1 //===- ScalarEvolution.cpp - Scalar Evolution Analysis --------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution analysis
10 // engine, which is used primarily to analyze expressions involving induction
11 // variables in loops.
12 //
13 // There are several aspects to this library.  First is the representation of
14 // scalar expressions, which are represented as subclasses of the SCEV class.
15 // These classes are used to represent certain types of subexpressions that we
16 // can handle. We only create one SCEV of a particular shape, so
17 // pointer-comparisons for equality are legal.
18 //
19 // One important aspect of the SCEV objects is that they are never cyclic, even
20 // if there is a cycle in the dataflow for an expression (ie, a PHI node).  If
21 // the PHI node is one of the idioms that we can represent (e.g., a polynomial
22 // recurrence) then we represent it directly as a recurrence node, otherwise we
23 // represent it as a SCEVUnknown node.
24 //
25 // In addition to being able to represent expressions of various types, we also
26 // have folders that are used to build the *canonical* representation for a
27 // particular expression.  These folders are capable of using a variety of
28 // rewrite rules to simplify the expressions.
29 //
30 // Once the folders are defined, we can implement the more interesting
31 // higher-level code, such as the code that recognizes PHI nodes of various
32 // types, computes the execution count of a loop, etc.
33 //
34 // TODO: We should use these routines and value representations to implement
35 // dependence analysis!
36 //
37 //===----------------------------------------------------------------------===//
38 //
39 // There are several good references for the techniques used in this analysis.
40 //
41 //  Chains of recurrences -- a method to expedite the evaluation
42 //  of closed-form functions
43 //  Olaf Bachmann, Paul S. Wang, Eugene V. Zima
44 //
45 //  On computational properties of chains of recurrences
46 //  Eugene V. Zima
47 //
48 //  Symbolic Evaluation of Chains of Recurrences for Loop Optimization
49 //  Robert A. van Engelen
50 //
51 //  Efficient Symbolic Analysis for Optimizing Compilers
52 //  Robert A. van Engelen
53 //
54 //  Using the chains of recurrences algebra for data dependence testing and
55 //  induction variable substitution
56 //  MS Thesis, Johnie Birch
57 //
58 //===----------------------------------------------------------------------===//
59 
60 #include "llvm/Analysis/ScalarEvolution.h"
61 #include "llvm/ADT/APInt.h"
62 #include "llvm/ADT/ArrayRef.h"
63 #include "llvm/ADT/DenseMap.h"
64 #include "llvm/ADT/DepthFirstIterator.h"
65 #include "llvm/ADT/EquivalenceClasses.h"
66 #include "llvm/ADT/FoldingSet.h"
67 #include "llvm/ADT/None.h"
68 #include "llvm/ADT/Optional.h"
69 #include "llvm/ADT/STLExtras.h"
70 #include "llvm/ADT/ScopeExit.h"
71 #include "llvm/ADT/Sequence.h"
72 #include "llvm/ADT/SetVector.h"
73 #include "llvm/ADT/SmallPtrSet.h"
74 #include "llvm/ADT/SmallSet.h"
75 #include "llvm/ADT/SmallVector.h"
76 #include "llvm/ADT/Statistic.h"
77 #include "llvm/ADT/StringRef.h"
78 #include "llvm/Analysis/AssumptionCache.h"
79 #include "llvm/Analysis/ConstantFolding.h"
80 #include "llvm/Analysis/InstructionSimplify.h"
81 #include "llvm/Analysis/LoopInfo.h"
82 #include "llvm/Analysis/ScalarEvolutionDivision.h"
83 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
84 #include "llvm/Analysis/TargetLibraryInfo.h"
85 #include "llvm/Analysis/ValueTracking.h"
86 #include "llvm/Config/llvm-config.h"
87 #include "llvm/IR/Argument.h"
88 #include "llvm/IR/BasicBlock.h"
89 #include "llvm/IR/CFG.h"
90 #include "llvm/IR/Constant.h"
91 #include "llvm/IR/ConstantRange.h"
92 #include "llvm/IR/Constants.h"
93 #include "llvm/IR/DataLayout.h"
94 #include "llvm/IR/DerivedTypes.h"
95 #include "llvm/IR/Dominators.h"
96 #include "llvm/IR/Function.h"
97 #include "llvm/IR/GlobalAlias.h"
98 #include "llvm/IR/GlobalValue.h"
99 #include "llvm/IR/GlobalVariable.h"
100 #include "llvm/IR/InstIterator.h"
101 #include "llvm/IR/InstrTypes.h"
102 #include "llvm/IR/Instruction.h"
103 #include "llvm/IR/Instructions.h"
104 #include "llvm/IR/IntrinsicInst.h"
105 #include "llvm/IR/Intrinsics.h"
106 #include "llvm/IR/LLVMContext.h"
107 #include "llvm/IR/Metadata.h"
108 #include "llvm/IR/Operator.h"
109 #include "llvm/IR/PatternMatch.h"
110 #include "llvm/IR/Type.h"
111 #include "llvm/IR/Use.h"
112 #include "llvm/IR/User.h"
113 #include "llvm/IR/Value.h"
114 #include "llvm/IR/Verifier.h"
115 #include "llvm/InitializePasses.h"
116 #include "llvm/Pass.h"
117 #include "llvm/Support/Casting.h"
118 #include "llvm/Support/CommandLine.h"
119 #include "llvm/Support/Compiler.h"
120 #include "llvm/Support/Debug.h"
121 #include "llvm/Support/ErrorHandling.h"
122 #include "llvm/Support/KnownBits.h"
123 #include "llvm/Support/SaveAndRestore.h"
124 #include "llvm/Support/raw_ostream.h"
125 #include <algorithm>
126 #include <cassert>
127 #include <climits>
128 #include <cstddef>
129 #include <cstdint>
130 #include <cstdlib>
131 #include <map>
132 #include <memory>
133 #include <tuple>
134 #include <utility>
135 #include <vector>
136 
137 using namespace llvm;
138 using namespace PatternMatch;
139 
140 #define DEBUG_TYPE "scalar-evolution"
141 
142 STATISTIC(NumArrayLenItCounts,
143           "Number of trip counts computed with array length");
144 STATISTIC(NumTripCountsComputed,
145           "Number of loops with predictable loop counts");
146 STATISTIC(NumTripCountsNotComputed,
147           "Number of loops without predictable loop counts");
148 STATISTIC(NumBruteForceTripCountsComputed,
149           "Number of loops with trip counts computed by force");
150 
151 static cl::opt<unsigned>
152 MaxBruteForceIterations("scalar-evolution-max-iterations", cl::ReallyHidden,
153                         cl::ZeroOrMore,
154                         cl::desc("Maximum number of iterations SCEV will "
155                                  "symbolically execute a constant "
156                                  "derived loop"),
157                         cl::init(100));
158 
159 // FIXME: Enable this with EXPENSIVE_CHECKS when the test suite is clean.
160 static cl::opt<bool> VerifySCEV(
161     "verify-scev", cl::Hidden,
162     cl::desc("Verify ScalarEvolution's backedge taken counts (slow)"));
163 static cl::opt<bool> VerifySCEVStrict(
164     "verify-scev-strict", cl::Hidden,
165     cl::desc("Enable stricter verification with -verify-scev is passed"));
166 static cl::opt<bool>
167     VerifySCEVMap("verify-scev-maps", cl::Hidden,
168                   cl::desc("Verify no dangling value in ScalarEvolution's "
169                            "ExprValueMap (slow)"));
170 
171 static cl::opt<bool> VerifyIR(
172     "scev-verify-ir", cl::Hidden,
173     cl::desc("Verify IR correctness when making sensitive SCEV queries (slow)"),
174     cl::init(false));
175 
176 static cl::opt<unsigned> MulOpsInlineThreshold(
177     "scev-mulops-inline-threshold", cl::Hidden,
178     cl::desc("Threshold for inlining multiplication operands into a SCEV"),
179     cl::init(32));
180 
181 static cl::opt<unsigned> AddOpsInlineThreshold(
182     "scev-addops-inline-threshold", cl::Hidden,
183     cl::desc("Threshold for inlining addition operands into a SCEV"),
184     cl::init(500));
185 
186 static cl::opt<unsigned> MaxSCEVCompareDepth(
187     "scalar-evolution-max-scev-compare-depth", cl::Hidden,
188     cl::desc("Maximum depth of recursive SCEV complexity comparisons"),
189     cl::init(32));
190 
191 static cl::opt<unsigned> MaxSCEVOperationsImplicationDepth(
192     "scalar-evolution-max-scev-operations-implication-depth", cl::Hidden,
193     cl::desc("Maximum depth of recursive SCEV operations implication analysis"),
194     cl::init(2));
195 
196 static cl::opt<unsigned> MaxValueCompareDepth(
197     "scalar-evolution-max-value-compare-depth", cl::Hidden,
198     cl::desc("Maximum depth of recursive value complexity comparisons"),
199     cl::init(2));
200 
201 static cl::opt<unsigned>
202     MaxArithDepth("scalar-evolution-max-arith-depth", cl::Hidden,
203                   cl::desc("Maximum depth of recursive arithmetics"),
204                   cl::init(32));
205 
206 static cl::opt<unsigned> MaxConstantEvolvingDepth(
207     "scalar-evolution-max-constant-evolving-depth", cl::Hidden,
208     cl::desc("Maximum depth of recursive constant evolving"), cl::init(32));
209 
210 static cl::opt<unsigned>
211     MaxCastDepth("scalar-evolution-max-cast-depth", cl::Hidden,
212                  cl::desc("Maximum depth of recursive SExt/ZExt/Trunc"),
213                  cl::init(8));
214 
215 static cl::opt<unsigned>
216     MaxAddRecSize("scalar-evolution-max-add-rec-size", cl::Hidden,
217                   cl::desc("Max coefficients in AddRec during evolving"),
218                   cl::init(8));
219 
220 static cl::opt<unsigned>
221     HugeExprThreshold("scalar-evolution-huge-expr-threshold", cl::Hidden,
222                   cl::desc("Size of the expression which is considered huge"),
223                   cl::init(4096));
224 
225 static cl::opt<bool>
226 ClassifyExpressions("scalar-evolution-classify-expressions",
227     cl::Hidden, cl::init(true),
228     cl::desc("When printing analysis, include information on every instruction"));
229 
230 static cl::opt<bool> UseExpensiveRangeSharpening(
231     "scalar-evolution-use-expensive-range-sharpening", cl::Hidden,
232     cl::init(false),
233     cl::desc("Use more powerful methods of sharpening expression ranges. May "
234              "be costly in terms of compile time"));
235 
236 //===----------------------------------------------------------------------===//
237 //                           SCEV class definitions
238 //===----------------------------------------------------------------------===//
239 
240 //===----------------------------------------------------------------------===//
241 // Implementation of the SCEV class.
242 //
243 
244 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
245 LLVM_DUMP_METHOD void SCEV::dump() const {
246   print(dbgs());
247   dbgs() << '\n';
248 }
249 #endif
250 
251 void SCEV::print(raw_ostream &OS) const {
252   switch (getSCEVType()) {
253   case scConstant:
254     cast<SCEVConstant>(this)->getValue()->printAsOperand(OS, false);
255     return;
256   case scPtrToInt: {
257     const SCEVPtrToIntExpr *PtrToInt = cast<SCEVPtrToIntExpr>(this);
258     const SCEV *Op = PtrToInt->getOperand();
259     OS << "(ptrtoint " << *Op->getType() << " " << *Op << " to "
260        << *PtrToInt->getType() << ")";
261     return;
262   }
263   case scTruncate: {
264     const SCEVTruncateExpr *Trunc = cast<SCEVTruncateExpr>(this);
265     const SCEV *Op = Trunc->getOperand();
266     OS << "(trunc " << *Op->getType() << " " << *Op << " to "
267        << *Trunc->getType() << ")";
268     return;
269   }
270   case scZeroExtend: {
271     const SCEVZeroExtendExpr *ZExt = cast<SCEVZeroExtendExpr>(this);
272     const SCEV *Op = ZExt->getOperand();
273     OS << "(zext " << *Op->getType() << " " << *Op << " to "
274        << *ZExt->getType() << ")";
275     return;
276   }
277   case scSignExtend: {
278     const SCEVSignExtendExpr *SExt = cast<SCEVSignExtendExpr>(this);
279     const SCEV *Op = SExt->getOperand();
280     OS << "(sext " << *Op->getType() << " " << *Op << " to "
281        << *SExt->getType() << ")";
282     return;
283   }
284   case scAddRecExpr: {
285     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(this);
286     OS << "{" << *AR->getOperand(0);
287     for (unsigned i = 1, e = AR->getNumOperands(); i != e; ++i)
288       OS << ",+," << *AR->getOperand(i);
289     OS << "}<";
290     if (AR->hasNoUnsignedWrap())
291       OS << "nuw><";
292     if (AR->hasNoSignedWrap())
293       OS << "nsw><";
294     if (AR->hasNoSelfWrap() &&
295         !AR->getNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW)))
296       OS << "nw><";
297     AR->getLoop()->getHeader()->printAsOperand(OS, /*PrintType=*/false);
298     OS << ">";
299     return;
300   }
301   case scAddExpr:
302   case scMulExpr:
303   case scUMaxExpr:
304   case scSMaxExpr:
305   case scUMinExpr:
306   case scSMinExpr: {
307     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(this);
308     const char *OpStr = nullptr;
309     switch (NAry->getSCEVType()) {
310     case scAddExpr: OpStr = " + "; break;
311     case scMulExpr: OpStr = " * "; break;
312     case scUMaxExpr: OpStr = " umax "; break;
313     case scSMaxExpr: OpStr = " smax "; break;
314     case scUMinExpr:
315       OpStr = " umin ";
316       break;
317     case scSMinExpr:
318       OpStr = " smin ";
319       break;
320     default:
321       llvm_unreachable("There are no other nary expression types.");
322     }
323     OS << "(";
324     ListSeparator LS(OpStr);
325     for (const SCEV *Op : NAry->operands())
326       OS << LS << *Op;
327     OS << ")";
328     switch (NAry->getSCEVType()) {
329     case scAddExpr:
330     case scMulExpr:
331       if (NAry->hasNoUnsignedWrap())
332         OS << "<nuw>";
333       if (NAry->hasNoSignedWrap())
334         OS << "<nsw>";
335       break;
336     default:
337       // Nothing to print for other nary expressions.
338       break;
339     }
340     return;
341   }
342   case scUDivExpr: {
343     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(this);
344     OS << "(" << *UDiv->getLHS() << " /u " << *UDiv->getRHS() << ")";
345     return;
346   }
347   case scUnknown: {
348     const SCEVUnknown *U = cast<SCEVUnknown>(this);
349     Type *AllocTy;
350     if (U->isSizeOf(AllocTy)) {
351       OS << "sizeof(" << *AllocTy << ")";
352       return;
353     }
354     if (U->isAlignOf(AllocTy)) {
355       OS << "alignof(" << *AllocTy << ")";
356       return;
357     }
358 
359     Type *CTy;
360     Constant *FieldNo;
361     if (U->isOffsetOf(CTy, FieldNo)) {
362       OS << "offsetof(" << *CTy << ", ";
363       FieldNo->printAsOperand(OS, false);
364       OS << ")";
365       return;
366     }
367 
368     // Otherwise just print it normally.
369     U->getValue()->printAsOperand(OS, false);
370     return;
371   }
372   case scCouldNotCompute:
373     OS << "***COULDNOTCOMPUTE***";
374     return;
375   }
376   llvm_unreachable("Unknown SCEV kind!");
377 }
378 
379 Type *SCEV::getType() const {
380   switch (getSCEVType()) {
381   case scConstant:
382     return cast<SCEVConstant>(this)->getType();
383   case scPtrToInt:
384   case scTruncate:
385   case scZeroExtend:
386   case scSignExtend:
387     return cast<SCEVCastExpr>(this)->getType();
388   case scAddRecExpr:
389     return cast<SCEVAddRecExpr>(this)->getType();
390   case scMulExpr:
391     return cast<SCEVMulExpr>(this)->getType();
392   case scUMaxExpr:
393   case scSMaxExpr:
394   case scUMinExpr:
395   case scSMinExpr:
396     return cast<SCEVMinMaxExpr>(this)->getType();
397   case scAddExpr:
398     return cast<SCEVAddExpr>(this)->getType();
399   case scUDivExpr:
400     return cast<SCEVUDivExpr>(this)->getType();
401   case scUnknown:
402     return cast<SCEVUnknown>(this)->getType();
403   case scCouldNotCompute:
404     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
405   }
406   llvm_unreachable("Unknown SCEV kind!");
407 }
408 
409 bool SCEV::isZero() const {
410   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
411     return SC->getValue()->isZero();
412   return false;
413 }
414 
415 bool SCEV::isOne() const {
416   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
417     return SC->getValue()->isOne();
418   return false;
419 }
420 
421 bool SCEV::isAllOnesValue() const {
422   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(this))
423     return SC->getValue()->isMinusOne();
424   return false;
425 }
426 
427 bool SCEV::isNonConstantNegative() const {
428   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(this);
429   if (!Mul) return false;
430 
431   // If there is a constant factor, it will be first.
432   const SCEVConstant *SC = dyn_cast<SCEVConstant>(Mul->getOperand(0));
433   if (!SC) return false;
434 
435   // Return true if the value is negative, this matches things like (-42 * V).
436   return SC->getAPInt().isNegative();
437 }
438 
439 SCEVCouldNotCompute::SCEVCouldNotCompute() :
440   SCEV(FoldingSetNodeIDRef(), scCouldNotCompute, 0) {}
441 
442 bool SCEVCouldNotCompute::classof(const SCEV *S) {
443   return S->getSCEVType() == scCouldNotCompute;
444 }
445 
446 const SCEV *ScalarEvolution::getConstant(ConstantInt *V) {
447   FoldingSetNodeID ID;
448   ID.AddInteger(scConstant);
449   ID.AddPointer(V);
450   void *IP = nullptr;
451   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
452   SCEV *S = new (SCEVAllocator) SCEVConstant(ID.Intern(SCEVAllocator), V);
453   UniqueSCEVs.InsertNode(S, IP);
454   return S;
455 }
456 
457 const SCEV *ScalarEvolution::getConstant(const APInt &Val) {
458   return getConstant(ConstantInt::get(getContext(), Val));
459 }
460 
461 const SCEV *
462 ScalarEvolution::getConstant(Type *Ty, uint64_t V, bool isSigned) {
463   IntegerType *ITy = cast<IntegerType>(getEffectiveSCEVType(Ty));
464   return getConstant(ConstantInt::get(ITy, V, isSigned));
465 }
466 
467 SCEVCastExpr::SCEVCastExpr(const FoldingSetNodeIDRef ID, SCEVTypes SCEVTy,
468                            const SCEV *op, Type *ty)
469     : SCEV(ID, SCEVTy, computeExpressionSize(op)), Ty(ty) {
470   Operands[0] = op;
471 }
472 
473 SCEVPtrToIntExpr::SCEVPtrToIntExpr(const FoldingSetNodeIDRef ID, const SCEV *Op,
474                                    Type *ITy)
475     : SCEVCastExpr(ID, scPtrToInt, Op, ITy) {
476   assert(getOperand()->getType()->isPointerTy() && Ty->isIntegerTy() &&
477          "Must be a non-bit-width-changing pointer-to-integer cast!");
478 }
479 
480 SCEVIntegralCastExpr::SCEVIntegralCastExpr(const FoldingSetNodeIDRef ID,
481                                            SCEVTypes SCEVTy, const SCEV *op,
482                                            Type *ty)
483     : SCEVCastExpr(ID, SCEVTy, op, ty) {}
484 
485 SCEVTruncateExpr::SCEVTruncateExpr(const FoldingSetNodeIDRef ID, const SCEV *op,
486                                    Type *ty)
487     : SCEVIntegralCastExpr(ID, scTruncate, op, ty) {
488   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
489          "Cannot truncate non-integer value!");
490 }
491 
492 SCEVZeroExtendExpr::SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
493                                        const SCEV *op, Type *ty)
494     : SCEVIntegralCastExpr(ID, scZeroExtend, op, ty) {
495   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
496          "Cannot zero extend non-integer value!");
497 }
498 
499 SCEVSignExtendExpr::SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
500                                        const SCEV *op, Type *ty)
501     : SCEVIntegralCastExpr(ID, scSignExtend, op, ty) {
502   assert(getOperand()->getType()->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
503          "Cannot sign extend non-integer value!");
504 }
505 
506 void SCEVUnknown::deleted() {
507   // Clear this SCEVUnknown from various maps.
508   SE->forgetMemoizedResults(this);
509 
510   // Remove this SCEVUnknown from the uniquing map.
511   SE->UniqueSCEVs.RemoveNode(this);
512 
513   // Release the value.
514   setValPtr(nullptr);
515 }
516 
517 void SCEVUnknown::allUsesReplacedWith(Value *New) {
518   // Remove this SCEVUnknown from the uniquing map.
519   SE->UniqueSCEVs.RemoveNode(this);
520 
521   // Update this SCEVUnknown to point to the new value. This is needed
522   // because there may still be outstanding SCEVs which still point to
523   // this SCEVUnknown.
524   setValPtr(New);
525 }
526 
527 bool SCEVUnknown::isSizeOf(Type *&AllocTy) const {
528   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
529     if (VCE->getOpcode() == Instruction::PtrToInt)
530       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
531         if (CE->getOpcode() == Instruction::GetElementPtr &&
532             CE->getOperand(0)->isNullValue() &&
533             CE->getNumOperands() == 2)
534           if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(1)))
535             if (CI->isOne()) {
536               AllocTy = cast<GEPOperator>(CE)->getSourceElementType();
537               return true;
538             }
539 
540   return false;
541 }
542 
543 bool SCEVUnknown::isAlignOf(Type *&AllocTy) const {
544   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
545     if (VCE->getOpcode() == Instruction::PtrToInt)
546       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
547         if (CE->getOpcode() == Instruction::GetElementPtr &&
548             CE->getOperand(0)->isNullValue()) {
549           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
550           if (StructType *STy = dyn_cast<StructType>(Ty))
551             if (!STy->isPacked() &&
552                 CE->getNumOperands() == 3 &&
553                 CE->getOperand(1)->isNullValue()) {
554               if (ConstantInt *CI = dyn_cast<ConstantInt>(CE->getOperand(2)))
555                 if (CI->isOne() &&
556                     STy->getNumElements() == 2 &&
557                     STy->getElementType(0)->isIntegerTy(1)) {
558                   AllocTy = STy->getElementType(1);
559                   return true;
560                 }
561             }
562         }
563 
564   return false;
565 }
566 
567 bool SCEVUnknown::isOffsetOf(Type *&CTy, Constant *&FieldNo) const {
568   if (ConstantExpr *VCE = dyn_cast<ConstantExpr>(getValue()))
569     if (VCE->getOpcode() == Instruction::PtrToInt)
570       if (ConstantExpr *CE = dyn_cast<ConstantExpr>(VCE->getOperand(0)))
571         if (CE->getOpcode() == Instruction::GetElementPtr &&
572             CE->getNumOperands() == 3 &&
573             CE->getOperand(0)->isNullValue() &&
574             CE->getOperand(1)->isNullValue()) {
575           Type *Ty = cast<GEPOperator>(CE)->getSourceElementType();
576           // Ignore vector types here so that ScalarEvolutionExpander doesn't
577           // emit getelementptrs that index into vectors.
578           if (Ty->isStructTy() || Ty->isArrayTy()) {
579             CTy = Ty;
580             FieldNo = CE->getOperand(2);
581             return true;
582           }
583         }
584 
585   return false;
586 }
587 
588 //===----------------------------------------------------------------------===//
589 //                               SCEV Utilities
590 //===----------------------------------------------------------------------===//
591 
592 /// Compare the two values \p LV and \p RV in terms of their "complexity" where
593 /// "complexity" is a partial (and somewhat ad-hoc) relation used to order
594 /// operands in SCEV expressions.  \p EqCache is a set of pairs of values that
595 /// have been previously deemed to be "equally complex" by this routine.  It is
596 /// intended to avoid exponential time complexity in cases like:
597 ///
598 ///   %a = f(%x, %y)
599 ///   %b = f(%a, %a)
600 ///   %c = f(%b, %b)
601 ///
602 ///   %d = f(%x, %y)
603 ///   %e = f(%d, %d)
604 ///   %f = f(%e, %e)
605 ///
606 ///   CompareValueComplexity(%f, %c)
607 ///
608 /// Since we do not continue running this routine on expression trees once we
609 /// have seen unequal values, there is no need to track them in the cache.
610 static int
611 CompareValueComplexity(EquivalenceClasses<const Value *> &EqCacheValue,
612                        const LoopInfo *const LI, Value *LV, Value *RV,
613                        unsigned Depth) {
614   if (Depth > MaxValueCompareDepth || EqCacheValue.isEquivalent(LV, RV))
615     return 0;
616 
617   // Order pointer values after integer values. This helps SCEVExpander form
618   // GEPs.
619   bool LIsPointer = LV->getType()->isPointerTy(),
620        RIsPointer = RV->getType()->isPointerTy();
621   if (LIsPointer != RIsPointer)
622     return (int)LIsPointer - (int)RIsPointer;
623 
624   // Compare getValueID values.
625   unsigned LID = LV->getValueID(), RID = RV->getValueID();
626   if (LID != RID)
627     return (int)LID - (int)RID;
628 
629   // Sort arguments by their position.
630   if (const auto *LA = dyn_cast<Argument>(LV)) {
631     const auto *RA = cast<Argument>(RV);
632     unsigned LArgNo = LA->getArgNo(), RArgNo = RA->getArgNo();
633     return (int)LArgNo - (int)RArgNo;
634   }
635 
636   if (const auto *LGV = dyn_cast<GlobalValue>(LV)) {
637     const auto *RGV = cast<GlobalValue>(RV);
638 
639     const auto IsGVNameSemantic = [&](const GlobalValue *GV) {
640       auto LT = GV->getLinkage();
641       return !(GlobalValue::isPrivateLinkage(LT) ||
642                GlobalValue::isInternalLinkage(LT));
643     };
644 
645     // Use the names to distinguish the two values, but only if the
646     // names are semantically important.
647     if (IsGVNameSemantic(LGV) && IsGVNameSemantic(RGV))
648       return LGV->getName().compare(RGV->getName());
649   }
650 
651   // For instructions, compare their loop depth, and their operand count.  This
652   // is pretty loose.
653   if (const auto *LInst = dyn_cast<Instruction>(LV)) {
654     const auto *RInst = cast<Instruction>(RV);
655 
656     // Compare loop depths.
657     const BasicBlock *LParent = LInst->getParent(),
658                      *RParent = RInst->getParent();
659     if (LParent != RParent) {
660       unsigned LDepth = LI->getLoopDepth(LParent),
661                RDepth = LI->getLoopDepth(RParent);
662       if (LDepth != RDepth)
663         return (int)LDepth - (int)RDepth;
664     }
665 
666     // Compare the number of operands.
667     unsigned LNumOps = LInst->getNumOperands(),
668              RNumOps = RInst->getNumOperands();
669     if (LNumOps != RNumOps)
670       return (int)LNumOps - (int)RNumOps;
671 
672     for (unsigned Idx : seq(0u, LNumOps)) {
673       int Result =
674           CompareValueComplexity(EqCacheValue, LI, LInst->getOperand(Idx),
675                                  RInst->getOperand(Idx), Depth + 1);
676       if (Result != 0)
677         return Result;
678     }
679   }
680 
681   EqCacheValue.unionSets(LV, RV);
682   return 0;
683 }
684 
685 // Return negative, zero, or positive, if LHS is less than, equal to, or greater
686 // than RHS, respectively. A three-way result allows recursive comparisons to be
687 // more efficient.
688 // If the max analysis depth was reached, return None, assuming we do not know
689 // if they are equivalent for sure.
690 static Optional<int>
691 CompareSCEVComplexity(EquivalenceClasses<const SCEV *> &EqCacheSCEV,
692                       EquivalenceClasses<const Value *> &EqCacheValue,
693                       const LoopInfo *const LI, const SCEV *LHS,
694                       const SCEV *RHS, DominatorTree &DT, unsigned Depth = 0) {
695   // Fast-path: SCEVs are uniqued so we can do a quick equality check.
696   if (LHS == RHS)
697     return 0;
698 
699   // Primarily, sort the SCEVs by their getSCEVType().
700   SCEVTypes LType = LHS->getSCEVType(), RType = RHS->getSCEVType();
701   if (LType != RType)
702     return (int)LType - (int)RType;
703 
704   if (EqCacheSCEV.isEquivalent(LHS, RHS))
705     return 0;
706 
707   if (Depth > MaxSCEVCompareDepth)
708     return None;
709 
710   // Aside from the getSCEVType() ordering, the particular ordering
711   // isn't very important except that it's beneficial to be consistent,
712   // so that (a + b) and (b + a) don't end up as different expressions.
713   switch (LType) {
714   case scUnknown: {
715     const SCEVUnknown *LU = cast<SCEVUnknown>(LHS);
716     const SCEVUnknown *RU = cast<SCEVUnknown>(RHS);
717 
718     int X = CompareValueComplexity(EqCacheValue, LI, LU->getValue(),
719                                    RU->getValue(), Depth + 1);
720     if (X == 0)
721       EqCacheSCEV.unionSets(LHS, RHS);
722     return X;
723   }
724 
725   case scConstant: {
726     const SCEVConstant *LC = cast<SCEVConstant>(LHS);
727     const SCEVConstant *RC = cast<SCEVConstant>(RHS);
728 
729     // Compare constant values.
730     const APInt &LA = LC->getAPInt();
731     const APInt &RA = RC->getAPInt();
732     unsigned LBitWidth = LA.getBitWidth(), RBitWidth = RA.getBitWidth();
733     if (LBitWidth != RBitWidth)
734       return (int)LBitWidth - (int)RBitWidth;
735     return LA.ult(RA) ? -1 : 1;
736   }
737 
738   case scAddRecExpr: {
739     const SCEVAddRecExpr *LA = cast<SCEVAddRecExpr>(LHS);
740     const SCEVAddRecExpr *RA = cast<SCEVAddRecExpr>(RHS);
741 
742     // There is always a dominance between two recs that are used by one SCEV,
743     // so we can safely sort recs by loop header dominance. We require such
744     // order in getAddExpr.
745     const Loop *LLoop = LA->getLoop(), *RLoop = RA->getLoop();
746     if (LLoop != RLoop) {
747       const BasicBlock *LHead = LLoop->getHeader(), *RHead = RLoop->getHeader();
748       assert(LHead != RHead && "Two loops share the same header?");
749       if (DT.dominates(LHead, RHead))
750         return 1;
751       else
752         assert(DT.dominates(RHead, LHead) &&
753                "No dominance between recurrences used by one SCEV?");
754       return -1;
755     }
756 
757     // Addrec complexity grows with operand count.
758     unsigned LNumOps = LA->getNumOperands(), RNumOps = RA->getNumOperands();
759     if (LNumOps != RNumOps)
760       return (int)LNumOps - (int)RNumOps;
761 
762     // Lexicographically compare.
763     for (unsigned i = 0; i != LNumOps; ++i) {
764       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
765                                      LA->getOperand(i), RA->getOperand(i), DT,
766                                      Depth + 1);
767       if (X != 0)
768         return X;
769     }
770     EqCacheSCEV.unionSets(LHS, RHS);
771     return 0;
772   }
773 
774   case scAddExpr:
775   case scMulExpr:
776   case scSMaxExpr:
777   case scUMaxExpr:
778   case scSMinExpr:
779   case scUMinExpr: {
780     const SCEVNAryExpr *LC = cast<SCEVNAryExpr>(LHS);
781     const SCEVNAryExpr *RC = cast<SCEVNAryExpr>(RHS);
782 
783     // Lexicographically compare n-ary expressions.
784     unsigned LNumOps = LC->getNumOperands(), RNumOps = RC->getNumOperands();
785     if (LNumOps != RNumOps)
786       return (int)LNumOps - (int)RNumOps;
787 
788     for (unsigned i = 0; i != LNumOps; ++i) {
789       auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI,
790                                      LC->getOperand(i), RC->getOperand(i), DT,
791                                      Depth + 1);
792       if (X != 0)
793         return X;
794     }
795     EqCacheSCEV.unionSets(LHS, RHS);
796     return 0;
797   }
798 
799   case scUDivExpr: {
800     const SCEVUDivExpr *LC = cast<SCEVUDivExpr>(LHS);
801     const SCEVUDivExpr *RC = cast<SCEVUDivExpr>(RHS);
802 
803     // Lexicographically compare udiv expressions.
804     auto X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getLHS(),
805                                    RC->getLHS(), DT, Depth + 1);
806     if (X != 0)
807       return X;
808     X = CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getRHS(),
809                               RC->getRHS(), DT, Depth + 1);
810     if (X == 0)
811       EqCacheSCEV.unionSets(LHS, RHS);
812     return X;
813   }
814 
815   case scPtrToInt:
816   case scTruncate:
817   case scZeroExtend:
818   case scSignExtend: {
819     const SCEVCastExpr *LC = cast<SCEVCastExpr>(LHS);
820     const SCEVCastExpr *RC = cast<SCEVCastExpr>(RHS);
821 
822     // Compare cast expressions by operand.
823     auto X =
824         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LC->getOperand(),
825                               RC->getOperand(), DT, Depth + 1);
826     if (X == 0)
827       EqCacheSCEV.unionSets(LHS, RHS);
828     return X;
829   }
830 
831   case scCouldNotCompute:
832     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
833   }
834   llvm_unreachable("Unknown SCEV kind!");
835 }
836 
837 /// Given a list of SCEV objects, order them by their complexity, and group
838 /// objects of the same complexity together by value.  When this routine is
839 /// finished, we know that any duplicates in the vector are consecutive and that
840 /// complexity is monotonically increasing.
841 ///
842 /// Note that we go take special precautions to ensure that we get deterministic
843 /// results from this routine.  In other words, we don't want the results of
844 /// this to depend on where the addresses of various SCEV objects happened to
845 /// land in memory.
846 static void GroupByComplexity(SmallVectorImpl<const SCEV *> &Ops,
847                               LoopInfo *LI, DominatorTree &DT) {
848   if (Ops.size() < 2) return;  // Noop
849 
850   EquivalenceClasses<const SCEV *> EqCacheSCEV;
851   EquivalenceClasses<const Value *> EqCacheValue;
852 
853   // Whether LHS has provably less complexity than RHS.
854   auto IsLessComplex = [&](const SCEV *LHS, const SCEV *RHS) {
855     auto Complexity =
856         CompareSCEVComplexity(EqCacheSCEV, EqCacheValue, LI, LHS, RHS, DT);
857     return Complexity && *Complexity < 0;
858   };
859   if (Ops.size() == 2) {
860     // This is the common case, which also happens to be trivially simple.
861     // Special case it.
