outside. 2054 return getAddRecExpr( 2055 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, 2056 Depth + 1), 2057 getZeroExtendExpr(Step, Ty, Depth + 1), L, 2058 AR->getNoWrapFlags()); 2059 } 2060 } 2061 } 2062 2063 auto NewFlags = proveNoSignedWrapViaInduction(AR); 2064 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags); 2065 if (AR->hasNoSignedWrap()) { 2066 // Same as nsw case above - duplicated here to avoid a compile time 2067 // issue. It's not clear that the order of checks does matter, but 2068 // it's one of two issue possible causes for a change which was 2069 // reverted. Be conservative for the moment. 2070 return getAddRecExpr( 2071 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2072 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2073 } 2074 2075 // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw> 2076 // if D + (C - D + Step * n) could be proven to not signed wrap 2077 // where D maximizes the number of trailing zeros of (C - D + Step * n) 2078 if (const auto *SC = dyn_cast<SCEVConstant>(Start)) { 2079 const APInt &C = SC->getAPInt(); 2080 const APInt &D = extractConstantWithoutWrapping(*this, C, Step); 2081 if (D != 0) { 2082 const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth); 2083 const SCEV *SResidual = 2084 getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags()); 2085 const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1); 2086 return getAddExpr(SSExtD, SSExtR, 2087 (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW), 2088 Depth + 1); 2089 } 2090 } 2091 2092 if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) { 2093 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW); 2094 return getAddRecExpr( 2095 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1), 2096 getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags()); 2097 } 2098 } 2099 2100 // If the input value is provably positive and we could not simplify 2101 // away the sext build a zext instead. 2102 if (isKnownNonNegative(Op)) 2103 return getZeroExtendExpr(Op, Ty, Depth + 1); 2104 2105 // The cast wasn't folded; create an explicit cast node. 2106 // Recompute the insert position, as it may have been invalidated. 2107 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 2108 SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator), 2109 Op, Ty); 2110 UniqueSCEVs.InsertNode(S, IP); 2111 addToLoopUseLists(S); 2112 return S; 2113 } 2114 2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with 2116 /// unspecified bits out to the given type. 2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op, 2118 Type *Ty) { 2119 assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) && 2120 "This is not an extending conversion!"); 2121 assert(isSCEVable(Ty) && 2122 "This is not a conversion to a SCEVable type!"); 2123 Ty = getEffectiveSCEVType(Ty); 2124 2125 // Sign-extend negative constants. 2126 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op)) 2127 if (SC->getAPInt().isNegative()) 2128 return getSignExtendExpr(Op, Ty); 2129 2130 // Peel off a truncate cast. 2131 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) { 2132 const SCEV *NewOp = T->getOperand(); 2133 if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty)) 2134 return getAnyExtendExpr(NewOp, Ty); 2135 return getTruncateOrNoop(NewOp, Ty); 2136 } 2137 2138 // Next try a zext cast. If the cast is folded, use it. 2139 const SCEV *ZExt = getZeroExtendExpr(Op, Ty); 2140 if (!isa<SCEVZeroExtendExpr>(ZExt)) 2141 return ZExt; 2142 2143 // Next try a sext cast. If the cast is folded, use it. 2144 const SCEV *SExt = getSignExtendExpr(Op, Ty); 2145 if (!isa<SCEVSignExtendExpr>(SExt)) 2146 return SExt; 2147 2148 // Force the cast to be folded into the operands of an addrec. 2149 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) { 2150 SmallVector<const SCEV *, 4> Ops; 2151 for (const SCEV *Op : AR->operands()) 2152 Ops.push_back(getAnyExtendExpr(Op, Ty)); 2153 return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW); 2154 } 2155 2156 // If the expression is obviously signed, use the sext cast value. 2157 if (isa<SCEVSMaxExpr>(Op)) 2158 return SExt; 2159 2160 // Absent any other information, use the zext cast value. 2161 return ZExt; 2162 } 2163 2164 /// Process the given Ops list, which is a list of operands to be added under 2165 /// the given scale, update the given map. This is a helper function for 2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands 2167 /// that would form an add expression like this: 2168 /// 2169 /// m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r) 2170 /// 2171 /// where A and B are constants, update the map with these values: 2172 /// 2173 /// (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0) 2174 /// 2175 /// and add 13 + A*B*29 to AccumulatedConstant. 2176 /// This will allow getAddRecExpr to produce this: 2177 /// 2178 /// 13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B) 2179 /// 2180 /// This form often exposes folding opportunities that are hidden in 2181 /// the original operand list. 2182 /// 2183 /// Return true iff it appears that any interesting folding opportunities 2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in 2185 /// the common case where no interesting opportunities are present, and 2186 /// is also used as a check to avoid infinite recursion. 2187 static bool 2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M, 2189 SmallVectorImpl<const SCEV *> &NewOps, 2190 APInt &AccumulatedConstant, 2191 const SCEV *const *Ops, size_t NumOperands, 2192 const APInt &Scale, 2193 ScalarEvolution &SE) { 2194 bool Interesting = false; 2195 2196 // Iterate over the add operands. They are sorted, with constants first. 2197 unsigned i = 0; 2198 while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2199 ++i; 2200 // Pull a buried constant out to the outside. 2201 if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero()) 2202 Interesting = true; 2203 AccumulatedConstant += Scale * C->getAPInt(); 2204 } 2205 2206 // Next comes everything else. We're especially interested in multiplies 2207 // here, but they're in the middle, so just visit the rest with one loop. 2208 for (; i != NumOperands; ++i) { 2209 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]); 2210 if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) { 2211 APInt NewScale = 2212 Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt(); 2213 if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) { 2214 // A multiplication of a constant with another add; recurse. 2215 const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1)); 2216 Interesting |= 2217 CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2218 Add->op_begin(), Add->getNumOperands(), 2219 NewScale, SE); 2220 } else { 2221 // A multiplication of a constant with some other value. Update 2222 // the map. 2223 SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands())); 2224 const SCEV *Key = SE.getMulExpr(MulOps); 2225 auto Pair = M.insert({Key, NewScale}); 2226 if (Pair.second) { 2227 NewOps.push_back(Pair.first->first); 2228 } else { 2229 Pair.first->second += NewScale; 2230 // The map already had an entry for this value, which may indicate 2231 // a folding opportunity. 2232 Interesting = true; 2233 } 2234 } 2235 } else { 2236 // An ordinary operand. Update the map. 2237 std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair = 2238 M.insert({Ops[i], Scale}); 2239 if (Pair.second) { 2240 NewOps.push_back(Pair.first->first); 2241 } else { 2242 Pair.first->second += Scale; 2243 // The map already had an entry for this value, which may indicate 2244 // a folding opportunity. 2245 Interesting = true; 2246 } 2247 } 2248 } 2249 2250 return Interesting; 2251 } 2252 2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed, 2254 const SCEV *LHS, const SCEV *RHS) { 2255 const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *, 2256 SCEV::NoWrapFlags, unsigned); 2257 switch (BinOp) { 2258 default: 2259 llvm_unreachable("Unsupported binary op"); 2260 case Instruction::Add: 2261 Operation = &ScalarEvolution::getAddExpr; 2262 break; 2263 case Instruction::Sub: 2264 Operation = &ScalarEvolution::getMinusSCEV; 2265 break; 2266 case Instruction::Mul: 2267 Operation = &ScalarEvolution::getMulExpr; 2268 break; 2269 } 2270 2271 const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) = 2272 Signed ? &ScalarEvolution::getSignExtendExpr 2273 : &ScalarEvolution::getZeroExtendExpr; 2274 2275 // Check ext(LHS op RHS) == ext(LHS) op ext(RHS) 2276 auto *NarrowTy = cast<IntegerType>(LHS->getType()); 2277 auto *WideTy = 2278 IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2); 2279 2280 const SCEV *A = (this->*Extension)( 2281 (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0); 2282 const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0), 2283 (this->*Extension)(RHS, WideTy, 0), 2284 SCEV::FlagAnyWrap, 0); 2285 return A == B; 2286 } 2287 2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/> 2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp( 2290 const OverflowingBinaryOperator *OBO) { 2291 SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap; 2292 2293 if (OBO->hasNoUnsignedWrap()) 2294 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2295 if (OBO->hasNoSignedWrap()) 2296 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2297 2298 bool Deduced = false; 2299 2300 if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap()) 2301 return {Flags, Deduced}; 2302 2303 if (OBO->getOpcode() != Instruction::Add && 2304 OBO->getOpcode() != Instruction::Sub && 2305 OBO->getOpcode() != Instruction::Mul) 2306 return {Flags, Deduced}; 2307 2308 const SCEV *LHS = getSCEV(OBO->getOperand(0)); 2309 const SCEV *RHS = getSCEV(OBO->getOperand(1)); 2310 2311 if (!OBO->hasNoUnsignedWrap() && 2312 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2313 /* Signed */ false, LHS, RHS)) { 2314 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2315 Deduced = true; 2316 } 2317 2318 if (!OBO->hasNoSignedWrap() && 2319 willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(), 2320 /* Signed */ true, LHS, RHS)) { 2321 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2322 Deduced = true; 2323 } 2324 2325 return {Flags, Deduced}; 2326 } 2327 2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and 2329 // `OldFlags' as can't-wrap behavior. Infer a more aggressive set of 2330 // can't-overflow flags for the operation if possible. 2331 static SCEV::NoWrapFlags 2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type, 2333 const ArrayRef<const SCEV *> Ops, 2334 SCEV::NoWrapFlags Flags) { 2335 using namespace std::placeholders; 2336 2337 using OBO = OverflowingBinaryOperator; 2338 2339 bool CanAnalyze = 2340 Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr; 2341 (void)CanAnalyze; 2342 assert(CanAnalyze && "don't call from other places!"); 2343 2344 int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW; 2345 SCEV::NoWrapFlags SignOrUnsignWrap = 2346 ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2347 2348 // If FlagNSW is true and all the operands are non-negative, infer FlagNUW. 2349 auto IsKnownNonNegative = [&](const SCEV *S) { 2350 return SE->isKnownNonNegative(S); 2351 }; 2352 2353 if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative)) 2354 Flags = 2355 ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask); 2356 2357 SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask); 2358 2359 if (SignOrUnsignWrap != SignOrUnsignMask && 2360 (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 && 2361 isa<SCEVConstant>(Ops[0])) { 2362 2363 auto Opcode = [&] { 2364 switch (Type) { 2365 case scAddExpr: 2366 return Instruction::Add; 2367 case scMulExpr: 2368 return Instruction::Mul; 2369 default: 2370 llvm_unreachable("Unexpected SCEV op."); 2371 } 2372 }(); 2373 2374 const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt(); 2375 2376 // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow. 2377 if (!(SignOrUnsignWrap & SCEV::FlagNSW)) { 2378 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2379 Opcode, C, OBO::NoSignedWrap); 2380 if (NSWRegion.contains(SE->getSignedRange(Ops[1]))) 2381 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 2382 } 2383 2384 // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow. 2385 if (!(SignOrUnsignWrap & SCEV::FlagNUW)) { 2386 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 2387 Opcode, C, OBO::NoUnsignedWrap); 2388 if (NUWRegion.contains(SE->getUnsignedRange(Ops[1]))) 2389 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2390 } 2391 } 2392 2393 // <0,+,nonnegative><nw> is also nuw 2394 // TODO: Add corresponding nsw case 2395 if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) && 2396 !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 && 2397 Ops[0]->isZero() && IsKnownNonNegative(Ops[1])) 2398 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2399 2400 // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW 2401 if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && 2402 Ops.size() == 2) { 2403 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0])) 2404 if (UDiv->getOperand(1) == Ops[1]) 2405 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2406 if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1])) 2407 if (UDiv->getOperand(1) == Ops[0]) 2408 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 2409 } 2410 2411 return Flags; 2412 } 2413 2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) { 2415 return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader()); 2416 } 2417 2418 /// Get a canonical add expression, or something simpler if possible. 2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops, 2420 SCEV::NoWrapFlags OrigFlags, 2421 unsigned Depth) { 2422 assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) && 2423 "only nuw or nsw allowed"); 2424 assert(!Ops.empty() && "Cannot get empty add!"); 2425 if (Ops.size() == 1) return Ops[0]; 2426 #ifndef NDEBUG 2427 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 2428 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2429 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 2430 "SCEVAddExpr operand types don't match!"); 2431 unsigned NumPtrs = count_if( 2432 Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); }); 2433 assert(NumPtrs <= 1 && "add has at most one pointer operand"); 2434 #endif 2435 2436 // Sort by complexity, this groups all similar expression types together. 2437 GroupByComplexity(Ops, &LI, DT); 2438 2439 // If there are any constants, fold them together. 2440 unsigned Idx = 0; 2441 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 2442 ++Idx; 2443 assert(Idx < Ops.size()); 2444 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 2445 // We found two constants, fold them together! 2446 Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt()); 2447 if (Ops.size() == 2) return Ops[0]; 2448 Ops.erase(Ops.begin()+1); // Erase the folded element 2449 LHSC = cast<SCEVConstant>(Ops[0]); 2450 } 2451 2452 // If we are left with a constant zero being added, strip it off. 2453 if (LHSC->getValue()->isZero()) { 2454 Ops.erase(Ops.begin()); 2455 --Idx; 2456 } 2457 2458 if (Ops.size() == 1) return Ops[0]; 2459 } 2460 2461 // Delay expensive flag strengthening until necessary. 2462 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 2463 return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags); 2464 }; 2465 2466 // Limit recursion calls depth. 2467 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 2468 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2469 2470 if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) { 2471 // Don't strengthen flags if we have no new information. 2472 SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S); 2473 if (Add->getNoWrapFlags(OrigFlags) != OrigFlags) 2474 Add->setNoWrapFlags(ComputeFlags(Ops)); 2475 return S; 2476 } 2477 2478 // Okay, check to see if the same value occurs in the operand list more than 2479 // once. If so, merge them together into an multiply expression. Since we 2480 // sorted the list, these values are required to be adjacent. 2481 Type *Ty = Ops[0]->getType(); 2482 bool FoundMatch = false; 2483 for (unsigned i = 0, e = Ops.size(); i != e-1; ++i) 2484 if (Ops[i] == Ops[i+1]) { // X + Y + Y --> X + Y*2 2485 // Scan ahead to count how many equal operands there are. 2486 unsigned Count = 2; 2487 while (i+Count != e && Ops[i+Count] == Ops[i]) 2488 ++Count; 2489 // Merge the values into a multiply. 2490 const SCEV *Scale = getConstant(Ty, Count); 2491 const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1); 2492 if (Ops.size() == Count) 2493 return Mul; 2494 Ops[i] = Mul; 2495 Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count); 2496 --i; e -= Count - 1; 2497 FoundMatch = true; 2498 } 2499 if (FoundMatch) 2500 return getAddExpr(Ops, OrigFlags, Depth + 1); 2501 2502 // Check for truncates. If all the operands are truncated from the same 2503 // type, see if factoring out the truncate would permit the result to be 2504 // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y) 2505 // if the contents of the resulting outer trunc fold to something simple. 2506 auto FindTruncSrcType = [&]() -> Type * { 2507 // We're ultimately looking to fold an addrec of truncs and muls of only 2508 // constants and truncs, so if we find any other types of SCEV 2509 // as operands of the addrec then we bail and return nullptr here. 2510 // Otherwise, we return the type of the operand of a trunc that we find. 2511 if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx])) 2512 return T->getOperand()->getType(); 2513 if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 2514 const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1); 2515 if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp)) 2516 return T->getOperand()->getType(); 2517 } 2518 return nullptr; 2519 }; 2520 if (auto *SrcType = FindTruncSrcType()) { 2521 SmallVector<const SCEV *, 8> LargeOps; 2522 bool Ok = true; 2523 // Check all the operands to see if they can be represented in the 2524 // source type of the truncate. 2525 for (unsigned i = 0, e = Ops.size(); i != e; ++i) { 2526 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) { 2527 if (T->getOperand()->getType() != SrcType) { 2528 Ok = false; 2529 break; 2530 } 2531 LargeOps.push_back(T->getOperand()); 2532 } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) { 2533 LargeOps.push_back(getAnyExtendExpr(C, SrcType)); 2534 } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) { 2535 SmallVector<const SCEV *, 8> LargeMulOps; 2536 for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) { 2537 if (const SCEVTruncateExpr *T = 2538 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) { 2539 if (T->getOperand()->getType() != SrcType) { 2540 Ok = false; 2541 break; 2542 } 2543 LargeMulOps.push_back(T->getOperand()); 2544 } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) { 2545 LargeMulOps.push_back(getAnyExtendExpr(C, SrcType)); 2546 } else { 2547 Ok = false; 2548 break; 2549 } 2550 } 2551 if (Ok) 2552 LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1)); 2553 } else { 2554 Ok = false; 2555 break; 2556 } 2557 } 2558 if (Ok) { 2559 // Evaluate the expression in the larger type. 2560 const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1); 2561 // If it folds to something simple, use it. Otherwise, don't. 2562 if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold)) 2563 return getTruncateExpr(Fold, Ty); 2564 } 2565 } 2566 2567 if (Ops.size() == 2) { 2568 // Check if we have an expression of the form ((X + C1) - C2), where C1 and 2569 // C2 can be folded in a way that allows retaining wrapping flags of (X + 2570 // C1). 2571 const SCEV *A = Ops[0]; 2572 const SCEV *B = Ops[1]; 2573 auto *AddExpr = dyn_cast<SCEVAddExpr>(B); 2574 auto *C = dyn_cast<SCEVConstant>(A); 2575 if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) { 2576 auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt(); 2577 auto C2 = C->getAPInt(); 2578 SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap; 2579 2580 APInt ConstAdd = C1 + C2; 2581 auto AddFlags = AddExpr->getNoWrapFlags(); 2582 // Adding a smaller constant is NUW if the original AddExpr was NUW. 2583 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) && 2584 ConstAdd.ule(C1)) { 2585 PreservedFlags = 2586 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW); 2587 } 2588 2589 // Adding a constant with the same sign and small magnitude is NSW, if the 2590 // original AddExpr was NSW. 2591 if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) && 2592 C1.isSignBitSet() == ConstAdd.isSignBitSet() && 2593 ConstAdd.abs().ule(C1.abs())) { 2594 PreservedFlags = 2595 ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW); 2596 } 2597 2598 if (PreservedFlags != SCEV::FlagAnyWrap) { 2599 SmallVector<const SCEV *, 4> NewOps(AddExpr->operands()); 2600 NewOps[0] = getConstant(ConstAdd); 2601 return getAddExpr(NewOps, PreservedFlags); 2602 } 2603 } 2604 } 2605 2606 // Skip past any other cast SCEVs. 2607 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr) 2608 ++Idx; 2609 2610 // If there are add operands they would be next. 2611 if (Idx < Ops.size()) { 2612 bool DeletedAdd = false; 2613 // If the original flags and all inlined SCEVAddExprs are NUW, use the 2614 // common NUW flag for expression after inlining. Other flags cannot be 2615 // preserved, because they may depend on the original order of operations. 2616 SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW); 2617 while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) { 2618 if (Ops.size() > AddOpsInlineThreshold || 2619 Add->getNumOperands() > AddOpsInlineThreshold) 2620 break; 2621 // If we have an add, expand the add operands onto the end of the operands 2622 // list. 2623 Ops.erase(Ops.begin()+Idx); 2624 Ops.append(Add->op_begin(), Add->op_end()); 2625 DeletedAdd = true; 2626 CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags()); 2627 } 2628 2629 // If we deleted at least one add, we added operands to the end of the list, 2630 // and they are not necessarily sorted. Recurse to resort and resimplify 2631 // any operands we just acquired. 2632 if (DeletedAdd) 2633 return getAddExpr(Ops, CommonFlags, Depth + 1); 2634 } 2635 2636 // Skip over the add expression until we get to a multiply. 2637 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 2638 ++Idx; 2639 2640 // Check to see if there are any folding opportunities present with 2641 // operands multiplied by constant values. 2642 if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) { 2643 uint64_t BitWidth = getTypeSizeInBits(Ty); 2644 DenseMap<const SCEV *, APInt> M; 2645 SmallVector<const SCEV *, 8> NewOps; 2646 APInt AccumulatedConstant(BitWidth, 0); 2647 if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant, 2648 Ops.data(), Ops.size(), 2649 APInt(BitWidth, 1), *this)) { 2650 struct APIntCompare { 2651 bool operator()(const APInt &LHS, const APInt &RHS) const { 2652 return LHS.ult(RHS); 2653 } 2654 }; 2655 2656 // Some interesting folding opportunity is present, so its worthwhile to 2657 // re-generate the operands list. Group the operands by constant scale, 2658 // to avoid multiplying by the same constant scale multiple times. 2659 std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists; 2660 for (const SCEV *NewOp : NewOps) 2661 MulOpLists[M.find(NewOp)->second].push_back(NewOp); 2662 // Re-generate the operands list. 2663 Ops.clear(); 2664 if (AccumulatedConstant != 0) 2665 Ops.push_back(getConstant(AccumulatedConstant)); 2666 for (auto &MulOp : MulOpLists) { 2667 if (MulOp.first == 1) { 2668 Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1)); 2669 } else if (MulOp.first != 0) { 2670 Ops.push_back(getMulExpr( 2671 getConstant(MulOp.first), 2672 getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1), 2673 SCEV::FlagAnyWrap, Depth + 1)); 2674 } 2675 } 2676 if (Ops.empty()) 2677 return getZero(Ty); 2678 if (Ops.size() == 1) 2679 return Ops[0]; 2680 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2681 } 2682 } 2683 2684 // If we are adding something to a multiply expression, make sure the 2685 // something is not already an operand of the multiply. If so, merge it into 2686 // the multiply. 2687 for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) { 2688 const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]); 2689 for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) { 2690 const SCEV *MulOpSCEV = Mul->getOperand(MulOp); 2691 if (isa<SCEVConstant>(MulOpSCEV)) 2692 continue; 2693 for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp) 2694 if (MulOpSCEV == Ops[AddOp]) { 2695 // Fold W + X + (X * Y * Z) --> W + (X * ((Y*Z)+1)) 2696 const SCEV *InnerMul = Mul->getOperand(MulOp == 0); 2697 if (Mul->getNumOperands() != 2) { 2698 // If the multiply has more than two operands, we must get the 2699 // Y*Z term. 2700 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2701 Mul->op_begin()+MulOp); 2702 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2703 InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2704 } 2705 SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul}; 2706 const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2707 const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV, 2708 SCEV::FlagAnyWrap, Depth + 1); 2709 if (Ops.size() == 2) return OuterMul; 2710 if (AddOp < Idx) { 2711 Ops.erase(Ops.begin()+AddOp); 2712 Ops.erase(Ops.begin()+Idx-1); 2713 } else { 2714 Ops.erase(Ops.begin()+Idx); 2715 Ops.erase(Ops.begin()+AddOp-1); 2716 } 2717 Ops.push_back(OuterMul); 2718 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2719 } 2720 2721 // Check this multiply against other multiplies being added together. 2722 for (unsigned OtherMulIdx = Idx+1; 2723 OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]); 2724 ++OtherMulIdx) { 2725 const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]); 2726 // If MulOp occurs in OtherMul, we can fold the two multiplies 2727 // together. 2728 for (unsigned OMulOp = 0, e = OtherMul->getNumOperands(); 2729 OMulOp != e; ++OMulOp) 2730 if (OtherMul->getOperand(OMulOp) == MulOpSCEV) { 2731 // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E)) 2732 const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0); 2733 if (Mul->getNumOperands() != 2) { 2734 SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(), 2735 Mul->op_begin()+MulOp); 2736 MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end()); 2737 InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2738 } 2739 const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0); 2740 if (OtherMul->getNumOperands() != 2) { 2741 SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(), 2742 OtherMul->op_begin()+OMulOp); 2743 MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end()); 2744 InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1); 2745 } 2746 SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2}; 2747 const SCEV *InnerMulSum = 2748 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2749 const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum, 2750 SCEV::FlagAnyWrap, Depth + 1); 2751 if (Ops.size() == 2) return OuterMul; 2752 Ops.erase(Ops.begin()+Idx); 2753 Ops.erase(Ops.begin()+OtherMulIdx-1); 2754 Ops.push_back(OuterMul); 2755 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2756 } 2757 } 2758 } 2759 } 2760 2761 // If there are any add recurrences in the operands list, see if any other 2762 // added values are loop invariant. If so, we can fold them into the 2763 // recurrence. 2764 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 2765 ++Idx; 2766 2767 // Scan over all recurrences, trying to fold loop invariants into them. 2768 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 2769 // Scan all of the other operands to this add and add them to the vector if 2770 // they are loop invariant w.r.t. the recurrence. 2771 SmallVector<const SCEV *, 8> LIOps; 2772 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 2773 const Loop *AddRecLoop = AddRec->getLoop(); 2774 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2775 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 2776 LIOps.push_back(Ops[i]); 2777 Ops.erase(Ops.begin()+i); 2778 --i; --e; 2779 } 2780 2781 // If we found some loop invariants, fold them into the recurrence. 2782 if (!LIOps.empty()) { 2783 // Compute nowrap flags for the addition of the loop-invariant ops and 2784 // the addrec. Temporarily push it as an operand for that purpose. 2785 LIOps.push_back(AddRec); 2786 SCEV::NoWrapFlags Flags = ComputeFlags(LIOps); 2787 LIOps.pop_back(); 2788 2789 // NLI + LI + {Start,+,Step} --> NLI + {LI+Start,+,Step} 2790 LIOps.push_back(AddRec->getStart()); 2791 2792 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2793 // This follows from the fact that the no-wrap flags on the outer add 2794 // expression are applicable on the 0th iteration, when the add recurrence 2795 // will be equal to its start value. 2796 AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1); 2797 2798 // Build the new addrec. Propagate the NUW and NSW flags if both the 2799 // outer add and the inner addrec are guaranteed to have no overflow. 2800 // Always propagate NW. 2801 Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW)); 2802 const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags); 2803 2804 // If all of the other operands were loop invariant, we are done. 2805 if (Ops.size() == 1) return NewRec; 2806 2807 // Otherwise, add the folded AddRec by the non-invariant parts. 2808 for (unsigned i = 0;; ++i) 2809 if (Ops[i] == AddRec) { 2810 Ops[i] = NewRec; 2811 break; 2812 } 2813 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2814 } 2815 2816 // Okay, if there weren't any loop invariants to be folded, check to see if 2817 // there are multiple AddRec's with the same loop induction variable being 2818 // added together. If so, we can fold them. 2819 for (unsigned OtherIdx = Idx+1; 2820 OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2821 ++OtherIdx) { 2822 // We expect the AddRecExpr's to be sorted in reverse dominance order, 2823 // so that the 1st found AddRecExpr is dominated by all others. 2824 assert(DT.dominates( 2825 cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(), 2826 AddRec->getLoop()->getHeader()) && 2827 "AddRecExprs are not sorted in reverse dominance order?"); 2828 if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) { 2829 // Other + {A,+,B}<L> + {C,+,D}<L> --> Other + {A+C,+,B+D}<L> 2830 SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands()); 2831 for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 2832 ++OtherIdx) { 2833 const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]); 2834 if (OtherAddRec->getLoop() == AddRecLoop) { 2835 for (unsigned i = 0, e = OtherAddRec->getNumOperands(); 2836 i != e; ++i) { 2837 if (i >= AddRecOps.size()) { 2838 AddRecOps.append(OtherAddRec->op_begin()+i, 2839 OtherAddRec->op_end()); 2840 break; 2841 } 2842 SmallVector<const SCEV *, 2> TwoOps = { 2843 AddRecOps[i], OtherAddRec->getOperand(i)}; 2844 AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1); 2845 } 2846 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 2847 } 2848 } 2849 // Step size has changed, so we cannot guarantee no self-wraparound. 2850 Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap); 2851 return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 2852 } 2853 } 2854 2855 // Otherwise couldn't fold anything into this recurrence. Move onto the 2856 // next one. 2857 } 2858 2859 // Okay, it looks like we really DO need an add expr. Check to see if we 2860 // already have one, otherwise create a new one. 2861 return getOrCreateAddExpr(Ops, ComputeFlags(Ops)); 2862 } 2863 2864 const SCEV * 2865 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops, 2866 SCEV::NoWrapFlags Flags) { 2867 FoldingSetNodeID ID; 2868 ID.AddInteger(scAddExpr); 2869 for (const SCEV *Op : Ops) 2870 ID.AddPointer(Op); 2871 void *IP = nullptr; 2872 SCEVAddExpr *S = 2873 static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2874 if (!S) { 2875 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2876 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2877 S = new (SCEVAllocator) 2878 SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size()); 2879 UniqueSCEVs.InsertNode(S, IP); 2880 addToLoopUseLists(S); 2881 } 2882 S->setNoWrapFlags(Flags); 2883 return S; 2884 } 2885 2886 const SCEV * 2887 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops, 2888 const Loop *L, SCEV::NoWrapFlags Flags) { 2889 FoldingSetNodeID ID; 2890 ID.AddInteger(scAddRecExpr); 2891 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2892 ID.AddPointer(Ops[i]); 2893 ID.AddPointer(L); 2894 void *IP = nullptr; 2895 SCEVAddRecExpr *S = 2896 static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2897 if (!S) { 2898 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2899 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2900 S = new (SCEVAllocator) 2901 SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L); 2902 UniqueSCEVs.InsertNode(S, IP); 2903 addToLoopUseLists(S); 2904 } 2905 setNoWrapFlags(S, Flags); 2906 return S; 2907 } 2908 2909 const SCEV * 2910 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops, 2911 SCEV::NoWrapFlags Flags) { 2912 FoldingSetNodeID ID; 2913 ID.AddInteger(scMulExpr); 2914 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 2915 ID.AddPointer(Ops[i]); 2916 void *IP = nullptr; 2917 SCEVMulExpr *S = 2918 static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP)); 2919 if (!S) { 2920 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 2921 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 2922 S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator), 2923 O, Ops.size()); 2924 UniqueSCEVs.InsertNode(S, IP); 2925 addToLoopUseLists(S); 2926 } 2927 S->setNoWrapFlags(Flags); 2928 return S; 2929 } 2930 2931 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) { 2932 uint64_t k = i*j; 2933 if (j > 1 && k / j != i) Overflow = true; 2934 return k; 2935 } 2936 2937 /// Compute the result of "n choose k", the binomial coefficient. If an 2938 /// intermediate computation overflows, Overflow will be set and the return will 2939 /// be garbage. Overflow is not cleared on absence of overflow. 2940 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) { 2941 // We use the multiplicative formula: 2942 // n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 . 2943 // At each iteration, we take the n-th term of the numeral and divide by the 2944 // (k-n)th term of the denominator. This division will always produce an 2945 // integral result, and helps reduce the chance of overflow in the 2946 // intermediate computations. However, we can still overflow even when the 2947 // final result would fit. 2948 2949 if (n == 0 || n == k) return 1; 2950 if (k > n) return 0; 2951 2952 if (k > n/2) 2953 k = n-k; 2954 2955 uint64_t r = 1; 2956 for (uint64_t i = 1; i <= k; ++i) { 2957 r = umul_ov(r, n-(i-1), Overflow); 2958 r /= i; 2959 } 2960 return r; 2961 } 2962 2963 /// Determine if any of the operands in this SCEV are a constant or if 2964 /// any of the add or multiply expressions in this SCEV contain a constant. 2965 static bool containsConstantInAddMulChain(const SCEV *StartExpr) { 2966 struct FindConstantInAddMulChain { 2967 bool FoundConstant = false; 2968 2969 bool follow(const SCEV *S) { 2970 FoundConstant |= isa<SCEVConstant>(S); 2971 return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S); 2972 } 2973 2974 bool isDone() const { 2975 return FoundConstant; 2976 } 2977 }; 2978 2979 FindConstantInAddMulChain F; 2980 SCEVTraversal<FindConstantInAddMulChain> ST(F); 2981 ST.visitAll(StartExpr); 2982 return F.FoundConstant; 2983 } 2984 2985 /// Get a canonical multiply expression, or something simpler if possible. 2986 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops, 2987 SCEV::NoWrapFlags OrigFlags, 2988 unsigned Depth) { 2989 assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) && 2990 "only nuw or nsw allowed"); 2991 assert(!Ops.empty() && "Cannot get empty mul!"); 2992 if (Ops.size() == 1) return Ops[0]; 2993 #ifndef NDEBUG 2994 Type *ETy = Ops[0]->getType(); 2995 assert(!ETy->isPointerTy()); 2996 for (unsigned i = 1, e = Ops.size(); i != e; ++i) 2997 assert(Ops[i]->getType() == ETy && 2998 "SCEVMulExpr operand types don't match!"); 2999 #endif 3000 3001 // Sort by complexity, this groups all similar expression types together. 3002 GroupByComplexity(Ops, &LI, DT); 3003 3004 // If there are any constants, fold them together. 3005 unsigned Idx = 0; 3006 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3007 ++Idx; 3008 assert(Idx < Ops.size()); 3009 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3010 // We found two constants, fold them together! 3011 Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt()); 3012 if (Ops.size() == 2) return Ops[0]; 3013 Ops.erase(Ops.begin()+1); // Erase the folded element 3014 LHSC = cast<SCEVConstant>(Ops[0]); 3015 } 3016 3017 // If we have a multiply of zero, it will always be zero. 3018 if (LHSC->getValue()->isZero()) 3019 return LHSC; 3020 3021 // If we are left with a constant one being multiplied, strip it off. 3022 if (LHSC->getValue()->isOne()) { 3023 Ops.erase(Ops.begin()); 3024 --Idx; 3025 } 3026 3027 if (Ops.size() == 1) 3028 return Ops[0]; 3029 } 3030 3031 // Delay expensive flag strengthening until necessary. 3032 auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) { 3033 return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags); 3034 }; 3035 3036 // Limit recursion calls depth. 3037 if (Depth > MaxArithDepth || hasHugeExpression(Ops)) 3038 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3039 3040 if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) { 3041 // Don't strengthen flags if we have no new information. 3042 SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S); 3043 if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags) 3044 Mul->setNoWrapFlags(ComputeFlags(Ops)); 3045 return S; 3046 } 3047 3048 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3049 if (Ops.size() == 2) { 3050 // C1*(C2+V) -> C1*C2 + C1*V 3051 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) 3052 // If any of Add's ops are Adds or Muls with a constant, apply this 3053 // transformation as well. 3054 // 3055 // TODO: There are some cases where this transformation is not 3056 // profitable; for example, Add = (C0 + X) * Y + Z. Maybe the scope of 3057 // this transformation should be narrowed down. 3058 if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add)) 3059 return getAddExpr(getMulExpr(LHSC, Add->getOperand(0), 3060 SCEV::FlagAnyWrap, Depth + 1), 3061 getMulExpr(LHSC, Add->getOperand(1), 3062 SCEV::FlagAnyWrap, Depth + 1), 3063 SCEV::FlagAnyWrap, Depth + 1); 3064 3065 if (Ops[0]->isAllOnesValue()) { 3066 // If we have a mul by -1 of an add, try distributing the -1 among the 3067 // add operands. 3068 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) { 3069 SmallVector<const SCEV *, 4> NewOps; 3070 bool AnyFolded = false; 3071 for (const SCEV *AddOp : Add->operands()) { 3072 const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap, 3073 Depth + 1); 3074 if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true; 3075 NewOps.push_back(Mul); 3076 } 3077 if (AnyFolded) 3078 return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1); 3079 } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) { 3080 // Negation preserves a recurrence's no self-wrap property. 3081 SmallVector<const SCEV *, 4> Operands; 3082 for (const SCEV *AddRecOp : AddRec->operands()) 3083 Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap, 3084 Depth + 1)); 3085 3086 return getAddRecExpr(Operands, AddRec->getLoop(), 3087 AddRec->getNoWrapFlags(SCEV::FlagNW)); 3088 } 3089 } 3090 } 3091 } 3092 3093 // Skip over the add expression until we get to a multiply. 3094 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr) 3095 ++Idx; 3096 3097 // If there are mul operands inline them all into this expression. 3098 if (Idx < Ops.size()) { 3099 bool DeletedMul = false; 3100 while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) { 3101 if (Ops.size() > MulOpsInlineThreshold) 3102 break; 3103 // If we have an mul, expand the mul operands onto the end of the 3104 // operands list. 3105 Ops.erase(Ops.begin()+Idx); 3106 Ops.append(Mul->op_begin(), Mul->op_end()); 3107 DeletedMul = true; 3108 } 3109 3110 // If we deleted at least one mul, we added operands to the end of the 3111 // list, and they are not necessarily sorted. Recurse to resort and 3112 // resimplify any operands we just acquired. 3113 if (DeletedMul) 3114 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3115 } 3116 3117 // If there are any add recurrences in the operands list, see if any other 3118 // added values are loop invariant. If so, we can fold them into the 3119 // recurrence. 3120 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr) 3121 ++Idx; 3122 3123 // Scan over all recurrences, trying to fold loop invariants into them. 3124 for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) { 3125 // Scan all of the other operands to this mul and add them to the vector 3126 // if they are loop invariant w.r.t. the recurrence. 3127 SmallVector<const SCEV *, 8> LIOps; 3128 const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]); 3129 const Loop *AddRecLoop = AddRec->getLoop(); 3130 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3131 if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) { 3132 LIOps.push_back(Ops[i]); 3133 Ops.erase(Ops.begin()+i); 3134 --i; --e; 3135 } 3136 3137 // If we found some loop invariants, fold them into the recurrence. 3138 if (!LIOps.empty()) { 3139 // NLI * LI * {Start,+,Step} --> NLI * {LI*Start,+,LI*Step} 3140 SmallVector<const SCEV *, 4> NewOps; 3141 NewOps.reserve(AddRec->getNumOperands()); 3142 const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1); 3143 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) 3144 NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i), 3145 SCEV::FlagAnyWrap, Depth + 1)); 3146 3147 // Build the new addrec. Propagate the NUW and NSW flags if both the 3148 // outer mul and the inner addrec are guaranteed to have no overflow. 3149 // 3150 // No self-wrap cannot be guaranteed after changing the step size, but 3151 // will be inferred if either NUW or NSW is true. 3152 SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec}); 3153 const SCEV *NewRec = getAddRecExpr( 3154 NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags)); 3155 3156 // If all of the other operands were loop invariant, we are done. 3157 if (Ops.size() == 1) return NewRec; 3158 3159 // Otherwise, multiply the folded AddRec by the non-invariant parts. 3160 for (unsigned i = 0;; ++i) 3161 if (Ops[i] == AddRec) { 3162 Ops[i] = NewRec; 3163 break; 3164 } 3165 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3166 } 3167 3168 // Okay, if there weren't any loop invariants to be folded, check to see 3169 // if there are multiple AddRec's with the same loop induction variable 3170 // being multiplied together. If so, we can fold them. 3171 3172 // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L> 3173 // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [ 3174 // choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z 3175 // ]]],+,...up to x=2n}. 3176 // Note that the arguments to choose() are always integers with values 3177 // known at compile time, never SCEV objects. 3178 // 3179 // The implementation avoids pointless extra computations when the two 3180 // addrec's are of different length (mathematically, it's equivalent to 3181 // an infinite stream of zeros on the right). 3182 bool OpsModified = false; 3183 for (unsigned OtherIdx = Idx+1; 3184 OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]); 3185 ++OtherIdx) { 3186 const SCEVAddRecExpr *OtherAddRec = 3187 dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]); 3188 if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop) 3189 continue; 3190 3191 // Limit max number of arguments to avoid creation of unreasonably big 3192 // SCEVAddRecs with very complex operands. 3193 if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 > 3194 MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec})) 3195 continue; 3196 3197 bool Overflow = false; 3198 Type *Ty = AddRec->getType(); 3199 bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64; 3200 SmallVector<const SCEV*, 7> AddRecOps; 3201 for (int x = 0, xe = AddRec->getNumOperands() + 3202 OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) { 3203 SmallVector <const SCEV *, 7> SumOps; 3204 for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) { 3205 uint64_t Coeff1 = Choose(x, 2*x - y, Overflow); 3206 for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1), 3207 ze = std::min(x+1, (int)OtherAddRec->getNumOperands()); 3208 z < ze && !Overflow; ++z) { 3209 uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow); 3210 uint64_t Coeff; 3211 if (LargerThan64Bits) 3212 Coeff = umul_ov(Coeff1, Coeff2, Overflow); 3213 else 3214 Coeff = Coeff1*Coeff2; 3215 const SCEV *CoeffTerm = getConstant(Ty, Coeff); 3216 const SCEV *Term1 = AddRec->getOperand(y-z); 3217 const SCEV *Term2 = OtherAddRec->getOperand(z); 3218 SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2, 3219 SCEV::FlagAnyWrap, Depth + 1)); 3220 } 3221 } 3222 if (SumOps.empty()) 3223 SumOps.push_back(getZero(Ty)); 3224 AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1)); 3225 } 3226 if (!Overflow) { 3227 const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop, 3228 SCEV::FlagAnyWrap); 3229 if (Ops.size() == 2) return NewAddRec; 3230 Ops[Idx] = NewAddRec; 3231 Ops.erase(Ops.begin() + OtherIdx); --OtherIdx; 3232 OpsModified = true; 3233 AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec); 3234 if (!AddRec) 3235 break; 3236 } 3237 } 3238 if (OpsModified) 3239 return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1); 3240 3241 // Otherwise couldn't fold anything into this recurrence. Move onto the 3242 // next one. 3243 } 3244 3245 // Okay, it looks like we really DO need an mul expr. Check to see if we 3246 // already have one, otherwise create a new one. 3247 return getOrCreateMulExpr(Ops, ComputeFlags(Ops)); 3248 } 3249 3250 /// Represents an unsigned remainder expression based on unsigned division. 3251 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS, 3252 const SCEV *RHS) { 3253 assert(getEffectiveSCEVType(LHS->getType()) == 3254 getEffectiveSCEVType(RHS->getType()) && 3255 "SCEVURemExpr operand types don't match!"); 3256 3257 // Short-circuit easy cases 3258 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3259 // If constant is one, the result is trivial 3260 if (RHSC->getValue()->isOne()) 3261 return getZero(LHS->getType()); // X urem 1 --> 0 3262 3263 // If constant is a power of two, fold into a zext(trunc(LHS)). 3264 if (RHSC->getAPInt().isPowerOf2()) { 3265 Type *FullTy = LHS->getType(); 3266 Type *TruncTy = 3267 IntegerType::get(getContext(), RHSC->getAPInt().logBase2()); 3268 return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy); 3269 } 3270 } 3271 3272 // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y) 3273 const SCEV *UDiv = getUDivExpr(LHS, RHS); 3274 const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW); 3275 return getMinusSCEV(LHS, Mult, SCEV::FlagNUW); 3276 } 3277 3278 /// Get a canonical unsigned division expression, or something simpler if 3279 /// possible. 3280 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS, 3281 const SCEV *RHS) { 3282 assert(!LHS->getType()->isPointerTy() && 3283 "SCEVUDivExpr operand can't be pointer!"); 3284 assert(LHS->getType() == RHS->getType() && 3285 "SCEVUDivExpr operand types don't match!"); 3286 3287 FoldingSetNodeID ID; 3288 ID.AddInteger(scUDivExpr); 3289 ID.AddPointer(LHS); 3290 ID.AddPointer(RHS); 3291 void *IP = nullptr; 3292 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3293 return S; 3294 3295 // 0 udiv Y == 0 3296 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) 3297 if (LHSC->getValue()->isZero()) 3298 return LHS; 3299 3300 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 3301 if (RHSC->getValue()->isOne()) 3302 return LHS; // X udiv 1 --> x 3303 // If the denominator is zero, the result of the udiv is undefined. Don't 3304 // try to analyze it, because the resolution chosen here may differ from 3305 // the resolution chosen in other parts of the compiler. 3306 if (!RHSC->getValue()->isZero()) { 3307 // Determine if the division can be folded into the operands of 3308 // its operands. 3309 // TODO: Generalize this to non-constants by using known-bits information. 3310 Type *Ty = LHS->getType(); 3311 unsigned LZ = RHSC->getAPInt().countLeadingZeros(); 3312 unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1; 3313 // For non-power-of-two values, effectively round the value up to the 3314 // nearest power of two. 3315 if (!RHSC->getAPInt().isPowerOf2()) 3316 ++MaxShiftAmt; 3317 IntegerType *ExtTy = 3318 IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt); 3319 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS)) 3320 if (const SCEVConstant *Step = 3321 dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) { 3322 // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded. 3323 const APInt &StepInt = Step->getAPInt(); 3324 const APInt &DivInt = RHSC->getAPInt(); 3325 if (!StepInt.urem(DivInt) && 3326 getZeroExtendExpr(AR, ExtTy) == 3327 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3328 getZeroExtendExpr(Step, ExtTy), 3329 AR->getLoop(), SCEV::FlagAnyWrap)) { 3330 SmallVector<const SCEV *, 4> Operands; 3331 for (const SCEV *Op : AR->operands()) 3332 Operands.push_back(getUDivExpr(Op, RHS)); 3333 return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW); 3334 } 3335 /// Get a canonical UDivExpr for a recurrence. 3336 /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0. 3337 // We can currently only fold X%N if X is constant. 3338 const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart()); 3339 if (StartC && !DivInt.urem(StepInt) && 3340 getZeroExtendExpr(AR, ExtTy) == 3341 getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy), 3342 getZeroExtendExpr(Step, ExtTy), 3343 AR->getLoop(), SCEV::FlagAnyWrap)) { 3344 const APInt &StartInt = StartC->getAPInt(); 3345 const APInt &StartRem = StartInt.urem(StepInt); 3346 if (StartRem != 0) { 3347 const SCEV *NewLHS = 3348 getAddRecExpr(getConstant(StartInt - StartRem), Step, 3349 AR->getLoop(), SCEV::FlagNW); 3350 if (LHS != NewLHS) { 3351 LHS = NewLHS; 3352 3353 // Reset the ID to include the new LHS, and check if it is 3354 // already cached. 3355 ID.clear(); 3356 ID.AddInteger(scUDivExpr); 3357 ID.AddPointer(LHS); 3358 ID.AddPointer(RHS); 3359 IP = nullptr; 3360 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) 3361 return S; 3362 } 3363 } 3364 } 3365 } 3366 // (A*B)/C --> A*(B/C) if safe and B/C can be folded. 3367 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) { 3368 SmallVector<const SCEV *, 4> Operands; 3369 for (const SCEV *Op : M->operands()) 3370 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3371 if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands)) 3372 // Find an operand that's safely divisible. 3373 for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) { 3374 const SCEV *Op = M->getOperand(i); 3375 const SCEV *Div = getUDivExpr(Op, RHSC); 3376 if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) { 3377 Operands = SmallVector<const SCEV *, 4>(M->operands()); 3378 Operands[i] = Div; 3379 return getMulExpr(Operands); 3380 } 3381 } 3382 } 3383 3384 // (A/B)/C --> A/(B*C) if safe and B*C can be folded. 3385 if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) { 3386 if (auto *DivisorConstant = 3387 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) { 3388 bool Overflow = false; 3389 APInt NewRHS = 3390 DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow); 3391 if (Overflow) { 3392 return getConstant(RHSC->getType(), 0, false); 3393 } 3394 return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS)); 3395 } 3396 } 3397 3398 // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded. 3399 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) { 3400 SmallVector<const SCEV *, 4> Operands; 3401 for (const SCEV *Op : A->operands()) 3402 Operands.push_back(getZeroExtendExpr(Op, ExtTy)); 3403 if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) { 3404 Operands.clear(); 3405 for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) { 3406 const SCEV *Op = getUDivExpr(A->getOperand(i), RHS); 3407 if (isa<SCEVUDivExpr>(Op) || 3408 getMulExpr(Op, RHS) != A->getOperand(i)) 3409 break; 3410 Operands.push_back(Op); 3411 } 3412 if (Operands.size() == A->getNumOperands()) 3413 return getAddExpr(Operands); 3414 } 3415 } 3416 3417 // Fold if both operands are constant. 3418 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 3419 Constant *LHSCV = LHSC->getValue(); 3420 Constant *RHSCV = RHSC->getValue(); 3421 return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV, 3422 RHSCV))); 3423 } 3424 } 3425 } 3426 3427 // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs 3428 // changes). Make sure we get a new one. 3429 IP = nullptr; 3430 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S; 3431 SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator), 3432 LHS, RHS); 3433 UniqueSCEVs.InsertNode(S, IP); 3434 addToLoopUseLists(S); 3435 return S; 3436 } 3437 3438 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) { 3439 APInt A = C1->getAPInt().abs(); 3440 APInt B = C2->getAPInt().abs(); 3441 uint32_t ABW = A.getBitWidth(); 3442 uint32_t BBW = B.getBitWidth(); 3443 3444 if (ABW > BBW) 3445 B = B.zext(ABW); 3446 else if (ABW < BBW) 3447 A = A.zext(BBW); 3448 3449 return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B)); 3450 } 3451 3452 /// Get a canonical unsigned division expression, or something simpler if 3453 /// possible. There is no representation for an exact udiv in SCEV IR, but we 3454 /// can attempt to remove factors from the LHS and RHS. We can't do this when 3455 /// it's not exact because the udiv may be clearing bits. 3456 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS, 3457 const SCEV *RHS) { 3458 // TODO: we could try to find factors in all sorts of things, but for now we 3459 // just deal with u/exact (multiply, constant). See SCEVDivision towards the 3460 // end of this file for inspiration. 3461 3462 const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS); 3463 if (!Mul || !Mul->hasNoUnsignedWrap()) 3464 return getUDivExpr(LHS, RHS); 3465 3466 if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) { 3467 // If the mulexpr multiplies by a constant, then that constant must be the 3468 // first element of the mulexpr. 3469 if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) { 3470 if (LHSCst == RHSCst) { 3471 SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands())); 3472 return getMulExpr(Operands); 3473 } 3474 3475 // We can't just assume that LHSCst divides RHSCst cleanly, it could be 3476 // that there's a factor provided by one of the other terms. We need to 3477 // check. 3478 APInt Factor = gcd(LHSCst, RHSCst); 3479 if (!Factor.isIntN(1)) { 3480 LHSCst = 3481 cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor))); 3482 RHSCst = 3483 cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor))); 3484 SmallVector<const SCEV *, 2> Operands; 3485 Operands.push_back(LHSCst); 3486 Operands.append(Mul->op_begin() + 1, Mul->op_end()); 3487 LHS = getMulExpr(Operands); 3488 RHS = RHSCst; 3489 Mul = dyn_cast<SCEVMulExpr>(LHS); 3490 if (!Mul) 3491 return getUDivExactExpr(LHS, RHS); 3492 } 3493 } 3494 } 3495 3496 for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) { 3497 if (Mul->getOperand(i) == RHS) { 3498 SmallVector<const SCEV *, 2> Operands; 3499 Operands.append(Mul->op_begin(), Mul->op_begin() + i); 3500 Operands.append(Mul->op_begin() + i + 1, Mul->op_end()); 3501 return getMulExpr(Operands); 3502 } 3503 } 3504 3505 return getUDivExpr(LHS, RHS); 3506 } 3507 3508 /// Get an add recurrence expression for the specified loop. Simplify the 3509 /// expression as much as possible. 