862     const SCEV *&LHS = Ops[0], *&RHS = Ops[1];
863     if (IsLessComplex(RHS, LHS))
864       std::swap(LHS, RHS);
865     return;
866   }
867 
868   // Do the rough sort by complexity.
869   llvm::stable_sort(Ops, [&](const SCEV *LHS, const SCEV *RHS) {
870     return IsLessComplex(LHS, RHS);
871   });
872 
873   // Now that we are sorted by complexity, group elements of the same
874   // complexity.  Note that this is, at worst, N^2, but the vector is likely to
875   // be extremely short in practice.  Note that we take this approach because we
876   // do not want to depend on the addresses of the objects we are grouping.
877   for (unsigned i = 0, e = Ops.size(); i != e-2; ++i) {
878     const SCEV *S = Ops[i];
879     unsigned Complexity = S->getSCEVType();
880 
881     // If there are any objects of the same complexity and same value as this
882     // one, group them.
883     for (unsigned j = i+1; j != e && Ops[j]->getSCEVType() == Complexity; ++j) {
884       if (Ops[j] == S) { // Found a duplicate.
885         // Move it to immediately after i'th element.
886         std::swap(Ops[i+1], Ops[j]);
887         ++i;   // no need to rescan it.
888         if (i == e-2) return;  // Done!
889       }
890     }
891   }
892 }
893 
894 /// Returns true if \p Ops contains a huge SCEV (the subtree of S contains at
895 /// least HugeExprThreshold nodes).
896 static bool hasHugeExpression(ArrayRef<const SCEV *> Ops) {
897   return any_of(Ops, [](const SCEV *S) {
898     return S->getExpressionSize() >= HugeExprThreshold;
899   });
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //                      Simple SCEV method implementations
904 //===----------------------------------------------------------------------===//
905 
906 /// Compute BC(It, K).  The result has width W.  Assume, K > 0.
907 static const SCEV *BinomialCoefficient(const SCEV *It, unsigned K,
908                                        ScalarEvolution &SE,
909                                        Type *ResultTy) {
910   // Handle the simplest case efficiently.
911   if (K == 1)
912     return SE.getTruncateOrZeroExtend(It, ResultTy);
913 
914   // We are using the following formula for BC(It, K):
915   //
916   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / K!
917   //
918   // Suppose, W is the bitwidth of the return value.  We must be prepared for
919   // overflow.  Hence, we must assure that the result of our computation is
920   // equal to the accurate one modulo 2^W.  Unfortunately, division isn't
921   // safe in modular arithmetic.
922   //
923   // However, this code doesn't use exactly that formula; the formula it uses
924   // is something like the following, where T is the number of factors of 2 in
925   // K! (i.e. trailing zeros in the binary representation of K!), and ^ is
926   // exponentiation:
927   //
928   //   BC(It, K) = (It * (It - 1) * ... * (It - K + 1)) / 2^T / (K! / 2^T)
929   //
930   // This formula is trivially equivalent to the previous formula.  However,
931   // this formula can be implemented much more efficiently.  The trick is that
932   // K! / 2^T is odd, and exact division by an odd number *is* safe in modular
933   // arithmetic.  To do exact division in modular arithmetic, all we have
934   // to do is multiply by the inverse.  Therefore, this step can be done at
935   // width W.
936   //
937   // The next issue is how to safely do the division by 2^T.  The way this
938   // is done is by doing the multiplication step at a width of at least W + T
939   // bits.  This way, the bottom W+T bits of the product are accurate. Then,
940   // when we perform the division by 2^T (which is equivalent to a right shift
941   // by T), the bottom W bits are accurate.  Extra bits are okay; they'll get
942   // truncated out after the division by 2^T.
943   //
944   // In comparison to just directly using the first formula, this technique
945   // is much more efficient; using the first formula requires W * K bits,
946   // but this formula less than W + K bits. Also, the first formula requires
947   // a division step, whereas this formula only requires multiplies and shifts.
948   //
949   // It doesn't matter whether the subtraction step is done in the calculation
950   // width or the input iteration count's width; if the subtraction overflows,
951   // the result must be zero anyway.  We prefer here to do it in the width of
952   // the induction variable because it helps a lot for certain cases; CodeGen
953   // isn't smart enough to ignore the overflow, which leads to much less
954   // efficient code if the width of the subtraction is wider than the native
955   // register width.
956   //
957   // (It's possible to not widen at all by pulling out factors of 2 before
958   // the multiplication; for example, K=2 can be calculated as
959   // It/2*(It+(It*INT_MIN/INT_MIN)+-1). However, it requires
960   // extra arithmetic, so it's not an obvious win, and it gets
961   // much more complicated for K > 3.)
962 
963   // Protection from insane SCEVs; this bound is conservative,
964   // but it probably doesn't matter.
965   if (K > 1000)
966     return SE.getCouldNotCompute();
967 
968   unsigned W = SE.getTypeSizeInBits(ResultTy);
969 
970   // Calculate K! / 2^T and T; we divide out the factors of two before
971   // multiplying for calculating K! / 2^T to avoid overflow.
972   // Other overflow doesn't matter because we only care about the bottom
973   // W bits of the result.
974   APInt OddFactorial(W, 1);
975   unsigned T = 1;
976   for (unsigned i = 3; i <= K; ++i) {
977     APInt Mult(W, i);
978     unsigned TwoFactors = Mult.countTrailingZeros();
979     T += TwoFactors;
980     Mult.lshrInPlace(TwoFactors);
981     OddFactorial *= Mult;
982   }
983 
984   // We need at least W + T bits for the multiplication step
985   unsigned CalculationBits = W + T;
986 
987   // Calculate 2^T, at width T+W.
988   APInt DivFactor = APInt::getOneBitSet(CalculationBits, T);
989 
990   // Calculate the multiplicative inverse of K! / 2^T;
991   // this multiplication factor will perform the exact division by
992   // K! / 2^T.
993   APInt Mod = APInt::getSignedMinValue(W+1);
994   APInt MultiplyFactor = OddFactorial.zext(W+1);
995   MultiplyFactor = MultiplyFactor.multiplicativeInverse(Mod);
996   MultiplyFactor = MultiplyFactor.trunc(W);
997 
998   // Calculate the product, at width T+W
999   IntegerType *CalculationTy = IntegerType::get(SE.getContext(),
1000                                                       CalculationBits);
1001   const SCEV *Dividend = SE.getTruncateOrZeroExtend(It, CalculationTy);
1002   for (unsigned i = 1; i != K; ++i) {
1003     const SCEV *S = SE.getMinusSCEV(It, SE.getConstant(It->getType(), i));
1004     Dividend = SE.getMulExpr(Dividend,
1005                              SE.getTruncateOrZeroExtend(S, CalculationTy));
1006   }
1007 
1008   // Divide by 2^T
1009   const SCEV *DivResult = SE.getUDivExpr(Dividend, SE.getConstant(DivFactor));
1010 
1011   // Truncate the result, and divide by K! / 2^T.
1012 
1013   return SE.getMulExpr(SE.getConstant(MultiplyFactor),
1014                        SE.getTruncateOrZeroExtend(DivResult, ResultTy));
1015 }
1016 
1017 /// Return the value of this chain of recurrences at the specified iteration
1018 /// number.  We can evaluate this recurrence by multiplying each element in the
1019 /// chain by the binomial coefficient corresponding to it.  In other words, we
1020 /// can evaluate {A,+,B,+,C,+,D} as:
1021 ///
1022 ///   A*BC(It, 0) + B*BC(It, 1) + C*BC(It, 2) + D*BC(It, 3)
1023 ///
1024 /// where BC(It, k) stands for binomial coefficient.
1025 const SCEV *SCEVAddRecExpr::evaluateAtIteration(const SCEV *It,
1026                                                 ScalarEvolution &SE) const {
1027   return evaluateAtIteration(makeArrayRef(op_begin(), op_end()), It, SE);
1028 }
1029 
1030 const SCEV *
1031 SCEVAddRecExpr::evaluateAtIteration(ArrayRef<const SCEV *> Operands,
1032                                     const SCEV *It, ScalarEvolution &SE) {
1033   assert(Operands.size() > 0);
1034   const SCEV *Result = Operands[0];
1035   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
1036     // The computation is correct in the face of overflow provided that the
1037     // multiplication is performed _after_ the evaluation of the binomial
1038     // coefficient.
1039     const SCEV *Coeff = BinomialCoefficient(It, i, SE, Result->getType());
1040     if (isa<SCEVCouldNotCompute>(Coeff))
1041       return Coeff;
1042 
1043     Result = SE.getAddExpr(Result, SE.getMulExpr(Operands[i], Coeff));
1044   }
1045   return Result;
1046 }
1047 
1048 //===----------------------------------------------------------------------===//
1049 //                    SCEV Expression folder implementations
1050 //===----------------------------------------------------------------------===//
1051 
1052 const SCEV *ScalarEvolution::getLosslessPtrToIntExpr(const SCEV *Op,
1053                                                      unsigned Depth) {
1054   assert(Depth <= 1 &&
1055          "getLosslessPtrToIntExpr() should self-recurse at most once.");
1056 
1057   // We could be called with an integer-typed operands during SCEV rewrites.
1058   // Since the operand is an integer already, just perform zext/trunc/self cast.
1059   if (!Op->getType()->isPointerTy())
1060     return Op;
1061 
1062   // What would be an ID for such a SCEV cast expression?
1063   FoldingSetNodeID ID;
1064   ID.AddInteger(scPtrToInt);
1065   ID.AddPointer(Op);
1066 
1067   void *IP = nullptr;
1068 
1069   // Is there already an expression for such a cast?
1070   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1071     return S;
1072 
1073   // It isn't legal for optimizations to construct new ptrtoint expressions
1074   // for non-integral pointers.
1075   if (getDataLayout().isNonIntegralPointerType(Op->getType()))
1076     return getCouldNotCompute();
1077 
1078   Type *IntPtrTy = getDataLayout().getIntPtrType(Op->getType());
1079 
1080   // We can only trivially model ptrtoint if SCEV's effective (integer) type
1081   // is sufficiently wide to represent all possible pointer values.
1082   // We could theoretically teach SCEV to truncate wider pointers, but
1083   // that isn't implemented for now.
1084   if (getDataLayout().getTypeSizeInBits(getEffectiveSCEVType(Op->getType())) !=
1085       getDataLayout().getTypeSizeInBits(IntPtrTy))
1086     return getCouldNotCompute();
1087 
1088   // If not, is this expression something we can't reduce any further?
1089   if (auto *U = dyn_cast<SCEVUnknown>(Op)) {
1090     // Perform some basic constant folding. If the operand of the ptr2int cast
1091     // is a null pointer, don't create a ptr2int SCEV expression (that will be
1092     // left as-is), but produce a zero constant.
1093     // NOTE: We could handle a more general case, but lack motivational cases.
1094     if (isa<ConstantPointerNull>(U->getValue()))
1095       return getZero(IntPtrTy);
1096 
1097     // Create an explicit cast node.
1098     // We can reuse the existing insert position since if we get here,
1099     // we won't have made any changes which would invalidate it.
1100     SCEV *S = new (SCEVAllocator)
1101         SCEVPtrToIntExpr(ID.Intern(SCEVAllocator), Op, IntPtrTy);
1102     UniqueSCEVs.InsertNode(S, IP);
1103     addToLoopUseLists(S);
1104     return S;
1105   }
1106 
1107   assert(Depth == 0 && "getLosslessPtrToIntExpr() should not self-recurse for "
1108                        "non-SCEVUnknown's.");
1109 
1110   // Otherwise, we've got some expression that is more complex than just a
1111   // single SCEVUnknown. But we don't want to have a SCEVPtrToIntExpr of an
1112   // arbitrary expression, we want to have SCEVPtrToIntExpr of an SCEVUnknown
1113   // only, and the expressions must otherwise be integer-typed.
1114   // So sink the cast down to the SCEVUnknown's.
1115 
1116   /// The SCEVPtrToIntSinkingRewriter takes a scalar evolution expression,
1117   /// which computes a pointer-typed value, and rewrites the whole expression
1118   /// tree so that *all* the computations are done on integers, and the only
1119   /// pointer-typed operands in the expression are SCEVUnknown.
1120   class SCEVPtrToIntSinkingRewriter
1121       : public SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter> {
1122     using Base = SCEVRewriteVisitor<SCEVPtrToIntSinkingRewriter>;
1123 
1124   public:
1125     SCEVPtrToIntSinkingRewriter(ScalarEvolution &SE) : SCEVRewriteVisitor(SE) {}
1126 
1127     static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE) {
1128       SCEVPtrToIntSinkingRewriter Rewriter(SE);
1129       return Rewriter.visit(Scev);
1130     }
1131 
1132     const SCEV *visit(const SCEV *S) {
1133       Type *STy = S->getType();
1134       // If the expression is not pointer-typed, just keep it as-is.
1135       if (!STy->isPointerTy())
1136         return S;
1137       // Else, recursively sink the cast down into it.
1138       return Base::visit(S);
1139     }
1140 
1141     const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
1142       SmallVector<const SCEV *, 2> Operands;
1143       bool Changed = false;
1144       for (auto *Op : Expr->operands()) {
1145         Operands.push_back(visit(Op));
1146         Changed |= Op != Operands.back();
1147       }
1148       return !Changed ? Expr : SE.getAddExpr(Operands, Expr->getNoWrapFlags());
1149     }
1150 
1151     const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
1152       SmallVector<const SCEV *, 2> Operands;
1153       bool Changed = false;
1154       for (auto *Op : Expr->operands()) {
1155         Operands.push_back(visit(Op));
1156         Changed |= Op != Operands.back();
1157       }
1158       return !Changed ? Expr : SE.getMulExpr(Operands, Expr->getNoWrapFlags());
1159     }
1160 
1161     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
1162       assert(Expr->getType()->isPointerTy() &&
1163              "Should only reach pointer-typed SCEVUnknown's.");
1164       return SE.getLosslessPtrToIntExpr(Expr, /*Depth=*/1);
1165     }
1166   };
1167 
1168   // And actually perform the cast sinking.
1169   const SCEV *IntOp = SCEVPtrToIntSinkingRewriter::rewrite(Op, *this);
1170   assert(IntOp->getType()->isIntegerTy() &&
1171          "We must have succeeded in sinking the cast, "
1172          "and ending up with an integer-typed expression!");
1173   return IntOp;
1174 }
1175 
1176 const SCEV *ScalarEvolution::getPtrToIntExpr(const SCEV *Op, Type *Ty) {
1177   assert(Ty->isIntegerTy() && "Target type must be an integer type!");
1178 
1179   const SCEV *IntOp = getLosslessPtrToIntExpr(Op);
1180   if (isa<SCEVCouldNotCompute>(IntOp))
1181     return IntOp;
1182 
1183   return getTruncateOrZeroExtend(IntOp, Ty);
1184 }
1185 
1186 const SCEV *ScalarEvolution::getTruncateExpr(const SCEV *Op, Type *Ty,
1187                                              unsigned Depth) {
1188   assert(getTypeSizeInBits(Op->getType()) > getTypeSizeInBits(Ty) &&
1189          "This is not a truncating conversion!");
1190   assert(isSCEVable(Ty) &&
1191          "This is not a conversion to a SCEVable type!");
1192   assert(!Op->getType()->isPointerTy() && "Can't truncate pointer!");
1193   Ty = getEffectiveSCEVType(Ty);
1194 
1195   FoldingSetNodeID ID;
1196   ID.AddInteger(scTruncate);
1197   ID.AddPointer(Op);
1198   ID.AddPointer(Ty);
1199   void *IP = nullptr;
1200   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1201 
1202   // Fold if the operand is constant.
1203   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1204     return getConstant(
1205       cast<ConstantInt>(ConstantExpr::getTrunc(SC->getValue(), Ty)));
1206 
1207   // trunc(trunc(x)) --> trunc(x)
1208   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op))
1209     return getTruncateExpr(ST->getOperand(), Ty, Depth + 1);
1210 
1211   // trunc(sext(x)) --> sext(x) if widening or trunc(x) if narrowing
1212   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1213     return getTruncateOrSignExtend(SS->getOperand(), Ty, Depth + 1);
1214 
1215   // trunc(zext(x)) --> zext(x) if widening or trunc(x) if narrowing
1216   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1217     return getTruncateOrZeroExtend(SZ->getOperand(), Ty, Depth + 1);
1218 
1219   if (Depth > MaxCastDepth) {
1220     SCEV *S =
1221         new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator), Op, Ty);
1222     UniqueSCEVs.InsertNode(S, IP);
1223     addToLoopUseLists(S);
1224     return S;
1225   }
1226 
1227   // trunc(x1 + ... + xN) --> trunc(x1) + ... + trunc(xN) and
1228   // trunc(x1 * ... * xN) --> trunc(x1) * ... * trunc(xN),
1229   // if after transforming we have at most one truncate, not counting truncates
1230   // that replace other casts.
1231   if (isa<SCEVAddExpr>(Op) || isa<SCEVMulExpr>(Op)) {
1232     auto *CommOp = cast<SCEVCommutativeExpr>(Op);
1233     SmallVector<const SCEV *, 4> Operands;
1234     unsigned numTruncs = 0;
1235     for (unsigned i = 0, e = CommOp->getNumOperands(); i != e && numTruncs < 2;
1236          ++i) {
1237       const SCEV *S = getTruncateExpr(CommOp->getOperand(i), Ty, Depth + 1);
1238       if (!isa<SCEVIntegralCastExpr>(CommOp->getOperand(i)) &&
1239           isa<SCEVTruncateExpr>(S))
1240         numTruncs++;
1241       Operands.push_back(S);
1242     }
1243     if (numTruncs < 2) {
1244       if (isa<SCEVAddExpr>(Op))
1245         return getAddExpr(Operands);
1246       else if (isa<SCEVMulExpr>(Op))
1247         return getMulExpr(Operands);
1248       else
1249         llvm_unreachable("Unexpected SCEV type for Op.");
1250     }
1251     // Although we checked in the beginning that ID is not in the cache, it is
1252     // possible that during recursion and different modification ID was inserted
1253     // into the cache. So if we find it, just return it.
1254     if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
1255       return S;
1256   }
1257 
1258   // If the input value is a chrec scev, truncate the chrec's operands.
1259   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
1260     SmallVector<const SCEV *, 4> Operands;
1261     for (const SCEV *Op : AddRec->operands())
1262       Operands.push_back(getTruncateExpr(Op, Ty, Depth + 1));
1263     return getAddRecExpr(Operands, AddRec->getLoop(), SCEV::FlagAnyWrap);
1264   }
1265 
1266   // Return zero if truncating to known zeros.
1267   uint32_t MinTrailingZeros = GetMinTrailingZeros(Op);
1268   if (MinTrailingZeros >= getTypeSizeInBits(Ty))
1269     return getZero(Ty);
1270 
1271   // The cast wasn't folded; create an explicit cast node. We can reuse
1272   // the existing insert position since if we get here, we won't have
1273   // made any changes which would invalidate it.
1274   SCEV *S = new (SCEVAllocator) SCEVTruncateExpr(ID.Intern(SCEVAllocator),
1275                                                  Op, Ty);
1276   UniqueSCEVs.InsertNode(S, IP);
1277   addToLoopUseLists(S);
1278   return S;
1279 }
1280 
1281 // Get the limit of a recurrence such that incrementing by Step cannot cause
1282 // signed overflow as long as the value of the recurrence within the
1283 // loop does not exceed this limit before incrementing.
1284 static const SCEV *getSignedOverflowLimitForStep(const SCEV *Step,
1285                                                  ICmpInst::Predicate *Pred,
1286                                                  ScalarEvolution *SE) {
1287   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1288   if (SE->isKnownPositive(Step)) {
1289     *Pred = ICmpInst::ICMP_SLT;
1290     return SE->getConstant(APInt::getSignedMinValue(BitWidth) -
1291                            SE->getSignedRangeMax(Step));
1292   }
1293   if (SE->isKnownNegative(Step)) {
1294     *Pred = ICmpInst::ICMP_SGT;
1295     return SE->getConstant(APInt::getSignedMaxValue(BitWidth) -
1296                            SE->getSignedRangeMin(Step));
1297   }
1298   return nullptr;
1299 }
1300 
1301 // Get the limit of a recurrence such that incrementing by Step cannot cause
1302 // unsigned overflow as long as the value of the recurrence within the loop does
1303 // not exceed this limit before incrementing.
1304 static const SCEV *getUnsignedOverflowLimitForStep(const SCEV *Step,
1305                                                    ICmpInst::Predicate *Pred,
1306                                                    ScalarEvolution *SE) {
1307   unsigned BitWidth = SE->getTypeSizeInBits(Step->getType());
1308   *Pred = ICmpInst::ICMP_ULT;
1309 
1310   return SE->getConstant(APInt::getMinValue(BitWidth) -
1311                          SE->getUnsignedRangeMax(Step));
1312 }
1313 
1314 namespace {
1315 
1316 struct ExtendOpTraitsBase {
1317   typedef const SCEV *(ScalarEvolution::*GetExtendExprTy)(const SCEV *, Type *,
1318                                                           unsigned);
1319 };
1320 
1321 // Used to make code generic over signed and unsigned overflow.
1322 template <typename ExtendOp> struct ExtendOpTraits {
1323   // Members present:
1324   //
1325   // static const SCEV::NoWrapFlags WrapType;
1326   //
1327   // static const ExtendOpTraitsBase::GetExtendExprTy GetExtendExpr;
1328   //
1329   // static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1330   //                                           ICmpInst::Predicate *Pred,
1331   //                                           ScalarEvolution *SE);
1332 };
1333 
1334 template <>
1335 struct ExtendOpTraits<SCEVSignExtendExpr> : public ExtendOpTraitsBase {
1336   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNSW;
1337 
1338   static const GetExtendExprTy GetExtendExpr;
1339 
1340   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1341                                              ICmpInst::Predicate *Pred,
1342                                              ScalarEvolution *SE) {
1343     return getSignedOverflowLimitForStep(Step, Pred, SE);
1344   }
1345 };
1346 
1347 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1348     SCEVSignExtendExpr>::GetExtendExpr = &ScalarEvolution::getSignExtendExpr;
1349 
1350 template <>
1351 struct ExtendOpTraits<SCEVZeroExtendExpr> : public ExtendOpTraitsBase {
1352   static const SCEV::NoWrapFlags WrapType = SCEV::FlagNUW;
1353 
1354   static const GetExtendExprTy GetExtendExpr;
1355 
1356   static const SCEV *getOverflowLimitForStep(const SCEV *Step,
1357                                              ICmpInst::Predicate *Pred,
1358                                              ScalarEvolution *SE) {
1359     return getUnsignedOverflowLimitForStep(Step, Pred, SE);
1360   }
1361 };
1362 
1363 const ExtendOpTraitsBase::GetExtendExprTy ExtendOpTraits<
1364     SCEVZeroExtendExpr>::GetExtendExpr = &ScalarEvolution::getZeroExtendExpr;
1365 
1366 } // end anonymous namespace
1367 
1368 // The recurrence AR has been shown to have no signed/unsigned wrap or something
1369 // close to it. Typically, if we can prove NSW/NUW for AR, then we can just as
1370 // easily prove NSW/NUW for its preincrement or postincrement sibling. This
1371 // allows normalizing a sign/zero extended AddRec as such: {sext/zext(Step +
1372 // Start),+,Step} => {(Step + sext/zext(Start),+,Step} As a result, the
1373 // expression "Step + sext/zext(PreIncAR)" is congruent with
1374 // "sext/zext(PostIncAR)"
1375 template <typename ExtendOpTy>
1376 static const SCEV *getPreStartForExtend(const SCEVAddRecExpr *AR, Type *Ty,
1377                                         ScalarEvolution *SE, unsigned Depth) {
1378   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1379   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1380 
1381   const Loop *L = AR->getLoop();
1382   const SCEV *Start = AR->getStart();
1383   const SCEV *Step = AR->getStepRecurrence(*SE);
1384 
1385   // Check for a simple looking step prior to loop entry.
1386   const SCEVAddExpr *SA = dyn_cast<SCEVAddExpr>(Start);
1387   if (!SA)
1388     return nullptr;
1389 
1390   // Create an AddExpr for "PreStart" after subtracting Step. Full SCEV
1391   // subtraction is expensive. For this purpose, perform a quick and dirty
1392   // difference, by checking for Step in the operand list.
1393   SmallVector<const SCEV *, 4> DiffOps;
1394   for (const SCEV *Op : SA->operands())
1395     if (Op != Step)
1396       DiffOps.push_back(Op);
1397 
1398   if (DiffOps.size() == SA->getNumOperands())
1399     return nullptr;
1400 
1401   // Try to prove `WrapType` (SCEV::FlagNSW or SCEV::FlagNUW) on `PreStart` +
1402   // `Step`:
1403 
1404   // 1. NSW/NUW flags on the step increment.
1405   auto PreStartFlags =
1406     ScalarEvolution::maskFlags(SA->getNoWrapFlags(), SCEV::FlagNUW);
1407   const SCEV *PreStart = SE->getAddExpr(DiffOps, PreStartFlags);
1408   const SCEVAddRecExpr *PreAR = dyn_cast<SCEVAddRecExpr>(
1409       SE->getAddRecExpr(PreStart, Step, L, SCEV::FlagAnyWrap));
1410 
1411   // "{S,+,X} is <nsw>/<nuw>" and "the backedge is taken at least once" implies
1412   // "S+X does not sign/unsign-overflow".
1413   //
1414 
1415   const SCEV *BECount = SE->getBackedgeTakenCount(L);
1416   if (PreAR && PreAR->getNoWrapFlags(WrapType) &&
1417       !isa<SCEVCouldNotCompute>(BECount) && SE->isKnownPositive(BECount))
1418     return PreStart;
1419 
1420   // 2. Direct overflow check on the step operation's expression.
1421   unsigned BitWidth = SE->getTypeSizeInBits(AR->getType());
1422   Type *WideTy = IntegerType::get(SE->getContext(), BitWidth * 2);
1423   const SCEV *OperandExtendedStart =
1424       SE->getAddExpr((SE->*GetExtendExpr)(PreStart, WideTy, Depth),
1425                      (SE->*GetExtendExpr)(Step, WideTy, Depth));
1426   if ((SE->*GetExtendExpr)(Start, WideTy, Depth) == OperandExtendedStart) {
1427     if (PreAR && AR->getNoWrapFlags(WrapType)) {
1428       // If we know `AR` == {`PreStart`+`Step`,+,`Step`} is `WrapType` (FlagNSW
1429       // or FlagNUW) and that `PreStart` + `Step` is `WrapType` too, then
1430       // `PreAR` == {`PreStart`,+,`Step`} is also `WrapType`.  Cache this fact.
1431       SE->setNoWrapFlags(const_cast<SCEVAddRecExpr *>(PreAR), WrapType);
1432     }
1433     return PreStart;
1434   }
1435 
1436   // 3. Loop precondition.
1437   ICmpInst::Predicate Pred;
1438   const SCEV *OverflowLimit =
1439       ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(Step, &Pred, SE);
1440 
1441   if (OverflowLimit &&
1442       SE->isLoopEntryGuardedByCond(L, Pred, PreStart, OverflowLimit))
1443     return PreStart;
1444 
1445   return nullptr;
1446 }
1447 
1448 // Get the normalized zero or sign extended expression for this AddRec's Start.
1449 template <typename ExtendOpTy>
1450 static const SCEV *getExtendAddRecStart(const SCEVAddRecExpr *AR, Type *Ty,
1451                                         ScalarEvolution *SE,
1452                                         unsigned Depth) {
1453   auto GetExtendExpr = ExtendOpTraits<ExtendOpTy>::GetExtendExpr;
1454 
1455   const SCEV *PreStart = getPreStartForExtend<ExtendOpTy>(AR, Ty, SE, Depth);
1456   if (!PreStart)
1457     return (SE->*GetExtendExpr)(AR->getStart(), Ty, Depth);
1458 
1459   return SE->getAddExpr((SE->*GetExtendExpr)(AR->getStepRecurrence(*SE), Ty,
1460                                              Depth),
1461                         (SE->*GetExtendExpr)(PreStart, Ty, Depth));
1462 }
1463 
1464 // Try to prove away overflow by looking at "nearby" add recurrences.  A
1465 // motivating example for this rule: if we know `{0,+,4}` is `ult` `-1` and it
1466 // does not itself wrap then we can conclude that `{1,+,4}` is `nuw`.
1467 //
1468 // Formally:
1469 //
1470 //     {S,+,X} == {S-T,+,X} + T
1471 //  => Ext({S,+,X}) == Ext({S-T,+,X} + T)
1472 //
1473 // If ({S-T,+,X} + T) does not overflow  ... (1)
1474 //
1475 //  RHS == Ext({S-T,+,X} + T) == Ext({S-T,+,X}) + Ext(T)
1476 //
1477 // If {S-T,+,X} does not overflow  ... (2)
1478 //
1479 //  RHS == Ext({S-T,+,X}) + Ext(T) == {Ext(S-T),+,Ext(X)} + Ext(T)
1480 //      == {Ext(S-T)+Ext(T),+,Ext(X)}
1481 //
1482 // If (S-T)+T does not overflow  ... (3)
1483 //
1484 //  RHS == {Ext(S-T)+Ext(T),+,Ext(X)} == {Ext(S-T+T),+,Ext(X)}
1485 //      == {Ext(S),+,Ext(X)} == LHS
1486 //
1487 // Thus, if (1), (2) and (3) are true for some T, then
1488 //   Ext({S,+,X}) == {Ext(S),+,Ext(X)}
1489 //
1490 // (3) is implied by (1) -- "(S-T)+T does not overflow" is simply "({S-T,+,X}+T)
1491 // does not overflow" restricted to the 0th iteration.  Therefore we only need
1492 // to check for (1) and (2).
1493 //
1494 // In the current context, S is `Start`, X is `Step`, Ext is `ExtendOpTy` and T
1495 // is `Delta` (defined below).
1496 template <typename ExtendOpTy>
1497 bool ScalarEvolution::proveNoWrapByVaryingStart(const SCEV *Start,
1498                                                 const SCEV *Step,
1499                                                 const Loop *L) {
1500   auto WrapType = ExtendOpTraits<ExtendOpTy>::WrapType;
1501 
1502   // We restrict `Start` to a constant to prevent SCEV from spending too much
1503   // time here.  It is correct (but more expensive) to continue with a
1504   // non-constant `Start` and do a general SCEV subtraction to compute
1505   // `PreStart` below.
1506   const SCEVConstant *StartC = dyn_cast<SCEVConstant>(Start);
1507   if (!StartC)
1508     return false;
1509 
1510   APInt StartAI = StartC->getAPInt();
1511 
1512   for (unsigned Delta : {-2, -1, 1, 2}) {
1513     const SCEV *PreStart = getConstant(StartAI - Delta);
1514 
1515     FoldingSetNodeID ID;
1516     ID.AddInteger(scAddRecExpr);
1517     ID.AddPointer(PreStart);
1518     ID.AddPointer(Step);
1519     ID.AddPointer(L);
1520     void *IP = nullptr;
1521     const auto *PreAR =
1522       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
1523 
1524     // Give up if we don't already have the add recurrence we need because
1525     // actually constructing an add recurrence is relatively expensive.
1526     if (PreAR && PreAR->getNoWrapFlags(WrapType)) {  // proves (2)
1527       const SCEV *DeltaS = getConstant(StartC->getType(), Delta);
1528       ICmpInst::Predicate Pred = ICmpInst::BAD_ICMP_PREDICATE;
1529       const SCEV *Limit = ExtendOpTraits<ExtendOpTy>::getOverflowLimitForStep(
1530           DeltaS, &Pred, this);
1531       if (Limit && isKnownPredicate(Pred, PreAR, Limit))  // proves (1)
1532         return true;
1533     }
1534   }
1535 
1536   return false;
1537 }
1538 
1539 // Finds an integer D for an expression (C + x + y + ...) such that the top
1540 // level addition in (D + (C - D + x + y + ...)) would not wrap (signed or
1541 // unsigned) and the number of trailing zeros of (C - D + x + y + ...) is
1542 // maximized, where C is the \p ConstantTerm, x, y, ... are arbitrary SCEVs, and
1543 // the (C + x + y + ...) expression is \p WholeAddExpr.
1544 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1545                                             const SCEVConstant *ConstantTerm,
1546                                             const SCEVAddExpr *WholeAddExpr) {
1547   const APInt &C = ConstantTerm->getAPInt();
1548   const unsigned BitWidth = C.getBitWidth();
1549   // Find number of trailing zeros of (x + y + ...) w/o the C first:
1550   uint32_t TZ = BitWidth;
1551   for (unsigned I = 1, E = WholeAddExpr->getNumOperands(); I < E && TZ; ++I)
1552     TZ = std::min(TZ, SE.GetMinTrailingZeros(WholeAddExpr->getOperand(I)));
1553   if (TZ) {
1554     // Set D to be as many least significant bits of C as possible while still
1555     // guaranteeing that adding D to (C - D + x + y + ...) won't cause a wrap:
1556     return TZ < BitWidth ? C.trunc(TZ).zext(BitWidth) : C;
1557   }
1558   return APInt(BitWidth, 0);
1559 }
1560 
1561 // Finds an integer D for an affine AddRec expression {C,+,x} such that the top
1562 // level addition in (D + {C-D,+,x}) would not wrap (signed or unsigned) and the
1563 // number of trailing zeros of (C - D + x * n) is maximized, where C is the \p
1564 // ConstantStart, x is an arbitrary \p Step, and n is the loop trip count.
1565 static APInt extractConstantWithoutWrapping(ScalarEvolution &SE,
1566                                             const APInt &ConstantStart,
1567                                             const SCEV *Step) {
1568   const unsigned BitWidth = ConstantStart.getBitWidth();
1569   const uint32_t TZ = SE.GetMinTrailingZeros(Step);
1570   if (TZ)
1571     return TZ < BitWidth ? ConstantStart.trunc(TZ).zext(BitWidth)
1572                          : ConstantStart;
1573   return APInt(BitWidth, 0);
1574 }
1575 
1576 const SCEV *
1577 ScalarEvolution::getZeroExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1578   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1579          "This is not an extending conversion!");
1580   assert(isSCEVable(Ty) &&
1581          "This is not a conversion to a SCEVable type!");
1582   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1583   Ty = getEffectiveSCEVType(Ty);
1584 
1585   // Fold if the operand is constant.
1586   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1587     return getConstant(
1588       cast<ConstantInt>(ConstantExpr::getZExt(SC->getValue(), Ty)));
1589 
1590   // zext(zext(x)) --> zext(x)
1591   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1592     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1593 
1594   // Before doing any expensive analysis, check to see if we've already
1595   // computed a SCEV for this Op and Ty.
1596   FoldingSetNodeID ID;
1597   ID.AddInteger(scZeroExtend);
1598   ID.AddPointer(Op);
1599   ID.AddPointer(Ty);
1600   void *IP = nullptr;
1601   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1602   if (Depth > MaxCastDepth) {
1603     SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1604                                                      Op, Ty);
1605     UniqueSCEVs.InsertNode(S, IP);
1606     addToLoopUseLists(S);
1607     return S;
1608   }
1609 
1610   // zext(trunc(x)) --> zext(x) or x or trunc(x)
1611   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1612     // It's possible the bits taken off by the truncate were all zero bits. If
1613     // so, we should be able to simplify this further.
1614     const SCEV *X = ST->getOperand();
1615     ConstantRange CR = getUnsignedRange(X);
1616     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1617     unsigned NewBits = getTypeSizeInBits(Ty);
1618     if (CR.truncate(TruncBits).zeroExtend(NewBits).contains(
1619             CR.zextOrTrunc(NewBits)))
1620       return getTruncateOrZeroExtend(X, Ty, Depth);
1621   }
1622 
1623   // If the input value is a chrec scev, and we can prove that the value
1624   // did not overflow the old, smaller, value, we can zero extend all of the
1625   // operands (often constants).  This allows analysis of something like
1626   // this:  for (unsigned char X = 0; X < 100; ++X) { int Y = X; }
1627   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1628     if (AR->isAffine()) {
1629       const SCEV *Start = AR->getStart();
1630       const SCEV *Step = AR->getStepRecurrence(*this);
1631       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1632       const Loop *L = AR->getLoop();
1633 
1634       if (!AR->hasNoUnsignedWrap()) {
1635         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1636         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1637       }
1638 
1639       // If we have special knowledge that this addrec won't overflow,
1640       // we don't need to do any further analysis.
1641       if (AR->hasNoUnsignedWrap())
1642         return getAddRecExpr(
1643             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1644             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1645 
1646       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1647       // Note that this serves two purposes: It filters out loops that are
1648       // simply not analyzable, and it covers the case where this code is
1649       // being called from within backedge-taken count analysis, such that
1650       // attempting to ask for the backedge-taken count would likely result
1651       // in infinite recursion. In the later case, the analysis code will
1652       // cope with a conservative value, and it will take care to purge
1653       // that value once it has finished.
1654       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1655       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1656         // Manually compute the final value for AR, checking for overflow.
1657 
1658         // Check whether the backedge-taken count can be losslessly casted to
1659         // the addrec's type. The count is always unsigned.
1660         const SCEV *CastedMaxBECount =
1661             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
1662         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
1663             CastedMaxBECount, MaxBECount->getType(), Depth);
1664         if (MaxBECount == RecastedMaxBECount) {
1665           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
1666           // Check whether Start+Step*MaxBECount has no unsigned overflow.
1667           const SCEV *ZMul = getMulExpr(CastedMaxBECount, Step,
1668                                         SCEV::FlagAnyWrap, Depth + 1);
1669           const SCEV *ZAdd = getZeroExtendExpr(getAddExpr(Start, ZMul,
1670                                                           SCEV::FlagAnyWrap,
1671                                                           Depth + 1),
1672                                                WideTy, Depth + 1);
1673           const SCEV *WideStart = getZeroExtendExpr(Start, WideTy, Depth + 1);
1674           const SCEV *WideMaxBECount =
1675             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
1676           const SCEV *OperandExtendedAdd =
1677             getAddExpr(WideStart,
1678                        getMulExpr(WideMaxBECount,
1679                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
1680                                   SCEV::FlagAnyWrap, Depth + 1),
1681                        SCEV::FlagAnyWrap, Depth + 1);
1682           if (ZAdd == OperandExtendedAdd) {
1683             // Cache knowledge of AR NUW, which is propagated to this AddRec.
1684             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1685             // Return the expression with the addrec on the outside.
1686             return getAddRecExpr(
1687                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1688                                                          Depth + 1),
1689                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1690                 AR->getNoWrapFlags());
1691           }
1692           // Similar to above, only this time treat the step value as signed.
1693           // This covers loops that count down.
1694           OperandExtendedAdd =
1695             getAddExpr(WideStart,
1696                        getMulExpr(WideMaxBECount,
1697                                   getSignExtendExpr(Step, WideTy, Depth + 1),
1698                                   SCEV::FlagAnyWrap, Depth + 1),
1699                        SCEV::FlagAnyWrap, Depth + 1);
1700           if (ZAdd == OperandExtendedAdd) {
1701             // Cache knowledge of AR NW, which is propagated to this AddRec.
1702             // Negative step causes unsigned wrap, but it still can't self-wrap.
1703             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1704             // Return the expression with the addrec on the outside.
1705             return getAddRecExpr(
1706                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1707                                                          Depth + 1),
1708                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1709                 AR->getNoWrapFlags());
1710           }
1711         }
1712       }
1713 
1714       // Normally, in the cases we can prove no-overflow via a
1715       // backedge guarding condition, we can also compute a backedge
1716       // taken count for the loop.  The exceptions are assumptions and
1717       // guards present in the loop -- SCEV is not great at exploiting
1718       // these to compute max backedge taken counts, but can still use
1719       // these to prove lack of overflow.  Use this fact to avoid
1720       // doing extra work that may not pay off.
1721       if (!isa<SCEVCouldNotCompute>(MaxBECount) || HasGuards ||
1722           !AC.assumptions().empty()) {
1723 
1724         auto NewFlags = proveNoUnsignedWrapViaInduction(AR);
1725         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1726         if (AR->hasNoUnsignedWrap()) {
1727           // Same as nuw case above - duplicated here to avoid a compile time
1728           // issue.  It's not clear that the order of checks does matter, but
1729           // it's one of two issue possible causes for a change which was
1730           // reverted.  Be conservative for the moment.
1731           return getAddRecExpr(
1732                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1733                                                          Depth + 1),
1734                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
1735                 AR->getNoWrapFlags());
1736         }
1737 
1738         // For a negative step, we can extend the operands iff doing so only
1739         // traverses values in the range zext([0,UINT_MAX]).
1740         if (isKnownNegative(Step)) {
1741           const SCEV *N = getConstant(APInt::getMaxValue(BitWidth) -
1742                                       getSignedRangeMin(Step));
1743           if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_UGT, AR, N) ||
1744               isKnownOnEveryIteration(ICmpInst::ICMP_UGT, AR, N)) {
1745             // Cache knowledge of AR NW, which is propagated to this
1746             // AddRec.  Negative step causes unsigned wrap, but it
1747             // still can't self-wrap.
1748             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
1749             // Return the expression with the addrec on the outside.
1750             return getAddRecExpr(
1751                 getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this,
1752                                                          Depth + 1),
1753                 getSignExtendExpr(Step, Ty, Depth + 1), L,
1754                 AR->getNoWrapFlags());
1755           }
1756         }
1757       }
1758 
1759       // zext({C,+,Step}) --> (zext(D) + zext({C-D,+,Step}))<nuw><nsw>
1760       // if D + (C - D + Step * n) could be proven to not unsigned wrap
1761       // where D maximizes the number of trailing zeros of (C - D + Step * n)
1762       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
1763         const APInt &C = SC->getAPInt();
1764         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
1765         if (D != 0) {
1766           const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1767           const SCEV *SResidual =
1768               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
1769           const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1770           return getAddExpr(SZExtD, SZExtR,
1771                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1772                             Depth + 1);
1773         }
1774       }
1775 
1776       if (proveNoWrapByVaryingStart<SCEVZeroExtendExpr>(Start, Step, L)) {
1777         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNUW);
1778         return getAddRecExpr(
1779             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, Depth + 1),
1780             getZeroExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
1781       }
1782     }
1783 
1784   // zext(A % B) --> zext(A) % zext(B)
1785   {
1786     const SCEV *LHS;
1787     const SCEV *RHS;
1788     if (matchURem(Op, LHS, RHS))
1789       return getURemExpr(getZeroExtendExpr(LHS, Ty, Depth + 1),
1790                          getZeroExtendExpr(RHS, Ty, Depth + 1));
1791   }
1792 
1793   // zext(A / B) --> zext(A) / zext(B).
1794   if (auto *Div = dyn_cast<SCEVUDivExpr>(Op))
1795     return getUDivExpr(getZeroExtendExpr(Div->getLHS(), Ty, Depth + 1),
1796                        getZeroExtendExpr(Div->getRHS(), Ty, Depth + 1));
1797 
1798   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1799     // zext((A + B + ...)<nuw>) --> (zext(A) + zext(B) + ...)<nuw>
1800     if (SA->hasNoUnsignedWrap()) {
1801       // If the addition does not unsign overflow then we can, by definition,
1802       // commute the zero extension with the addition operation.
1803       SmallVector<const SCEV *, 4> Ops;
1804       for (const auto *Op : SA->operands())
1805         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1806       return getAddExpr(Ops, SCEV::FlagNUW, Depth + 1);
1807     }
1808 
1809     // zext(C + x + y + ...) --> (zext(D) + zext((C - D) + x + y + ...))
1810     // if D + (C - D + x + y + ...) could be proven to not unsigned wrap
1811     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1812     //
1813     // Often address arithmetics contain expressions like
1814     // (zext (add (shl X, C1), C2)), for instance, (zext (5 + (4 * X))).
1815     // This transformation is useful while proving that such expressions are
1816     // equal or differ by a small constant amount, see LoadStoreVectorizer pass.
1817     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1818       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1819       if (D != 0) {
1820         const SCEV *SZExtD = getZeroExtendExpr(getConstant(D), Ty, Depth);
1821         const SCEV *SResidual =
1822             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1823         const SCEV *SZExtR = getZeroExtendExpr(SResidual, Ty, Depth + 1);
1824         return getAddExpr(SZExtD, SZExtR,
1825                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1826                           Depth + 1);
1827       }
1828     }
1829   }
1830 
1831   if (auto *SM = dyn_cast<SCEVMulExpr>(Op)) {
1832     // zext((A * B * ...)<nuw>) --> (zext(A) * zext(B) * ...)<nuw>
1833     if (SM->hasNoUnsignedWrap()) {
1834       // If the multiply does not unsign overflow then we can, by definition,
1835       // commute the zero extension with the multiply operation.
1836       SmallVector<const SCEV *, 4> Ops;
1837       for (const auto *Op : SM->operands())
1838         Ops.push_back(getZeroExtendExpr(Op, Ty, Depth + 1));
1839       return getMulExpr(Ops, SCEV::FlagNUW, Depth + 1);
1840     }
1841 
1842     // zext(2^K * (trunc X to iN)) to iM ->
1843     // 2^K * (zext(trunc X to i{N-K}) to iM)<nuw>
1844     //
1845     // Proof:
1846     //
1847     //     zext(2^K * (trunc X to iN)) to iM
1848     //   = zext((trunc X to iN) << K) to iM
1849     //   = zext((trunc X to i{N-K}) << K)<nuw> to iM
1850     //     (because shl removes the top K bits)
1851     //   = zext((2^K * (trunc X to i{N-K}))<nuw>) to iM
1852     //   = (2^K * (zext(trunc X to i{N-K}) to iM))<nuw>.
1853     //
1854     if (SM->getNumOperands() == 2)
1855       if (auto *MulLHS = dyn_cast<SCEVConstant>(SM->getOperand(0)))
1856         if (MulLHS->getAPInt().isPowerOf2())
1857           if (auto *TruncRHS = dyn_cast<SCEVTruncateExpr>(SM->getOperand(1))) {
1858             int NewTruncBits = getTypeSizeInBits(TruncRHS->getType()) -
1859                                MulLHS->getAPInt().logBase2();
1860             Type *NewTruncTy = IntegerType::get(getContext(), NewTruncBits);
1861             return getMulExpr(
1862                 getZeroExtendExpr(MulLHS, Ty),
1863                 getZeroExtendExpr(
1864                     getTruncateExpr(TruncRHS->getOperand(), NewTruncTy), Ty),
1865                 SCEV::FlagNUW, Depth + 1);
1866           }
1867   }
1868 
1869   // The cast wasn't folded; create an explicit cast node.
1870   // Recompute the insert position, as it may have been invalidated.
1871   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1872   SCEV *S = new (SCEVAllocator) SCEVZeroExtendExpr(ID.Intern(SCEVAllocator),
1873                                                    Op, Ty);
1874   UniqueSCEVs.InsertNode(S, IP);
1875   addToLoopUseLists(S);
1876   return S;
1877 }
1878 
1879 const SCEV *
1880 ScalarEvolution::getSignExtendExpr(const SCEV *Op, Type *Ty, unsigned Depth) {
1881   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
1882          "This is not an extending conversion!");
1883   assert(isSCEVable(Ty) &&
1884          "This is not a conversion to a SCEVable type!");
1885   assert(!Op->getType()->isPointerTy() && "Can't extend pointer!");
1886   Ty = getEffectiveSCEVType(Ty);
1887 
1888   // Fold if the operand is constant.
1889   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
1890     return getConstant(
1891       cast<ConstantInt>(ConstantExpr::getSExt(SC->getValue(), Ty)));
1892 
1893   // sext(sext(x)) --> sext(x)
1894   if (const SCEVSignExtendExpr *SS = dyn_cast<SCEVSignExtendExpr>(Op))
1895     return getSignExtendExpr(SS->getOperand(), Ty, Depth + 1);
1896 
1897   // sext(zext(x)) --> zext(x)
1898   if (const SCEVZeroExtendExpr *SZ = dyn_cast<SCEVZeroExtendExpr>(Op))
1899     return getZeroExtendExpr(SZ->getOperand(), Ty, Depth + 1);
1900 
1901   // Before doing any expensive analysis, check to see if we've already
1902   // computed a SCEV for this Op and Ty.
1903   FoldingSetNodeID ID;
1904   ID.AddInteger(scSignExtend);
1905   ID.AddPointer(Op);
1906   ID.AddPointer(Ty);
1907   void *IP = nullptr;
1908   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
1909   // Limit recursion depth.
1910   if (Depth > MaxCastDepth) {
1911     SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
1912                                                      Op, Ty);
1913     UniqueSCEVs.InsertNode(S, IP);
1914     addToLoopUseLists(S);
1915     return S;
1916   }
1917 
1918   // sext(trunc(x)) --> sext(x) or x or trunc(x)
1919   if (const SCEVTruncateExpr *ST = dyn_cast<SCEVTruncateExpr>(Op)) {
1920     // It's possible the bits taken off by the truncate were all sign bits. If
1921     // so, we should be able to simplify this further.
1922     const SCEV *X = ST->getOperand();
1923     ConstantRange CR = getSignedRange(X);
1924     unsigned TruncBits = getTypeSizeInBits(ST->getType());
1925     unsigned NewBits = getTypeSizeInBits(Ty);
1926     if (CR.truncate(TruncBits).signExtend(NewBits).contains(
1927             CR.sextOrTrunc(NewBits)))
1928       return getTruncateOrSignExtend(X, Ty, Depth);
1929   }
1930 
1931   if (auto *SA = dyn_cast<SCEVAddExpr>(Op)) {
1932     // sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
1933     if (SA->hasNoSignedWrap()) {
1934       // If the addition does not sign overflow then we can, by definition,
1935       // commute the sign extension with the addition operation.
1936       SmallVector<const SCEV *, 4> Ops;
1937       for (const auto *Op : SA->operands())
1938         Ops.push_back(getSignExtendExpr(Op, Ty, Depth + 1));
1939       return getAddExpr(Ops, SCEV::FlagNSW, Depth + 1);
1940     }
1941 
1942     // sext(C + x + y + ...) --> (sext(D) + sext((C - D) + x + y + ...))
1943     // if D + (C - D + x + y + ...) could be proven to not signed wrap
1944     // where D maximizes the number of trailing zeros of (C - D + x + y + ...)
1945     //
1946     // For instance, this will bring two seemingly different expressions:
1947     //     1 + sext(5 + 20 * %x + 24 * %y)  and
1948     //         sext(6 + 20 * %x + 24 * %y)
1949     // to the same form:
1950     //     2 + sext(4 + 20 * %x + 24 * %y)
1951     if (const auto *SC = dyn_cast<SCEVConstant>(SA->getOperand(0))) {
1952       const APInt &D = extractConstantWithoutWrapping(*this, SC, SA);
1953       if (D != 0) {
1954         const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
1955         const SCEV *SResidual =
1956             getAddExpr(getConstant(-D), SA, SCEV::FlagAnyWrap, Depth);
1957         const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
1958         return getAddExpr(SSExtD, SSExtR,
1959                           (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
1960                           Depth + 1);
1961       }
1962     }
1963   }
1964   // If the input value is a chrec scev, and we can prove that the value
1965   // did not overflow the old, smaller, value, we can sign extend all of the
1966   // operands (often constants).  This allows analysis of something like
1967   // this:  for (signed char X = 0; X < 100; ++X) { int Y = X; }
1968   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op))
1969     if (AR->isAffine()) {
1970       const SCEV *Start = AR->getStart();
1971       const SCEV *Step = AR->getStepRecurrence(*this);
1972       unsigned BitWidth = getTypeSizeInBits(AR->getType());
1973       const Loop *L = AR->getLoop();
1974 
1975       if (!AR->hasNoSignedWrap()) {
1976         auto NewFlags = proveNoWrapViaConstantRanges(AR);
1977         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
1978       }
1979 
1980       // If we have special knowledge that this addrec won't overflow,
1981       // we don't need to do any further analysis.
1982       if (AR->hasNoSignedWrap())
1983         return getAddRecExpr(
1984             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
1985             getSignExtendExpr(Step, Ty, Depth + 1), L, SCEV::FlagNSW);
1986 
1987       // Check whether the backedge-taken count is SCEVCouldNotCompute.
1988       // Note that this serves two purposes: It filters out loops that are
1989       // simply not analyzable, and it covers the case where this code is
1990       // being called from within backedge-taken count analysis, such that
1991       // attempting to ask for the backedge-taken count would likely result
1992       // in infinite recursion. In the later case, the analysis code will
1993       // cope with a conservative value, and it will take care to purge
1994       // that value once it has finished.
1995       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
1996       if (!isa<SCEVCouldNotCompute>(MaxBECount)) {
1997         // Manually compute the final value for AR, checking for
1998         // overflow.
1999 
2000         // Check whether the backedge-taken count can be losslessly casted to
2001         // the addrec's type. The count is always unsigned.
2002         const SCEV *CastedMaxBECount =
2003             getTruncateOrZeroExtend(MaxBECount, Start->getType(), Depth);
2004         const SCEV *RecastedMaxBECount = getTruncateOrZeroExtend(
2005             CastedMaxBECount, MaxBECount->getType(), Depth);
2006         if (MaxBECount == RecastedMaxBECount) {
2007           Type *WideTy = IntegerType::get(getContext(), BitWidth * 2);
2008           // Check whether Start+Step*MaxBECount has no signed overflow.
2009           const SCEV *SMul = getMulExpr(CastedMaxBECount, Step,
2010                                         SCEV::FlagAnyWrap, Depth + 1);
2011           const SCEV *SAdd = getSignExtendExpr(getAddExpr(Start, SMul,
2012                                                           SCEV::FlagAnyWrap,
2013                                                           Depth + 1),
2014                                                WideTy, Depth + 1);
2015           const SCEV *WideStart = getSignExtendExpr(Start, WideTy, Depth + 1);
2016           const SCEV *WideMaxBECount =
2017             getZeroExtendExpr(CastedMaxBECount, WideTy, Depth + 1);
2018           const SCEV *OperandExtendedAdd =
2019             getAddExpr(WideStart,
2020                        getMulExpr(WideMaxBECount,
2021                                   getSignExtendExpr(Step, WideTy, Depth + 1),
2022                                   SCEV::FlagAnyWrap, Depth + 1),
2023                        SCEV::FlagAnyWrap, Depth + 1);
2024           if (SAdd == OperandExtendedAdd) {
2025             // Cache knowledge of AR NSW, which is propagated to this AddRec.
2026             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2027             // Return the expression with the addrec on the outside.
2028             return getAddRecExpr(
2029                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2030                                                          Depth + 1),
2031                 getSignExtendExpr(Step, Ty, Depth + 1), L,
2032                 AR->getNoWrapFlags());
2033           }
2034           // Similar to above, only this time treat the step value as unsigned.
2035           // This covers loops that count up with an unsigned step.
2036           OperandExtendedAdd =
2037             getAddExpr(WideStart,
2038                        getMulExpr(WideMaxBECount,
2039                                   getZeroExtendExpr(Step, WideTy, Depth + 1),
2040                                   SCEV::FlagAnyWrap, Depth + 1),
2041                        SCEV::FlagAnyWrap, Depth + 1);
2042           if (SAdd == OperandExtendedAdd) {
2043             // If AR wraps around then
2044             //
2045             //    abs(Step) * MaxBECount > unsigned-max(AR->getType())
2046             // => SAdd != OperandExtendedAdd
2047             //
2048             // Thus (AR is not NW => SAdd != OperandExtendedAdd) <=>
2049             // (SAdd == OperandExtendedAdd => AR is NW)
2050 
2051             setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNW);
2052 
2053             // Return the expression with the addrec on the outside.
2054             return getAddRecExpr(
2055                 getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this,
2056                                                          Depth + 1),
2057                 getZeroExtendExpr(Step, Ty, Depth + 1), L,
2058                 AR->getNoWrapFlags());
2059           }
2060         }
2061       }
2062 
2063       auto NewFlags = proveNoSignedWrapViaInduction(AR);
2064       setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), NewFlags);
2065       if (AR->hasNoSignedWrap()) {
2066         // Same as nsw case above - duplicated here to avoid a compile time
2067         // issue.  It's not clear that the order of checks does matter, but
2068         // it's one of two issue possible causes for a change which was
2069         // reverted.  Be conservative for the moment.
2070         return getAddRecExpr(
2071             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2072             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2073       }
2074 
2075       // sext({C,+,Step}) --> (sext(D) + sext({C-D,+,Step}))<nuw><nsw>
2076       // if D + (C - D + Step * n) could be proven to not signed wrap
2077       // where D maximizes the number of trailing zeros of (C - D + Step * n)
2078       if (const auto *SC = dyn_cast<SCEVConstant>(Start)) {
2079         const APInt &C = SC->getAPInt();
2080         const APInt &D = extractConstantWithoutWrapping(*this, C, Step);
2081         if (D != 0) {
2082           const SCEV *SSExtD = getSignExtendExpr(getConstant(D), Ty, Depth);
2083           const SCEV *SResidual =
2084               getAddRecExpr(getConstant(C - D), Step, L, AR->getNoWrapFlags());
2085           const SCEV *SSExtR = getSignExtendExpr(SResidual, Ty, Depth + 1);
2086           return getAddExpr(SSExtD, SSExtR,
2087                             (SCEV::NoWrapFlags)(SCEV::FlagNSW | SCEV::FlagNUW),
2088                             Depth + 1);
2089         }
2090       }
2091 
2092       if (proveNoWrapByVaryingStart<SCEVSignExtendExpr>(Start, Step, L)) {
2093         setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), SCEV::FlagNSW);
2094         return getAddRecExpr(
2095             getExtendAddRecStart<SCEVSignExtendExpr>(AR, Ty, this, Depth + 1),
2096             getSignExtendExpr(Step, Ty, Depth + 1), L, AR->getNoWrapFlags());
2097       }
2098     }
2099 
2100   // If the input value is provably positive and we could not simplify
2101   // away the sext build a zext instead.
2102   if (isKnownNonNegative(Op))
2103     return getZeroExtendExpr(Op, Ty, Depth + 1);
2104 
2105   // The cast wasn't folded; create an explicit cast node.
2106   // Recompute the insert position, as it may have been invalidated.
2107   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
2108   SCEV *S = new (SCEVAllocator) SCEVSignExtendExpr(ID.Intern(SCEVAllocator),
2109                                                    Op, Ty);
2110   UniqueSCEVs.InsertNode(S, IP);
2111   addToLoopUseLists(S);
2112   return S;
2113 }
2114 
2115 /// getAnyExtendExpr - Return a SCEV for the given operand extended with
2116 /// unspecified bits out to the given type.
2117 const SCEV *ScalarEvolution::getAnyExtendExpr(const SCEV *Op,
2118                                               Type *Ty) {
2119   assert(getTypeSizeInBits(Op->getType()) < getTypeSizeInBits(Ty) &&
2120          "This is not an extending conversion!");
2121   assert(isSCEVable(Ty) &&
2122          "This is not a conversion to a SCEVable type!");
2123   Ty = getEffectiveSCEVType(Ty);
2124 
2125   // Sign-extend negative constants.
2126   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(Op))
2127     if (SC->getAPInt().isNegative())
2128       return getSignExtendExpr(Op, Ty);
2129 
2130   // Peel off a truncate cast.
2131   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Op)) {
2132     const SCEV *NewOp = T->getOperand();
2133     if (getTypeSizeInBits(NewOp->getType()) < getTypeSizeInBits(Ty))
2134       return getAnyExtendExpr(NewOp, Ty);
2135     return getTruncateOrNoop(NewOp, Ty);
2136   }
2137 
2138   // Next try a zext cast. If the cast is folded, use it.
2139   const SCEV *ZExt = getZeroExtendExpr(Op, Ty);
2140   if (!isa<SCEVZeroExtendExpr>(ZExt))
2141     return ZExt;
2142 
2143   // Next try a sext cast. If the cast is folded, use it.
2144   const SCEV *SExt = getSignExtendExpr(Op, Ty);
2145   if (!isa<SCEVSignExtendExpr>(SExt))
2146     return SExt;
2147 
2148   // Force the cast to be folded into the operands of an addrec.
2149   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Op)) {
2150     SmallVector<const SCEV *, 4> Ops;
2151     for (const SCEV *Op : AR->operands())
2152       Ops.push_back(getAnyExtendExpr(Op, Ty));
2153     return getAddRecExpr(Ops, AR->getLoop(), SCEV::FlagNW);
2154   }
2155 
2156   // If the expression is obviously signed, use the sext cast value.
2157   if (isa<SCEVSMaxExpr>(Op))
2158     return SExt;
2159 
2160   // Absent any other information, use the zext cast value.
2161   return ZExt;
2162 }
2163 
2164 /// Process the given Ops list, which is a list of operands to be added under
2165 /// the given scale, update the given map. This is a helper function for
2166 /// getAddRecExpr. As an example of what it does, given a sequence of operands
2167 /// that would form an add expression like this:
2168 ///
2169 ///    m + n + 13 + (A * (o + p + (B * (q + m + 29)))) + r + (-1 * r)
2170 ///
2171 /// where A and B are constants, update the map with these values:
2172 ///
2173 ///    (m, 1+A*B), (n, 1), (o, A), (p, A), (q, A*B), (r, 0)
2174 ///
2175 /// and add 13 + A*B*29 to AccumulatedConstant.
2176 /// This will allow getAddRecExpr to produce this:
2177 ///
2178 ///    13+A*B*29 + n + (m * (1+A*B)) + ((o + p) * A) + (q * A*B)
2179 ///
2180 /// This form often exposes folding opportunities that are hidden in
2181 /// the original operand list.
2182 ///
2183 /// Return true iff it appears that any interesting folding opportunities
2184 /// may be exposed. This helps getAddRecExpr short-circuit extra work in
2185 /// the common case where no interesting opportunities are present, and
2186 /// is also used as a check to avoid infinite recursion.
2187 static bool
2188 CollectAddOperandsWithScales(DenseMap<const SCEV *, APInt> &M,
2189                              SmallVectorImpl<const SCEV *> &NewOps,
2190                              APInt &AccumulatedConstant,
2191                              const SCEV *const *Ops, size_t NumOperands,
2192                              const APInt &Scale,
2193                              ScalarEvolution &SE) {
2194   bool Interesting = false;
2195 
2196   // Iterate over the add operands. They are sorted, with constants first.
2197   unsigned i = 0;
2198   while (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2199     ++i;
2200     // Pull a buried constant out to the outside.
2201     if (Scale != 1 || AccumulatedConstant != 0 || C->getValue()->isZero())
2202       Interesting = true;
2203     AccumulatedConstant += Scale * C->getAPInt();
2204   }
2205 
2206   // Next comes everything else. We're especially interested in multiplies
2207   // here, but they're in the middle, so just visit the rest with one loop.
2208   for (; i != NumOperands; ++i) {
2209     const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[i]);
2210     if (Mul && isa<SCEVConstant>(Mul->getOperand(0))) {
2211       APInt NewScale =
2212           Scale * cast<SCEVConstant>(Mul->getOperand(0))->getAPInt();
2213       if (Mul->getNumOperands() == 2 && isa<SCEVAddExpr>(Mul->getOperand(1))) {
2214         // A multiplication of a constant with another add; recurse.
2215         const SCEVAddExpr *Add = cast<SCEVAddExpr>(Mul->getOperand(1));
2216         Interesting |=
2217           CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2218                                        Add->op_begin(), Add->getNumOperands(),
2219                                        NewScale, SE);
2220       } else {
2221         // A multiplication of a constant with some other value. Update
2222         // the map.
2223         SmallVector<const SCEV *, 4> MulOps(drop_begin(Mul->operands()));
2224         const SCEV *Key = SE.getMulExpr(MulOps);
2225         auto Pair = M.insert({Key, NewScale});
2226         if (Pair.second) {
2227           NewOps.push_back(Pair.first->first);
2228         } else {
2229           Pair.first->second += NewScale;
2230           // The map already had an entry for this value, which may indicate
2231           // a folding opportunity.
2232           Interesting = true;
2233         }
2234       }
2235     } else {
2236       // An ordinary operand. Update the map.
2237       std::pair<DenseMap<const SCEV *, APInt>::iterator, bool> Pair =
2238           M.insert({Ops[i], Scale});
2239       if (Pair.second) {
2240         NewOps.push_back(Pair.first->first);
2241       } else {
2242         Pair.first->second += Scale;
2243         // The map already had an entry for this value, which may indicate
2244         // a folding opportunity.
2245         Interesting = true;
2246       }
2247     }
2248   }
2249 
2250   return Interesting;
2251 }
2252 
2253 bool ScalarEvolution::willNotOverflow(Instruction::BinaryOps BinOp, bool Signed,
2254                                       const SCEV *LHS, const SCEV *RHS) {
2255   const SCEV *(ScalarEvolution::*Operation)(const SCEV *, const SCEV *,
2256                                             SCEV::NoWrapFlags, unsigned);
2257   switch (BinOp) {
2258   default:
2259     llvm_unreachable("Unsupported binary op");
2260   case Instruction::Add:
2261     Operation = &ScalarEvolution::getAddExpr;
2262     break;
2263   case Instruction::Sub:
2264     Operation = &ScalarEvolution::getMinusSCEV;
2265     break;
2266   case Instruction::Mul:
2267     Operation = &ScalarEvolution::getMulExpr;
2268     break;
2269   }
2270 
2271   const SCEV *(ScalarEvolution::*Extension)(const SCEV *, Type *, unsigned) =
2272       Signed ? &ScalarEvolution::getSignExtendExpr
2273              : &ScalarEvolution::getZeroExtendExpr;
2274 
2275   // Check ext(LHS op RHS) == ext(LHS) op ext(RHS)
2276   auto *NarrowTy = cast<IntegerType>(LHS->getType());
2277   auto *WideTy =
2278       IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);
2279 
2280   const SCEV *A = (this->*Extension)(
2281       (this->*Operation)(LHS, RHS, SCEV::FlagAnyWrap, 0), WideTy, 0);
2282   const SCEV *B = (this->*Operation)((this->*Extension)(LHS, WideTy, 0),
2283                                      (this->*Extension)(RHS, WideTy, 0),
2284                                      SCEV::FlagAnyWrap, 0);
2285   return A == B;
2286 }
2287 
2288 std::pair<SCEV::NoWrapFlags, bool /*Deduced*/>
2289 ScalarEvolution::getStrengthenedNoWrapFlagsFromBinOp(
2290     const OverflowingBinaryOperator *OBO) {
2291   SCEV::NoWrapFlags Flags = SCEV::NoWrapFlags::FlagAnyWrap;
2292 
2293   if (OBO->hasNoUnsignedWrap())
2294     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2295   if (OBO->hasNoSignedWrap())
2296     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2297 
2298   bool Deduced = false;
2299 
2300   if (OBO->hasNoUnsignedWrap() && OBO->hasNoSignedWrap())
2301     return {Flags, Deduced};
2302 
2303   if (OBO->getOpcode() != Instruction::Add &&
2304       OBO->getOpcode() != Instruction::Sub &&
2305       OBO->getOpcode() != Instruction::Mul)
2306     return {Flags, Deduced};
2307 
2308   const SCEV *LHS = getSCEV(OBO->getOperand(0));
2309   const SCEV *RHS = getSCEV(OBO->getOperand(1));
2310 
2311   if (!OBO->hasNoUnsignedWrap() &&
2312       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2313                       /* Signed */ false, LHS, RHS)) {
2314     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2315     Deduced = true;
2316   }
2317 
2318   if (!OBO->hasNoSignedWrap() &&
2319       willNotOverflow((Instruction::BinaryOps)OBO->getOpcode(),
2320                       /* Signed */ true, LHS, RHS)) {
2321     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2322     Deduced = true;
2323   }
2324 
2325   return {Flags, Deduced};
2326 }
2327 
2328 // We're trying to construct a SCEV of type `Type' with `Ops' as operands and
2329 // `OldFlags' as can't-wrap behavior.  Infer a more aggressive set of
2330 // can't-overflow flags for the operation if possible.
2331 static SCEV::NoWrapFlags
2332 StrengthenNoWrapFlags(ScalarEvolution *SE, SCEVTypes Type,
2333                       const ArrayRef<const SCEV *> Ops,
2334                       SCEV::NoWrapFlags Flags) {
2335   using namespace std::placeholders;
2336 
2337   using OBO = OverflowingBinaryOperator;
2338 
2339   bool CanAnalyze =
2340       Type == scAddExpr || Type == scAddRecExpr || Type == scMulExpr;
2341   (void)CanAnalyze;
2342   assert(CanAnalyze && "don't call from other places!");
2343 
2344   int SignOrUnsignMask = SCEV::FlagNUW | SCEV::FlagNSW;
2345   SCEV::NoWrapFlags SignOrUnsignWrap =
2346       ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2347 
2348   // If FlagNSW is true and all the operands are non-negative, infer FlagNUW.
2349   auto IsKnownNonNegative = [&](const SCEV *S) {
2350     return SE->isKnownNonNegative(S);
2351   };
2352 
2353   if (SignOrUnsignWrap == SCEV::FlagNSW && all_of(Ops, IsKnownNonNegative))
2354     Flags =
2355         ScalarEvolution::setFlags(Flags, (SCEV::NoWrapFlags)SignOrUnsignMask);
2356 
2357   SignOrUnsignWrap = ScalarEvolution::maskFlags(Flags, SignOrUnsignMask);
2358 
2359   if (SignOrUnsignWrap != SignOrUnsignMask &&
2360       (Type == scAddExpr || Type == scMulExpr) && Ops.size() == 2 &&
2361       isa<SCEVConstant>(Ops[0])) {
2362 
2363     auto Opcode = [&] {
2364       switch (Type) {
2365       case scAddExpr:
2366         return Instruction::Add;
2367       case scMulExpr:
2368         return Instruction::Mul;
2369       default:
2370         llvm_unreachable("Unexpected SCEV op.");
2371       }
2372     }();
2373 
2374     const APInt &C = cast<SCEVConstant>(Ops[0])->getAPInt();
2375 
2376     // (A <opcode> C) --> (A <opcode> C)<nsw> if the op doesn't sign overflow.