3510 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step, 3511 const Loop *L, 3512 SCEV::NoWrapFlags Flags) { 3513 SmallVector<const SCEV *, 4> Operands; 3514 Operands.push_back(Start); 3515 if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step)) 3516 if (StepChrec->getLoop() == L) { 3517 Operands.append(StepChrec->op_begin(), StepChrec->op_end()); 3518 return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW)); 3519 } 3520 3521 Operands.push_back(Step); 3522 return getAddRecExpr(Operands, L, Flags); 3523 } 3524 3525 /// Get an add recurrence expression for the specified loop. Simplify the 3526 /// expression as much as possible. 3527 const SCEV * 3528 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands, 3529 const Loop *L, SCEV::NoWrapFlags Flags) { 3530 if (Operands.size() == 1) return Operands[0]; 3531 #ifndef NDEBUG 3532 Type *ETy = getEffectiveSCEVType(Operands[0]->getType()); 3533 for (unsigned i = 1, e = Operands.size(); i != e; ++i) { 3534 assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy && 3535 "SCEVAddRecExpr operand types don't match!"); 3536 assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer"); 3537 } 3538 for (unsigned i = 0, e = Operands.size(); i != e; ++i) 3539 assert(isLoopInvariant(Operands[i], L) && 3540 "SCEVAddRecExpr operand is not loop-invariant!"); 3541 #endif 3542 3543 if (Operands.back()->isZero()) { 3544 Operands.pop_back(); 3545 return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0} --> X 3546 } 3547 3548 // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and 3549 // use that information to infer NUW and NSW flags. However, computing a 3550 // BE count requires calling getAddRecExpr, so we may not yet have a 3551 // meaningful BE count at this point (and if we don't, we'd be stuck 3552 // with a SCEVCouldNotCompute as the cached BE count). 3553 3554 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 3555 3556 // Canonicalize nested AddRecs in by nesting them in order of loop depth. 3557 if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) { 3558 const Loop *NestedLoop = NestedAR->getLoop(); 3559 if (L->contains(NestedLoop) 3560 ? (L->getLoopDepth() < NestedLoop->getLoopDepth()) 3561 : (!NestedLoop->contains(L) && 3562 DT.dominates(L->getHeader(), NestedLoop->getHeader()))) { 3563 SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands()); 3564 Operands[0] = NestedAR->getStart(); 3565 // AddRecs require their operands be loop-invariant with respect to their 3566 // loops. Don't perform this transformation if it would break this 3567 // requirement. 3568 bool AllInvariant = all_of( 3569 Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); }); 3570 3571 if (AllInvariant) { 3572 // Create a recurrence for the outer loop with the same step size. 3573 // 3574 // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the 3575 // inner recurrence has the same property. 3576 SCEV::NoWrapFlags OuterFlags = 3577 maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags()); 3578 3579 NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags); 3580 AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) { 3581 return isLoopInvariant(Op, NestedLoop); 3582 }); 3583 3584 if (AllInvariant) { 3585 // Ok, both add recurrences are valid after the transformation. 3586 // 3587 // The inner recurrence keeps its NW flag but only keeps NUW/NSW if 3588 // the outer recurrence has the same property. 3589 SCEV::NoWrapFlags InnerFlags = 3590 maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags); 3591 return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags); 3592 } 3593 } 3594 // Reset Operands to its original state. 3595 Operands[0] = NestedAR; 3596 } 3597 } 3598 3599 // Okay, it looks like we really DO need an addrec expr. Check to see if we 3600 // already have one, otherwise create a new one. 3601 return getOrCreateAddRecExpr(Operands, L, Flags); 3602 } 3603 3604 const SCEV * 3605 ScalarEvolution::getGEPExpr(GEPOperator *GEP, 3606 const SmallVectorImpl<const SCEV *> &IndexExprs) { 3607 const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand()); 3608 // getSCEV(Base)->getType() has the same address space as Base->getType() 3609 // because SCEV::getType() preserves the address space. 3610 Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType()); 3611 // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP 3612 // instruction to its SCEV, because the Instruction may be guarded by control 3613 // flow and the no-overflow bits may not be valid for the expression in any 3614 // context. This can be fixed similarly to how these flags are handled for 3615 // adds. 3616 SCEV::NoWrapFlags OffsetWrap = 3617 GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3618 3619 Type *CurTy = GEP->getType(); 3620 bool FirstIter = true; 3621 SmallVector<const SCEV *, 4> Offsets; 3622 for (const SCEV *IndexExpr : IndexExprs) { 3623 // Compute the (potentially symbolic) offset in bytes for this index. 3624 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 3625 // For a struct, add the member offset. 3626 ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue(); 3627 unsigned FieldNo = Index->getZExtValue(); 3628 const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo); 3629 Offsets.push_back(FieldOffset); 3630 3631 // Update CurTy to the type of the field at Index. 3632 CurTy = STy->getTypeAtIndex(Index); 3633 } else { 3634 // Update CurTy to its element type. 3635 if (FirstIter) { 3636 assert(isa<PointerType>(CurTy) && 3637 "The first index of a GEP indexes a pointer"); 3638 CurTy = GEP->getSourceElementType(); 3639 FirstIter = false; 3640 } else { 3641 CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0); 3642 } 3643 // For an array, add the element offset, explicitly scaled. 3644 const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy); 3645 // Getelementptr indices are signed. 3646 IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy); 3647 3648 // Multiply the index by the element size to compute the element offset. 3649 const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap); 3650 Offsets.push_back(LocalOffset); 3651 } 3652 } 3653 3654 // Handle degenerate case of GEP without offsets. 3655 if (Offsets.empty()) 3656 return BaseExpr; 3657 3658 // Add the offsets together, assuming nsw if inbounds. 3659 const SCEV *Offset = getAddExpr(Offsets, OffsetWrap); 3660 // Add the base address and the offset. We cannot use the nsw flag, as the 3661 // base address is unsigned. However, if we know that the offset is 3662 // non-negative, we can use nuw. 3663 SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset) 3664 ? SCEV::FlagNUW : SCEV::FlagAnyWrap; 3665 auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap); 3666 assert(BaseExpr->getType() == GEPExpr->getType() && 3667 "GEP should not change type mid-flight."); 3668 return GEPExpr; 3669 } 3670 3671 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType, 3672 ArrayRef<const SCEV *> Ops) { 3673 FoldingSetNodeID ID; 3674 ID.AddInteger(SCEVType); 3675 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3676 ID.AddPointer(Ops[i]); 3677 void *IP = nullptr; 3678 return UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3679 } 3680 3681 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) { 3682 SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 3683 return getSMaxExpr(Op, getNegativeSCEV(Op, Flags)); 3684 } 3685 3686 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind, 3687 SmallVectorImpl<const SCEV *> &Ops) { 3688 assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!"); 3689 if (Ops.size() == 1) return Ops[0]; 3690 #ifndef NDEBUG 3691 Type *ETy = getEffectiveSCEVType(Ops[0]->getType()); 3692 for (unsigned i = 1, e = Ops.size(); i != e; ++i) { 3693 assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy && 3694 "Operand types don't match!"); 3695 assert(Ops[0]->getType()->isPointerTy() == 3696 Ops[i]->getType()->isPointerTy() && 3697 "min/max should be consistently pointerish"); 3698 } 3699 #endif 3700 3701 bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr; 3702 bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr; 3703 3704 // Sort by complexity, this groups all similar expression types together. 3705 GroupByComplexity(Ops, &LI, DT); 3706 3707 // Check if we have created the same expression before. 3708 if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) { 3709 return S; 3710 } 3711 3712 // If there are any constants, fold them together. 3713 unsigned Idx = 0; 3714 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) { 3715 ++Idx; 3716 assert(Idx < Ops.size()); 3717 auto FoldOp = [&](const APInt &LHS, const APInt &RHS) { 3718 if (Kind == scSMaxExpr) 3719 return APIntOps::smax(LHS, RHS); 3720 else if (Kind == scSMinExpr) 3721 return APIntOps::smin(LHS, RHS); 3722 else if (Kind == scUMaxExpr) 3723 return APIntOps::umax(LHS, RHS); 3724 else if (Kind == scUMinExpr) 3725 return APIntOps::umin(LHS, RHS); 3726 llvm_unreachable("Unknown SCEV min/max opcode"); 3727 }; 3728 3729 while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) { 3730 // We found two constants, fold them together! 3731 ConstantInt *Fold = ConstantInt::get( 3732 getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt())); 3733 Ops[0] = getConstant(Fold); 3734 Ops.erase(Ops.begin()+1); // Erase the folded element 3735 if (Ops.size() == 1) return Ops[0]; 3736 LHSC = cast<SCEVConstant>(Ops[0]); 3737 } 3738 3739 bool IsMinV = LHSC->getValue()->isMinValue(IsSigned); 3740 bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned); 3741 3742 if (IsMax ? IsMinV : IsMaxV) { 3743 // If we are left with a constant minimum(/maximum)-int, strip it off. 3744 Ops.erase(Ops.begin()); 3745 --Idx; 3746 } else if (IsMax ? IsMaxV : IsMinV) { 3747 // If we have a max(/min) with a constant maximum(/minimum)-int, 3748 // it will always be the extremum. 3749 return LHSC; 3750 } 3751 3752 if (Ops.size() == 1) return Ops[0]; 3753 } 3754 3755 // Find the first operation of the same kind 3756 while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind) 3757 ++Idx; 3758 3759 // Check to see if one of the operands is of the same kind. If so, expand its 3760 // operands onto our operand list, and recurse to simplify. 3761 if (Idx < Ops.size()) { 3762 bool DeletedAny = false; 3763 while (Ops[Idx]->getSCEVType() == Kind) { 3764 const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]); 3765 Ops.erase(Ops.begin()+Idx); 3766 Ops.append(SMME->op_begin(), SMME->op_end()); 3767 DeletedAny = true; 3768 } 3769 3770 if (DeletedAny) 3771 return getMinMaxExpr(Kind, Ops); 3772 } 3773 3774 // Okay, check to see if the same value occurs in the operand list twice. If 3775 // so, delete one. Since we sorted the list, these values are required to 3776 // be adjacent. 3777 llvm::CmpInst::Predicate GEPred = 3778 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 3779 llvm::CmpInst::Predicate LEPred = 3780 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 3781 llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred; 3782 llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred; 3783 for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) { 3784 if (Ops[i] == Ops[i + 1] || 3785 isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) { 3786 // X op Y op Y --> X op Y 3787 // X op Y --> X, if we know X, Y are ordered appropriately 3788 Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2); 3789 --i; 3790 --e; 3791 } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i], 3792 Ops[i + 1])) { 3793 // X op Y --> Y, if we know X, Y are ordered appropriately 3794 Ops.erase(Ops.begin() + i, Ops.begin() + i + 1); 3795 --i; 3796 --e; 3797 } 3798 } 3799 3800 if (Ops.size() == 1) return Ops[0]; 3801 3802 assert(!Ops.empty() && "Reduced smax down to nothing!"); 3803 3804 // Okay, it looks like we really DO need an expr. Check to see if we 3805 // already have one, otherwise create a new one. 3806 FoldingSetNodeID ID; 3807 ID.AddInteger(Kind); 3808 for (unsigned i = 0, e = Ops.size(); i != e; ++i) 3809 ID.AddPointer(Ops[i]); 3810 void *IP = nullptr; 3811 const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP); 3812 if (ExistingSCEV) 3813 return ExistingSCEV; 3814 const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size()); 3815 std::uninitialized_copy(Ops.begin(), Ops.end(), O); 3816 SCEV *S = new (SCEVAllocator) 3817 SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size()); 3818 3819 UniqueSCEVs.InsertNode(S, IP); 3820 addToLoopUseLists(S); 3821 return S; 3822 } 3823 3824 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3825 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3826 return getSMaxExpr(Ops); 3827 } 3828 3829 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3830 return getMinMaxExpr(scSMaxExpr, Ops); 3831 } 3832 3833 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) { 3834 SmallVector<const SCEV *, 2> Ops = {LHS, RHS}; 3835 return getUMaxExpr(Ops); 3836 } 3837 3838 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) { 3839 return getMinMaxExpr(scUMaxExpr, Ops); 3840 } 3841 3842 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS, 3843 const SCEV *RHS) { 3844 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3845 return getSMinExpr(Ops); 3846 } 3847 3848 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3849 return getMinMaxExpr(scSMinExpr, Ops); 3850 } 3851 3852 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS, 3853 const SCEV *RHS) { 3854 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 3855 return getUMinExpr(Ops); 3856 } 3857 3858 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) { 3859 return getMinMaxExpr(scUMinExpr, Ops); 3860 } 3861 3862 const SCEV * 3863 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy, 3864 ScalableVectorType *ScalableTy) { 3865 Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo()); 3866 Constant *One = ConstantInt::get(IntTy, 1); 3867 Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One); 3868 // Note that the expression we created is the final expression, we don't 3869 // want to simplify it any further Also, if we call a normal getSCEV(), 3870 // we'll end up in an endless recursion. So just create an SCEVUnknown. 3871 return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy)); 3872 } 3873 3874 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) { 3875 if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy)) 3876 return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy); 3877 // We can bypass creating a target-independent constant expression and then 3878 // folding it back into a ConstantInt. This is just a compile-time 3879 // optimization. 3880 return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy)); 3881 } 3882 3883 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) { 3884 if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy)) 3885 return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy); 3886 // We can bypass creating a target-independent constant expression and then 3887 // folding it back into a ConstantInt. This is just a compile-time 3888 // optimization. 3889 return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy)); 3890 } 3891 3892 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy, 3893 StructType *STy, 3894 unsigned FieldNo) { 3895 // We can bypass creating a target-independent constant expression and then 3896 // folding it back into a ConstantInt. This is just a compile-time 3897 // optimization. 3898 return getConstant( 3899 IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo)); 3900 } 3901 3902 const SCEV *ScalarEvolution::getUnknown(Value *V) { 3903 // Don't attempt to do anything other than create a SCEVUnknown object 3904 // here. createSCEV only calls getUnknown after checking for all other 3905 // interesting possibilities, and any other code that calls getUnknown 3906 // is doing so in order to hide a value from SCEV canonicalization. 3907 3908 FoldingSetNodeID ID; 3909 ID.AddInteger(scUnknown); 3910 ID.AddPointer(V); 3911 void *IP = nullptr; 3912 if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) { 3913 assert(cast<SCEVUnknown>(S)->getValue() == V && 3914 "Stale SCEVUnknown in uniquing map!"); 3915 return S; 3916 } 3917 SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this, 3918 FirstUnknown); 3919 FirstUnknown = cast<SCEVUnknown>(S); 3920 UniqueSCEVs.InsertNode(S, IP); 3921 return S; 3922 } 3923 3924 //===----------------------------------------------------------------------===// 3925 // Basic SCEV Analysis and PHI Idiom Recognition Code 3926 // 3927 3928 /// Test if values of the given type are analyzable within the SCEV 3929 /// framework. This primarily includes integer types, and it can optionally 3930 /// include pointer types if the ScalarEvolution class has access to 3931 /// target-specific information. 3932 bool ScalarEvolution::isSCEVable(Type *Ty) const { 3933 // Integers and pointers are always SCEVable. 3934 return Ty->isIntOrPtrTy(); 3935 } 3936 3937 /// Return the size in bits of the specified type, for which isSCEVable must 3938 /// return true. 3939 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const { 3940 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3941 if (Ty->isPointerTy()) 3942 return getDataLayout().getIndexTypeSizeInBits(Ty); 3943 return getDataLayout().getTypeSizeInBits(Ty); 3944 } 3945 3946 /// Return a type with the same bitwidth as the given type and which represents 3947 /// how SCEV will treat the given type, for which isSCEVable must return 3948 /// true. For pointer types, this is the pointer index sized integer type. 3949 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const { 3950 assert(isSCEVable(Ty) && "Type is not SCEVable!"); 3951 3952 if (Ty->isIntegerTy()) 3953 return Ty; 3954 3955 // The only other support type is pointer. 3956 assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!"); 3957 return getDataLayout().getIndexType(Ty); 3958 } 3959 3960 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const { 3961 return getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2; 3962 } 3963 3964 const SCEV *ScalarEvolution::getCouldNotCompute() { 3965 return CouldNotCompute.get(); 3966 } 3967 3968 bool ScalarEvolution::checkValidity(const SCEV *S) const { 3969 bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) { 3970 auto *SU = dyn_cast<SCEVUnknown>(S); 3971 return SU && SU->getValue() == nullptr; 3972 }); 3973 3974 return !ContainsNulls; 3975 } 3976 3977 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) { 3978 HasRecMapType::iterator I = HasRecMap.find(S); 3979 if (I != HasRecMap.end()) 3980 return I->second; 3981 3982 bool FoundAddRec = 3983 SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); }); 3984 HasRecMap.insert({S, FoundAddRec}); 3985 return FoundAddRec; 3986 } 3987 3988 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}. 3989 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an 3990 /// offset I, then return {S', I}, else return {\p S, nullptr}. 3991 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) { 3992 const auto *Add = dyn_cast<SCEVAddExpr>(S); 3993 if (!Add) 3994 return {S, nullptr}; 3995 3996 if (Add->getNumOperands() != 2) 3997 return {S, nullptr}; 3998 3999 auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0)); 4000 if (!ConstOp) 4001 return {S, nullptr}; 4002 4003 return {Add->getOperand(1), ConstOp->getValue()}; 4004 } 4005 4006 /// Return the ValueOffsetPair set for \p S. \p S can be represented 4007 /// by the value and offset from any ValueOffsetPair in the set. 4008 ScalarEvolution::ValueOffsetPairSetVector * 4009 ScalarEvolution::getSCEVValues(const SCEV *S) { 4010 ExprValueMapType::iterator SI = ExprValueMap.find_as(S); 4011 if (SI == ExprValueMap.end()) 4012 return nullptr; 4013 #ifndef NDEBUG 4014 if (VerifySCEVMap) { 4015 // Check there is no dangling Value in the set returned. 4016 for (const auto &VE : SI->second) 4017 assert(ValueExprMap.count(VE.first)); 4018 } 4019 #endif 4020 return &SI->second; 4021 } 4022 4023 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V) 4024 /// cannot be used separately. eraseValueFromMap should be used to remove 4025 /// V from ValueExprMap and ExprValueMap at the same time. 4026 void ScalarEvolution::eraseValueFromMap(Value *V) { 4027 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4028 if (I != ValueExprMap.end()) { 4029 const SCEV *S = I->second; 4030 // Remove {V, 0} from the set of ExprValueMap[S] 4031 if (auto *SV = getSCEVValues(S)) 4032 SV->remove({V, nullptr}); 4033 4034 // Remove {V, Offset} from the set of ExprValueMap[Stripped] 4035 const SCEV *Stripped; 4036 ConstantInt *Offset; 4037 std::tie(Stripped, Offset) = splitAddExpr(S); 4038 if (Offset != nullptr) { 4039 if (auto *SV = getSCEVValues(Stripped)) 4040 SV->remove({V, Offset}); 4041 } 4042 ValueExprMap.erase(V); 4043 } 4044 } 4045 4046 /// Check whether value has nuw/nsw/exact set but SCEV does not. 4047 /// TODO: In reality it is better to check the poison recursively 4048 /// but this is better than nothing. 4049 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) { 4050 if (auto *I = dyn_cast<Instruction>(V)) { 4051 if (isa<OverflowingBinaryOperator>(I)) { 4052 if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) { 4053 if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap()) 4054 return true; 4055 if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap()) 4056 return true; 4057 } 4058 } else if (isa<PossiblyExactOperator>(I) && I->isExact()) 4059 return true; 4060 } 4061 return false; 4062 } 4063 4064 /// Return an existing SCEV if it exists, otherwise analyze the expression and 4065 /// create a new one. 4066 const SCEV *ScalarEvolution::getSCEV(Value *V) { 4067 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4068 4069 const SCEV *S = getExistingSCEV(V); 4070 if (S == nullptr) { 4071 S = createSCEV(V); 4072 // During PHI resolution, it is possible to create two SCEVs for the same 4073 // V, so it is needed to double check whether V->S is inserted into 4074 // ValueExprMap before insert S->{V, 0} into ExprValueMap. 4075 std::pair<ValueExprMapType::iterator, bool> Pair = 4076 ValueExprMap.insert({SCEVCallbackVH(V, this), S}); 4077 if (Pair.second && !SCEVLostPoisonFlags(S, V)) { 4078 ExprValueMap[S].insert({V, nullptr}); 4079 4080 // If S == Stripped + Offset, add Stripped -> {V, Offset} into 4081 // ExprValueMap. 4082 const SCEV *Stripped = S; 4083 ConstantInt *Offset = nullptr; 4084 std::tie(Stripped, Offset) = splitAddExpr(S); 4085 // If stripped is SCEVUnknown, don't bother to save 4086 // Stripped -> {V, offset}. It doesn't simplify and sometimes even 4087 // increase the complexity of the expansion code. 4088 // If V is GetElementPtrInst, don't save Stripped -> {V, offset} 4089 // because it may generate add/sub instead of GEP in SCEV expansion. 4090 if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) && 4091 !isa<GetElementPtrInst>(V)) 4092 ExprValueMap[Stripped].insert({V, Offset}); 4093 } 4094 } 4095 return S; 4096 } 4097 4098 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) { 4099 assert(isSCEVable(V->getType()) && "Value is not SCEVable!"); 4100 4101 ValueExprMapType::iterator I = ValueExprMap.find_as(V); 4102 if (I != ValueExprMap.end()) { 4103 const SCEV *S = I->second; 4104 if (checkValidity(S)) 4105 return S; 4106 eraseValueFromMap(V); 4107 forgetMemoizedResults(S); 4108 } 4109 return nullptr; 4110 } 4111 4112 /// Return a SCEV corresponding to -V = -1*V 4113 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V, 4114 SCEV::NoWrapFlags Flags) { 4115 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4116 return getConstant( 4117 cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue()))); 4118 4119 Type *Ty = V->getType(); 4120 Ty = getEffectiveSCEVType(Ty); 4121 return getMulExpr(V, getMinusOne(Ty), Flags); 4122 } 4123 4124 /// If Expr computes ~A, return A else return nullptr 4125 static const SCEV *MatchNotExpr(const SCEV *Expr) { 4126 const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr); 4127 if (!Add || Add->getNumOperands() != 2 || 4128 !Add->getOperand(0)->isAllOnesValue()) 4129 return nullptr; 4130 4131 const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1)); 4132 if (!AddRHS || AddRHS->getNumOperands() != 2 || 4133 !AddRHS->getOperand(0)->isAllOnesValue()) 4134 return nullptr; 4135 4136 return AddRHS->getOperand(1); 4137 } 4138 4139 /// Return a SCEV corresponding to ~V = -1-V 4140 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) { 4141 assert(!V->getType()->isPointerTy() && "Can't negate pointer"); 4142 4143 if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V)) 4144 return getConstant( 4145 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue()))); 4146 4147 // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y) 4148 if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) { 4149 auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) { 4150 SmallVector<const SCEV *, 2> MatchedOperands; 4151 for (const SCEV *Operand : MME->operands()) { 4152 const SCEV *Matched = MatchNotExpr(Operand); 4153 if (!Matched) 4154 return (const SCEV *)nullptr; 4155 MatchedOperands.push_back(Matched); 4156 } 4157 return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()), 4158 MatchedOperands); 4159 }; 4160 if (const SCEV *Replaced = MatchMinMaxNegation(MME)) 4161 return Replaced; 4162 } 4163 4164 Type *Ty = V->getType(); 4165 Ty = getEffectiveSCEVType(Ty); 4166 return getMinusSCEV(getMinusOne(Ty), V); 4167 } 4168 4169 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) { 4170 assert(P->getType()->isPointerTy()); 4171 4172 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) { 4173 // The base of an AddRec is the first operand. 4174 SmallVector<const SCEV *> Ops{AddRec->operands()}; 4175 Ops[0] = removePointerBase(Ops[0]); 4176 // Don't try to transfer nowrap flags for now. We could in some cases 4177 // (for example, if pointer operand of the AddRec is a SCEVUnknown). 4178 return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap); 4179 } 4180 if (auto *Add = dyn_cast<SCEVAddExpr>(P)) { 4181 // The base of an Add is the pointer operand. 4182 SmallVector<const SCEV *> Ops{Add->operands()}; 4183 const SCEV **PtrOp = nullptr; 4184 for (const SCEV *&AddOp : Ops) { 4185 if (AddOp->getType()->isPointerTy()) { 4186 assert(!PtrOp && "Cannot have multiple pointer ops"); 4187 PtrOp = &AddOp; 4188 } 4189 } 4190 *PtrOp = removePointerBase(*PtrOp); 4191 // Don't try to transfer nowrap flags for now. We could in some cases 4192 // (for example, if the pointer operand of the Add is a SCEVUnknown). 4193 return getAddExpr(Ops); 4194 } 4195 // Any other expression must be a pointer base. 4196 return getZero(P->getType()); 4197 } 4198 4199 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS, 4200 SCEV::NoWrapFlags Flags, 4201 unsigned Depth) { 4202 // Fast path: X - X --> 0. 4203 if (LHS == RHS) 4204 return getZero(LHS->getType()); 4205 4206 // If we subtract two pointers with different pointer bases, bail. 4207 // Eventually, we're going to add an assertion to getMulExpr that we 4208 // can't multiply by a pointer. 4209 if (RHS->getType()->isPointerTy()) { 4210 if (!LHS->getType()->isPointerTy() || 4211 getPointerBase(LHS) != getPointerBase(RHS)) 4212 return getCouldNotCompute(); 4213 LHS = removePointerBase(LHS); 4214 RHS = removePointerBase(RHS); 4215 } 4216 4217 // We represent LHS - RHS as LHS + (-1)*RHS. This transformation 4218 // makes it so that we cannot make much use of NUW. 4219 auto AddFlags = SCEV::FlagAnyWrap; 4220 const bool RHSIsNotMinSigned = 4221 !getSignedRangeMin(RHS).isMinSignedValue(); 4222 if (hasFlags(Flags, SCEV::FlagNSW)) { 4223 // Let M be the minimum representable signed value. Then (-1)*RHS 4224 // signed-wraps if and only if RHS is M. That can happen even for 4225 // a NSW subtraction because e.g. (-1)*M signed-wraps even though 4226 // -1 - M does not. So to transfer NSW from LHS - RHS to LHS + 4227 // (-1)*RHS, we need to prove that RHS != M. 4228 // 4229 // If LHS is non-negative and we know that LHS - RHS does not 4230 // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap 4231 // either by proving that RHS > M or that LHS >= 0. 4232 if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) { 4233 AddFlags = SCEV::FlagNSW; 4234 } 4235 } 4236 4237 // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS - 4238 // RHS is NSW and LHS >= 0. 4239 // 4240 // The difficulty here is that the NSW flag may have been proven 4241 // relative to a loop that is to be found in a recurrence in LHS and 4242 // not in RHS. Applying NSW to (-1)*M may then let the NSW have a 4243 // larger scope than intended. 4244 auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap; 4245 4246 return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth); 4247 } 4248 4249 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty, 4250 unsigned Depth) { 4251 Type *SrcTy = V->getType(); 4252 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4253 "Cannot truncate or zero extend with non-integer arguments!"); 4254 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4255 return V; // No conversion 4256 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4257 return getTruncateExpr(V, Ty, Depth); 4258 return getZeroExtendExpr(V, Ty, Depth); 4259 } 4260 4261 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty, 4262 unsigned Depth) { 4263 Type *SrcTy = V->getType(); 4264 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4265 "Cannot truncate or zero extend with non-integer arguments!"); 4266 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4267 return V; // No conversion 4268 if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty)) 4269 return getTruncateExpr(V, Ty, Depth); 4270 return getSignExtendExpr(V, Ty, Depth); 4271 } 4272 4273 const SCEV * 4274 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) { 4275 Type *SrcTy = V->getType(); 4276 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4277 "Cannot noop or zero extend with non-integer arguments!"); 4278 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4279 "getNoopOrZeroExtend cannot truncate!"); 4280 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4281 return V; // No conversion 4282 return getZeroExtendExpr(V, Ty); 4283 } 4284 4285 const SCEV * 4286 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) { 4287 Type *SrcTy = V->getType(); 4288 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4289 "Cannot noop or sign extend with non-integer arguments!"); 4290 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4291 "getNoopOrSignExtend cannot truncate!"); 4292 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4293 return V; // No conversion 4294 return getSignExtendExpr(V, Ty); 4295 } 4296 4297 const SCEV * 4298 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) { 4299 Type *SrcTy = V->getType(); 4300 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4301 "Cannot noop or any extend with non-integer arguments!"); 4302 assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) && 4303 "getNoopOrAnyExtend cannot truncate!"); 4304 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4305 return V; // No conversion 4306 return getAnyExtendExpr(V, Ty); 4307 } 4308 4309 const SCEV * 4310 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) { 4311 Type *SrcTy = V->getType(); 4312 assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() && 4313 "Cannot truncate or noop with non-integer arguments!"); 4314 assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) && 4315 "getTruncateOrNoop cannot extend!"); 4316 if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty)) 4317 return V; // No conversion 4318 return getTruncateExpr(V, Ty); 4319 } 4320 4321 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS, 4322 const SCEV *RHS) { 4323 const SCEV *PromotedLHS = LHS; 4324 const SCEV *PromotedRHS = RHS; 4325 4326 if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType())) 4327 PromotedRHS = getZeroExtendExpr(RHS, LHS->getType()); 4328 else 4329 PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType()); 4330 4331 return getUMaxExpr(PromotedLHS, PromotedRHS); 4332 } 4333 4334 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS, 4335 const SCEV *RHS) { 4336 SmallVector<const SCEV *, 2> Ops = { LHS, RHS }; 4337 return getUMinFromMismatchedTypes(Ops); 4338 } 4339 4340 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes( 4341 SmallVectorImpl<const SCEV *> &Ops) { 4342 assert(!Ops.empty() && "At least one operand must be!"); 4343 // Trivial case. 4344 if (Ops.size() == 1) 4345 return Ops[0]; 4346 4347 // Find the max type first. 4348 Type *MaxType = nullptr; 4349 for (auto *S : Ops) 4350 if (MaxType) 4351 MaxType = getWiderType(MaxType, S->getType()); 4352 else 4353 MaxType = S->getType(); 4354 assert(MaxType && "Failed to find maximum type!"); 4355 4356 // Extend all ops to max type. 4357 SmallVector<const SCEV *, 2> PromotedOps; 4358 for (auto *S : Ops) 4359 PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType)); 4360 4361 // Generate umin. 4362 return getUMinExpr(PromotedOps); 4363 } 4364 4365 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) { 4366 // A pointer operand may evaluate to a nonpointer expression, such as null. 4367 if (!V->getType()->isPointerTy()) 4368 return V; 4369 4370 while (true) { 4371 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 4372 V = AddRec->getStart(); 4373 } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) { 4374 const SCEV *PtrOp = nullptr; 4375 for (const SCEV *AddOp : Add->operands()) { 4376 if (AddOp->getType()->isPointerTy()) { 4377 assert(!PtrOp && "Cannot have multiple pointer ops"); 4378 PtrOp = AddOp; 4379 } 4380 } 4381 assert(PtrOp && "Must have pointer op"); 4382 V = PtrOp; 4383 } else // Not something we can look further into. 4384 return V; 4385 } 4386 } 4387 4388 /// Push users of the given Instruction onto the given Worklist. 4389 static void 4390 PushDefUseChildren(Instruction *I, 4391 SmallVectorImpl<Instruction *> &Worklist) { 4392 // Push the def-use children onto the Worklist stack. 4393 for (User *U : I->users()) 4394 Worklist.push_back(cast<Instruction>(U)); 4395 } 4396 4397 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) { 4398 SmallVector<Instruction *, 16> Worklist; 4399 PushDefUseChildren(PN, Worklist); 4400 4401 SmallPtrSet<Instruction *, 8> Visited; 4402 Visited.insert(PN); 4403 while (!Worklist.empty()) { 4404 Instruction *I = Worklist.pop_back_val(); 4405 if (!Visited.insert(I).second) 4406 continue; 4407 4408 auto It = ValueExprMap.find_as(static_cast<Value *>(I)); 4409 if (It != ValueExprMap.end()) { 4410 const SCEV *Old = It->second; 4411 4412 // Short-circuit the def-use traversal if the symbolic name 4413 // ceases to appear in expressions. 4414 if (Old != SymName && !hasOperand(Old, SymName)) 4415 continue; 4416 4417 // SCEVUnknown for a PHI either means that it has an unrecognized 4418 // structure, it's a PHI that's in the progress of being computed 4419 // by createNodeForPHI, or it's a single-value PHI. In the first case, 4420 // additional loop trip count information isn't going to change anything. 4421 // In the second case, createNodeForPHI will perform the necessary 4422 // updates on its own when it gets to that point. In the third, we do 4423 // want to forget the SCEVUnknown. 4424 if (!isa<PHINode>(I) || 4425 !isa<SCEVUnknown>(Old) || 4426 (I != PN && Old == SymName)) { 4427 eraseValueFromMap(It->first); 4428 forgetMemoizedResults(Old); 4429 } 4430 } 4431 4432 PushDefUseChildren(I, Worklist); 4433 } 4434 } 4435 4436 namespace { 4437 4438 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start 4439 /// expression in case its Loop is L. If it is not L then 4440 /// if IgnoreOtherLoops is true then use AddRec itself 4441 /// otherwise rewrite cannot be done. 4442 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4443 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> { 4444 public: 4445 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 4446 bool IgnoreOtherLoops = true) { 4447 SCEVInitRewriter Rewriter(L, SE); 4448 const SCEV *Result = Rewriter.visit(S); 4449 if (Rewriter.hasSeenLoopVariantSCEVUnknown()) 4450 return SE.getCouldNotCompute(); 4451 return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops 4452 ? SE.getCouldNotCompute() 4453 : Result; 4454 } 4455 4456 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4457 if (!SE.isLoopInvariant(Expr, L)) 4458 SeenLoopVariantSCEVUnknown = true; 4459 return Expr; 4460 } 4461 4462 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4463 // Only re-write AddRecExprs for this loop. 4464 if (Expr->getLoop() == L) 4465 return Expr->getStart(); 4466 SeenOtherLoops = true; 4467 return Expr; 4468 } 4469 4470 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4471 4472 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4473 4474 private: 4475 explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE) 4476 : SCEVRewriteVisitor(SE), L(L) {} 4477 4478 const Loop *L; 4479 bool SeenLoopVariantSCEVUnknown = false; 4480 bool SeenOtherLoops = false; 4481 }; 4482 4483 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post 4484 /// increment expression in case its Loop is L. If it is not L then 4485 /// use AddRec itself. 4486 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done. 4487 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> { 4488 public: 4489 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) { 4490 SCEVPostIncRewriter Rewriter(L, SE); 4491 const SCEV *Result = Rewriter.visit(S); 4492 return Rewriter.hasSeenLoopVariantSCEVUnknown() 4493 ? SE.getCouldNotCompute() 4494 : Result; 4495 } 4496 4497 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4498 if (!SE.isLoopInvariant(Expr, L)) 4499 SeenLoopVariantSCEVUnknown = true; 4500 return Expr; 4501 } 4502 4503 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4504 // Only re-write AddRecExprs for this loop. 4505 if (Expr->getLoop() == L) 4506 return Expr->getPostIncExpr(SE); 4507 SeenOtherLoops = true; 4508 return Expr; 4509 } 4510 4511 bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; } 4512 4513 bool hasSeenOtherLoops() { return SeenOtherLoops; } 4514 4515 private: 4516 explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE) 4517 : SCEVRewriteVisitor(SE), L(L) {} 4518 4519 const Loop *L; 4520 bool SeenLoopVariantSCEVUnknown = false; 4521 bool SeenOtherLoops = false; 4522 }; 4523 4524 /// This class evaluates the compare condition by matching it against the 4525 /// condition of loop latch. If there is a match we assume a true value 4526 /// for the condition while building SCEV nodes. 4527 class SCEVBackedgeConditionFolder 4528 : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> { 4529 public: 4530 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4531 ScalarEvolution &SE) { 4532 bool IsPosBECond = false; 4533 Value *BECond = nullptr; 4534 if (BasicBlock *Latch = L->getLoopLatch()) { 4535 BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator()); 4536 if (BI && BI->isConditional()) { 4537 assert(BI->getSuccessor(0) != BI->getSuccessor(1) && 4538 "Both outgoing branches should not target same header!"); 4539 BECond = BI->getCondition(); 4540 IsPosBECond = BI->getSuccessor(0) == L->getHeader(); 4541 } else { 4542 return S; 4543 } 4544 } 4545 SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE); 4546 return Rewriter.visit(S); 4547 } 4548 4549 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4550 const SCEV *Result = Expr; 4551 bool InvariantF = SE.isLoopInvariant(Expr, L); 4552 4553 if (!InvariantF) { 4554 Instruction *I = cast<Instruction>(Expr->getValue()); 4555 switch (I->getOpcode()) { 4556 case Instruction::Select: { 4557 SelectInst *SI = cast<SelectInst>(I); 4558 Optional<const SCEV *> Res = 4559 compareWithBackedgeCondition(SI->getCondition()); 4560 if (Res.hasValue()) { 4561 bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne(); 4562 Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue()); 4563 } 4564 break; 4565 } 4566 default: { 4567 Optional<const SCEV *> Res = compareWithBackedgeCondition(I); 4568 if (Res.hasValue()) 4569 Result = Res.getValue(); 4570 break; 4571 } 4572 } 4573 } 4574 return Result; 4575 } 4576 4577 private: 4578 explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond, 4579 bool IsPosBECond, ScalarEvolution &SE) 4580 : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond), 4581 IsPositiveBECond(IsPosBECond) {} 4582 4583 Optional<const SCEV *> compareWithBackedgeCondition(Value *IC); 4584 4585 const Loop *L; 4586 /// Loop back condition. 4587 Value *BackedgeCond = nullptr; 4588 /// Set to true if loop back is on positive branch condition. 4589 bool IsPositiveBECond; 4590 }; 4591 4592 Optional<const SCEV *> 4593 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) { 4594 4595 // If value matches the backedge condition for loop latch, 4596 // then return a constant evolution node based on loopback 4597 // branch taken. 4598 if (BackedgeCond == IC) 4599 return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext())) 4600 : SE.getZero(Type::getInt1Ty(SE.getContext())); 4601 return None; 4602 } 4603 4604 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> { 4605 public: 4606 static const SCEV *rewrite(const SCEV *S, const Loop *L, 4607 ScalarEvolution &SE) { 4608 SCEVShiftRewriter Rewriter(L, SE); 4609 const SCEV *Result = Rewriter.visit(S); 4610 return Rewriter.isValid() ? Result : SE.getCouldNotCompute(); 4611 } 4612 4613 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 4614 // Only allow AddRecExprs for this loop. 4615 if (!SE.isLoopInvariant(Expr, L)) 4616 Valid = false; 4617 return Expr; 4618 } 4619 4620 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { 4621 if (Expr->getLoop() == L && Expr->isAffine()) 4622 return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE)); 4623 Valid = false; 4624 return Expr; 4625 } 4626 4627 bool isValid() { return Valid; } 4628 4629 private: 4630 explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE) 4631 : SCEVRewriteVisitor(SE), L(L) {} 4632 4633 const Loop *L; 4634 bool Valid = true; 4635 }; 4636 4637 } // end anonymous namespace 4638 4639 SCEV::NoWrapFlags 4640 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) { 4641 if (!AR->isAffine()) 4642 return SCEV::FlagAnyWrap; 4643 4644 using OBO = OverflowingBinaryOperator; 4645 4646 SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap; 4647 4648 if (!AR->hasNoSignedWrap()) { 4649 ConstantRange AddRecRange = getSignedRange(AR); 4650 ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this)); 4651 4652 auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4653 Instruction::Add, IncRange, OBO::NoSignedWrap); 4654 if (NSWRegion.contains(AddRecRange)) 4655 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW); 4656 } 4657 4658 if (!AR->hasNoUnsignedWrap()) { 4659 ConstantRange AddRecRange = getUnsignedRange(AR); 4660 ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this)); 4661 4662 auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion( 4663 Instruction::Add, IncRange, OBO::NoUnsignedWrap); 4664 if (NUWRegion.contains(AddRecRange)) 4665 Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW); 4666 } 4667 4668 return Result; 4669 } 4670 4671 SCEV::NoWrapFlags 4672 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4673 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4674 4675 if (AR->hasNoSignedWrap()) 4676 return Result; 4677 4678 if (!AR->isAffine()) 4679 return Result; 4680 4681 const SCEV *Step = AR->getStepRecurrence(*this); 4682 const Loop *L = AR->getLoop(); 4683 4684 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4685 // Note that this serves two purposes: It filters out loops that are 4686 // simply not analyzable, and it covers the case where this code is 4687 // being called from within backedge-taken count analysis, such that 4688 // attempting to ask for the backedge-taken count would likely result 4689 // in infinite recursion. In the later case, the analysis code will 4690 // cope with a conservative value, and it will take care to purge 4691 // that value once it has finished. 4692 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4693 4694 // Normally, in the cases we can prove no-overflow via a 4695 // backedge guarding condition, we can also compute a backedge 4696 // taken count for the loop. The exceptions are assumptions and 4697 // guards present in the loop -- SCEV is not great at exploiting 4698 // these to compute max backedge taken counts, but can still use 4699 // these to prove lack of overflow. Use this fact to avoid 4700 // doing extra work that may not pay off. 4701 4702 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4703 AC.assumptions().empty()) 4704 return Result; 4705 4706 // If the backedge is guarded by a comparison with the pre-inc value the 4707 // addrec is safe. Also, if the entry is guarded by a comparison with the 4708 // start value and the backedge is guarded by a comparison with the post-inc 4709 // value, the addrec is safe. 4710 ICmpInst::Predicate Pred; 4711 const SCEV *OverflowLimit = 4712 getSignedOverflowLimitForStep(Step, &Pred, this); 4713 if (OverflowLimit && 4714 (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) || 4715 isKnownOnEveryIteration(Pred, AR, OverflowLimit))) { 4716 Result = setFlags(Result, SCEV::FlagNSW); 4717 } 4718 return Result; 4719 } 4720 SCEV::NoWrapFlags 4721 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) { 4722 SCEV::NoWrapFlags Result = AR->getNoWrapFlags(); 4723 4724 if (AR->hasNoUnsignedWrap()) 4725 return Result; 4726 4727 if (!AR->isAffine()) 4728 return Result; 4729 4730 const SCEV *Step = AR->getStepRecurrence(*this); 4731 unsigned BitWidth = getTypeSizeInBits(AR->getType()); 4732 const Loop *L = AR->getLoop(); 4733 4734 // Check whether the backedge-taken count is SCEVCouldNotCompute. 4735 // Note that this serves two purposes: It filters out loops that are 4736 // simply not analyzable, and it covers the case where this code is 4737 // being called from within backedge-taken count analysis, such that 4738 // attempting to ask for the backedge-taken count would likely result 4739 // in infinite recursion. In the later case, the analysis code will 4740 // cope with a conservative value, and it will take care to purge 4741 // that value once it has finished. 4742 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L); 4743 4744 // Normally, in the cases we can prove no-overflow via a 4745 // backedge guarding condition, we can also compute a backedge 4746 // taken count for the loop. The exceptions are assumptions and 4747 // guards present in the loop -- SCEV is not great at exploiting 4748 // these to compute max backedge taken counts, but can still use 4749 // these to prove lack of overflow. Use this fact to avoid 4750 // doing extra work that may not pay off. 4751 4752 if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards && 4753 AC.assumptions().empty()) 4754 return Result; 4755 4756 // If the backedge is guarded by a comparison with the pre-inc value the 4757 // addrec is safe. Also, if the entry is guarded by a comparison with the 4758 // start value and the backedge is guarded by a comparison with the post-inc 4759 // value, the addrec is safe. 4760 if (isKnownPositive(Step)) { 4761 const SCEV *N = getConstant(APInt::getMinValue(BitWidth) - 4762 getUnsignedRangeMax(Step)); 4763 if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) || 4764 isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) { 4765 Result = setFlags(Result, SCEV::FlagNUW); 4766 } 4767 } 4768 4769 return Result; 4770 } 4771 4772 namespace { 4773 4774 /// Represents an abstract binary operation. This may exist as a 4775 /// normal instruction or constant expression, or may have been 4776 /// derived from an expression tree. 4777 struct BinaryOp { 4778 unsigned Opcode; 4779 Value *LHS; 4780 Value *RHS; 4781 bool IsNSW = false; 4782 bool IsNUW = false; 4783 4784 /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or 4785 /// constant expression. 4786 Operator *Op = nullptr; 4787 4788 explicit BinaryOp(Operator *Op) 4789 : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)), 4790 Op(Op) { 4791 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) { 4792 IsNSW = OBO->hasNoSignedWrap(); 4793 IsNUW = OBO->hasNoUnsignedWrap(); 4794 } 4795 } 4796 4797 explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false, 4798 bool IsNUW = false) 4799 : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {} 4800 }; 4801 4802 } // end anonymous namespace 4803 4804 /// Try to map \p V into a BinaryOp, and return \c None on failure. 4805 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) { 4806 auto *Op = dyn_cast<Operator>(V); 4807 if (!Op) 4808 return None; 4809 4810 // Implementation detail: all the cleverness here should happen without 4811 // creating new SCEV expressions -- our caller knowns tricks to avoid creating 4812 // SCEV expressions when possible, and we should not break that. 4813 4814 switch (Op->getOpcode()) { 4815 case Instruction::Add: 4816 case Instruction::Sub: 4817 case Instruction::Mul: 4818 case Instruction::UDiv: 4819 case Instruction::URem: 4820 case Instruction::And: 4821 case Instruction::Or: 4822 case Instruction::AShr: 4823 case Instruction::Shl: 4824 return BinaryOp(Op); 4825 4826 case Instruction::Xor: 4827 if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1))) 4828 // If the RHS of the xor is a signmask, then this is just an add. 4829 // Instcombine turns add of signmask into xor as a strength reduction step. 4830 if (RHSC->getValue().isSignMask()) 4831 return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1)); 4832 return BinaryOp(Op); 4833 4834 case Instruction::LShr: 4835 // Turn logical shift right of a constant into a unsigned divide. 4836 if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) { 4837 uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth(); 4838 4839 // If the shift count is not less than the bitwidth, the result of 4840 // the shift is undefined. Don't try to analyze it, because the 4841 // resolution chosen here may differ from the resolution chosen in 4842 // other parts of the compiler. 4843 if (SA->getValue().ult(BitWidth)) { 4844 Constant *X = 4845 ConstantInt::get(SA->getContext(), 4846 APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 4847 return BinaryOp(Instruction::UDiv, Op->getOperand(0), X); 4848 } 4849 } 4850 return BinaryOp(Op); 4851 4852 case Instruction::ExtractValue: { 4853 auto *EVI = cast<ExtractValueInst>(Op); 4854 if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0) 4855 break; 4856 4857 auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand()); 4858 if (!WO) 4859 break; 4860 4861 Instruction::BinaryOps BinOp = WO->getBinaryOp(); 4862 bool Signed = WO->isSigned(); 4863 // TODO: Should add nuw/nsw flags for mul as well. 4864 if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT)) 4865 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS()); 4866 4867 // Now that we know that all uses of the arithmetic-result component of 4868 // CI are guarded by the overflow check, we can go ahead and pretend 4869 // that the arithmetic is non-overflowing. 4870 return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(), 4871 /* IsNSW = */ Signed, /* IsNUW = */ !Signed); 4872 } 4873 4874 default: 4875 break; 4876 } 4877 4878 // Recognise intrinsic loop.decrement.reg, and as this has exactly the same 4879 // semantics as a Sub, return a binary sub expression. 4880 if (auto *II = dyn_cast<IntrinsicInst>(V)) 4881 if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg) 4882 return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1)); 4883 4884 return None; 4885 } 4886 4887 /// Helper function to createAddRecFromPHIWithCasts. We have a phi 4888 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via 4889 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the 4890 /// way. This function checks if \p Op, an operand of this SCEVAddExpr, 4891 /// follows one of the following patterns: 4892 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4893 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) 4894 /// If the SCEV expression of \p Op conforms with one of the expected patterns 4895 /// we return the type of the truncation operation, and indicate whether the 4896 /// truncated type should be treated as signed/unsigned by setting 4897 /// \p Signed to true/false, respectively. 4898 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI, 4899 bool &Signed, ScalarEvolution &SE) { 4900 // The case where Op == SymbolicPHI (that is, with no type conversions on 4901 // the way) is handled by the regular add recurrence creating logic and 4902 // would have already been triggered in createAddRecForPHI. Reaching it here 4903 // means that createAddRecFromPHI had failed for this PHI before (e.g., 4904 // because one of the other operands of the SCEVAddExpr updating this PHI is 4905 // not invariant). 4906 // 4907 // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in 4908 // this case predicates that allow us to prove that Op == SymbolicPHI will 4909 // be added. 4910 if (Op == SymbolicPHI) 4911 return nullptr; 4912 4913 unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType()); 4914 unsigned NewBits = SE.getTypeSizeInBits(Op->getType()); 4915 if (SourceBits != NewBits) 4916 return nullptr; 4917 4918 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op); 4919 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op); 4920 if (!SExt && !ZExt) 4921 return nullptr; 4922 const SCEVTruncateExpr *Trunc = 4923 SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand()) 4924 : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand()); 4925 if (!Trunc) 4926 return nullptr; 4927 const SCEV *X = Trunc->getOperand(); 4928 if (X != SymbolicPHI) 4929 return nullptr; 4930 Signed = SExt != nullptr; 4931 return Trunc->getType(); 4932 } 4933 4934 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) { 4935 if (!PN->getType()->isIntegerTy()) 4936 return nullptr; 4937 const Loop *L = LI.getLoopFor(PN->getParent()); 4938 if (!L || L->getHeader() != PN->getParent()) 4939 return nullptr; 4940 return L; 4941 } 4942 4943 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the 4944 // computation that updates the phi follows the following pattern: 4945 // (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum 4946 // which correspond to a phi->trunc->sext/zext->add->phi update chain. 4947 // If so, try to see if it can be rewritten as an AddRecExpr under some 4948 // Predicates. If successful, return them as a pair. Also cache the results 4949 // of the analysis. 4950 // 4951 // Example usage scenario: 4952 // Say the Rewriter is called for the following SCEV: 4953 // 8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4954 // where: 4955 // %X = phi i64 (%Start, %BEValue) 4956 // It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X), 4957 // and call this function with %SymbolicPHI = %X. 4958 // 4959 // The analysis will find that the value coming around the backedge has 4960 // the following SCEV: 4961 // BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step) 4962 // Upon concluding that this matches the desired pattern, the function 4963 // will return the pair {NewAddRec, SmallPredsVec} where: 4964 // NewAddRec = {%Start,+,%Step} 4965 // SmallPredsVec = {P1, P2, P3} as follows: 4966 // P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw> 4967 // P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64) 4968 // P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64) 4969 // The returned pair means that SymbolicPHI can be rewritten into NewAddRec 4970 // under the predicates {P1,P2,P3}. 4971 // This predicated rewrite will be cached in PredicatedSCEVRewrites: 4972 // PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)} 4973 // 4974 // TODO's: 4975 // 4976 // 1) Extend the Induction descriptor to also support inductions that involve 4977 // casts: When needed (namely, when we are called in the context of the 4978 // vectorizer induction analysis), a Set of cast instructions will be 4979 // populated by this method, and provided back to isInductionPHI. This is 4980 // needed to allow the vectorizer to properly record them to be ignored by 4981 // the cost model and to avoid vectorizing them (otherwise these casts, 4982 // which are redundant under the runtime overflow checks, will be 4983 // vectorized, which can be costly). 