2377     if (!(SignOrUnsignWrap & SCEV::FlagNSW)) {
2378       auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2379           Opcode, C, OBO::NoSignedWrap);
2380       if (NSWRegion.contains(SE->getSignedRange(Ops[1])))
2381         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
2382     }
2383 
2384     // (A <opcode> C) --> (A <opcode> C)<nuw> if the op doesn't unsign overflow.
2385     if (!(SignOrUnsignWrap & SCEV::FlagNUW)) {
2386       auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
2387           Opcode, C, OBO::NoUnsignedWrap);
2388       if (NUWRegion.contains(SE->getUnsignedRange(Ops[1])))
2389         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2390     }
2391   }
2392 
2393   // <0,+,nonnegative><nw> is also nuw
2394   // TODO: Add corresponding nsw case
2395   if (Type == scAddRecExpr && ScalarEvolution::hasFlags(Flags, SCEV::FlagNW) &&
2396       !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) && Ops.size() == 2 &&
2397       Ops[0]->isZero() && IsKnownNonNegative(Ops[1]))
2398     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2399 
2400   // both (udiv X, Y) * Y and Y * (udiv X, Y) are always NUW
2401   if (Type == scMulExpr && !ScalarEvolution::hasFlags(Flags, SCEV::FlagNUW) &&
2402       Ops.size() == 2) {
2403     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[0]))
2404       if (UDiv->getOperand(1) == Ops[1])
2405         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2406     if (auto *UDiv = dyn_cast<SCEVUDivExpr>(Ops[1]))
2407       if (UDiv->getOperand(1) == Ops[0])
2408         Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
2409   }
2410 
2411   return Flags;
2412 }
2413 
2414 bool ScalarEvolution::isAvailableAtLoopEntry(const SCEV *S, const Loop *L) {
2415   return isLoopInvariant(S, L) && properlyDominates(S, L->getHeader());
2416 }
2417 
2418 /// Get a canonical add expression, or something simpler if possible.
2419 const SCEV *ScalarEvolution::getAddExpr(SmallVectorImpl<const SCEV *> &Ops,
2420                                         SCEV::NoWrapFlags OrigFlags,
2421                                         unsigned Depth) {
2422   assert(!(OrigFlags & ~(SCEV::FlagNUW | SCEV::FlagNSW)) &&
2423          "only nuw or nsw allowed");
2424   assert(!Ops.empty() && "Cannot get empty add!");
2425   if (Ops.size() == 1) return Ops[0];
2426 #ifndef NDEBUG
2427   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
2428   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2429     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
2430            "SCEVAddExpr operand types don't match!");
2431   unsigned NumPtrs = count_if(
2432       Ops, [](const SCEV *Op) { return Op->getType()->isPointerTy(); });
2433   assert(NumPtrs <= 1 && "add has at most one pointer operand");
2434 #endif
2435 
2436   // Sort by complexity, this groups all similar expression types together.
2437   GroupByComplexity(Ops, &LI, DT);
2438 
2439   // If there are any constants, fold them together.
2440   unsigned Idx = 0;
2441   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
2442     ++Idx;
2443     assert(Idx < Ops.size());
2444     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
2445       // We found two constants, fold them together!
2446       Ops[0] = getConstant(LHSC->getAPInt() + RHSC->getAPInt());
2447       if (Ops.size() == 2) return Ops[0];
2448       Ops.erase(Ops.begin()+1);  // Erase the folded element
2449       LHSC = cast<SCEVConstant>(Ops[0]);
2450     }
2451 
2452     // If we are left with a constant zero being added, strip it off.
2453     if (LHSC->getValue()->isZero()) {
2454       Ops.erase(Ops.begin());
2455       --Idx;
2456     }
2457 
2458     if (Ops.size() == 1) return Ops[0];
2459   }
2460 
2461   // Delay expensive flag strengthening until necessary.
2462   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
2463     return StrengthenNoWrapFlags(this, scAddExpr, Ops, OrigFlags);
2464   };
2465 
2466   // Limit recursion calls depth.
2467   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
2468     return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2469 
2470   if (SCEV *S = findExistingSCEVInCache(scAddExpr, Ops)) {
2471     // Don't strengthen flags if we have no new information.
2472     SCEVAddExpr *Add = static_cast<SCEVAddExpr *>(S);
2473     if (Add->getNoWrapFlags(OrigFlags) != OrigFlags)
2474       Add->setNoWrapFlags(ComputeFlags(Ops));
2475     return S;
2476   }
2477 
2478   // Okay, check to see if the same value occurs in the operand list more than
2479   // once.  If so, merge them together into an multiply expression.  Since we
2480   // sorted the list, these values are required to be adjacent.
2481   Type *Ty = Ops[0]->getType();
2482   bool FoundMatch = false;
2483   for (unsigned i = 0, e = Ops.size(); i != e-1; ++i)
2484     if (Ops[i] == Ops[i+1]) {      //  X + Y + Y  -->  X + Y*2
2485       // Scan ahead to count how many equal operands there are.
2486       unsigned Count = 2;
2487       while (i+Count != e && Ops[i+Count] == Ops[i])
2488         ++Count;
2489       // Merge the values into a multiply.
2490       const SCEV *Scale = getConstant(Ty, Count);
2491       const SCEV *Mul = getMulExpr(Scale, Ops[i], SCEV::FlagAnyWrap, Depth + 1);
2492       if (Ops.size() == Count)
2493         return Mul;
2494       Ops[i] = Mul;
2495       Ops.erase(Ops.begin()+i+1, Ops.begin()+i+Count);
2496       --i; e -= Count - 1;
2497       FoundMatch = true;
2498     }
2499   if (FoundMatch)
2500     return getAddExpr(Ops, OrigFlags, Depth + 1);
2501 
2502   // Check for truncates. If all the operands are truncated from the same
2503   // type, see if factoring out the truncate would permit the result to be
2504   // folded. eg., n*trunc(x) + m*trunc(y) --> trunc(trunc(m)*x + trunc(n)*y)
2505   // if the contents of the resulting outer trunc fold to something simple.
2506   auto FindTruncSrcType = [&]() -> Type * {
2507     // We're ultimately looking to fold an addrec of truncs and muls of only
2508     // constants and truncs, so if we find any other types of SCEV
2509     // as operands of the addrec then we bail and return nullptr here.
2510     // Otherwise, we return the type of the operand of a trunc that we find.
2511     if (auto *T = dyn_cast<SCEVTruncateExpr>(Ops[Idx]))
2512       return T->getOperand()->getType();
2513     if (const auto *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
2514       const auto *LastOp = Mul->getOperand(Mul->getNumOperands() - 1);
2515       if (const auto *T = dyn_cast<SCEVTruncateExpr>(LastOp))
2516         return T->getOperand()->getType();
2517     }
2518     return nullptr;
2519   };
2520   if (auto *SrcType = FindTruncSrcType()) {
2521     SmallVector<const SCEV *, 8> LargeOps;
2522     bool Ok = true;
2523     // Check all the operands to see if they can be represented in the
2524     // source type of the truncate.
2525     for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
2526       if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(Ops[i])) {
2527         if (T->getOperand()->getType() != SrcType) {
2528           Ok = false;
2529           break;
2530         }
2531         LargeOps.push_back(T->getOperand());
2532       } else if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[i])) {
2533         LargeOps.push_back(getAnyExtendExpr(C, SrcType));
2534       } else if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(Ops[i])) {
2535         SmallVector<const SCEV *, 8> LargeMulOps;
2536         for (unsigned j = 0, f = M->getNumOperands(); j != f && Ok; ++j) {
2537           if (const SCEVTruncateExpr *T =
2538                 dyn_cast<SCEVTruncateExpr>(M->getOperand(j))) {
2539             if (T->getOperand()->getType() != SrcType) {
2540               Ok = false;
2541               break;
2542             }
2543             LargeMulOps.push_back(T->getOperand());
2544           } else if (const auto *C = dyn_cast<SCEVConstant>(M->getOperand(j))) {
2545             LargeMulOps.push_back(getAnyExtendExpr(C, SrcType));
2546           } else {
2547             Ok = false;
2548             break;
2549           }
2550         }
2551         if (Ok)
2552           LargeOps.push_back(getMulExpr(LargeMulOps, SCEV::FlagAnyWrap, Depth + 1));
2553       } else {
2554         Ok = false;
2555         break;
2556       }
2557     }
2558     if (Ok) {
2559       // Evaluate the expression in the larger type.
2560       const SCEV *Fold = getAddExpr(LargeOps, SCEV::FlagAnyWrap, Depth + 1);
2561       // If it folds to something simple, use it. Otherwise, don't.
2562       if (isa<SCEVConstant>(Fold) || isa<SCEVUnknown>(Fold))
2563         return getTruncateExpr(Fold, Ty);
2564     }
2565   }
2566 
2567   if (Ops.size() == 2) {
2568     // Check if we have an expression of the form ((X + C1) - C2), where C1 and
2569     // C2 can be folded in a way that allows retaining wrapping flags of (X +
2570     // C1).
2571     const SCEV *A = Ops[0];
2572     const SCEV *B = Ops[1];
2573     auto *AddExpr = dyn_cast<SCEVAddExpr>(B);
2574     auto *C = dyn_cast<SCEVConstant>(A);
2575     if (AddExpr && C && isa<SCEVConstant>(AddExpr->getOperand(0))) {
2576       auto C1 = cast<SCEVConstant>(AddExpr->getOperand(0))->getAPInt();
2577       auto C2 = C->getAPInt();
2578       SCEV::NoWrapFlags PreservedFlags = SCEV::FlagAnyWrap;
2579 
2580       APInt ConstAdd = C1 + C2;
2581       auto AddFlags = AddExpr->getNoWrapFlags();
2582       // Adding a smaller constant is NUW if the original AddExpr was NUW.
2583       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNUW) &&
2584           ConstAdd.ule(C1)) {
2585         PreservedFlags =
2586             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNUW);
2587       }
2588 
2589       // Adding a constant with the same sign and small magnitude is NSW, if the
2590       // original AddExpr was NSW.
2591       if (ScalarEvolution::hasFlags(AddFlags, SCEV::FlagNSW) &&
2592           C1.isSignBitSet() == ConstAdd.isSignBitSet() &&
2593           ConstAdd.abs().ule(C1.abs())) {
2594         PreservedFlags =
2595             ScalarEvolution::setFlags(PreservedFlags, SCEV::FlagNSW);
2596       }
2597 
2598       if (PreservedFlags != SCEV::FlagAnyWrap) {
2599         SmallVector<const SCEV *, 4> NewOps(AddExpr->operands());
2600         NewOps[0] = getConstant(ConstAdd);
2601         return getAddExpr(NewOps, PreservedFlags);
2602       }
2603     }
2604   }
2605 
2606   // Skip past any other cast SCEVs.
2607   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddExpr)
2608     ++Idx;
2609 
2610   // If there are add operands they would be next.
2611   if (Idx < Ops.size()) {
2612     bool DeletedAdd = false;
2613     // If the original flags and all inlined SCEVAddExprs are NUW, use the
2614     // common NUW flag for expression after inlining. Other flags cannot be
2615     // preserved, because they may depend on the original order of operations.
2616     SCEV::NoWrapFlags CommonFlags = maskFlags(OrigFlags, SCEV::FlagNUW);
2617     while (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[Idx])) {
2618       if (Ops.size() > AddOpsInlineThreshold ||
2619           Add->getNumOperands() > AddOpsInlineThreshold)
2620         break;
2621       // If we have an add, expand the add operands onto the end of the operands
2622       // list.
2623       Ops.erase(Ops.begin()+Idx);
2624       Ops.append(Add->op_begin(), Add->op_end());
2625       DeletedAdd = true;
2626       CommonFlags = maskFlags(CommonFlags, Add->getNoWrapFlags());
2627     }
2628 
2629     // If we deleted at least one add, we added operands to the end of the list,
2630     // and they are not necessarily sorted.  Recurse to resort and resimplify
2631     // any operands we just acquired.
2632     if (DeletedAdd)
2633       return getAddExpr(Ops, CommonFlags, Depth + 1);
2634   }
2635 
2636   // Skip over the add expression until we get to a multiply.
2637   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
2638     ++Idx;
2639 
2640   // Check to see if there are any folding opportunities present with
2641   // operands multiplied by constant values.
2642   if (Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx])) {
2643     uint64_t BitWidth = getTypeSizeInBits(Ty);
2644     DenseMap<const SCEV *, APInt> M;
2645     SmallVector<const SCEV *, 8> NewOps;
2646     APInt AccumulatedConstant(BitWidth, 0);
2647     if (CollectAddOperandsWithScales(M, NewOps, AccumulatedConstant,
2648                                      Ops.data(), Ops.size(),
2649                                      APInt(BitWidth, 1), *this)) {
2650       struct APIntCompare {
2651         bool operator()(const APInt &LHS, const APInt &RHS) const {
2652           return LHS.ult(RHS);
2653         }
2654       };
2655 
2656       // Some interesting folding opportunity is present, so its worthwhile to
2657       // re-generate the operands list. Group the operands by constant scale,
2658       // to avoid multiplying by the same constant scale multiple times.
2659       std::map<APInt, SmallVector<const SCEV *, 4>, APIntCompare> MulOpLists;
2660       for (const SCEV *NewOp : NewOps)
2661         MulOpLists[M.find(NewOp)->second].push_back(NewOp);
2662       // Re-generate the operands list.
2663       Ops.clear();
2664       if (AccumulatedConstant != 0)
2665         Ops.push_back(getConstant(AccumulatedConstant));
2666       for (auto &MulOp : MulOpLists) {
2667         if (MulOp.first == 1) {
2668           Ops.push_back(getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1));
2669         } else if (MulOp.first != 0) {
2670           Ops.push_back(getMulExpr(
2671               getConstant(MulOp.first),
2672               getAddExpr(MulOp.second, SCEV::FlagAnyWrap, Depth + 1),
2673               SCEV::FlagAnyWrap, Depth + 1));
2674         }
2675       }
2676       if (Ops.empty())
2677         return getZero(Ty);
2678       if (Ops.size() == 1)
2679         return Ops[0];
2680       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2681     }
2682   }
2683 
2684   // If we are adding something to a multiply expression, make sure the
2685   // something is not already an operand of the multiply.  If so, merge it into
2686   // the multiply.
2687   for (; Idx < Ops.size() && isa<SCEVMulExpr>(Ops[Idx]); ++Idx) {
2688     const SCEVMulExpr *Mul = cast<SCEVMulExpr>(Ops[Idx]);
2689     for (unsigned MulOp = 0, e = Mul->getNumOperands(); MulOp != e; ++MulOp) {
2690       const SCEV *MulOpSCEV = Mul->getOperand(MulOp);
2691       if (isa<SCEVConstant>(MulOpSCEV))
2692         continue;
2693       for (unsigned AddOp = 0, e = Ops.size(); AddOp != e; ++AddOp)
2694         if (MulOpSCEV == Ops[AddOp]) {
2695           // Fold W + X + (X * Y * Z)  -->  W + (X * ((Y*Z)+1))
2696           const SCEV *InnerMul = Mul->getOperand(MulOp == 0);
2697           if (Mul->getNumOperands() != 2) {
2698             // If the multiply has more than two operands, we must get the
2699             // Y*Z term.
2700             SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2701                                                 Mul->op_begin()+MulOp);
2702             MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2703             InnerMul = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2704           }
2705           SmallVector<const SCEV *, 2> TwoOps = {getOne(Ty), InnerMul};
2706           const SCEV *AddOne = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2707           const SCEV *OuterMul = getMulExpr(AddOne, MulOpSCEV,
2708                                             SCEV::FlagAnyWrap, Depth + 1);
2709           if (Ops.size() == 2) return OuterMul;
2710           if (AddOp < Idx) {
2711             Ops.erase(Ops.begin()+AddOp);
2712             Ops.erase(Ops.begin()+Idx-1);
2713           } else {
2714             Ops.erase(Ops.begin()+Idx);
2715             Ops.erase(Ops.begin()+AddOp-1);
2716           }
2717           Ops.push_back(OuterMul);
2718           return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2719         }
2720 
2721       // Check this multiply against other multiplies being added together.
2722       for (unsigned OtherMulIdx = Idx+1;
2723            OtherMulIdx < Ops.size() && isa<SCEVMulExpr>(Ops[OtherMulIdx]);
2724            ++OtherMulIdx) {
2725         const SCEVMulExpr *OtherMul = cast<SCEVMulExpr>(Ops[OtherMulIdx]);
2726         // If MulOp occurs in OtherMul, we can fold the two multiplies
2727         // together.
2728         for (unsigned OMulOp = 0, e = OtherMul->getNumOperands();
2729              OMulOp != e; ++OMulOp)
2730           if (OtherMul->getOperand(OMulOp) == MulOpSCEV) {
2731             // Fold X + (A*B*C) + (A*D*E) --> X + (A*(B*C+D*E))
2732             const SCEV *InnerMul1 = Mul->getOperand(MulOp == 0);
2733             if (Mul->getNumOperands() != 2) {
2734               SmallVector<const SCEV *, 4> MulOps(Mul->op_begin(),
2735                                                   Mul->op_begin()+MulOp);
2736               MulOps.append(Mul->op_begin()+MulOp+1, Mul->op_end());
2737               InnerMul1 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2738             }
2739             const SCEV *InnerMul2 = OtherMul->getOperand(OMulOp == 0);
2740             if (OtherMul->getNumOperands() != 2) {
2741               SmallVector<const SCEV *, 4> MulOps(OtherMul->op_begin(),
2742                                                   OtherMul->op_begin()+OMulOp);
2743               MulOps.append(OtherMul->op_begin()+OMulOp+1, OtherMul->op_end());
2744               InnerMul2 = getMulExpr(MulOps, SCEV::FlagAnyWrap, Depth + 1);
2745             }
2746             SmallVector<const SCEV *, 2> TwoOps = {InnerMul1, InnerMul2};
2747             const SCEV *InnerMulSum =
2748                 getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2749             const SCEV *OuterMul = getMulExpr(MulOpSCEV, InnerMulSum,
2750                                               SCEV::FlagAnyWrap, Depth + 1);
2751             if (Ops.size() == 2) return OuterMul;
2752             Ops.erase(Ops.begin()+Idx);
2753             Ops.erase(Ops.begin()+OtherMulIdx-1);
2754             Ops.push_back(OuterMul);
2755             return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2756           }
2757       }
2758     }
2759   }
2760 
2761   // If there are any add recurrences in the operands list, see if any other
2762   // added values are loop invariant.  If so, we can fold them into the
2763   // recurrence.
2764   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
2765     ++Idx;
2766 
2767   // Scan over all recurrences, trying to fold loop invariants into them.
2768   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
2769     // Scan all of the other operands to this add and add them to the vector if
2770     // they are loop invariant w.r.t. the recurrence.
2771     SmallVector<const SCEV *, 8> LIOps;
2772     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
2773     const Loop *AddRecLoop = AddRec->getLoop();
2774     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2775       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
2776         LIOps.push_back(Ops[i]);
2777         Ops.erase(Ops.begin()+i);
2778         --i; --e;
2779       }
2780 
2781     // If we found some loop invariants, fold them into the recurrence.
2782     if (!LIOps.empty()) {
2783       // Compute nowrap flags for the addition of the loop-invariant ops and
2784       // the addrec. Temporarily push it as an operand for that purpose.
2785       LIOps.push_back(AddRec);
2786       SCEV::NoWrapFlags Flags = ComputeFlags(LIOps);
2787       LIOps.pop_back();
2788 
2789       //  NLI + LI + {Start,+,Step}  -->  NLI + {LI+Start,+,Step}
2790       LIOps.push_back(AddRec->getStart());
2791 
2792       SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2793       // This follows from the fact that the no-wrap flags on the outer add
2794       // expression are applicable on the 0th iteration, when the add recurrence
2795       // will be equal to its start value.
2796       AddRecOps[0] = getAddExpr(LIOps, Flags, Depth + 1);
2797 
2798       // Build the new addrec. Propagate the NUW and NSW flags if both the
2799       // outer add and the inner addrec are guaranteed to have no overflow.
2800       // Always propagate NW.
2801       Flags = AddRec->getNoWrapFlags(setFlags(Flags, SCEV::FlagNW));
2802       const SCEV *NewRec = getAddRecExpr(AddRecOps, AddRecLoop, Flags);
2803 
2804       // If all of the other operands were loop invariant, we are done.
2805       if (Ops.size() == 1) return NewRec;
2806 
2807       // Otherwise, add the folded AddRec by the non-invariant parts.
2808       for (unsigned i = 0;; ++i)
2809         if (Ops[i] == AddRec) {
2810           Ops[i] = NewRec;
2811           break;
2812         }
2813       return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2814     }
2815 
2816     // Okay, if there weren't any loop invariants to be folded, check to see if
2817     // there are multiple AddRec's with the same loop induction variable being
2818     // added together.  If so, we can fold them.
2819     for (unsigned OtherIdx = Idx+1;
2820          OtherIdx < Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2821          ++OtherIdx) {
2822       // We expect the AddRecExpr's to be sorted in reverse dominance order,
2823       // so that the 1st found AddRecExpr is dominated by all others.
2824       assert(DT.dominates(
2825            cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()->getHeader(),
2826            AddRec->getLoop()->getHeader()) &&
2827         "AddRecExprs are not sorted in reverse dominance order?");
2828       if (AddRecLoop == cast<SCEVAddRecExpr>(Ops[OtherIdx])->getLoop()) {
2829         // Other + {A,+,B}<L> + {C,+,D}<L>  -->  Other + {A+C,+,B+D}<L>
2830         SmallVector<const SCEV *, 4> AddRecOps(AddRec->operands());
2831         for (; OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
2832              ++OtherIdx) {
2833           const auto *OtherAddRec = cast<SCEVAddRecExpr>(Ops[OtherIdx]);
2834           if (OtherAddRec->getLoop() == AddRecLoop) {
2835             for (unsigned i = 0, e = OtherAddRec->getNumOperands();
2836                  i != e; ++i) {
2837               if (i >= AddRecOps.size()) {
2838                 AddRecOps.append(OtherAddRec->op_begin()+i,
2839                                  OtherAddRec->op_end());
2840                 break;
2841               }
2842               SmallVector<const SCEV *, 2> TwoOps = {
2843                   AddRecOps[i], OtherAddRec->getOperand(i)};
2844               AddRecOps[i] = getAddExpr(TwoOps, SCEV::FlagAnyWrap, Depth + 1);
2845             }
2846             Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
2847           }
2848         }
2849         // Step size has changed, so we cannot guarantee no self-wraparound.
2850         Ops[Idx] = getAddRecExpr(AddRecOps, AddRecLoop, SCEV::FlagAnyWrap);
2851         return getAddExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
2852       }
2853     }
2854 
2855     // Otherwise couldn't fold anything into this recurrence.  Move onto the
2856     // next one.
2857   }
2858 
2859   // Okay, it looks like we really DO need an add expr.  Check to see if we
2860   // already have one, otherwise create a new one.
2861   return getOrCreateAddExpr(Ops, ComputeFlags(Ops));
2862 }
2863 
2864 const SCEV *
2865 ScalarEvolution::getOrCreateAddExpr(ArrayRef<const SCEV *> Ops,
2866                                     SCEV::NoWrapFlags Flags) {
2867   FoldingSetNodeID ID;
2868   ID.AddInteger(scAddExpr);
2869   for (const SCEV *Op : Ops)
2870     ID.AddPointer(Op);
2871   void *IP = nullptr;
2872   SCEVAddExpr *S =
2873       static_cast<SCEVAddExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2874   if (!S) {
2875     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2876     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2877     S = new (SCEVAllocator)
2878         SCEVAddExpr(ID.Intern(SCEVAllocator), O, Ops.size());
2879     UniqueSCEVs.InsertNode(S, IP);
2880     addToLoopUseLists(S);
2881   }
2882   S->setNoWrapFlags(Flags);
2883   return S;
2884 }
2885 
2886 const SCEV *
2887 ScalarEvolution::getOrCreateAddRecExpr(ArrayRef<const SCEV *> Ops,
2888                                        const Loop *L, SCEV::NoWrapFlags Flags) {
2889   FoldingSetNodeID ID;
2890   ID.AddInteger(scAddRecExpr);
2891   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2892     ID.AddPointer(Ops[i]);
2893   ID.AddPointer(L);
2894   void *IP = nullptr;
2895   SCEVAddRecExpr *S =
2896       static_cast<SCEVAddRecExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2897   if (!S) {
2898     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2899     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2900     S = new (SCEVAllocator)
2901         SCEVAddRecExpr(ID.Intern(SCEVAllocator), O, Ops.size(), L);
2902     UniqueSCEVs.InsertNode(S, IP);
2903     addToLoopUseLists(S);
2904   }
2905   setNoWrapFlags(S, Flags);
2906   return S;
2907 }
2908 
2909 const SCEV *
2910 ScalarEvolution::getOrCreateMulExpr(ArrayRef<const SCEV *> Ops,
2911                                     SCEV::NoWrapFlags Flags) {
2912   FoldingSetNodeID ID;
2913   ID.AddInteger(scMulExpr);
2914   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
2915     ID.AddPointer(Ops[i]);
2916   void *IP = nullptr;
2917   SCEVMulExpr *S =
2918     static_cast<SCEVMulExpr *>(UniqueSCEVs.FindNodeOrInsertPos(ID, IP));
2919   if (!S) {
2920     const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
2921     std::uninitialized_copy(Ops.begin(), Ops.end(), O);
2922     S = new (SCEVAllocator) SCEVMulExpr(ID.Intern(SCEVAllocator),
2923                                         O, Ops.size());
2924     UniqueSCEVs.InsertNode(S, IP);
2925     addToLoopUseLists(S);
2926   }
2927   S->setNoWrapFlags(Flags);
2928   return S;
2929 }
2930 
2931 static uint64_t umul_ov(uint64_t i, uint64_t j, bool &Overflow) {
2932   uint64_t k = i*j;
2933   if (j > 1 && k / j != i) Overflow = true;
2934   return k;
2935 }
2936 
2937 /// Compute the result of "n choose k", the binomial coefficient.  If an
2938 /// intermediate computation overflows, Overflow will be set and the return will
2939 /// be garbage. Overflow is not cleared on absence of overflow.
2940 static uint64_t Choose(uint64_t n, uint64_t k, bool &Overflow) {
2941   // We use the multiplicative formula:
2942   //     n(n-1)(n-2)...(n-(k-1)) / k(k-1)(k-2)...1 .
2943   // At each iteration, we take the n-th term of the numeral and divide by the
2944   // (k-n)th term of the denominator.  This division will always produce an
2945   // integral result, and helps reduce the chance of overflow in the
2946   // intermediate computations. However, we can still overflow even when the
2947   // final result would fit.
2948 
2949   if (n == 0 || n == k) return 1;
2950   if (k > n) return 0;
2951 
2952   if (k > n/2)
2953     k = n-k;
2954 
2955   uint64_t r = 1;
2956   for (uint64_t i = 1; i <= k; ++i) {
2957     r = umul_ov(r, n-(i-1), Overflow);
2958     r /= i;
2959   }
2960   return r;
2961 }
2962 
2963 /// Determine if any of the operands in this SCEV are a constant or if
2964 /// any of the add or multiply expressions in this SCEV contain a constant.
2965 static bool containsConstantInAddMulChain(const SCEV *StartExpr) {
2966   struct FindConstantInAddMulChain {
2967     bool FoundConstant = false;
2968 
2969     bool follow(const SCEV *S) {
2970       FoundConstant |= isa<SCEVConstant>(S);
2971       return isa<SCEVAddExpr>(S) || isa<SCEVMulExpr>(S);
2972     }
2973 
2974     bool isDone() const {
2975       return FoundConstant;
2976     }
2977   };
2978 
2979   FindConstantInAddMulChain F;
2980   SCEVTraversal<FindConstantInAddMulChain> ST(F);
2981   ST.visitAll(StartExpr);
2982   return F.FoundConstant;
2983 }
2984 
2985 /// Get a canonical multiply expression, or something simpler if possible.
2986 const SCEV *ScalarEvolution::getMulExpr(SmallVectorImpl<const SCEV *> &Ops,
2987                                         SCEV::NoWrapFlags OrigFlags,
2988                                         unsigned Depth) {
2989   assert(OrigFlags == maskFlags(OrigFlags, SCEV::FlagNUW | SCEV::FlagNSW) &&
2990          "only nuw or nsw allowed");
2991   assert(!Ops.empty() && "Cannot get empty mul!");
2992   if (Ops.size() == 1) return Ops[0];
2993 #ifndef NDEBUG
2994   Type *ETy = Ops[0]->getType();
2995   assert(!ETy->isPointerTy());
2996   for (unsigned i = 1, e = Ops.size(); i != e; ++i)
2997     assert(Ops[i]->getType() == ETy &&
2998            "SCEVMulExpr operand types don't match!");
2999 #endif
3000 
3001   // Sort by complexity, this groups all similar expression types together.
3002   GroupByComplexity(Ops, &LI, DT);
3003 
3004   // If there are any constants, fold them together.
3005   unsigned Idx = 0;
3006   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3007     ++Idx;
3008     assert(Idx < Ops.size());
3009     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3010       // We found two constants, fold them together!
3011       Ops[0] = getConstant(LHSC->getAPInt() * RHSC->getAPInt());
3012       if (Ops.size() == 2) return Ops[0];
3013       Ops.erase(Ops.begin()+1);  // Erase the folded element
3014       LHSC = cast<SCEVConstant>(Ops[0]);
3015     }
3016 
3017     // If we have a multiply of zero, it will always be zero.
3018     if (LHSC->getValue()->isZero())
3019       return LHSC;
3020 
3021     // If we are left with a constant one being multiplied, strip it off.
3022     if (LHSC->getValue()->isOne()) {
3023       Ops.erase(Ops.begin());
3024       --Idx;
3025     }
3026 
3027     if (Ops.size() == 1)
3028       return Ops[0];
3029   }
3030 
3031   // Delay expensive flag strengthening until necessary.
3032   auto ComputeFlags = [this, OrigFlags](const ArrayRef<const SCEV *> Ops) {
3033     return StrengthenNoWrapFlags(this, scMulExpr, Ops, OrigFlags);
3034   };
3035 
3036   // Limit recursion calls depth.
3037   if (Depth > MaxArithDepth || hasHugeExpression(Ops))
3038     return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3039 
3040   if (SCEV *S = findExistingSCEVInCache(scMulExpr, Ops)) {
3041     // Don't strengthen flags if we have no new information.
3042     SCEVMulExpr *Mul = static_cast<SCEVMulExpr *>(S);
3043     if (Mul->getNoWrapFlags(OrigFlags) != OrigFlags)
3044       Mul->setNoWrapFlags(ComputeFlags(Ops));
3045     return S;
3046   }
3047 
3048   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3049     if (Ops.size() == 2) {
3050       // C1*(C2+V) -> C1*C2 + C1*V
3051       if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1]))
3052         // If any of Add's ops are Adds or Muls with a constant, apply this
3053         // transformation as well.
3054         //
3055         // TODO: There are some cases where this transformation is not
3056         // profitable; for example, Add = (C0 + X) * Y + Z.  Maybe the scope of
3057         // this transformation should be narrowed down.
3058         if (Add->getNumOperands() == 2 && containsConstantInAddMulChain(Add))
3059           return getAddExpr(getMulExpr(LHSC, Add->getOperand(0),
3060                                        SCEV::FlagAnyWrap, Depth + 1),
3061                             getMulExpr(LHSC, Add->getOperand(1),
3062                                        SCEV::FlagAnyWrap, Depth + 1),
3063                             SCEV::FlagAnyWrap, Depth + 1);
3064 
3065       if (Ops[0]->isAllOnesValue()) {
3066         // If we have a mul by -1 of an add, try distributing the -1 among the
3067         // add operands.
3068         if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Ops[1])) {
3069           SmallVector<const SCEV *, 4> NewOps;
3070           bool AnyFolded = false;
3071           for (const SCEV *AddOp : Add->operands()) {
3072             const SCEV *Mul = getMulExpr(Ops[0], AddOp, SCEV::FlagAnyWrap,
3073                                          Depth + 1);
3074             if (!isa<SCEVMulExpr>(Mul)) AnyFolded = true;
3075             NewOps.push_back(Mul);
3076           }
3077           if (AnyFolded)
3078             return getAddExpr(NewOps, SCEV::FlagAnyWrap, Depth + 1);
3079         } else if (const auto *AddRec = dyn_cast<SCEVAddRecExpr>(Ops[1])) {
3080           // Negation preserves a recurrence's no self-wrap property.
3081           SmallVector<const SCEV *, 4> Operands;
3082           for (const SCEV *AddRecOp : AddRec->operands())
3083             Operands.push_back(getMulExpr(Ops[0], AddRecOp, SCEV::FlagAnyWrap,
3084                                           Depth + 1));
3085 
3086           return getAddRecExpr(Operands, AddRec->getLoop(),
3087                                AddRec->getNoWrapFlags(SCEV::FlagNW));
3088         }
3089       }
3090     }
3091   }
3092 
3093   // Skip over the add expression until we get to a multiply.
3094   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scMulExpr)
3095     ++Idx;
3096 
3097   // If there are mul operands inline them all into this expression.
3098   if (Idx < Ops.size()) {
3099     bool DeletedMul = false;
3100     while (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(Ops[Idx])) {
3101       if (Ops.size() > MulOpsInlineThreshold)
3102         break;
3103       // If we have an mul, expand the mul operands onto the end of the
3104       // operands list.
3105       Ops.erase(Ops.begin()+Idx);
3106       Ops.append(Mul->op_begin(), Mul->op_end());
3107       DeletedMul = true;
3108     }
3109 
3110     // If we deleted at least one mul, we added operands to the end of the
3111     // list, and they are not necessarily sorted.  Recurse to resort and
3112     // resimplify any operands we just acquired.
3113     if (DeletedMul)
3114       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3115   }
3116 
3117   // If there are any add recurrences in the operands list, see if any other
3118   // added values are loop invariant.  If so, we can fold them into the
3119   // recurrence.
3120   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < scAddRecExpr)
3121     ++Idx;
3122 
3123   // Scan over all recurrences, trying to fold loop invariants into them.
3124   for (; Idx < Ops.size() && isa<SCEVAddRecExpr>(Ops[Idx]); ++Idx) {
3125     // Scan all of the other operands to this mul and add them to the vector
3126     // if they are loop invariant w.r.t. the recurrence.
3127     SmallVector<const SCEV *, 8> LIOps;
3128     const SCEVAddRecExpr *AddRec = cast<SCEVAddRecExpr>(Ops[Idx]);
3129     const Loop *AddRecLoop = AddRec->getLoop();
3130     for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3131       if (isAvailableAtLoopEntry(Ops[i], AddRecLoop)) {
3132         LIOps.push_back(Ops[i]);
3133         Ops.erase(Ops.begin()+i);
3134         --i; --e;
3135       }
3136 
3137     // If we found some loop invariants, fold them into the recurrence.
3138     if (!LIOps.empty()) {
3139       //  NLI * LI * {Start,+,Step}  -->  NLI * {LI*Start,+,LI*Step}
3140       SmallVector<const SCEV *, 4> NewOps;
3141       NewOps.reserve(AddRec->getNumOperands());
3142       const SCEV *Scale = getMulExpr(LIOps, SCEV::FlagAnyWrap, Depth + 1);
3143       for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i)
3144         NewOps.push_back(getMulExpr(Scale, AddRec->getOperand(i),
3145                                     SCEV::FlagAnyWrap, Depth + 1));
3146 
3147       // Build the new addrec. Propagate the NUW and NSW flags if both the
3148       // outer mul and the inner addrec are guaranteed to have no overflow.
3149       //
3150       // No self-wrap cannot be guaranteed after changing the step size, but
3151       // will be inferred if either NUW or NSW is true.
3152       SCEV::NoWrapFlags Flags = ComputeFlags({Scale, AddRec});
3153       const SCEV *NewRec = getAddRecExpr(
3154           NewOps, AddRecLoop, AddRec->getNoWrapFlags(Flags));
3155 
3156       // If all of the other operands were loop invariant, we are done.
3157       if (Ops.size() == 1) return NewRec;
3158 
3159       // Otherwise, multiply the folded AddRec by the non-invariant parts.
3160       for (unsigned i = 0;; ++i)
3161         if (Ops[i] == AddRec) {
3162           Ops[i] = NewRec;
3163           break;
3164         }
3165       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3166     }
3167 
3168     // Okay, if there weren't any loop invariants to be folded, check to see
3169     // if there are multiple AddRec's with the same loop induction variable
3170     // being multiplied together.  If so, we can fold them.
3171 
3172     // {A1,+,A2,+,...,+,An}<L> * {B1,+,B2,+,...,+,Bn}<L>
3173     // = {x=1 in [ sum y=x..2x [ sum z=max(y-x, y-n)..min(x,n) [
3174     //       choose(x, 2x)*choose(2x-y, x-z)*A_{y-z}*B_z
3175     //   ]]],+,...up to x=2n}.
3176     // Note that the arguments to choose() are always integers with values
3177     // known at compile time, never SCEV objects.
3178     //
3179     // The implementation avoids pointless extra computations when the two
3180     // addrec's are of different length (mathematically, it's equivalent to
3181     // an infinite stream of zeros on the right).
3182     bool OpsModified = false;
3183     for (unsigned OtherIdx = Idx+1;
3184          OtherIdx != Ops.size() && isa<SCEVAddRecExpr>(Ops[OtherIdx]);
3185          ++OtherIdx) {
3186       const SCEVAddRecExpr *OtherAddRec =
3187         dyn_cast<SCEVAddRecExpr>(Ops[OtherIdx]);
3188       if (!OtherAddRec || OtherAddRec->getLoop() != AddRecLoop)
3189         continue;
3190 
3191       // Limit max number of arguments to avoid creation of unreasonably big
3192       // SCEVAddRecs with very complex operands.
3193       if (AddRec->getNumOperands() + OtherAddRec->getNumOperands() - 1 >
3194           MaxAddRecSize || hasHugeExpression({AddRec, OtherAddRec}))
3195         continue;
3196 
3197       bool Overflow = false;
3198       Type *Ty = AddRec->getType();
3199       bool LargerThan64Bits = getTypeSizeInBits(Ty) > 64;
3200       SmallVector<const SCEV*, 7> AddRecOps;
3201       for (int x = 0, xe = AddRec->getNumOperands() +
3202              OtherAddRec->getNumOperands() - 1; x != xe && !Overflow; ++x) {
3203         SmallVector <const SCEV *, 7> SumOps;
3204         for (int y = x, ye = 2*x+1; y != ye && !Overflow; ++y) {
3205           uint64_t Coeff1 = Choose(x, 2*x - y, Overflow);
3206           for (int z = std::max(y-x, y-(int)AddRec->getNumOperands()+1),
3207                  ze = std::min(x+1, (int)OtherAddRec->getNumOperands());
3208                z < ze && !Overflow; ++z) {
3209             uint64_t Coeff2 = Choose(2*x - y, x-z, Overflow);
3210             uint64_t Coeff;
3211             if (LargerThan64Bits)
3212               Coeff = umul_ov(Coeff1, Coeff2, Overflow);
3213             else
3214               Coeff = Coeff1*Coeff2;
3215             const SCEV *CoeffTerm = getConstant(Ty, Coeff);
3216             const SCEV *Term1 = AddRec->getOperand(y-z);
3217             const SCEV *Term2 = OtherAddRec->getOperand(z);
3218             SumOps.push_back(getMulExpr(CoeffTerm, Term1, Term2,
3219                                         SCEV::FlagAnyWrap, Depth + 1));
3220           }
3221         }
3222         if (SumOps.empty())
3223           SumOps.push_back(getZero(Ty));
3224         AddRecOps.push_back(getAddExpr(SumOps, SCEV::FlagAnyWrap, Depth + 1));
3225       }
3226       if (!Overflow) {
3227         const SCEV *NewAddRec = getAddRecExpr(AddRecOps, AddRecLoop,
3228                                               SCEV::FlagAnyWrap);
3229         if (Ops.size() == 2) return NewAddRec;
3230         Ops[Idx] = NewAddRec;
3231         Ops.erase(Ops.begin() + OtherIdx); --OtherIdx;
3232         OpsModified = true;
3233         AddRec = dyn_cast<SCEVAddRecExpr>(NewAddRec);
3234         if (!AddRec)
3235           break;
3236       }
3237     }
3238     if (OpsModified)
3239       return getMulExpr(Ops, SCEV::FlagAnyWrap, Depth + 1);
3240 
3241     // Otherwise couldn't fold anything into this recurrence.  Move onto the
3242     // next one.
3243   }
3244 
3245   // Okay, it looks like we really DO need an mul expr.  Check to see if we
3246   // already have one, otherwise create a new one.
3247   return getOrCreateMulExpr(Ops, ComputeFlags(Ops));
3248 }
3249 
3250 /// Represents an unsigned remainder expression based on unsigned division.
3251 const SCEV *ScalarEvolution::getURemExpr(const SCEV *LHS,
3252                                          const SCEV *RHS) {
3253   assert(getEffectiveSCEVType(LHS->getType()) ==
3254          getEffectiveSCEVType(RHS->getType()) &&
3255          "SCEVURemExpr operand types don't match!");
3256 
3257   // Short-circuit easy cases
3258   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3259     // If constant is one, the result is trivial
3260     if (RHSC->getValue()->isOne())
3261       return getZero(LHS->getType()); // X urem 1 --> 0
3262 
3263     // If constant is a power of two, fold into a zext(trunc(LHS)).
3264     if (RHSC->getAPInt().isPowerOf2()) {
3265       Type *FullTy = LHS->getType();
3266       Type *TruncTy =
3267           IntegerType::get(getContext(), RHSC->getAPInt().logBase2());
3268       return getZeroExtendExpr(getTruncateExpr(LHS, TruncTy), FullTy);
3269     }
3270   }
3271 
3272   // Fallback to %a == %x urem %y == %x -<nuw> ((%x udiv %y) *<nuw> %y)
3273   const SCEV *UDiv = getUDivExpr(LHS, RHS);
3274   const SCEV *Mult = getMulExpr(UDiv, RHS, SCEV::FlagNUW);
3275   return getMinusSCEV(LHS, Mult, SCEV::FlagNUW);
3276 }
3277 
3278 /// Get a canonical unsigned division expression, or something simpler if
3279 /// possible.
3280 const SCEV *ScalarEvolution::getUDivExpr(const SCEV *LHS,
3281                                          const SCEV *RHS) {
3282   assert(!LHS->getType()->isPointerTy() &&
3283          "SCEVUDivExpr operand can't be pointer!");
3284   assert(LHS->getType() == RHS->getType() &&
3285          "SCEVUDivExpr operand types don't match!");
3286 
3287   FoldingSetNodeID ID;
3288   ID.AddInteger(scUDivExpr);
3289   ID.AddPointer(LHS);
3290   ID.AddPointer(RHS);
3291   void *IP = nullptr;
3292   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3293     return S;
3294 
3295   // 0 udiv Y == 0
3296   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS))
3297     if (LHSC->getValue()->isZero())
3298       return LHS;
3299 
3300   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
3301     if (RHSC->getValue()->isOne())
3302       return LHS;                               // X udiv 1 --> x
3303     // If the denominator is zero, the result of the udiv is undefined. Don't
3304     // try to analyze it, because the resolution chosen here may differ from
3305     // the resolution chosen in other parts of the compiler.
3306     if (!RHSC->getValue()->isZero()) {
3307       // Determine if the division can be folded into the operands of
3308       // its operands.
3309       // TODO: Generalize this to non-constants by using known-bits information.
3310       Type *Ty = LHS->getType();
3311       unsigned LZ = RHSC->getAPInt().countLeadingZeros();
3312       unsigned MaxShiftAmt = getTypeSizeInBits(Ty) - LZ - 1;
3313       // For non-power-of-two values, effectively round the value up to the
3314       // nearest power of two.
3315       if (!RHSC->getAPInt().isPowerOf2())
3316         ++MaxShiftAmt;
3317       IntegerType *ExtTy =
3318         IntegerType::get(getContext(), getTypeSizeInBits(Ty) + MaxShiftAmt);
3319       if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(LHS))
3320         if (const SCEVConstant *Step =
3321             dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this))) {
3322           // {X,+,N}/C --> {X/C,+,N/C} if safe and N/C can be folded.
3323           const APInt &StepInt = Step->getAPInt();
3324           const APInt &DivInt = RHSC->getAPInt();
3325           if (!StepInt.urem(DivInt) &&
3326               getZeroExtendExpr(AR, ExtTy) ==
3327               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3328                             getZeroExtendExpr(Step, ExtTy),
3329                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3330             SmallVector<const SCEV *, 4> Operands;
3331             for (const SCEV *Op : AR->operands())
3332               Operands.push_back(getUDivExpr(Op, RHS));
3333             return getAddRecExpr(Operands, AR->getLoop(), SCEV::FlagNW);
3334           }
3335           /// Get a canonical UDivExpr for a recurrence.
3336           /// {X,+,N}/C => {Y,+,N}/C where Y=X-(X%N). Safe when C%N=0.
3337           // We can currently only fold X%N if X is constant.
3338           const SCEVConstant *StartC = dyn_cast<SCEVConstant>(AR->getStart());
3339           if (StartC && !DivInt.urem(StepInt) &&
3340               getZeroExtendExpr(AR, ExtTy) ==
3341               getAddRecExpr(getZeroExtendExpr(AR->getStart(), ExtTy),
3342                             getZeroExtendExpr(Step, ExtTy),
3343                             AR->getLoop(), SCEV::FlagAnyWrap)) {
3344             const APInt &StartInt = StartC->getAPInt();
3345             const APInt &StartRem = StartInt.urem(StepInt);
3346             if (StartRem != 0) {
3347               const SCEV *NewLHS =
3348                   getAddRecExpr(getConstant(StartInt - StartRem), Step,
3349                                 AR->getLoop(), SCEV::FlagNW);
3350               if (LHS != NewLHS) {
3351                 LHS = NewLHS;
3352 
3353                 // Reset the ID to include the new LHS, and check if it is
3354                 // already cached.
3355                 ID.clear();
3356                 ID.AddInteger(scUDivExpr);
3357                 ID.AddPointer(LHS);
3358                 ID.AddPointer(RHS);
3359                 IP = nullptr;
3360                 if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP))
3361                   return S;
3362               }
3363             }
3364           }
3365         }
3366       // (A*B)/C --> A*(B/C) if safe and B/C can be folded.
3367       if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(LHS)) {
3368         SmallVector<const SCEV *, 4> Operands;
3369         for (const SCEV *Op : M->operands())
3370           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3371         if (getZeroExtendExpr(M, ExtTy) == getMulExpr(Operands))
3372           // Find an operand that's safely divisible.
3373           for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
3374             const SCEV *Op = M->getOperand(i);
3375             const SCEV *Div = getUDivExpr(Op, RHSC);
3376             if (!isa<SCEVUDivExpr>(Div) && getMulExpr(Div, RHSC) == Op) {
3377               Operands = SmallVector<const SCEV *, 4>(M->operands());
3378               Operands[i] = Div;
3379               return getMulExpr(Operands);
3380             }
3381           }
3382       }
3383 
3384       // (A/B)/C --> A/(B*C) if safe and B*C can be folded.
3385       if (const SCEVUDivExpr *OtherDiv = dyn_cast<SCEVUDivExpr>(LHS)) {
3386         if (auto *DivisorConstant =
3387                 dyn_cast<SCEVConstant>(OtherDiv->getRHS())) {
3388           bool Overflow = false;
3389           APInt NewRHS =
3390               DivisorConstant->getAPInt().umul_ov(RHSC->getAPInt(), Overflow);
3391           if (Overflow) {
3392             return getConstant(RHSC->getType(), 0, false);
3393           }
3394           return getUDivExpr(OtherDiv->getLHS(), getConstant(NewRHS));
3395         }
3396       }
3397 
3398       // (A+B)/C --> (A/C + B/C) if safe and A/C and B/C can be folded.
3399       if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(LHS)) {
3400         SmallVector<const SCEV *, 4> Operands;
3401         for (const SCEV *Op : A->operands())
3402           Operands.push_back(getZeroExtendExpr(Op, ExtTy));
3403         if (getZeroExtendExpr(A, ExtTy) == getAddExpr(Operands)) {
3404           Operands.clear();
3405           for (unsigned i = 0, e = A->getNumOperands(); i != e; ++i) {
3406             const SCEV *Op = getUDivExpr(A->getOperand(i), RHS);
3407             if (isa<SCEVUDivExpr>(Op) ||
3408                 getMulExpr(Op, RHS) != A->getOperand(i))
3409               break;
3410             Operands.push_back(Op);
3411           }
3412           if (Operands.size() == A->getNumOperands())
3413             return getAddExpr(Operands);
3414         }
3415       }
3416 
3417       // Fold if both operands are constant.
3418       if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
3419         Constant *LHSCV = LHSC->getValue();
3420         Constant *RHSCV = RHSC->getValue();
3421         return getConstant(cast<ConstantInt>(ConstantExpr::getUDiv(LHSCV,
3422                                                                    RHSCV)));
3423       }
3424     }
3425   }
3426 
3427   // The Insertion Point (IP) might be invalid by now (due to UniqueSCEVs
3428   // changes). Make sure we get a new one.
3429   IP = nullptr;
3430   if (const SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) return S;
3431   SCEV *S = new (SCEVAllocator) SCEVUDivExpr(ID.Intern(SCEVAllocator),
3432                                              LHS, RHS);
3433   UniqueSCEVs.InsertNode(S, IP);
3434   addToLoopUseLists(S);
3435   return S;
3436 }
3437 
3438 static const APInt gcd(const SCEVConstant *C1, const SCEVConstant *C2) {
3439   APInt A = C1->getAPInt().abs();
3440   APInt B = C2->getAPInt().abs();
3441   uint32_t ABW = A.getBitWidth();
3442   uint32_t BBW = B.getBitWidth();
3443 
3444   if (ABW > BBW)
3445     B = B.zext(ABW);
3446   else if (ABW < BBW)
3447     A = A.zext(BBW);
3448 
3449   return APIntOps::GreatestCommonDivisor(std::move(A), std::move(B));
3450 }
3451 
3452 /// Get a canonical unsigned division expression, or something simpler if
3453 /// possible. There is no representation for an exact udiv in SCEV IR, but we
3454 /// can attempt to remove factors from the LHS and RHS.  We can't do this when
3455 /// it's not exact because the udiv may be clearing bits.
3456 const SCEV *ScalarEvolution::getUDivExactExpr(const SCEV *LHS,
3457                                               const SCEV *RHS) {
3458   // TODO: we could try to find factors in all sorts of things, but for now we
3459   // just deal with u/exact (multiply, constant). See SCEVDivision towards the
3460   // end of this file for inspiration.
3461 
3462   const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(LHS);
3463   if (!Mul || !Mul->hasNoUnsignedWrap())
3464     return getUDivExpr(LHS, RHS);
3465 
3466   if (const SCEVConstant *RHSCst = dyn_cast<SCEVConstant>(RHS)) {
3467     // If the mulexpr multiplies by a constant, then that constant must be the
3468     // first element of the mulexpr.
3469     if (const auto *LHSCst = dyn_cast<SCEVConstant>(Mul->getOperand(0))) {
3470       if (LHSCst == RHSCst) {
3471         SmallVector<const SCEV *, 2> Operands(drop_begin(Mul->operands()));
3472         return getMulExpr(Operands);
3473       }
3474 
3475       // We can't just assume that LHSCst divides RHSCst cleanly, it could be
3476       // that there's a factor provided by one of the other terms. We need to
3477       // check.
3478       APInt Factor = gcd(LHSCst, RHSCst);
3479       if (!Factor.isIntN(1)) {
3480         LHSCst =
3481             cast<SCEVConstant>(getConstant(LHSCst->getAPInt().udiv(Factor)));
3482         RHSCst =
3483             cast<SCEVConstant>(getConstant(RHSCst->getAPInt().udiv(Factor)));
3484         SmallVector<const SCEV *, 2> Operands;
3485         Operands.push_back(LHSCst);
3486         Operands.append(Mul->op_begin() + 1, Mul->op_end());
3487         LHS = getMulExpr(Operands);
3488         RHS = RHSCst;
3489         Mul = dyn_cast<SCEVMulExpr>(LHS);
3490         if (!Mul)
3491           return getUDivExactExpr(LHS, RHS);
3492       }
3493     }
3494   }
3495 
3496   for (int i = 0, e = Mul->getNumOperands(); i != e; ++i) {
3497     if (Mul->getOperand(i) == RHS) {
3498       SmallVector<const SCEV *, 2> Operands;
3499       Operands.append(Mul->op_begin(), Mul->op_begin() + i);
3500       Operands.append(Mul->op_begin() + i + 1, Mul->op_end());
3501       return getMulExpr(Operands);
3502     }
3503   }
3504 
3505   return getUDivExpr(LHS, RHS);
3506 }
3507 
3508 /// Get an add recurrence expression for the specified loop.  Simplify the
3509 /// expression as much as possible.
3510 const SCEV *ScalarEvolution::getAddRecExpr(const SCEV *Start, const SCEV *Step,
3511                                            const Loop *L,
3512                                            SCEV::NoWrapFlags Flags) {
3513   SmallVector<const SCEV *, 4> Operands;
3514   Operands.push_back(Start);
3515   if (const SCEVAddRecExpr *StepChrec = dyn_cast<SCEVAddRecExpr>(Step))
3516     if (StepChrec->getLoop() == L) {
3517       Operands.append(StepChrec->op_begin(), StepChrec->op_end());
3518       return getAddRecExpr(Operands, L, maskFlags(Flags, SCEV::FlagNW));
3519     }
3520 
3521   Operands.push_back(Step);
3522   return getAddRecExpr(Operands, L, Flags);
3523 }
3524 
3525 /// Get an add recurrence expression for the specified loop.  Simplify the
3526 /// expression as much as possible.
3527 const SCEV *
3528 ScalarEvolution::getAddRecExpr(SmallVectorImpl<const SCEV *> &Operands,
3529                                const Loop *L, SCEV::NoWrapFlags Flags) {
3530   if (Operands.size() == 1) return Operands[0];
3531 #ifndef NDEBUG
3532   Type *ETy = getEffectiveSCEVType(Operands[0]->getType());
3533   for (unsigned i = 1, e = Operands.size(); i != e; ++i) {
3534     assert(getEffectiveSCEVType(Operands[i]->getType()) == ETy &&
3535            "SCEVAddRecExpr operand types don't match!");
3536     assert(!Operands[i]->getType()->isPointerTy() && "Step must be integer");
3537   }
3538   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
3539     assert(isLoopInvariant(Operands[i], L) &&
3540            "SCEVAddRecExpr operand is not loop-invariant!");
3541 #endif
3542 
3543   if (Operands.back()->isZero()) {
3544     Operands.pop_back();
3545     return getAddRecExpr(Operands, L, SCEV::FlagAnyWrap); // {X,+,0}  -->  X
3546   }
3547 
3548   // It's tempting to want to call getConstantMaxBackedgeTakenCount count here and
3549   // use that information to infer NUW and NSW flags. However, computing a
3550   // BE count requires calling getAddRecExpr, so we may not yet have a
3551   // meaningful BE count at this point (and if we don't, we'd be stuck
3552   // with a SCEVCouldNotCompute as the cached BE count).
3553 
3554   Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
3555 
3556   // Canonicalize nested AddRecs in by nesting them in order of loop depth.
3557   if (const SCEVAddRecExpr *NestedAR = dyn_cast<SCEVAddRecExpr>(Operands[0])) {
3558     const Loop *NestedLoop = NestedAR->getLoop();
3559     if (L->contains(NestedLoop)
3560             ? (L->getLoopDepth() < NestedLoop->getLoopDepth())
3561             : (!NestedLoop->contains(L) &&
3562                DT.dominates(L->getHeader(), NestedLoop->getHeader()))) {
3563       SmallVector<const SCEV *, 4> NestedOperands(NestedAR->operands());
3564       Operands[0] = NestedAR->getStart();
3565       // AddRecs require their operands be loop-invariant with respect to their
3566       // loops. Don't perform this transformation if it would break this
3567       // requirement.
3568       bool AllInvariant = all_of(
3569           Operands, [&](const SCEV *Op) { return isLoopInvariant(Op, L); });
3570 
3571       if (AllInvariant) {
3572         // Create a recurrence for the outer loop with the same step size.
3573         //
3574         // The outer recurrence keeps its NW flag but only keeps NUW/NSW if the
3575         // inner recurrence has the same property.
3576         SCEV::NoWrapFlags OuterFlags =
3577           maskFlags(Flags, SCEV::FlagNW | NestedAR->getNoWrapFlags());
3578 
3579         NestedOperands[0] = getAddRecExpr(Operands, L, OuterFlags);
3580         AllInvariant = all_of(NestedOperands, [&](const SCEV *Op) {
3581           return isLoopInvariant(Op, NestedLoop);
3582         });
3583 
3584         if (AllInvariant) {
3585           // Ok, both add recurrences are valid after the transformation.
3586           //
3587           // The inner recurrence keeps its NW flag but only keeps NUW/NSW if
3588           // the outer recurrence has the same property.
3589           SCEV::NoWrapFlags InnerFlags =
3590             maskFlags(NestedAR->getNoWrapFlags(), SCEV::FlagNW | Flags);
3591           return getAddRecExpr(NestedOperands, NestedLoop, InnerFlags);
3592         }
3593       }
3594       // Reset Operands to its original state.
3595       Operands[0] = NestedAR;
3596     }
3597   }
3598 
3599   // Okay, it looks like we really DO need an addrec expr.  Check to see if we
3600   // already have one, otherwise create a new one.
3601   return getOrCreateAddRecExpr(Operands, L, Flags);
3602 }
3603 
3604 const SCEV *
3605 ScalarEvolution::getGEPExpr(GEPOperator *GEP,
3606                             const SmallVectorImpl<const SCEV *> &IndexExprs) {
3607   const SCEV *BaseExpr = getSCEV(GEP->getPointerOperand());
3608   // getSCEV(Base)->getType() has the same address space as Base->getType()
3609   // because SCEV::getType() preserves the address space.
3610   Type *IntIdxTy = getEffectiveSCEVType(BaseExpr->getType());
3611   // FIXME(PR23527): Don't blindly transfer the inbounds flag from the GEP
3612   // instruction to its SCEV, because the Instruction may be guarded by control
3613   // flow and the no-overflow bits may not be valid for the expression in any
3614   // context. This can be fixed similarly to how these flags are handled for
3615   // adds.
3616   SCEV::NoWrapFlags OffsetWrap =
3617       GEP->isInBounds() ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3618 
3619   Type *CurTy = GEP->getType();
3620   bool FirstIter = true;
3621   SmallVector<const SCEV *, 4> Offsets;
3622   for (const SCEV *IndexExpr : IndexExprs) {
3623     // Compute the (potentially symbolic) offset in bytes for this index.
3624     if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3625       // For a struct, add the member offset.
3626       ConstantInt *Index = cast<SCEVConstant>(IndexExpr)->getValue();
3627       unsigned FieldNo = Index->getZExtValue();
3628       const SCEV *FieldOffset = getOffsetOfExpr(IntIdxTy, STy, FieldNo);
3629       Offsets.push_back(FieldOffset);
3630 
3631       // Update CurTy to the type of the field at Index.
3632       CurTy = STy->getTypeAtIndex(Index);
3633     } else {
3634       // Update CurTy to its element type.
3635       if (FirstIter) {
3636         assert(isa<PointerType>(CurTy) &&
3637                "The first index of a GEP indexes a pointer");
3638         CurTy = GEP->getSourceElementType();
3639         FirstIter = false;
3640       } else {
3641         CurTy = GetElementPtrInst::getTypeAtIndex(CurTy, (uint64_t)0);
3642       }
3643       // For an array, add the element offset, explicitly scaled.
3644       const SCEV *ElementSize = getSizeOfExpr(IntIdxTy, CurTy);
3645       // Getelementptr indices are signed.
3646       IndexExpr = getTruncateOrSignExtend(IndexExpr, IntIdxTy);
3647 
3648       // Multiply the index by the element size to compute the element offset.
3649       const SCEV *LocalOffset = getMulExpr(IndexExpr, ElementSize, OffsetWrap);
3650       Offsets.push_back(LocalOffset);
3651     }
3652   }
3653 
3654   // Handle degenerate case of GEP without offsets.
3655   if (Offsets.empty())
3656     return BaseExpr;
3657 
3658   // Add the offsets together, assuming nsw if inbounds.
3659   const SCEV *Offset = getAddExpr(Offsets, OffsetWrap);
3660   // Add the base address and the offset. We cannot use the nsw flag, as the
3661   // base address is unsigned. However, if we know that the offset is
3662   // non-negative, we can use nuw.
3663   SCEV::NoWrapFlags BaseWrap = GEP->isInBounds() && isKnownNonNegative(Offset)
3664                                    ? SCEV::FlagNUW : SCEV::FlagAnyWrap;
3665   auto *GEPExpr = getAddExpr(BaseExpr, Offset, BaseWrap);
3666   assert(BaseExpr->getType() == GEPExpr->getType() &&
3667          "GEP should not change type mid-flight.");
3668   return GEPExpr;
3669 }
3670 
3671 SCEV *ScalarEvolution::findExistingSCEVInCache(SCEVTypes SCEVType,
3672                                                ArrayRef<const SCEV *> Ops) {
3673   FoldingSetNodeID ID;
3674   ID.AddInteger(SCEVType);
3675   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3676     ID.AddPointer(Ops[i]);
3677   void *IP = nullptr;
3678   return UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3679 }
3680 
3681 const SCEV *ScalarEvolution::getAbsExpr(const SCEV *Op, bool IsNSW) {
3682   SCEV::NoWrapFlags Flags = IsNSW ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
3683   return getSMaxExpr(Op, getNegativeSCEV(Op, Flags));
3684 }
3685 
3686 const SCEV *ScalarEvolution::getMinMaxExpr(SCEVTypes Kind,
3687                                            SmallVectorImpl<const SCEV *> &Ops) {
3688   assert(!Ops.empty() && "Cannot get empty (u|s)(min|max)!");
3689   if (Ops.size() == 1) return Ops[0];
3690 #ifndef NDEBUG
3691   Type *ETy = getEffectiveSCEVType(Ops[0]->getType());
3692   for (unsigned i = 1, e = Ops.size(); i != e; ++i) {
3693     assert(getEffectiveSCEVType(Ops[i]->getType()) == ETy &&
3694            "Operand types don't match!");
3695     assert(Ops[0]->getType()->isPointerTy() ==
3696                Ops[i]->getType()->isPointerTy() &&
3697            "min/max should be consistently pointerish");
3698   }
3699 #endif
3700 
3701   bool IsSigned = Kind == scSMaxExpr || Kind == scSMinExpr;
3702   bool IsMax = Kind == scSMaxExpr || Kind == scUMaxExpr;
3703 
3704   // Sort by complexity, this groups all similar expression types together.
3705   GroupByComplexity(Ops, &LI, DT);
3706 
3707   // Check if we have created the same expression before.
3708   if (const SCEV *S = findExistingSCEVInCache(Kind, Ops)) {
3709     return S;
3710   }
3711 
3712   // If there are any constants, fold them together.
3713   unsigned Idx = 0;
3714   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(Ops[0])) {
3715     ++Idx;
3716     assert(Idx < Ops.size());
3717     auto FoldOp = [&](const APInt &LHS, const APInt &RHS) {
3718       if (Kind == scSMaxExpr)
3719         return APIntOps::smax(LHS, RHS);
3720       else if (Kind == scSMinExpr)
3721         return APIntOps::smin(LHS, RHS);
3722       else if (Kind == scUMaxExpr)
3723         return APIntOps::umax(LHS, RHS);
3724       else if (Kind == scUMinExpr)
3725         return APIntOps::umin(LHS, RHS);
3726       llvm_unreachable("Unknown SCEV min/max opcode");
3727     };
3728 
3729     while (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(Ops[Idx])) {
3730       // We found two constants, fold them together!
3731       ConstantInt *Fold = ConstantInt::get(
3732           getContext(), FoldOp(LHSC->getAPInt(), RHSC->getAPInt()));
3733       Ops[0] = getConstant(Fold);
3734       Ops.erase(Ops.begin()+1);  // Erase the folded element
3735       if (Ops.size() == 1) return Ops[0];
3736       LHSC = cast<SCEVConstant>(Ops[0]);
3737     }
3738 
3739     bool IsMinV = LHSC->getValue()->isMinValue(IsSigned);
3740     bool IsMaxV = LHSC->getValue()->isMaxValue(IsSigned);
3741 
3742     if (IsMax ? IsMinV : IsMaxV) {
3743       // If we are left with a constant minimum(/maximum)-int, strip it off.
3744       Ops.erase(Ops.begin());
3745       --Idx;
3746     } else if (IsMax ? IsMaxV : IsMinV) {
3747       // If we have a max(/min) with a constant maximum(/minimum)-int,
3748       // it will always be the extremum.
3749       return LHSC;
3750     }
3751 
3752     if (Ops.size() == 1) return Ops[0];
3753   }
3754 
3755   // Find the first operation of the same kind
3756   while (Idx < Ops.size() && Ops[Idx]->getSCEVType() < Kind)
3757     ++Idx;
3758 
3759   // Check to see if one of the operands is of the same kind. If so, expand its
3760   // operands onto our operand list, and recurse to simplify.
3761   if (Idx < Ops.size()) {
3762     bool DeletedAny = false;
3763     while (Ops[Idx]->getSCEVType() == Kind) {
3764       const SCEVMinMaxExpr *SMME = cast<SCEVMinMaxExpr>(Ops[Idx]);
3765       Ops.erase(Ops.begin()+Idx);
3766       Ops.append(SMME->op_begin(), SMME->op_end());
3767       DeletedAny = true;
3768     }
3769 
3770     if (DeletedAny)
3771       return getMinMaxExpr(Kind, Ops);
3772   }
3773 
3774   // Okay, check to see if the same value occurs in the operand list twice.  If
3775   // so, delete one.  Since we sorted the list, these values are required to
3776   // be adjacent.
3777   llvm::CmpInst::Predicate GEPred =
3778       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
3779   llvm::CmpInst::Predicate LEPred =
3780       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
3781   llvm::CmpInst::Predicate FirstPred = IsMax ? GEPred : LEPred;
3782   llvm::CmpInst::Predicate SecondPred = IsMax ? LEPred : GEPred;
3783   for (unsigned i = 0, e = Ops.size() - 1; i != e; ++i) {
3784     if (Ops[i] == Ops[i + 1] ||
3785         isKnownViaNonRecursiveReasoning(FirstPred, Ops[i], Ops[i + 1])) {
3786       //  X op Y op Y  -->  X op Y
3787       //  X op Y       -->  X, if we know X, Y are ordered appropriately
3788       Ops.erase(Ops.begin() + i + 1, Ops.begin() + i + 2);
3789       --i;
3790       --e;
3791     } else if (isKnownViaNonRecursiveReasoning(SecondPred, Ops[i],
3792                                                Ops[i + 1])) {
3793       //  X op Y       -->  Y, if we know X, Y are ordered appropriately
3794       Ops.erase(Ops.begin() + i, Ops.begin() + i + 1);
3795       --i;
3796       --e;
3797     }
3798   }
3799 
3800   if (Ops.size() == 1) return Ops[0];
3801 
3802   assert(!Ops.empty() && "Reduced smax down to nothing!");
3803 
3804   // Okay, it looks like we really DO need an expr.  Check to see if we
3805   // already have one, otherwise create a new one.