4984 // 4985 // 2) Support additional induction/PHISCEV patterns: We also want to support 4986 // inductions where the sext-trunc / zext-trunc operations (partly) occur 4987 // after the induction update operation (the induction increment): 4988 // 4989 // (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix) 4990 // which correspond to a phi->add->trunc->sext/zext->phi update chain. 4991 // 4992 // (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix) 4993 // which correspond to a phi->trunc->add->sext/zext->phi update chain. 4994 // 4995 // 3) Outline common code with createAddRecFromPHI to avoid duplication. 4996 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 4997 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) { 4998 SmallVector<const SCEVPredicate *, 3> Predicates; 4999 5000 // *** Part1: Analyze if we have a phi-with-cast pattern for which we can 5001 // return an AddRec expression under some predicate. 5002 5003 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5004 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5005 assert(L && "Expecting an integer loop header phi"); 5006 5007 // The loop may have multiple entrances or multiple exits; we can analyze 5008 // this phi as an addrec if it has a unique entry value and a unique 5009 // backedge value. 5010 Value *BEValueV = nullptr, *StartValueV = nullptr; 5011 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5012 Value *V = PN->getIncomingValue(i); 5013 if (L->contains(PN->getIncomingBlock(i))) { 5014 if (!BEValueV) { 5015 BEValueV = V; 5016 } else if (BEValueV != V) { 5017 BEValueV = nullptr; 5018 break; 5019 } 5020 } else if (!StartValueV) { 5021 StartValueV = V; 5022 } else if (StartValueV != V) { 5023 StartValueV = nullptr; 5024 break; 5025 } 5026 } 5027 if (!BEValueV || !StartValueV) 5028 return None; 5029 5030 const SCEV *BEValue = getSCEV(BEValueV); 5031 5032 // If the value coming around the backedge is an add with the symbolic 5033 // value we just inserted, possibly with casts that we can ignore under 5034 // an appropriate runtime guard, then we found a simple induction variable! 5035 const auto *Add = dyn_cast<SCEVAddExpr>(BEValue); 5036 if (!Add) 5037 return None; 5038 5039 // If there is a single occurrence of the symbolic value, possibly 5040 // casted, replace it with a recurrence. 5041 unsigned FoundIndex = Add->getNumOperands(); 5042 Type *TruncTy = nullptr; 5043 bool Signed; 5044 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5045 if ((TruncTy = 5046 isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this))) 5047 if (FoundIndex == e) { 5048 FoundIndex = i; 5049 break; 5050 } 5051 5052 if (FoundIndex == Add->getNumOperands()) 5053 return None; 5054 5055 // Create an add with everything but the specified operand. 5056 SmallVector<const SCEV *, 8> Ops; 5057 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5058 if (i != FoundIndex) 5059 Ops.push_back(Add->getOperand(i)); 5060 const SCEV *Accum = getAddExpr(Ops); 5061 5062 // The runtime checks will not be valid if the step amount is 5063 // varying inside the loop. 5064 if (!isLoopInvariant(Accum, L)) 5065 return None; 5066 5067 // *** Part2: Create the predicates 5068 5069 // Analysis was successful: we have a phi-with-cast pattern for which we 5070 // can return an AddRec expression under the following predicates: 5071 // 5072 // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum) 5073 // fits within the truncated type (does not overflow) for i = 0 to n-1. 5074 // P2: An Equal predicate that guarantees that 5075 // Start = (Ext ix (Trunc iy (Start) to ix) to iy) 5076 // P3: An Equal predicate that guarantees that 5077 // Accum = (Ext ix (Trunc iy (Accum) to ix) to iy) 5078 // 5079 // As we next prove, the above predicates guarantee that: 5080 // Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy) 5081 // 5082 // 5083 // More formally, we want to prove that: 5084 // Expr(i+1) = Start + (i+1) * Accum 5085 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5086 // 5087 // Given that: 5088 // 1) Expr(0) = Start 5089 // 2) Expr(1) = Start + Accum 5090 // = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2 5091 // 3) Induction hypothesis (step i): 5092 // Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum 5093 // 5094 // Proof: 5095 // Expr(i+1) = 5096 // = Start + (i+1)*Accum 5097 // = (Start + i*Accum) + Accum 5098 // = Expr(i) + Accum 5099 // = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum 5100 // :: from step i 5101 // 5102 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum 5103 // 5104 // = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) 5105 // + (Ext ix (Trunc iy (Accum) to ix) to iy) 5106 // + Accum :: from P3 5107 // 5108 // = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy) 5109 // + Accum :: from P1: Ext(x)+Ext(y)=>Ext(x+y) 5110 // 5111 // = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum 5112 // = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum 5113 // 5114 // By induction, the same applies to all iterations 1<=i<n: 5115 // 5116 5117 // Create a truncated addrec for which we will add a no overflow check (P1). 5118 const SCEV *StartVal = getSCEV(StartValueV); 5119 const SCEV *PHISCEV = 5120 getAddRecExpr(getTruncateExpr(StartVal, TruncTy), 5121 getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap); 5122 5123 // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr. 5124 // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV 5125 // will be constant. 5126 // 5127 // If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't 5128 // add P1. 5129 if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) { 5130 SCEVWrapPredicate::IncrementWrapFlags AddedFlags = 5131 Signed ? SCEVWrapPredicate::IncrementNSSW 5132 : SCEVWrapPredicate::IncrementNUSW; 5133 const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags); 5134 Predicates.push_back(AddRecPred); 5135 } 5136 5137 // Create the Equal Predicates P2,P3: 5138 5139 // It is possible that the predicates P2 and/or P3 are computable at 5140 // compile time due to StartVal and/or Accum being constants. 5141 // If either one is, then we can check that now and escape if either P2 5142 // or P3 is false. 5143 5144 // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy) 5145 // for each of StartVal and Accum 5146 auto getExtendedExpr = [&](const SCEV *Expr, 5147 bool CreateSignExtend) -> const SCEV * { 5148 assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant"); 5149 const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy); 5150 const SCEV *ExtendedExpr = 5151 CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType()) 5152 : getZeroExtendExpr(TruncatedExpr, Expr->getType()); 5153 return ExtendedExpr; 5154 }; 5155 5156 // Given: 5157 // ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy 5158 // = getExtendedExpr(Expr) 5159 // Determine whether the predicate P: Expr == ExtendedExpr 5160 // is known to be false at compile time 5161 auto PredIsKnownFalse = [&](const SCEV *Expr, 5162 const SCEV *ExtendedExpr) -> bool { 5163 return Expr != ExtendedExpr && 5164 isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr); 5165 }; 5166 5167 const SCEV *StartExtended = getExtendedExpr(StartVal, Signed); 5168 if (PredIsKnownFalse(StartVal, StartExtended)) { 5169 LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";); 5170 return None; 5171 } 5172 5173 // The Step is always Signed (because the overflow checks are either 5174 // NSSW or NUSW) 5175 const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true); 5176 if (PredIsKnownFalse(Accum, AccumExtended)) { 5177 LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";); 5178 return None; 5179 } 5180 5181 auto AppendPredicate = [&](const SCEV *Expr, 5182 const SCEV *ExtendedExpr) -> void { 5183 if (Expr != ExtendedExpr && 5184 !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) { 5185 const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr); 5186 LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred); 5187 Predicates.push_back(Pred); 5188 } 5189 }; 5190 5191 AppendPredicate(StartVal, StartExtended); 5192 AppendPredicate(Accum, AccumExtended); 5193 5194 // *** Part3: Predicates are ready. Now go ahead and create the new addrec in 5195 // which the casts had been folded away. The caller can rewrite SymbolicPHI 5196 // into NewAR if it will also add the runtime overflow checks specified in 5197 // Predicates. 5198 auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap); 5199 5200 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite = 5201 std::make_pair(NewAR, Predicates); 5202 // Remember the result of the analysis for this SCEV at this locayyytion. 5203 PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite; 5204 return PredRewrite; 5205 } 5206 5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5208 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) { 5209 auto *PN = cast<PHINode>(SymbolicPHI->getValue()); 5210 const Loop *L = isIntegerLoopHeaderPHI(PN, LI); 5211 if (!L) 5212 return None; 5213 5214 // Check to see if we already analyzed this PHI. 5215 auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L}); 5216 if (I != PredicatedSCEVRewrites.end()) { 5217 std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite = 5218 I->second; 5219 // Analysis was done before and failed to create an AddRec: 5220 if (Rewrite.first == SymbolicPHI) 5221 return None; 5222 // Analysis was done before and succeeded to create an AddRec under 5223 // a predicate: 5224 assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec"); 5225 assert(!(Rewrite.second).empty() && "Expected to find Predicates"); 5226 return Rewrite; 5227 } 5228 5229 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 5230 Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI); 5231 5232 // Record in the cache that the analysis failed 5233 if (!Rewrite) { 5234 SmallVector<const SCEVPredicate *, 3> Predicates; 5235 PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates}; 5236 return None; 5237 } 5238 5239 return Rewrite; 5240 } 5241 5242 // FIXME: This utility is currently required because the Rewriter currently 5243 // does not rewrite this expression: 5244 // {0, +, (sext ix (trunc iy to ix) to iy)} 5245 // into {0, +, %step}, 5246 // even when the following Equal predicate exists: 5247 // "%step == (sext ix (trunc iy to ix) to iy)". 5248 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds( 5249 const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const { 5250 if (AR1 == AR2) 5251 return true; 5252 5253 auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool { 5254 if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) && 5255 !Preds.implies(SE.getEqualPredicate(Expr2, Expr1))) 5256 return false; 5257 return true; 5258 }; 5259 5260 if (!areExprsEqual(AR1->getStart(), AR2->getStart()) || 5261 !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE))) 5262 return false; 5263 return true; 5264 } 5265 5266 /// A helper function for createAddRecFromPHI to handle simple cases. 5267 /// 5268 /// This function tries to find an AddRec expression for the simplest (yet most 5269 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)). 5270 /// If it fails, createAddRecFromPHI will use a more general, but slow, 5271 /// technique for finding the AddRec expression. 5272 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN, 5273 Value *BEValueV, 5274 Value *StartValueV) { 5275 const Loop *L = LI.getLoopFor(PN->getParent()); 5276 assert(L && L->getHeader() == PN->getParent()); 5277 assert(BEValueV && StartValueV); 5278 5279 auto BO = MatchBinaryOp(BEValueV, DT); 5280 if (!BO) 5281 return nullptr; 5282 5283 if (BO->Opcode != Instruction::Add) 5284 return nullptr; 5285 5286 const SCEV *Accum = nullptr; 5287 if (BO->LHS == PN && L->isLoopInvariant(BO->RHS)) 5288 Accum = getSCEV(BO->RHS); 5289 else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS)) 5290 Accum = getSCEV(BO->LHS); 5291 5292 if (!Accum) 5293 return nullptr; 5294 5295 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5296 if (BO->IsNUW) 5297 Flags = setFlags(Flags, SCEV::FlagNUW); 5298 if (BO->IsNSW) 5299 Flags = setFlags(Flags, SCEV::FlagNSW); 5300 5301 const SCEV *StartVal = getSCEV(StartValueV); 5302 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5303 5304 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5305 5306 // We can add Flags to the post-inc expression only if we 5307 // know that it is *undefined behavior* for BEValueV to 5308 // overflow. 5309 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5310 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5311 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5312 5313 return PHISCEV; 5314 } 5315 5316 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) { 5317 const Loop *L = LI.getLoopFor(PN->getParent()); 5318 if (!L || L->getHeader() != PN->getParent()) 5319 return nullptr; 5320 5321 // The loop may have multiple entrances or multiple exits; we can analyze 5322 // this phi as an addrec if it has a unique entry value and a unique 5323 // backedge value. 5324 Value *BEValueV = nullptr, *StartValueV = nullptr; 5325 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 5326 Value *V = PN->getIncomingValue(i); 5327 if (L->contains(PN->getIncomingBlock(i))) { 5328 if (!BEValueV) { 5329 BEValueV = V; 5330 } else if (BEValueV != V) { 5331 BEValueV = nullptr; 5332 break; 5333 } 5334 } else if (!StartValueV) { 5335 StartValueV = V; 5336 } else if (StartValueV != V) { 5337 StartValueV = nullptr; 5338 break; 5339 } 5340 } 5341 if (!BEValueV || !StartValueV) 5342 return nullptr; 5343 5344 assert(ValueExprMap.find_as(PN) == ValueExprMap.end() && 5345 "PHI node already processed?"); 5346 5347 // First, try to find AddRec expression without creating a fictituos symbolic 5348 // value for PN. 5349 if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV)) 5350 return S; 5351 5352 // Handle PHI node value symbolically. 5353 const SCEV *SymbolicName = getUnknown(PN); 5354 ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName}); 5355 5356 // Using this symbolic name for the PHI, analyze the value coming around 5357 // the back-edge. 5358 const SCEV *BEValue = getSCEV(BEValueV); 5359 5360 // NOTE: If BEValue is loop invariant, we know that the PHI node just 5361 // has a special value for the first iteration of the loop. 5362 5363 // If the value coming around the backedge is an add with the symbolic 5364 // value we just inserted, then we found a simple induction variable! 5365 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) { 5366 // If there is a single occurrence of the symbolic value, replace it 5367 // with a recurrence. 5368 unsigned FoundIndex = Add->getNumOperands(); 5369 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5370 if (Add->getOperand(i) == SymbolicName) 5371 if (FoundIndex == e) { 5372 FoundIndex = i; 5373 break; 5374 } 5375 5376 if (FoundIndex != Add->getNumOperands()) { 5377 // Create an add with everything but the specified operand. 5378 SmallVector<const SCEV *, 8> Ops; 5379 for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i) 5380 if (i != FoundIndex) 5381 Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i), 5382 L, *this)); 5383 const SCEV *Accum = getAddExpr(Ops); 5384 5385 // This is not a valid addrec if the step amount is varying each 5386 // loop iteration, but is not itself an addrec in this loop. 5387 if (isLoopInvariant(Accum, L) || 5388 (isa<SCEVAddRecExpr>(Accum) && 5389 cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) { 5390 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 5391 5392 if (auto BO = MatchBinaryOp(BEValueV, DT)) { 5393 if (BO->Opcode == Instruction::Add && BO->LHS == PN) { 5394 if (BO->IsNUW) 5395 Flags = setFlags(Flags, SCEV::FlagNUW); 5396 if (BO->IsNSW) 5397 Flags = setFlags(Flags, SCEV::FlagNSW); 5398 } 5399 } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) { 5400 // If the increment is an inbounds GEP, then we know the address 5401 // space cannot be wrapped around. We cannot make any guarantee 5402 // about signed or unsigned overflow because pointers are 5403 // unsigned but we may have a negative index from the base 5404 // pointer. We can guarantee that no unsigned wrap occurs if the 5405 // indices form a positive value. 5406 if (GEP->isInBounds() && GEP->getOperand(0) == PN) { 5407 Flags = setFlags(Flags, SCEV::FlagNW); 5408 5409 const SCEV *Ptr = getSCEV(GEP->getPointerOperand()); 5410 if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr))) 5411 Flags = setFlags(Flags, SCEV::FlagNUW); 5412 } 5413 5414 // We cannot transfer nuw and nsw flags from subtraction 5415 // operations -- sub nuw X, Y is not the same as add nuw X, -Y 5416 // for instance. 5417 } 5418 5419 const SCEV *StartVal = getSCEV(StartValueV); 5420 const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags); 5421 5422 // Okay, for the entire analysis of this edge we assumed the PHI 5423 // to be symbolic. We now need to go back and purge all of the 5424 // entries for the scalars that use the symbolic expression. 5425 forgetSymbolicName(PN, SymbolicName); 5426 ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV; 5427 5428 // We can add Flags to the post-inc expression only if we 5429 // know that it is *undefined behavior* for BEValueV to 5430 // overflow. 5431 if (auto *BEInst = dyn_cast<Instruction>(BEValueV)) 5432 if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L)) 5433 (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags); 5434 5435 return PHISCEV; 5436 } 5437 } 5438 } else { 5439 // Otherwise, this could be a loop like this: 5440 // i = 0; for (j = 1; ..; ++j) { .... i = j; } 5441 // In this case, j = {1,+,1} and BEValue is j. 5442 // Because the other in-value of i (0) fits the evolution of BEValue 5443 // i really is an addrec evolution. 5444 // 5445 // We can generalize this saying that i is the shifted value of BEValue 5446 // by one iteration: 5447 // PHI(f(0), f({1,+,1})) --> f({0,+,1}) 5448 const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this); 5449 const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false); 5450 if (Shifted != getCouldNotCompute() && 5451 Start != getCouldNotCompute()) { 5452 const SCEV *StartVal = getSCEV(StartValueV); 5453 if (Start == StartVal) { 5454 // Okay, for the entire analysis of this edge we assumed the PHI 5455 // to be symbolic. We now need to go back and purge all of the 5456 // entries for the scalars that use the symbolic expression. 5457 forgetSymbolicName(PN, SymbolicName); 5458 ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted; 5459 return Shifted; 5460 } 5461 } 5462 } 5463 5464 // Remove the temporary PHI node SCEV that has been inserted while intending 5465 // to create an AddRecExpr for this PHI node. We can not keep this temporary 5466 // as it will prevent later (possibly simpler) SCEV expressions to be added 5467 // to the ValueExprMap. 5468 eraseValueFromMap(PN); 5469 5470 return nullptr; 5471 } 5472 5473 // Checks if the SCEV S is available at BB. S is considered available at BB 5474 // if S can be materialized at BB without introducing a fault. 5475 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S, 5476 BasicBlock *BB) { 5477 struct CheckAvailable { 5478 bool TraversalDone = false; 5479 bool Available = true; 5480 5481 const Loop *L = nullptr; // The loop BB is in (can be nullptr) 5482 BasicBlock *BB = nullptr; 5483 DominatorTree &DT; 5484 5485 CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT) 5486 : L(L), BB(BB), DT(DT) {} 5487 5488 bool setUnavailable() { 5489 TraversalDone = true; 5490 Available = false; 5491 return false; 5492 } 5493 5494 bool follow(const SCEV *S) { 5495 switch (S->getSCEVType()) { 5496 case scConstant: 5497 case scPtrToInt: 5498 case scTruncate: 5499 case scZeroExtend: 5500 case scSignExtend: 5501 case scAddExpr: 5502 case scMulExpr: 5503 case scUMaxExpr: 5504 case scSMaxExpr: 5505 case scUMinExpr: 5506 case scSMinExpr: 5507 // These expressions are available if their operand(s) is/are. 5508 return true; 5509 5510 case scAddRecExpr: { 5511 // We allow add recurrences that are on the loop BB is in, or some 5512 // outer loop. This guarantees availability because the value of the 5513 // add recurrence at BB is simply the "current" value of the induction 5514 // variable. We can relax this in the future; for instance an add 5515 // recurrence on a sibling dominating loop is also available at BB. 5516 const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop(); 5517 if (L && (ARLoop == L || ARLoop->contains(L))) 5518 return true; 5519 5520 return setUnavailable(); 5521 } 5522 5523 case scUnknown: { 5524 // For SCEVUnknown, we check for simple dominance. 5525 const auto *SU = cast<SCEVUnknown>(S); 5526 Value *V = SU->getValue(); 5527 5528 if (isa<Argument>(V)) 5529 return false; 5530 5531 if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB)) 5532 return false; 5533 5534 return setUnavailable(); 5535 } 5536 5537 case scUDivExpr: 5538 case scCouldNotCompute: 5539 // We do not try to smart about these at all. 5540 return setUnavailable(); 5541 } 5542 llvm_unreachable("Unknown SCEV kind!"); 5543 } 5544 5545 bool isDone() { return TraversalDone; } 5546 }; 5547 5548 CheckAvailable CA(L, BB, DT); 5549 SCEVTraversal<CheckAvailable> ST(CA); 5550 5551 ST.visitAll(S); 5552 return CA.Available; 5553 } 5554 5555 // Try to match a control flow sequence that branches out at BI and merges back 5556 // at Merge into a "C ? LHS : RHS" select pattern. Return true on a successful 5557 // match. 5558 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge, 5559 Value *&C, Value *&LHS, Value *&RHS) { 5560 C = BI->getCondition(); 5561 5562 BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0)); 5563 BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1)); 5564 5565 if (!LeftEdge.isSingleEdge()) 5566 return false; 5567 5568 assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()"); 5569 5570 Use &LeftUse = Merge->getOperandUse(0); 5571 Use &RightUse = Merge->getOperandUse(1); 5572 5573 if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) { 5574 LHS = LeftUse; 5575 RHS = RightUse; 5576 return true; 5577 } 5578 5579 if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) { 5580 LHS = RightUse; 5581 RHS = LeftUse; 5582 return true; 5583 } 5584 5585 return false; 5586 } 5587 5588 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) { 5589 auto IsReachable = 5590 [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); }; 5591 if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) { 5592 const Loop *L = LI.getLoopFor(PN->getParent()); 5593 5594 // We don't want to break LCSSA, even in a SCEV expression tree. 5595 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) 5596 if (LI.getLoopFor(PN->getIncomingBlock(i)) != L) 5597 return nullptr; 5598 5599 // Try to match 5600 // 5601 // br %cond, label %left, label %right 5602 // left: 5603 // br label %merge 5604 // right: 5605 // br label %merge 5606 // merge: 5607 // V = phi [ %x, %left ], [ %y, %right ] 5608 // 5609 // as "select %cond, %x, %y" 5610 5611 BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock(); 5612 assert(IDom && "At least the entry block should dominate PN"); 5613 5614 auto *BI = dyn_cast<BranchInst>(IDom->getTerminator()); 5615 Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr; 5616 5617 if (BI && BI->isConditional() && 5618 BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) && 5619 IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) && 5620 IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent())) 5621 return createNodeForSelectOrPHI(PN, Cond, LHS, RHS); 5622 } 5623 5624 return nullptr; 5625 } 5626 5627 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) { 5628 if (const SCEV *S = createAddRecFromPHI(PN)) 5629 return S; 5630 5631 if (const SCEV *S = createNodeFromSelectLikePHI(PN)) 5632 return S; 5633 5634 // If the PHI has a single incoming value, follow that value, unless the 5635 // PHI's incoming blocks are in a different loop, in which case doing so 5636 // risks breaking LCSSA form. Instcombine would normally zap these, but 5637 // it doesn't have DominatorTree information, so it may miss cases. 5638 if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC})) 5639 if (LI.replacementPreservesLCSSAForm(PN, V)) 5640 return getSCEV(V); 5641 5642 // If it's not a loop phi, we can't handle it yet. 5643 return getUnknown(PN); 5644 } 5645 5646 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I, 5647 Value *Cond, 5648 Value *TrueVal, 5649 Value *FalseVal) { 5650 // Handle "constant" branch or select. This can occur for instance when a 5651 // loop pass transforms an inner loop and moves on to process the outer loop. 5652 if (auto *CI = dyn_cast<ConstantInt>(Cond)) 5653 return getSCEV(CI->isOne() ? TrueVal : FalseVal); 5654 5655 // Try to match some simple smax or umax patterns. 5656 auto *ICI = dyn_cast<ICmpInst>(Cond); 5657 if (!ICI) 5658 return getUnknown(I); 5659 5660 Value *LHS = ICI->getOperand(0); 5661 Value *RHS = ICI->getOperand(1); 5662 5663 switch (ICI->getPredicate()) { 5664 case ICmpInst::ICMP_SLT: 5665 case ICmpInst::ICMP_SLE: 5666 case ICmpInst::ICMP_ULT: 5667 case ICmpInst::ICMP_ULE: 5668 std::swap(LHS, RHS); 5669 LLVM_FALLTHROUGH; 5670 case ICmpInst::ICMP_SGT: 5671 case ICmpInst::ICMP_SGE: 5672 case ICmpInst::ICMP_UGT: 5673 case ICmpInst::ICMP_UGE: 5674 // a > b ? a+x : b+x -> max(a, b)+x 5675 // a > b ? b+x : a+x -> min(a, b)+x 5676 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) { 5677 bool Signed = ICI->isSigned(); 5678 const SCEV *LA = getSCEV(TrueVal); 5679 const SCEV *RA = getSCEV(FalseVal); 5680 const SCEV *LS = getSCEV(LHS); 5681 const SCEV *RS = getSCEV(RHS); 5682 if (LA->getType()->isPointerTy()) { 5683 // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA. 5684 // Need to make sure we can't produce weird expressions involving 5685 // negated pointers. 5686 if (LA == LS && RA == RS) 5687 return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS); 5688 if (LA == RS && RA == LS) 5689 return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS); 5690 } 5691 auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * { 5692 if (Op->getType()->isPointerTy()) { 5693 Op = getLosslessPtrToIntExpr(Op); 5694 if (isa<SCEVCouldNotCompute>(Op)) 5695 return Op; 5696 } 5697 if (Signed) 5698 Op = getNoopOrSignExtend(Op, I->getType()); 5699 else 5700 Op = getNoopOrZeroExtend(Op, I->getType()); 5701 return Op; 5702 }; 5703 LS = CoerceOperand(LS); 5704 RS = CoerceOperand(RS); 5705 if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS)) 5706 break; 5707 const SCEV *LDiff = getMinusSCEV(LA, LS); 5708 const SCEV *RDiff = getMinusSCEV(RA, RS); 5709 if (LDiff == RDiff) 5710 return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS), 5711 LDiff); 5712 LDiff = getMinusSCEV(LA, RS); 5713 RDiff = getMinusSCEV(RA, LS); 5714 if (LDiff == RDiff) 5715 return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS), 5716 LDiff); 5717 } 5718 break; 5719 case ICmpInst::ICMP_NE: 5720 // n != 0 ? n+x : 1+x -> umax(n, 1)+x 5721 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5722 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5723 const SCEV *One = getOne(I->getType()); 5724 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5725 const SCEV *LA = getSCEV(TrueVal); 5726 const SCEV *RA = getSCEV(FalseVal); 5727 const SCEV *LDiff = getMinusSCEV(LA, LS); 5728 const SCEV *RDiff = getMinusSCEV(RA, One); 5729 if (LDiff == RDiff) 5730 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5731 } 5732 break; 5733 case ICmpInst::ICMP_EQ: 5734 // n == 0 ? 1+x : n+x -> umax(n, 1)+x 5735 if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) && 5736 isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) { 5737 const SCEV *One = getOne(I->getType()); 5738 const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType()); 5739 const SCEV *LA = getSCEV(TrueVal); 5740 const SCEV *RA = getSCEV(FalseVal); 5741 const SCEV *LDiff = getMinusSCEV(LA, One); 5742 const SCEV *RDiff = getMinusSCEV(RA, LS); 5743 if (LDiff == RDiff) 5744 return getAddExpr(getUMaxExpr(One, LS), LDiff); 5745 } 5746 break; 5747 default: 5748 break; 5749 } 5750 5751 return getUnknown(I); 5752 } 5753 5754 /// Expand GEP instructions into add and multiply operations. This allows them 5755 /// to be analyzed by regular SCEV code. 5756 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) { 5757 // Don't attempt to analyze GEPs over unsized objects. 5758 if (!GEP->getSourceElementType()->isSized()) 5759 return getUnknown(GEP); 5760 5761 SmallVector<const SCEV *, 4> IndexExprs; 5762 for (Value *Index : GEP->indices()) 5763 IndexExprs.push_back(getSCEV(Index)); 5764 return getGEPExpr(GEP, IndexExprs); 5765 } 5766 5767 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) { 5768 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 5769 return C->getAPInt().countTrailingZeros(); 5770 5771 if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S)) 5772 return GetMinTrailingZeros(I->getOperand()); 5773 5774 if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S)) 5775 return std::min(GetMinTrailingZeros(T->getOperand()), 5776 (uint32_t)getTypeSizeInBits(T->getType())); 5777 5778 if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) { 5779 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5780 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5781 ? getTypeSizeInBits(E->getType()) 5782 : OpRes; 5783 } 5784 5785 if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) { 5786 uint32_t OpRes = GetMinTrailingZeros(E->getOperand()); 5787 return OpRes == getTypeSizeInBits(E->getOperand()->getType()) 5788 ? getTypeSizeInBits(E->getType()) 5789 : OpRes; 5790 } 5791 5792 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) { 5793 // The result is the min of all operands results. 5794 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5795 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5796 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5797 return MinOpRes; 5798 } 5799 5800 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) { 5801 // The result is the sum of all operands results. 5802 uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0)); 5803 uint32_t BitWidth = getTypeSizeInBits(M->getType()); 5804 for (unsigned i = 1, e = M->getNumOperands(); 5805 SumOpRes != BitWidth && i != e; ++i) 5806 SumOpRes = 5807 std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth); 5808 return SumOpRes; 5809 } 5810 5811 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) { 5812 // The result is the min of all operands results. 5813 uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0)); 5814 for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i) 5815 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i))); 5816 return MinOpRes; 5817 } 5818 5819 if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) { 5820 // The result is the min of all operands results. 5821 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5822 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5823 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5824 return MinOpRes; 5825 } 5826 5827 if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) { 5828 // The result is the min of all operands results. 5829 uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0)); 5830 for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i) 5831 MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i))); 5832 return MinOpRes; 5833 } 5834 5835 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 5836 // For a SCEVUnknown, ask ValueTracking. 5837 KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT); 5838 return Known.countMinTrailingZeros(); 5839 } 5840 5841 // SCEVUDivExpr 5842 return 0; 5843 } 5844 5845 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) { 5846 auto I = MinTrailingZerosCache.find(S); 5847 if (I != MinTrailingZerosCache.end()) 5848 return I->second; 5849 5850 uint32_t Result = GetMinTrailingZerosImpl(S); 5851 auto InsertPair = MinTrailingZerosCache.insert({S, Result}); 5852 assert(InsertPair.second && "Should insert a new key"); 5853 return InsertPair.first->second; 5854 } 5855 5856 /// Helper method to assign a range to V from metadata present in the IR. 5857 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) { 5858 if (Instruction *I = dyn_cast<Instruction>(V)) 5859 if (MDNode *MD = I->getMetadata(LLVMContext::MD_range)) 5860 return getConstantRangeFromMetadata(*MD); 5861 5862 return None; 5863 } 5864 5865 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec, 5866 SCEV::NoWrapFlags Flags) { 5867 if (AddRec->getNoWrapFlags(Flags) != Flags) { 5868 AddRec->setNoWrapFlags(Flags); 5869 UnsignedRanges.erase(AddRec); 5870 SignedRanges.erase(AddRec); 5871 } 5872 } 5873 5874 ConstantRange ScalarEvolution:: 5875 getRangeForUnknownRecurrence(const SCEVUnknown *U) { 5876 const DataLayout &DL = getDataLayout(); 5877 5878 unsigned BitWidth = getTypeSizeInBits(U->getType()); 5879 const ConstantRange FullSet(BitWidth, /*isFullSet=*/true); 5880 5881 // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then 5882 // use information about the trip count to improve our available range. Note 5883 // that the trip count independent cases are already handled by known bits. 5884 // WARNING: The definition of recurrence used here is subtly different than 5885 // the one used by AddRec (and thus most of this file). Step is allowed to 5886 // be arbitrarily loop varying here, where AddRec allows only loop invariant 5887 // and other addrecs in the same loop (for non-affine addrecs). The code 5888 // below intentionally handles the case where step is not loop invariant. 5889 auto *P = dyn_cast<PHINode>(U->getValue()); 5890 if (!P) 5891 return FullSet; 5892 5893 // Make sure that no Phi input comes from an unreachable block. Otherwise, 5894 // even the values that are not available in these blocks may come from them, 5895 // and this leads to false-positive recurrence test. 5896 for (auto *Pred : predecessors(P->getParent())) 5897 if (!DT.isReachableFromEntry(Pred)) 5898 return FullSet; 5899 5900 BinaryOperator *BO; 5901 Value *Start, *Step; 5902 if (!matchSimpleRecurrence(P, BO, Start, Step)) 5903 return FullSet; 5904 5905 // If we found a recurrence in reachable code, we must be in a loop. Note 5906 // that BO might be in some subloop of L, and that's completely okay. 5907 auto *L = LI.getLoopFor(P->getParent()); 5908 assert(L && L->getHeader() == P->getParent()); 5909 if (!L->contains(BO->getParent())) 5910 // NOTE: This bailout should be an assert instead. However, asserting 5911 // the condition here exposes a case where LoopFusion is querying SCEV 5912 // with malformed loop information during the midst of the transform. 5913 // There doesn't appear to be an obvious fix, so for the moment bailout 5914 // until the caller issue can be fixed. PR49566 tracks the bug. 5915 return FullSet; 5916 5917 // TODO: Extend to other opcodes such as mul, and div 5918 switch (BO->getOpcode()) { 5919 default: 5920 return FullSet; 5921 case Instruction::AShr: 5922 case Instruction::LShr: 5923 case Instruction::Shl: 5924 break; 5925 }; 5926 5927 if (BO->getOperand(0) != P) 5928 // TODO: Handle the power function forms some day. 5929 return FullSet; 5930 5931 unsigned TC = getSmallConstantMaxTripCount(L); 5932 if (!TC || TC >= BitWidth) 5933 return FullSet; 5934 5935 auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT); 5936 auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT); 5937 assert(KnownStart.getBitWidth() == BitWidth && 5938 KnownStep.getBitWidth() == BitWidth); 5939 5940 // Compute total shift amount, being careful of overflow and bitwidths. 5941 auto MaxShiftAmt = KnownStep.getMaxValue(); 5942 APInt TCAP(BitWidth, TC-1); 5943 bool Overflow = false; 5944 auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow); 5945 if (Overflow) 5946 return FullSet; 5947 5948 switch (BO->getOpcode()) { 5949 default: 5950 llvm_unreachable("filtered out above"); 5951 case Instruction::AShr: { 5952 // For each ashr, three cases: 5953 // shift = 0 => unchanged value 5954 // saturation => 0 or -1 5955 // other => a value closer to zero (of the same sign) 5956 // Thus, the end value is closer to zero than the start. 5957 auto KnownEnd = KnownBits::ashr(KnownStart, 5958 KnownBits::makeConstant(TotalShift)); 5959 if (KnownStart.isNonNegative()) 5960 // Analogous to lshr (simply not yet canonicalized) 5961 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5962 KnownStart.getMaxValue() + 1); 5963 if (KnownStart.isNegative()) 5964 // End >=u Start && End <=s Start 5965 return ConstantRange::getNonEmpty(KnownStart.getMinValue(), 5966 KnownEnd.getMaxValue() + 1); 5967 break; 5968 } 5969 case Instruction::LShr: { 5970 // For each lshr, three cases: 5971 // shift = 0 => unchanged value 5972 // saturation => 0 5973 // other => a smaller positive number 5974 // Thus, the low end of the unsigned range is the last value produced. 5975 auto KnownEnd = KnownBits::lshr(KnownStart, 5976 KnownBits::makeConstant(TotalShift)); 5977 return ConstantRange::getNonEmpty(KnownEnd.getMinValue(), 5978 KnownStart.getMaxValue() + 1); 5979 } 5980 case Instruction::Shl: { 5981 // Iff no bits are shifted out, value increases on every shift. 5982 auto KnownEnd = KnownBits::shl(KnownStart, 5983 KnownBits::makeConstant(TotalShift)); 5984 if (TotalShift.ult(KnownStart.countMinLeadingZeros())) 5985 return ConstantRange(KnownStart.getMinValue(), 5986 KnownEnd.getMaxValue() + 1); 5987 break; 5988 } 5989 }; 5990 return FullSet; 5991 } 5992 5993 /// Determine the range for a particular SCEV. If SignHint is 5994 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges 5995 /// with a "cleaner" unsigned (resp. signed) representation. 5996 const ConstantRange & 5997 ScalarEvolution::getRangeRef(const SCEV *S, 5998 ScalarEvolution::RangeSignHint SignHint) { 5999 DenseMap<const SCEV *, ConstantRange> &Cache = 6000 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges 6001 : SignedRanges; 6002 ConstantRange::PreferredRangeType RangeType = 6003 SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED 6004 ? ConstantRange::Unsigned : ConstantRange::Signed; 6005 6006 // See if we've computed this range already. 6007 DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S); 6008 if (I != Cache.end()) 6009 return I->second; 6010 6011 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) 6012 return setRange(C, SignHint, ConstantRange(C->getAPInt())); 6013 6014 unsigned BitWidth = getTypeSizeInBits(S->getType()); 6015 ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true); 6016 using OBO = OverflowingBinaryOperator; 6017 6018 // If the value has known zeros, the maximum value will have those known zeros 6019 // as well. 6020 uint32_t TZ = GetMinTrailingZeros(S); 6021 if (TZ != 0) { 6022 if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED) 6023 ConservativeResult = 6024 ConstantRange(APInt::getMinValue(BitWidth), 6025 APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1); 6026 else 6027 ConservativeResult = ConstantRange( 6028 APInt::getSignedMinValue(BitWidth), 6029 APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1); 6030 } 6031 6032 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) { 6033 ConstantRange X = getRangeRef(Add->getOperand(0), SignHint); 6034 unsigned WrapType = OBO::AnyWrap; 6035 if (Add->hasNoSignedWrap()) 6036 WrapType |= OBO::NoSignedWrap; 6037 if (Add->hasNoUnsignedWrap()) 6038 WrapType |= OBO::NoUnsignedWrap; 6039 for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i) 6040 X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint), 6041 WrapType, RangeType); 6042 return setRange(Add, SignHint, 6043 ConservativeResult.intersectWith(X, RangeType)); 6044 } 6045 6046 if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) { 6047 ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint); 6048 for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i) 6049 X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint)); 6050 return setRange(Mul, SignHint, 6051 ConservativeResult.intersectWith(X, RangeType)); 6052 } 6053 6054 if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) { 6055 ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint); 6056 for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i) 6057 X = X.smax(getRangeRef(SMax->getOperand(i), SignHint)); 6058 return setRange(SMax, SignHint, 6059 ConservativeResult.intersectWith(X, RangeType)); 6060 } 6061 6062 if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) { 6063 ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint); 6064 for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i) 6065 X = X.umax(getRangeRef(UMax->getOperand(i), SignHint)); 6066 return setRange(UMax, SignHint, 6067 ConservativeResult.intersectWith(X, RangeType)); 6068 } 6069 6070 if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) { 6071 ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint); 6072 for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i) 6073 X = X.smin(getRangeRef(SMin->getOperand(i), SignHint)); 6074 return setRange(SMin, SignHint, 6075 ConservativeResult.intersectWith(X, RangeType)); 6076 } 6077 6078 if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) { 6079 ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint); 6080 for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i) 6081 X = X.umin(getRangeRef(UMin->getOperand(i), SignHint)); 6082 return setRange(UMin, SignHint, 6083 ConservativeResult.intersectWith(X, RangeType)); 6084 } 6085 6086 if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) { 6087 ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint); 6088 ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint); 6089 return setRange(UDiv, SignHint, 6090 ConservativeResult.intersectWith(X.udiv(Y), RangeType)); 6091 } 6092 6093 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) { 6094 ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint); 6095 return setRange(ZExt, SignHint, 6096 ConservativeResult.intersectWith(X.zeroExtend(BitWidth), 6097 RangeType)); 6098 } 6099 6100 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) { 6101 ConstantRange X = getRangeRef(SExt->getOperand(), SignHint); 6102 return setRange(SExt, SignHint, 6103 ConservativeResult.intersectWith(X.signExtend(BitWidth), 6104 RangeType)); 6105 } 6106 6107 if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) { 6108 ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint); 6109 return setRange(PtrToInt, SignHint, X); 6110 } 6111 6112 if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) { 6113 ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint); 6114 return setRange(Trunc, SignHint, 6115 ConservativeResult.intersectWith(X.truncate(BitWidth), 6116 RangeType)); 6117 } 6118 6119 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) { 6120 // If there's no unsigned wrap, the value will never be less than its 6121 // initial value. 6122 if (AddRec->hasNoUnsignedWrap()) { 6123 APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart()); 6124 if (!UnsignedMinValue.isNullValue()) 6125 ConservativeResult = ConservativeResult.intersectWith( 6126 ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType); 6127 } 6128 6129 // If there's no signed wrap, and all the operands except initial value have 6130 // the same sign or zero, the value won't ever be: 6131 // 1: smaller than initial value if operands are non negative, 6132 // 2: bigger than initial value if operands are non positive. 6133 // For both cases, value can not cross signed min/max boundary. 6134 if (AddRec->hasNoSignedWrap()) { 6135 bool AllNonNeg = true; 6136 bool AllNonPos = true; 6137 for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) { 6138 if (!isKnownNonNegative(AddRec->getOperand(i))) 6139 AllNonNeg = false; 6140 if (!isKnownNonPositive(AddRec->getOperand(i))) 6141 AllNonPos = false; 6142 } 6143 if (AllNonNeg) 6144 ConservativeResult = ConservativeResult.intersectWith( 6145 ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()), 6146 APInt::getSignedMinValue(BitWidth)), 6147 RangeType); 6148 else if (AllNonPos) 6149 ConservativeResult = ConservativeResult.intersectWith( 6150 ConstantRange::getNonEmpty( 6151 APInt::getSignedMinValue(BitWidth), 6152 getSignedRangeMax(AddRec->getStart()) + 1), 6153 RangeType); 6154 } 6155 6156 // TODO: non-affine addrec 6157 if (AddRec->isAffine()) { 6158 const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop()); 6159 if (!isa<SCEVCouldNotCompute>(MaxBECount) && 6160 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) { 6161 auto RangeFromAffine = getRangeForAffineAR( 6162 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6163 BitWidth); 6164 ConservativeResult = 6165 ConservativeResult.intersectWith(RangeFromAffine, RangeType); 6166 6167 auto RangeFromFactoring = getRangeViaFactoring( 6168 AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount, 6169 BitWidth); 6170 ConservativeResult = 6171 ConservativeResult.intersectWith(RangeFromFactoring, RangeType); 6172 } 6173 6174 // Now try symbolic BE count and more powerful methods. 6175 if (UseExpensiveRangeSharpening) { 6176 const SCEV *SymbolicMaxBECount = 6177 getSymbolicMaxBackedgeTakenCount(AddRec->getLoop()); 6178 if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) && 6179 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6180 AddRec->hasNoSelfWrap()) { 6181 auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR( 6182 AddRec, SymbolicMaxBECount, BitWidth, SignHint); 6183 ConservativeResult = 6184 ConservativeResult.intersectWith(RangeFromAffineNew, RangeType); 6185 } 6186 } 6187 } 6188 6189 return setRange(AddRec, SignHint, std::move(ConservativeResult)); 6190 } 6191 6192 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) { 6193 6194 // Check if the IR explicitly contains !range metadata. 6195 Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue()); 6196 if (MDRange.hasValue()) 6197 ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(), 6198 RangeType); 6199 6200 // Use facts about recurrences in the underlying IR. Note that add 6201 // recurrences are AddRecExprs and thus don't hit this path. This 6202 // primarily handles shift recurrences. 6203 auto CR = getRangeForUnknownRecurrence(U); 6204 ConservativeResult = ConservativeResult.intersectWith(CR); 6205 6206 // See if ValueTracking can give us a useful range. 6207 const DataLayout &DL = getDataLayout(); 6208 KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6209 if (Known.getBitWidth() != BitWidth) 6210 Known = Known.zextOrTrunc(BitWidth); 6211 6212 // ValueTracking may be able to compute a tighter result for the number of 6213 // sign bits than for the value of those sign bits. 6214 unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT); 6215 if (U->getType()->isPointerTy()) { 6216 // If the pointer size is larger than the index size type, this can cause 6217 // NS to be larger than BitWidth. So compensate for this. 6218 unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType()); 6219 int ptrIdxDiff = ptrSize - BitWidth; 6220 if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff) 6221 NS -= ptrIdxDiff; 6222 } 6223 6224 if (NS > 1) { 6225 // If we know any of the sign bits, we know all of the sign bits. 6226 if (!Known.Zero.getHiBits(NS).isNullValue()) 6227 Known.Zero.setHighBits(NS); 6228 if (!Known.One.getHiBits(NS).isNullValue()) 6229 Known.One.setHighBits(NS); 6230 } 6231 6232 if (Known.getMinValue() != Known.getMaxValue() + 1) 6233 ConservativeResult = ConservativeResult.intersectWith( 6234 ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1), 6235 RangeType); 6236 if (NS > 1) 6237 ConservativeResult = ConservativeResult.intersectWith( 6238 ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1), 6239 APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1), 6240 RangeType); 6241 6242 // A range of Phi is a subset of union of all ranges of its input. 6243 if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) { 6244 // Make sure that we do not run over cycled Phis. 6245 if (PendingPhiRanges.insert(Phi).second) { 6246 ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false); 6247 for (auto &Op : Phi->operands()) { 6248 auto OpRange = getRangeRef(getSCEV(Op), SignHint); 6249 RangeFromOps = RangeFromOps.unionWith(OpRange); 6250 // No point to continue if we already have a full set. 6251 if (RangeFromOps.isFullSet()) 6252 break; 6253 } 6254 ConservativeResult = 6255 ConservativeResult.intersectWith(RangeFromOps, RangeType); 6256 bool Erased = PendingPhiRanges.erase(Phi); 6257 assert(Erased && "Failed to erase Phi properly?"); 6258 (void) Erased; 6259 } 6260 } 6261 6262 return setRange(U, SignHint, std::move(ConservativeResult)); 6263 } 6264 6265 return setRange(S, SignHint, std::move(ConservativeResult)); 6266 } 6267 6268 // Given a StartRange, Step and MaxBECount for an expression compute a range of 6269 // values that the expression can take. Initially, the expression has a value 6270 // from StartRange and then is changed by Step up to MaxBECount times. Signed 6271 // argument defines if we treat Step as signed or unsigned. 6272 static ConstantRange getRangeForAffineARHelper(APInt Step, 6273 const ConstantRange &StartRange, 6274 const APInt &MaxBECount, 6275 unsigned BitWidth, bool Signed) { 6276 // If either Step or MaxBECount is 0, then the expression won't change, and we 6277 // just need to return the initial range. 6278 if (Step == 0 || MaxBECount == 0) 6279 return StartRange; 6280 6281 // If we don't know anything about the initial value (i.e. StartRange is 6282 // FullRange), then we don't know anything about the final range either. 6283 // Return FullRange. 6284 if (StartRange.isFullSet()) 6285 return ConstantRange::getFull(BitWidth); 6286 6287 // If Step is signed and negative, then we use its absolute value, but we also 6288 // note that we're moving in the opposite direction. 6289 bool Descending = Signed && Step.isNegative(); 6290 6291 if (Signed) 6292 // This is correct even for INT_SMIN. Let's look at i8 to illustrate this: 6293 // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128. 6294 // This equations hold true due to the well-defined wrap-around behavior of 6295 // APInt. 6296 Step = Step.abs(); 6297 6298 // Check if Offset is more than full span of BitWidth. If it is, the 6299 // expression is guaranteed to overflow. 6300 if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount)) 6301 return ConstantRange::getFull(BitWidth); 6302 6303 // Offset is by how much the expression can change. Checks above guarantee no 6304 // overflow here. 6305 APInt Offset = Step * MaxBECount; 6306 6307 // Minimum value of the final range will match the minimal value of StartRange 6308 // if the expression is increasing and will be decreased by Offset otherwise. 6309 // Maximum value of the final range will match the maximal value of StartRange 6310 // if the expression is decreasing and will be increased by Offset otherwise. 6311 APInt StartLower = StartRange.getLower(); 6312 APInt StartUpper = StartRange.getUpper() - 1; 6313 APInt MovedBoundary = Descending ? (StartLower - std::move(Offset)) 6314 : (StartUpper + std::move(Offset)); 6315 6316 // It's possible that the new minimum/maximum value will fall into the initial 6317 // range (due to wrap around). This means that the expression can take any 6318 // value in this bitwidth, and we have to return full range. 6319 if (StartRange.contains(MovedBoundary)) 6320 return ConstantRange::getFull(BitWidth); 6321 6322 APInt NewLower = 6323 Descending ? std::move(MovedBoundary) : std::move(StartLower); 6324 APInt NewUpper = 6325 Descending ? std::move(StartUpper) : std::move(MovedBoundary); 6326 NewUpper += 1; 6327 6328 // No overflow detected, return [StartLower, StartUpper + Offset + 1) range. 6329 return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper)); 6330 } 6331 6332 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start, 6333 const SCEV *Step, 6334 const SCEV *MaxBECount, 6335 unsigned BitWidth) { 6336 assert(!isa<SCEVCouldNotCompute>(MaxBECount) && 6337 getTypeSizeInBits(MaxBECount->getType()) <= BitWidth && 6338 "Precondition!"); 6339 6340 MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType()); 6341 APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount); 6342 6343 // First, consider step signed. 6344 ConstantRange StartSRange = getSignedRange(Start); 6345 ConstantRange StepSRange = getSignedRange(Step); 6346 6347 // If Step can be both positive and negative, we need to find ranges for the 6348 // maximum absolute step values in both directions and union them. 6349 ConstantRange SR = 6350 getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange, 6351 MaxBECountValue, BitWidth, /* Signed = */ true); 6352 SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(), 6353 StartSRange, MaxBECountValue, 6354 BitWidth, /* Signed = */ true)); 6355 6356 // Next, consider step unsigned. 6357 ConstantRange UR = getRangeForAffineARHelper( 6358 getUnsignedRangeMax(Step), getUnsignedRange(Start), 6359 MaxBECountValue, BitWidth, /* Signed = */ false); 6360 6361 // Finally, intersect signed and unsigned ranges. 6362 return SR.intersectWith(UR, ConstantRange::Smallest); 6363 } 6364 6365 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR( 6366 const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth, 6367 ScalarEvolution::RangeSignHint SignHint) { 6368 assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n"); 6369 assert(AddRec->hasNoSelfWrap() && 6370 "This only works for non-self-wrapping AddRecs!"); 6371 const bool IsSigned = SignHint == HINT_RANGE_SIGNED; 6372 const SCEV *Step = AddRec->getStepRecurrence(*this); 6373 // Only deal with constant step to save compile time. 6374 if (!isa<SCEVConstant>(Step)) 6375 return ConstantRange::getFull(BitWidth); 6376 // Let's make sure that we can prove that we do not self-wrap during 6377 // MaxBECount iterations. We need this because MaxBECount is a maximum 6378 // iteration count estimate, and we might infer nw from some exit for which we 6379 // do not know max exit count (or any other side reasoning). 6380 // TODO: Turn into assert at some point. 6381 if (getTypeSizeInBits(MaxBECount->getType()) > 6382 getTypeSizeInBits(AddRec->getType())) 6383 return ConstantRange::getFull(BitWidth); 6384 MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType()); 6385 const SCEV *RangeWidth = getMinusOne(AddRec->getType()); 6386 const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step)); 6387 const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs); 6388 if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount, 6389 MaxItersWithoutWrap)) 6390 return ConstantRange::getFull(BitWidth); 6391 6392 ICmpInst::Predicate LEPred = 6393 IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 6394 ICmpInst::Predicate GEPred = 6395 IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 6396 const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this); 6397 6398 // We know that there is no self-wrap. Let's take Start and End values and 6399 // look at all intermediate values V1, V2, ..., Vn that IndVar takes during 6400 // the iteration. They either lie inside the range [Min(Start, End), 6401 // Max(Start, End)] or outside it: 6402 // 6403 // Case 1: RangeMin ... Start V1 ... VN End ... RangeMax; 6404 // Case 2: RangeMin Vk ... V1 Start ... End Vn ... Vk + 1 RangeMax; 6405 // 6406 // No self wrap flag guarantees that the intermediate values cannot be BOTH 6407 // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that 6408 // knowledge, let's try to prove that we are dealing with Case 1. It is so if 6409 // Start <= End and step is positive, or Start >= End and step is negative. 6410 const SCEV *Start = AddRec->getStart(); 6411 ConstantRange StartRange = getRangeRef(Start, SignHint); 6412 ConstantRange EndRange = getRangeRef(End, SignHint); 6413 ConstantRange RangeBetween = StartRange.unionWith(EndRange); 6414 // If they already cover full iteration space, we will know nothing useful 6415 // even if we prove what we want to prove. 6416 if (RangeBetween.isFullSet()) 6417 return RangeBetween; 6418 // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax). 