3806   FoldingSetNodeID ID;
3807   ID.AddInteger(Kind);
3808   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
3809     ID.AddPointer(Ops[i]);
3810   void *IP = nullptr;
3811   const SCEV *ExistingSCEV = UniqueSCEVs.FindNodeOrInsertPos(ID, IP);
3812   if (ExistingSCEV)
3813     return ExistingSCEV;
3814   const SCEV **O = SCEVAllocator.Allocate<const SCEV *>(Ops.size());
3815   std::uninitialized_copy(Ops.begin(), Ops.end(), O);
3816   SCEV *S = new (SCEVAllocator)
3817       SCEVMinMaxExpr(ID.Intern(SCEVAllocator), Kind, O, Ops.size());
3818 
3819   UniqueSCEVs.InsertNode(S, IP);
3820   addToLoopUseLists(S);
3821   return S;
3822 }
3823 
3824 const SCEV *ScalarEvolution::getSMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3825   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3826   return getSMaxExpr(Ops);
3827 }
3828 
3829 const SCEV *ScalarEvolution::getSMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3830   return getMinMaxExpr(scSMaxExpr, Ops);
3831 }
3832 
3833 const SCEV *ScalarEvolution::getUMaxExpr(const SCEV *LHS, const SCEV *RHS) {
3834   SmallVector<const SCEV *, 2> Ops = {LHS, RHS};
3835   return getUMaxExpr(Ops);
3836 }
3837 
3838 const SCEV *ScalarEvolution::getUMaxExpr(SmallVectorImpl<const SCEV *> &Ops) {
3839   return getMinMaxExpr(scUMaxExpr, Ops);
3840 }
3841 
3842 const SCEV *ScalarEvolution::getSMinExpr(const SCEV *LHS,
3843                                          const SCEV *RHS) {
3844   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3845   return getSMinExpr(Ops);
3846 }
3847 
3848 const SCEV *ScalarEvolution::getSMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3849   return getMinMaxExpr(scSMinExpr, Ops);
3850 }
3851 
3852 const SCEV *ScalarEvolution::getUMinExpr(const SCEV *LHS,
3853                                          const SCEV *RHS) {
3854   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
3855   return getUMinExpr(Ops);
3856 }
3857 
3858 const SCEV *ScalarEvolution::getUMinExpr(SmallVectorImpl<const SCEV *> &Ops) {
3859   return getMinMaxExpr(scUMinExpr, Ops);
3860 }
3861 
3862 const SCEV *
3863 ScalarEvolution::getSizeOfScalableVectorExpr(Type *IntTy,
3864                                              ScalableVectorType *ScalableTy) {
3865   Constant *NullPtr = Constant::getNullValue(ScalableTy->getPointerTo());
3866   Constant *One = ConstantInt::get(IntTy, 1);
3867   Constant *GEP = ConstantExpr::getGetElementPtr(ScalableTy, NullPtr, One);
3868   // Note that the expression we created is the final expression, we don't
3869   // want to simplify it any further Also, if we call a normal getSCEV(),
3870   // we'll end up in an endless recursion. So just create an SCEVUnknown.
3871   return getUnknown(ConstantExpr::getPtrToInt(GEP, IntTy));
3872 }
3873 
3874 const SCEV *ScalarEvolution::getSizeOfExpr(Type *IntTy, Type *AllocTy) {
3875   if (auto *ScalableAllocTy = dyn_cast<ScalableVectorType>(AllocTy))
3876     return getSizeOfScalableVectorExpr(IntTy, ScalableAllocTy);
3877   // We can bypass creating a target-independent constant expression and then
3878   // folding it back into a ConstantInt. This is just a compile-time
3879   // optimization.
3880   return getConstant(IntTy, getDataLayout().getTypeAllocSize(AllocTy));
3881 }
3882 
3883 const SCEV *ScalarEvolution::getStoreSizeOfExpr(Type *IntTy, Type *StoreTy) {
3884   if (auto *ScalableStoreTy = dyn_cast<ScalableVectorType>(StoreTy))
3885     return getSizeOfScalableVectorExpr(IntTy, ScalableStoreTy);
3886   // We can bypass creating a target-independent constant expression and then
3887   // folding it back into a ConstantInt. This is just a compile-time
3888   // optimization.
3889   return getConstant(IntTy, getDataLayout().getTypeStoreSize(StoreTy));
3890 }
3891 
3892 const SCEV *ScalarEvolution::getOffsetOfExpr(Type *IntTy,
3893                                              StructType *STy,
3894                                              unsigned FieldNo) {
3895   // We can bypass creating a target-independent constant expression and then
3896   // folding it back into a ConstantInt. This is just a compile-time
3897   // optimization.
3898   return getConstant(
3899       IntTy, getDataLayout().getStructLayout(STy)->getElementOffset(FieldNo));
3900 }
3901 
3902 const SCEV *ScalarEvolution::getUnknown(Value *V) {
3903   // Don't attempt to do anything other than create a SCEVUnknown object
3904   // here.  createSCEV only calls getUnknown after checking for all other
3905   // interesting possibilities, and any other code that calls getUnknown
3906   // is doing so in order to hide a value from SCEV canonicalization.
3907 
3908   FoldingSetNodeID ID;
3909   ID.AddInteger(scUnknown);
3910   ID.AddPointer(V);
3911   void *IP = nullptr;
3912   if (SCEV *S = UniqueSCEVs.FindNodeOrInsertPos(ID, IP)) {
3913     assert(cast<SCEVUnknown>(S)->getValue() == V &&
3914            "Stale SCEVUnknown in uniquing map!");
3915     return S;
3916   }
3917   SCEV *S = new (SCEVAllocator) SCEVUnknown(ID.Intern(SCEVAllocator), V, this,
3918                                             FirstUnknown);
3919   FirstUnknown = cast<SCEVUnknown>(S);
3920   UniqueSCEVs.InsertNode(S, IP);
3921   return S;
3922 }
3923 
3924 //===----------------------------------------------------------------------===//
3925 //            Basic SCEV Analysis and PHI Idiom Recognition Code
3926 //
3927 
3928 /// Test if values of the given type are analyzable within the SCEV
3929 /// framework. This primarily includes integer types, and it can optionally
3930 /// include pointer types if the ScalarEvolution class has access to
3931 /// target-specific information.
3932 bool ScalarEvolution::isSCEVable(Type *Ty) const {
3933   // Integers and pointers are always SCEVable.
3934   return Ty->isIntOrPtrTy();
3935 }
3936 
3937 /// Return the size in bits of the specified type, for which isSCEVable must
3938 /// return true.
3939 uint64_t ScalarEvolution::getTypeSizeInBits(Type *Ty) const {
3940   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3941   if (Ty->isPointerTy())
3942     return getDataLayout().getIndexTypeSizeInBits(Ty);
3943   return getDataLayout().getTypeSizeInBits(Ty);
3944 }
3945 
3946 /// Return a type with the same bitwidth as the given type and which represents
3947 /// how SCEV will treat the given type, for which isSCEVable must return
3948 /// true. For pointer types, this is the pointer index sized integer type.
3949 Type *ScalarEvolution::getEffectiveSCEVType(Type *Ty) const {
3950   assert(isSCEVable(Ty) && "Type is not SCEVable!");
3951 
3952   if (Ty->isIntegerTy())
3953     return Ty;
3954 
3955   // The only other support type is pointer.
3956   assert(Ty->isPointerTy() && "Unexpected non-pointer non-integer type!");
3957   return getDataLayout().getIndexType(Ty);
3958 }
3959 
3960 Type *ScalarEvolution::getWiderType(Type *T1, Type *T2) const {
3961   return  getTypeSizeInBits(T1) >= getTypeSizeInBits(T2) ? T1 : T2;
3962 }
3963 
3964 const SCEV *ScalarEvolution::getCouldNotCompute() {
3965   return CouldNotCompute.get();
3966 }
3967 
3968 bool ScalarEvolution::checkValidity(const SCEV *S) const {
3969   bool ContainsNulls = SCEVExprContains(S, [](const SCEV *S) {
3970     auto *SU = dyn_cast<SCEVUnknown>(S);
3971     return SU && SU->getValue() == nullptr;
3972   });
3973 
3974   return !ContainsNulls;
3975 }
3976 
3977 bool ScalarEvolution::containsAddRecurrence(const SCEV *S) {
3978   HasRecMapType::iterator I = HasRecMap.find(S);
3979   if (I != HasRecMap.end())
3980     return I->second;
3981 
3982   bool FoundAddRec =
3983       SCEVExprContains(S, [](const SCEV *S) { return isa<SCEVAddRecExpr>(S); });
3984   HasRecMap.insert({S, FoundAddRec});
3985   return FoundAddRec;
3986 }
3987 
3988 /// Try to split a SCEVAddExpr into a pair of {SCEV, ConstantInt}.
3989 /// If \p S is a SCEVAddExpr and is composed of a sub SCEV S' and an
3990 /// offset I, then return {S', I}, else return {\p S, nullptr}.
3991 static std::pair<const SCEV *, ConstantInt *> splitAddExpr(const SCEV *S) {
3992   const auto *Add = dyn_cast<SCEVAddExpr>(S);
3993   if (!Add)
3994     return {S, nullptr};
3995 
3996   if (Add->getNumOperands() != 2)
3997     return {S, nullptr};
3998 
3999   auto *ConstOp = dyn_cast<SCEVConstant>(Add->getOperand(0));
4000   if (!ConstOp)
4001     return {S, nullptr};
4002 
4003   return {Add->getOperand(1), ConstOp->getValue()};
4004 }
4005 
4006 /// Return the ValueOffsetPair set for \p S. \p S can be represented
4007 /// by the value and offset from any ValueOffsetPair in the set.
4008 ScalarEvolution::ValueOffsetPairSetVector *
4009 ScalarEvolution::getSCEVValues(const SCEV *S) {
4010   ExprValueMapType::iterator SI = ExprValueMap.find_as(S);
4011   if (SI == ExprValueMap.end())
4012     return nullptr;
4013 #ifndef NDEBUG
4014   if (VerifySCEVMap) {
4015     // Check there is no dangling Value in the set returned.
4016     for (const auto &VE : SI->second)
4017       assert(ValueExprMap.count(VE.first));
4018   }
4019 #endif
4020   return &SI->second;
4021 }
4022 
4023 /// Erase Value from ValueExprMap and ExprValueMap. ValueExprMap.erase(V)
4024 /// cannot be used separately. eraseValueFromMap should be used to remove
4025 /// V from ValueExprMap and ExprValueMap at the same time.
4026 void ScalarEvolution::eraseValueFromMap(Value *V) {
4027   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4028   if (I != ValueExprMap.end()) {
4029     const SCEV *S = I->second;
4030     // Remove {V, 0} from the set of ExprValueMap[S]
4031     if (auto *SV = getSCEVValues(S))
4032       SV->remove({V, nullptr});
4033 
4034     // Remove {V, Offset} from the set of ExprValueMap[Stripped]
4035     const SCEV *Stripped;
4036     ConstantInt *Offset;
4037     std::tie(Stripped, Offset) = splitAddExpr(S);
4038     if (Offset != nullptr) {
4039       if (auto *SV = getSCEVValues(Stripped))
4040         SV->remove({V, Offset});
4041     }
4042     ValueExprMap.erase(V);
4043   }
4044 }
4045 
4046 /// Check whether value has nuw/nsw/exact set but SCEV does not.
4047 /// TODO: In reality it is better to check the poison recursively
4048 /// but this is better than nothing.
4049 static bool SCEVLostPoisonFlags(const SCEV *S, const Value *V) {
4050   if (auto *I = dyn_cast<Instruction>(V)) {
4051     if (isa<OverflowingBinaryOperator>(I)) {
4052       if (auto *NS = dyn_cast<SCEVNAryExpr>(S)) {
4053         if (I->hasNoSignedWrap() && !NS->hasNoSignedWrap())
4054           return true;
4055         if (I->hasNoUnsignedWrap() && !NS->hasNoUnsignedWrap())
4056           return true;
4057       }
4058     } else if (isa<PossiblyExactOperator>(I) && I->isExact())
4059       return true;
4060   }
4061   return false;
4062 }
4063 
4064 /// Return an existing SCEV if it exists, otherwise analyze the expression and
4065 /// create a new one.
4066 const SCEV *ScalarEvolution::getSCEV(Value *V) {
4067   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4068 
4069   const SCEV *S = getExistingSCEV(V);
4070   if (S == nullptr) {
4071     S = createSCEV(V);
4072     // During PHI resolution, it is possible to create two SCEVs for the same
4073     // V, so it is needed to double check whether V->S is inserted into
4074     // ValueExprMap before insert S->{V, 0} into ExprValueMap.
4075     std::pair<ValueExprMapType::iterator, bool> Pair =
4076         ValueExprMap.insert({SCEVCallbackVH(V, this), S});
4077     if (Pair.second && !SCEVLostPoisonFlags(S, V)) {
4078       ExprValueMap[S].insert({V, nullptr});
4079 
4080       // If S == Stripped + Offset, add Stripped -> {V, Offset} into
4081       // ExprValueMap.
4082       const SCEV *Stripped = S;
4083       ConstantInt *Offset = nullptr;
4084       std::tie(Stripped, Offset) = splitAddExpr(S);
4085       // If stripped is SCEVUnknown, don't bother to save
4086       // Stripped -> {V, offset}. It doesn't simplify and sometimes even
4087       // increase the complexity of the expansion code.
4088       // If V is GetElementPtrInst, don't save Stripped -> {V, offset}
4089       // because it may generate add/sub instead of GEP in SCEV expansion.
4090       if (Offset != nullptr && !isa<SCEVUnknown>(Stripped) &&
4091           !isa<GetElementPtrInst>(V))
4092         ExprValueMap[Stripped].insert({V, Offset});
4093     }
4094   }
4095   return S;
4096 }
4097 
4098 const SCEV *ScalarEvolution::getExistingSCEV(Value *V) {
4099   assert(isSCEVable(V->getType()) && "Value is not SCEVable!");
4100 
4101   ValueExprMapType::iterator I = ValueExprMap.find_as(V);
4102   if (I != ValueExprMap.end()) {
4103     const SCEV *S = I->second;
4104     if (checkValidity(S))
4105       return S;
4106     eraseValueFromMap(V);
4107     forgetMemoizedResults(S);
4108   }
4109   return nullptr;
4110 }
4111 
4112 /// Return a SCEV corresponding to -V = -1*V
4113 const SCEV *ScalarEvolution::getNegativeSCEV(const SCEV *V,
4114                                              SCEV::NoWrapFlags Flags) {
4115   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4116     return getConstant(
4117                cast<ConstantInt>(ConstantExpr::getNeg(VC->getValue())));
4118 
4119   Type *Ty = V->getType();
4120   Ty = getEffectiveSCEVType(Ty);
4121   return getMulExpr(V, getMinusOne(Ty), Flags);
4122 }
4123 
4124 /// If Expr computes ~A, return A else return nullptr
4125 static const SCEV *MatchNotExpr(const SCEV *Expr) {
4126   const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Expr);
4127   if (!Add || Add->getNumOperands() != 2 ||
4128       !Add->getOperand(0)->isAllOnesValue())
4129     return nullptr;
4130 
4131   const SCEVMulExpr *AddRHS = dyn_cast<SCEVMulExpr>(Add->getOperand(1));
4132   if (!AddRHS || AddRHS->getNumOperands() != 2 ||
4133       !AddRHS->getOperand(0)->isAllOnesValue())
4134     return nullptr;
4135 
4136   return AddRHS->getOperand(1);
4137 }
4138 
4139 /// Return a SCEV corresponding to ~V = -1-V
4140 const SCEV *ScalarEvolution::getNotSCEV(const SCEV *V) {
4141   assert(!V->getType()->isPointerTy() && "Can't negate pointer");
4142 
4143   if (const SCEVConstant *VC = dyn_cast<SCEVConstant>(V))
4144     return getConstant(
4145                 cast<ConstantInt>(ConstantExpr::getNot(VC->getValue())));
4146 
4147   // Fold ~(u|s)(min|max)(~x, ~y) to (u|s)(max|min)(x, y)
4148   if (const SCEVMinMaxExpr *MME = dyn_cast<SCEVMinMaxExpr>(V)) {
4149     auto MatchMinMaxNegation = [&](const SCEVMinMaxExpr *MME) {
4150       SmallVector<const SCEV *, 2> MatchedOperands;
4151       for (const SCEV *Operand : MME->operands()) {
4152         const SCEV *Matched = MatchNotExpr(Operand);
4153         if (!Matched)
4154           return (const SCEV *)nullptr;
4155         MatchedOperands.push_back(Matched);
4156       }
4157       return getMinMaxExpr(SCEVMinMaxExpr::negate(MME->getSCEVType()),
4158                            MatchedOperands);
4159     };
4160     if (const SCEV *Replaced = MatchMinMaxNegation(MME))
4161       return Replaced;
4162   }
4163 
4164   Type *Ty = V->getType();
4165   Ty = getEffectiveSCEVType(Ty);
4166   return getMinusSCEV(getMinusOne(Ty), V);
4167 }
4168 
4169 const SCEV *ScalarEvolution::removePointerBase(const SCEV *P) {
4170   assert(P->getType()->isPointerTy());
4171 
4172   if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(P)) {
4173     // The base of an AddRec is the first operand.
4174     SmallVector<const SCEV *> Ops{AddRec->operands()};
4175     Ops[0] = removePointerBase(Ops[0]);
4176     // Don't try to transfer nowrap flags for now. We could in some cases
4177     // (for example, if pointer operand of the AddRec is a SCEVUnknown).
4178     return getAddRecExpr(Ops, AddRec->getLoop(), SCEV::FlagAnyWrap);
4179   }
4180   if (auto *Add = dyn_cast<SCEVAddExpr>(P)) {
4181     // The base of an Add is the pointer operand.
4182     SmallVector<const SCEV *> Ops{Add->operands()};
4183     const SCEV **PtrOp = nullptr;
4184     for (const SCEV *&AddOp : Ops) {
4185       if (AddOp->getType()->isPointerTy()) {
4186         assert(!PtrOp && "Cannot have multiple pointer ops");
4187         PtrOp = &AddOp;
4188       }
4189     }
4190     *PtrOp = removePointerBase(*PtrOp);
4191     // Don't try to transfer nowrap flags for now. We could in some cases
4192     // (for example, if the pointer operand of the Add is a SCEVUnknown).
4193     return getAddExpr(Ops);
4194   }
4195   // Any other expression must be a pointer base.
4196   return getZero(P->getType());
4197 }
4198 
4199 const SCEV *ScalarEvolution::getMinusSCEV(const SCEV *LHS, const SCEV *RHS,
4200                                           SCEV::NoWrapFlags Flags,
4201                                           unsigned Depth) {
4202   // Fast path: X - X --> 0.
4203   if (LHS == RHS)
4204     return getZero(LHS->getType());
4205 
4206   // If we subtract two pointers with different pointer bases, bail.
4207   // Eventually, we're going to add an assertion to getMulExpr that we
4208   // can't multiply by a pointer.
4209   if (RHS->getType()->isPointerTy()) {
4210     if (!LHS->getType()->isPointerTy() ||
4211         getPointerBase(LHS) != getPointerBase(RHS))
4212       return getCouldNotCompute();
4213     LHS = removePointerBase(LHS);
4214     RHS = removePointerBase(RHS);
4215   }
4216 
4217   // We represent LHS - RHS as LHS + (-1)*RHS. This transformation
4218   // makes it so that we cannot make much use of NUW.
4219   auto AddFlags = SCEV::FlagAnyWrap;
4220   const bool RHSIsNotMinSigned =
4221       !getSignedRangeMin(RHS).isMinSignedValue();
4222   if (hasFlags(Flags, SCEV::FlagNSW)) {
4223     // Let M be the minimum representable signed value. Then (-1)*RHS
4224     // signed-wraps if and only if RHS is M. That can happen even for
4225     // a NSW subtraction because e.g. (-1)*M signed-wraps even though
4226     // -1 - M does not. So to transfer NSW from LHS - RHS to LHS +
4227     // (-1)*RHS, we need to prove that RHS != M.
4228     //
4229     // If LHS is non-negative and we know that LHS - RHS does not
4230     // signed-wrap, then RHS cannot be M. So we can rule out signed-wrap
4231     // either by proving that RHS > M or that LHS >= 0.
4232     if (RHSIsNotMinSigned || isKnownNonNegative(LHS)) {
4233       AddFlags = SCEV::FlagNSW;
4234     }
4235   }
4236 
4237   // FIXME: Find a correct way to transfer NSW to (-1)*M when LHS -
4238   // RHS is NSW and LHS >= 0.
4239   //
4240   // The difficulty here is that the NSW flag may have been proven
4241   // relative to a loop that is to be found in a recurrence in LHS and
4242   // not in RHS. Applying NSW to (-1)*M may then let the NSW have a
4243   // larger scope than intended.
4244   auto NegFlags = RHSIsNotMinSigned ? SCEV::FlagNSW : SCEV::FlagAnyWrap;
4245 
4246   return getAddExpr(LHS, getNegativeSCEV(RHS, NegFlags), AddFlags, Depth);
4247 }
4248 
4249 const SCEV *ScalarEvolution::getTruncateOrZeroExtend(const SCEV *V, Type *Ty,
4250                                                      unsigned Depth) {
4251   Type *SrcTy = V->getType();
4252   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4253          "Cannot truncate or zero extend with non-integer arguments!");
4254   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4255     return V;  // No conversion
4256   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4257     return getTruncateExpr(V, Ty, Depth);
4258   return getZeroExtendExpr(V, Ty, Depth);
4259 }
4260 
4261 const SCEV *ScalarEvolution::getTruncateOrSignExtend(const SCEV *V, Type *Ty,
4262                                                      unsigned Depth) {
4263   Type *SrcTy = V->getType();
4264   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4265          "Cannot truncate or zero extend with non-integer arguments!");
4266   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4267     return V;  // No conversion
4268   if (getTypeSizeInBits(SrcTy) > getTypeSizeInBits(Ty))
4269     return getTruncateExpr(V, Ty, Depth);
4270   return getSignExtendExpr(V, Ty, Depth);
4271 }
4272 
4273 const SCEV *
4274 ScalarEvolution::getNoopOrZeroExtend(const SCEV *V, Type *Ty) {
4275   Type *SrcTy = V->getType();
4276   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4277          "Cannot noop or zero extend with non-integer arguments!");
4278   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4279          "getNoopOrZeroExtend cannot truncate!");
4280   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4281     return V;  // No conversion
4282   return getZeroExtendExpr(V, Ty);
4283 }
4284 
4285 const SCEV *
4286 ScalarEvolution::getNoopOrSignExtend(const SCEV *V, Type *Ty) {
4287   Type *SrcTy = V->getType();
4288   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4289          "Cannot noop or sign extend with non-integer arguments!");
4290   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4291          "getNoopOrSignExtend cannot truncate!");
4292   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4293     return V;  // No conversion
4294   return getSignExtendExpr(V, Ty);
4295 }
4296 
4297 const SCEV *
4298 ScalarEvolution::getNoopOrAnyExtend(const SCEV *V, Type *Ty) {
4299   Type *SrcTy = V->getType();
4300   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4301          "Cannot noop or any extend with non-integer arguments!");
4302   assert(getTypeSizeInBits(SrcTy) <= getTypeSizeInBits(Ty) &&
4303          "getNoopOrAnyExtend cannot truncate!");
4304   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4305     return V;  // No conversion
4306   return getAnyExtendExpr(V, Ty);
4307 }
4308 
4309 const SCEV *
4310 ScalarEvolution::getTruncateOrNoop(const SCEV *V, Type *Ty) {
4311   Type *SrcTy = V->getType();
4312   assert(SrcTy->isIntOrPtrTy() && Ty->isIntOrPtrTy() &&
4313          "Cannot truncate or noop with non-integer arguments!");
4314   assert(getTypeSizeInBits(SrcTy) >= getTypeSizeInBits(Ty) &&
4315          "getTruncateOrNoop cannot extend!");
4316   if (getTypeSizeInBits(SrcTy) == getTypeSizeInBits(Ty))
4317     return V;  // No conversion
4318   return getTruncateExpr(V, Ty);
4319 }
4320 
4321 const SCEV *ScalarEvolution::getUMaxFromMismatchedTypes(const SCEV *LHS,
4322                                                         const SCEV *RHS) {
4323   const SCEV *PromotedLHS = LHS;
4324   const SCEV *PromotedRHS = RHS;
4325 
4326   if (getTypeSizeInBits(LHS->getType()) > getTypeSizeInBits(RHS->getType()))
4327     PromotedRHS = getZeroExtendExpr(RHS, LHS->getType());
4328   else
4329     PromotedLHS = getNoopOrZeroExtend(LHS, RHS->getType());
4330 
4331   return getUMaxExpr(PromotedLHS, PromotedRHS);
4332 }
4333 
4334 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(const SCEV *LHS,
4335                                                         const SCEV *RHS) {
4336   SmallVector<const SCEV *, 2> Ops = { LHS, RHS };
4337   return getUMinFromMismatchedTypes(Ops);
4338 }
4339 
4340 const SCEV *ScalarEvolution::getUMinFromMismatchedTypes(
4341     SmallVectorImpl<const SCEV *> &Ops) {
4342   assert(!Ops.empty() && "At least one operand must be!");
4343   // Trivial case.
4344   if (Ops.size() == 1)
4345     return Ops[0];
4346 
4347   // Find the max type first.
4348   Type *MaxType = nullptr;
4349   for (auto *S : Ops)
4350     if (MaxType)
4351       MaxType = getWiderType(MaxType, S->getType());
4352     else
4353       MaxType = S->getType();
4354   assert(MaxType && "Failed to find maximum type!");
4355 
4356   // Extend all ops to max type.
4357   SmallVector<const SCEV *, 2> PromotedOps;
4358   for (auto *S : Ops)
4359     PromotedOps.push_back(getNoopOrZeroExtend(S, MaxType));
4360 
4361   // Generate umin.
4362   return getUMinExpr(PromotedOps);
4363 }
4364 
4365 const SCEV *ScalarEvolution::getPointerBase(const SCEV *V) {
4366   // A pointer operand may evaluate to a nonpointer expression, such as null.
4367   if (!V->getType()->isPointerTy())
4368     return V;
4369 
4370   while (true) {
4371     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
4372       V = AddRec->getStart();
4373     } else if (auto *Add = dyn_cast<SCEVAddExpr>(V)) {
4374       const SCEV *PtrOp = nullptr;
4375       for (const SCEV *AddOp : Add->operands()) {
4376         if (AddOp->getType()->isPointerTy()) {
4377           assert(!PtrOp && "Cannot have multiple pointer ops");
4378           PtrOp = AddOp;
4379         }
4380       }
4381       assert(PtrOp && "Must have pointer op");
4382       V = PtrOp;
4383     } else // Not something we can look further into.
4384       return V;
4385   }
4386 }
4387 
4388 /// Push users of the given Instruction onto the given Worklist.
4389 static void
4390 PushDefUseChildren(Instruction *I,
4391                    SmallVectorImpl<Instruction *> &Worklist) {
4392   // Push the def-use children onto the Worklist stack.
4393   for (User *U : I->users())
4394     Worklist.push_back(cast<Instruction>(U));
4395 }
4396 
4397 void ScalarEvolution::forgetSymbolicName(Instruction *PN, const SCEV *SymName) {
4398   SmallVector<Instruction *, 16> Worklist;
4399   PushDefUseChildren(PN, Worklist);
4400 
4401   SmallPtrSet<Instruction *, 8> Visited;
4402   Visited.insert(PN);
4403   while (!Worklist.empty()) {
4404     Instruction *I = Worklist.pop_back_val();
4405     if (!Visited.insert(I).second)
4406       continue;
4407 
4408     auto It = ValueExprMap.find_as(static_cast<Value *>(I));
4409     if (It != ValueExprMap.end()) {
4410       const SCEV *Old = It->second;
4411 
4412       // Short-circuit the def-use traversal if the symbolic name
4413       // ceases to appear in expressions.
4414       if (Old != SymName && !hasOperand(Old, SymName))
4415         continue;
4416 
4417       // SCEVUnknown for a PHI either means that it has an unrecognized
4418       // structure, it's a PHI that's in the progress of being computed
4419       // by createNodeForPHI, or it's a single-value PHI. In the first case,
4420       // additional loop trip count information isn't going to change anything.
4421       // In the second case, createNodeForPHI will perform the necessary
4422       // updates on its own when it gets to that point. In the third, we do
4423       // want to forget the SCEVUnknown.
4424       if (!isa<PHINode>(I) ||
4425           !isa<SCEVUnknown>(Old) ||
4426           (I != PN && Old == SymName)) {
4427         eraseValueFromMap(It->first);
4428         forgetMemoizedResults(Old);
4429       }
4430     }
4431 
4432     PushDefUseChildren(I, Worklist);
4433   }
4434 }
4435 
4436 namespace {
4437 
4438 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its start
4439 /// expression in case its Loop is L. If it is not L then
4440 /// if IgnoreOtherLoops is true then use AddRec itself
4441 /// otherwise rewrite cannot be done.
4442 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4443 class SCEVInitRewriter : public SCEVRewriteVisitor<SCEVInitRewriter> {
4444 public:
4445   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
4446                              bool IgnoreOtherLoops = true) {
4447     SCEVInitRewriter Rewriter(L, SE);
4448     const SCEV *Result = Rewriter.visit(S);
4449     if (Rewriter.hasSeenLoopVariantSCEVUnknown())
4450       return SE.getCouldNotCompute();
4451     return Rewriter.hasSeenOtherLoops() && !IgnoreOtherLoops
4452                ? SE.getCouldNotCompute()
4453                : Result;
4454   }
4455 
4456   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4457     if (!SE.isLoopInvariant(Expr, L))
4458       SeenLoopVariantSCEVUnknown = true;
4459     return Expr;
4460   }
4461 
4462   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4463     // Only re-write AddRecExprs for this loop.
4464     if (Expr->getLoop() == L)
4465       return Expr->getStart();
4466     SeenOtherLoops = true;
4467     return Expr;
4468   }
4469 
4470   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4471 
4472   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4473 
4474 private:
4475   explicit SCEVInitRewriter(const Loop *L, ScalarEvolution &SE)
4476       : SCEVRewriteVisitor(SE), L(L) {}
4477 
4478   const Loop *L;
4479   bool SeenLoopVariantSCEVUnknown = false;
4480   bool SeenOtherLoops = false;
4481 };
4482 
4483 /// Takes SCEV S and Loop L. For each AddRec sub-expression, use its post
4484 /// increment expression in case its Loop is L. If it is not L then
4485 /// use AddRec itself.
4486 /// If SCEV contains non-invariant unknown SCEV rewrite cannot be done.
4487 class SCEVPostIncRewriter : public SCEVRewriteVisitor<SCEVPostIncRewriter> {
4488 public:
4489   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE) {
4490     SCEVPostIncRewriter Rewriter(L, SE);
4491     const SCEV *Result = Rewriter.visit(S);
4492     return Rewriter.hasSeenLoopVariantSCEVUnknown()
4493         ? SE.getCouldNotCompute()
4494         : Result;
4495   }
4496 
4497   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4498     if (!SE.isLoopInvariant(Expr, L))
4499       SeenLoopVariantSCEVUnknown = true;
4500     return Expr;
4501   }
4502 
4503   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4504     // Only re-write AddRecExprs for this loop.
4505     if (Expr->getLoop() == L)
4506       return Expr->getPostIncExpr(SE);
4507     SeenOtherLoops = true;
4508     return Expr;
4509   }
4510 
4511   bool hasSeenLoopVariantSCEVUnknown() { return SeenLoopVariantSCEVUnknown; }
4512 
4513   bool hasSeenOtherLoops() { return SeenOtherLoops; }
4514 
4515 private:
4516   explicit SCEVPostIncRewriter(const Loop *L, ScalarEvolution &SE)
4517       : SCEVRewriteVisitor(SE), L(L) {}
4518 
4519   const Loop *L;
4520   bool SeenLoopVariantSCEVUnknown = false;
4521   bool SeenOtherLoops = false;
4522 };
4523 
4524 /// This class evaluates the compare condition by matching it against the
4525 /// condition of loop latch. If there is a match we assume a true value
4526 /// for the condition while building SCEV nodes.
4527 class SCEVBackedgeConditionFolder
4528     : public SCEVRewriteVisitor<SCEVBackedgeConditionFolder> {
4529 public:
4530   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4531                              ScalarEvolution &SE) {
4532     bool IsPosBECond = false;
4533     Value *BECond = nullptr;
4534     if (BasicBlock *Latch = L->getLoopLatch()) {
4535       BranchInst *BI = dyn_cast<BranchInst>(Latch->getTerminator());
4536       if (BI && BI->isConditional()) {
4537         assert(BI->getSuccessor(0) != BI->getSuccessor(1) &&
4538                "Both outgoing branches should not target same header!");
4539         BECond = BI->getCondition();
4540         IsPosBECond = BI->getSuccessor(0) == L->getHeader();
4541       } else {
4542         return S;
4543       }
4544     }
4545     SCEVBackedgeConditionFolder Rewriter(L, BECond, IsPosBECond, SE);
4546     return Rewriter.visit(S);
4547   }
4548 
4549   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4550     const SCEV *Result = Expr;
4551     bool InvariantF = SE.isLoopInvariant(Expr, L);
4552 
4553     if (!InvariantF) {
4554       Instruction *I = cast<Instruction>(Expr->getValue());
4555       switch (I->getOpcode()) {
4556       case Instruction::Select: {
4557         SelectInst *SI = cast<SelectInst>(I);
4558         Optional<const SCEV *> Res =
4559             compareWithBackedgeCondition(SI->getCondition());
4560         if (Res.hasValue()) {
4561           bool IsOne = cast<SCEVConstant>(Res.getValue())->getValue()->isOne();
4562           Result = SE.getSCEV(IsOne ? SI->getTrueValue() : SI->getFalseValue());
4563         }
4564         break;
4565       }
4566       default: {
4567         Optional<const SCEV *> Res = compareWithBackedgeCondition(I);
4568         if (Res.hasValue())
4569           Result = Res.getValue();
4570         break;
4571       }
4572       }
4573     }
4574     return Result;
4575   }
4576 
4577 private:
4578   explicit SCEVBackedgeConditionFolder(const Loop *L, Value *BECond,
4579                                        bool IsPosBECond, ScalarEvolution &SE)
4580       : SCEVRewriteVisitor(SE), L(L), BackedgeCond(BECond),
4581         IsPositiveBECond(IsPosBECond) {}
4582 
4583   Optional<const SCEV *> compareWithBackedgeCondition(Value *IC);
4584 
4585   const Loop *L;
4586   /// Loop back condition.
4587   Value *BackedgeCond = nullptr;
4588   /// Set to true if loop back is on positive branch condition.
4589   bool IsPositiveBECond;
4590 };
4591 
4592 Optional<const SCEV *>
4593 SCEVBackedgeConditionFolder::compareWithBackedgeCondition(Value *IC) {
4594 
4595   // If value matches the backedge condition for loop latch,
4596   // then return a constant evolution node based on loopback
4597   // branch taken.
4598   if (BackedgeCond == IC)
4599     return IsPositiveBECond ? SE.getOne(Type::getInt1Ty(SE.getContext()))
4600                             : SE.getZero(Type::getInt1Ty(SE.getContext()));
4601   return None;
4602 }
4603 
4604 class SCEVShiftRewriter : public SCEVRewriteVisitor<SCEVShiftRewriter> {
4605 public:
4606   static const SCEV *rewrite(const SCEV *S, const Loop *L,
4607                              ScalarEvolution &SE) {
4608     SCEVShiftRewriter Rewriter(L, SE);
4609     const SCEV *Result = Rewriter.visit(S);
4610     return Rewriter.isValid() ? Result : SE.getCouldNotCompute();
4611   }
4612 
4613   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
4614     // Only allow AddRecExprs for this loop.