6419 bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet() 6420 : RangeBetween.isWrappedSet(); 6421 if (IsWrappedSet) 6422 return ConstantRange::getFull(BitWidth); 6423 6424 if (isKnownPositive(Step) && 6425 isKnownPredicateViaConstantRanges(LEPred, Start, End)) 6426 return RangeBetween; 6427 else if (isKnownNegative(Step) && 6428 isKnownPredicateViaConstantRanges(GEPred, Start, End)) 6429 return RangeBetween; 6430 return ConstantRange::getFull(BitWidth); 6431 } 6432 6433 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start, 6434 const SCEV *Step, 6435 const SCEV *MaxBECount, 6436 unsigned BitWidth) { 6437 // RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q}) 6438 // == RangeOf({A,+,P}) union RangeOf({B,+,Q}) 6439 6440 struct SelectPattern { 6441 Value *Condition = nullptr; 6442 APInt TrueValue; 6443 APInt FalseValue; 6444 6445 explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth, 6446 const SCEV *S) { 6447 Optional<unsigned> CastOp; 6448 APInt Offset(BitWidth, 0); 6449 6450 assert(SE.getTypeSizeInBits(S->getType()) == BitWidth && 6451 "Should be!"); 6452 6453 // Peel off a constant offset: 6454 if (auto *SA = dyn_cast<SCEVAddExpr>(S)) { 6455 // In the future we could consider being smarter here and handle 6456 // {Start+Step,+,Step} too. 6457 if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0))) 6458 return; 6459 6460 Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt(); 6461 S = SA->getOperand(1); 6462 } 6463 6464 // Peel off a cast operation 6465 if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) { 6466 CastOp = SCast->getSCEVType(); 6467 S = SCast->getOperand(); 6468 } 6469 6470 using namespace llvm::PatternMatch; 6471 6472 auto *SU = dyn_cast<SCEVUnknown>(S); 6473 const APInt *TrueVal, *FalseVal; 6474 if (!SU || 6475 !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal), 6476 m_APInt(FalseVal)))) { 6477 Condition = nullptr; 6478 return; 6479 } 6480 6481 TrueValue = *TrueVal; 6482 FalseValue = *FalseVal; 6483 6484 // Re-apply the cast we peeled off earlier 6485 if (CastOp.hasValue()) 6486 switch (*CastOp) { 6487 default: 6488 llvm_unreachable("Unknown SCEV cast type!"); 6489 6490 case scTruncate: 6491 TrueValue = TrueValue.trunc(BitWidth); 6492 FalseValue = FalseValue.trunc(BitWidth); 6493 break; 6494 case scZeroExtend: 6495 TrueValue = TrueValue.zext(BitWidth); 6496 FalseValue = FalseValue.zext(BitWidth); 6497 break; 6498 case scSignExtend: 6499 TrueValue = TrueValue.sext(BitWidth); 6500 FalseValue = FalseValue.sext(BitWidth); 6501 break; 6502 } 6503 6504 // Re-apply the constant offset we peeled off earlier 6505 TrueValue += Offset; 6506 FalseValue += Offset; 6507 } 6508 6509 bool isRecognized() { return Condition != nullptr; } 6510 }; 6511 6512 SelectPattern StartPattern(*this, BitWidth, Start); 6513 if (!StartPattern.isRecognized()) 6514 return ConstantRange::getFull(BitWidth); 6515 6516 SelectPattern StepPattern(*this, BitWidth, Step); 6517 if (!StepPattern.isRecognized()) 6518 return ConstantRange::getFull(BitWidth); 6519 6520 if (StartPattern.Condition != StepPattern.Condition) { 6521 // We don't handle this case today; but we could, by considering four 6522 // possibilities below instead of two. I'm not sure if there are cases where 6523 // that will help over what getRange already does, though. 6524 return ConstantRange::getFull(BitWidth); 6525 } 6526 6527 // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to 6528 // construct arbitrary general SCEV expressions here. This function is called 6529 // from deep in the call stack, and calling getSCEV (on a sext instruction, 6530 // say) can end up caching a suboptimal value. 6531 6532 // FIXME: without the explicit `this` receiver below, MSVC errors out with 6533 // C2352 and C2512 (otherwise it isn't needed). 6534 6535 const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue); 6536 const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue); 6537 const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue); 6538 const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue); 6539 6540 ConstantRange TrueRange = 6541 this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth); 6542 ConstantRange FalseRange = 6543 this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth); 6544 6545 return TrueRange.unionWith(FalseRange); 6546 } 6547 6548 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) { 6549 if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap; 6550 const BinaryOperator *BinOp = cast<BinaryOperator>(V); 6551 6552 // Return early if there are no flags to propagate to the SCEV. 6553 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6554 if (BinOp->hasNoUnsignedWrap()) 6555 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW); 6556 if (BinOp->hasNoSignedWrap()) 6557 Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW); 6558 if (Flags == SCEV::FlagAnyWrap) 6559 return SCEV::FlagAnyWrap; 6560 6561 return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap; 6562 } 6563 6564 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) { 6565 // Here we check that I is in the header of the innermost loop containing I, 6566 // since we only deal with instructions in the loop header. The actual loop we 6567 // need to check later will come from an add recurrence, but getting that 6568 // requires computing the SCEV of the operands, which can be expensive. This 6569 // check we can do cheaply to rule out some cases early. 6570 Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent()); 6571 if (InnermostContainingLoop == nullptr || 6572 InnermostContainingLoop->getHeader() != I->getParent()) 6573 return false; 6574 6575 // Only proceed if we can prove that I does not yield poison. 6576 if (!programUndefinedIfPoison(I)) 6577 return false; 6578 6579 // At this point we know that if I is executed, then it does not wrap 6580 // according to at least one of NSW or NUW. If I is not executed, then we do 6581 // not know if the calculation that I represents would wrap. Multiple 6582 // instructions can map to the same SCEV. If we apply NSW or NUW from I to 6583 // the SCEV, we must guarantee no wrapping for that SCEV also when it is 6584 // derived from other instructions that map to the same SCEV. We cannot make 6585 // that guarantee for cases where I is not executed. So we need to find the 6586 // loop that I is considered in relation to and prove that I is executed for 6587 // every iteration of that loop. That implies that the value that I 6588 // calculates does not wrap anywhere in the loop, so then we can apply the 6589 // flags to the SCEV. 6590 // 6591 // We check isLoopInvariant to disambiguate in case we are adding recurrences 6592 // from different loops, so that we know which loop to prove that I is 6593 // executed in. 6594 for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) { 6595 // I could be an extractvalue from a call to an overflow intrinsic. 6596 // TODO: We can do better here in some cases. 6597 if (!isSCEVable(I->getOperand(OpIndex)->getType())) 6598 return false; 6599 const SCEV *Op = getSCEV(I->getOperand(OpIndex)); 6600 if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) { 6601 bool AllOtherOpsLoopInvariant = true; 6602 for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands(); 6603 ++OtherOpIndex) { 6604 if (OtherOpIndex != OpIndex) { 6605 const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex)); 6606 if (!isLoopInvariant(OtherOp, AddRec->getLoop())) { 6607 AllOtherOpsLoopInvariant = false; 6608 break; 6609 } 6610 } 6611 } 6612 if (AllOtherOpsLoopInvariant && 6613 isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop())) 6614 return true; 6615 } 6616 } 6617 return false; 6618 } 6619 6620 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) { 6621 // If we know that \c I can never be poison period, then that's enough. 6622 if (isSCEVExprNeverPoison(I)) 6623 return true; 6624 6625 // For an add recurrence specifically, we assume that infinite loops without 6626 // side effects are undefined behavior, and then reason as follows: 6627 // 6628 // If the add recurrence is poison in any iteration, it is poison on all 6629 // future iterations (since incrementing poison yields poison). If the result 6630 // of the add recurrence is fed into the loop latch condition and the loop 6631 // does not contain any throws or exiting blocks other than the latch, we now 6632 // have the ability to "choose" whether the backedge is taken or not (by 6633 // choosing a sufficiently evil value for the poison feeding into the branch) 6634 // for every iteration including and after the one in which \p I first became 6635 // poison. There are two possibilities (let's call the iteration in which \p 6636 // I first became poison as K): 6637 // 6638 // 1. In the set of iterations including and after K, the loop body executes 6639 // no side effects. In this case executing the backege an infinte number 6640 // of times will yield undefined behavior. 6641 // 6642 // 2. In the set of iterations including and after K, the loop body executes 6643 // at least one side effect. In this case, that specific instance of side 6644 // effect is control dependent on poison, which also yields undefined 6645 // behavior. 6646 6647 auto *ExitingBB = L->getExitingBlock(); 6648 auto *LatchBB = L->getLoopLatch(); 6649 if (!ExitingBB || !LatchBB || ExitingBB != LatchBB) 6650 return false; 6651 6652 SmallPtrSet<const Instruction *, 16> Pushed; 6653 SmallVector<const Instruction *, 8> PoisonStack; 6654 6655 // We start by assuming \c I, the post-inc add recurrence, is poison. Only 6656 // things that are known to be poison under that assumption go on the 6657 // PoisonStack. 6658 Pushed.insert(I); 6659 PoisonStack.push_back(I); 6660 6661 bool LatchControlDependentOnPoison = false; 6662 while (!PoisonStack.empty() && !LatchControlDependentOnPoison) { 6663 const Instruction *Poison = PoisonStack.pop_back_val(); 6664 6665 for (auto *PoisonUser : Poison->users()) { 6666 if (propagatesPoison(cast<Operator>(PoisonUser))) { 6667 if (Pushed.insert(cast<Instruction>(PoisonUser)).second) 6668 PoisonStack.push_back(cast<Instruction>(PoisonUser)); 6669 } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) { 6670 assert(BI->isConditional() && "Only possibility!"); 6671 if (BI->getParent() == LatchBB) { 6672 LatchControlDependentOnPoison = true; 6673 break; 6674 } 6675 } 6676 } 6677 } 6678 6679 return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L); 6680 } 6681 6682 ScalarEvolution::LoopProperties 6683 ScalarEvolution::getLoopProperties(const Loop *L) { 6684 using LoopProperties = ScalarEvolution::LoopProperties; 6685 6686 auto Itr = LoopPropertiesCache.find(L); 6687 if (Itr == LoopPropertiesCache.end()) { 6688 auto HasSideEffects = [](Instruction *I) { 6689 if (auto *SI = dyn_cast<StoreInst>(I)) 6690 return !SI->isSimple(); 6691 6692 return I->mayThrow() || I->mayWriteToMemory(); 6693 }; 6694 6695 LoopProperties LP = {/* HasNoAbnormalExits */ true, 6696 /*HasNoSideEffects*/ true}; 6697 6698 for (auto *BB : L->getBlocks()) 6699 for (auto &I : *BB) { 6700 if (!isGuaranteedToTransferExecutionToSuccessor(&I)) 6701 LP.HasNoAbnormalExits = false; 6702 if (HasSideEffects(&I)) 6703 LP.HasNoSideEffects = false; 6704 if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects) 6705 break; // We're already as pessimistic as we can get. 6706 } 6707 6708 auto InsertPair = LoopPropertiesCache.insert({L, LP}); 6709 assert(InsertPair.second && "We just checked!"); 6710 Itr = InsertPair.first; 6711 } 6712 6713 return Itr->second; 6714 } 6715 6716 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) { 6717 // A mustprogress loop without side effects must be finite. 6718 // TODO: The check used here is very conservative. It's only *specific* 6719 // side effects which are well defined in infinite loops. 6720 return isMustProgress(L) && loopHasNoSideEffects(L); 6721 } 6722 6723 const SCEV *ScalarEvolution::createSCEV(Value *V) { 6724 if (!isSCEVable(V->getType())) 6725 return getUnknown(V); 6726 6727 if (Instruction *I = dyn_cast<Instruction>(V)) { 6728 // Don't attempt to analyze instructions in blocks that aren't 6729 // reachable. Such instructions don't matter, and they aren't required 6730 // to obey basic rules for definitions dominating uses which this 6731 // analysis depends on. 6732 if (!DT.isReachableFromEntry(I->getParent())) 6733 return getUnknown(UndefValue::get(V->getType())); 6734 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) 6735 return getConstant(CI); 6736 else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) 6737 return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee()); 6738 else if (!isa<ConstantExpr>(V)) 6739 return getUnknown(V); 6740 6741 Operator *U = cast<Operator>(V); 6742 if (auto BO = MatchBinaryOp(U, DT)) { 6743 switch (BO->Opcode) { 6744 case Instruction::Add: { 6745 // The simple thing to do would be to just call getSCEV on both operands 6746 // and call getAddExpr with the result. However if we're looking at a 6747 // bunch of things all added together, this can be quite inefficient, 6748 // because it leads to N-1 getAddExpr calls for N ultimate operands. 6749 // Instead, gather up all the operands and make a single getAddExpr call. 6750 // LLVM IR canonical form means we need only traverse the left operands. 6751 SmallVector<const SCEV *, 4> AddOps; 6752 do { 6753 if (BO->Op) { 6754 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6755 AddOps.push_back(OpSCEV); 6756 break; 6757 } 6758 6759 // If a NUW or NSW flag can be applied to the SCEV for this 6760 // addition, then compute the SCEV for this addition by itself 6761 // with a separate call to getAddExpr. We need to do that 6762 // instead of pushing the operands of the addition onto AddOps, 6763 // since the flags are only known to apply to this particular 6764 // addition - they may not apply to other additions that can be 6765 // formed with operands from AddOps. 6766 const SCEV *RHS = getSCEV(BO->RHS); 6767 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6768 if (Flags != SCEV::FlagAnyWrap) { 6769 const SCEV *LHS = getSCEV(BO->LHS); 6770 if (BO->Opcode == Instruction::Sub) 6771 AddOps.push_back(getMinusSCEV(LHS, RHS, Flags)); 6772 else 6773 AddOps.push_back(getAddExpr(LHS, RHS, Flags)); 6774 break; 6775 } 6776 } 6777 6778 if (BO->Opcode == Instruction::Sub) 6779 AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS))); 6780 else 6781 AddOps.push_back(getSCEV(BO->RHS)); 6782 6783 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6784 if (!NewBO || (NewBO->Opcode != Instruction::Add && 6785 NewBO->Opcode != Instruction::Sub)) { 6786 AddOps.push_back(getSCEV(BO->LHS)); 6787 break; 6788 } 6789 BO = NewBO; 6790 } while (true); 6791 6792 return getAddExpr(AddOps); 6793 } 6794 6795 case Instruction::Mul: { 6796 SmallVector<const SCEV *, 4> MulOps; 6797 do { 6798 if (BO->Op) { 6799 if (auto *OpSCEV = getExistingSCEV(BO->Op)) { 6800 MulOps.push_back(OpSCEV); 6801 break; 6802 } 6803 6804 SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op); 6805 if (Flags != SCEV::FlagAnyWrap) { 6806 MulOps.push_back( 6807 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags)); 6808 break; 6809 } 6810 } 6811 6812 MulOps.push_back(getSCEV(BO->RHS)); 6813 auto NewBO = MatchBinaryOp(BO->LHS, DT); 6814 if (!NewBO || NewBO->Opcode != Instruction::Mul) { 6815 MulOps.push_back(getSCEV(BO->LHS)); 6816 break; 6817 } 6818 BO = NewBO; 6819 } while (true); 6820 6821 return getMulExpr(MulOps); 6822 } 6823 case Instruction::UDiv: 6824 return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6825 case Instruction::URem: 6826 return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS)); 6827 case Instruction::Sub: { 6828 SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap; 6829 if (BO->Op) 6830 Flags = getNoWrapFlagsFromUB(BO->Op); 6831 return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags); 6832 } 6833 case Instruction::And: 6834 // For an expression like x&255 that merely masks off the high bits, 6835 // use zext(trunc(x)) as the SCEV expression. 6836 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6837 if (CI->isZero()) 6838 return getSCEV(BO->RHS); 6839 if (CI->isMinusOne()) 6840 return getSCEV(BO->LHS); 6841 const APInt &A = CI->getValue(); 6842 6843 // Instcombine's ShrinkDemandedConstant may strip bits out of 6844 // constants, obscuring what would otherwise be a low-bits mask. 6845 // Use computeKnownBits to compute what ShrinkDemandedConstant 6846 // knew about to reconstruct a low-bits mask value. 6847 unsigned LZ = A.countLeadingZeros(); 6848 unsigned TZ = A.countTrailingZeros(); 6849 unsigned BitWidth = A.getBitWidth(); 6850 KnownBits Known(BitWidth); 6851 computeKnownBits(BO->LHS, Known, getDataLayout(), 6852 0, &AC, nullptr, &DT); 6853 6854 APInt EffectiveMask = 6855 APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ); 6856 if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) { 6857 const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ)); 6858 const SCEV *LHS = getSCEV(BO->LHS); 6859 const SCEV *ShiftedLHS = nullptr; 6860 if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) { 6861 if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) { 6862 // For an expression like (x * 8) & 8, simplify the multiply. 6863 unsigned MulZeros = OpC->getAPInt().countTrailingZeros(); 6864 unsigned GCD = std::min(MulZeros, TZ); 6865 APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD); 6866 SmallVector<const SCEV*, 4> MulOps; 6867 MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD))); 6868 MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end()); 6869 auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags()); 6870 ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt)); 6871 } 6872 } 6873 if (!ShiftedLHS) 6874 ShiftedLHS = getUDivExpr(LHS, MulCount); 6875 return getMulExpr( 6876 getZeroExtendExpr( 6877 getTruncateExpr(ShiftedLHS, 6878 IntegerType::get(getContext(), BitWidth - LZ - TZ)), 6879 BO->LHS->getType()), 6880 MulCount); 6881 } 6882 } 6883 break; 6884 6885 case Instruction::Or: 6886 // If the RHS of the Or is a constant, we may have something like: 6887 // X*4+1 which got turned into X*4|1. Handle this as an Add so loop 6888 // optimizations will transparently handle this case. 6889 // 6890 // In order for this transformation to be safe, the LHS must be of the 6891 // form X*(2^n) and the Or constant must be less than 2^n. 6892 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6893 const SCEV *LHS = getSCEV(BO->LHS); 6894 const APInt &CIVal = CI->getValue(); 6895 if (GetMinTrailingZeros(LHS) >= 6896 (CIVal.getBitWidth() - CIVal.countLeadingZeros())) { 6897 // Build a plain add SCEV. 6898 return getAddExpr(LHS, getSCEV(CI), 6899 (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW)); 6900 } 6901 } 6902 break; 6903 6904 case Instruction::Xor: 6905 if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) { 6906 // If the RHS of xor is -1, then this is a not operation. 6907 if (CI->isMinusOne()) 6908 return getNotSCEV(getSCEV(BO->LHS)); 6909 6910 // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask. 6911 // This is a variant of the check for xor with -1, and it handles 6912 // the case where instcombine has trimmed non-demanded bits out 6913 // of an xor with -1. 6914 if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS)) 6915 if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1))) 6916 if (LBO->getOpcode() == Instruction::And && 6917 LCI->getValue() == CI->getValue()) 6918 if (const SCEVZeroExtendExpr *Z = 6919 dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) { 6920 Type *UTy = BO->LHS->getType(); 6921 const SCEV *Z0 = Z->getOperand(); 6922 Type *Z0Ty = Z0->getType(); 6923 unsigned Z0TySize = getTypeSizeInBits(Z0Ty); 6924 6925 // If C is a low-bits mask, the zero extend is serving to 6926 // mask off the high bits. Complement the operand and 6927 // re-apply the zext. 6928 if (CI->getValue().isMask(Z0TySize)) 6929 return getZeroExtendExpr(getNotSCEV(Z0), UTy); 6930 6931 // If C is a single bit, it may be in the sign-bit position 6932 // before the zero-extend. In this case, represent the xor 6933 // using an add, which is equivalent, and re-apply the zext. 6934 APInt Trunc = CI->getValue().trunc(Z0TySize); 6935 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() && 6936 Trunc.isSignMask()) 6937 return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)), 6938 UTy); 6939 } 6940 } 6941 break; 6942 6943 case Instruction::Shl: 6944 // Turn shift left of a constant amount into a multiply. 6945 if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) { 6946 uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth(); 6947 6948 // If the shift count is not less than the bitwidth, the result of 6949 // the shift is undefined. Don't try to analyze it, because the 6950 // resolution chosen here may differ from the resolution chosen in 6951 // other parts of the compiler. 6952 if (SA->getValue().uge(BitWidth)) 6953 break; 6954 6955 // We can safely preserve the nuw flag in all cases. It's also safe to 6956 // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation 6957 // requires special handling. It can be preserved as long as we're not 6958 // left shifting by bitwidth - 1. 6959 auto Flags = SCEV::FlagAnyWrap; 6960 if (BO->Op) { 6961 auto MulFlags = getNoWrapFlagsFromUB(BO->Op); 6962 if ((MulFlags & SCEV::FlagNSW) && 6963 ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1))) 6964 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW); 6965 if (MulFlags & SCEV::FlagNUW) 6966 Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW); 6967 } 6968 6969 Constant *X = ConstantInt::get( 6970 getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue())); 6971 return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags); 6972 } 6973 break; 6974 6975 case Instruction::AShr: { 6976 // AShr X, C, where C is a constant. 6977 ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS); 6978 if (!CI) 6979 break; 6980 6981 Type *OuterTy = BO->LHS->getType(); 6982 uint64_t BitWidth = getTypeSizeInBits(OuterTy); 6983 // If the shift count is not less than the bitwidth, the result of 6984 // the shift is undefined. Don't try to analyze it, because the 6985 // resolution chosen here may differ from the resolution chosen in 6986 // other parts of the compiler. 6987 if (CI->getValue().uge(BitWidth)) 6988 break; 6989 6990 if (CI->isZero()) 6991 return getSCEV(BO->LHS); // shift by zero --> noop 6992 6993 uint64_t AShrAmt = CI->getZExtValue(); 6994 Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt); 6995 6996 Operator *L = dyn_cast<Operator>(BO->LHS); 6997 if (L && L->getOpcode() == Instruction::Shl) { 6998 // X = Shl A, n 6999 // Y = AShr X, m 7000 // Both n and m are constant. 7001 7002 const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0)); 7003 if (L->getOperand(1) == BO->RHS) 7004 // For a two-shift sext-inreg, i.e. n = m, 7005 // use sext(trunc(x)) as the SCEV expression. 7006 return getSignExtendExpr( 7007 getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy); 7008 7009 ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1)); 7010 if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) { 7011 uint64_t ShlAmt = ShlAmtCI->getZExtValue(); 7012 if (ShlAmt > AShrAmt) { 7013 // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV 7014 // expression. We already checked that ShlAmt < BitWidth, so 7015 // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as 7016 // ShlAmt - AShrAmt < Amt. 7017 APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt, 7018 ShlAmt - AShrAmt); 7019 return getSignExtendExpr( 7020 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy), 7021 getConstant(Mul)), OuterTy); 7022 } 7023 } 7024 } 7025 break; 7026 } 7027 } 7028 } 7029 7030 switch (U->getOpcode()) { 7031 case Instruction::Trunc: 7032 return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType()); 7033 7034 case Instruction::ZExt: 7035 return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7036 7037 case Instruction::SExt: 7038 if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) { 7039 // The NSW flag of a subtract does not always survive the conversion to 7040 // A + (-1)*B. By pushing sign extension onto its operands we are much 7041 // more likely to preserve NSW and allow later AddRec optimisations. 7042 // 7043 // NOTE: This is effectively duplicating this logic from getSignExtend: 7044 // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw> 7045 // but by that point the NSW information has potentially been lost. 7046 if (BO->Opcode == Instruction::Sub && BO->IsNSW) { 7047 Type *Ty = U->getType(); 7048 auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty); 7049 auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty); 7050 return getMinusSCEV(V1, V2, SCEV::FlagNSW); 7051 } 7052 } 7053 return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType()); 7054 7055 case Instruction::BitCast: 7056 // BitCasts are no-op casts so we just eliminate the cast. 7057 if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType())) 7058 return getSCEV(U->getOperand(0)); 7059 break; 7060 7061 case Instruction::PtrToInt: { 7062 // Pointer to integer cast is straight-forward, so do model it. 7063 const SCEV *Op = getSCEV(U->getOperand(0)); 7064 Type *DstIntTy = U->getType(); 7065 // But only if effective SCEV (integer) type is wide enough to represent 7066 // all possible pointer values. 7067 const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy); 7068 if (isa<SCEVCouldNotCompute>(IntOp)) 7069 return getUnknown(V); 7070 return IntOp; 7071 } 7072 case Instruction::IntToPtr: 7073 // Just don't deal with inttoptr casts. 7074 return getUnknown(V); 7075 7076 case Instruction::SDiv: 7077 // If both operands are non-negative, this is just an udiv. 7078 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7079 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7080 return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7081 break; 7082 7083 case Instruction::SRem: 7084 // If both operands are non-negative, this is just an urem. 7085 if (isKnownNonNegative(getSCEV(U->getOperand(0))) && 7086 isKnownNonNegative(getSCEV(U->getOperand(1)))) 7087 return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1))); 7088 break; 7089 7090 case Instruction::GetElementPtr: 7091 return createNodeForGEP(cast<GEPOperator>(U)); 7092 7093 case Instruction::PHI: 7094 return createNodeForPHI(cast<PHINode>(U)); 7095 7096 case Instruction::Select: 7097 // U can also be a select constant expr, which let fall through. Since 7098 // createNodeForSelect only works for a condition that is an `ICmpInst`, and 7099 // constant expressions cannot have instructions as operands, we'd have 7100 // returned getUnknown for a select constant expressions anyway. 7101 if (isa<Instruction>(U)) 7102 return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0), 7103 U->getOperand(1), U->getOperand(2)); 7104 break; 7105 7106 case Instruction::Call: 7107 case Instruction::Invoke: 7108 if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand()) 7109 return getSCEV(RV); 7110 7111 if (auto *II = dyn_cast<IntrinsicInst>(U)) { 7112 switch (II->getIntrinsicID()) { 7113 case Intrinsic::abs: 7114 return getAbsExpr( 7115 getSCEV(II->getArgOperand(0)), 7116 /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne()); 7117 case Intrinsic::umax: 7118 return getUMaxExpr(getSCEV(II->getArgOperand(0)), 7119 getSCEV(II->getArgOperand(1))); 7120 case Intrinsic::umin: 7121 return getUMinExpr(getSCEV(II->getArgOperand(0)), 7122 getSCEV(II->getArgOperand(1))); 7123 case Intrinsic::smax: 7124 return getSMaxExpr(getSCEV(II->getArgOperand(0)), 7125 getSCEV(II->getArgOperand(1))); 7126 case Intrinsic::smin: 7127 return getSMinExpr(getSCEV(II->getArgOperand(0)), 7128 getSCEV(II->getArgOperand(1))); 7129 case Intrinsic::usub_sat: { 7130 const SCEV *X = getSCEV(II->getArgOperand(0)); 7131 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7132 const SCEV *ClampedY = getUMinExpr(X, Y); 7133 return getMinusSCEV(X, ClampedY, SCEV::FlagNUW); 7134 } 7135 case Intrinsic::uadd_sat: { 7136 const SCEV *X = getSCEV(II->getArgOperand(0)); 7137 const SCEV *Y = getSCEV(II->getArgOperand(1)); 7138 const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y)); 7139 return getAddExpr(ClampedX, Y, SCEV::FlagNUW); 7140 } 7141 case Intrinsic::start_loop_iterations: 7142 // A start_loop_iterations is just equivalent to the first operand for 7143 // SCEV purposes. 7144 return getSCEV(II->getArgOperand(0)); 7145 default: 7146 break; 7147 } 7148 } 7149 break; 7150 } 7151 7152 return getUnknown(V); 7153 } 7154 7155 //===----------------------------------------------------------------------===// 7156 // Iteration Count Computation Code 7157 // 7158 7159 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) { 7160 // Get the trip count from the BE count by adding 1. Overflow, results 7161 // in zero which means "unknown". 7162 return getAddExpr(ExitCount, getOne(ExitCount->getType())); 7163 } 7164 7165 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) { 7166 if (!ExitCount) 7167 return 0; 7168 7169 ConstantInt *ExitConst = ExitCount->getValue(); 7170 7171 // Guard against huge trip counts. 7172 if (ExitConst->getValue().getActiveBits() > 32) 7173 return 0; 7174 7175 // In case of integer overflow, this returns 0, which is correct. 7176 return ((unsigned)ExitConst->getZExtValue()) + 1; 7177 } 7178 7179 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) { 7180 auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact)); 7181 return getConstantTripCount(ExitCount); 7182 } 7183 7184 unsigned 7185 ScalarEvolution::getSmallConstantTripCount(const Loop *L, 7186 const BasicBlock *ExitingBlock) { 7187 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7188 assert(L->isLoopExiting(ExitingBlock) && 7189 "Exiting block must actually branch out of the loop!"); 7190 const SCEVConstant *ExitCount = 7191 dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock)); 7192 return getConstantTripCount(ExitCount); 7193 } 7194 7195 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) { 7196 const auto *MaxExitCount = 7197 dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L)); 7198 return getConstantTripCount(MaxExitCount); 7199 } 7200 7201 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) { 7202 SmallVector<BasicBlock *, 8> ExitingBlocks; 7203 L->getExitingBlocks(ExitingBlocks); 7204 7205 Optional<unsigned> Res = None; 7206 for (auto *ExitingBB : ExitingBlocks) { 7207 unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB); 7208 if (!Res) 7209 Res = Multiple; 7210 Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple); 7211 } 7212 return Res.getValueOr(1); 7213 } 7214 7215 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7216 const SCEV *ExitCount) { 7217 if (ExitCount == getCouldNotCompute()) 7218 return 1; 7219 7220 // Get the trip count 7221 const SCEV *TCExpr = getTripCountFromExitCount(ExitCount); 7222 7223 const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr); 7224 if (!TC) 7225 // Attempt to factor more general cases. Returns the greatest power of 7226 // two divisor. If overflow happens, the trip count expression is still 7227 // divisible by the greatest power of 2 divisor returned. 7228 return 1U << std::min((uint32_t)31, 7229 GetMinTrailingZeros(applyLoopGuards(TCExpr, L))); 7230 7231 ConstantInt *Result = TC->getValue(); 7232 7233 // Guard against huge trip counts (this requires checking 7234 // for zero to handle the case where the trip count == -1 and the 7235 // addition wraps). 7236 if (!Result || Result->getValue().getActiveBits() > 32 || 7237 Result->getValue().getActiveBits() == 0) 7238 return 1; 7239 7240 return (unsigned)Result->getZExtValue(); 7241 } 7242 7243 /// Returns the largest constant divisor of the trip count of this loop as a 7244 /// normal unsigned value, if possible. This means that the actual trip count is 7245 /// always a multiple of the returned value (don't forget the trip count could 7246 /// very well be zero as well!). 7247 /// 7248 /// Returns 1 if the trip count is unknown or not guaranteed to be the 7249 /// multiple of a constant (which is also the case if the trip count is simply 7250 /// constant, use getSmallConstantTripCount for that case), Will also return 1 7251 /// if the trip count is very large (>= 2^32). 7252 /// 7253 /// As explained in the comments for getSmallConstantTripCount, this assumes 7254 /// that control exits the loop via ExitingBlock. 7255 unsigned 7256 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L, 7257 const BasicBlock *ExitingBlock) { 7258 assert(ExitingBlock && "Must pass a non-null exiting block!"); 7259 assert(L->isLoopExiting(ExitingBlock) && 7260 "Exiting block must actually branch out of the loop!"); 7261 const SCEV *ExitCount = getExitCount(L, ExitingBlock); 7262 return getSmallConstantTripMultiple(L, ExitCount); 7263 } 7264 7265 const SCEV *ScalarEvolution::getExitCount(const Loop *L, 7266 const BasicBlock *ExitingBlock, 7267 ExitCountKind Kind) { 7268 switch (Kind) { 7269 case Exact: 7270 case SymbolicMaximum: 7271 return getBackedgeTakenInfo(L).getExact(ExitingBlock, this); 7272 case ConstantMaximum: 7273 return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this); 7274 }; 7275 llvm_unreachable("Invalid ExitCountKind!"); 7276 } 7277 7278 const SCEV * 7279 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L, 7280 SCEVUnionPredicate &Preds) { 7281 return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds); 7282 } 7283 7284 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L, 7285 ExitCountKind Kind) { 7286 switch (Kind) { 7287 case Exact: 7288 return getBackedgeTakenInfo(L).getExact(L, this); 7289 case ConstantMaximum: 7290 return getBackedgeTakenInfo(L).getConstantMax(this); 7291 case SymbolicMaximum: 7292 return getBackedgeTakenInfo(L).getSymbolicMax(L, this); 7293 }; 7294 llvm_unreachable("Invalid ExitCountKind!"); 7295 } 7296 7297 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) { 7298 return getBackedgeTakenInfo(L).isConstantMaxOrZero(this); 7299 } 7300 7301 /// Push PHI nodes in the header of the given loop onto the given Worklist. 7302 static void 7303 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) { 7304 BasicBlock *Header = L->getHeader(); 7305 7306 // Push all Loop-header PHIs onto the Worklist stack. 7307 for (PHINode &PN : Header->phis()) 7308 Worklist.push_back(&PN); 7309 } 7310 7311 const ScalarEvolution::BackedgeTakenInfo & 7312 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) { 7313 auto &BTI = getBackedgeTakenInfo(L); 7314 if (BTI.hasFullInfo()) 7315 return BTI; 7316 7317 auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7318 7319 if (!Pair.second) 7320 return Pair.first->second; 7321 7322 BackedgeTakenInfo Result = 7323 computeBackedgeTakenCount(L, /*AllowPredicates=*/true); 7324 7325 return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result); 7326 } 7327 7328 ScalarEvolution::BackedgeTakenInfo & 7329 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) { 7330 // Initially insert an invalid entry for this loop. If the insertion 7331 // succeeds, proceed to actually compute a backedge-taken count and 7332 // update the value. The temporary CouldNotCompute value tells SCEV 7333 // code elsewhere that it shouldn't attempt to request a new 7334 // backedge-taken count, which could result in infinite recursion. 7335 std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair = 7336 BackedgeTakenCounts.insert({L, BackedgeTakenInfo()}); 7337 if (!Pair.second) 7338 return Pair.first->second; 7339 7340 // computeBackedgeTakenCount may allocate memory for its result. Inserting it 7341 // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result 7342 // must be cleared in this scope. 7343 BackedgeTakenInfo Result = computeBackedgeTakenCount(L); 7344 7345 // In product build, there are no usage of statistic. 7346 (void)NumTripCountsComputed; 7347 (void)NumTripCountsNotComputed; 7348 #if LLVM_ENABLE_STATS || !defined(NDEBUG) 7349 const SCEV *BEExact = Result.getExact(L, this); 7350 if (BEExact != getCouldNotCompute()) { 7351 assert(isLoopInvariant(BEExact, L) && 7352 isLoopInvariant(Result.getConstantMax(this), L) && 7353 "Computed backedge-taken count isn't loop invariant for loop!"); 7354 ++NumTripCountsComputed; 7355 } else if (Result.getConstantMax(this) == getCouldNotCompute() && 7356 isa<PHINode>(L->getHeader()->begin())) { 7357 // Only count loops that have phi nodes as not being computable. 7358 ++NumTripCountsNotComputed; 7359 } 7360 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG) 7361 7362 // Now that we know more about the trip count for this loop, forget any 7363 // existing SCEV values for PHI nodes in this loop since they are only 7364 // conservative estimates made without the benefit of trip count 7365 // information. This is similar to the code in forgetLoop, except that 7366 // it handles SCEVUnknown PHI nodes specially. 7367 if (Result.hasAnyInfo()) { 7368 SmallVector<Instruction *, 16> Worklist; 7369 PushLoopPHIs(L, Worklist); 7370 7371 SmallPtrSet<Instruction *, 8> Discovered; 7372 while (!Worklist.empty()) { 7373 Instruction *I = Worklist.pop_back_val(); 7374 7375 ValueExprMapType::iterator It = 7376 ValueExprMap.find_as(static_cast<Value *>(I)); 7377 if (It != ValueExprMap.end()) { 7378 const SCEV *Old = It->second; 7379 7380 // SCEVUnknown for a PHI either means that it has an unrecognized 7381 // structure, or it's a PHI that's in the progress of being computed 7382 // by createNodeForPHI. In the former case, additional loop trip 7383 // count information isn't going to change anything. In the later 7384 // case, createNodeForPHI will perform the necessary updates on its 7385 // own when it gets to that point. 7386 if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) { 7387 eraseValueFromMap(It->first); 7388 forgetMemoizedResults(Old); 7389 } 7390 if (PHINode *PN = dyn_cast<PHINode>(I)) 7391 ConstantEvolutionLoopExitValue.erase(PN); 7392 } 7393 7394 // Since we don't need to invalidate anything for correctness and we're 7395 // only invalidating to make SCEV's results more precise, we get to stop 7396 // early to avoid invalidating too much. This is especially important in 7397 // cases like: 7398 // 7399 // %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node 7400 // loop0: 7401 // %pn0 = phi 7402 // ... 7403 // loop1: 7404 // %pn1 = phi 7405 // ... 7406 // 7407 // where both loop0 and loop1's backedge taken count uses the SCEV 7408 // expression for %v. If we don't have the early stop below then in cases 7409 // like the above, getBackedgeTakenInfo(loop1) will clear out the trip 7410 // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip 7411 // count for loop1, effectively nullifying SCEV's trip count cache. 7412 for (auto *U : I->users()) 7413 if (auto *I = dyn_cast<Instruction>(U)) { 7414 auto *LoopForUser = LI.getLoopFor(I->getParent()); 7415 if (LoopForUser && L->contains(LoopForUser) && 7416 Discovered.insert(I).second) 7417 Worklist.push_back(I); 7418 } 7419 } 7420 } 7421 7422 // Re-lookup the insert position, since the call to 7423 // computeBackedgeTakenCount above could result in a 7424 // recusive call to getBackedgeTakenInfo (on a different 7425 // loop), which would invalidate the iterator computed 7426 // earlier. 7427 return BackedgeTakenCounts.find(L)->second = std::move(Result); 7428 } 7429 7430 void ScalarEvolution::forgetAllLoops() { 7431 // This method is intended to forget all info about loops. It should 7432 // invalidate caches as if the following happened: 7433 // - The trip counts of all loops have changed arbitrarily 7434 // - Every llvm::Value has been updated in place to produce a different 7435 // result. 7436 BackedgeTakenCounts.clear(); 7437 PredicatedBackedgeTakenCounts.clear(); 7438 LoopPropertiesCache.clear(); 7439 ConstantEvolutionLoopExitValue.clear(); 7440 ValueExprMap.clear(); 7441 ValuesAtScopes.clear(); 7442 LoopDispositions.clear(); 7443 BlockDispositions.clear(); 7444 UnsignedRanges.clear(); 7445 SignedRanges.clear(); 7446 ExprValueMap.clear(); 7447 HasRecMap.clear(); 7448 MinTrailingZerosCache.clear(); 7449 PredicatedSCEVRewrites.clear(); 7450 } 7451 7452 void ScalarEvolution::forgetLoop(const Loop *L) { 7453 SmallVector<const Loop *, 16> LoopWorklist(1, L); 7454 SmallVector<Instruction *, 32> Worklist; 7455 SmallPtrSet<Instruction *, 16> Visited; 7456 7457 // Iterate over all the loops and sub-loops to drop SCEV information. 7458 while (!LoopWorklist.empty()) { 7459 auto *CurrL = LoopWorklist.pop_back_val(); 7460 7461 // Drop any stored trip count value. 7462 BackedgeTakenCounts.erase(CurrL); 7463 PredicatedBackedgeTakenCounts.erase(CurrL); 7464 7465 // Drop information about predicated SCEV rewrites for this loop. 7466 for (auto I = PredicatedSCEVRewrites.begin(); 7467 I != PredicatedSCEVRewrites.end();) { 7468 std::pair<const SCEV *, const Loop *> Entry = I->first; 7469 if (Entry.second == CurrL) 7470 PredicatedSCEVRewrites.erase(I++); 7471 else 7472 ++I; 7473 } 7474 7475 auto LoopUsersItr = LoopUsers.find(CurrL); 7476 if (LoopUsersItr != LoopUsers.end()) { 7477 for (auto *S : LoopUsersItr->second) 7478 forgetMemoizedResults(S); 7479 LoopUsers.erase(LoopUsersItr); 7480 } 7481 7482 // Drop information about expressions based on loop-header PHIs. 7483 PushLoopPHIs(CurrL, Worklist); 7484 7485 while (!Worklist.empty()) { 7486 Instruction *I = Worklist.pop_back_val(); 7487 if (!Visited.insert(I).second) 7488 continue; 7489 7490 ValueExprMapType::iterator It = 7491 ValueExprMap.find_as(static_cast<Value *>(I)); 7492 if (It != ValueExprMap.end()) { 7493 eraseValueFromMap(It->first); 7494 forgetMemoizedResults(It->second); 7495 if (PHINode *PN = dyn_cast<PHINode>(I)) 7496 ConstantEvolutionLoopExitValue.erase(PN); 7497 } 7498 7499 PushDefUseChildren(I, Worklist); 7500 } 7501 7502 LoopPropertiesCache.erase(CurrL); 7503 // Forget all contained loops too, to avoid dangling entries in the 7504 // ValuesAtScopes map. 7505 LoopWorklist.append(CurrL->begin(), CurrL->end()); 7506 } 7507 } 7508 7509 void ScalarEvolution::forgetTopmostLoop(const Loop *L) { 7510 while (Loop *Parent = L->getParentLoop()) 7511 L = Parent; 7512 forgetLoop(L); 7513 } 7514 7515 void ScalarEvolution::forgetValue(Value *V) { 7516 Instruction *I = dyn_cast<Instruction>(V); 7517 if (!I) return; 7518 7519 // Drop information about expressions based on loop-header PHIs. 7520 SmallVector<Instruction *, 16> Worklist; 7521 Worklist.push_back(I); 7522 7523 SmallPtrSet<Instruction *, 8> Visited; 7524 while (!Worklist.empty()) { 7525 I = Worklist.pop_back_val(); 7526 if (!Visited.insert(I).second) 7527 continue; 7528 7529 ValueExprMapType::iterator It = 7530 ValueExprMap.find_as(static_cast<Value *>(I)); 7531 if (It != ValueExprMap.end()) { 7532 eraseValueFromMap(It->first); 7533 forgetMemoizedResults(It->second); 7534 if (PHINode *PN = dyn_cast<PHINode>(I)) 7535 ConstantEvolutionLoopExitValue.erase(PN); 7536 } 7537 7538 PushDefUseChildren(I, Worklist); 7539 } 7540 } 7541 7542 void ScalarEvolution::forgetLoopDispositions(const Loop *L) { 7543 LoopDispositions.clear(); 7544 } 7545 7546 /// Get the exact loop backedge taken count considering all loop exits. A 7547 /// computable result can only be returned for loops with all exiting blocks 7548 /// dominating the latch. howFarToZero assumes that the limit of each loop test 7549 /// is never skipped. This is a valid assumption as long as the loop exits via 7550 /// that test. For precise results, it is the caller's responsibility to specify 7551 /// the relevant loop exiting block using getExact(ExitingBlock, SE). 7552 const SCEV * 7553 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE, 7554 SCEVUnionPredicate *Preds) const { 7555 // If any exits were not computable, the loop is not computable. 7556 if (!isComplete() || ExitNotTaken.empty()) 7557 return SE->getCouldNotCompute(); 7558 7559 const BasicBlock *Latch = L->getLoopLatch(); 7560 // All exiting blocks we have collected must dominate the only backedge. 7561 if (!Latch) 7562 return SE->getCouldNotCompute(); 7563 7564 // All exiting blocks we have gathered dominate loop's latch, so exact trip 7565 // count is simply a minimum out of all these calculated exit counts. 7566 SmallVector<const SCEV *, 2> Ops; 7567 for (auto &ENT : ExitNotTaken) { 7568 const SCEV *BECount = ENT.ExactNotTaken; 7569 assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!"); 7570 assert(SE->DT.dominates(ENT.ExitingBlock, Latch) && 7571 "We should only have known counts for exiting blocks that dominate " 7572 "latch!"); 7573 7574 Ops.push_back(BECount); 7575 7576 if (Preds && !ENT.hasAlwaysTruePredicate()) 7577 Preds->add(ENT.Predicate.get()); 7578 7579 assert((Preds || ENT.hasAlwaysTruePredicate()) && 7580 "Predicate should be always true!"); 7581 } 7582 7583 return SE->getUMinFromMismatchedTypes(Ops); 7584 } 7585 7586 /// Get the exact not taken count for this loop exit. 7587 const SCEV * 7588 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock, 7589 ScalarEvolution *SE) const { 7590 for (auto &ENT : ExitNotTaken) 7591 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7592 return ENT.ExactNotTaken; 7593 7594 return SE->getCouldNotCompute(); 7595 } 7596 7597 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax( 7598 const BasicBlock *ExitingBlock, ScalarEvolution *SE) const { 7599 for (auto &ENT : ExitNotTaken) 7600 if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate()) 7601 return ENT.MaxNotTaken; 7602 7603 return SE->getCouldNotCompute(); 7604 } 7605 7606 /// getConstantMax - Get the constant max backedge taken count for the loop. 7607 const SCEV * 7608 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const { 7609 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7610 return !ENT.hasAlwaysTruePredicate(); 7611 }; 7612 7613 if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax()) 7614 return SE->getCouldNotCompute(); 7615 7616 assert((isa<SCEVCouldNotCompute>(getConstantMax()) || 7617 isa<SCEVConstant>(getConstantMax())) && 7618 "No point in having a non-constant max backedge taken count!"); 7619 return getConstantMax(); 7620 } 7621 7622 const SCEV * 7623 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L, 7624 ScalarEvolution *SE) { 7625 if (!SymbolicMax) 7626 SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L); 7627 return SymbolicMax; 7628 } 7629 7630 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero( 7631 ScalarEvolution *SE) const { 7632 auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) { 7633 return !ENT.hasAlwaysTruePredicate(); 7634 }; 7635 return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue); 7636 } 7637 7638 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const { 7639 return Operands.contains(S); 7640 } 7641 7642 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E) 7643 : ExitLimit(E, E, false, None) { 7644 } 7645 7646 ScalarEvolution::ExitLimit::ExitLimit( 7647 const SCEV *E, const SCEV *M, bool MaxOrZero, 7648 ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList) 7649 : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) { 7650 // If we prove the max count is zero, so is the symbolic bound. This happens 7651 // in practice due to differences in a) how context sensitive we've chosen 7652 // to be and b) how we reason about bounds impied by UB. 7653 if (MaxNotTaken->isZero()) 7654 ExactNotTaken = MaxNotTaken; 7655 7656 assert((isa<SCEVCouldNotCompute>(ExactNotTaken) || 7657 !isa<SCEVCouldNotCompute>(MaxNotTaken)) && 7658 "Exact is not allowed to be less precise than Max"); 7659 assert((isa<SCEVCouldNotCompute>(MaxNotTaken) || 7660 isa<SCEVConstant>(MaxNotTaken)) && 7661 "No point in having a non-constant max backedge taken count!"); 7662 for (auto *PredSet : PredSetList) 7663 for (auto *P : *PredSet) 7664 addPredicate(P); 7665 assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) && 7666 "Backedge count should be int"); 7667 assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) && 7668 "Max backedge count should be int"); 7669 } 7670 7671 ScalarEvolution::ExitLimit::ExitLimit( 7672 const SCEV *E, const SCEV *M, bool MaxOrZero, 7673 const SmallPtrSetImpl<const SCEVPredicate *> &PredSet) 7674 : ExitLimit(E, M, MaxOrZero, {&PredSet}) { 7675 } 7676 7677 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M, 7678 bool MaxOrZero) 7679 : ExitLimit(E, M, MaxOrZero, None) { 7680 } 7681 7682 class SCEVRecordOperands { 7683 SmallPtrSetImpl<const SCEV *> &Operands; 7684 7685 public: 7686 SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands) 7687 : Operands(Operands) {} 7688 bool follow(const SCEV *S) { 7689 Operands.insert(S); 7690 return true; 7691 } 7692 bool isDone() { return false; } 7693 }; 7694 7695 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each 7696 /// computable exit into a persistent ExitNotTakenInfo array. 7697 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo( 7698 ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts, 7699 bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero) 7700 : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) { 7701 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7702 7703 ExitNotTaken.reserve(ExitCounts.size()); 7704 std::transform( 7705 ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken), 7706 [&](const EdgeExitInfo &EEI) { 7707 BasicBlock *ExitBB = EEI.first; 7708 const ExitLimit &EL = EEI.second; 7709 if (EL.Predicates.empty()) 7710 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7711 nullptr); 7712 7713 std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate); 7714 for (auto *Pred : EL.Predicates) 7715 Predicate->add(Pred); 7716 7717 return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken, 7718 std::move(Predicate)); 7719 }); 7720 assert((isa<SCEVCouldNotCompute>(ConstantMax) || 7721 isa<SCEVConstant>(ConstantMax)) && 7722 "No point in having a non-constant max backedge taken count!"); 7723 7724 SCEVRecordOperands RecordOperands(Operands); 7725 SCEVTraversal<SCEVRecordOperands> ST(RecordOperands); 7726 if (!isa<SCEVCouldNotCompute>(ConstantMax)) 7727 ST.visitAll(ConstantMax); 7728 for (auto &ENT : ExitNotTaken) 7729 if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken)) 7730 ST.visitAll(ENT.ExactNotTaken); 7731 } 7732 7733 /// Compute the number of times the backedge of the specified loop will execute. 7734 ScalarEvolution::BackedgeTakenInfo 7735 ScalarEvolution::computeBackedgeTakenCount(const Loop *L, 7736 bool AllowPredicates) { 7737 SmallVector<BasicBlock *, 8> ExitingBlocks; 7738 L->getExitingBlocks(ExitingBlocks); 7739 7740 using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo; 7741 7742 SmallVector<EdgeExitInfo, 4> ExitCounts; 7743 bool CouldComputeBECount = true; 7744 BasicBlock *Latch = L->getLoopLatch(); // may be NULL. 7745 const SCEV *MustExitMaxBECount = nullptr; 7746 const SCEV *MayExitMaxBECount = nullptr; 7747 bool MustExitMaxOrZero = false; 7748 7749 // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts 7750 // and compute maxBECount. 7751 // Do a union of all the predicates here. 7752 for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { 7753 BasicBlock *ExitBB = ExitingBlocks[i]; 7754 7755 // We canonicalize untaken exits to br (constant), ignore them so that 7756 // proving an exit untaken doesn't negatively impact our ability to reason 7757 // about the loop as whole. 7758 if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator())) 7759 if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) { 7760 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7761 if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne())) 7762 continue; 7763 } 7764 7765 ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates); 7766 7767 assert((AllowPredicates || EL.Predicates.empty()) && 7768 "Predicated exit limit when predicates are not allowed!"); 7769 7770 // 1. For each exit that can be computed, add an entry to ExitCounts. 7771 // CouldComputeBECount is true only if all exits can be computed. 7772 if (EL.ExactNotTaken == getCouldNotCompute()) 7773 // We couldn't compute an exact value for this exit, so 7774 // we won't be able to compute an exact value for the loop. 7775 CouldComputeBECount = false; 7776 else 7777 ExitCounts.emplace_back(ExitBB, EL); 7778 7779 // 2. Derive the loop's MaxBECount from each exit's max number of 7780 // non-exiting iterations. Partition the loop exits into two kinds: 7781 // LoopMustExits and LoopMayExits. 7782 // 7783 // If the exit dominates the loop latch, it is a LoopMustExit otherwise it 7784 // is a LoopMayExit. If any computable LoopMustExit is found, then 7785 // MaxBECount is the minimum EL.MaxNotTaken of computable 7786 // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum 7787 // EL.MaxNotTaken, where CouldNotCompute is considered greater than any 7788 // computable EL.MaxNotTaken. 7789 if (EL.MaxNotTaken != getCouldNotCompute() && Latch && 7790 DT.dominates(ExitBB, Latch)) { 7791 if (!MustExitMaxBECount) { 7792 MustExitMaxBECount = EL.MaxNotTaken; 7793 MustExitMaxOrZero = EL.MaxOrZero; 7794 } else { 7795 MustExitMaxBECount = 7796 getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken); 7797 } 7798 } else if (MayExitMaxBECount != getCouldNotCompute()) { 7799 if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute()) 7800 MayExitMaxBECount = EL.MaxNotTaken; 7801 else { 7802 MayExitMaxBECount = 7803 getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken); 7804 } 7805 } 7806 } 7807 const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount : 7808 (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute()); 7809 // The loop backedge will be taken the maximum or zero times if there's 7810 // a single exit that must be taken the maximum or zero times. 7811 bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1); 7812 return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount, 7813 MaxBECount, MaxOrZero); 7814 } 7815 7816 ScalarEvolution::ExitLimit 7817 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock, 7818 bool AllowPredicates) { 7819 assert(L->contains(ExitingBlock) && "Exit count for non-loop block?"); 7820 // If our exiting block does not dominate the latch, then its connection with 7821 // loop's exit limit may be far from trivial. 7822 const BasicBlock *Latch = L->getLoopLatch(); 7823 if (!Latch || !DT.dominates(ExitingBlock, Latch)) 7824 return getCouldNotCompute(); 7825 7826 bool IsOnlyExit = (L->getExitingBlock() != nullptr); 7827 Instruction *Term = ExitingBlock->getTerminator(); 7828 if (BranchInst *BI = dyn_cast<BranchInst>(Term)) { 7829 assert(BI->isConditional() && "If unconditional, it can't be in loop!"); 7830 bool ExitIfTrue = !L->contains(BI->getSuccessor(0)); 7831 assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) && 7832 "It should have one successor in loop and one exit block!"); 7833 // Proceed to the next level to examine the exit condition expression. 7834 return computeExitLimitFromCond( 7835 L, BI->getCondition(), ExitIfTrue, 7836 /*ControlsExit=*/IsOnlyExit, AllowPredicates); 7837 } 7838 7839 if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) { 7840 // For switch, make sure that there is a single exit from the loop. 7841 BasicBlock *Exit = nullptr; 7842 for (auto *SBB : successors(ExitingBlock)) 7843 if (!L->contains(SBB)) { 7844 if (Exit) // Multiple exit successors. 7845 return getCouldNotCompute(); 7846 Exit = SBB; 7847 } 7848 assert(Exit && "Exiting block must have at least one exit"); 7849 return computeExitLimitFromSingleExitSwitch(L, SI, Exit, 7850 /*ControlsExit=*/IsOnlyExit); 7851 } 7852 7853 return getCouldNotCompute(); 7854 } 7855 7856 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond( 7857 const Loop *L, Value *ExitCond, bool ExitIfTrue, 7858 bool ControlsExit, bool AllowPredicates) { 7859 ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates); 7860 return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue, 7861 ControlsExit, AllowPredicates); 7862 } 7863 7864 Optional<ScalarEvolution::ExitLimit> 7865 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond, 7866 bool ExitIfTrue, bool ControlsExit, 7867 bool AllowPredicates) { 7868 (void)this->L; 7869 (void)this->ExitIfTrue; 7870 (void)this->AllowPredicates; 7871 7872 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7873 this->AllowPredicates == AllowPredicates && 7874 "Variance in assumed invariant key components!"); 7875 auto Itr = TripCountMap.find({ExitCond, ControlsExit}); 7876 if (Itr == TripCountMap.end()) 7877 return None; 7878 return Itr->second; 7879 } 7880 7881 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond, 7882 bool ExitIfTrue, 7883 bool ControlsExit, 7884 bool AllowPredicates, 7885 const ExitLimit &EL) { 7886 assert(this->L == L && this->ExitIfTrue == ExitIfTrue && 7887 this->AllowPredicates == AllowPredicates && 7888 "Variance in assumed invariant key components!"); 7889 7890 auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL}); 7891 assert(InsertResult.second && "Expected successful insertion!"); 7892 (void)InsertResult; 7893 (void)ExitIfTrue; 7894 } 7895 7896 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached( 7897 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7898 bool ControlsExit, bool AllowPredicates) { 7899 7900 if (auto MaybeEL = 7901 Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7902 return *MaybeEL; 7903 7904 ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue, 7905 ControlsExit, AllowPredicates); 7906 Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL); 7907 return EL; 7908 } 7909 7910 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl( 7911 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7912 bool ControlsExit, bool AllowPredicates) { 7913 // Handle BinOp conditions (And, Or). 7914 if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp( 7915 Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates)) 7916 return *LimitFromBinOp; 7917 7918 // With an icmp, it may be feasible to compute an exact backedge-taken count. 7919 // Proceed to the next level to examine the icmp. 7920 if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) { 7921 ExitLimit EL = 7922 computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit); 7923 if (EL.hasFullInfo() || !AllowPredicates) 7924 return EL; 7925 7926 // Try again, but use SCEV predicates this time. 7927 return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit, 7928 /*AllowPredicates=*/true); 7929 } 7930 7931 // Check for a constant condition. These are normally stripped out by 7932 // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to 7933 // preserve the CFG and is temporarily leaving constant conditions 7934 // in place. 7935 if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) { 7936 if (ExitIfTrue == !CI->getZExtValue()) 7937 // The backedge is always taken. 7938 return getCouldNotCompute(); 7939 else 7940 // The backedge is never taken. 7941 return getZero(CI->getType()); 7942 } 7943 7944 // If it's not an integer or pointer comparison then compute it the hard way. 7945 return computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 7946 } 7947 7948 Optional<ScalarEvolution::ExitLimit> 7949 ScalarEvolution::computeExitLimitFromCondFromBinOp( 7950 ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue, 7951 bool ControlsExit, bool AllowPredicates) { 7952 // Check if the controlling expression for this loop is an And or Or. 7953 Value *Op0, *Op1; 7954 bool IsAnd = false; 7955 if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) 7956 IsAnd = true; 7957 else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) 7958 IsAnd = false; 7959 else 7960 return None; 7961 7962 // EitherMayExit is true in these two cases: 7963 // br (and Op0 Op1), loop, exit 7964 // br (or Op0 Op1), exit, loop 7965 bool EitherMayExit = IsAnd ^ ExitIfTrue; 7966 ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue, 7967 ControlsExit && !EitherMayExit, 7968 AllowPredicates); 7969 ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue, 7970 ControlsExit && !EitherMayExit, 7971 AllowPredicates); 7972 7973 // Be robust against unsimplified IR for the form "op i1 X, NeutralElement" 7974 const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd); 7975 if (isa<ConstantInt>(Op1)) 7976 return Op1 == NeutralElement ? EL0 : EL1; 7977 if (isa<ConstantInt>(Op0)) 7978 return Op0 == NeutralElement ? EL1 : EL0; 7979 7980 const SCEV *BECount = getCouldNotCompute(); 7981 const SCEV *MaxBECount = getCouldNotCompute(); 7982 if (EitherMayExit) { 7983 // Both conditions must be same for the loop to continue executing. 7984 // Choose the less conservative count. 7985 // If ExitCond is a short-circuit form (select), using 7986 // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general. 7987 // To see the detailed examples, please see 7988 // test/Analysis/ScalarEvolution/exit-count-select.ll 7989 bool PoisonSafe = isa<BinaryOperator>(ExitCond); 7990 if (!PoisonSafe) 7991 // Even if ExitCond is select, we can safely derive BECount using both 7992 // EL0 and EL1 in these cases: 7993 // (1) EL0.ExactNotTaken is non-zero 7994 // (2) EL1.ExactNotTaken is non-poison 7995 // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and 7996 // it cannot be umin(0, ..)) 7997 // The PoisonSafe assignment below is simplified and the assertion after 7998 // BECount calculation fully guarantees the condition (3). 7999 PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) || 8000 isa<SCEVConstant>(EL1.ExactNotTaken); 8001 if (EL0.ExactNotTaken != getCouldNotCompute() && 8002 EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) { 8003 BECount = 8004 getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken); 8005 8006 // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form, 8007 // it should have been simplified to zero (see the condition (3) above) 8008 assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() || 8009 BECount->isZero()); 8010 } 8011 if (EL0.MaxNotTaken == getCouldNotCompute()) 8012 MaxBECount = EL1.MaxNotTaken; 8013 else if (EL1.MaxNotTaken == getCouldNotCompute()) 8014 MaxBECount = EL0.MaxNotTaken; 8015 else 8016 MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken); 8017 } else { 8018 // Both conditions must be same at the same time for the loop to exit. 8019 // For now, be conservative. 8020 if (EL0.ExactNotTaken == EL1.ExactNotTaken) 8021 BECount = EL0.ExactNotTaken; 8022 } 8023 8024 // There are cases (e.g. PR26207) where computeExitLimitFromCond is able 8025 // to be more aggressive when computing BECount than when computing 8026 // MaxBECount. In these cases it is possible for EL0.ExactNotTaken and 8027 // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken 8028 // to not. 8029 if (isa<SCEVCouldNotCompute>(MaxBECount) && 8030 !isa<SCEVCouldNotCompute>(BECount)) 8031 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 8032 8033 return ExitLimit(BECount, MaxBECount, false, 8034 { &EL0.Predicates, &EL1.Predicates }); 8035 } 8036 8037 ScalarEvolution::ExitLimit 8038 ScalarEvolution::computeExitLimitFromICmp(const Loop *L, 8039 ICmpInst *ExitCond, 8040 bool ExitIfTrue, 8041 bool ControlsExit, 8042 bool AllowPredicates) { 8043 // If the condition was exit on true, convert the condition to exit on false 8044 ICmpInst::Predicate Pred; 8045 if (!ExitIfTrue) 8046 Pred = ExitCond->getPredicate(); 8047 else 8048 Pred = ExitCond->getInversePredicate(); 8049 const ICmpInst::Predicate OriginalPred = Pred; 8050 8051 // Handle common loops like: for (X = "string"; *X; ++X) 8052 if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0))) 8053 if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) { 8054 ExitLimit ItCnt = 8055 computeLoadConstantCompareExitLimit(LI, RHS, L, Pred); 8056 if (ItCnt.hasAnyInfo()) 8057 return ItCnt; 8058 } 8059 8060 const SCEV *LHS = getSCEV(ExitCond->getOperand(0)); 8061 const SCEV *RHS = getSCEV(ExitCond->getOperand(1)); 8062 8063 // Try to evaluate any dependencies out of the loop. 8064 LHS = getSCEVAtScope(LHS, L); 8065 RHS = getSCEVAtScope(RHS, L); 8066 8067 // At this point, we would like to compute how many iterations of the 8068 // loop the predicate will return true for these inputs. 8069 if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) { 8070 // If there is a loop-invariant, force it into the RHS. 8071 std::swap(LHS, RHS); 8072 Pred = ICmpInst::getSwappedPredicate(Pred); 8073 } 8074 8075 // Simplify the operands before analyzing them. 8076 (void)SimplifyICmpOperands(Pred, LHS, RHS); 8077 8078 // If we have a comparison of a chrec against a constant, try to use value 8079 // ranges to answer this query. 8080 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) 8081 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS)) 8082 if (AddRec->getLoop() == L) { 8083 // Form the constant range. 8084 ConstantRange CompRange = 8085 ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt()); 8086 8087 const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this); 8088 if (!isa<SCEVCouldNotCompute>(Ret)) return Ret; 8089 } 8090 8091 switch (Pred) { 8092 case ICmpInst::ICMP_NE: { // while (X != Y) 8093 // Convert to: while (X-Y != 0) 8094 if (LHS->getType()->isPointerTy()) { 8095 LHS = getLosslessPtrToIntExpr(LHS); 8096 if (isa<SCEVCouldNotCompute>(LHS)) 8097 return LHS; 8098 } 8099 if (RHS->getType()->isPointerTy()) { 8100 RHS = getLosslessPtrToIntExpr(RHS); 8101 if (isa<SCEVCouldNotCompute>(RHS)) 8102 return RHS; 8103 } 8104 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit, 8105 AllowPredicates); 8106 if (EL.hasAnyInfo()) return EL; 8107 break; 8108 } 8109 case ICmpInst::ICMP_EQ: { // while (X == Y) 8110 // Convert to: while (X-Y == 0) 8111 if (LHS->getType()->isPointerTy()) { 8112 LHS = getLosslessPtrToIntExpr(LHS); 8113 if (isa<SCEVCouldNotCompute>(LHS)) 8114 return LHS; 8115 } 8116 if (RHS->getType()->isPointerTy()) { 8117 RHS = getLosslessPtrToIntExpr(RHS); 8118 if (isa<SCEVCouldNotCompute>(RHS)) 8119 return RHS; 8120 } 8121 ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L); 8122 if (EL.hasAnyInfo()) return EL; 8123 break; 8124 } 8125 case ICmpInst::ICMP_SLT: 8126 case ICmpInst::ICMP_ULT: { // while (X < Y) 8127 bool IsSigned = Pred == ICmpInst::ICMP_SLT; 8128 ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit, 8129 AllowPredicates); 8130 if (EL.hasAnyInfo()) return EL; 8131 break; 8132 } 8133 case ICmpInst::ICMP_SGT: 8134 case ICmpInst::ICMP_UGT: { // while (X > Y) 8135 bool IsSigned = Pred == ICmpInst::ICMP_SGT; 8136 ExitLimit EL = 8137 howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit, 8138 AllowPredicates); 8139 if (EL.hasAnyInfo()) return EL; 8140 break; 8141 } 8142 default: 8143 break; 8144 } 8145 8146 auto *ExhaustiveCount = 8147 computeExitCountExhaustively(L, ExitCond, ExitIfTrue); 8148 8149 if (!isa<SCEVCouldNotCompute>(ExhaustiveCount)) 8150 return ExhaustiveCount; 8151 8152 return computeShiftCompareExitLimit(ExitCond->getOperand(0), 8153 ExitCond->getOperand(1), L, OriginalPred); 8154 } 8155 8156 ScalarEvolution::ExitLimit 8157 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L, 8158 SwitchInst *Switch, 8159 BasicBlock *ExitingBlock, 8160 bool ControlsExit) { 8161 assert(!L->contains(ExitingBlock) && "Not an exiting block!"); 8162 8163 // Give up if the exit is the default dest of a switch. 8164 if (Switch->getDefaultDest() == ExitingBlock) 8165 return getCouldNotCompute(); 8166 8167 assert(L->contains(Switch->getDefaultDest()) && 8168 "Default case must not exit the loop!"); 8169 const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L); 8170 const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock)); 8171 8172 // while (X != Y) --> while (X-Y != 0) 8173 ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit); 8174 if (EL.hasAnyInfo()) 8175 return EL; 8176 8177 return getCouldNotCompute(); 8178 } 8179 8180 static ConstantInt * 8181 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C, 8182 ScalarEvolution &SE) { 8183 const SCEV *InVal = SE.getConstant(C); 8184 const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE); 8185 assert(isa<SCEVConstant>(Val) && 8186 "Evaluation of SCEV at constant didn't fold correctly?"); 8187 return cast<SCEVConstant>(Val)->getValue(); 8188 } 8189 8190 /// Given an exit condition of 'icmp op load X, cst', try to see if we can 8191 /// compute the backedge execution count. 8192 ScalarEvolution::ExitLimit 8193 ScalarEvolution::computeLoadConstantCompareExitLimit( 8194 LoadInst *LI, 8195 Constant *RHS, 8196 const Loop *L, 8197 ICmpInst::Predicate predicate) { 8198 if (LI->isVolatile()) return getCouldNotCompute(); 8199 8200 // Check to see if the loaded pointer is a getelementptr of a global. 8201 // TODO: Use SCEV instead of manually grubbing with GEPs. 8202 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)); 8203 if (!GEP) return getCouldNotCompute(); 8204 8205 // Make sure that it is really a constant global we are gepping, with an 8206 // initializer, and make sure the first IDX is really 0. 8207 GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)); 8208 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() || 8209 GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) || 8210 !cast<Constant>(GEP->getOperand(1))->isNullValue()) 8211 return getCouldNotCompute(); 8212 8213 // Okay, we allow one non-constant index into the GEP instruction. 8214 Value *VarIdx = nullptr; 8215 std::vector<Constant*> Indexes; 8216 unsigned VarIdxNum = 0; 8217 for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i) 8218 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) { 8219 Indexes.push_back(CI); 8220 } else if (!isa<ConstantInt>(GEP->getOperand(i))) { 8221 if (VarIdx) return getCouldNotCompute(); // Multiple non-constant idx's. 8222 VarIdx = GEP->getOperand(i); 8223 VarIdxNum = i-2; 8224 Indexes.push_back(nullptr); 8225 } 8226 8227 // Loop-invariant loads may be a byproduct of loop optimization. Skip them. 8228 if (!VarIdx) 8229 return getCouldNotCompute(); 8230 8231 // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant. 8232 // Check to see if X is a loop variant variable value now. 8233 const SCEV *Idx = getSCEV(VarIdx); 8234 Idx = getSCEVAtScope(Idx, L); 8235 8236 // We can only recognize very limited forms of loop index expressions, in 8237 // particular, only affine AddRec's like {C1,+,C2}<L>. 8238 const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx); 8239 if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() || 8240 isLoopInvariant(IdxExpr, L) || 8241 !isa<SCEVConstant>(IdxExpr->getOperand(0)) || 8242 !isa<SCEVConstant>(IdxExpr->getOperand(1))) 8243 return getCouldNotCompute(); 8244 8245 unsigned MaxSteps = MaxBruteForceIterations; 8246 for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) { 8247 ConstantInt *ItCst = ConstantInt::get( 8248 cast<IntegerType>(IdxExpr->getType()), IterationNum); 8249 ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this); 8250 8251 // Form the GEP offset. 8252 Indexes[VarIdxNum] = Val; 8253 8254 Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(), 8255 Indexes); 8256 if (!Result) break; // Cannot compute! 8257 8258 // Evaluate the condition for this iteration. 8259 Result = ConstantExpr::getICmp(predicate, Result, RHS); 8260 if (!isa<ConstantInt>(Result)) break; // Couldn't decide for sure 8261 if (cast<ConstantInt>(Result)->getValue().isMinValue()) { 8262 ++NumArrayLenItCounts; 8263 return getConstant(ItCst); // Found terminating iteration! 8264 } 8265 } 8266 return getCouldNotCompute(); 8267 } 8268 8269 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit( 8270 Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) { 8271 ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV); 8272 if (!RHS) 8273 return getCouldNotCompute(); 8274 8275 const BasicBlock *Latch = L->getLoopLatch(); 8276 if (!Latch) 8277 return getCouldNotCompute(); 8278 8279 const BasicBlock *Predecessor = L->getLoopPredecessor(); 8280 if (!Predecessor) 8281 return getCouldNotCompute(); 8282 8283 // Return true if V is of the form "LHS `shift_op` <positive constant>". 8284 // Return LHS in OutLHS and shift_opt in OutOpCode. 8285 auto MatchPositiveShift = 8286 [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) { 8287 8288 using namespace PatternMatch; 8289 8290 ConstantInt *ShiftAmt; 8291 if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8292 OutOpCode = Instruction::LShr; 8293 else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8294 OutOpCode = Instruction::AShr; 8295 else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt)))) 8296 OutOpCode = Instruction::Shl; 8297 else 8298 return false; 8299 8300 return ShiftAmt->getValue().isStrictlyPositive(); 8301 }; 8302 8303 // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in 8304 // 8305 // loop: 8306 // %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ] 8307 // %iv.shifted = lshr i32 %iv, <positive constant> 8308 // 8309 // Return true on a successful match. Return the corresponding PHI node (%iv 8310 // above) in PNOut and the opcode of the shift operation in OpCodeOut. 8311 auto MatchShiftRecurrence = 8312 [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) { 8313 Optional<Instruction::BinaryOps> PostShiftOpCode; 8314 8315 { 8316 Instruction::BinaryOps OpC; 8317 Value *V; 8318 8319 // If we encounter a shift instruction, "peel off" the shift operation, 8320 // and remember that we did so. Later when we inspect %iv's backedge 8321 // value, we will make sure that the backedge value uses the same 8322 // operation. 8323 // 8324 // Note: the peeled shift operation does not have to be the same 8325 // instruction as the one feeding into the PHI's backedge value. We only 8326 // really care about it being the same *kind* of shift instruction -- 8327 // that's all that is required for our later inferences to hold. 8328 if (MatchPositiveShift(LHS, V, OpC)) { 8329 PostShiftOpCode = OpC; 8330 LHS = V; 8331 } 8332 } 8333 8334 PNOut = dyn_cast<PHINode>(LHS); 8335 if (!PNOut || PNOut->getParent() != L->getHeader()) 8336 return false; 8337 8338 Value *BEValue = PNOut->getIncomingValueForBlock(Latch); 8339 Value *OpLHS; 8340 8341 return 8342 // The backedge value for the PHI node must be a shift by a positive 8343 // amount 8344 MatchPositiveShift(BEValue, OpLHS, OpCodeOut) && 8345 8346 // of the PHI node itself 8347 OpLHS == PNOut && 8348 8349 // and the kind of shift should be match the kind of shift we peeled 8350 // off, if any. 8351 (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut); 8352 }; 8353 8354 PHINode *PN; 8355 Instruction::BinaryOps OpCode; 8356 if (!MatchShiftRecurrence(LHS, PN, OpCode)) 8357 return getCouldNotCompute(); 8358 8359 const DataLayout &DL = getDataLayout(); 8360 8361 // The key rationale for this optimization is that for some kinds of shift 8362 // recurrences, the value of the recurrence "stabilizes" to either 0 or -1 8363 // within a finite number of iterations. If the condition guarding the 8364 // backedge (in the sense that the backedge is taken if the condition is true) 8365 // is false for the value the shift recurrence stabilizes to, then we know 8366 // that the backedge is taken only a finite number of times. 8367 8368 ConstantInt *StableValue = nullptr; 8369 switch (OpCode) { 8370 default: 8371 llvm_unreachable("Impossible case!"); 8372 8373 case Instruction::AShr: { 8374 // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most 8375 // bitwidth(K) iterations. 8376 Value *FirstValue = PN->getIncomingValueForBlock(Predecessor); 8377 KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC, 8378 Predecessor->getTerminator(), &DT); 8379 auto *Ty = cast<IntegerType>(RHS->getType()); 8380 if (Known.isNonNegative()) 8381 StableValue = ConstantInt::get(Ty, 0); 8382 else if (Known.isNegative()) 8383 StableValue = ConstantInt::get(Ty, -1, true); 8384 else 8385 return getCouldNotCompute(); 8386 8387 break; 8388 } 8389 case Instruction::LShr: 8390 case Instruction::Shl: 8391 // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>} 8392 // stabilize to 0 in at most bitwidth(K) iterations. 8393 StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0); 8394 break; 8395 } 8396 8397 auto *Result = 8398 ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI); 8399 assert(Result->getType()->isIntegerTy(1) && 8400 "Otherwise cannot be an operand to a branch instruction"); 8401 8402 if (Result->isZeroValue()) { 8403 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 8404 const SCEV *UpperBound = 8405 getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth); 8406 return ExitLimit(getCouldNotCompute(), UpperBound, false); 8407 } 8408 8409 return getCouldNotCompute(); 8410 } 8411 8412 /// Return true if we can constant fold an instruction of the specified type, 8413 /// assuming that all operands were constants. 8414 static bool CanConstantFold(const Instruction *I) { 8415 if (isa<BinaryOperator>(I) || isa<CmpInst>(I) || 8416 isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) || 8417 isa<LoadInst>(I) || isa<ExtractValueInst>(I)) 8418 return true; 8419 8420 if (const CallInst *CI = dyn_cast<CallInst>(I)) 8421 if (const Function *F = CI->getCalledFunction()) 8422 return canConstantFoldCallTo(CI, F); 8423 return false; 8424 } 8425 8426 /// Determine whether this instruction can constant evolve within this loop 8427 /// assuming its operands can all constant evolve. 8428 static bool canConstantEvolve(Instruction *I, const Loop *L) { 8429 // An instruction outside of the loop can't be derived from a loop PHI. 8430 if (!L->contains(I)) return false; 8431 8432 if (isa<PHINode>(I)) { 8433 // We don't currently keep track of the control flow needed to evaluate 8434 // PHIs, so we cannot handle PHIs inside of loops. 8435 return L->getHeader() == I->getParent(); 8436 } 8437 8438 // If we won't be able to constant fold this expression even if the operands 8439 // are constants, bail early. 8440 return CanConstantFold(I); 8441 } 8442 8443 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by 8444 /// recursing through each instruction operand until reaching a loop header phi. 8445 static PHINode * 8446 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L, 8447 DenseMap<Instruction *, PHINode *> &PHIMap, 8448 unsigned Depth) { 8449 if (Depth > MaxConstantEvolvingDepth) 8450 return nullptr; 8451 8452 // Otherwise, we can evaluate this instruction if all of its operands are 8453 // constant or derived from a PHI node themselves. 8454 PHINode *PHI = nullptr; 8455 for (Value *Op : UseInst->operands()) { 8456 if (isa<Constant>(Op)) continue; 8457 8458 Instruction *OpInst = dyn_cast<Instruction>(Op); 8459 if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr; 8460 8461 PHINode *P = dyn_cast<PHINode>(OpInst); 8462 if (!P) 8463 // If this operand is already visited, reuse the prior result. 8464 // We may have P != PHI if this is the deepest point at which the 8465 // inconsistent paths meet. 8466 P = PHIMap.lookup(OpInst); 8467 if (!P) { 8468 // Recurse and memoize the results, whether a phi is found or not. 8469 // This recursive call invalidates pointers into PHIMap. 8470 P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1); 8471 PHIMap[OpInst] = P; 8472 } 8473 if (!P) 8474 return nullptr; // Not evolving from PHI 8475 if (PHI && PHI != P) 8476 return nullptr; // Evolving from multiple different PHIs. 8477 PHI = P; 8478 } 8479 // This is a expression evolving from a constant PHI! 8480 return PHI; 8481 } 8482 8483 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node 8484 /// in the loop that V is derived from. We allow arbitrary operations along the 8485 /// way, but the operands of an operation must either be constants or a value 8486 /// derived from a constant PHI. If this expression does not fit with these 8487 /// constraints, return null. 8488 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) { 8489 Instruction *I = dyn_cast<Instruction>(V); 8490 if (!I || !canConstantEvolve(I, L)) return nullptr; 8491 8492 if (PHINode *PN = dyn_cast<PHINode>(I)) 8493 return PN; 8494 8495 // Record non-constant instructions contained by the loop. 8496 DenseMap<Instruction *, PHINode *> PHIMap; 8497 return getConstantEvolvingPHIOperands(I, L, PHIMap, 0); 8498 } 8499 8500 /// EvaluateExpression - Given an expression that passes the 8501 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node 8502 /// in the loop has the value PHIVal. If we can't fold this expression for some 8503 /// reason, return null. 8504 static Constant *EvaluateExpression(Value *V, const Loop *L, 8505 DenseMap<Instruction *, Constant *> &Vals, 8506 const DataLayout &DL, 8507 const TargetLibraryInfo *TLI) { 8508 // Convenient constant check, but redundant for recursive calls. 8509 if (Constant *C = dyn_cast<Constant>(V)) return C; 8510 Instruction *I = dyn_cast<Instruction>(V); 8511 if (!I) return nullptr; 8512 8513 if (Constant *C = Vals.lookup(I)) return C; 8514 8515 // An instruction inside the loop depends on a value outside the loop that we 8516 // weren't given a mapping for, or a value such as a call inside the loop. 8517 if (!canConstantEvolve(I, L)) return nullptr; 8518 8519 // An unmapped PHI can be due to a branch or another loop inside this loop, 8520 // or due to this not being the initial iteration through a loop where we 8521 // couldn't compute the evolution of this particular PHI last time. 8522 if (isa<PHINode>(I)) return nullptr; 8523 8524 std::vector<Constant*> Operands(I->getNumOperands()); 8525 8526 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { 8527 Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i)); 8528 if (!Operand) { 8529 Operands[i] = dyn_cast<Constant>(I->getOperand(i)); 8530 if (!Operands[i]) return nullptr; 8531 continue; 8532 } 8533 Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI); 8534 Vals[Operand] = C; 8535 if (!C) return nullptr; 8536 Operands[i] = C; 8537 } 8538 8539 if (CmpInst *CI = dyn_cast<CmpInst>(I)) 8540 return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8541 Operands[1], DL, TLI); 8542 if (LoadInst *LI = dyn_cast<LoadInst>(I)) { 8543 if (!LI->isVolatile()) 8544 return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL); 8545 } 8546 return ConstantFoldInstOperands(I, Operands, DL, TLI); 8547 } 8548 8549 8550 // If every incoming value to PN except the one for BB is a specific Constant, 8551 // return that, else return nullptr. 8552 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) { 8553 Constant *IncomingVal = nullptr; 8554 8555 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { 8556 if (PN->getIncomingBlock(i) == BB) 8557 continue; 8558 8559 auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i)); 8560 if (!CurrentVal) 8561 return nullptr; 8562 8563 if (IncomingVal != CurrentVal) { 8564 if (IncomingVal) 8565 return nullptr; 8566 IncomingVal = CurrentVal; 8567 } 8568 } 8569 8570 return IncomingVal; 8571 } 8572 8573 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is 8574 /// in the header of its containing loop, we know the loop executes a 8575 /// constant number of times, and the PHI node is just a recurrence 8576 /// involving constants, fold it. 8577 Constant * 8578 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN, 8579 const APInt &BEs, 8580 const Loop *L) { 8581 auto I = ConstantEvolutionLoopExitValue.find(PN); 8582 if (I != ConstantEvolutionLoopExitValue.end()) 8583 return I->second; 8584 8585 if (BEs.ugt(MaxBruteForceIterations)) 8586 return ConstantEvolutionLoopExitValue[PN] = nullptr; // Not going to evaluate it. 8587 8588 Constant *&RetVal = ConstantEvolutionLoopExitValue[PN]; 8589 8590 DenseMap<Instruction *, Constant *> CurrentIterVals; 8591 BasicBlock *Header = L->getHeader(); 8592 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8593 8594 BasicBlock *Latch = L->getLoopLatch(); 8595 if (!Latch) 8596 return nullptr; 8597 8598 for (PHINode &PHI : Header->phis()) { 8599 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8600 CurrentIterVals[&PHI] = StartCST; 8601 } 8602 if (!CurrentIterVals.count(PN)) 8603 return RetVal = nullptr; 8604 8605 Value *BEValue = PN->getIncomingValueForBlock(Latch); 8606 8607 // Execute the loop symbolically to determine the exit value. 8608 assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) && 8609 "BEs is <= MaxBruteForceIterations which is an 'unsigned'!"); 8610 8611 unsigned NumIterations = BEs.getZExtValue(); // must be in range 8612 unsigned IterationNum = 0; 8613 const DataLayout &DL = getDataLayout(); 8614 for (; ; ++IterationNum) { 8615 if (IterationNum == NumIterations) 8616 return RetVal = CurrentIterVals[PN]; // Got exit value! 8617 8618 // Compute the value of the PHIs for the next iteration. 8619 // EvaluateExpression adds non-phi values to the CurrentIterVals map. 8620 DenseMap<Instruction *, Constant *> NextIterVals; 8621 Constant *NextPHI = 8622 EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8623 if (!NextPHI) 8624 return nullptr; // Couldn't evaluate! 8625 NextIterVals[PN] = NextPHI; 8626 8627 bool StoppedEvolving = NextPHI == CurrentIterVals[PN]; 8628 8629 // Also evaluate the other PHI nodes. However, we don't get to stop if we 8630 // cease to be able to evaluate one of them or if they stop evolving, 8631 // because that doesn't necessarily prevent us from computing PN. 8632 SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute; 8633 for (const auto &I : CurrentIterVals) { 8634 PHINode *PHI = dyn_cast<PHINode>(I.first); 8635 if (!PHI || PHI == PN || PHI->getParent() != Header) continue; 8636 PHIsToCompute.emplace_back(PHI, I.second); 8637 } 8638 // We use two distinct loops because EvaluateExpression may invalidate any 8639 // iterators into CurrentIterVals. 8640 for (const auto &I : PHIsToCompute) { 8641 PHINode *PHI = I.first; 8642 Constant *&NextPHI = NextIterVals[PHI]; 8643 if (!NextPHI) { // Not already computed. 8644 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8645 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8646 } 8647 if (NextPHI != I.second) 8648 StoppedEvolving = false; 8649 } 8650 8651 // If all entries in CurrentIterVals == NextIterVals then we can stop 8652 // iterating, the loop can't continue to change. 8653 if (StoppedEvolving) 8654 return RetVal = CurrentIterVals[PN]; 8655 8656 CurrentIterVals.swap(NextIterVals); 8657 } 8658 } 8659 8660 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L, 8661 Value *Cond, 8662 bool ExitWhen) { 8663 PHINode *PN = getConstantEvolvingPHI(Cond, L); 8664 if (!PN) return getCouldNotCompute(); 8665 8666 // If the loop is canonicalized, the PHI will have exactly two entries. 8667 // That's the only form we support here. 8668 if (PN->getNumIncomingValues() != 2) return getCouldNotCompute(); 8669 8670 DenseMap<Instruction *, Constant *> CurrentIterVals; 8671 BasicBlock *Header = L->getHeader(); 8672 assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!"); 8673 8674 BasicBlock *Latch = L->getLoopLatch(); 8675 assert(Latch && "Should follow from NumIncomingValues == 2!"); 8676 8677 for (PHINode &PHI : Header->phis()) { 8678 if (auto *StartCST = getOtherIncomingValue(&PHI, Latch)) 8679 CurrentIterVals[&PHI] = StartCST; 8680 } 8681 if (!CurrentIterVals.count(PN)) 8682 return getCouldNotCompute(); 8683 8684 // Okay, we find a PHI node that defines the trip count of this loop. Execute 8685 // the loop symbolically to determine when the condition gets a value of 8686 // "ExitWhen". 8687 unsigned MaxIterations = MaxBruteForceIterations; // Limit analysis. 8688 const DataLayout &DL = getDataLayout(); 8689 for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){ 8690 auto *CondVal = dyn_cast_or_null<ConstantInt>( 8691 EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI)); 8692 8693 // Couldn't symbolically evaluate. 8694 if (!CondVal) return getCouldNotCompute(); 8695 8696 if (CondVal->getValue() == uint64_t(ExitWhen)) { 8697 ++NumBruteForceTripCountsComputed; 8698 return getConstant(Type::getInt32Ty(getContext()), IterationNum); 8699 } 8700 8701 // Update all the PHI nodes for the next iteration. 8702 DenseMap<Instruction *, Constant *> NextIterVals; 8703 8704 // Create a list of which PHIs we need to compute. We want to do this before 8705 // calling EvaluateExpression on them because that may invalidate iterators 8706 // into CurrentIterVals. 8707 SmallVector<PHINode *, 8> PHIsToCompute; 8708 for (const auto &I : CurrentIterVals) { 8709 PHINode *PHI = dyn_cast<PHINode>(I.first); 8710 if (!PHI || PHI->getParent() != Header) continue; 8711 PHIsToCompute.push_back(PHI); 8712 } 8713 for (PHINode *PHI : PHIsToCompute) { 8714 Constant *&NextPHI = NextIterVals[PHI]; 8715 if (NextPHI) continue; // Already computed! 8716 8717 Value *BEValue = PHI->getIncomingValueForBlock(Latch); 8718 NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI); 8719 } 8720 CurrentIterVals.swap(NextIterVals); 8721 } 8722 8723 // Too many iterations were needed to evaluate. 8724 return getCouldNotCompute(); 8725 } 8726 8727 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) { 8728 SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values = 8729 ValuesAtScopes[V]; 8730 // Check to see if we've folded this expression at this loop before. 8731 for (auto &LS : Values) 8732 if (LS.first == L) 8733 return LS.second ? LS.second : V; 8734 8735 Values.emplace_back(L, nullptr); 8736 8737 // Otherwise compute it. 8738 const SCEV *C = computeSCEVAtScope(V, L); 8739 for (auto &LS : reverse(ValuesAtScopes[V])) 8740 if (LS.first == L) { 8741 LS.second = C; 8742 break; 8743 } 8744 return C; 8745 } 8746 8747 /// This builds up a Constant using the ConstantExpr interface. That way, we 8748 /// will return Constants for objects which aren't represented by a 8749 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt. 8750 /// Returns NULL if the SCEV isn't representable as a Constant. 8751 static Constant *BuildConstantFromSCEV(const SCEV *V) { 8752 switch (V->getSCEVType()) { 8753 case scCouldNotCompute: 8754 case scAddRecExpr: 8755 return nullptr; 8756 case scConstant: 8757 return cast<SCEVConstant>(V)->getValue(); 8758 case scUnknown: 8759 return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue()); 8760 case scSignExtend: { 8761 const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V); 8762 if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand())) 8763 return ConstantExpr::getSExt(CastOp, SS->getType()); 8764 return nullptr; 8765 } 8766 case scZeroExtend: { 8767 const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V); 8768 if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand())) 8769 return ConstantExpr::getZExt(CastOp, SZ->getType()); 8770 return nullptr; 8771 } 8772 case scPtrToInt: { 8773 const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V); 8774 if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand())) 8775 return ConstantExpr::getPtrToInt(CastOp, P2I->getType()); 8776 8777 return nullptr; 8778 } 8779 case scTruncate: { 8780 const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V); 8781 if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand())) 8782 return ConstantExpr::getTrunc(CastOp, ST->getType()); 8783 return nullptr; 8784 } 8785 case scAddExpr: { 8786 const SCEVAddExpr *SA = cast<SCEVAddExpr>(V); 8787 if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) { 8788 if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) { 8789 unsigned AS = PTy->getAddressSpace(); 8790 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8791 C = ConstantExpr::getBitCast(C, DestPtrTy); 8792 } 8793 for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) { 8794 Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i)); 8795 if (!C2) 8796 return nullptr; 8797 8798 // First pointer! 8799 if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) { 8800 unsigned AS = C2->getType()->getPointerAddressSpace(); 8801 std::swap(C, C2); 8802 Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS); 8803 // The offsets have been converted to bytes. We can add bytes to an 8804 // i8* by GEP with the byte count in the first index. 8805 C = ConstantExpr::getBitCast(C, DestPtrTy); 8806 } 8807 8808 // Don't bother trying to sum two pointers. We probably can't 8809 // statically compute a load that results from it anyway. 8810 if (C2->getType()->isPointerTy()) 8811 return nullptr; 8812 8813 if (C->getType()->isPointerTy()) { 8814 C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()), 8815 C, C2); 8816 } else { 8817 C = ConstantExpr::getAdd(C, C2); 8818 } 8819 } 8820 return C; 8821 } 8822 return nullptr; 8823 } 8824 case scMulExpr: { 8825 const SCEVMulExpr *SM = cast<SCEVMulExpr>(V); 8826 if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) { 8827 // Don't bother with pointers at all. 8828 if (C->getType()->isPointerTy()) 8829 return nullptr; 8830 for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) { 8831 Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i)); 8832 if (!C2 || C2->getType()->isPointerTy()) 8833 return nullptr; 8834 C = ConstantExpr::getMul(C, C2); 8835 } 8836 return C; 8837 } 8838 return nullptr; 8839 } 8840 case scUDivExpr: { 8841 const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V); 8842 if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS())) 8843 if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS())) 8844 if (LHS->getType() == RHS->getType()) 8845 return ConstantExpr::getUDiv(LHS, RHS); 8846 return nullptr; 8847 } 8848 case scSMaxExpr: 8849 case scUMaxExpr: 8850 case scSMinExpr: 8851 case scUMinExpr: 8852 return nullptr; // TODO: smax, umax, smin, umax. 8853 } 8854 llvm_unreachable("Unknown SCEV kind!"); 8855 } 8856 8857 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) { 8858 if (isa<SCEVConstant>(V)) return V; 8859 8860 // If this instruction is evolved from a constant-evolving PHI, compute the 8861 // exit value from the loop without using SCEVs. 8862 if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) { 8863 if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) { 8864 if (PHINode *PN = dyn_cast<PHINode>(I)) { 8865 const Loop *CurrLoop = this->LI[I->getParent()]; 8866 // Looking for loop exit value. 8867 if (CurrLoop && CurrLoop->getParentLoop() == L && 8868 PN->getParent() == CurrLoop->getHeader()) { 8869 // Okay, there is no closed form solution for the PHI node. Check 8870 // to see if the loop that contains it has a known backedge-taken 8871 // count. If so, we may be able to force computation of the exit 8872 // value. 8873 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop); 8874 // This trivial case can show up in some degenerate cases where 8875 // the incoming IR has not yet been fully simplified. 8876 if (BackedgeTakenCount->isZero()) { 8877 Value *InitValue = nullptr; 8878 bool MultipleInitValues = false; 8879 for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) { 8880 if (!CurrLoop->contains(PN->getIncomingBlock(i))) { 8881 if (!InitValue) 8882 InitValue = PN->getIncomingValue(i); 8883 else if (InitValue != PN->getIncomingValue(i)) { 8884 MultipleInitValues = true; 8885 break; 8886 } 8887 } 8888 } 8889 if (!MultipleInitValues && InitValue) 8890 return getSCEV(InitValue); 8891 } 8892 // Do we have a loop invariant value flowing around the backedge 8893 // for a loop which must execute the backedge? 8894 if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) && 8895 isKnownPositive(BackedgeTakenCount) && 8896 PN->getNumIncomingValues() == 2) { 8897 8898 unsigned InLoopPred = 8899 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1; 8900 Value *BackedgeVal = PN->getIncomingValue(InLoopPred); 8901 if (CurrLoop->isLoopInvariant(BackedgeVal)) 8902 return getSCEV(BackedgeVal); 8903 } 8904 if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) { 8905 // Okay, we know how many times the containing loop executes. If 8906 // this is a constant evolving PHI node, get the final value at 8907 // the specified iteration number. 8908 Constant *RV = getConstantEvolutionLoopExitValue( 8909 PN, BTCC->getAPInt(), CurrLoop); 8910 if (RV) return getSCEV(RV); 8911 } 8912 } 8913 8914 // If there is a single-input Phi, evaluate it at our scope. If we can 8915 // prove that this replacement does not break LCSSA form, use new value. 8916 if (PN->getNumOperands() == 1) { 8917 const SCEV *Input = getSCEV(PN->getOperand(0)); 8918 const SCEV *InputAtScope = getSCEVAtScope(Input, L); 8919 // TODO: We can generalize it using LI.replacementPreservesLCSSAForm, 8920 // for the simplest case just support constants. 8921 if (isa<SCEVConstant>(InputAtScope)) return InputAtScope; 8922 } 8923 } 8924 8925 // Okay, this is an expression that we cannot symbolically evaluate 8926 // into a SCEV. Check to see if it's possible to symbolically evaluate 8927 // the arguments into constants, and if so, try to constant propagate the 8928 // result. This is particularly useful for computing loop exit values. 8929 if (CanConstantFold(I)) { 8930 SmallVector<Constant *, 4> Operands; 8931 bool MadeImprovement = false; 8932 for (Value *Op : I->operands()) { 8933 if (Constant *C = dyn_cast<Constant>(Op)) { 8934 Operands.push_back(C); 8935 continue; 8936 } 8937 8938 // If any of the operands is non-constant and if they are 8939 // non-integer and non-pointer, don't even try to analyze them 8940 // with scev techniques. 8941 if (!isSCEVable(Op->getType())) 8942 return V; 8943 8944 const SCEV *OrigV = getSCEV(Op); 8945 const SCEV *OpV = getSCEVAtScope(OrigV, L); 8946 MadeImprovement |= OrigV != OpV; 8947 8948 Constant *C = BuildConstantFromSCEV(OpV); 8949 if (!C) return V; 8950 if (C->getType() != Op->getType()) 8951 C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false, 8952 Op->getType(), 8953 false), 8954 C, Op->getType()); 8955 Operands.push_back(C); 8956 } 8957 8958 // Check to see if getSCEVAtScope actually made an improvement. 8959 if (MadeImprovement) { 8960 Constant *C = nullptr; 8961 const DataLayout &DL = getDataLayout(); 8962 if (const CmpInst *CI = dyn_cast<CmpInst>(I)) 8963 C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0], 8964 Operands[1], DL, &TLI); 8965 else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) { 8966 if (!Load->isVolatile()) 8967 C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(), 8968 DL); 8969 } else 8970 C = ConstantFoldInstOperands(I, Operands, DL, &TLI); 8971 if (!C) return V; 8972 return getSCEV(C); 8973 } 8974 } 8975 } 8976 8977 // This is some other type of SCEVUnknown, just return it. 8978 return V; 8979 } 8980 8981 if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) { 8982 // Avoid performing the look-up in the common case where the specified 8983 // expression has no loop-variant portions. 8984 for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) { 8985 const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8986 if (OpAtScope != Comm->getOperand(i)) { 8987 // Okay, at least one of these operands is loop variant but might be 8988 // foldable. Build a new instance of the folded commutative expression. 8989 SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(), 8990 Comm->op_begin()+i); 8991 NewOps.push_back(OpAtScope); 8992 8993 for (++i; i != e; ++i) { 8994 OpAtScope = getSCEVAtScope(Comm->getOperand(i), L); 8995 NewOps.push_back(OpAtScope); 8996 } 8997 if (isa<SCEVAddExpr>(Comm)) 8998 return getAddExpr(NewOps, Comm->getNoWrapFlags()); 8999 if (isa<SCEVMulExpr>(Comm)) 9000 return getMulExpr(NewOps, Comm->getNoWrapFlags()); 9001 if (isa<SCEVMinMaxExpr>(Comm)) 9002 return getMinMaxExpr(Comm->getSCEVType(), NewOps); 9003 llvm_unreachable("Unknown commutative SCEV type!"); 9004 } 9005 } 9006 // If we got here, all operands are loop invariant. 9007 return Comm; 9008 } 9009 9010 if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) { 9011 const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L); 9012 const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L); 9013 if (LHS == Div->getLHS() && RHS == Div->getRHS()) 9014 return Div; // must be loop invariant 9015 return getUDivExpr(LHS, RHS); 9016 } 9017 9018 // If this is a loop recurrence for a loop that does not contain L, then we 9019 // are dealing with the final value computed by the loop. 9020 if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) { 9021 // First, attempt to evaluate each operand. 9022 // Avoid performing the look-up in the common case where the specified 9023 // expression has no loop-variant portions. 9024 for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) { 9025 const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L); 9026 if (OpAtScope == AddRec->getOperand(i)) 9027 continue; 9028 9029 // Okay, at least one of these operands is loop variant but might be 9030 // foldable. Build a new instance of the folded commutative expression. 9031 SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(), 9032 AddRec->op_begin()+i); 9033 NewOps.push_back(OpAtScope); 9034 for (++i; i != e; ++i) 9035 NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L)); 9036 9037 const SCEV *FoldedRec = 9038 getAddRecExpr(NewOps, AddRec->getLoop(), 9039 AddRec->getNoWrapFlags(SCEV::FlagNW)); 9040 AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec); 9041 // The addrec may be folded to a nonrecurrence, for example, if the 9042 // induction variable is multiplied by zero after constant folding. Go 9043 // ahead and return the folded value. 9044 if (!AddRec) 9045 return FoldedRec; 9046 break; 9047 } 9048 9049 // If the scope is outside the addrec's loop, evaluate it by using the 9050 // loop exit value of the addrec. 9051 if (!AddRec->getLoop()->contains(L)) { 9052 // To evaluate this recurrence, we need to know how many times the AddRec 9053 // loop iterates. Compute this now. 9054 const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop()); 9055 if (BackedgeTakenCount == getCouldNotCompute()) return AddRec; 9056 9057 // Then, evaluate the AddRec. 9058 return AddRec->evaluateAtIteration(BackedgeTakenCount, *this); 9059 } 9060 9061 return AddRec; 9062 } 9063 9064 if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) { 9065 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9066 if (Op == Cast->getOperand()) 9067 return Cast; // must be loop invariant 9068 return getZeroExtendExpr(Op, Cast->getType()); 9069 } 9070 9071 if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) { 9072 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9073 if (Op == Cast->getOperand()) 9074 return Cast; // must be loop invariant 9075 return getSignExtendExpr(Op, Cast->getType()); 9076 } 9077 9078 if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) { 9079 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9080 if (Op == Cast->getOperand()) 9081 return Cast; // must be loop invariant 9082 return getTruncateExpr(Op, Cast->getType()); 9083 } 9084 9085 if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) { 9086 const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L); 9087 if (Op == Cast->getOperand()) 9088 return Cast; // must be loop invariant 9089 return getPtrToIntExpr(Op, Cast->getType()); 9090 } 9091 9092 llvm_unreachable("Unknown SCEV type!"); 9093 } 9094 9095 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) { 9096 return getSCEVAtScope(getSCEV(V), L); 9097 } 9098 9099 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const { 9100 if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) 9101 return stripInjectiveFunctions(ZExt->getOperand()); 9102 if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) 9103 return stripInjectiveFunctions(SExt->getOperand()); 9104 return S; 9105 } 9106 9107 /// Finds the minimum unsigned root of the following equation: 9108 /// 9109 /// A * X = B (mod N) 9110 /// 9111 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of 9112 /// A and B isn't important. 9113 /// 9114 /// If the equation does not have a solution, SCEVCouldNotCompute is returned. 9115 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B, 9116 ScalarEvolution &SE) { 9117 uint32_t BW = A.getBitWidth(); 9118 assert(BW == SE.getTypeSizeInBits(B->getType())); 9119 assert(A != 0 && "A must be non-zero."); 9120 9121 // 1. D = gcd(A, N) 9122 // 9123 // The gcd of A and N may have only one prime factor: 2. The number of 9124 // trailing zeros in A is its multiplicity 9125 uint32_t Mult2 = A.countTrailingZeros(); 9126 // D = 2^Mult2 9127 9128 // 2. Check if B is divisible by D. 9129 // 9130 // B is divisible by D if and only if the multiplicity of prime factor 2 for B 9131 // is not less than multiplicity of this prime factor for D. 9132 if (SE.GetMinTrailingZeros(B) < Mult2) 9133 return SE.getCouldNotCompute(); 9134 9135 // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic 9136 // modulo (N / D). 9137 // 9138 // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent 9139 // (N / D) in general. The inverse itself always fits into BW bits, though, 9140 // so we immediately truncate it. 9141 APInt AD = A.lshr(Mult2).zext(BW + 1); // AD = A / D 9142 APInt Mod(BW + 1, 0); 9143 Mod.setBit(BW - Mult2); // Mod = N / D 9144 APInt I = AD.multiplicativeInverse(Mod).trunc(BW); 9145 9146 // 4. Compute the minimum unsigned root of the equation: 9147 // I * (B / D) mod (N / D) 9148 // To simplify the computation, we factor out the divide by D: 9149 // (I * B mod N) / D 9150 const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2)); 9151 return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D); 9152 } 9153 9154 /// For a given quadratic addrec, generate coefficients of the corresponding 9155 /// quadratic equation, multiplied by a common value to ensure that they are 9156 /// integers. 9157 /// The returned value is a tuple { A, B, C, M, BitWidth }, where 9158 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C 9159 /// were multiplied by, and BitWidth is the bit width of the original addrec 9160 /// coefficients. 9161 /// This function returns None if the addrec coefficients are not compile- 9162 /// time constants. 9163 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>> 9164 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) { 9165 assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!"); 9166 const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0)); 9167 const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1)); 9168 const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2)); 9169 LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: " 9170 << *AddRec << '\n'); 9171 9172 // We currently can only solve this if the coefficients are constants. 9173 if (!LC || !MC || !NC) { 9174 LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n"); 9175 return None; 9176 } 9177 9178 APInt L = LC->getAPInt(); 9179 APInt M = MC->getAPInt(); 9180 APInt N = NC->getAPInt(); 9181 assert(!N.isNullValue() && "This is not a quadratic addrec"); 9182 9183 unsigned BitWidth = LC->getAPInt().getBitWidth(); 9184 unsigned NewWidth = BitWidth + 1; 9185 LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: " 9186 << BitWidth << '\n'); 9187 // The sign-extension (as opposed to a zero-extension) here matches the 9188 // extension used in SolveQuadraticEquationWrap (with the same motivation). 9189 N = N.sext(NewWidth); 9190 M = M.sext(NewWidth); 9191 L = L.sext(NewWidth); 9192 9193 // The increments are M, M+N, M+2N, ..., so the accumulated values are 9194 // L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is, 9195 // L+M, L+2M+N, L+3M+3N, ... 9196 // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N. 9197 // 9198 // The equation Acc = 0 is then 9199 // L + nM + n(n-1)/2 N = 0, or 2L + 2M n + n(n-1) N = 0. 9200 // In a quadratic form it becomes: 9201 // N n^2 + (2M-N) n + 2L = 0. 9202 9203 APInt A = N; 9204 APInt B = 2 * M - A; 9205 APInt C = 2 * L; 9206 APInt T = APInt(NewWidth, 2); 9207 LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B 9208 << "x + " << C << ", coeff bw: " << NewWidth 9209 << ", multiplied by " << T << '\n'); 9210 return std::make_tuple(A, B, C, T, BitWidth); 9211 } 9212 9213 /// Helper function to compare optional APInts: 9214 /// (a) if X and Y both exist, return min(X, Y), 9215 /// (b) if neither X nor Y exist, return None, 9216 /// (c) if exactly one of X and Y exists, return that value. 9217 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) { 9218 if (X.hasValue() && Y.hasValue()) { 9219 unsigned W = std::max(X->getBitWidth(), Y->getBitWidth()); 9220 APInt XW = X->sextOrSelf(W); 9221 APInt YW = Y->sextOrSelf(W); 9222 return XW.slt(YW) ? *X : *Y; 9223 } 9224 if (!X.hasValue() && !Y.hasValue()) 9225 return None; 9226 return X.hasValue() ? *X : *Y; 9227 } 9228 9229 /// Helper function to truncate an optional APInt to a given BitWidth. 9230 /// When solving addrec-related equations, it is preferable to return a value 9231 /// that has the same bit width as the original addrec's coefficients. If the 9232 /// solution fits in the original bit width, truncate it (except for i1). 9233 /// Returning a value of a different bit width may inhibit some optimizations. 9234 /// 9235 /// In general, a solution to a quadratic equation generated from an addrec 9236 /// may require BW+1 bits, where BW is the bit width of the addrec's 9237 /// coefficients. The reason is that the coefficients of the quadratic 9238 /// equation are BW+1 bits wide (to avoid truncation when converting from 9239 /// the addrec to the equation). 9240 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) { 9241 if (!X.hasValue()) 9242 return None; 9243 unsigned W = X->getBitWidth(); 9244 if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth)) 9245 return X->trunc(BitWidth); 9246 return X; 9247 } 9248 9249 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n 9250 /// iterations. The values L, M, N are assumed to be signed, and they 9251 /// should all have the same bit widths. 9252 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW, 9253 /// where BW is the bit width of the addrec's coefficients. 9254 /// If the calculated value is a BW-bit integer (for BW > 1), it will be 9255 /// returned as such, otherwise the bit width of the returned value may 9256 /// be greater than BW. 9257 /// 9258 /// This function returns None if 9259 /// (a) the addrec coefficients are not constant, or 9260 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases 9261 /// like x^2 = 5, no integer solutions exist, in other cases an integer 9262 /// solution may exist, but SolveQuadraticEquationWrap may fail to find it. 9263 static Optional<APInt> 9264 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) { 9265 APInt A, B, C, M; 9266 unsigned BitWidth; 9267 auto T = GetQuadraticEquation(AddRec); 9268 if (!T.hasValue()) 9269 return None; 9270 9271 std::tie(A, B, C, M, BitWidth) = *T; 9272 LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n"); 9273 Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1); 9274 if (!X.hasValue()) 9275 return None; 9276 9277 ConstantInt *CX = ConstantInt::get(SE.getContext(), *X); 9278 ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE); 9279 if (!V->isZero()) 9280 return None; 9281 9282 return TruncIfPossible(X, BitWidth); 9283 } 9284 9285 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n 9286 /// iterations. The values M, N are assumed to be signed, and they 9287 /// should all have the same bit widths. 9288 /// Find the least n such that c(n) does not belong to the given range, 9289 /// while c(n-1) does. 9290 /// 9291 /// This function returns None if 9292 /// (a) the addrec coefficients are not constant, or 9293 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the 9294 /// bounds of the range. 9295 static Optional<APInt> 9296 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec, 9297 const ConstantRange &Range, ScalarEvolution &SE) { 9298 assert(AddRec->getOperand(0)->isZero() && 9299 "Starting value of addrec should be 0"); 9300 LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range " 9301 << Range << ", addrec " << *AddRec << '\n'); 9302 // This case is handled in getNumIterationsInRange. Here we can assume that 9303 // we start in the range. 9304 assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) && 9305 "Addrec's initial value should be in range"); 9306 9307 APInt A, B, C, M; 9308 unsigned BitWidth; 9309 auto T = GetQuadraticEquation(AddRec); 9310 if (!T.hasValue()) 9311 return None; 9312 9313 // Be careful about the return value: there can be two reasons for not 9314 // returning an actual number. First, if no solutions to the equations 9315 // were found, and second, if the solutions don't leave the given range. 9316 // The first case means that the actual solution is "unknown", the second 9317 // means that it's known, but not valid. If the solution is unknown, we 9318 // cannot make any conclusions. 9319 // Return a pair: the optional solution and a flag indicating if the 9320 // solution was found. 