4615     if (!SE.isLoopInvariant(Expr, L))
4616       Valid = false;
4617     return Expr;
4618   }
4619 
4620   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
4621     if (Expr->getLoop() == L && Expr->isAffine())
4622       return SE.getMinusSCEV(Expr, Expr->getStepRecurrence(SE));
4623     Valid = false;
4624     return Expr;
4625   }
4626 
4627   bool isValid() { return Valid; }
4628 
4629 private:
4630   explicit SCEVShiftRewriter(const Loop *L, ScalarEvolution &SE)
4631       : SCEVRewriteVisitor(SE), L(L) {}
4632 
4633   const Loop *L;
4634   bool Valid = true;
4635 };
4636 
4637 } // end anonymous namespace
4638 
4639 SCEV::NoWrapFlags
4640 ScalarEvolution::proveNoWrapViaConstantRanges(const SCEVAddRecExpr *AR) {
4641   if (!AR->isAffine())
4642     return SCEV::FlagAnyWrap;
4643 
4644   using OBO = OverflowingBinaryOperator;
4645 
4646   SCEV::NoWrapFlags Result = SCEV::FlagAnyWrap;
4647 
4648   if (!AR->hasNoSignedWrap()) {
4649     ConstantRange AddRecRange = getSignedRange(AR);
4650     ConstantRange IncRange = getSignedRange(AR->getStepRecurrence(*this));
4651 
4652     auto NSWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4653         Instruction::Add, IncRange, OBO::NoSignedWrap);
4654     if (NSWRegion.contains(AddRecRange))
4655       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNSW);
4656   }
4657 
4658   if (!AR->hasNoUnsignedWrap()) {
4659     ConstantRange AddRecRange = getUnsignedRange(AR);
4660     ConstantRange IncRange = getUnsignedRange(AR->getStepRecurrence(*this));
4661 
4662     auto NUWRegion = ConstantRange::makeGuaranteedNoWrapRegion(
4663         Instruction::Add, IncRange, OBO::NoUnsignedWrap);
4664     if (NUWRegion.contains(AddRecRange))
4665       Result = ScalarEvolution::setFlags(Result, SCEV::FlagNUW);
4666   }
4667 
4668   return Result;
4669 }
4670 
4671 SCEV::NoWrapFlags
4672 ScalarEvolution::proveNoSignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4673   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4674 
4675   if (AR->hasNoSignedWrap())
4676     return Result;
4677 
4678   if (!AR->isAffine())
4679     return Result;
4680 
4681   const SCEV *Step = AR->getStepRecurrence(*this);
4682   const Loop *L = AR->getLoop();
4683 
4684   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4685   // Note that this serves two purposes: It filters out loops that are
4686   // simply not analyzable, and it covers the case where this code is
4687   // being called from within backedge-taken count analysis, such that
4688   // attempting to ask for the backedge-taken count would likely result
4689   // in infinite recursion. In the later case, the analysis code will
4690   // cope with a conservative value, and it will take care to purge
4691   // that value once it has finished.
4692   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4693 
4694   // Normally, in the cases we can prove no-overflow via a
4695   // backedge guarding condition, we can also compute a backedge
4696   // taken count for the loop.  The exceptions are assumptions and
4697   // guards present in the loop -- SCEV is not great at exploiting
4698   // these to compute max backedge taken counts, but can still use
4699   // these to prove lack of overflow.  Use this fact to avoid
4700   // doing extra work that may not pay off.
4701 
4702   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4703       AC.assumptions().empty())
4704     return Result;
4705 
4706   // If the backedge is guarded by a comparison with the pre-inc  value the
4707   // addrec is safe. Also, if the entry is guarded by a comparison with the
4708   // start value and the backedge is guarded by a comparison with the post-inc
4709   // value, the addrec is safe.
4710   ICmpInst::Predicate Pred;
4711   const SCEV *OverflowLimit =
4712     getSignedOverflowLimitForStep(Step, &Pred, this);
4713   if (OverflowLimit &&
4714       (isLoopBackedgeGuardedByCond(L, Pred, AR, OverflowLimit) ||
4715        isKnownOnEveryIteration(Pred, AR, OverflowLimit))) {
4716     Result = setFlags(Result, SCEV::FlagNSW);
4717   }
4718   return Result;
4719 }
4720 SCEV::NoWrapFlags
4721 ScalarEvolution::proveNoUnsignedWrapViaInduction(const SCEVAddRecExpr *AR) {
4722   SCEV::NoWrapFlags Result = AR->getNoWrapFlags();
4723 
4724   if (AR->hasNoUnsignedWrap())
4725     return Result;
4726 
4727   if (!AR->isAffine())
4728     return Result;
4729 
4730   const SCEV *Step = AR->getStepRecurrence(*this);
4731   unsigned BitWidth = getTypeSizeInBits(AR->getType());
4732   const Loop *L = AR->getLoop();
4733 
4734   // Check whether the backedge-taken count is SCEVCouldNotCompute.
4735   // Note that this serves two purposes: It filters out loops that are
4736   // simply not analyzable, and it covers the case where this code is
4737   // being called from within backedge-taken count analysis, such that
4738   // attempting to ask for the backedge-taken count would likely result
4739   // in infinite recursion. In the later case, the analysis code will
4740   // cope with a conservative value, and it will take care to purge
4741   // that value once it has finished.
4742   const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(L);
4743 
4744   // Normally, in the cases we can prove no-overflow via a
4745   // backedge guarding condition, we can also compute a backedge
4746   // taken count for the loop.  The exceptions are assumptions and
4747   // guards present in the loop -- SCEV is not great at exploiting
4748   // these to compute max backedge taken counts, but can still use
4749   // these to prove lack of overflow.  Use this fact to avoid
4750   // doing extra work that may not pay off.
4751 
4752   if (isa<SCEVCouldNotCompute>(MaxBECount) && !HasGuards &&
4753       AC.assumptions().empty())
4754     return Result;
4755 
4756   // If the backedge is guarded by a comparison with the pre-inc  value the
4757   // addrec is safe. Also, if the entry is guarded by a comparison with the
4758   // start value and the backedge is guarded by a comparison with the post-inc
4759   // value, the addrec is safe.
4760   if (isKnownPositive(Step)) {
4761     const SCEV *N = getConstant(APInt::getMinValue(BitWidth) -
4762                                 getUnsignedRangeMax(Step));
4763     if (isLoopBackedgeGuardedByCond(L, ICmpInst::ICMP_ULT, AR, N) ||
4764         isKnownOnEveryIteration(ICmpInst::ICMP_ULT, AR, N)) {
4765       Result = setFlags(Result, SCEV::FlagNUW);
4766     }
4767   }
4768 
4769   return Result;
4770 }
4771 
4772 namespace {
4773 
4774 /// Represents an abstract binary operation.  This may exist as a
4775 /// normal instruction or constant expression, or may have been
4776 /// derived from an expression tree.
4777 struct BinaryOp {
4778   unsigned Opcode;
4779   Value *LHS;
4780   Value *RHS;
4781   bool IsNSW = false;
4782   bool IsNUW = false;
4783 
4784   /// Op is set if this BinaryOp corresponds to a concrete LLVM instruction or
4785   /// constant expression.
4786   Operator *Op = nullptr;
4787 
4788   explicit BinaryOp(Operator *Op)
4789       : Opcode(Op->getOpcode()), LHS(Op->getOperand(0)), RHS(Op->getOperand(1)),
4790         Op(Op) {
4791     if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(Op)) {
4792       IsNSW = OBO->hasNoSignedWrap();
4793       IsNUW = OBO->hasNoUnsignedWrap();
4794     }
4795   }
4796 
4797   explicit BinaryOp(unsigned Opcode, Value *LHS, Value *RHS, bool IsNSW = false,
4798                     bool IsNUW = false)
4799       : Opcode(Opcode), LHS(LHS), RHS(RHS), IsNSW(IsNSW), IsNUW(IsNUW) {}
4800 };
4801 
4802 } // end anonymous namespace
4803 
4804 /// Try to map \p V into a BinaryOp, and return \c None on failure.
4805 static Optional<BinaryOp> MatchBinaryOp(Value *V, DominatorTree &DT) {
4806   auto *Op = dyn_cast<Operator>(V);
4807   if (!Op)
4808     return None;
4809 
4810   // Implementation detail: all the cleverness here should happen without
4811   // creating new SCEV expressions -- our caller knowns tricks to avoid creating
4812   // SCEV expressions when possible, and we should not break that.
4813 
4814   switch (Op->getOpcode()) {
4815   case Instruction::Add:
4816   case Instruction::Sub:
4817   case Instruction::Mul:
4818   case Instruction::UDiv:
4819   case Instruction::URem:
4820   case Instruction::And:
4821   case Instruction::Or:
4822   case Instruction::AShr:
4823   case Instruction::Shl:
4824     return BinaryOp(Op);
4825 
4826   case Instruction::Xor:
4827     if (auto *RHSC = dyn_cast<ConstantInt>(Op->getOperand(1)))
4828       // If the RHS of the xor is a signmask, then this is just an add.
4829       // Instcombine turns add of signmask into xor as a strength reduction step.
4830       if (RHSC->getValue().isSignMask())
4831         return BinaryOp(Instruction::Add, Op->getOperand(0), Op->getOperand(1));
4832     return BinaryOp(Op);
4833 
4834   case Instruction::LShr:
4835     // Turn logical shift right of a constant into a unsigned divide.
4836     if (ConstantInt *SA = dyn_cast<ConstantInt>(Op->getOperand(1))) {
4837       uint32_t BitWidth = cast<IntegerType>(Op->getType())->getBitWidth();
4838 
4839       // If the shift count is not less than the bitwidth, the result of
4840       // the shift is undefined. Don't try to analyze it, because the
4841       // resolution chosen here may differ from the resolution chosen in
4842       // other parts of the compiler.
4843       if (SA->getValue().ult(BitWidth)) {
4844         Constant *X =
4845             ConstantInt::get(SA->getContext(),
4846                              APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
4847         return BinaryOp(Instruction::UDiv, Op->getOperand(0), X);
4848       }
4849     }
4850     return BinaryOp(Op);
4851 
4852   case Instruction::ExtractValue: {
4853     auto *EVI = cast<ExtractValueInst>(Op);
4854     if (EVI->getNumIndices() != 1 || EVI->getIndices()[0] != 0)
4855       break;
4856 
4857     auto *WO = dyn_cast<WithOverflowInst>(EVI->getAggregateOperand());
4858     if (!WO)
4859       break;
4860 
4861     Instruction::BinaryOps BinOp = WO->getBinaryOp();
4862     bool Signed = WO->isSigned();
4863     // TODO: Should add nuw/nsw flags for mul as well.
4864     if (BinOp == Instruction::Mul || !isOverflowIntrinsicNoWrap(WO, DT))
4865       return BinaryOp(BinOp, WO->getLHS(), WO->getRHS());
4866 
4867     // Now that we know that all uses of the arithmetic-result component of
4868     // CI are guarded by the overflow check, we can go ahead and pretend
4869     // that the arithmetic is non-overflowing.
4870     return BinaryOp(BinOp, WO->getLHS(), WO->getRHS(),
4871                     /* IsNSW = */ Signed, /* IsNUW = */ !Signed);
4872   }
4873 
4874   default:
4875     break;
4876   }
4877 
4878   // Recognise intrinsic loop.decrement.reg, and as this has exactly the same
4879   // semantics as a Sub, return a binary sub expression.
4880   if (auto *II = dyn_cast<IntrinsicInst>(V))
4881     if (II->getIntrinsicID() == Intrinsic::loop_decrement_reg)
4882       return BinaryOp(Instruction::Sub, II->getOperand(0), II->getOperand(1));
4883 
4884   return None;
4885 }
4886 
4887 /// Helper function to createAddRecFromPHIWithCasts. We have a phi
4888 /// node whose symbolic (unknown) SCEV is \p SymbolicPHI, which is updated via
4889 /// the loop backedge by a SCEVAddExpr, possibly also with a few casts on the
4890 /// way. This function checks if \p Op, an operand of this SCEVAddExpr,
4891 /// follows one of the following patterns:
4892 /// Op == (SExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4893 /// Op == (ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy)
4894 /// If the SCEV expression of \p Op conforms with one of the expected patterns
4895 /// we return the type of the truncation operation, and indicate whether the
4896 /// truncated type should be treated as signed/unsigned by setting
4897 /// \p Signed to true/false, respectively.
4898 static Type *isSimpleCastedPHI(const SCEV *Op, const SCEVUnknown *SymbolicPHI,
4899                                bool &Signed, ScalarEvolution &SE) {
4900   // The case where Op == SymbolicPHI (that is, with no type conversions on
4901   // the way) is handled by the regular add recurrence creating logic and
4902   // would have already been triggered in createAddRecForPHI. Reaching it here
4903   // means that createAddRecFromPHI had failed for this PHI before (e.g.,
4904   // because one of the other operands of the SCEVAddExpr updating this PHI is
4905   // not invariant).
4906   //
4907   // Here we look for the case where Op = (ext(trunc(SymbolicPHI))), and in
4908   // this case predicates that allow us to prove that Op == SymbolicPHI will
4909   // be added.
4910   if (Op == SymbolicPHI)
4911     return nullptr;
4912 
4913   unsigned SourceBits = SE.getTypeSizeInBits(SymbolicPHI->getType());
4914   unsigned NewBits = SE.getTypeSizeInBits(Op->getType());
4915   if (SourceBits != NewBits)
4916     return nullptr;
4917 
4918   const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(Op);
4919   const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(Op);
4920   if (!SExt && !ZExt)
4921     return nullptr;
4922   const SCEVTruncateExpr *Trunc =
4923       SExt ? dyn_cast<SCEVTruncateExpr>(SExt->getOperand())
4924            : dyn_cast<SCEVTruncateExpr>(ZExt->getOperand());
4925   if (!Trunc)
4926     return nullptr;
4927   const SCEV *X = Trunc->getOperand();
4928   if (X != SymbolicPHI)
4929     return nullptr;
4930   Signed = SExt != nullptr;
4931   return Trunc->getType();
4932 }
4933 
4934 static const Loop *isIntegerLoopHeaderPHI(const PHINode *PN, LoopInfo &LI) {
4935   if (!PN->getType()->isIntegerTy())
4936     return nullptr;
4937   const Loop *L = LI.getLoopFor(PN->getParent());
4938   if (!L || L->getHeader() != PN->getParent())
4939     return nullptr;
4940   return L;
4941 }
4942 
4943 // Analyze \p SymbolicPHI, a SCEV expression of a phi node, and check if the
4944 // computation that updates the phi follows the following pattern:
4945 //   (SExt/ZExt ix (Trunc iy (%SymbolicPHI) to ix) to iy) + InvariantAccum
4946 // which correspond to a phi->trunc->sext/zext->add->phi update chain.
4947 // If so, try to see if it can be rewritten as an AddRecExpr under some
4948 // Predicates. If successful, return them as a pair. Also cache the results
4949 // of the analysis.
4950 //
4951 // Example usage scenario:
4952 //    Say the Rewriter is called for the following SCEV:
4953 //         8 * ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4954 //    where:
4955 //         %X = phi i64 (%Start, %BEValue)
4956 //    It will visitMul->visitAdd->visitSExt->visitTrunc->visitUnknown(%X),
4957 //    and call this function with %SymbolicPHI = %X.
4958 //
4959 //    The analysis will find that the value coming around the backedge has
4960 //    the following SCEV:
4961 //         BEValue = ((sext i32 (trunc i64 %X to i32) to i64) + %Step)
4962 //    Upon concluding that this matches the desired pattern, the function
4963 //    will return the pair {NewAddRec, SmallPredsVec} where:
4964 //         NewAddRec = {%Start,+,%Step}
4965 //         SmallPredsVec = {P1, P2, P3} as follows:
4966 //           P1(WrapPred): AR: {trunc(%Start),+,(trunc %Step)}<nsw> Flags: <nssw>
4967 //           P2(EqualPred): %Start == (sext i32 (trunc i64 %Start to i32) to i64)
4968 //           P3(EqualPred): %Step == (sext i32 (trunc i64 %Step to i32) to i64)
4969 //    The returned pair means that SymbolicPHI can be rewritten into NewAddRec
4970 //    under the predicates {P1,P2,P3}.
4971 //    This predicated rewrite will be cached in PredicatedSCEVRewrites:
4972 //         PredicatedSCEVRewrites[{%X,L}] = {NewAddRec, {P1,P2,P3)}
4973 //
4974 // TODO's:
4975 //
4976 // 1) Extend the Induction descriptor to also support inductions that involve
4977 //    casts: When needed (namely, when we are called in the context of the
4978 //    vectorizer induction analysis), a Set of cast instructions will be
4979 //    populated by this method, and provided back to isInductionPHI. This is
4980 //    needed to allow the vectorizer to properly record them to be ignored by
4981 //    the cost model and to avoid vectorizing them (otherwise these casts,
4982 //    which are redundant under the runtime overflow checks, will be
4983 //    vectorized, which can be costly).
4984 //
4985 // 2) Support additional induction/PHISCEV patterns: We also want to support
4986 //    inductions where the sext-trunc / zext-trunc operations (partly) occur
4987 //    after the induction update operation (the induction increment):
4988 //
4989 //      (Trunc iy (SExt/ZExt ix (%SymbolicPHI + InvariantAccum) to iy) to ix)
4990 //    which correspond to a phi->add->trunc->sext/zext->phi update chain.
4991 //
4992 //      (Trunc iy ((SExt/ZExt ix (%SymbolicPhi) to iy) + InvariantAccum) to ix)
4993 //    which correspond to a phi->trunc->add->sext/zext->phi update chain.
4994 //
4995 // 3) Outline common code with createAddRecFromPHI to avoid duplication.
4996 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
4997 ScalarEvolution::createAddRecFromPHIWithCastsImpl(const SCEVUnknown *SymbolicPHI) {
4998   SmallVector<const SCEVPredicate *, 3> Predicates;
4999 
5000   // *** Part1: Analyze if we have a phi-with-cast pattern for which we can
5001   // return an AddRec expression under some predicate.
5002 
5003   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5004   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5005   assert(L && "Expecting an integer loop header phi");
5006 
5007   // The loop may have multiple entrances or multiple exits; we can analyze
5008   // this phi as an addrec if it has a unique entry value and a unique
5009   // backedge value.
5010   Value *BEValueV = nullptr, *StartValueV = nullptr;
5011   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5012     Value *V = PN->getIncomingValue(i);
5013     if (L->contains(PN->getIncomingBlock(i))) {
5014       if (!BEValueV) {
5015         BEValueV = V;
5016       } else if (BEValueV != V) {
5017         BEValueV = nullptr;
5018         break;
5019       }
5020     } else if (!StartValueV) {
5021       StartValueV = V;
5022     } else if (StartValueV != V) {
5023       StartValueV = nullptr;
5024       break;
5025     }
5026   }
5027   if (!BEValueV || !StartValueV)
5028     return None;
5029 
5030   const SCEV *BEValue = getSCEV(BEValueV);
5031 
5032   // If the value coming around the backedge is an add with the symbolic
5033   // value we just inserted, possibly with casts that we can ignore under
5034   // an appropriate runtime guard, then we found a simple induction variable!
5035   const auto *Add = dyn_cast<SCEVAddExpr>(BEValue);
5036   if (!Add)
5037     return None;
5038 
5039   // If there is a single occurrence of the symbolic value, possibly
5040   // casted, replace it with a recurrence.
5041   unsigned FoundIndex = Add->getNumOperands();
5042   Type *TruncTy = nullptr;
5043   bool Signed;
5044   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5045     if ((TruncTy =
5046              isSimpleCastedPHI(Add->getOperand(i), SymbolicPHI, Signed, *this)))
5047       if (FoundIndex == e) {
5048         FoundIndex = i;
5049         break;
5050       }
5051 
5052   if (FoundIndex == Add->getNumOperands())
5053     return None;
5054 
5055   // Create an add with everything but the specified operand.
5056   SmallVector<const SCEV *, 8> Ops;
5057   for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5058     if (i != FoundIndex)
5059       Ops.push_back(Add->getOperand(i));
5060   const SCEV *Accum = getAddExpr(Ops);
5061 
5062   // The runtime checks will not be valid if the step amount is
5063   // varying inside the loop.
5064   if (!isLoopInvariant(Accum, L))
5065     return None;
5066 
5067   // *** Part2: Create the predicates
5068 
5069   // Analysis was successful: we have a phi-with-cast pattern for which we
5070   // can return an AddRec expression under the following predicates:
5071   //
5072   // P1: A Wrap predicate that guarantees that Trunc(Start) + i*Trunc(Accum)
5073   //     fits within the truncated type (does not overflow) for i = 0 to n-1.
5074   // P2: An Equal predicate that guarantees that
5075   //     Start = (Ext ix (Trunc iy (Start) to ix) to iy)
5076   // P3: An Equal predicate that guarantees that
5077   //     Accum = (Ext ix (Trunc iy (Accum) to ix) to iy)
5078   //
5079   // As we next prove, the above predicates guarantee that:
5080   //     Start + i*Accum = (Ext ix (Trunc iy ( Start + i*Accum ) to ix) to iy)
5081   //
5082   //
5083   // More formally, we want to prove that:
5084   //     Expr(i+1) = Start + (i+1) * Accum
5085   //               = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5086   //
5087   // Given that:
5088   // 1) Expr(0) = Start
5089   // 2) Expr(1) = Start + Accum
5090   //            = (Ext ix (Trunc iy (Start) to ix) to iy) + Accum :: from P2
5091   // 3) Induction hypothesis (step i):
5092   //    Expr(i) = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum
5093   //
5094   // Proof:
5095   //  Expr(i+1) =
5096   //   = Start + (i+1)*Accum
5097   //   = (Start + i*Accum) + Accum
5098   //   = Expr(i) + Accum
5099   //   = (Ext ix (Trunc iy (Expr(i-1)) to ix) to iy) + Accum + Accum
5100   //                                                             :: from step i
5101   //
5102   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy) + Accum + Accum
5103   //
5104   //   = (Ext ix (Trunc iy (Start + (i-1)*Accum) to ix) to iy)
5105   //     + (Ext ix (Trunc iy (Accum) to ix) to iy)
5106   //     + Accum                                                     :: from P3
5107   //
5108   //   = (Ext ix (Trunc iy ((Start + (i-1)*Accum) + Accum) to ix) to iy)
5109   //     + Accum                            :: from P1: Ext(x)+Ext(y)=>Ext(x+y)
5110   //
5111   //   = (Ext ix (Trunc iy (Start + i*Accum) to ix) to iy) + Accum
5112   //   = (Ext ix (Trunc iy (Expr(i)) to ix) to iy) + Accum
5113   //
5114   // By induction, the same applies to all iterations 1<=i<n:
5115   //
5116 
5117   // Create a truncated addrec for which we will add a no overflow check (P1).
5118   const SCEV *StartVal = getSCEV(StartValueV);
5119   const SCEV *PHISCEV =
5120       getAddRecExpr(getTruncateExpr(StartVal, TruncTy),
5121                     getTruncateExpr(Accum, TruncTy), L, SCEV::FlagAnyWrap);
5122 
5123   // PHISCEV can be either a SCEVConstant or a SCEVAddRecExpr.
5124   // ex: If truncated Accum is 0 and StartVal is a constant, then PHISCEV
5125   // will be constant.
5126   //
5127   //  If PHISCEV is a constant, then P1 degenerates into P2 or P3, so we don't
5128   // add P1.
5129   if (const auto *AR = dyn_cast<SCEVAddRecExpr>(PHISCEV)) {
5130     SCEVWrapPredicate::IncrementWrapFlags AddedFlags =
5131         Signed ? SCEVWrapPredicate::IncrementNSSW
5132                : SCEVWrapPredicate::IncrementNUSW;
5133     const SCEVPredicate *AddRecPred = getWrapPredicate(AR, AddedFlags);
5134     Predicates.push_back(AddRecPred);
5135   }
5136 
5137   // Create the Equal Predicates P2,P3:
5138 
5139   // It is possible that the predicates P2 and/or P3 are computable at
5140   // compile time due to StartVal and/or Accum being constants.
5141   // If either one is, then we can check that now and escape if either P2
5142   // or P3 is false.
5143 
5144   // Construct the extended SCEV: (Ext ix (Trunc iy (Expr) to ix) to iy)
5145   // for each of StartVal and Accum
5146   auto getExtendedExpr = [&](const SCEV *Expr,
5147                              bool CreateSignExtend) -> const SCEV * {
5148     assert(isLoopInvariant(Expr, L) && "Expr is expected to be invariant");
5149     const SCEV *TruncatedExpr = getTruncateExpr(Expr, TruncTy);
5150     const SCEV *ExtendedExpr =
5151         CreateSignExtend ? getSignExtendExpr(TruncatedExpr, Expr->getType())
5152                          : getZeroExtendExpr(TruncatedExpr, Expr->getType());
5153     return ExtendedExpr;
5154   };
5155 
5156   // Given:
5157   //  ExtendedExpr = (Ext ix (Trunc iy (Expr) to ix) to iy
5158   //               = getExtendedExpr(Expr)
5159   // Determine whether the predicate P: Expr == ExtendedExpr
5160   // is known to be false at compile time
5161   auto PredIsKnownFalse = [&](const SCEV *Expr,
5162                               const SCEV *ExtendedExpr) -> bool {
5163     return Expr != ExtendedExpr &&
5164            isKnownPredicate(ICmpInst::ICMP_NE, Expr, ExtendedExpr);
5165   };
5166 
5167   const SCEV *StartExtended = getExtendedExpr(StartVal, Signed);
5168   if (PredIsKnownFalse(StartVal, StartExtended)) {
5169     LLVM_DEBUG(dbgs() << "P2 is compile-time false\n";);
5170     return None;
5171   }
5172 
5173   // The Step is always Signed (because the overflow checks are either
5174   // NSSW or NUSW)
5175   const SCEV *AccumExtended = getExtendedExpr(Accum, /*CreateSignExtend=*/true);
5176   if (PredIsKnownFalse(Accum, AccumExtended)) {
5177     LLVM_DEBUG(dbgs() << "P3 is compile-time false\n";);
5178     return None;
5179   }
5180 
5181   auto AppendPredicate = [&](const SCEV *Expr,
5182                              const SCEV *ExtendedExpr) -> void {
5183     if (Expr != ExtendedExpr &&
5184         !isKnownPredicate(ICmpInst::ICMP_EQ, Expr, ExtendedExpr)) {
5185       const SCEVPredicate *Pred = getEqualPredicate(Expr, ExtendedExpr);
5186       LLVM_DEBUG(dbgs() << "Added Predicate: " << *Pred);
5187       Predicates.push_back(Pred);
5188     }
5189   };
5190 
5191   AppendPredicate(StartVal, StartExtended);
5192   AppendPredicate(Accum, AccumExtended);
5193 
5194   // *** Part3: Predicates are ready. Now go ahead and create the new addrec in
5195   // which the casts had been folded away. The caller can rewrite SymbolicPHI
5196   // into NewAR if it will also add the runtime overflow checks specified in
5197   // Predicates.
5198   auto *NewAR = getAddRecExpr(StartVal, Accum, L, SCEV::FlagAnyWrap);
5199 
5200   std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> PredRewrite =
5201       std::make_pair(NewAR, Predicates);
5202   // Remember the result of the analysis for this SCEV at this locayyytion.
5203   PredicatedSCEVRewrites[{SymbolicPHI, L}] = PredRewrite;
5204   return PredRewrite;
5205 }
5206 
5207 Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5208 ScalarEvolution::createAddRecFromPHIWithCasts(const SCEVUnknown *SymbolicPHI) {
5209   auto *PN = cast<PHINode>(SymbolicPHI->getValue());
5210   const Loop *L = isIntegerLoopHeaderPHI(PN, LI);
5211   if (!L)
5212     return None;
5213 
5214   // Check to see if we already analyzed this PHI.
5215   auto I = PredicatedSCEVRewrites.find({SymbolicPHI, L});
5216   if (I != PredicatedSCEVRewrites.end()) {
5217     std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>> Rewrite =
5218         I->second;
5219     // Analysis was done before and failed to create an AddRec:
5220     if (Rewrite.first == SymbolicPHI)
5221       return None;
5222     // Analysis was done before and succeeded to create an AddRec under
5223     // a predicate:
5224     assert(isa<SCEVAddRecExpr>(Rewrite.first) && "Expected an AddRec");
5225     assert(!(Rewrite.second).empty() && "Expected to find Predicates");
5226     return Rewrite;
5227   }
5228 
5229   Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
5230     Rewrite = createAddRecFromPHIWithCastsImpl(SymbolicPHI);
5231 
5232   // Record in the cache that the analysis failed
5233   if (!Rewrite) {
5234     SmallVector<const SCEVPredicate *, 3> Predicates;
5235     PredicatedSCEVRewrites[{SymbolicPHI, L}] = {SymbolicPHI, Predicates};
5236     return None;
5237   }
5238 
5239   return Rewrite;
5240 }
5241 
5242 // FIXME: This utility is currently required because the Rewriter currently
5243 // does not rewrite this expression:
5244 // {0, +, (sext ix (trunc iy to ix) to iy)}
5245 // into {0, +, %step},
5246 // even when the following Equal predicate exists:
5247 // "%step == (sext ix (trunc iy to ix) to iy)".
5248 bool PredicatedScalarEvolution::areAddRecsEqualWithPreds(
5249     const SCEVAddRecExpr *AR1, const SCEVAddRecExpr *AR2) const {
5250   if (AR1 == AR2)
5251     return true;
5252 
5253   auto areExprsEqual = [&](const SCEV *Expr1, const SCEV *Expr2) -> bool {
5254     if (Expr1 != Expr2 && !Preds.implies(SE.getEqualPredicate(Expr1, Expr2)) &&
5255         !Preds.implies(SE.getEqualPredicate(Expr2, Expr1)))
5256       return false;
5257     return true;
5258   };
5259 
5260   if (!areExprsEqual(AR1->getStart(), AR2->getStart()) ||
5261       !areExprsEqual(AR1->getStepRecurrence(SE), AR2->getStepRecurrence(SE)))
5262     return false;
5263   return true;
5264 }
5265 
5266 /// A helper function for createAddRecFromPHI to handle simple cases.
5267 ///
5268 /// This function tries to find an AddRec expression for the simplest (yet most
5269 /// common) cases: PN = PHI(Start, OP(Self, LoopInvariant)).
5270 /// If it fails, createAddRecFromPHI will use a more general, but slow,
5271 /// technique for finding the AddRec expression.
5272 const SCEV *ScalarEvolution::createSimpleAffineAddRec(PHINode *PN,
5273                                                       Value *BEValueV,
5274                                                       Value *StartValueV) {
5275   const Loop *L = LI.getLoopFor(PN->getParent());
5276   assert(L && L->getHeader() == PN->getParent());
5277   assert(BEValueV && StartValueV);
5278 
5279   auto BO = MatchBinaryOp(BEValueV, DT);
5280   if (!BO)
5281     return nullptr;
5282 
5283   if (BO->Opcode != Instruction::Add)
5284     return nullptr;
5285 
5286   const SCEV *Accum = nullptr;
5287   if (BO->LHS == PN && L->isLoopInvariant(BO->RHS))
5288     Accum = getSCEV(BO->RHS);
5289   else if (BO->RHS == PN && L->isLoopInvariant(BO->LHS))
5290     Accum = getSCEV(BO->LHS);
5291 
5292   if (!Accum)
5293     return nullptr;
5294 
5295   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5296   if (BO->IsNUW)
5297     Flags = setFlags(Flags, SCEV::FlagNUW);
5298   if (BO->IsNSW)
5299     Flags = setFlags(Flags, SCEV::FlagNSW);
5300 
5301   const SCEV *StartVal = getSCEV(StartValueV);
5302   const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5303 
5304   ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5305 
5306   // We can add Flags to the post-inc expression only if we
5307   // know that it is *undefined behavior* for BEValueV to
5308   // overflow.
5309   if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5310     if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5311       (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5312 
5313   return PHISCEV;
5314 }
5315 
5316 const SCEV *ScalarEvolution::createAddRecFromPHI(PHINode *PN) {
5317   const Loop *L = LI.getLoopFor(PN->getParent());
5318   if (!L || L->getHeader() != PN->getParent())
5319     return nullptr;
5320 
5321   // The loop may have multiple entrances or multiple exits; we can analyze
5322   // this phi as an addrec if it has a unique entry value and a unique
5323   // backedge value.
5324   Value *BEValueV = nullptr, *StartValueV = nullptr;
5325   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
5326     Value *V = PN->getIncomingValue(i);
5327     if (L->contains(PN->getIncomingBlock(i))) {
5328       if (!BEValueV) {
5329         BEValueV = V;
5330       } else if (BEValueV != V) {
5331         BEValueV = nullptr;
5332         break;
5333       }
5334     } else if (!StartValueV) {
5335       StartValueV = V;
5336     } else if (StartValueV != V) {
5337       StartValueV = nullptr;
5338       break;
5339     }
5340   }
5341   if (!BEValueV || !StartValueV)
5342     return nullptr;
5343 
5344   assert(ValueExprMap.find_as(PN) == ValueExprMap.end() &&
5345          "PHI node already processed?");
5346 
5347   // First, try to find AddRec expression without creating a fictituos symbolic
5348   // value for PN.
5349   if (auto *S = createSimpleAffineAddRec(PN, BEValueV, StartValueV))
5350     return S;
5351 
5352   // Handle PHI node value symbolically.
5353   const SCEV *SymbolicName = getUnknown(PN);
5354   ValueExprMap.insert({SCEVCallbackVH(PN, this), SymbolicName});
5355 
5356   // Using this symbolic name for the PHI, analyze the value coming around
5357   // the back-edge.
5358   const SCEV *BEValue = getSCEV(BEValueV);
5359 
5360   // NOTE: If BEValue is loop invariant, we know that the PHI node just
5361   // has a special value for the first iteration of the loop.
5362 
5363   // If the value coming around the backedge is an add with the symbolic
5364   // value we just inserted, then we found a simple induction variable!
5365   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(BEValue)) {
5366     // If there is a single occurrence of the symbolic value, replace it
5367     // with a recurrence.
5368     unsigned FoundIndex = Add->getNumOperands();
5369     for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5370       if (Add->getOperand(i) == SymbolicName)
5371         if (FoundIndex == e) {
5372           FoundIndex = i;
5373           break;
5374         }
5375 
5376     if (FoundIndex != Add->getNumOperands()) {
5377       // Create an add with everything but the specified operand.
5378       SmallVector<const SCEV *, 8> Ops;
5379       for (unsigned i = 0, e = Add->getNumOperands(); i != e; ++i)
5380         if (i != FoundIndex)
5381           Ops.push_back(SCEVBackedgeConditionFolder::rewrite(Add->getOperand(i),
5382                                                              L, *this));
5383       const SCEV *Accum = getAddExpr(Ops);
5384 
5385       // This is not a valid addrec if the step amount is varying each
5386       // loop iteration, but is not itself an addrec in this loop.