9321 auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> { 9322 // Solve for signed overflow and unsigned overflow, pick the lower 9323 // solution. 9324 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary " 9325 << Bound << " (before multiplying by " << M << ")\n"); 9326 Bound *= M; // The quadratic equation multiplier. 9327 9328 Optional<APInt> SO = None; 9329 if (BitWidth > 1) { 9330 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9331 "signed overflow\n"); 9332 SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth); 9333 } 9334 LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for " 9335 "unsigned overflow\n"); 9336 Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, 9337 BitWidth+1); 9338 9339 auto LeavesRange = [&] (const APInt &X) { 9340 ConstantInt *C0 = ConstantInt::get(SE.getContext(), X); 9341 ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE); 9342 if (Range.contains(V0->getValue())) 9343 return false; 9344 // X should be at least 1, so X-1 is non-negative. 9345 ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1); 9346 ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE); 9347 if (Range.contains(V1->getValue())) 9348 return true; 9349 return false; 9350 }; 9351 9352 // If SolveQuadraticEquationWrap returns None, it means that there can 9353 // be a solution, but the function failed to find it. We cannot treat it 9354 // as "no solution". 9355 if (!SO.hasValue() || !UO.hasValue()) 9356 return { None, false }; 9357 9358 // Check the smaller value first to see if it leaves the range. 9359 // At this point, both SO and UO must have values. 9360 Optional<APInt> Min = MinOptional(SO, UO); 9361 if (LeavesRange(*Min)) 9362 return { Min, true }; 9363 Optional<APInt> Max = Min == SO ? UO : SO; 9364 if (LeavesRange(*Max)) 9365 return { Max, true }; 9366 9367 // Solutions were found, but were eliminated, hence the "true". 9368 return { None, true }; 9369 }; 9370 9371 std::tie(A, B, C, M, BitWidth) = *T; 9372 // Lower bound is inclusive, subtract 1 to represent the exiting value. 9373 APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1; 9374 APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth()); 9375 auto SL = SolveForBoundary(Lower); 9376 auto SU = SolveForBoundary(Upper); 9377 // If any of the solutions was unknown, no meaninigful conclusions can 9378 // be made. 9379 if (!SL.second || !SU.second) 9380 return None; 9381 9382 // Claim: The correct solution is not some value between Min and Max. 9383 // 9384 // Justification: Assuming that Min and Max are different values, one of 9385 // them is when the first signed overflow happens, the other is when the 9386 // first unsigned overflow happens. Crossing the range boundary is only 9387 // possible via an overflow (treating 0 as a special case of it, modeling 9388 // an overflow as crossing k*2^W for some k). 9389 // 9390 // The interesting case here is when Min was eliminated as an invalid 9391 // solution, but Max was not. The argument is that if there was another 9392 // overflow between Min and Max, it would also have been eliminated if 9393 // it was considered. 9394 // 9395 // For a given boundary, it is possible to have two overflows of the same 9396 // type (signed/unsigned) without having the other type in between: this 9397 // can happen when the vertex of the parabola is between the iterations 9398 // corresponding to the overflows. This is only possible when the two 9399 // overflows cross k*2^W for the same k. In such case, if the second one 9400 // left the range (and was the first one to do so), the first overflow 9401 // would have to enter the range, which would mean that either we had left 9402 // the range before or that we started outside of it. Both of these cases 9403 // are contradictions. 9404 // 9405 // Claim: In the case where SolveForBoundary returns None, the correct 9406 // solution is not some value between the Max for this boundary and the 9407 // Min of the other boundary. 9408 // 9409 // Justification: Assume that we had such Max_A and Min_B corresponding 9410 // to range boundaries A and B and such that Max_A < Min_B. If there was 9411 // a solution between Max_A and Min_B, it would have to be caused by an 9412 // overflow corresponding to either A or B. It cannot correspond to B, 9413 // since Min_B is the first occurrence of such an overflow. If it 9414 // corresponded to A, it would have to be either a signed or an unsigned 9415 // overflow that is larger than both eliminated overflows for A. But 9416 // between the eliminated overflows and this overflow, the values would 9417 // cover the entire value space, thus crossing the other boundary, which 9418 // is a contradiction. 9419 9420 return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth); 9421 } 9422 9423 ScalarEvolution::ExitLimit 9424 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit, 9425 bool AllowPredicates) { 9426 9427 // This is only used for loops with a "x != y" exit test. The exit condition 9428 // is now expressed as a single expression, V = x-y. So the exit test is 9429 // effectively V != 0. We know and take advantage of the fact that this 9430 // expression only being used in a comparison by zero context. 9431 9432 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 9433 // If the value is a constant 9434 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9435 // If the value is already zero, the branch will execute zero times. 9436 if (C->getValue()->isZero()) return C; 9437 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9438 } 9439 9440 const SCEVAddRecExpr *AddRec = 9441 dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V)); 9442 9443 if (!AddRec && AllowPredicates) 9444 // Try to make this an AddRec using runtime tests, in the first X 9445 // iterations of this loop, where X is the SCEV expression found by the 9446 // algorithm below. 9447 AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates); 9448 9449 if (!AddRec || AddRec->getLoop() != L) 9450 return getCouldNotCompute(); 9451 9452 // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of 9453 // the quadratic equation to solve it. 9454 if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) { 9455 // We can only use this value if the chrec ends up with an exact zero 9456 // value at this index. When solving for "X*X != 5", for example, we 9457 // should not accept a root of 2. 9458 if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) { 9459 const auto *R = cast<SCEVConstant>(getConstant(S.getValue())); 9460 return ExitLimit(R, R, false, Predicates); 9461 } 9462 return getCouldNotCompute(); 9463 } 9464 9465 // Otherwise we can only handle this if it is affine. 9466 if (!AddRec->isAffine()) 9467 return getCouldNotCompute(); 9468 9469 // If this is an affine expression, the execution count of this branch is 9470 // the minimum unsigned root of the following equation: 9471 // 9472 // Start + Step*N = 0 (mod 2^BW) 9473 // 9474 // equivalent to: 9475 // 9476 // Step*N = -Start (mod 2^BW) 9477 // 9478 // where BW is the common bit width of Start and Step. 9479 9480 // Get the initial value for the loop. 9481 const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop()); 9482 const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop()); 9483 9484 // For now we handle only constant steps. 9485 // 9486 // TODO: Handle a nonconstant Step given AddRec<NUW>. If the 9487 // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap 9488 // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step. 9489 // We have not yet seen any such cases. 9490 const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step); 9491 if (!StepC || StepC->getValue()->isZero()) 9492 return getCouldNotCompute(); 9493 9494 // For positive steps (counting up until unsigned overflow): 9495 // N = -Start/Step (as unsigned) 9496 // For negative steps (counting down to zero): 9497 // N = Start/-Step 9498 // First compute the unsigned distance from zero in the direction of Step. 9499 bool CountDown = StepC->getAPInt().isNegative(); 9500 const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start); 9501 9502 // Handle unitary steps, which cannot wraparound. 9503 // 1*N = -Start; -1*N = Start (mod 2^BW), so: 9504 // N = Distance (as unsigned) 9505 if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) { 9506 APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L)); 9507 APInt MaxBECountBase = getUnsignedRangeMax(Distance); 9508 if (MaxBECountBase.ult(MaxBECount)) 9509 MaxBECount = MaxBECountBase; 9510 9511 // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated, 9512 // we end up with a loop whose backedge-taken count is n - 1. Detect this 9513 // case, and see if we can improve the bound. 9514 // 9515 // Explicitly handling this here is necessary because getUnsignedRange 9516 // isn't context-sensitive; it doesn't know that we only care about the 9517 // range inside the loop. 9518 const SCEV *Zero = getZero(Distance->getType()); 9519 const SCEV *One = getOne(Distance->getType()); 9520 const SCEV *DistancePlusOne = getAddExpr(Distance, One); 9521 if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) { 9522 // If Distance + 1 doesn't overflow, we can compute the maximum distance 9523 // as "unsigned_max(Distance + 1) - 1". 9524 ConstantRange CR = getUnsignedRange(DistancePlusOne); 9525 MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1); 9526 } 9527 return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates); 9528 } 9529 9530 // If the condition controls loop exit (the loop exits only if the expression 9531 // is true) and the addition is no-wrap we can use unsigned divide to 9532 // compute the backedge count. In this case, the step may not divide the 9533 // distance, but we don't care because if the condition is "missed" the loop 9534 // will have undefined behavior due to wrapping. 9535 if (ControlsExit && AddRec->hasNoSelfWrap() && 9536 loopHasNoAbnormalExits(AddRec->getLoop())) { 9537 const SCEV *Exact = 9538 getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step); 9539 const SCEV *Max = getCouldNotCompute(); 9540 if (Exact != getCouldNotCompute()) { 9541 APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L)); 9542 APInt BaseMaxInt = getUnsignedRangeMax(Exact); 9543 if (BaseMaxInt.ult(MaxInt)) 9544 Max = getConstant(BaseMaxInt); 9545 else 9546 Max = getConstant(MaxInt); 9547 } 9548 return ExitLimit(Exact, Max, false, Predicates); 9549 } 9550 9551 // Solve the general equation. 9552 const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(), 9553 getNegativeSCEV(Start), *this); 9554 const SCEV *M = E == getCouldNotCompute() 9555 ? E 9556 : getConstant(getUnsignedRangeMax(E)); 9557 return ExitLimit(E, M, false, Predicates); 9558 } 9559 9560 ScalarEvolution::ExitLimit 9561 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) { 9562 // Loops that look like: while (X == 0) are very strange indeed. We don't 9563 // handle them yet except for the trivial case. This could be expanded in the 9564 // future as needed. 9565 9566 // If the value is a constant, check to see if it is known to be non-zero 9567 // already. If so, the backedge will execute zero times. 9568 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) { 9569 if (!C->getValue()->isZero()) 9570 return getZero(C->getType()); 9571 return getCouldNotCompute(); // Otherwise it will loop infinitely. 9572 } 9573 9574 // We could implement others, but I really doubt anyone writes loops like 9575 // this, and if they did, they would already be constant folded. 9576 return getCouldNotCompute(); 9577 } 9578 9579 std::pair<const BasicBlock *, const BasicBlock *> 9580 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB) 9581 const { 9582 // If the block has a unique predecessor, then there is no path from the 9583 // predecessor to the block that does not go through the direct edge 9584 // from the predecessor to the block. 9585 if (const BasicBlock *Pred = BB->getSinglePredecessor()) 9586 return {Pred, BB}; 9587 9588 // A loop's header is defined to be a block that dominates the loop. 9589 // If the header has a unique predecessor outside the loop, it must be 9590 // a block that has exactly one successor that can reach the loop. 9591 if (const Loop *L = LI.getLoopFor(BB)) 9592 return {L->getLoopPredecessor(), L->getHeader()}; 9593 9594 return {nullptr, nullptr}; 9595 } 9596 9597 /// SCEV structural equivalence is usually sufficient for testing whether two 9598 /// expressions are equal, however for the purposes of looking for a condition 9599 /// guarding a loop, it can be useful to be a little more general, since a 9600 /// front-end may have replicated the controlling expression. 9601 static bool HasSameValue(const SCEV *A, const SCEV *B) { 9602 // Quick check to see if they are the same SCEV. 9603 if (A == B) return true; 9604 9605 auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) { 9606 // Not all instructions that are "identical" compute the same value. For 9607 // instance, two distinct alloca instructions allocating the same type are 9608 // identical and do not read memory; but compute distinct values. 9609 return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A)); 9610 }; 9611 9612 // Otherwise, if they're both SCEVUnknown, it's possible that they hold 9613 // two different instructions with the same value. Check for this case. 9614 if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A)) 9615 if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B)) 9616 if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue())) 9617 if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue())) 9618 if (ComputesEqualValues(AI, BI)) 9619 return true; 9620 9621 // Otherwise assume they may have a different value. 9622 return false; 9623 } 9624 9625 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred, 9626 const SCEV *&LHS, const SCEV *&RHS, 9627 unsigned Depth) { 9628 bool Changed = false; 9629 // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or 9630 // '0 != 0'. 9631 auto TrivialCase = [&](bool TriviallyTrue) { 9632 LHS = RHS = getConstant(ConstantInt::getFalse(getContext())); 9633 Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE; 9634 return true; 9635 }; 9636 // If we hit the max recursion limit bail out. 9637 if (Depth >= 3) 9638 return false; 9639 9640 // Canonicalize a constant to the right side. 9641 if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) { 9642 // Check for both operands constant. 9643 if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) { 9644 if (ConstantExpr::getICmp(Pred, 9645 LHSC->getValue(), 9646 RHSC->getValue())->isNullValue()) 9647 return TrivialCase(false); 9648 else 9649 return TrivialCase(true); 9650 } 9651 // Otherwise swap the operands to put the constant on the right. 9652 std::swap(LHS, RHS); 9653 Pred = ICmpInst::getSwappedPredicate(Pred); 9654 Changed = true; 9655 } 9656 9657 // If we're comparing an addrec with a value which is loop-invariant in the 9658 // addrec's loop, put the addrec on the left. Also make a dominance check, 9659 // as both operands could be addrecs loop-invariant in each other's loop. 9660 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) { 9661 const Loop *L = AR->getLoop(); 9662 if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) { 9663 std::swap(LHS, RHS); 9664 Pred = ICmpInst::getSwappedPredicate(Pred); 9665 Changed = true; 9666 } 9667 } 9668 9669 // If there's a constant operand, canonicalize comparisons with boundary 9670 // cases, and canonicalize *-or-equal comparisons to regular comparisons. 9671 if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) { 9672 const APInt &RA = RC->getAPInt(); 9673 9674 bool SimplifiedByConstantRange = false; 9675 9676 if (!ICmpInst::isEquality(Pred)) { 9677 ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA); 9678 if (ExactCR.isFullSet()) 9679 return TrivialCase(true); 9680 else if (ExactCR.isEmptySet()) 9681 return TrivialCase(false); 9682 9683 APInt NewRHS; 9684 CmpInst::Predicate NewPred; 9685 if (ExactCR.getEquivalentICmp(NewPred, NewRHS) && 9686 ICmpInst::isEquality(NewPred)) { 9687 // We were able to convert an inequality to an equality. 9688 Pred = NewPred; 9689 RHS = getConstant(NewRHS); 9690 Changed = SimplifiedByConstantRange = true; 9691 } 9692 } 9693 9694 if (!SimplifiedByConstantRange) { 9695 switch (Pred) { 9696 default: 9697 break; 9698 case ICmpInst::ICMP_EQ: 9699 case ICmpInst::ICMP_NE: 9700 // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b. 9701 if (!RA) 9702 if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS)) 9703 if (const SCEVMulExpr *ME = 9704 dyn_cast<SCEVMulExpr>(AE->getOperand(0))) 9705 if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 && 9706 ME->getOperand(0)->isAllOnesValue()) { 9707 RHS = AE->getOperand(1); 9708 LHS = ME->getOperand(1); 9709 Changed = true; 9710 } 9711 break; 9712 9713 9714 // The "Should have been caught earlier!" messages refer to the fact 9715 // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above 9716 // should have fired on the corresponding cases, and canonicalized the 9717 // check to trivial case. 9718 9719 case ICmpInst::ICMP_UGE: 9720 assert(!RA.isMinValue() && "Should have been caught earlier!"); 9721 Pred = ICmpInst::ICMP_UGT; 9722 RHS = getConstant(RA - 1); 9723 Changed = true; 9724 break; 9725 case ICmpInst::ICMP_ULE: 9726 assert(!RA.isMaxValue() && "Should have been caught earlier!"); 9727 Pred = ICmpInst::ICMP_ULT; 9728 RHS = getConstant(RA + 1); 9729 Changed = true; 9730 break; 9731 case ICmpInst::ICMP_SGE: 9732 assert(!RA.isMinSignedValue() && "Should have been caught earlier!"); 9733 Pred = ICmpInst::ICMP_SGT; 9734 RHS = getConstant(RA - 1); 9735 Changed = true; 9736 break; 9737 case ICmpInst::ICMP_SLE: 9738 assert(!RA.isMaxSignedValue() && "Should have been caught earlier!"); 9739 Pred = ICmpInst::ICMP_SLT; 9740 RHS = getConstant(RA + 1); 9741 Changed = true; 9742 break; 9743 } 9744 } 9745 } 9746 9747 // Check for obvious equality. 9748 if (HasSameValue(LHS, RHS)) { 9749 if (ICmpInst::isTrueWhenEqual(Pred)) 9750 return TrivialCase(true); 9751 if (ICmpInst::isFalseWhenEqual(Pred)) 9752 return TrivialCase(false); 9753 } 9754 9755 // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by 9756 // adding or subtracting 1 from one of the operands. 9757 switch (Pred) { 9758 case ICmpInst::ICMP_SLE: 9759 if (!getSignedRangeMax(RHS).isMaxSignedValue()) { 9760 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9761 SCEV::FlagNSW); 9762 Pred = ICmpInst::ICMP_SLT; 9763 Changed = true; 9764 } else if (!getSignedRangeMin(LHS).isMinSignedValue()) { 9765 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS, 9766 SCEV::FlagNSW); 9767 Pred = ICmpInst::ICMP_SLT; 9768 Changed = true; 9769 } 9770 break; 9771 case ICmpInst::ICMP_SGE: 9772 if (!getSignedRangeMin(RHS).isMinSignedValue()) { 9773 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS, 9774 SCEV::FlagNSW); 9775 Pred = ICmpInst::ICMP_SGT; 9776 Changed = true; 9777 } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) { 9778 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9779 SCEV::FlagNSW); 9780 Pred = ICmpInst::ICMP_SGT; 9781 Changed = true; 9782 } 9783 break; 9784 case ICmpInst::ICMP_ULE: 9785 if (!getUnsignedRangeMax(RHS).isMaxValue()) { 9786 RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS, 9787 SCEV::FlagNUW); 9788 Pred = ICmpInst::ICMP_ULT; 9789 Changed = true; 9790 } else if (!getUnsignedRangeMin(LHS).isMinValue()) { 9791 LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS); 9792 Pred = ICmpInst::ICMP_ULT; 9793 Changed = true; 9794 } 9795 break; 9796 case ICmpInst::ICMP_UGE: 9797 if (!getUnsignedRangeMin(RHS).isMinValue()) { 9798 RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS); 9799 Pred = ICmpInst::ICMP_UGT; 9800 Changed = true; 9801 } else if (!getUnsignedRangeMax(LHS).isMaxValue()) { 9802 LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS, 9803 SCEV::FlagNUW); 9804 Pred = ICmpInst::ICMP_UGT; 9805 Changed = true; 9806 } 9807 break; 9808 default: 9809 break; 9810 } 9811 9812 // TODO: More simplifications are possible here. 9813 9814 // Recursively simplify until we either hit a recursion limit or nothing 9815 // changes. 9816 if (Changed) 9817 return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1); 9818 9819 return Changed; 9820 } 9821 9822 bool ScalarEvolution::isKnownNegative(const SCEV *S) { 9823 return getSignedRangeMax(S).isNegative(); 9824 } 9825 9826 bool ScalarEvolution::isKnownPositive(const SCEV *S) { 9827 return getSignedRangeMin(S).isStrictlyPositive(); 9828 } 9829 9830 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) { 9831 return !getSignedRangeMin(S).isNegative(); 9832 } 9833 9834 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) { 9835 return !getSignedRangeMax(S).isStrictlyPositive(); 9836 } 9837 9838 bool ScalarEvolution::isKnownNonZero(const SCEV *S) { 9839 return getUnsignedRangeMin(S) != 0; 9840 } 9841 9842 std::pair<const SCEV *, const SCEV *> 9843 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) { 9844 // Compute SCEV on entry of loop L. 9845 const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this); 9846 if (Start == getCouldNotCompute()) 9847 return { Start, Start }; 9848 // Compute post increment SCEV for loop L. 9849 const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this); 9850 assert(PostInc != getCouldNotCompute() && "Unexpected could not compute"); 9851 return { Start, PostInc }; 9852 } 9853 9854 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred, 9855 const SCEV *LHS, const SCEV *RHS) { 9856 // First collect all loops. 9857 SmallPtrSet<const Loop *, 8> LoopsUsed; 9858 getUsedLoops(LHS, LoopsUsed); 9859 getUsedLoops(RHS, LoopsUsed); 9860 9861 if (LoopsUsed.empty()) 9862 return false; 9863 9864 // Domination relationship must be a linear order on collected loops. 9865 #ifndef NDEBUG 9866 for (auto *L1 : LoopsUsed) 9867 for (auto *L2 : LoopsUsed) 9868 assert((DT.dominates(L1->getHeader(), L2->getHeader()) || 9869 DT.dominates(L2->getHeader(), L1->getHeader())) && 9870 "Domination relationship is not a linear order"); 9871 #endif 9872 9873 const Loop *MDL = 9874 *std::max_element(LoopsUsed.begin(), LoopsUsed.end(), 9875 [&](const Loop *L1, const Loop *L2) { 9876 return DT.properlyDominates(L1->getHeader(), L2->getHeader()); 9877 }); 9878 9879 // Get init and post increment value for LHS. 9880 auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS); 9881 // if LHS contains unknown non-invariant SCEV then bail out. 9882 if (SplitLHS.first == getCouldNotCompute()) 9883 return false; 9884 assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC"); 9885 // Get init and post increment value for RHS. 9886 auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS); 9887 // if RHS contains unknown non-invariant SCEV then bail out. 9888 if (SplitRHS.first == getCouldNotCompute()) 9889 return false; 9890 assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC"); 9891 // It is possible that init SCEV contains an invariant load but it does 9892 // not dominate MDL and is not available at MDL loop entry, so we should 9893 // check it here. 9894 if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) || 9895 !isAvailableAtLoopEntry(SplitRHS.first, MDL)) 9896 return false; 9897 9898 // It seems backedge guard check is faster than entry one so in some cases 9899 // it can speed up whole estimation by short circuit 9900 return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second, 9901 SplitRHS.second) && 9902 isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first); 9903 } 9904 9905 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred, 9906 const SCEV *LHS, const SCEV *RHS) { 9907 // Canonicalize the inputs first. 9908 (void)SimplifyICmpOperands(Pred, LHS, RHS); 9909 9910 if (isKnownViaInduction(Pred, LHS, RHS)) 9911 return true; 9912 9913 if (isKnownPredicateViaSplitting(Pred, LHS, RHS)) 9914 return true; 9915 9916 // Otherwise see what can be done with some simple reasoning. 9917 return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS); 9918 } 9919 9920 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred, 9921 const SCEV *LHS, 9922 const SCEV *RHS) { 9923 if (isKnownPredicate(Pred, LHS, RHS)) 9924 return true; 9925 else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS)) 9926 return false; 9927 return None; 9928 } 9929 9930 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred, 9931 const SCEV *LHS, const SCEV *RHS, 9932 const Instruction *CtxI) { 9933 // TODO: Analyze guards and assumes from Context's block. 9934 return isKnownPredicate(Pred, LHS, RHS) || 9935 isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS); 9936 } 9937 9938 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred, 9939 const SCEV *LHS, 9940 const SCEV *RHS, 9941 const Instruction *CtxI) { 9942 Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS); 9943 if (KnownWithoutContext) 9944 return KnownWithoutContext; 9945 9946 if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS)) 9947 return true; 9948 else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), 9949 ICmpInst::getInversePredicate(Pred), 9950 LHS, RHS)) 9951 return false; 9952 return None; 9953 } 9954 9955 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred, 9956 const SCEVAddRecExpr *LHS, 9957 const SCEV *RHS) { 9958 const Loop *L = LHS->getLoop(); 9959 return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) && 9960 isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS); 9961 } 9962 9963 Optional<ScalarEvolution::MonotonicPredicateType> 9964 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS, 9965 ICmpInst::Predicate Pred) { 9966 auto Result = getMonotonicPredicateTypeImpl(LHS, Pred); 9967 9968 #ifndef NDEBUG 9969 // Verify an invariant: inverting the predicate should turn a monotonically 9970 // increasing change to a monotonically decreasing one, and vice versa. 9971 if (Result) { 9972 auto ResultSwapped = 9973 getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred)); 9974 9975 assert(ResultSwapped.hasValue() && "should be able to analyze both!"); 9976 assert(ResultSwapped.getValue() != Result.getValue() && 9977 "monotonicity should flip as we flip the predicate"); 9978 } 9979 #endif 9980 9981 return Result; 9982 } 9983 9984 Optional<ScalarEvolution::MonotonicPredicateType> 9985 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS, 9986 ICmpInst::Predicate Pred) { 9987 // A zero step value for LHS means the induction variable is essentially a 9988 // loop invariant value. We don't really depend on the predicate actually 9989 // flipping from false to true (for increasing predicates, and the other way 9990 // around for decreasing predicates), all we care about is that *if* the 9991 // predicate changes then it only changes from false to true. 9992 // 9993 // A zero step value in itself is not very useful, but there may be places 9994 // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be 9995 // as general as possible. 9996 9997 // Only handle LE/LT/GE/GT predicates. 9998 if (!ICmpInst::isRelational(Pred)) 9999 return None; 10000 10001 bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred); 10002 assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) && 10003 "Should be greater or less!"); 10004 10005 // Check that AR does not wrap. 10006 if (ICmpInst::isUnsigned(Pred)) { 10007 if (!LHS->hasNoUnsignedWrap()) 10008 return None; 10009 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10010 } else { 10011 assert(ICmpInst::isSigned(Pred) && 10012 "Relational predicate is either signed or unsigned!"); 10013 if (!LHS->hasNoSignedWrap()) 10014 return None; 10015 10016 const SCEV *Step = LHS->getStepRecurrence(*this); 10017 10018 if (isKnownNonNegative(Step)) 10019 return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10020 10021 if (isKnownNonPositive(Step)) 10022 return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing; 10023 10024 return None; 10025 } 10026 } 10027 10028 Optional<ScalarEvolution::LoopInvariantPredicate> 10029 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred, 10030 const SCEV *LHS, const SCEV *RHS, 10031 const Loop *L) { 10032 10033 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10034 if (!isLoopInvariant(RHS, L)) { 10035 if (!isLoopInvariant(LHS, L)) 10036 return None; 10037 10038 std::swap(LHS, RHS); 10039 Pred = ICmpInst::getSwappedPredicate(Pred); 10040 } 10041 10042 const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10043 if (!ArLHS || ArLHS->getLoop() != L) 10044 return None; 10045 10046 auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred); 10047 if (!MonotonicType) 10048 return None; 10049 // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to 10050 // true as the loop iterates, and the backedge is control dependent on 10051 // "ArLHS `Pred` RHS" == true then we can reason as follows: 10052 // 10053 // * if the predicate was false in the first iteration then the predicate 10054 // is never evaluated again, since the loop exits without taking the 10055 // backedge. 10056 // * if the predicate was true in the first iteration then it will 10057 // continue to be true for all future iterations since it is 10058 // monotonically increasing. 10059 // 10060 // For both the above possibilities, we can replace the loop varying 10061 // predicate with its value on the first iteration of the loop (which is 10062 // loop invariant). 10063 // 10064 // A similar reasoning applies for a monotonically decreasing predicate, by 10065 // replacing true with false and false with true in the above two bullets. 10066 bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing; 10067 auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred); 10068 10069 if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS)) 10070 return None; 10071 10072 return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS); 10073 } 10074 10075 Optional<ScalarEvolution::LoopInvariantPredicate> 10076 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations( 10077 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L, 10078 const Instruction *CtxI, const SCEV *MaxIter) { 10079 // Try to prove the following set of facts: 10080 // - The predicate is monotonic in the iteration space. 10081 // - If the check does not fail on the 1st iteration: 10082 // - No overflow will happen during first MaxIter iterations; 10083 // - It will not fail on the MaxIter'th iteration. 10084 // If the check does fail on the 1st iteration, we leave the loop and no 10085 // other checks matter. 10086 10087 // If there is a loop-invariant, force it into the RHS, otherwise bail out. 10088 if (!isLoopInvariant(RHS, L)) { 10089 if (!isLoopInvariant(LHS, L)) 10090 return None; 10091 10092 std::swap(LHS, RHS); 10093 Pred = ICmpInst::getSwappedPredicate(Pred); 10094 } 10095 10096 auto *AR = dyn_cast<SCEVAddRecExpr>(LHS); 10097 if (!AR || AR->getLoop() != L) 10098 return None; 10099 10100 // The predicate must be relational (i.e. <, <=, >=, >). 10101 if (!ICmpInst::isRelational(Pred)) 10102 return None; 10103 10104 // TODO: Support steps other than +/- 1. 10105 const SCEV *Step = AR->getStepRecurrence(*this); 10106 auto *One = getOne(Step->getType()); 10107 auto *MinusOne = getNegativeSCEV(One); 10108 if (Step != One && Step != MinusOne) 10109 return None; 10110 10111 // Type mismatch here means that MaxIter is potentially larger than max 10112 // unsigned value in start type, which mean we cannot prove no wrap for the 10113 // indvar. 10114 if (AR->getType() != MaxIter->getType()) 10115 return None; 10116 10117 // Value of IV on suggested last iteration. 10118 const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this); 10119 // Does it still meet the requirement? 10120 if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS)) 10121 return None; 10122 // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does 10123 // not exceed max unsigned value of this type), this effectively proves 10124 // that there is no wrap during the iteration. To prove that there is no 10125 // signed/unsigned wrap, we need to check that 10126 // Start <= Last for step = 1 or Start >= Last for step = -1. 10127 ICmpInst::Predicate NoOverflowPred = 10128 CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; 10129 if (Step == MinusOne) 10130 NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred); 10131 const SCEV *Start = AR->getStart(); 10132 if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI)) 10133 return None; 10134 10135 // Everything is fine. 10136 return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS); 10137 } 10138 10139 bool ScalarEvolution::isKnownPredicateViaConstantRanges( 10140 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) { 10141 if (HasSameValue(LHS, RHS)) 10142 return ICmpInst::isTrueWhenEqual(Pred); 10143 10144 // This code is split out from isKnownPredicate because it is called from 10145 // within isLoopEntryGuardedByCond. 10146 10147 auto CheckRanges = [&](const ConstantRange &RangeLHS, 10148 const ConstantRange &RangeRHS) { 10149 return RangeLHS.icmp(Pred, RangeRHS); 10150 }; 10151 10152 // The check at the top of the function catches the case where the values are 10153 // known to be equal. 10154 if (Pred == CmpInst::ICMP_EQ) 10155 return false; 10156 10157 if (Pred == CmpInst::ICMP_NE) { 10158 if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) || 10159 CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS))) 10160 return true; 10161 auto *Diff = getMinusSCEV(LHS, RHS); 10162 return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff); 10163 } 10164 10165 if (CmpInst::isSigned(Pred)) 10166 return CheckRanges(getSignedRange(LHS), getSignedRange(RHS)); 10167 10168 return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)); 10169 } 10170 10171 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred, 10172 const SCEV *LHS, 10173 const SCEV *RHS) { 10174 // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where 10175 // C1 and C2 are constant integers. If either X or Y are not add expressions, 10176 // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via 10177 // OutC1 and OutC2. 10178 auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y, 10179 APInt &OutC1, APInt &OutC2, 10180 SCEV::NoWrapFlags ExpectedFlags) { 10181 const SCEV *XNonConstOp, *XConstOp; 10182 const SCEV *YNonConstOp, *YConstOp; 10183 SCEV::NoWrapFlags XFlagsPresent; 10184 SCEV::NoWrapFlags YFlagsPresent; 10185 10186 if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) { 10187 XConstOp = getZero(X->getType()); 10188 XNonConstOp = X; 10189 XFlagsPresent = ExpectedFlags; 10190 } 10191 if (!isa<SCEVConstant>(XConstOp) || 10192 (XFlagsPresent & ExpectedFlags) != ExpectedFlags) 10193 return false; 10194 10195 if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) { 10196 YConstOp = getZero(Y->getType()); 10197 YNonConstOp = Y; 10198 YFlagsPresent = ExpectedFlags; 10199 } 10200 10201 if (!isa<SCEVConstant>(YConstOp) || 10202 (YFlagsPresent & ExpectedFlags) != ExpectedFlags) 10203 return false; 10204 10205 if (YNonConstOp != XNonConstOp) 10206 return false; 10207 10208 OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt(); 10209 OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt(); 10210 10211 return true; 10212 }; 10213 10214 APInt C1; 10215 APInt C2; 10216 10217 switch (Pred) { 10218 default: 10219 break; 10220 10221 case ICmpInst::ICMP_SGE: 10222 std::swap(LHS, RHS); 10223 LLVM_FALLTHROUGH; 10224 case ICmpInst::ICMP_SLE: 10225 // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2. 10226 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2)) 10227 return true; 10228 10229 break; 10230 10231 case ICmpInst::ICMP_SGT: 10232 std::swap(LHS, RHS); 10233 LLVM_FALLTHROUGH; 10234 case ICmpInst::ICMP_SLT: 10235 // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2. 10236 if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2)) 10237 return true; 10238 10239 break; 10240 10241 case ICmpInst::ICMP_UGE: 10242 std::swap(LHS, RHS); 10243 LLVM_FALLTHROUGH; 10244 case ICmpInst::ICMP_ULE: 10245 // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2. 10246 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2)) 10247 return true; 10248 10249 break; 10250 10251 case ICmpInst::ICMP_UGT: 10252 std::swap(LHS, RHS); 10253 LLVM_FALLTHROUGH; 10254 case ICmpInst::ICMP_ULT: 10255 // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2. 10256 if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2)) 10257 return true; 10258 break; 10259 } 10260 10261 return false; 10262 } 10263 10264 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred, 10265 const SCEV *LHS, 10266 const SCEV *RHS) { 10267 if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate) 10268 return false; 10269 10270 // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on 10271 // the stack can result in exponential time complexity. 10272 SaveAndRestore<bool> Restore(ProvingSplitPredicate, true); 10273 10274 // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L 10275 // 10276 // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use 10277 // isKnownPredicate. isKnownPredicate is more powerful, but also more 10278 // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the 10279 // interesting cases seen in practice. We can consider "upgrading" L >= 0 to 10280 // use isKnownPredicate later if needed. 10281 return isKnownNonNegative(RHS) && 10282 isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) && 10283 isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS); 10284 } 10285 10286 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB, 10287 ICmpInst::Predicate Pred, 10288 const SCEV *LHS, const SCEV *RHS) { 10289 // No need to even try if we know the module has no guards. 10290 if (!HasGuards) 10291 return false; 10292 10293 return any_of(*BB, [&](const Instruction &I) { 10294 using namespace llvm::PatternMatch; 10295 10296 Value *Condition; 10297 return match(&I, m_Intrinsic<Intrinsic::experimental_guard>( 10298 m_Value(Condition))) && 10299 isImpliedCond(Pred, LHS, RHS, Condition, false); 10300 }); 10301 } 10302 10303 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is 10304 /// protected by a conditional between LHS and RHS. This is used to 10305 /// to eliminate casts. 10306 bool 10307 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L, 10308 ICmpInst::Predicate Pred, 10309 const SCEV *LHS, const SCEV *RHS) { 10310 // Interpret a null as meaning no loop, where there is obviously no guard 10311 // (interprocedural conditions notwithstanding). 10312 if (!L) return true; 10313 10314 if (VerifyIR) 10315 assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) && 10316 "This cannot be done on broken IR!"); 10317 10318 10319 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10320 return true; 10321 10322 BasicBlock *Latch = L->getLoopLatch(); 10323 if (!Latch) 10324 return false; 10325 10326 BranchInst *LoopContinuePredicate = 10327 dyn_cast<BranchInst>(Latch->getTerminator()); 10328 if (LoopContinuePredicate && LoopContinuePredicate->isConditional() && 10329 isImpliedCond(Pred, LHS, RHS, 10330 LoopContinuePredicate->getCondition(), 10331 LoopContinuePredicate->getSuccessor(0) != L->getHeader())) 10332 return true; 10333 10334 // We don't want more than one activation of the following loops on the stack 10335 // -- that can lead to O(n!) time complexity. 10336 if (WalkingBEDominatingConds) 10337 return false; 10338 10339 SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true); 10340 10341 // See if we can exploit a trip count to prove the predicate. 10342 const auto &BETakenInfo = getBackedgeTakenInfo(L); 10343 const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this); 10344 if (LatchBECount != getCouldNotCompute()) { 10345 // We know that Latch branches back to the loop header exactly 10346 // LatchBECount times. This means the backdege condition at Latch is 10347 // equivalent to "{0,+,1} u< LatchBECount". 10348 Type *Ty = LatchBECount->getType(); 10349 auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW); 10350 const SCEV *LoopCounter = 10351 getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags); 10352 if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter, 10353 LatchBECount)) 10354 return true; 10355 } 10356 10357 // Check conditions due to any @llvm.assume intrinsics. 10358 for (auto &AssumeVH : AC.assumptions()) { 10359 if (!AssumeVH) 10360 continue; 10361 auto *CI = cast<CallInst>(AssumeVH); 10362 if (!DT.dominates(CI, Latch->getTerminator())) 10363 continue; 10364 10365 if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false)) 10366 return true; 10367 } 10368 10369 // If the loop is not reachable from the entry block, we risk running into an 10370 // infinite loop as we walk up into the dom tree. These loops do not matter 10371 // anyway, so we just return a conservative answer when we see them. 10372 if (!DT.isReachableFromEntry(L->getHeader())) 10373 return false; 10374 10375 if (isImpliedViaGuard(Latch, Pred, LHS, RHS)) 10376 return true; 10377 10378 for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()]; 10379 DTN != HeaderDTN; DTN = DTN->getIDom()) { 10380 assert(DTN && "should reach the loop header before reaching the root!"); 10381 10382 BasicBlock *BB = DTN->getBlock(); 10383 if (isImpliedViaGuard(BB, Pred, LHS, RHS)) 10384 return true; 10385 10386 BasicBlock *PBB = BB->getSinglePredecessor(); 10387 if (!PBB) 10388 continue; 10389 10390 BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator()); 10391 if (!ContinuePredicate || !ContinuePredicate->isConditional()) 10392 continue; 10393 10394 Value *Condition = ContinuePredicate->getCondition(); 10395 10396 // If we have an edge `E` within the loop body that dominates the only 10397 // latch, the condition guarding `E` also guards the backedge. This 10398 // reasoning works only for loops with a single latch. 10399 10400 BasicBlockEdge DominatingEdge(PBB, BB); 10401 if (DominatingEdge.isSingleEdge()) { 10402 // We're constructively (and conservatively) enumerating edges within the 10403 // loop body that dominate the latch. The dominator tree better agree 10404 // with us on this: 10405 assert(DT.dominates(DominatingEdge, Latch) && "should be!"); 10406 10407 if (isImpliedCond(Pred, LHS, RHS, Condition, 10408 BB != ContinuePredicate->getSuccessor(0))) 10409 return true; 10410 } 10411 } 10412 10413 return false; 10414 } 10415 10416 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB, 10417 ICmpInst::Predicate Pred, 10418 const SCEV *LHS, 10419 const SCEV *RHS) { 10420 if (VerifyIR) 10421 assert(!verifyFunction(*BB->getParent(), &dbgs()) && 10422 "This cannot be done on broken IR!"); 10423 10424 // If we cannot prove strict comparison (e.g. a > b), maybe we can prove 10425 // the facts (a >= b && a != b) separately. A typical situation is when the 10426 // non-strict comparison is known from ranges and non-equality is known from 10427 // dominating predicates. If we are proving strict comparison, we always try 10428 // to prove non-equality and non-strict comparison separately. 10429 auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred); 10430 const bool ProvingStrictComparison = (Pred != NonStrictPredicate); 10431 bool ProvedNonStrictComparison = false; 10432 bool ProvedNonEquality = false; 10433 10434 auto SplitAndProve = 10435 [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool { 10436 if (!ProvedNonStrictComparison) 10437 ProvedNonStrictComparison = Fn(NonStrictPredicate); 10438 if (!ProvedNonEquality) 10439 ProvedNonEquality = Fn(ICmpInst::ICMP_NE); 10440 if (ProvedNonStrictComparison && ProvedNonEquality) 10441 return true; 10442 return false; 10443 }; 10444 10445 if (ProvingStrictComparison) { 10446 auto ProofFn = [&](ICmpInst::Predicate P) { 10447 return isKnownViaNonRecursiveReasoning(P, LHS, RHS); 10448 }; 10449 if (SplitAndProve(ProofFn)) 10450 return true; 10451 } 10452 10453 // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard. 10454 auto ProveViaGuard = [&](const BasicBlock *Block) { 10455 if (isImpliedViaGuard(Block, Pred, LHS, RHS)) 10456 return true; 10457 if (ProvingStrictComparison) { 10458 auto ProofFn = [&](ICmpInst::Predicate P) { 10459 return isImpliedViaGuard(Block, P, LHS, RHS); 10460 }; 10461 if (SplitAndProve(ProofFn)) 10462 return true; 10463 } 10464 return false; 10465 }; 10466 10467 // Try to prove (Pred, LHS, RHS) using isImpliedCond. 10468 auto ProveViaCond = [&](const Value *Condition, bool Inverse) { 10469 const Instruction *CtxI = &BB->front(); 10470 if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI)) 10471 return true; 10472 if (ProvingStrictComparison) { 10473 auto ProofFn = [&](ICmpInst::Predicate P) { 10474 return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI); 10475 }; 10476 if (SplitAndProve(ProofFn)) 10477 return true; 10478 } 10479 return false; 10480 }; 10481 10482 // Starting at the block's predecessor, climb up the predecessor chain, as long 10483 // as there are predecessors that can be found that have unique successors 10484 // leading to the original block. 10485 const Loop *ContainingLoop = LI.getLoopFor(BB); 10486 const BasicBlock *PredBB; 10487 if (ContainingLoop && ContainingLoop->getHeader() == BB) 10488 PredBB = ContainingLoop->getLoopPredecessor(); 10489 else 10490 PredBB = BB->getSinglePredecessor(); 10491 for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB); 10492 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 10493 if (ProveViaGuard(Pair.first)) 10494 return true; 10495 10496 const BranchInst *LoopEntryPredicate = 10497 dyn_cast<BranchInst>(Pair.first->getTerminator()); 10498 if (!LoopEntryPredicate || 10499 LoopEntryPredicate->isUnconditional()) 10500 continue; 10501 10502 if (ProveViaCond(LoopEntryPredicate->getCondition(), 10503 LoopEntryPredicate->getSuccessor(0) != Pair.second)) 10504 return true; 10505 } 10506 10507 // Check conditions due to any @llvm.assume intrinsics. 10508 for (auto &AssumeVH : AC.assumptions()) { 10509 if (!AssumeVH) 10510 continue; 10511 auto *CI = cast<CallInst>(AssumeVH); 10512 if (!DT.dominates(CI, BB)) 10513 continue; 10514 10515 if (ProveViaCond(CI->getArgOperand(0), false)) 10516 return true; 10517 } 10518 10519 return false; 10520 } 10521 10522 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L, 10523 ICmpInst::Predicate Pred, 10524 const SCEV *LHS, 10525 const SCEV *RHS) { 10526 // Interpret a null as meaning no loop, where there is obviously no guard 10527 // (interprocedural conditions notwithstanding). 10528 if (!L) 10529 return false; 10530 10531 // Both LHS and RHS must be available at loop entry. 10532 assert(isAvailableAtLoopEntry(LHS, L) && 10533 "LHS is not available at Loop Entry"); 10534 assert(isAvailableAtLoopEntry(RHS, L) && 10535 "RHS is not available at Loop Entry"); 10536 10537 if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS)) 10538 return true; 10539 10540 return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS); 10541 } 10542 10543 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10544 const SCEV *RHS, 10545 const Value *FoundCondValue, bool Inverse, 10546 const Instruction *CtxI) { 10547 // False conditions implies anything. Do not bother analyzing it further. 10548 if (FoundCondValue == 10549 ConstantInt::getBool(FoundCondValue->getContext(), Inverse)) 10550 return true; 10551 10552 if (!PendingLoopPredicates.insert(FoundCondValue).second) 10553 return false; 10554 10555 auto ClearOnExit = 10556 make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); }); 10557 10558 // Recursively handle And and Or conditions. 10559 const Value *Op0, *Op1; 10560 if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) { 10561 if (!Inverse) 10562 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10563 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10564 } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) { 10565 if (Inverse) 10566 return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) || 10567 isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI); 10568 } 10569 10570 const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue); 10571 if (!ICI) return false; 10572 10573 // Now that we found a conditional branch that dominates the loop or controls 10574 // the loop latch. Check to see if it is the comparison we are looking for. 10575 ICmpInst::Predicate FoundPred; 10576 if (Inverse) 10577 FoundPred = ICI->getInversePredicate(); 10578 else 10579 FoundPred = ICI->getPredicate(); 10580 10581 const SCEV *FoundLHS = getSCEV(ICI->getOperand(0)); 10582 const SCEV *FoundRHS = getSCEV(ICI->getOperand(1)); 10583 10584 return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI); 10585 } 10586 10587 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS, 10588 const SCEV *RHS, 10589 ICmpInst::Predicate FoundPred, 10590 const SCEV *FoundLHS, const SCEV *FoundRHS, 10591 const Instruction *CtxI) { 10592 // Balance the types. 10593 if (getTypeSizeInBits(LHS->getType()) < 10594 getTypeSizeInBits(FoundLHS->getType())) { 10595 // For unsigned and equality predicates, try to prove that both found 10596 // operands fit into narrow unsigned range. If so, try to prove facts in 10597 // narrow types. 10598 if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) { 10599 auto *NarrowType = LHS->getType(); 10600 auto *WideType = FoundLHS->getType(); 10601 auto BitWidth = getTypeSizeInBits(NarrowType); 10602 const SCEV *MaxValue = getZeroExtendExpr( 10603 getConstant(APInt::getMaxValue(BitWidth)), WideType); 10604 if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) && 10605 isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) { 10606 const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType); 10607 const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType); 10608 if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS, 10609 TruncFoundRHS, CtxI)) 10610 return true; 10611 } 10612 } 10613 10614 if (LHS->getType()->isPointerTy()) 10615 return false; 10616 if (CmpInst::isSigned(Pred)) { 10617 LHS = getSignExtendExpr(LHS, FoundLHS->getType()); 10618 RHS = getSignExtendExpr(RHS, FoundLHS->getType()); 10619 } else { 10620 LHS = getZeroExtendExpr(LHS, FoundLHS->getType()); 10621 RHS = getZeroExtendExpr(RHS, FoundLHS->getType()); 10622 } 10623 } else if (getTypeSizeInBits(LHS->getType()) > 10624 getTypeSizeInBits(FoundLHS->getType())) { 10625 if (FoundLHS->getType()->isPointerTy()) 10626 return false; 10627 if (CmpInst::isSigned(FoundPred)) { 10628 FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType()); 10629 FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType()); 10630 } else { 10631 FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType()); 10632 FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType()); 10633 } 10634 } 10635 return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS, 10636 FoundRHS, CtxI); 10637 } 10638 10639 bool ScalarEvolution::isImpliedCondBalancedTypes( 10640 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10641 ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS, 10642 const Instruction *CtxI) { 10643 assert(getTypeSizeInBits(LHS->getType()) == 10644 getTypeSizeInBits(FoundLHS->getType()) && 10645 "Types should be balanced!"); 10646 // Canonicalize the query to match the way instcombine will have 10647 // canonicalized the comparison. 10648 if (SimplifyICmpOperands(Pred, LHS, RHS)) 10649 if (LHS == RHS) 10650 return CmpInst::isTrueWhenEqual(Pred); 10651 if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS)) 10652 if (FoundLHS == FoundRHS) 10653 return CmpInst::isFalseWhenEqual(FoundPred); 10654 10655 // Check to see if we can make the LHS or RHS match. 10656 if (LHS == FoundRHS || RHS == FoundLHS) { 10657 if (isa<SCEVConstant>(RHS)) { 10658 std::swap(FoundLHS, FoundRHS); 10659 FoundPred = ICmpInst::getSwappedPredicate(FoundPred); 10660 } else { 10661 std::swap(LHS, RHS); 10662 Pred = ICmpInst::getSwappedPredicate(Pred); 10663 } 10664 } 10665 10666 // Check whether the found predicate is the same as the desired predicate. 10667 if (FoundPred == Pred) 10668 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10669 10670 // Check whether swapping the found predicate makes it the same as the 10671 // desired predicate. 10672 if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) { 10673 // We can write the implication 10674 // 0. LHS Pred RHS <- FoundLHS SwapPred FoundRHS 10675 // using one of the following ways: 10676 // 1. LHS Pred RHS <- FoundRHS Pred FoundLHS 10677 // 2. RHS SwapPred LHS <- FoundLHS SwapPred FoundRHS 10678 // 3. LHS Pred RHS <- ~FoundLHS Pred ~FoundRHS 10679 // 4. ~LHS SwapPred ~RHS <- FoundLHS SwapPred FoundRHS 10680 // Forms 1. and 2. require swapping the operands of one condition. Don't 10681 // do this if it would break canonical constant/addrec ordering. 10682 if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS)) 10683 return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS, 10684 CtxI); 10685 if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS)) 10686 return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI); 10687 10688 // There's no clear preference between forms 3. and 4., try both. Avoid 10689 // forming getNotSCEV of pointer values as the resulting subtract is 10690 // not legal. 10691 if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() && 10692 isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS), 10693 FoundLHS, FoundRHS, CtxI)) 10694 return true; 10695 10696 if (!FoundLHS->getType()->isPointerTy() && 10697 !FoundRHS->getType()->isPointerTy() && 10698 isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS), 10699 getNotSCEV(FoundRHS), CtxI)) 10700 return true; 10701 10702 return false; 10703 } 10704 10705 // Unsigned comparison is the same as signed comparison when both the operands 10706 // are non-negative or negative. 10707 auto IsSignFlippedPredicate = [](CmpInst::Predicate P1, 10708 CmpInst::Predicate P2) { 10709 assert(P1 != P2 && "Handled earlier!"); 10710 return CmpInst::isRelational(P2) && 10711 P1 == CmpInst::getFlippedSignednessPredicate(P2); 10712 }; 10713 if (IsSignFlippedPredicate(Pred, FoundPred) && 10714 ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) || 10715 (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS)))) 10716 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI); 10717 10718 // Check if we can make progress by sharpening ranges. 10719 if (FoundPred == ICmpInst::ICMP_NE && 10720 (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) { 10721 10722 const SCEVConstant *C = nullptr; 10723 const SCEV *V = nullptr; 10724 10725 if (isa<SCEVConstant>(FoundLHS)) { 10726 C = cast<SCEVConstant>(FoundLHS); 10727 V = FoundRHS; 10728 } else { 10729 C = cast<SCEVConstant>(FoundRHS); 10730 V = FoundLHS; 10731 } 10732 10733 // The guarding predicate tells us that C != V. If the known range 10734 // of V is [C, t), we can sharpen the range to [C + 1, t). The 10735 // range we consider has to correspond to same signedness as the 10736 // predicate we're interested in folding. 10737 10738 APInt Min = ICmpInst::isSigned(Pred) ? 10739 getSignedRangeMin(V) : getUnsignedRangeMin(V); 10740 10741 if (Min == C->getAPInt()) { 10742 // Given (V >= Min && V != Min) we conclude V >= (Min + 1). 10743 // This is true even if (Min + 1) wraps around -- in case of 10744 // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)). 10745 10746 APInt SharperMin = Min + 1; 10747 10748 switch (Pred) { 10749 case ICmpInst::ICMP_SGE: 10750 case ICmpInst::ICMP_UGE: 10751 // We know V `Pred` SharperMin. If this implies LHS `Pred` 10752 // RHS, we're done. 10753 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin), 10754 CtxI)) 10755 return true; 10756 LLVM_FALLTHROUGH; 10757 10758 case ICmpInst::ICMP_SGT: 10759 case ICmpInst::ICMP_UGT: 10760 // We know from the range information that (V `Pred` Min || 10761 // V == Min). We know from the guarding condition that !(V 10762 // == Min). This gives us 10763 // 10764 // V `Pred` Min || V == Min && !(V == Min) 10765 // => V `Pred` Min 10766 // 10767 // If V `Pred` Min implies LHS `Pred` RHS, we're done. 10768 10769 if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI)) 10770 return true; 10771 break; 10772 10773 // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively. 10774 case ICmpInst::ICMP_SLE: 10775 case ICmpInst::ICMP_ULE: 10776 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10777 LHS, V, getConstant(SharperMin), CtxI)) 10778 return true; 10779 LLVM_FALLTHROUGH; 10780 10781 case ICmpInst::ICMP_SLT: 10782 case ICmpInst::ICMP_ULT: 10783 if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS, 10784 LHS, V, getConstant(Min), CtxI)) 10785 return true; 10786 break; 10787 10788 default: 10789 // No change 10790 break; 10791 } 10792 } 10793 } 10794 10795 // Check whether the actual condition is beyond sufficient. 10796 if (FoundPred == ICmpInst::ICMP_EQ) 10797 if (ICmpInst::isTrueWhenEqual(Pred)) 10798 if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10799 return true; 10800 if (Pred == ICmpInst::ICMP_NE) 10801 if (!ICmpInst::isTrueWhenEqual(FoundPred)) 10802 if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI)) 10803 return true; 10804 10805 // Otherwise assume the worst. 10806 return false; 10807 } 10808 10809 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr, 10810 const SCEV *&L, const SCEV *&R, 10811 SCEV::NoWrapFlags &Flags) { 10812 const auto *AE = dyn_cast<SCEVAddExpr>(Expr); 10813 if (!AE || AE->getNumOperands() != 2) 10814 return false; 10815 10816 L = AE->getOperand(0); 10817 R = AE->getOperand(1); 10818 Flags = AE->getNoWrapFlags(); 10819 return true; 10820 } 10821 10822 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More, 10823 const SCEV *Less) { 10824 // We avoid subtracting expressions here because this function is usually 10825 // fairly deep in the call stack (i.e. is called many times). 10826 10827 // X - X = 0. 10828 if (More == Less) 10829 return APInt(getTypeSizeInBits(More->getType()), 0); 10830 10831 if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) { 10832 const auto *LAR = cast<SCEVAddRecExpr>(Less); 10833 const auto *MAR = cast<SCEVAddRecExpr>(More); 10834 10835 if (LAR->getLoop() != MAR->getLoop()) 10836 return None; 10837 10838 // We look at affine expressions only; not for correctness but to keep 10839 // getStepRecurrence cheap. 10840 if (!LAR->isAffine() || !MAR->isAffine()) 10841 return None; 10842 10843 if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this)) 10844 return None; 10845 10846 Less = LAR->getStart(); 10847 More = MAR->getStart(); 10848 10849 // fall through 10850 } 10851 10852 if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) { 10853 const auto &M = cast<SCEVConstant>(More)->getAPInt(); 10854 const auto &L = cast<SCEVConstant>(Less)->getAPInt(); 10855 return M - L; 10856 } 10857 10858 SCEV::NoWrapFlags Flags; 10859 const SCEV *LLess = nullptr, *RLess = nullptr; 10860 const SCEV *LMore = nullptr, *RMore = nullptr; 10861 const SCEVConstant *C1 = nullptr, *C2 = nullptr; 10862 // Compare (X + C1) vs X. 10863 if (splitBinaryAdd(Less, LLess, RLess, Flags)) 10864 if ((C1 = dyn_cast<SCEVConstant>(LLess))) 10865 if (RLess == More) 10866 return -(C1->getAPInt()); 10867 10868 // Compare X vs (X + C2). 10869 if (splitBinaryAdd(More, LMore, RMore, Flags)) 10870 if ((C2 = dyn_cast<SCEVConstant>(LMore))) 10871 if (RMore == Less) 10872 return C2->getAPInt(); 10873 10874 // Compare (X + C1) vs (X + C2). 10875 if (C1 && C2 && RLess == RMore) 10876 return C2->getAPInt() - C1->getAPInt(); 10877 10878 return None; 10879 } 10880 10881 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart( 10882 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10883 const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) { 10884 // Try to recognize the following pattern: 10885 // 10886 // FoundRHS = ... 10887 // ... 10888 // loop: 10889 // FoundLHS = {Start,+,W} 10890 // context_bb: // Basic block from the same loop 10891 // known(Pred, FoundLHS, FoundRHS) 10892 // 10893 // If some predicate is known in the context of a loop, it is also known on 10894 // each iteration of this loop, including the first iteration. Therefore, in 10895 // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to 10896 // prove the original pred using this fact. 10897 if (!CtxI) 10898 return false; 10899 const BasicBlock *ContextBB = CtxI->getParent(); 10900 // Make sure AR varies in the context block. 10901 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) { 10902 const Loop *L = AR->getLoop(); 10903 // Make sure that context belongs to the loop and executes on 1st iteration 10904 // (if it ever executes at all). 10905 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10906 return false; 10907 if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop())) 10908 return false; 10909 return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS); 10910 } 10911 10912 if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) { 10913 const Loop *L = AR->getLoop(); 10914 // Make sure that context belongs to the loop and executes on 1st iteration 10915 // (if it ever executes at all). 10916 if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch())) 10917 return false; 10918 if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop())) 10919 return false; 10920 return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart()); 10921 } 10922 10923 return false; 10924 } 10925 10926 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow( 10927 ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, 10928 const SCEV *FoundLHS, const SCEV *FoundRHS) { 10929 if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT) 10930 return false; 10931 10932 const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS); 10933 if (!AddRecLHS) 10934 return false; 10935 10936 const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS); 10937 if (!AddRecFoundLHS) 10938 return false; 10939 10940 // We'd like to let SCEV reason about control dependencies, so we constrain 10941 // both the inequalities to be about add recurrences on the same loop. This 10942 // way we can use isLoopEntryGuardedByCond later. 10943 10944 const Loop *L = AddRecFoundLHS->getLoop(); 10945 if (L != AddRecLHS->getLoop()) 10946 return false; 10947 10948 // FoundLHS u< FoundRHS u< -C => (FoundLHS + C) u< (FoundRHS + C) ... (1) 10949 // 10950 // FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C) 10951 // ... (2) 10952 // 10953 // Informal proof for (2), assuming (1) [*]: 10954 // 10955 // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**] 10956 // 10957 // Then 10958 // 10959 // FoundLHS s< FoundRHS s< INT_MIN - C 10960 // <=> (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C [ using (3) ] 10961 // <=> (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ] 10962 // <=> (FoundLHS + INT_MIN + C + INT_MIN) s< 10963 // (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ] 10964 // <=> FoundLHS + C s< FoundRHS + C 10965 // 10966 // [*]: (1) can be proved by ruling out overflow. 10967 // 10968 // [**]: This can be proved by analyzing all the four possibilities: 10969 // (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and 10970 // (A s>= 0, B s>= 0). 10971 // 10972 // Note: 10973 // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C" 10974 // will not sign underflow. For instance, say FoundLHS = (i8 -128), FoundRHS 10975 // = (i8 -127) and C = (i8 -100). Then INT_MIN - C = (i8 -28), and FoundRHS 10976 // s< (INT_MIN - C). Lack of sign overflow / underflow in "FoundRHS + C" is 10977 // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS + 10978 // C)". 10979 10980 Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS); 10981 Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS); 10982 if (!LDiff || !RDiff || *LDiff != *RDiff) 10983 return false; 10984 10985 if (LDiff->isMinValue()) 10986 return true; 10987 10988 APInt FoundRHSLimit; 10989 10990 if (Pred == CmpInst::ICMP_ULT) { 10991 FoundRHSLimit = -(*RDiff); 10992 } else { 10993 assert(Pred == CmpInst::ICMP_SLT && "Checked above!"); 10994 FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff; 10995 } 10996 10997 // Try to prove (1) or (2), as needed. 10998 return isAvailableAtLoopEntry(FoundRHS, L) && 10999 isLoopEntryGuardedByCond(L, Pred, FoundRHS, 11000 getConstant(FoundRHSLimit)); 11001 } 11002 11003 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred, 11004 const SCEV *LHS, const SCEV *RHS, 11005 const SCEV *FoundLHS, 11006 const SCEV *FoundRHS, unsigned Depth) { 11007 const PHINode *LPhi = nullptr, *RPhi = nullptr; 11008 11009 auto ClearOnExit = make_scope_exit([&]() { 11010 if (LPhi) { 11011 bool Erased = PendingMerges.erase(LPhi); 11012 assert(Erased && "Failed to erase LPhi!"); 11013 (void)Erased; 11014 } 11015 if (RPhi) { 11016 bool Erased = PendingMerges.erase(RPhi); 11017 assert(Erased && "Failed to erase RPhi!"); 11018 (void)Erased; 11019 } 11020 }); 11021 11022 // Find respective Phis and check that they are not being pending. 11023 if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS)) 11024 if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) { 11025 if (!PendingMerges.insert(Phi).second) 11026 return false; 11027 LPhi = Phi; 11028 } 11029 if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS)) 11030 if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) { 11031 // If we detect a loop of Phi nodes being processed by this method, for 11032 // example: 11033 // 11034 // %a = phi i32 [ %some1, %preheader ], [ %b, %latch ] 11035 // %b = phi i32 [ %some2, %preheader ], [ %a, %latch ] 11036 // 11037 // we don't want to deal with a case that complex, so return conservative 11038 // answer false. 11039 if (!PendingMerges.insert(Phi).second) 11040 return false; 11041 RPhi = Phi; 11042 } 11043 11044 // If none of LHS, RHS is a Phi, nothing to do here. 11045 if (!LPhi && !RPhi) 11046 return false; 11047 11048 // If there is a SCEVUnknown Phi we are interested in, make it left. 11049 if (!LPhi) { 11050 std::swap(LHS, RHS); 11051 std::swap(FoundLHS, FoundRHS); 11052 std::swap(LPhi, RPhi); 11053 Pred = ICmpInst::getSwappedPredicate(Pred); 11054 } 11055 11056 assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!"); 11057 const BasicBlock *LBB = LPhi->getParent(); 11058 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11059 11060 auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) { 11061 return isKnownViaNonRecursiveReasoning(Pred, S1, S2) || 11062 isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) || 11063 isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth); 11064 }; 11065 11066 if (RPhi && RPhi->getParent() == LBB) { 11067 // Case one: RHS is also a SCEVUnknown Phi from the same basic block. 11068 // If we compare two Phis from the same block, and for each entry block 11069 // the predicate is true for incoming values from this block, then the 11070 // predicate is also true for the Phis. 11071 for (const BasicBlock *IncBB : predecessors(LBB)) { 11072 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11073 const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB)); 11074 if (!ProvedEasily(L, R)) 11075 return false; 11076 } 11077 } else if (RAR && RAR->getLoop()->getHeader() == LBB) { 11078 // Case two: RHS is also a Phi from the same basic block, and it is an 11079 // AddRec. It means that there is a loop which has both AddRec and Unknown 11080 // PHIs, for it we can compare incoming values of AddRec from above the loop 11081 // and latch with their respective incoming values of LPhi. 11082 // TODO: Generalize to handle loops with many inputs in a header. 11083 if (LPhi->getNumIncomingValues() != 2) return false; 11084 11085 auto *RLoop = RAR->getLoop(); 11086 auto *Predecessor = RLoop->getLoopPredecessor(); 11087 assert(Predecessor && "Loop with AddRec with no predecessor?"); 11088 const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor)); 11089 if (!ProvedEasily(L1, RAR->getStart())) 11090 return false; 11091 auto *Latch = RLoop->getLoopLatch(); 11092 assert(Latch && "Loop with AddRec with no latch?"); 11093 const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch)); 11094 if (!ProvedEasily(L2, RAR->getPostIncExpr(*this))) 11095 return false; 11096 } else { 11097 // In all other cases go over inputs of LHS and compare each of them to RHS, 11098 // the predicate is true for (LHS, RHS) if it is true for all such pairs. 11099 // At this point RHS is either a non-Phi, or it is a Phi from some block 11100 // different from LBB. 11101 for (const BasicBlock *IncBB : predecessors(LBB)) { 11102 // Check that RHS is available in this block. 11103 if (!dominates(RHS, IncBB)) 11104 return false; 11105 const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB)); 11106 // Make sure L does not refer to a value from a potentially previous 11107 // iteration of a loop. 11108 if (!properlyDominates(L, IncBB)) 11109 return false; 11110 if (!ProvedEasily(L, RHS)) 11111 return false; 11112 } 11113 } 11114 return true; 11115 } 11116 11117 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred, 11118 const SCEV *LHS, const SCEV *RHS, 11119 const SCEV *FoundLHS, 11120 const SCEV *FoundRHS, 11121 const Instruction *CtxI) { 11122 if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11123 return true; 11124 11125 if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11126 return true; 11127 11128 if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS, 11129 CtxI)) 11130 return true; 11131 11132 return isImpliedCondOperandsHelper(Pred, LHS, RHS, 11133 FoundLHS, FoundRHS); 11134 } 11135 11136 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values? 11137 template <typename MinMaxExprType> 11138 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr, 11139 const SCEV *Candidate) { 11140 const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr); 11141 if (!MinMaxExpr) 11142 return false; 11143 11144 return is_contained(MinMaxExpr->operands(), Candidate); 11145 } 11146 11147 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE, 11148 ICmpInst::Predicate Pred, 11149 const SCEV *LHS, const SCEV *RHS) { 11150 // If both sides are affine addrecs for the same loop, with equal 11151 // steps, and we know the recurrences don't wrap, then we only 11152 // need to check the predicate on the starting values. 11153 11154 if (!ICmpInst::isRelational(Pred)) 11155 return false; 11156 11157 const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS); 11158 if (!LAR) 11159 return false; 11160 const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS); 11161 if (!RAR) 11162 return false; 11163 if (LAR->getLoop() != RAR->getLoop()) 11164 return false; 11165 if (!LAR->isAffine() || !RAR->isAffine()) 11166 return false; 11167 11168 if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE)) 11169 return false; 11170 11171 SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ? 11172 SCEV::FlagNSW : SCEV::FlagNUW; 11173 if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW)) 11174 return false; 11175 11176 return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart()); 11177 } 11178 11179 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max 11180 /// expression? 11181 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE, 11182 ICmpInst::Predicate Pred, 11183 const SCEV *LHS, const SCEV *RHS) { 11184 switch (Pred) { 11185 default: 11186 return false; 11187 11188 case ICmpInst::ICMP_SGE: 11189 std::swap(LHS, RHS); 11190 LLVM_FALLTHROUGH; 11191 case ICmpInst::ICMP_SLE: 11192 return 11193 // min(A, ...) <= A 11194 IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) || 11195 // A <= max(A, ...) 11196 IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS); 11197 11198 case ICmpInst::ICMP_UGE: 11199 std::swap(LHS, RHS); 11200 LLVM_FALLTHROUGH; 11201 case ICmpInst::ICMP_ULE: 11202 return 11203 // min(A, ...) <= A 11204 IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) || 11205 // A <= max(A, ...) 11206 IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS); 11207 } 11208 11209 llvm_unreachable("covered switch fell through?!"); 11210 } 11211 11212 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred, 11213 const SCEV *LHS, const SCEV *RHS, 11214 const SCEV *FoundLHS, 11215 const SCEV *FoundRHS, 11216 unsigned Depth) { 11217 assert(getTypeSizeInBits(LHS->getType()) == 11218 getTypeSizeInBits(RHS->getType()) && 11219 "LHS and RHS have different sizes?"); 11220 assert(getTypeSizeInBits(FoundLHS->getType()) == 11221 getTypeSizeInBits(FoundRHS->getType()) && 11222 "FoundLHS and FoundRHS have different sizes?"); 11223 // We want to avoid hurting the compile time with analysis of too big trees. 11224 if (Depth > MaxSCEVOperationsImplicationDepth) 11225 return false; 11226 11227 // We only want to work with GT comparison so far. 11228 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) { 11229 Pred = CmpInst::getSwappedPredicate(Pred); 11230 std::swap(LHS, RHS); 11231 std::swap(FoundLHS, FoundRHS); 11232 } 11233 11234 // For unsigned, try to reduce it to corresponding signed comparison. 11235 if (Pred == ICmpInst::ICMP_UGT) 11236 // We can replace unsigned predicate with its signed counterpart if all 11237 // involved values are non-negative. 11238 // TODO: We could have better support for unsigned. 11239 if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) { 11240 // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing 11241 // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us 11242 // use this fact to prove that LHS and RHS are non-negative. 11243 const SCEV *MinusOne = getMinusOne(LHS->getType()); 11244 if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS, 11245 FoundRHS) && 11246 isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS, 11247 FoundRHS)) 11248 Pred = ICmpInst::ICMP_SGT; 11249 } 11250 11251 if (Pred != ICmpInst::ICMP_SGT) 11252 return false; 11253 11254 auto GetOpFromSExt = [&](const SCEV *S) { 11255 if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S)) 11256 return Ext->getOperand(); 11257 // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off 11258 // the constant in some cases. 11259 return S; 11260 }; 11261 11262 // Acquire values from extensions. 11263 auto *OrigLHS = LHS; 11264 auto *OrigFoundLHS = FoundLHS; 11265 LHS = GetOpFromSExt(LHS); 11266 FoundLHS = GetOpFromSExt(FoundLHS); 11267 11268 // Is the SGT predicate can be proved trivially or using the found context. 11269 auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) { 11270 return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) || 11271 isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS, 11272 FoundRHS, Depth + 1); 11273 }; 11274 11275 if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) { 11276 // We want to avoid creation of any new non-constant SCEV. Since we are 11277 // going to compare the operands to RHS, we should be certain that we don't 11278 // need any size extensions for this. So let's decline all cases when the 11279 // sizes of types of LHS and RHS do not match. 11280 // TODO: Maybe try to get RHS from sext to catch more cases? 11281 if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType())) 11282 return false; 11283 11284 // Should not overflow. 11285 if (!LHSAddExpr->hasNoSignedWrap()) 11286 return false; 11287 11288 auto *LL = LHSAddExpr->getOperand(0); 11289 auto *LR = LHSAddExpr->getOperand(1); 11290 auto *MinusOne = getMinusOne(RHS->getType()); 11291 11292 // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context. 11293 auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) { 11294 return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS); 11295 }; 11296 // Try to prove the following rule: 11297 // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS). 11298 // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS). 11299 if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL)) 11300 return true; 11301 } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) { 11302 Value *LL, *LR; 11303 // FIXME: Once we have SDiv implemented, we can get rid of this matching. 11304 11305 using namespace llvm::PatternMatch; 11306 11307 if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) { 11308 // Rules for division. 11309 // We are going to perform some comparisons with Denominator and its 11310 // derivative expressions. In general case, creating a SCEV for it may 11311 // lead to a complex analysis of the entire graph, and in particular it 11312 // can request trip count recalculation for the same loop. This would 11313 // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid 11314 // this, we only want to create SCEVs that are constants in this section. 11315 // So we bail if Denominator is not a constant. 11316 if (!isa<ConstantInt>(LR)) 11317 return false; 11318 11319 auto *Denominator = cast<SCEVConstant>(getSCEV(LR)); 11320 11321 // We want to make sure that LHS = FoundLHS / Denominator. If it is so, 11322 // then a SCEV for the numerator already exists and matches with FoundLHS. 11323 auto *Numerator = getExistingSCEV(LL); 11324 if (!Numerator || Numerator->getType() != FoundLHS->getType()) 11325 return false; 11326 11327 // Make sure that the numerator matches with FoundLHS and the denominator 11328 // is positive. 11329 if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator)) 11330 return false; 11331 11332 auto *DTy = Denominator->getType(); 11333 auto *FRHSTy = FoundRHS->getType(); 11334 if (DTy->isPointerTy() != FRHSTy->isPointerTy()) 11335 // One of types is a pointer and another one is not. We cannot extend 11336 // them properly to a wider type, so let us just reject this case. 11337 // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help 11338 // to avoid this check. 11339 return false; 11340 11341 // Given that: 11342 // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0. 11343 auto *WTy = getWiderType(DTy, FRHSTy); 11344 auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy); 11345 auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy); 11346 11347 // Try to prove the following rule: 11348 // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS). 11349 // For example, given that FoundLHS > 2. It means that FoundLHS is at 11350 // least 3. If we divide it by Denominator < 4, we will have at least 1. 11351 auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2)); 11352 if (isKnownNonPositive(RHS) && 11353 IsSGTViaContext(FoundRHSExt, DenomMinusTwo)) 11354 return true; 11355 11356 // Try to prove the following rule: 11357 // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS). 11358 // For example, given that FoundLHS > -3. Then FoundLHS is at least -2. 11359 // If we divide it by Denominator > 2, then: 11360 // 1. If FoundLHS is negative, then the result is 0. 11361 // 2. If FoundLHS is non-negative, then the result is non-negative. 11362 // Anyways, the result is non-negative. 11363 auto *MinusOne = getMinusOne(WTy); 11364 auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt); 11365 if (isKnownNegative(RHS) && 11366 IsSGTViaContext(FoundRHSExt, NegDenomMinusOne)) 11367 return true; 11368 } 11369 } 11370 11371 // If our expression contained SCEVUnknown Phis, and we split it down and now 11372 // need to prove something for them, try to prove the predicate for every 11373 // possible incoming values of those Phis. 11374 if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1)) 11375 return true; 11376 11377 return false; 11378 } 11379 11380 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred, 11381 const SCEV *LHS, const SCEV *RHS) { 11382 // zext x u<= sext x, sext x s<= zext x 11383 switch (Pred) { 11384 case ICmpInst::ICMP_SGE: 11385 std::swap(LHS, RHS); 11386 LLVM_FALLTHROUGH; 11387 case ICmpInst::ICMP_SLE: { 11388 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then SExt <s ZExt. 11389 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS); 11390 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS); 11391 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11392 return true; 11393 break; 11394 } 11395 case ICmpInst::ICMP_UGE: 11396 std::swap(LHS, RHS); 11397 LLVM_FALLTHROUGH; 11398 case ICmpInst::ICMP_ULE: { 11399 // If operand >=s 0 then ZExt == SExt. If operand <s 0 then ZExt <u SExt. 11400 const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS); 11401 const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS); 11402 if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand()) 11403 return true; 11404 break; 11405 } 11406 default: 11407 break; 11408 }; 11409 return false; 11410 } 11411 11412 bool 11413 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred, 11414 const SCEV *LHS, const SCEV *RHS) { 11415 return isKnownPredicateExtendIdiom(Pred, LHS, RHS) || 11416 isKnownPredicateViaConstantRanges(Pred, LHS, RHS) || 11417 IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) || 11418 IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) || 11419 isKnownPredicateViaNoOverflow(Pred, LHS, RHS); 11420 } 11421 11422 bool 11423 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred, 11424 const SCEV *LHS, const SCEV *RHS, 11425 const SCEV *FoundLHS, 11426 const SCEV *FoundRHS) { 11427 switch (Pred) { 11428 default: llvm_unreachable("Unexpected ICmpInst::Predicate value!"); 11429 case ICmpInst::ICMP_EQ: 11430 case ICmpInst::ICMP_NE: 11431 if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS)) 11432 return true; 11433 break; 11434 case ICmpInst::ICMP_SLT: 11435 case ICmpInst::ICMP_SLE: 11436 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) && 11437 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS)) 11438 return true; 11439 break; 11440 case ICmpInst::ICMP_SGT: 11441 case ICmpInst::ICMP_SGE: 11442 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) && 11443 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS)) 11444 return true; 11445 break; 11446 case ICmpInst::ICMP_ULT: 11447 case ICmpInst::ICMP_ULE: 11448 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) && 11449 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS)) 11450 return true; 11451 break; 11452 case ICmpInst::ICMP_UGT: 11453 case ICmpInst::ICMP_UGE: 11454 if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) && 11455 isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS)) 11456 return true; 11457 break; 11458 } 11459 11460 // Maybe it can be proved via operations? 11461 if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS)) 11462 return true; 11463 11464 return false; 11465 } 11466 11467 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred, 11468 const SCEV *LHS, 11469 const SCEV *RHS, 11470 const SCEV *FoundLHS, 11471 const SCEV *FoundRHS) { 11472 if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS)) 11473 // The restriction on `FoundRHS` be lifted easily -- it exists only to 11474 // reduce the compile time impact of this optimization. 11475 return false; 11476 11477 Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS); 11478 if (!Addend) 11479 return false; 11480 11481 const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt(); 11482 11483 // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the 11484 // antecedent "`FoundLHS` `Pred` `FoundRHS`". 11485 ConstantRange FoundLHSRange = 11486 ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS); 11487 11488 // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`: 11489 ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend)); 11490 11491 // We can also compute the range of values for `LHS` that satisfy the 11492 // consequent, "`LHS` `Pred` `RHS`": 11493 const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt(); 11494 // The antecedent implies the consequent if every value of `LHS` that 11495 // satisfies the antecedent also satisfies the consequent. 11496 return LHSRange.icmp(Pred, ConstRHS); 11497 } 11498 11499 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride, 11500 bool IsSigned) { 11501 assert(isKnownPositive(Stride) && "Positive stride expected!"); 11502 11503 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11504 const SCEV *One = getOne(Stride->getType()); 11505 11506 if (IsSigned) { 11507 APInt MaxRHS = getSignedRangeMax(RHS); 11508 APInt MaxValue = APInt::getSignedMaxValue(BitWidth); 11509 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11510 11511 // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow! 11512 return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS); 11513 } 11514 11515 APInt MaxRHS = getUnsignedRangeMax(RHS); 11516 APInt MaxValue = APInt::getMaxValue(BitWidth); 11517 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11518 11519 // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow! 11520 return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS); 11521 } 11522 11523 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride, 11524 bool IsSigned) { 11525 11526 unsigned BitWidth = getTypeSizeInBits(RHS->getType()); 11527 const SCEV *One = getOne(Stride->getType()); 11528 11529 if (IsSigned) { 11530 APInt MinRHS = getSignedRangeMin(RHS); 11531 APInt MinValue = APInt::getSignedMinValue(BitWidth); 11532 APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One)); 11533 11534 // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow! 11535 return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS); 11536 } 11537 11538 APInt MinRHS = getUnsignedRangeMin(RHS); 11539 APInt MinValue = APInt::getMinValue(BitWidth); 11540 APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One)); 11541 11542 // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow! 11543 return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS); 11544 } 11545 11546 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) { 11547 // umin(N, 1) + floor((N - umin(N, 1)) / D) 11548 // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin 11549 // expression fixes the case of N=0. 11550 const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType())); 11551 const SCEV *NMinusOne = getMinusSCEV(N, MinNOne); 11552 return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D)); 11553 } 11554 11555 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start, 11556 const SCEV *Stride, 11557 const SCEV *End, 11558 unsigned BitWidth, 11559 bool IsSigned) { 11560 // The logic in this function assumes we can represent a positive stride. 11561 // If we can't, the backedge-taken count must be zero. 11562 if (IsSigned && BitWidth == 1) 11563 return getZero(Stride->getType()); 11564 11565 // This code has only been closely audited for negative strides in the 11566 // unsigned comparison case, it may be correct for signed comparison, but 11567 // that needs to be established. 11568 assert((!IsSigned || !isKnownNonPositive(Stride)) && 11569 "Stride is expected strictly positive for signed case!"); 11570 11571 // Calculate the maximum backedge count based on the range of values 11572 // permitted by Start, End, and Stride. 11573 APInt MinStart = 11574 IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start); 11575 11576 APInt MinStride = 11577 IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride); 11578 11579 // We assume either the stride is positive, or the backedge-taken count 11580 // is zero. So force StrideForMaxBECount to be at least one. 11581 APInt One(BitWidth, 1); 11582 APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride) 11583 : APIntOps::umax(One, MinStride); 11584 11585 APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth) 11586 : APInt::getMaxValue(BitWidth); 11587 APInt Limit = MaxValue - (StrideForMaxBECount - 1); 11588 11589 // Although End can be a MAX expression we estimate MaxEnd considering only 11590 // the case End = RHS of the loop termination condition. This is safe because 11591 // in the other case (End - Start) is zero, leading to a zero maximum backedge 11592 // taken count. 11593 APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit) 11594 : APIntOps::umin(getUnsignedRangeMax(End), Limit); 11595 11596 // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride) 11597 MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart) 11598 : APIntOps::umax(MaxEnd, MinStart); 11599 11600 return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */, 11601 getConstant(StrideForMaxBECount) /* Step */); 11602 } 11603 11604 ScalarEvolution::ExitLimit 11605 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS, 11606 const Loop *L, bool IsSigned, 11607 bool ControlsExit, bool AllowPredicates) { 11608 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 11609 11610 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 11611 bool PredicatedIV = false; 11612 11613 auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) { 11614 // Can we prove this loop *must* be UB if overflow of IV occurs? 11615 // Reasoning goes as follows: 11616 // * Suppose the IV did self wrap. 11617 // * If Stride evenly divides the iteration space, then once wrap 11618 // occurs, the loop must revisit the same values. 11619 // * We know that RHS is invariant, and that none of those values 11620 // caused this exit to be taken previously. Thus, this exit is 11621 // dynamically dead. 11622 // * If this is the sole exit, then a dead exit implies the loop 11623 // must be infinite if there are no abnormal exits. 11624 // * If the loop were infinite, then it must either not be mustprogress 11625 // or have side effects. Otherwise, it must be UB. 11626 // * It can't (by assumption), be UB so we have contradicted our 11627 // premise and can conclude the IV did not in fact self-wrap. 11628 if (!isLoopInvariant(RHS, L)) 11629 return false; 11630 11631 auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this)); 11632 if (!StrideC || !StrideC->getAPInt().isPowerOf2()) 11633 return false; 11634 11635 if (!ControlsExit || !loopHasNoAbnormalExits(L)) 11636 return false; 11637 11638 return loopIsFiniteByAssumption(L); 11639 }; 11640 11641 if (!IV) { 11642 if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) { 11643 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand()); 11644 if (AR && AR->getLoop() == L && AR->isAffine()) { 11645 auto Flags = AR->getNoWrapFlags(); 11646 if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) { 11647 Flags = setFlags(Flags, SCEV::FlagNW); 11648 11649 SmallVector<const SCEV*> Operands{AR->operands()}; 11650 Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags); 11651 11652 setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags); 11653 } 11654 if (AR->hasNoUnsignedWrap()) { 11655 // Emulate what getZeroExtendExpr would have done during construction 11656 // if we'd been able to infer the fact just above at that time. 11657 const SCEV *Step = AR->getStepRecurrence(*this); 11658 Type *Ty = ZExt->getType(); 11659 auto *S = getAddRecExpr( 11660 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0), 11661 getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags()); 11662 IV = dyn_cast<SCEVAddRecExpr>(S); 11663 } 11664 } 11665 } 11666 } 11667 11668 11669 if (!IV && AllowPredicates) { 11670 // Try to make this an AddRec using runtime tests, in the first X 11671 // iterations of this loop, where X is the SCEV expression found by the 11672 // algorithm below. 11673 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 11674 PredicatedIV = true; 11675 } 11676 11677 // Avoid weird loops 11678 if (!IV || IV->getLoop() != L || !IV->isAffine()) 11679 return getCouldNotCompute(); 11680 11681 // A precondition of this method is that the condition being analyzed 11682 // reaches an exiting branch which dominates the latch. Given that, we can 11683 // assume that an increment which violates the nowrap specification and 11684 // produces poison must cause undefined behavior when the resulting poison 11685 // value is branched upon and thus we can conclude that the backedge is 11686 // taken no more often than would be required to produce that poison value. 11687 // Note that a well defined loop can exit on the iteration which violates 11688 // the nowrap specification if there is another exit (either explicit or 11689 // implicit/exceptional) which causes the loop to execute before the 11690 // exiting instruction we're analyzing would trigger UB. 11691 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 11692 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 11693 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; 11694 11695 const SCEV *Stride = IV->getStepRecurrence(*this); 11696 11697 bool PositiveStride = isKnownPositive(Stride); 11698 11699 // Avoid negative or zero stride values. 11700 if (!PositiveStride) { 11701 // We can compute the correct backedge taken count for loops with unknown 11702 // strides if we can prove that the loop is not an infinite loop with side 11703 // effects. Here's the loop structure we are trying to handle - 11704 // 11705 // i = start 11706 // do { 11707 // A[i] = i; 11708 // i += s; 11709 // } while (i < end); 11710 // 11711 // The backedge taken count for such loops is evaluated as - 11712 // (max(end, start + stride) - start - 1) /u stride 11713 // 11714 // The additional preconditions that we need to check to prove correctness 11715 // of the above formula is as follows - 11716 // 11717 // a) IV is either nuw or nsw depending upon signedness (indicated by the 11718 // NoWrap flag). 11719 // b) the loop is guaranteed to be finite (e.g. is mustprogress and has 11720 // no side effects within the loop) 11721 // c) loop has a single static exit (with no abnormal exits) 11722 // 11723 // Precondition a) implies that if the stride is negative, this is a single 11724 // trip loop. The backedge taken count formula reduces to zero in this case. 11725 // 11726 // Precondition b) and c) combine to imply that if rhs is invariant in L, 11727 // then a zero stride means the backedge can't be taken without executing 11728 // undefined behavior. 11729 // 11730 // The positive stride case is the same as isKnownPositive(Stride) returning 11731 // true (original behavior of the function). 11732 // 11733 if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) || 11734 !loopHasNoAbnormalExits(L)) 11735 return getCouldNotCompute(); 11736 11737 // This bailout is protecting the logic in computeMaxBECountForLT which 11738 // has not yet been sufficiently auditted or tested with negative strides. 11739 // We used to filter out all known-non-positive cases here, we're in the 11740 // process of being less restrictive bit by bit. 11741 if (IsSigned && isKnownNonPositive(Stride)) 11742 return getCouldNotCompute(); 11743 11744 if (!isKnownNonZero(Stride)) { 11745 // If we have a step of zero, and RHS isn't invariant in L, we don't know 11746 // if it might eventually be greater than start and if so, on which 11747 // iteration. We can't even produce a useful upper bound. 11748 if (!isLoopInvariant(RHS, L)) 11749 return getCouldNotCompute(); 11750 11751 // We allow a potentially zero stride, but we need to divide by stride 11752 // below. Since the loop can't be infinite and this check must control 11753 // the sole exit, we can infer the exit must be taken on the first 11754 // iteration (e.g. backedge count = 0) if the stride is zero. Given that, 11755 // we know the numerator in the divides below must be zero, so we can 11756 // pick an arbitrary non-zero value for the denominator (e.g. stride) 11757 // and produce the right result. 11758 // FIXME: Handle the case where Stride is poison? 11759 auto wouldZeroStrideBeUB = [&]() { 11760 // Proof by contradiction. Suppose the stride were zero. If we can 11761 // prove that the backedge *is* taken on the first iteration, then since 11762 // we know this condition controls the sole exit, we must have an 11763 // infinite loop. We can't have a (well defined) infinite loop per 11764 // check just above. 11765 // Note: The (Start - Stride) term is used to get the start' term from 11766 // (start' + stride,+,stride). Remember that we only care about the 11767 // result of this expression when stride == 0 at runtime. 11768 auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride); 11769 return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS); 11770 }; 11771 if (!wouldZeroStrideBeUB()) { 11772 Stride = getUMaxExpr(Stride, getOne(Stride->getType())); 11773 } 11774 } 11775 } else if (!Stride->isOne() && !NoWrap) { 11776 auto isUBOnWrap = [&]() { 11777 // From no-self-wrap, we need to then prove no-(un)signed-wrap. This 11778 // follows trivially from the fact that every (un)signed-wrapped, but 11779 // not self-wrapped value must be LT than the last value before 11780 // (un)signed wrap. Since we know that last value didn't exit, nor 11781 // will any smaller one. 11782 return canAssumeNoSelfWrap(IV); 11783 }; 11784 11785 // Avoid proven overflow cases: this will ensure that the backedge taken 11786 // count will not generate any unsigned overflow. Relaxed no-overflow 11787 // conditions exploit NoWrapFlags, allowing to optimize in presence of 11788 // undefined behaviors like the case of C language. 11789 if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap()) 11790 return getCouldNotCompute(); 11791 } 11792 11793 // On all paths just preceeding, we established the following invariant: 11794 // IV can be assumed not to overflow up to and including the exiting 11795 // iteration. We proved this in one of two ways: 11796 // 1) We can show overflow doesn't occur before the exiting iteration 11797 // 1a) canIVOverflowOnLT, and b) step of one 11798 // 2) We can show that if overflow occurs, the loop must execute UB 11799 // before any possible exit. 11800 // Note that we have not yet proved RHS invariant (in general). 11801 11802 const SCEV *Start = IV->getStart(); 11803 11804 // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond. 11805 // If we convert to integers, isLoopEntryGuardedByCond will miss some cases. 11806 // Use integer-typed versions for actual computation; we can't subtract 11807 // pointers in general. 11808 const SCEV *OrigStart = Start; 11809 const SCEV *OrigRHS = RHS; 11810 if (Start->getType()->isPointerTy()) { 11811 Start = getLosslessPtrToIntExpr(Start); 11812 if (isa<SCEVCouldNotCompute>(Start)) 11813 return Start; 11814 } 11815 if (RHS->getType()->isPointerTy()) { 11816 RHS = getLosslessPtrToIntExpr(RHS); 11817 if (isa<SCEVCouldNotCompute>(RHS)) 11818 return RHS; 11819 } 11820 11821 // When the RHS is not invariant, we do not know the end bound of the loop and 11822 // cannot calculate the ExactBECount needed by ExitLimit. However, we can 11823 // calculate the MaxBECount, given the start, stride and max value for the end 11824 // bound of the loop (RHS), and the fact that IV does not overflow (which is 11825 // checked above). 11826 if (!isLoopInvariant(RHS, L)) { 11827 const SCEV *MaxBECount = computeMaxBECountForLT( 11828 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 11829 return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount, 11830 false /*MaxOrZero*/, Predicates); 11831 } 11832 11833 // We use the expression (max(End,Start)-Start)/Stride to describe the 11834 // backedge count, as if the backedge is taken at least once max(End,Start) 11835 // is End and so the result is as above, and if not max(End,Start) is Start 11836 // so we get a backedge count of zero. 11837 const SCEV *BECount = nullptr; 11838 auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride); 11839 assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!"); 11840 assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!"); 11841 assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!"); 11842 // Can we prove (max(RHS,Start) > Start - Stride? 11843 if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) && 11844 isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) { 11845 // In this case, we can use a refined formula for computing backedge taken 11846 // count. The general formula remains: 11847 // "End-Start /uceiling Stride" where "End = max(RHS,Start)" 11848 // We want to use the alternate formula: 11849 // "((End - 1) - (Start - Stride)) /u Stride" 11850 // Let's do a quick case analysis to show these are equivalent under 11851 // our precondition that max(RHS,Start) > Start - Stride. 11852 // * For RHS <= Start, the backedge-taken count must be zero. 11853 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11854 // "((Start - 1) - (Start - Stride)) /u Stride" which simplies to 11855 // "Stride - 1 /u Stride" which is indeed zero for all non-zero values 11856 // of Stride. For 0 stride, we've use umin(1,Stride) above, reducing 11857 // this to the stride of 1 case. 11858 // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride". 11859 // "((End - 1) - (Start - Stride)) /u Stride" reduces to 11860 // "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to 11861 // "((RHS - (Start - Stride) - 1) /u Stride". 11862 // Our preconditions trivially imply no overflow in that form. 11863 const SCEV *MinusOne = getMinusOne(Stride->getType()); 11864 const SCEV *Numerator = 11865 getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride)); 11866 BECount = getUDivExpr(Numerator, Stride); 11867 } 11868 11869 const SCEV *BECountIfBackedgeTaken = nullptr; 11870 if (!BECount) { 11871 auto canProveRHSGreaterThanEqualStart = [&]() { 11872 auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; 11873 if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart)) 11874 return true; 11875 11876 // (RHS > Start - 1) implies RHS >= Start. 11877 // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if 11878 // "Start - 1" doesn't overflow. 11879 // * For signed comparison, if Start - 1 does overflow, it's equal 11880 // to INT_MAX, and "RHS >s INT_MAX" is trivially false. 11881 // * For unsigned comparison, if Start - 1 does overflow, it's equal 11882 // to UINT_MAX, and "RHS >u UINT_MAX" is trivially false. 11883 // 11884 // FIXME: Should isLoopEntryGuardedByCond do this for us? 11885 auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 11886 auto *StartMinusOne = getAddExpr(OrigStart, 11887 getMinusOne(OrigStart->getType())); 11888 return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne); 11889 }; 11890 11891 // If we know that RHS >= Start in the context of loop, then we know that 11892 // max(RHS, Start) = RHS at this point. 11893 const SCEV *End; 11894 if (canProveRHSGreaterThanEqualStart()) { 11895 End = RHS; 11896 } else { 11897 // If RHS < Start, the backedge will be taken zero times. So in 11898 // general, we can write the backedge-taken count as: 11899 // 11900 // RHS >= Start ? ceil(RHS - Start) / Stride : 0 11901 // 11902 // We convert it to the following to make it more convenient for SCEV: 11903 // 11904 // ceil(max(RHS, Start) - Start) / Stride 11905 End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start); 11906 11907 // See what would happen if we assume the backedge is taken. This is 11908 // used to compute MaxBECount. 11909 BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride); 11910 } 11911 11912 // At this point, we know: 11913 // 11914 // 1. If IsSigned, Start <=s End; otherwise, Start <=u End 11915 // 2. The index variable doesn't overflow. 11916 // 11917 // Therefore, we know N exists such that 11918 // (Start + Stride * N) >= End, and computing "(Start + Stride * N)" 11919 // doesn't overflow. 11920 // 11921 // Using this information, try to prove whether the addition in 11922 // "(Start - End) + (Stride - 1)" has unsigned overflow. 11923 const SCEV *One = getOne(Stride->getType()); 11924 bool MayAddOverflow = [&] { 11925 if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) { 11926 if (StrideC->getAPInt().isPowerOf2()) { 11927 // Suppose Stride is a power of two, and Start/End are unsigned 11928 // integers. Let UMAX be the largest representable unsigned 11929 // integer. 11930 // 11931 // By the preconditions of this function, we know 11932 // "(Start + Stride * N) >= End", and this doesn't overflow. 11933 // As a formula: 11934 // 11935 // End <= (Start + Stride * N) <= UMAX 11936 // 11937 // Subtracting Start from all the terms: 11938 // 11939 // End - Start <= Stride * N <= UMAX - Start 11940 // 11941 // Since Start is unsigned, UMAX - Start <= UMAX. Therefore: 11942 // 11943 // End - Start <= Stride * N <= UMAX 11944 // 11945 // Stride * N is a multiple of Stride. Therefore, 11946 // 11947 // End - Start <= Stride * N <= UMAX - (UMAX mod Stride) 11948 // 11949 // Since Stride is a power of two, UMAX + 1 is divisible by Stride. 11950 // Therefore, UMAX mod Stride == Stride - 1. So we can write: 11951 // 11952 // End - Start <= Stride * N <= UMAX - Stride - 1 11953 // 11954 // Dropping the middle term: 11955 // 11956 // End - Start <= UMAX - Stride - 1 11957 // 11958 // Adding Stride - 1 to both sides: 11959 // 11960 // (End - Start) + (Stride - 1) <= UMAX 11961 // 11962 // In other words, the addition doesn't have unsigned overflow. 11963 // 11964 // A similar proof works if we treat Start/End as signed values. 11965 // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to 11966 // use signed max instead of unsigned max. Note that we're trying 11967 // to prove a lack of unsigned overflow in either case. 11968 return false; 11969 } 11970 } 11971 if (Start == Stride || Start == getMinusSCEV(Stride, One)) { 11972 // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1. 11973 // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End. 11974 // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End. 11975 // 11976 // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End. 11977 return false; 11978 } 11979 return true; 11980 }(); 11981 11982 const SCEV *Delta = getMinusSCEV(End, Start); 11983 if (!MayAddOverflow) { 11984 // floor((D + (S - 1)) / S) 11985 // We prefer this formulation if it's legal because it's fewer operations. 11986 BECount = 11987 getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride); 11988 } else { 11989 BECount = getUDivCeilSCEV(Delta, Stride); 11990 } 11991 } 11992 11993 const SCEV *MaxBECount; 11994 bool MaxOrZero = false; 11995 if (isa<SCEVConstant>(BECount)) { 11996 MaxBECount = BECount; 11997 } else if (BECountIfBackedgeTaken && 11998 isa<SCEVConstant>(BECountIfBackedgeTaken)) { 11999 // If we know exactly how many times the backedge will be taken if it's 12000 // taken at least once, then the backedge count will either be that or 12001 // zero. 12002 MaxBECount = BECountIfBackedgeTaken; 12003 MaxOrZero = true; 12004 } else { 12005 MaxBECount = computeMaxBECountForLT( 12006 Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned); 12007 } 12008 12009 if (isa<SCEVCouldNotCompute>(MaxBECount) && 12010 !isa<SCEVCouldNotCompute>(BECount)) 12011 MaxBECount = getConstant(getUnsignedRangeMax(BECount)); 12012 12013 return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates); 12014 } 12015 12016 ScalarEvolution::ExitLimit 12017 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS, 12018 const Loop *L, bool IsSigned, 12019 bool ControlsExit, bool AllowPredicates) { 12020 SmallPtrSet<const SCEVPredicate *, 4> Predicates; 12021 // We handle only IV > Invariant 12022 if (!isLoopInvariant(RHS, L)) 12023 return getCouldNotCompute(); 12024 12025 const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS); 12026 if (!IV && AllowPredicates) 12027 // Try to make this an AddRec using runtime tests, in the first X 12028 // iterations of this loop, where X is the SCEV expression found by the 12029 // algorithm below. 12030 IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates); 12031 12032 // Avoid weird loops 12033 if (!IV || IV->getLoop() != L || !IV->isAffine()) 12034 return getCouldNotCompute(); 12035 12036 auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW; 12037 bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType); 12038 ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; 12039 12040 const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this)); 12041 12042 // Avoid negative or zero stride values 12043 if (!isKnownPositive(Stride)) 12044 return getCouldNotCompute(); 12045 12046 // Avoid proven overflow cases: this will ensure that the backedge taken count 12047 // will not generate any unsigned overflow. Relaxed no-overflow conditions 12048 // exploit NoWrapFlags, allowing to optimize in presence of undefined 12049 // behaviors like the case of C language. 12050 if (!Stride->isOne() && !NoWrap) 12051 if (canIVOverflowOnGT(RHS, Stride, IsSigned)) 12052 return getCouldNotCompute(); 12053 12054 const SCEV *Start = IV->getStart(); 12055 const SCEV *End = RHS; 12056 if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) { 12057 // If we know that Start >= RHS in the context of loop, then we know that 12058 // min(RHS, Start) = RHS at this point. 12059 if (isLoopEntryGuardedByCond( 12060 L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS)) 12061 End = RHS; 12062 else 12063 End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start); 12064 } 12065 12066 if (Start->getType()->isPointerTy()) { 12067 Start = getLosslessPtrToIntExpr(Start); 12068 if (isa<SCEVCouldNotCompute>(Start)) 12069 return Start; 12070 } 12071 if (End->getType()->isPointerTy()) { 12072 End = getLosslessPtrToIntExpr(End); 12073 if (isa<SCEVCouldNotCompute>(End)) 12074 return End; 12075 } 12076 12077 // Compute ((Start - End) + (Stride - 1)) / Stride. 12078 // FIXME: This can overflow. Holding off on fixing this for now; 12079 // howManyGreaterThans will hopefully be gone soon. 12080 const SCEV *One = getOne(Stride->getType()); 12081 const SCEV *BECount = getUDivExpr( 12082 getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride); 12083 12084 APInt MaxStart = IsSigned ? getSignedRangeMax(Start) 12085 : getUnsignedRangeMax(Start); 12086 12087 APInt MinStride = IsSigned ? getSignedRangeMin(Stride) 12088 : getUnsignedRangeMin(Stride); 12089 12090 unsigned BitWidth = getTypeSizeInBits(LHS->getType()); 12091 APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1) 12092 : APInt::getMinValue(BitWidth) + (MinStride - 1); 12093 12094 // Although End can be a MIN expression we estimate MinEnd considering only 12095 // the case End = RHS. This is safe because in the other case (Start - End) 12096 // is zero, leading to a zero maximum backedge taken count. 12097 APInt MinEnd = 12098 IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit) 12099 : APIntOps::umax(getUnsignedRangeMin(RHS), Limit); 12100 12101 const SCEV *MaxBECount = isa<SCEVConstant>(BECount) 12102 ? BECount 12103 : getUDivCeilSCEV(getConstant(MaxStart - MinEnd), 12104 getConstant(MinStride)); 12105 12106 if (isa<SCEVCouldNotCompute>(MaxBECount)) 12107 MaxBECount = BECount; 12108 12109 return ExitLimit(BECount, MaxBECount, false, Predicates); 12110 } 12111 12112 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range, 12113 ScalarEvolution &SE) const { 12114 if (Range.isFullSet()) // Infinite loop. 12115 return SE.getCouldNotCompute(); 12116 12117 // If the start is a non-zero constant, shift the range to simplify things. 12118 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart())) 12119 if (!SC->getValue()->isZero()) { 12120 SmallVector<const SCEV *, 4> Operands(operands()); 12121 Operands[0] = SE.getZero(SC->getType()); 12122 const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(), 12123 getNoWrapFlags(FlagNW)); 12124 if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted)) 12125 return ShiftedAddRec->getNumIterationsInRange( 12126 Range.subtract(SC->getAPInt()), SE); 12127 // This is strange and shouldn't happen. 12128 return SE.getCouldNotCompute(); 12129 } 12130 12131 // The only time we can solve this is when we have all constant indices. 12132 // Otherwise, we cannot determine the overflow conditions. 12133 if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); })) 12134 return SE.getCouldNotCompute(); 12135 12136 // Okay at this point we know that all elements of the chrec are constants and 12137 // that the start element is zero. 12138 12139 // First check to see if the range contains zero. If not, the first 12140 // iteration exits. 12141 unsigned BitWidth = SE.getTypeSizeInBits(getType()); 12142 if (!Range.contains(APInt(BitWidth, 0))) 12143 return SE.getZero(getType()); 12144 12145 if (isAffine()) { 12146 // If this is an affine expression then we have this situation: 12147 // Solve {0,+,A} in Range === Ax in Range 12148 12149 // We know that zero is in the range. If A is positive then we know that 12150 // the upper value of the range must be the first possible exit value. 12151 // If A is negative then the lower of the range is the last possible loop 12152 // value. Also note that we already checked for a full range. 12153 APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt(); 12154 APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower(); 12155 12156 // The exit value should be (End+A)/A. 12157 APInt ExitVal = (End + A).udiv(A); 12158 ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal); 12159 12160 // Evaluate at the exit value. If we really did fall out of the valid 12161 // range, then we computed our trip count, otherwise wrap around or other 12162 // things must have happened. 12163 ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE); 12164 if (Range.contains(Val->getValue())) 12165 return SE.getCouldNotCompute(); // Something strange happened 12166 12167 // Ensure that the previous value is in the range. This is a sanity check. 12168 assert(Range.contains( 12169 EvaluateConstantChrecAtConstant(this, 12170 ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) && 12171 "Linear scev computation is off in a bad way!"); 12172 return SE.getConstant(ExitValue); 12173 } 12174 12175 if (isQuadratic()) { 12176 if (auto S = SolveQuadraticAddRecRange(this, Range, SE)) 12177 return SE.getConstant(S.getValue()); 12178 } 12179 12180 return SE.getCouldNotCompute(); 12181 } 12182 12183 const SCEVAddRecExpr * 12184 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const { 12185 assert(getNumOperands() > 1 && "AddRec with zero step?"); 12186 // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)), 12187 // but in this case we cannot guarantee that the value returned will be an 12188 // AddRec because SCEV does not have a fixed point where it stops 12189 // simplification: it is legal to return ({rec1} + {rec2}). For example, it 12190 // may happen if we reach arithmetic depth limit while simplifying. So we 12191 // construct the returned value explicitly. 12192 SmallVector<const SCEV *, 3> Ops; 12193 // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and 12194 // (this + Step) is {A+B,+,B+C,+...,+,N}. 12195 for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i) 12196 Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1))); 12197 // We know that the last operand is not a constant zero (otherwise it would 12198 // have been popped out earlier). This guarantees us that if the result has 12199 // the same last operand, then it will also not be popped out, meaning that 12200 // the returned value will be an AddRec. 12201 const SCEV *Last = getOperand(getNumOperands() - 1); 12202 assert(!Last->isZero() && "Recurrency with zero step?"); 12203 Ops.push_back(Last); 12204 return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(), 12205 SCEV::FlagAnyWrap)); 12206 } 12207 12208 // Return true when S contains at least an undef value. 12209 static inline bool containsUndefs(const SCEV *S) { 12210 return SCEVExprContains(S, [](const SCEV *S) { 12211 if (const auto *SU = dyn_cast<SCEVUnknown>(S)) 12212 return isa<UndefValue>(SU->getValue()); 12213 return false; 12214 }); 12215 } 12216 12217 /// Return the size of an element read or written by Inst. 12218 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) { 12219 Type *Ty; 12220 if (StoreInst *Store = dyn_cast<StoreInst>(Inst)) 12221 Ty = Store->getValueOperand()->getType(); 12222 else if (LoadInst *Load = dyn_cast<LoadInst>(Inst)) 12223 Ty = Load->getType(); 12224 else 12225 return nullptr; 12226 12227 Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty)); 12228 return getSizeOfExpr(ETy, Ty); 12229 } 12230 12231 //===----------------------------------------------------------------------===// 12232 // SCEVCallbackVH Class Implementation 12233 //===----------------------------------------------------------------------===// 12234 12235 void ScalarEvolution::SCEVCallbackVH::deleted() { 12236 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12237 if (PHINode *PN = dyn_cast<PHINode>(getValPtr())) 12238 SE->ConstantEvolutionLoopExitValue.erase(PN); 12239 SE->eraseValueFromMap(getValPtr()); 12240 // this now dangles! 12241 } 12242 12243 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) { 12244 assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!"); 12245 12246 // Forget all the expressions associated with users of the old value, 12247 // so that future queries will recompute the expressions using the new 12248 // value. 12249 Value *Old = getValPtr(); 12250 SmallVector<User *, 16> Worklist(Old->users()); 12251 SmallPtrSet<User *, 8> Visited; 12252 while (!Worklist.empty()) { 12253 User *U = Worklist.pop_back_val(); 12254 // Deleting the Old value will cause this to dangle. Postpone 12255 // that until everything else is done. 12256 if (U == Old) 12257 continue; 12258 if (!Visited.insert(U).second) 12259 continue; 12260 if (PHINode *PN = dyn_cast<PHINode>(U)) 12261 SE->ConstantEvolutionLoopExitValue.erase(PN); 12262 SE->eraseValueFromMap(U); 12263 llvm::append_range(Worklist, U->users()); 12264 } 12265 // Delete the Old value. 12266 if (PHINode *PN = dyn_cast<PHINode>(Old)) 12267 SE->ConstantEvolutionLoopExitValue.erase(PN); 12268 SE->eraseValueFromMap(Old); 12269 // this now dangles! 12270 } 12271 12272 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se) 12273 : CallbackVH(V), SE(se) {} 12274 12275 //===----------------------------------------------------------------------===// 12276 // ScalarEvolution Class Implementation 12277 //===----------------------------------------------------------------------===// 12278 12279 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI, 12280 AssumptionCache &AC, DominatorTree &DT, 12281 LoopInfo &LI) 12282 : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI), 12283 CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64), 12284 LoopDispositions(64), BlockDispositions(64) { 12285 // To use guards for proving predicates, we need to scan every instruction in 12286 // relevant basic blocks, and not just terminators. Doing this is a waste of 12287 // time if the IR does not actually contain any calls to 12288 // @llvm.experimental.guard, so do a quick check and remember this beforehand. 12289 // 12290 // This pessimizes the case where a pass that preserves ScalarEvolution wants 12291 // to _add_ guards to the module when there weren't any before, and wants 12292 // ScalarEvolution to optimize based on those guards. For now we prefer to be 12293 // efficient in lieu of being smart in that rather obscure case. 12294 12295 auto *GuardDecl = F.getParent()->getFunction( 12296 Intrinsic::getName(Intrinsic::experimental_guard)); 12297 HasGuards = GuardDecl && !GuardDecl->use_empty(); 12298 } 12299 12300 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg) 12301 : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT), 12302 LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)), 12303 ValueExprMap(std::move(Arg.ValueExprMap)), 12304 PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)), 12305 PendingPhiRanges(std::move(Arg.PendingPhiRanges)), 12306 PendingMerges(std::move(Arg.PendingMerges)), 12307 MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)), 12308 BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)), 12309 PredicatedBackedgeTakenCounts( 12310 std::move(Arg.PredicatedBackedgeTakenCounts)), 12311 ConstantEvolutionLoopExitValue( 12312 std::move(Arg.ConstantEvolutionLoopExitValue)), 12313 ValuesAtScopes(std::move(Arg.ValuesAtScopes)), 12314 LoopDispositions(std::move(Arg.LoopDispositions)), 12315 LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)), 12316 BlockDispositions(std::move(Arg.BlockDispositions)), 12317 UnsignedRanges(std::move(Arg.UnsignedRanges)), 12318 SignedRanges(std::move(Arg.SignedRanges)), 12319 UniqueSCEVs(std::move(Arg.UniqueSCEVs)), 12320 UniquePreds(std::move(Arg.UniquePreds)), 12321 SCEVAllocator(std::move(Arg.SCEVAllocator)), 12322 LoopUsers(std::move(Arg.LoopUsers)), 12323 PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)), 12324 FirstUnknown(Arg.FirstUnknown) { 12325 Arg.FirstUnknown = nullptr; 12326 } 12327 12328 ScalarEvolution::~ScalarEvolution() { 12329 // Iterate through all the SCEVUnknown instances and call their 12330 // destructors, so that they release their references to their values. 12331 for (SCEVUnknown *U = FirstUnknown; U;) { 12332 SCEVUnknown *Tmp = U; 12333 U = U->Next; 12334 Tmp->~SCEVUnknown(); 12335 } 12336 FirstUnknown = nullptr; 12337 12338 ExprValueMap.clear(); 12339 ValueExprMap.clear(); 12340 HasRecMap.clear(); 12341 BackedgeTakenCounts.clear(); 12342 PredicatedBackedgeTakenCounts.clear(); 12343 12344 assert(PendingLoopPredicates.empty() && "isImpliedCond garbage"); 12345 assert(PendingPhiRanges.empty() && "getRangeRef garbage"); 12346 assert(PendingMerges.empty() && "isImpliedViaMerge garbage"); 12347 assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!"); 12348 assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!"); 12349 } 12350 12351 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) { 12352 return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L)); 12353 } 12354 12355 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE, 12356 const Loop *L) { 12357 // Print all inner loops first 12358 for (Loop *I : *L) 12359 PrintLoopInfo(OS, SE, I); 12360 12361 OS << "Loop "; 12362 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12363 OS << ": "; 12364 12365 SmallVector<BasicBlock *, 8> ExitingBlocks; 12366 L->getExitingBlocks(ExitingBlocks); 12367 if (ExitingBlocks.size() != 1) 12368 OS << "<multiple exits> "; 12369 12370 if (SE->hasLoopInvariantBackedgeTakenCount(L)) 12371 OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n"; 12372 else 12373 OS << "Unpredictable backedge-taken count.\n"; 12374 12375 if (ExitingBlocks.size() > 1) 12376 for (BasicBlock *ExitingBlock : ExitingBlocks) { 12377 OS << " exit count for " << ExitingBlock->getName() << ": " 12378 << *SE->getExitCount(L, ExitingBlock) << "\n"; 12379 } 12380 12381 OS << "Loop "; 12382 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12383 OS << ": "; 12384 12385 if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) { 12386 OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L); 12387 if (SE->isBackedgeTakenCountMaxOrZero(L)) 12388 OS << ", actual taken count either this or zero."; 12389 } else { 12390 OS << "Unpredictable max backedge-taken count. "; 12391 } 12392 12393 OS << "\n" 12394 "Loop "; 12395 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12396 OS << ": "; 12397 12398 SCEVUnionPredicate Pred; 12399 auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred); 12400 if (!isa<SCEVCouldNotCompute>(PBT)) { 12401 OS << "Predicated backedge-taken count is " << *PBT << "\n"; 12402 OS << " Predicates:\n"; 12403 Pred.print(OS, 4); 12404 } else { 12405 OS << "Unpredictable predicated backedge-taken count. "; 12406 } 12407 OS << "\n"; 12408 12409 if (SE->hasLoopInvariantBackedgeTakenCount(L)) { 12410 OS << "Loop "; 12411 L->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12412 OS << ": "; 12413 OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n"; 12414 } 12415 } 12416 12417 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) { 12418 switch (LD) { 12419 case ScalarEvolution::LoopVariant: 12420 return "Variant"; 12421 case ScalarEvolution::LoopInvariant: 12422 return "Invariant"; 12423 case ScalarEvolution::LoopComputable: 12424 return "Computable"; 12425 } 12426 llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!"); 12427 } 12428 12429 void ScalarEvolution::print(raw_ostream &OS) const { 12430 // ScalarEvolution's implementation of the print method is to print 12431 // out SCEV values of all instructions that are interesting. Doing 12432 // this potentially causes it to create new SCEV objects though, 12433 // which technically conflicts with the const qualifier. This isn't 12434 // observable from outside the class though, so casting away the 12435 // const isn't dangerous. 12436 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12437 12438 if (ClassifyExpressions) { 12439 OS << "Classifying expressions for: "; 12440 F.printAsOperand(OS, /*PrintType=*/false); 12441 OS << "\n"; 12442 for (Instruction &I : instructions(F)) 12443 if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) { 12444 OS << I << '\n'; 12445 OS << " --> "; 12446 const SCEV *SV = SE.getSCEV(&I); 12447 SV->print(OS); 12448 if (!isa<SCEVCouldNotCompute>(SV)) { 12449 OS << " U: "; 12450 SE.getUnsignedRange(SV).print(OS); 12451 OS << " S: "; 12452 SE.getSignedRange(SV).print(OS); 12453 } 12454 12455 const Loop *L = LI.getLoopFor(I.getParent()); 12456 12457 const SCEV *AtUse = SE.getSCEVAtScope(SV, L); 12458 if (AtUse != SV) { 12459 OS << " --> "; 12460 AtUse->print(OS); 12461 if (!isa<SCEVCouldNotCompute>(AtUse)) { 12462 OS << " U: "; 12463 SE.getUnsignedRange(AtUse).print(OS); 12464 OS << " S: "; 12465 SE.getSignedRange(AtUse).print(OS); 12466 } 12467 } 12468 12469 if (L) { 12470 OS << "\t\t" "Exits: "; 12471 const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop()); 12472 if (!SE.isLoopInvariant(ExitValue, L)) { 12473 OS << "<<Unknown>>"; 12474 } else { 12475 OS << *ExitValue; 12476 } 12477 12478 bool First = true; 12479 for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) { 12480 if (First) { 12481 OS << "\t\t" "LoopDispositions: { "; 12482 First = false; 12483 } else { 12484 OS << ", "; 12485 } 12486 12487 Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12488 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter)); 12489 } 12490 12491 for (auto *InnerL : depth_first(L)) { 12492 if (InnerL == L) 12493 continue; 12494 if (First) { 12495 OS << "\t\t" "LoopDispositions: { "; 12496 First = false; 12497 } else { 12498 OS << ", "; 12499 } 12500 12501 InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false); 12502 OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL)); 12503 } 12504 12505 OS << " }"; 12506 } 12507 12508 OS << "\n"; 12509 } 12510 } 12511 12512 OS << "Determining loop execution counts for: "; 12513 F.printAsOperand(OS, /*PrintType=*/false); 12514 OS << "\n"; 12515 for (Loop *I : LI) 12516 PrintLoopInfo(OS, &SE, I); 12517 } 12518 12519 ScalarEvolution::LoopDisposition 12520 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) { 12521 auto &Values = LoopDispositions[S]; 12522 for (auto &V : Values) { 12523 if (V.getPointer() == L) 12524 return V.getInt(); 12525 } 12526 Values.emplace_back(L, LoopVariant); 12527 LoopDisposition D = computeLoopDisposition(S, L); 12528 auto &Values2 = LoopDispositions[S]; 12529 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12530 if (V.getPointer() == L) { 12531 V.setInt(D); 12532 break; 12533 } 12534 } 12535 return D; 12536 } 12537 12538 ScalarEvolution::LoopDisposition 12539 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) { 12540 switch (S->getSCEVType()) { 12541 case scConstant: 12542 return LoopInvariant; 12543 case scPtrToInt: 12544 case scTruncate: 12545 case scZeroExtend: 12546 case scSignExtend: 12547 return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L); 12548 case scAddRecExpr: { 12549 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12550 12551 // If L is the addrec's loop, it's computable. 12552 if (AR->getLoop() == L) 12553 return LoopComputable; 12554 12555 // Add recurrences are never invariant in the function-body (null loop). 12556 if (!L) 12557 return LoopVariant; 12558 12559 // Everything that is not defined at loop entry is variant. 12560 if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader())) 12561 return LoopVariant; 12562 assert(!L->contains(AR->getLoop()) && "Containing loop's header does not" 12563 " dominate the contained loop's header?"); 12564 12565 // This recurrence is invariant w.r.t. L if AR's loop contains L. 12566 if (AR->getLoop()->contains(L)) 12567 return LoopInvariant; 12568 12569 // This recurrence is variant w.r.t. L if any of its operands 12570 // are variant. 12571 for (auto *Op : AR->operands()) 12572 if (!isLoopInvariant(Op, L)) 12573 return LoopVariant; 12574 12575 // Otherwise it's loop-invariant. 12576 return LoopInvariant; 12577 } 12578 case scAddExpr: 12579 case scMulExpr: 12580 case scUMaxExpr: 12581 case scSMaxExpr: 12582 case scUMinExpr: 12583 case scSMinExpr: { 12584 bool HasVarying = false; 12585 for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) { 12586 LoopDisposition D = getLoopDisposition(Op, L); 12587 if (D == LoopVariant) 12588 return LoopVariant; 12589 if (D == LoopComputable) 12590 HasVarying = true; 12591 } 12592 return HasVarying ? LoopComputable : LoopInvariant; 12593 } 12594 case scUDivExpr: { 12595 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12596 LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L); 12597 if (LD == LoopVariant) 12598 return LoopVariant; 12599 LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L); 12600 if (RD == LoopVariant) 12601 return LoopVariant; 12602 return (LD == LoopInvariant && RD == LoopInvariant) ? 12603 LoopInvariant : LoopComputable; 12604 } 12605 case scUnknown: 12606 // All non-instruction values are loop invariant. All instructions are loop 12607 // invariant if they are not contained in the specified loop. 12608 // Instructions are never considered invariant in the function body 12609 // (null loop) because they are defined within the "loop". 12610 if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) 12611 return (L && !L->contains(I)) ? LoopInvariant : LoopVariant; 12612 return LoopInvariant; 12613 case scCouldNotCompute: 12614 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12615 } 12616 llvm_unreachable("Unknown SCEV kind!"); 12617 } 12618 12619 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) { 12620 return getLoopDisposition(S, L) == LoopInvariant; 12621 } 12622 12623 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) { 12624 return getLoopDisposition(S, L) == LoopComputable; 12625 } 12626 12627 ScalarEvolution::BlockDisposition 12628 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12629 auto &Values = BlockDispositions[S]; 12630 for (auto &V : Values) { 12631 if (V.getPointer() == BB) 12632 return V.getInt(); 12633 } 12634 Values.emplace_back(BB, DoesNotDominateBlock); 12635 BlockDisposition D = computeBlockDisposition(S, BB); 12636 auto &Values2 = BlockDispositions[S]; 12637 for (auto &V : make_range(Values2.rbegin(), Values2.rend())) { 12638 if (V.getPointer() == BB) { 12639 V.setInt(D); 12640 break; 12641 } 12642 } 12643 return D; 12644 } 12645 12646 ScalarEvolution::BlockDisposition 12647 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) { 12648 switch (S->getSCEVType()) { 12649 case scConstant: 12650 return ProperlyDominatesBlock; 12651 case scPtrToInt: 12652 case scTruncate: 12653 case scZeroExtend: 12654 case scSignExtend: 12655 return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB); 12656 case scAddRecExpr: { 12657 // This uses a "dominates" query instead of "properly dominates" query 12658 // to test for proper dominance too, because the instruction which 12659 // produces the addrec's value is a PHI, and a PHI effectively properly 12660 // dominates its entire containing block. 12661 const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S); 12662 if (!DT.dominates(AR->getLoop()->getHeader(), BB)) 12663 return DoesNotDominateBlock; 12664 12665 // Fall through into SCEVNAryExpr handling. 12666 LLVM_FALLTHROUGH; 12667 } 12668 case scAddExpr: 12669 case scMulExpr: 12670 case scUMaxExpr: 12671 case scSMaxExpr: 12672 case scUMinExpr: 12673 case scSMinExpr: { 12674 const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S); 12675 bool Proper = true; 12676 for (const SCEV *NAryOp : NAry->operands()) { 12677 BlockDisposition D = getBlockDisposition(NAryOp, BB); 12678 if (D == DoesNotDominateBlock) 12679 return DoesNotDominateBlock; 12680 if (D == DominatesBlock) 12681 Proper = false; 12682 } 12683 return Proper ? ProperlyDominatesBlock : DominatesBlock; 12684 } 12685 case scUDivExpr: { 12686 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S); 12687 const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS(); 12688 BlockDisposition LD = getBlockDisposition(LHS, BB); 12689 if (LD == DoesNotDominateBlock) 12690 return DoesNotDominateBlock; 12691 BlockDisposition RD = getBlockDisposition(RHS, BB); 12692 if (RD == DoesNotDominateBlock) 12693 return DoesNotDominateBlock; 12694 return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ? 12695 ProperlyDominatesBlock : DominatesBlock; 12696 } 12697 case scUnknown: 12698 if (Instruction *I = 12699 dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) { 12700 if (I->getParent() == BB) 12701 return DominatesBlock; 12702 if (DT.properlyDominates(I->getParent(), BB)) 12703 return ProperlyDominatesBlock; 12704 return DoesNotDominateBlock; 12705 } 12706 return ProperlyDominatesBlock; 12707 case scCouldNotCompute: 12708 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!"); 12709 } 12710 llvm_unreachable("Unknown SCEV kind!"); 12711 } 12712 12713 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) { 12714 return getBlockDisposition(S, BB) >= DominatesBlock; 12715 } 12716 12717 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) { 12718 return getBlockDisposition(S, BB) == ProperlyDominatesBlock; 12719 } 12720 12721 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const { 12722 return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; }); 12723 } 12724 12725 void 12726 ScalarEvolution::forgetMemoizedResults(const SCEV *S) { 12727 ValuesAtScopes.erase(S); 12728 LoopDispositions.erase(S); 12729 BlockDispositions.erase(S); 12730 UnsignedRanges.erase(S); 12731 SignedRanges.erase(S); 12732 ExprValueMap.erase(S); 12733 HasRecMap.erase(S); 12734 MinTrailingZerosCache.erase(S); 12735 12736 for (auto I = PredicatedSCEVRewrites.begin(); 12737 I != PredicatedSCEVRewrites.end();) { 12738 std::pair<const SCEV *, const Loop *> Entry = I->first; 12739 if (Entry.first == S) 12740 PredicatedSCEVRewrites.erase(I++); 12741 else 12742 ++I; 12743 } 12744 12745 auto RemoveSCEVFromBackedgeMap = 12746 [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) { 12747 for (auto I = Map.begin(), E = Map.end(); I != E;) { 12748 BackedgeTakenInfo &BEInfo = I->second; 12749 if (BEInfo.hasOperand(S)) 12750 Map.erase(I++); 12751 else 12752 ++I; 12753 } 12754 }; 12755 12756 RemoveSCEVFromBackedgeMap(BackedgeTakenCounts); 12757 RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts); 12758 } 12759 12760 void 12761 ScalarEvolution::getUsedLoops(const SCEV *S, 12762 SmallPtrSetImpl<const Loop *> &LoopsUsed) { 12763 struct FindUsedLoops { 12764 FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed) 12765 : LoopsUsed(LoopsUsed) {} 12766 SmallPtrSetImpl<const Loop *> &LoopsUsed; 12767 bool follow(const SCEV *S) { 12768 if (auto *AR = dyn_cast<SCEVAddRecExpr>(S)) 12769 LoopsUsed.insert(AR->getLoop()); 12770 return true; 12771 } 12772 12773 bool isDone() const { return false; } 12774 }; 12775 12776 FindUsedLoops F(LoopsUsed); 12777 SCEVTraversal<FindUsedLoops>(F).visitAll(S); 12778 } 12779 12780 void ScalarEvolution::addToLoopUseLists(const SCEV *S) { 12781 SmallPtrSet<const Loop *, 8> LoopsUsed; 12782 getUsedLoops(S, LoopsUsed); 12783 for (auto *L : LoopsUsed) 12784 LoopUsers[L].push_back(S); 12785 } 12786 12787 void ScalarEvolution::verify() const { 12788 ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this); 12789 ScalarEvolution SE2(F, TLI, AC, DT, LI); 12790 12791 SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end()); 12792 12793 // Map's SCEV expressions from one ScalarEvolution "universe" to another. 12794 struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> { 12795 SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {} 12796 12797 const SCEV *visitConstant(const SCEVConstant *Constant) { 12798 return SE.getConstant(Constant->getAPInt()); 12799 } 12800 12801 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 12802 return SE.getUnknown(Expr->getValue()); 12803 } 12804 12805 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) { 12806 return SE.getCouldNotCompute(); 12807 } 12808 }; 12809 12810 SCEVMapper SCM(SE2); 12811 12812 while (!LoopStack.empty()) { 12813 auto *L = LoopStack.pop_back_val(); 12814 llvm::append_range(LoopStack, *L); 12815 12816 auto *CurBECount = SCM.visit( 12817 const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L)); 12818 auto *NewBECount = SE2.getBackedgeTakenCount(L); 12819 12820 if (CurBECount == SE2.getCouldNotCompute() || 12821 NewBECount == SE2.getCouldNotCompute()) { 12822 // NB! This situation is legal, but is very suspicious -- whatever pass 12823 // change the loop to make a trip count go from could not compute to 12824 // computable or vice-versa *should have* invalidated SCEV. However, we 12825 // choose not to assert here (for now) since we don't want false 12826 // positives. 12827 continue; 12828 } 12829 12830 if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) { 12831 // SCEV treats "undef" as an unknown but consistent value (i.e. it does 12832 // not propagate undef aggressively). This means we can (and do) fail 12833 // verification in cases where a transform makes the trip count of a loop 12834 // go from "undef" to "undef+1" (say). The transform is fine, since in 12835 // both cases the loop iterates "undef" times, but SCEV thinks we 12836 // increased the trip count of the loop by 1 incorrectly. 12837 continue; 12838 } 12839 12840 if (SE.getTypeSizeInBits(CurBECount->getType()) > 12841 SE.getTypeSizeInBits(NewBECount->getType())) 12842 NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType()); 12843 else if (SE.getTypeSizeInBits(CurBECount->getType()) < 12844 SE.getTypeSizeInBits(NewBECount->getType())) 12845 CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType()); 12846 12847 const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount); 12848 12849 // Unless VerifySCEVStrict is set, we only compare constant deltas. 12850 if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) { 12851 dbgs() << "Trip Count for " << *L << " Changed!\n"; 12852 dbgs() << "Old: " << *CurBECount << "\n"; 12853 dbgs() << "New: " << *NewBECount << "\n"; 12854 dbgs() << "Delta: " << *Delta << "\n"; 12855 std::abort(); 12856 } 12857 } 12858 12859 // Collect all valid loops currently in LoopInfo. 12860 SmallPtrSet<Loop *, 32> ValidLoops; 12861 SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end()); 12862 while (!Worklist.empty()) { 12863 Loop *L = Worklist.pop_back_val(); 12864 if (ValidLoops.contains(L)) 12865 continue; 12866 ValidLoops.insert(L); 12867 Worklist.append(L->begin(), L->end()); 12868 } 12869 // Check for SCEV expressions referencing invalid/deleted loops. 12870 for (auto &KV : ValueExprMap) { 12871 auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second); 12872 if (!AR) 12873 continue; 12874 assert(ValidLoops.contains(AR->getLoop()) && 12875 "AddRec references invalid loop"); 12876 } 12877 } 12878 12879 bool ScalarEvolution::invalidate( 12880 Function &F, const PreservedAnalyses &PA, 12881 FunctionAnalysisManager::Invalidator &Inv) { 12882 // Invalidate the ScalarEvolution object whenever it isn't preserved or one 12883 // of its dependencies is invalidated. 12884 auto PAC = PA.getChecker<ScalarEvolutionAnalysis>(); 12885 return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) || 12886 Inv.invalidate<AssumptionAnalysis>(F, PA) || 12887 Inv.invalidate<DominatorTreeAnalysis>(F, PA) || 12888 Inv.invalidate<LoopAnalysis>(F, PA); 12889 } 12890 12891 AnalysisKey ScalarEvolutionAnalysis::Key; 12892 12893 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F, 12894 FunctionAnalysisManager &AM) { 12895 return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F), 12896 AM.getResult<AssumptionAnalysis>(F), 12897 AM.getResult<DominatorTreeAnalysis>(F), 12898 AM.getResult<LoopAnalysis>(F)); 12899 } 12900 12901 PreservedAnalyses 12902 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) { 12903 AM.getResult<ScalarEvolutionAnalysis>(F).verify(); 12904 return PreservedAnalyses::all(); 12905 } 12906 12907 PreservedAnalyses 12908 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) { 12909 // For compatibility with opt's -analyze feature under legacy pass manager 12910 // which was not ported to NPM. This keeps tests using 12911 // update_analyze_test_checks.py working. 12912 OS << "Printing analysis 'Scalar Evolution Analysis' for function '" 12913 << F.getName() << "':\n"; 12914 AM.getResult<ScalarEvolutionAnalysis>(F).print(OS); 12915 return PreservedAnalyses::all(); 12916 } 12917 12918 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution", 12919 "Scalar Evolution Analysis", false, true) 12920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) 12921 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) 12922 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 12923 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) 12924 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution", 12925 "Scalar Evolution Analysis", false, true) 12926 12927 char ScalarEvolutionWrapperPass::ID = 0; 12928 12929 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) { 12930 initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry()); 12931 } 12932 12933 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) { 12934 SE.reset(new ScalarEvolution( 12935 F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F), 12936 getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F), 12937 getAnalysis<DominatorTreeWrapperPass>().getDomTree(), 12938 getAnalysis<LoopInfoWrapperPass>().getLoopInfo())); 12939 return false; 12940 } 12941 12942 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); } 12943 12944 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const { 12945 SE->print(OS); 12946 } 12947 12948 void ScalarEvolutionWrapperPass::verifyAnalysis() const { 12949 if (!VerifySCEV) 12950 return; 12951 12952 SE->verify(); 12953 } 12954 12955 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const { 12956 AU.setPreservesAll(); 12957 AU.addRequiredTransitive<AssumptionCacheTracker>(); 12958 AU.addRequiredTransitive<LoopInfoWrapperPass>(); 12959 AU.addRequiredTransitive<DominatorTreeWrapperPass>(); 12960 AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>(); 12961 } 12962 12963 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS, 12964 const SCEV *RHS) { 12965 FoldingSetNodeID ID; 12966 assert(LHS->getType() == RHS->getType() && 12967 "Type mismatch between LHS and RHS"); 12968 // Unique this node based on the arguments 12969 ID.AddInteger(SCEVPredicate::P_Equal); 12970 ID.AddPointer(LHS); 12971 ID.AddPointer(RHS); 12972 void *IP = nullptr; 12973 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12974 return S; 12975 SCEVEqualPredicate *Eq = new (SCEVAllocator) 12976 SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS); 12977 UniquePreds.InsertNode(Eq, IP); 12978 return Eq; 12979 } 12980 12981 const SCEVPredicate *ScalarEvolution::getWrapPredicate( 12982 const SCEVAddRecExpr *AR, 12983 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 12984 FoldingSetNodeID ID; 12985 // Unique this node based on the arguments 12986 ID.AddInteger(SCEVPredicate::P_Wrap); 12987 ID.AddPointer(AR); 12988 ID.AddInteger(AddedFlags); 12989 void *IP = nullptr; 12990 if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP)) 12991 return S; 12992 auto *OF = new (SCEVAllocator) 12993 SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags); 12994 UniquePreds.InsertNode(OF, IP); 12995 return OF; 12996 } 12997 12998 namespace { 12999 13000 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> { 13001 public: 13002 13003 /// Rewrites \p S in the context of a loop L and the SCEV predication 13004 /// infrastructure. 13005 /// 13006 /// If \p Pred is non-null, the SCEV expression is rewritten to respect the 13007 /// equivalences present in \p Pred. 13008 /// 13009 /// If \p NewPreds is non-null, rewrite is free to add further predicates to 13010 /// \p NewPreds such that the result will be an AddRecExpr. 13011 static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE, 13012 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13013 SCEVUnionPredicate *Pred) { 13014 SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred); 13015 return Rewriter.visit(S); 13016 } 13017 13018 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13019 if (Pred) { 13020 auto ExprPreds = Pred->getPredicatesForExpr(Expr); 13021 for (auto *Pred : ExprPreds) 13022 if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred)) 13023 if (IPred->getLHS() == Expr) 13024 return IPred->getRHS(); 13025 } 13026 return convertToAddRecWithPreds(Expr); 13027 } 13028 13029 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) { 13030 const SCEV *Operand = visit(Expr->getOperand()); 13031 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13032 if (AR && AR->getLoop() == L && AR->isAffine()) { 13033 // This couldn't be folded because the operand didn't have the nuw 13034 // flag. Add the nusw flag as an assumption that we could make. 13035 const SCEV *Step = AR->getStepRecurrence(SE); 13036 Type *Ty = Expr->getType(); 13037 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW)) 13038 return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty), 13039 SE.getSignExtendExpr(Step, Ty), L, 13040 AR->getNoWrapFlags()); 13041 } 13042 return SE.getZeroExtendExpr(Operand, Expr->getType()); 13043 } 13044 13045 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) { 13046 const SCEV *Operand = visit(Expr->getOperand()); 13047 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand); 13048 if (AR && AR->getLoop() == L && AR->isAffine()) { 13049 // This couldn't be folded because the operand didn't have the nsw 13050 // flag. Add the nssw flag as an assumption that we could make. 13051 const SCEV *Step = AR->getStepRecurrence(SE); 13052 Type *Ty = Expr->getType(); 13053 if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW)) 13054 return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty), 13055 SE.getSignExtendExpr(Step, Ty), L, 13056 AR->getNoWrapFlags()); 13057 } 13058 return SE.getSignExtendExpr(Operand, Expr->getType()); 13059 } 13060 13061 private: 13062 explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE, 13063 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds, 13064 SCEVUnionPredicate *Pred) 13065 : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {} 13066 13067 bool addOverflowAssumption(const SCEVPredicate *P) { 13068 if (!NewPreds) { 13069 // Check if we've already made this assumption. 13070 return Pred && Pred->implies(P); 13071 } 13072 NewPreds->insert(P); 13073 return true; 13074 } 13075 13076 bool addOverflowAssumption(const SCEVAddRecExpr *AR, 13077 SCEVWrapPredicate::IncrementWrapFlags AddedFlags) { 13078 auto *A = SE.getWrapPredicate(AR, AddedFlags); 13079 return addOverflowAssumption(A); 13080 } 13081 13082 // If \p Expr represents a PHINode, we try to see if it can be represented 13083 // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible 13084 // to add this predicate as a runtime overflow check, we return the AddRec. 13085 // If \p Expr does not meet these conditions (is not a PHI node, or we 13086 // couldn't create an AddRec for it, or couldn't add the predicate), we just 13087 // return \p Expr. 13088 const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) { 13089 if (!isa<PHINode>(Expr->getValue())) 13090 return Expr; 13091 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>> 13092 PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr); 13093 if (!PredicatedRewrite) 13094 return Expr; 13095 for (auto *P : PredicatedRewrite->second){ 13096 // Wrap predicates from outer loops are not supported. 13097 if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) { 13098 auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr()); 13099 if (L != AR->getLoop()) 13100 return Expr; 13101 } 13102 if (!addOverflowAssumption(P)) 13103 return Expr; 13104 } 13105 return PredicatedRewrite->first; 13106 } 13107 13108 SmallPtrSetImpl<const SCEVPredicate *> *NewPreds; 13109 SCEVUnionPredicate *Pred; 13110 const Loop *L; 13111 }; 13112 13113 } // end anonymous namespace 13114 13115 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L, 13116 SCEVUnionPredicate &Preds) { 13117 return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds); 13118 } 13119 13120 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates( 13121 const SCEV *S, const Loop *L, 13122 SmallPtrSetImpl<const SCEVPredicate *> &Preds) { 13123 SmallPtrSet<const SCEVPredicate *, 4> TransformPreds; 13124 S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr); 13125 auto *AddRec = dyn_cast<SCEVAddRecExpr>(S); 13126 13127 if (!AddRec) 13128 return nullptr; 13129 13130 // Since the transformation was successful, we can now transfer the SCEV 13131 // predicates. 13132 for (auto *P : TransformPreds) 13133 Preds.insert(P); 13134 13135 return AddRec; 13136 } 13137 13138 /// SCEV predicates 13139 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID, 13140 SCEVPredicateKind Kind) 13141 : FastID(ID), Kind(Kind) {} 13142 13143 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID, 13144 const SCEV *LHS, const SCEV *RHS) 13145 : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) { 13146 assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match"); 13147 assert(LHS != RHS && "LHS and RHS are the same SCEV"); 13148 } 13149 13150 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const { 13151 const auto *Op = dyn_cast<SCEVEqualPredicate>(N); 13152 13153 if (!Op) 13154 return false; 13155 13156 return Op->LHS == LHS && Op->RHS == RHS; 13157 } 13158 13159 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; } 13160 13161 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; } 13162 13163 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const { 13164 OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n"; 13165 } 13166 13167 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID, 13168 const SCEVAddRecExpr *AR, 13169 IncrementWrapFlags Flags) 13170 : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {} 13171 13172 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; } 13173 13174 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const { 13175 const auto *Op = dyn_cast<SCEVWrapPredicate>(N); 13176 13177 return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags; 13178 } 13179 13180 bool SCEVWrapPredicate::isAlwaysTrue() const { 13181 SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags(); 13182 IncrementWrapFlags IFlags = Flags; 13183 13184 if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags) 13185 IFlags = clearFlags(IFlags, IncrementNSSW); 13186 13187 return IFlags == IncrementAnyWrap; 13188 } 13189 13190 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const { 13191 OS.indent(Depth) << *getExpr() << " Added Flags: "; 13192 if (SCEVWrapPredicate::IncrementNUSW & getFlags()) 13193 OS << "<nusw>"; 13194 if (SCEVWrapPredicate::IncrementNSSW & getFlags()) 13195 OS << "<nssw>"; 13196 OS << "\n"; 13197 } 13198 13199 SCEVWrapPredicate::IncrementWrapFlags 13200 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR, 13201 ScalarEvolution &SE) { 13202 IncrementWrapFlags ImpliedFlags = IncrementAnyWrap; 13203 SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags(); 13204 13205 // We can safely transfer the NSW flag as NSSW. 13206 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags) 13207 ImpliedFlags = IncrementNSSW; 13208 13209 if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) { 13210 // If the increment is positive, the SCEV NUW flag will also imply the 13211 // WrapPredicate NUSW flag. 13212 if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE))) 13213 if (Step->getValue()->getValue().isNonNegative()) 13214 ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW); 13215 } 13216 13217 return ImpliedFlags; 13218 } 13219 13220 /// Union predicates don't get cached so create a dummy set ID for it. 13221 SCEVUnionPredicate::SCEVUnionPredicate() 13222 : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {} 13223 13224 bool SCEVUnionPredicate::isAlwaysTrue() const { 13225 return all_of(Preds, 13226 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); }); 13227 } 13228 13229 ArrayRef<const SCEVPredicate *> 13230 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) { 13231 auto I = SCEVToPreds.find(Expr); 13232 if (I == SCEVToPreds.end()) 13233 return ArrayRef<const SCEVPredicate *>(); 13234 return I->second; 13235 } 13236 13237 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const { 13238 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) 13239 return all_of(Set->Preds, 13240 [this](const SCEVPredicate *I) { return this->implies(I); }); 13241 13242 auto ScevPredsIt = SCEVToPreds.find(N->getExpr()); 13243 if (ScevPredsIt == SCEVToPreds.end()) 13244 return false; 13245 auto &SCEVPreds = ScevPredsIt->second; 13246 13247 return any_of(SCEVPreds, 13248 [N](const SCEVPredicate *I) { return I->implies(N); }); 13249 } 13250 13251 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; } 13252 13253 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const { 13254 for (auto Pred : Preds) 13255 Pred->print(OS, Depth); 13256 } 13257 13258 void SCEVUnionPredicate::add(const SCEVPredicate *N) { 13259 if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) { 13260 for (auto Pred : Set->Preds) 13261 add(Pred); 13262 return; 13263 } 13264 13265 if (implies(N)) 13266 return; 13267 13268 const SCEV *Key = N->getExpr(); 13269 assert(Key && "Only SCEVUnionPredicate doesn't have an " 13270 " associated expression!"); 13271 13272 SCEVToPreds[Key].push_back(N); 13273 Preds.push_back(N); 13274 } 13275 13276 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE, 13277 Loop &L) 13278 : SE(SE), L(L) {} 13279 13280 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) { 13281 const SCEV *Expr = SE.getSCEV(V); 13282 RewriteEntry &Entry = RewriteMap[Expr]; 13283 13284 // If we already have an entry and the version matches, return it. 13285 if (Entry.second && Generation == Entry.first) 13286 return Entry.second; 13287 13288 // We found an entry but it's stale. Rewrite the stale entry 13289 // according to the current predicate. 13290 if (Entry.second) 13291 Expr = Entry.second; 13292 13293 const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds); 13294 Entry = {Generation, NewSCEV}; 13295 13296 return NewSCEV; 13297 } 13298 13299 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() { 13300 if (!BackedgeCount) { 13301 SCEVUnionPredicate BackedgePred; 13302 BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred); 13303 addPredicate(BackedgePred); 13304 } 13305 return BackedgeCount; 13306 } 13307 13308 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) { 13309 if (Preds.implies(&Pred)) 13310 return; 13311 Preds.add(&Pred); 13312 updateGeneration(); 13313 } 13314 13315 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const { 13316 return Preds; 13317 } 13318 13319 void PredicatedScalarEvolution::updateGeneration() { 13320 // If the generation number wrapped recompute everything. 13321 if (++Generation == 0) { 13322 for (auto &II : RewriteMap) { 13323 const SCEV *Rewritten = II.second.second; 13324 II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)}; 13325 } 13326 } 13327 } 13328 13329 void PredicatedScalarEvolution::setNoOverflow( 13330 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13331 const SCEV *Expr = getSCEV(V); 13332 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13333 13334 auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE); 13335 13336 // Clear the statically implied flags. 13337 Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags); 13338 addPredicate(*SE.getWrapPredicate(AR, Flags)); 13339 13340 auto II = FlagsMap.insert({V, Flags}); 13341 if (!II.second) 13342 II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second); 13343 } 13344 13345 bool PredicatedScalarEvolution::hasNoOverflow( 13346 Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) { 13347 const SCEV *Expr = getSCEV(V); 13348 const auto *AR = cast<SCEVAddRecExpr>(Expr); 13349 13350 Flags = SCEVWrapPredicate::clearFlags( 13351 Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE)); 13352 13353 auto II = FlagsMap.find(V); 13354 13355 if (II != FlagsMap.end()) 13356 Flags = SCEVWrapPredicate::clearFlags(Flags, II->second); 13357 13358 return Flags == SCEVWrapPredicate::IncrementAnyWrap; 13359 } 13360 13361 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) { 13362 const SCEV *Expr = this->getSCEV(V); 13363 SmallPtrSet<const SCEVPredicate *, 4> NewPreds; 13364 auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds); 13365 13366 if (!New) 13367 return nullptr; 13368 13369 for (auto *P : NewPreds) 13370 Preds.add(P); 13371 13372 updateGeneration(); 13373 RewriteMap[SE.getSCEV(V)] = {Generation, New}; 13374 return New; 13375 } 13376 13377 PredicatedScalarEvolution::PredicatedScalarEvolution( 13378 const PredicatedScalarEvolution &Init) 13379 : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds), 13380 Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) { 13381 for (auto I : Init.FlagsMap) 13382 FlagsMap.insert(I); 13383 } 13384 13385 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const { 13386 // For each block. 13387 for (auto *BB : L.getBlocks()) 13388 for (auto &I : *BB) { 13389 if (!SE.isSCEVable(I.getType())) 13390 continue; 13391 13392 auto *Expr = SE.getSCEV(&I); 13393 auto II = RewriteMap.find(Expr); 13394 13395 if (II == RewriteMap.end()) 13396 continue; 13397 13398 // Don't print things that are not interesting. 13399 if (II->second.second == Expr) 13400 continue; 13401 13402 OS.indent(Depth) << "[PSE]" << I << ":\n"; 13403 OS.indent(Depth + 2) << *Expr << "\n"; 13404 OS.indent(Depth + 2) << "--> " << *II->second.second << "\n"; 13405 } 13406 } 13407 13408 // Match the mathematical pattern A - (A / B) * B, where A and B can be 13409 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used 13410 // for URem with constant power-of-2 second operands. 13411 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is 13412 // 4, A / B becomes X / 8). 13413 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS, 13414 const SCEV *&RHS) { 13415 // Try to match 'zext (trunc A to iB) to iY', which is used 13416 // for URem with constant power-of-2 second operands. Make sure the size of 13417 // the operand A matches the size of the whole expressions. 13418 if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr)) 13419 if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) { 13420 LHS = Trunc->getOperand(); 13421 // Bail out if the type of the LHS is larger than the type of the 13422 // expression for now. 13423 if (getTypeSizeInBits(LHS->getType()) > 13424 getTypeSizeInBits(Expr->getType())) 13425 return false; 13426 if (LHS->getType() != Expr->getType()) 13427 LHS = getZeroExtendExpr(LHS, Expr->getType()); 13428 RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1) 13429 << getTypeSizeInBits(Trunc->getType())); 13430 return true; 13431 } 13432 const auto *Add = dyn_cast<SCEVAddExpr>(Expr); 13433 if (Add == nullptr || Add->getNumOperands() != 2) 13434 return false; 13435 13436 const SCEV *A = Add->getOperand(1); 13437 const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0)); 13438 13439 if (Mul == nullptr) 13440 return false; 13441 13442 const auto MatchURemWithDivisor = [&](const SCEV *B) { 13443 // (SomeExpr + (-(SomeExpr / B) * B)). 13444 if (Expr == getURemExpr(A, B)) { 13445 LHS = A; 13446 RHS = B; 13447 return true; 13448 } 13449 return false; 13450 }; 13451 13452 // (SomeExpr + (-1 * (SomeExpr / B) * B)). 13453 if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0))) 13454 return MatchURemWithDivisor(Mul->getOperand(1)) || 13455 MatchURemWithDivisor(Mul->getOperand(2)); 13456 13457 // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)). 13458 if (Mul->getNumOperands() == 2) 13459 return MatchURemWithDivisor(Mul->getOperand(1)) || 13460 MatchURemWithDivisor(Mul->getOperand(0)) || 13461 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) || 13462 MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0))); 13463 return false; 13464 } 13465 13466 const SCEV * 13467 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) { 13468 SmallVector<BasicBlock*, 16> ExitingBlocks; 13469 L->getExitingBlocks(ExitingBlocks); 13470 13471 // Form an expression for the maximum exit count possible for this loop. We 13472 // merge the max and exact information to approximate a version of 13473 // getConstantMaxBackedgeTakenCount which isn't restricted to just constants. 13474 SmallVector<const SCEV*, 4> ExitCounts; 13475 for (BasicBlock *ExitingBB : ExitingBlocks) { 13476 const SCEV *ExitCount = getExitCount(L, ExitingBB); 13477 if (isa<SCEVCouldNotCompute>(ExitCount)) 13478 ExitCount = getExitCount(L, ExitingBB, 13479 ScalarEvolution::ConstantMaximum); 13480 if (!isa<SCEVCouldNotCompute>(ExitCount)) { 13481 assert(DT.dominates(ExitingBB, L->getLoopLatch()) && 13482 "We should only have known counts for exiting blocks that " 13483 "dominate latch!"); 13484 ExitCounts.push_back(ExitCount); 13485 } 13486 } 13487 if (ExitCounts.empty()) 13488 return getCouldNotCompute(); 13489 return getUMinFromMismatchedTypes(ExitCounts); 13490 } 13491 13492 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown 13493 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because 13494 /// we cannot guarantee that the replacement is loop invariant in the loop of 13495 /// the AddRec. 13496 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> { 13497 ValueToSCEVMapTy ⤅ 13498 13499 public: 13500 SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M) 13501 : SCEVRewriteVisitor(SE), Map(M) {} 13502 13503 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; } 13504 13505 const SCEV *visitUnknown(const SCEVUnknown *Expr) { 13506 auto I = Map.find(Expr->getValue()); 13507 if (I == Map.end()) 13508 return Expr; 13509 return I->second; 13510 } 13511 }; 13512 13513 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) { 13514 auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS, 13515 const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) { 13516 // WARNING: It is generally unsound to apply any wrap flags to the proposed 13517 // replacement SCEV which isn't directly implied by the structure of that 13518 // SCEV. In particular, using contextual facts to imply flags is *NOT* 13519 // legal. See the scoping rules for flags in the header to understand why. 13520 13521 // If we have LHS == 0, check if LHS is computing a property of some unknown 13522 // SCEV %v which we can rewrite %v to express explicitly. 13523 const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS); 13524 if (Predicate == CmpInst::ICMP_EQ && RHSC && 13525 RHSC->getValue()->isNullValue()) { 13526 // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to 13527 // explicitly express that. 13528 const SCEV *URemLHS = nullptr; 13529 const SCEV *URemRHS = nullptr; 13530 if (matchURem(LHS, URemLHS, URemRHS)) { 13531 if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) { 13532 Value *V = LHSUnknown->getValue(); 13533 RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS); 13534 return; 13535 } 13536 } 13537 } 13538 13539 if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) { 13540 std::swap(LHS, RHS); 13541 Predicate = CmpInst::getSwappedPredicate(Predicate); 13542 } 13543 13544 // Check for a condition of the form (-C1 + X < C2). InstCombine will 13545 // create this form when combining two checks of the form (X u< C2 + C1) and 13546 // (X >=u C1). 13547 auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() { 13548 auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS); 13549 if (!AddExpr || AddExpr->getNumOperands() != 2) 13550 return false; 13551 13552 auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0)); 13553 auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1)); 13554 auto *C2 = dyn_cast<SCEVConstant>(RHS); 13555 if (!C1 || !C2 || !LHSUnknown) 13556 return false; 13557 13558 auto ExactRegion = 13559 ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt()) 13560 .sub(C1->getAPInt()); 13561 13562 // Bail out, unless we have a non-wrapping, monotonic range. 13563 if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet()) 13564 return false; 13565 auto I = RewriteMap.find(LHSUnknown->getValue()); 13566 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown; 13567 RewriteMap[LHSUnknown->getValue()] = getUMaxExpr( 13568 getConstant(ExactRegion.getUnsignedMin()), 13569 getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax()))); 13570 return true; 13571 }; 13572 if (MatchRangeCheckIdiom()) 13573 return; 13574 13575 // For now, limit to conditions that provide information about unknown 13576 // expressions. RHS also cannot contain add recurrences. 13577 auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS); 13578 if (!LHSUnknown || containsAddRecurrence(RHS)) 13579 return; 13580 13581 // Check whether LHS has already been rewritten. In that case we want to 13582 // chain further rewrites onto the already rewritten value. 13583 auto I = RewriteMap.find(LHSUnknown->getValue()); 13584 const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS; 13585 const SCEV *RewrittenRHS = nullptr; 13586 switch (Predicate) { 13587 case CmpInst::ICMP_ULT: 13588 RewrittenRHS = 13589 getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13590 break; 13591 case CmpInst::ICMP_SLT: 13592 RewrittenRHS = 13593 getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType()))); 13594 break; 13595 case CmpInst::ICMP_ULE: 13596 RewrittenRHS = getUMinExpr(RewrittenLHS, RHS); 13597 break; 13598 case CmpInst::ICMP_SLE: 13599 RewrittenRHS = getSMinExpr(RewrittenLHS, RHS); 13600 break; 13601 case CmpInst::ICMP_UGT: 13602 RewrittenRHS = 13603 getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13604 break; 13605 case CmpInst::ICMP_SGT: 13606 RewrittenRHS = 13607 getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType()))); 13608 break; 13609 case CmpInst::ICMP_UGE: 13610 RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS); 13611 break; 13612 case CmpInst::ICMP_SGE: 13613 RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS); 13614 break; 13615 case CmpInst::ICMP_EQ: 13616 if (isa<SCEVConstant>(RHS)) 13617 RewrittenRHS = RHS; 13618 break; 13619 case CmpInst::ICMP_NE: 13620 if (isa<SCEVConstant>(RHS) && 13621 cast<SCEVConstant>(RHS)->getValue()->isNullValue()) 13622 RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType())); 13623 break; 13624 default: 13625 break; 13626 } 13627 13628 if (RewrittenRHS) 13629 RewriteMap[LHSUnknown->getValue()] = RewrittenRHS; 13630 }; 13631 // Starting at the loop predecessor, climb up the predecessor chain, as long 13632 // as there are predecessors that can be found that have unique successors 13633 // leading to the original header. 13634 // TODO: share this logic with isLoopEntryGuardedByCond. 13635 ValueToSCEVMapTy RewriteMap; 13636 for (std::pair<const BasicBlock *, const BasicBlock *> Pair( 13637 L->getLoopPredecessor(), L->getHeader()); 13638 Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) { 13639 13640 const BranchInst *LoopEntryPredicate = 13641 dyn_cast<BranchInst>(Pair.first->getTerminator()); 13642 if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional()) 13643 continue; 13644 13645 bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second; 13646 SmallVector<Value *, 8> Worklist; 13647 SmallPtrSet<Value *, 8> Visited; 13648 Worklist.push_back(LoopEntryPredicate->getCondition()); 13649 while (!Worklist.empty()) { 13650 Value *Cond = Worklist.pop_back_val(); 13651 if (!Visited.insert(Cond).second) 13652 continue; 13653 13654 if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) { 13655 auto Predicate = 13656 EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate(); 13657 CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)), 13658 getSCEV(Cmp->getOperand(1)), RewriteMap); 13659 continue; 13660 } 13661 13662 Value *L, *R; 13663 if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R))) 13664 : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) { 13665 Worklist.push_back(L); 13666 Worklist.push_back(R); 13667 } 13668 } 13669 } 13670 13671 // Also collect information from assumptions dominating the loop. 13672 for (auto &AssumeVH : AC.assumptions()) { 13673 if (!AssumeVH) 13674 continue; 13675 auto *AssumeI = cast<CallInst>(AssumeVH); 13676 auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0)); 13677 if (!Cmp || !DT.dominates(AssumeI, L->getHeader())) 13678 continue; 13679 CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)), 13680 getSCEV(Cmp->getOperand(1)), RewriteMap); 13681 } 13682 13683 if (RewriteMap.empty()) 13684 return Expr; 13685 SCEVLoopGuardRewriter Rewriter(*this, RewriteMap); 13686 return Rewriter.visit(Expr); 13687 } 13688