5387       if (isLoopInvariant(Accum, L) ||
5388           (isa<SCEVAddRecExpr>(Accum) &&
5389            cast<SCEVAddRecExpr>(Accum)->getLoop() == L)) {
5390         SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
5391 
5392         if (auto BO = MatchBinaryOp(BEValueV, DT)) {
5393           if (BO->Opcode == Instruction::Add && BO->LHS == PN) {
5394             if (BO->IsNUW)
5395               Flags = setFlags(Flags, SCEV::FlagNUW);
5396             if (BO->IsNSW)
5397               Flags = setFlags(Flags, SCEV::FlagNSW);
5398           }
5399         } else if (GEPOperator *GEP = dyn_cast<GEPOperator>(BEValueV)) {
5400           // If the increment is an inbounds GEP, then we know the address
5401           // space cannot be wrapped around. We cannot make any guarantee
5402           // about signed or unsigned overflow because pointers are
5403           // unsigned but we may have a negative index from the base
5404           // pointer. We can guarantee that no unsigned wrap occurs if the
5405           // indices form a positive value.
5406           if (GEP->isInBounds() && GEP->getOperand(0) == PN) {
5407             Flags = setFlags(Flags, SCEV::FlagNW);
5408 
5409             const SCEV *Ptr = getSCEV(GEP->getPointerOperand());
5410             if (isKnownPositive(getMinusSCEV(getSCEV(GEP), Ptr)))
5411               Flags = setFlags(Flags, SCEV::FlagNUW);
5412           }
5413 
5414           // We cannot transfer nuw and nsw flags from subtraction
5415           // operations -- sub nuw X, Y is not the same as add nuw X, -Y
5416           // for instance.
5417         }
5418 
5419         const SCEV *StartVal = getSCEV(StartValueV);
5420         const SCEV *PHISCEV = getAddRecExpr(StartVal, Accum, L, Flags);
5421 
5422         // Okay, for the entire analysis of this edge we assumed the PHI
5423         // to be symbolic.  We now need to go back and purge all of the
5424         // entries for the scalars that use the symbolic expression.
5425         forgetSymbolicName(PN, SymbolicName);
5426         ValueExprMap[SCEVCallbackVH(PN, this)] = PHISCEV;
5427 
5428         // We can add Flags to the post-inc expression only if we
5429         // know that it is *undefined behavior* for BEValueV to
5430         // overflow.
5431         if (auto *BEInst = dyn_cast<Instruction>(BEValueV))
5432           if (isLoopInvariant(Accum, L) && isAddRecNeverPoison(BEInst, L))
5433             (void)getAddRecExpr(getAddExpr(StartVal, Accum), Accum, L, Flags);
5434 
5435         return PHISCEV;
5436       }
5437     }
5438   } else {
5439     // Otherwise, this could be a loop like this:
5440     //     i = 0;  for (j = 1; ..; ++j) { ....  i = j; }
5441     // In this case, j = {1,+,1}  and BEValue is j.
5442     // Because the other in-value of i (0) fits the evolution of BEValue
5443     // i really is an addrec evolution.
5444     //
5445     // We can generalize this saying that i is the shifted value of BEValue
5446     // by one iteration:
5447     //   PHI(f(0), f({1,+,1})) --> f({0,+,1})
5448     const SCEV *Shifted = SCEVShiftRewriter::rewrite(BEValue, L, *this);
5449     const SCEV *Start = SCEVInitRewriter::rewrite(Shifted, L, *this, false);
5450     if (Shifted != getCouldNotCompute() &&
5451         Start != getCouldNotCompute()) {
5452       const SCEV *StartVal = getSCEV(StartValueV);
5453       if (Start == StartVal) {
5454         // Okay, for the entire analysis of this edge we assumed the PHI
5455         // to be symbolic.  We now need to go back and purge all of the
5456         // entries for the scalars that use the symbolic expression.
5457         forgetSymbolicName(PN, SymbolicName);
5458         ValueExprMap[SCEVCallbackVH(PN, this)] = Shifted;
5459         return Shifted;
5460       }
5461     }
5462   }
5463 
5464   // Remove the temporary PHI node SCEV that has been inserted while intending
5465   // to create an AddRecExpr for this PHI node. We can not keep this temporary
5466   // as it will prevent later (possibly simpler) SCEV expressions to be added
5467   // to the ValueExprMap.
5468   eraseValueFromMap(PN);
5469 
5470   return nullptr;
5471 }
5472 
5473 // Checks if the SCEV S is available at BB.  S is considered available at BB
5474 // if S can be materialized at BB without introducing a fault.
5475 static bool IsAvailableOnEntry(const Loop *L, DominatorTree &DT, const SCEV *S,
5476                                BasicBlock *BB) {
5477   struct CheckAvailable {
5478     bool TraversalDone = false;
5479     bool Available = true;
5480 
5481     const Loop *L = nullptr;  // The loop BB is in (can be nullptr)
5482     BasicBlock *BB = nullptr;
5483     DominatorTree &DT;
5484 
5485     CheckAvailable(const Loop *L, BasicBlock *BB, DominatorTree &DT)
5486       : L(L), BB(BB), DT(DT) {}
5487 
5488     bool setUnavailable() {
5489       TraversalDone = true;
5490       Available = false;
5491       return false;
5492     }
5493 
5494     bool follow(const SCEV *S) {
5495       switch (S->getSCEVType()) {
5496       case scConstant:
5497       case scPtrToInt:
5498       case scTruncate:
5499       case scZeroExtend:
5500       case scSignExtend:
5501       case scAddExpr:
5502       case scMulExpr:
5503       case scUMaxExpr:
5504       case scSMaxExpr:
5505       case scUMinExpr:
5506       case scSMinExpr:
5507         // These expressions are available if their operand(s) is/are.
5508         return true;
5509 
5510       case scAddRecExpr: {
5511         // We allow add recurrences that are on the loop BB is in, or some
5512         // outer loop.  This guarantees availability because the value of the
5513         // add recurrence at BB is simply the "current" value of the induction
5514         // variable.  We can relax this in the future; for instance an add
5515         // recurrence on a sibling dominating loop is also available at BB.
5516         const auto *ARLoop = cast<SCEVAddRecExpr>(S)->getLoop();
5517         if (L && (ARLoop == L || ARLoop->contains(L)))
5518           return true;
5519 
5520         return setUnavailable();
5521       }
5522 
5523       case scUnknown: {
5524         // For SCEVUnknown, we check for simple dominance.
5525         const auto *SU = cast<SCEVUnknown>(S);
5526         Value *V = SU->getValue();
5527 
5528         if (isa<Argument>(V))
5529           return false;
5530 
5531         if (isa<Instruction>(V) && DT.dominates(cast<Instruction>(V), BB))
5532           return false;
5533 
5534         return setUnavailable();
5535       }
5536 
5537       case scUDivExpr:
5538       case scCouldNotCompute:
5539         // We do not try to smart about these at all.
5540         return setUnavailable();
5541       }
5542       llvm_unreachable("Unknown SCEV kind!");
5543     }
5544 
5545     bool isDone() { return TraversalDone; }
5546   };
5547 
5548   CheckAvailable CA(L, BB, DT);
5549   SCEVTraversal<CheckAvailable> ST(CA);
5550 
5551   ST.visitAll(S);
5552   return CA.Available;
5553 }
5554 
5555 // Try to match a control flow sequence that branches out at BI and merges back
5556 // at Merge into a "C ? LHS : RHS" select pattern.  Return true on a successful
5557 // match.
5558 static bool BrPHIToSelect(DominatorTree &DT, BranchInst *BI, PHINode *Merge,
5559                           Value *&C, Value *&LHS, Value *&RHS) {
5560   C = BI->getCondition();
5561 
5562   BasicBlockEdge LeftEdge(BI->getParent(), BI->getSuccessor(0));
5563   BasicBlockEdge RightEdge(BI->getParent(), BI->getSuccessor(1));
5564 
5565   if (!LeftEdge.isSingleEdge())
5566     return false;
5567 
5568   assert(RightEdge.isSingleEdge() && "Follows from LeftEdge.isSingleEdge()");
5569 
5570   Use &LeftUse = Merge->getOperandUse(0);
5571   Use &RightUse = Merge->getOperandUse(1);
5572 
5573   if (DT.dominates(LeftEdge, LeftUse) && DT.dominates(RightEdge, RightUse)) {
5574     LHS = LeftUse;
5575     RHS = RightUse;
5576     return true;
5577   }
5578 
5579   if (DT.dominates(LeftEdge, RightUse) && DT.dominates(RightEdge, LeftUse)) {
5580     LHS = RightUse;
5581     RHS = LeftUse;
5582     return true;
5583   }
5584 
5585   return false;
5586 }
5587 
5588 const SCEV *ScalarEvolution::createNodeFromSelectLikePHI(PHINode *PN) {
5589   auto IsReachable =
5590       [&](BasicBlock *BB) { return DT.isReachableFromEntry(BB); };
5591   if (PN->getNumIncomingValues() == 2 && all_of(PN->blocks(), IsReachable)) {
5592     const Loop *L = LI.getLoopFor(PN->getParent());
5593 
5594     // We don't want to break LCSSA, even in a SCEV expression tree.
5595     for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
5596       if (LI.getLoopFor(PN->getIncomingBlock(i)) != L)
5597         return nullptr;
5598 
5599     // Try to match
5600     //
5601     //  br %cond, label %left, label %right
5602     // left:
5603     //  br label %merge
5604     // right:
5605     //  br label %merge
5606     // merge:
5607     //  V = phi [ %x, %left ], [ %y, %right ]
5608     //
5609     // as "select %cond, %x, %y"
5610 
5611     BasicBlock *IDom = DT[PN->getParent()]->getIDom()->getBlock();
5612     assert(IDom && "At least the entry block should dominate PN");
5613 
5614     auto *BI = dyn_cast<BranchInst>(IDom->getTerminator());
5615     Value *Cond = nullptr, *LHS = nullptr, *RHS = nullptr;
5616 
5617     if (BI && BI->isConditional() &&
5618         BrPHIToSelect(DT, BI, PN, Cond, LHS, RHS) &&
5619         IsAvailableOnEntry(L, DT, getSCEV(LHS), PN->getParent()) &&
5620         IsAvailableOnEntry(L, DT, getSCEV(RHS), PN->getParent()))
5621       return createNodeForSelectOrPHI(PN, Cond, LHS, RHS);
5622   }
5623 
5624   return nullptr;
5625 }
5626 
5627 const SCEV *ScalarEvolution::createNodeForPHI(PHINode *PN) {
5628   if (const SCEV *S = createAddRecFromPHI(PN))
5629     return S;
5630 
5631   if (const SCEV *S = createNodeFromSelectLikePHI(PN))
5632     return S;
5633 
5634   // If the PHI has a single incoming value, follow that value, unless the
5635   // PHI's incoming blocks are in a different loop, in which case doing so
5636   // risks breaking LCSSA form. Instcombine would normally zap these, but
5637   // it doesn't have DominatorTree information, so it may miss cases.
5638   if (Value *V = SimplifyInstruction(PN, {getDataLayout(), &TLI, &DT, &AC}))
5639     if (LI.replacementPreservesLCSSAForm(PN, V))
5640       return getSCEV(V);
5641 
5642   // If it's not a loop phi, we can't handle it yet.
5643   return getUnknown(PN);
5644 }
5645 
5646 const SCEV *ScalarEvolution::createNodeForSelectOrPHI(Instruction *I,
5647                                                       Value *Cond,
5648                                                       Value *TrueVal,
5649                                                       Value *FalseVal) {
5650   // Handle "constant" branch or select. This can occur for instance when a
5651   // loop pass transforms an inner loop and moves on to process the outer loop.
5652   if (auto *CI = dyn_cast<ConstantInt>(Cond))
5653     return getSCEV(CI->isOne() ? TrueVal : FalseVal);
5654 
5655   // Try to match some simple smax or umax patterns.
5656   auto *ICI = dyn_cast<ICmpInst>(Cond);
5657   if (!ICI)
5658     return getUnknown(I);
5659 
5660   Value *LHS = ICI->getOperand(0);
5661   Value *RHS = ICI->getOperand(1);
5662 
5663   switch (ICI->getPredicate()) {
5664   case ICmpInst::ICMP_SLT:
5665   case ICmpInst::ICMP_SLE:
5666   case ICmpInst::ICMP_ULT:
5667   case ICmpInst::ICMP_ULE:
5668     std::swap(LHS, RHS);
5669     LLVM_FALLTHROUGH;
5670   case ICmpInst::ICMP_SGT:
5671   case ICmpInst::ICMP_SGE:
5672   case ICmpInst::ICMP_UGT:
5673   case ICmpInst::ICMP_UGE:
5674     // a > b ? a+x : b+x  ->  max(a, b)+x
5675     // a > b ? b+x : a+x  ->  min(a, b)+x
5676     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType())) {
5677       bool Signed = ICI->isSigned();
5678       const SCEV *LA = getSCEV(TrueVal);
5679       const SCEV *RA = getSCEV(FalseVal);
5680       const SCEV *LS = getSCEV(LHS);
5681       const SCEV *RS = getSCEV(RHS);
5682       if (LA->getType()->isPointerTy()) {
5683         // FIXME: Handle cases where LS/RS are pointers not equal to LA/RA.
5684         // Need to make sure we can't produce weird expressions involving
5685         // negated pointers.
5686         if (LA == LS && RA == RS)
5687           return Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS);
5688         if (LA == RS && RA == LS)
5689           return Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS);
5690       }
5691       auto CoerceOperand = [&](const SCEV *Op) -> const SCEV * {
5692         if (Op->getType()->isPointerTy()) {
5693           Op = getLosslessPtrToIntExpr(Op);
5694           if (isa<SCEVCouldNotCompute>(Op))
5695             return Op;
5696         }
5697         if (Signed)
5698           Op = getNoopOrSignExtend(Op, I->getType());
5699         else
5700           Op = getNoopOrZeroExtend(Op, I->getType());
5701         return Op;
5702       };
5703       LS = CoerceOperand(LS);
5704       RS = CoerceOperand(RS);
5705       if (isa<SCEVCouldNotCompute>(LS) || isa<SCEVCouldNotCompute>(RS))
5706         break;
5707       const SCEV *LDiff = getMinusSCEV(LA, LS);
5708       const SCEV *RDiff = getMinusSCEV(RA, RS);
5709       if (LDiff == RDiff)
5710         return getAddExpr(Signed ? getSMaxExpr(LS, RS) : getUMaxExpr(LS, RS),
5711                           LDiff);
5712       LDiff = getMinusSCEV(LA, RS);
5713       RDiff = getMinusSCEV(RA, LS);
5714       if (LDiff == RDiff)
5715         return getAddExpr(Signed ? getSMinExpr(LS, RS) : getUMinExpr(LS, RS),
5716                           LDiff);
5717     }
5718     break;
5719   case ICmpInst::ICMP_NE:
5720     // n != 0 ? n+x : 1+x  ->  umax(n, 1)+x
5721     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5722         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5723       const SCEV *One = getOne(I->getType());
5724       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5725       const SCEV *LA = getSCEV(TrueVal);
5726       const SCEV *RA = getSCEV(FalseVal);
5727       const SCEV *LDiff = getMinusSCEV(LA, LS);
5728       const SCEV *RDiff = getMinusSCEV(RA, One);
5729       if (LDiff == RDiff)
5730         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5731     }
5732     break;
5733   case ICmpInst::ICMP_EQ:
5734     // n == 0 ? 1+x : n+x  ->  umax(n, 1)+x
5735     if (getTypeSizeInBits(LHS->getType()) <= getTypeSizeInBits(I->getType()) &&
5736         isa<ConstantInt>(RHS) && cast<ConstantInt>(RHS)->isZero()) {
5737       const SCEV *One = getOne(I->getType());
5738       const SCEV *LS = getNoopOrZeroExtend(getSCEV(LHS), I->getType());
5739       const SCEV *LA = getSCEV(TrueVal);
5740       const SCEV *RA = getSCEV(FalseVal);
5741       const SCEV *LDiff = getMinusSCEV(LA, One);
5742       const SCEV *RDiff = getMinusSCEV(RA, LS);
5743       if (LDiff == RDiff)
5744         return getAddExpr(getUMaxExpr(One, LS), LDiff);
5745     }
5746     break;
5747   default:
5748     break;
5749   }
5750 
5751   return getUnknown(I);
5752 }
5753 
5754 /// Expand GEP instructions into add and multiply operations. This allows them
5755 /// to be analyzed by regular SCEV code.
5756 const SCEV *ScalarEvolution::createNodeForGEP(GEPOperator *GEP) {
5757   // Don't attempt to analyze GEPs over unsized objects.
5758   if (!GEP->getSourceElementType()->isSized())
5759     return getUnknown(GEP);
5760 
5761   SmallVector<const SCEV *, 4> IndexExprs;
5762   for (Value *Index : GEP->indices())
5763     IndexExprs.push_back(getSCEV(Index));
5764   return getGEPExpr(GEP, IndexExprs);
5765 }
5766 
5767 uint32_t ScalarEvolution::GetMinTrailingZerosImpl(const SCEV *S) {
5768   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
5769     return C->getAPInt().countTrailingZeros();
5770 
5771   if (const SCEVPtrToIntExpr *I = dyn_cast<SCEVPtrToIntExpr>(S))
5772     return GetMinTrailingZeros(I->getOperand());
5773 
5774   if (const SCEVTruncateExpr *T = dyn_cast<SCEVTruncateExpr>(S))
5775     return std::min(GetMinTrailingZeros(T->getOperand()),
5776                     (uint32_t)getTypeSizeInBits(T->getType()));
5777 
5778   if (const SCEVZeroExtendExpr *E = dyn_cast<SCEVZeroExtendExpr>(S)) {
5779     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5780     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5781                ? getTypeSizeInBits(E->getType())
5782                : OpRes;
5783   }
5784 
5785   if (const SCEVSignExtendExpr *E = dyn_cast<SCEVSignExtendExpr>(S)) {
5786     uint32_t OpRes = GetMinTrailingZeros(E->getOperand());
5787     return OpRes == getTypeSizeInBits(E->getOperand()->getType())
5788                ? getTypeSizeInBits(E->getType())
5789                : OpRes;
5790   }
5791 
5792   if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(S)) {
5793     // The result is the min of all operands results.
5794     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5795     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5796       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5797     return MinOpRes;
5798   }
5799 
5800   if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
5801     // The result is the sum of all operands results.
5802     uint32_t SumOpRes = GetMinTrailingZeros(M->getOperand(0));
5803     uint32_t BitWidth = getTypeSizeInBits(M->getType());
5804     for (unsigned i = 1, e = M->getNumOperands();
5805          SumOpRes != BitWidth && i != e; ++i)
5806       SumOpRes =
5807           std::min(SumOpRes + GetMinTrailingZeros(M->getOperand(i)), BitWidth);
5808     return SumOpRes;
5809   }
5810 
5811   if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
5812     // The result is the min of all operands results.
5813     uint32_t MinOpRes = GetMinTrailingZeros(A->getOperand(0));
5814     for (unsigned i = 1, e = A->getNumOperands(); MinOpRes && i != e; ++i)
5815       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(A->getOperand(i)));
5816     return MinOpRes;
5817   }
5818 
5819   if (const SCEVSMaxExpr *M = dyn_cast<SCEVSMaxExpr>(S)) {
5820     // The result is the min of all operands results.
5821     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5822     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5823       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5824     return MinOpRes;
5825   }
5826 
5827   if (const SCEVUMaxExpr *M = dyn_cast<SCEVUMaxExpr>(S)) {
5828     // The result is the min of all operands results.
5829     uint32_t MinOpRes = GetMinTrailingZeros(M->getOperand(0));
5830     for (unsigned i = 1, e = M->getNumOperands(); MinOpRes && i != e; ++i)
5831       MinOpRes = std::min(MinOpRes, GetMinTrailingZeros(M->getOperand(i)));
5832     return MinOpRes;
5833   }
5834 
5835   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
5836     // For a SCEVUnknown, ask ValueTracking.
5837     KnownBits Known = computeKnownBits(U->getValue(), getDataLayout(), 0, &AC, nullptr, &DT);
5838     return Known.countMinTrailingZeros();
5839   }
5840 
5841   // SCEVUDivExpr
5842   return 0;
5843 }
5844 
5845 uint32_t ScalarEvolution::GetMinTrailingZeros(const SCEV *S) {
5846   auto I = MinTrailingZerosCache.find(S);
5847   if (I != MinTrailingZerosCache.end())
5848     return I->second;
5849 
5850   uint32_t Result = GetMinTrailingZerosImpl(S);
5851   auto InsertPair = MinTrailingZerosCache.insert({S, Result});
5852   assert(InsertPair.second && "Should insert a new key");
5853   return InsertPair.first->second;
5854 }
5855 
5856 /// Helper method to assign a range to V from metadata present in the IR.
5857 static Optional<ConstantRange> GetRangeFromMetadata(Value *V) {
5858   if (Instruction *I = dyn_cast<Instruction>(V))
5859     if (MDNode *MD = I->getMetadata(LLVMContext::MD_range))
5860       return getConstantRangeFromMetadata(*MD);
5861 
5862   return None;
5863 }
5864 
5865 void ScalarEvolution::setNoWrapFlags(SCEVAddRecExpr *AddRec,
5866                                      SCEV::NoWrapFlags Flags) {
5867   if (AddRec->getNoWrapFlags(Flags) != Flags) {
5868     AddRec->setNoWrapFlags(Flags);
5869     UnsignedRanges.erase(AddRec);
5870     SignedRanges.erase(AddRec);
5871   }
5872 }
5873 
5874 ConstantRange ScalarEvolution::
5875 getRangeForUnknownRecurrence(const SCEVUnknown *U) {
5876   const DataLayout &DL = getDataLayout();
5877 
5878   unsigned BitWidth = getTypeSizeInBits(U->getType());
5879   const ConstantRange FullSet(BitWidth, /*isFullSet=*/true);
5880 
5881   // Match a simple recurrence of the form: <start, ShiftOp, Step>, and then
5882   // use information about the trip count to improve our available range.  Note
5883   // that the trip count independent cases are already handled by known bits.
5884   // WARNING: The definition of recurrence used here is subtly different than
5885   // the one used by AddRec (and thus most of this file).  Step is allowed to
5886   // be arbitrarily loop varying here, where AddRec allows only loop invariant
5887   // and other addrecs in the same loop (for non-affine addrecs).  The code
5888   // below intentionally handles the case where step is not loop invariant.
5889   auto *P = dyn_cast<PHINode>(U->getValue());
5890   if (!P)
5891     return FullSet;
5892 
5893   // Make sure that no Phi input comes from an unreachable block. Otherwise,
5894   // even the values that are not available in these blocks may come from them,
5895   // and this leads to false-positive recurrence test.
5896   for (auto *Pred : predecessors(P->getParent()))
5897     if (!DT.isReachableFromEntry(Pred))
5898       return FullSet;
5899 
5900   BinaryOperator *BO;
5901   Value *Start, *Step;
5902   if (!matchSimpleRecurrence(P, BO, Start, Step))
5903     return FullSet;
5904 
5905   // If we found a recurrence in reachable code, we must be in a loop. Note
5906   // that BO might be in some subloop of L, and that's completely okay.
5907   auto *L = LI.getLoopFor(P->getParent());
5908   assert(L && L->getHeader() == P->getParent());
5909   if (!L->contains(BO->getParent()))
5910     // NOTE: This bailout should be an assert instead.  However, asserting
5911     // the condition here exposes a case where LoopFusion is querying SCEV
5912     // with malformed loop information during the midst of the transform.
5913     // There doesn't appear to be an obvious fix, so for the moment bailout
5914     // until the caller issue can be fixed.  PR49566 tracks the bug.
5915     return FullSet;
5916 
5917   // TODO: Extend to other opcodes such as mul, and div
5918   switch (BO->getOpcode()) {
5919   default:
5920     return FullSet;
5921   case Instruction::AShr:
5922   case Instruction::LShr:
5923   case Instruction::Shl:
5924     break;
5925   };
5926 
5927   if (BO->getOperand(0) != P)
5928     // TODO: Handle the power function forms some day.
5929     return FullSet;
5930 
5931   unsigned TC = getSmallConstantMaxTripCount(L);
5932   if (!TC || TC >= BitWidth)
5933     return FullSet;
5934 
5935   auto KnownStart = computeKnownBits(Start, DL, 0, &AC, nullptr, &DT);
5936   auto KnownStep = computeKnownBits(Step, DL, 0, &AC, nullptr, &DT);
5937   assert(KnownStart.getBitWidth() == BitWidth &&
5938          KnownStep.getBitWidth() == BitWidth);
5939 
5940   // Compute total shift amount, being careful of overflow and bitwidths.
5941   auto MaxShiftAmt = KnownStep.getMaxValue();
5942   APInt TCAP(BitWidth, TC-1);
5943   bool Overflow = false;
5944   auto TotalShift = MaxShiftAmt.umul_ov(TCAP, Overflow);
5945   if (Overflow)
5946     return FullSet;
5947 
5948   switch (BO->getOpcode()) {
5949   default:
5950     llvm_unreachable("filtered out above");
5951   case Instruction::AShr: {
5952     // For each ashr, three cases:
5953     //   shift = 0 => unchanged value
5954     //   saturation => 0 or -1
5955     //   other => a value closer to zero (of the same sign)
5956     // Thus, the end value is closer to zero than the start.
5957     auto KnownEnd = KnownBits::ashr(KnownStart,
5958                                     KnownBits::makeConstant(TotalShift));
5959     if (KnownStart.isNonNegative())
5960       // Analogous to lshr (simply not yet canonicalized)
5961       return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5962                                         KnownStart.getMaxValue() + 1);
5963     if (KnownStart.isNegative())
5964       // End >=u Start && End <=s Start
5965       return ConstantRange::getNonEmpty(KnownStart.getMinValue(),
5966                                         KnownEnd.getMaxValue() + 1);
5967     break;
5968   }
5969   case Instruction::LShr: {
5970     // For each lshr, three cases:
5971     //   shift = 0 => unchanged value
5972     //   saturation => 0
5973     //   other => a smaller positive number
5974     // Thus, the low end of the unsigned range is the last value produced.
5975     auto KnownEnd = KnownBits::lshr(KnownStart,
5976                                     KnownBits::makeConstant(TotalShift));
5977     return ConstantRange::getNonEmpty(KnownEnd.getMinValue(),
5978                                       KnownStart.getMaxValue() + 1);
5979   }
5980   case Instruction::Shl: {
5981     // Iff no bits are shifted out, value increases on every shift.
5982     auto KnownEnd = KnownBits::shl(KnownStart,
5983                                    KnownBits::makeConstant(TotalShift));
5984     if (TotalShift.ult(KnownStart.countMinLeadingZeros()))
5985       return ConstantRange(KnownStart.getMinValue(),
5986                            KnownEnd.getMaxValue() + 1);
5987     break;
5988   }
5989   };
5990   return FullSet;
5991 }
5992 
5993 /// Determine the range for a particular SCEV.  If SignHint is
5994 /// HINT_RANGE_UNSIGNED (resp. HINT_RANGE_SIGNED) then getRange prefers ranges
5995 /// with a "cleaner" unsigned (resp. signed) representation.
5996 const ConstantRange &
5997 ScalarEvolution::getRangeRef(const SCEV *S,
5998                              ScalarEvolution::RangeSignHint SignHint) {
5999   DenseMap<const SCEV *, ConstantRange> &Cache =
6000       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED ? UnsignedRanges
6001                                                        : SignedRanges;
6002   ConstantRange::PreferredRangeType RangeType =
6003       SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED
6004           ? ConstantRange::Unsigned : ConstantRange::Signed;
6005 
6006   // See if we've computed this range already.
6007   DenseMap<const SCEV *, ConstantRange>::iterator I = Cache.find(S);
6008   if (I != Cache.end())
6009     return I->second;
6010 
6011   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S))
6012     return setRange(C, SignHint, ConstantRange(C->getAPInt()));
6013 
6014   unsigned BitWidth = getTypeSizeInBits(S->getType());
6015   ConstantRange ConservativeResult(BitWidth, /*isFullSet=*/true);
6016   using OBO = OverflowingBinaryOperator;
6017 
6018   // If the value has known zeros, the maximum value will have those known zeros
6019   // as well.
6020   uint32_t TZ = GetMinTrailingZeros(S);
6021   if (TZ != 0) {
6022     if (SignHint == ScalarEvolution::HINT_RANGE_UNSIGNED)
6023       ConservativeResult =
6024           ConstantRange(APInt::getMinValue(BitWidth),
6025                         APInt::getMaxValue(BitWidth).lshr(TZ).shl(TZ) + 1);
6026     else
6027       ConservativeResult = ConstantRange(
6028           APInt::getSignedMinValue(BitWidth),
6029           APInt::getSignedMaxValue(BitWidth).ashr(TZ).shl(TZ) + 1);
6030   }
6031 
6032   if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(S)) {
6033     ConstantRange X = getRangeRef(Add->getOperand(0), SignHint);
6034     unsigned WrapType = OBO::AnyWrap;
6035     if (Add->hasNoSignedWrap())
6036       WrapType |= OBO::NoSignedWrap;
6037     if (Add->hasNoUnsignedWrap())
6038       WrapType |= OBO::NoUnsignedWrap;
6039     for (unsigned i = 1, e = Add->getNumOperands(); i != e; ++i)
6040       X = X.addWithNoWrap(getRangeRef(Add->getOperand(i), SignHint),
6041                           WrapType, RangeType);
6042     return setRange(Add, SignHint,
6043                     ConservativeResult.intersectWith(X, RangeType));
6044   }
6045 
6046   if (const SCEVMulExpr *Mul = dyn_cast<SCEVMulExpr>(S)) {
6047     ConstantRange X = getRangeRef(Mul->getOperand(0), SignHint);
6048     for (unsigned i = 1, e = Mul->getNumOperands(); i != e; ++i)
6049       X = X.multiply(getRangeRef(Mul->getOperand(i), SignHint));
6050     return setRange(Mul, SignHint,
6051                     ConservativeResult.intersectWith(X, RangeType));
6052   }
6053 
6054   if (const SCEVSMaxExpr *SMax = dyn_cast<SCEVSMaxExpr>(S)) {
6055     ConstantRange X = getRangeRef(SMax->getOperand(0), SignHint);
6056     for (unsigned i = 1, e = SMax->getNumOperands(); i != e; ++i)
6057       X = X.smax(getRangeRef(SMax->getOperand(i), SignHint));
6058     return setRange(SMax, SignHint,
6059                     ConservativeResult.intersectWith(X, RangeType));
6060   }
6061 
6062   if (const SCEVUMaxExpr *UMax = dyn_cast<SCEVUMaxExpr>(S)) {
6063     ConstantRange X = getRangeRef(UMax->getOperand(0), SignHint);
6064     for (unsigned i = 1, e = UMax->getNumOperands(); i != e; ++i)
6065       X = X.umax(getRangeRef(UMax->getOperand(i), SignHint));
6066     return setRange(UMax, SignHint,
6067                     ConservativeResult.intersectWith(X, RangeType));
6068   }
6069 
6070   if (const SCEVSMinExpr *SMin = dyn_cast<SCEVSMinExpr>(S)) {
6071     ConstantRange X = getRangeRef(SMin->getOperand(0), SignHint);
6072     for (unsigned i = 1, e = SMin->getNumOperands(); i != e; ++i)
6073       X = X.smin(getRangeRef(SMin->getOperand(i), SignHint));
6074     return setRange(SMin, SignHint,
6075                     ConservativeResult.intersectWith(X, RangeType));
6076   }
6077 
6078   if (const SCEVUMinExpr *UMin = dyn_cast<SCEVUMinExpr>(S)) {
6079     ConstantRange X = getRangeRef(UMin->getOperand(0), SignHint);
6080     for (unsigned i = 1, e = UMin->getNumOperands(); i != e; ++i)
6081       X = X.umin(getRangeRef(UMin->getOperand(i), SignHint));
6082     return setRange(UMin, SignHint,
6083                     ConservativeResult.intersectWith(X, RangeType));
6084   }
6085 
6086   if (const SCEVUDivExpr *UDiv = dyn_cast<SCEVUDivExpr>(S)) {
6087     ConstantRange X = getRangeRef(UDiv->getLHS(), SignHint);
6088     ConstantRange Y = getRangeRef(UDiv->getRHS(), SignHint);
6089     return setRange(UDiv, SignHint,
6090                     ConservativeResult.intersectWith(X.udiv(Y), RangeType));
6091   }
6092 
6093   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S)) {
6094     ConstantRange X = getRangeRef(ZExt->getOperand(), SignHint);
6095     return setRange(ZExt, SignHint,
6096                     ConservativeResult.intersectWith(X.zeroExtend(BitWidth),
6097                                                      RangeType));
6098   }
6099 
6100   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S)) {
6101     ConstantRange X = getRangeRef(SExt->getOperand(), SignHint);
6102     return setRange(SExt, SignHint,
6103                     ConservativeResult.intersectWith(X.signExtend(BitWidth),
6104                                                      RangeType));
6105   }
6106 
6107   if (const SCEVPtrToIntExpr *PtrToInt = dyn_cast<SCEVPtrToIntExpr>(S)) {
6108     ConstantRange X = getRangeRef(PtrToInt->getOperand(), SignHint);
6109     return setRange(PtrToInt, SignHint, X);
6110   }
6111 
6112   if (const SCEVTruncateExpr *Trunc = dyn_cast<SCEVTruncateExpr>(S)) {
6113     ConstantRange X = getRangeRef(Trunc->getOperand(), SignHint);
6114     return setRange(Trunc, SignHint,
6115                     ConservativeResult.intersectWith(X.truncate(BitWidth),
6116                                                      RangeType));
6117   }
6118 
6119   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(S)) {
6120     // If there's no unsigned wrap, the value will never be less than its
6121     // initial value.
6122     if (AddRec->hasNoUnsignedWrap()) {
6123       APInt UnsignedMinValue = getUnsignedRangeMin(AddRec->getStart());
6124       if (!UnsignedMinValue.isNullValue())
6125         ConservativeResult = ConservativeResult.intersectWith(
6126             ConstantRange(UnsignedMinValue, APInt(BitWidth, 0)), RangeType);
6127     }
6128 
6129     // If there's no signed wrap, and all the operands except initial value have
6130     // the same sign or zero, the value won't ever be:
6131     // 1: smaller than initial value if operands are non negative,
6132     // 2: bigger than initial value if operands are non positive.
6133     // For both cases, value can not cross signed min/max boundary.
6134     if (AddRec->hasNoSignedWrap()) {
6135       bool AllNonNeg = true;
6136       bool AllNonPos = true;
6137       for (unsigned i = 1, e = AddRec->getNumOperands(); i != e; ++i) {
6138         if (!isKnownNonNegative(AddRec->getOperand(i)))
6139           AllNonNeg = false;
6140         if (!isKnownNonPositive(AddRec->getOperand(i)))
6141           AllNonPos = false;
6142       }
6143       if (AllNonNeg)
6144         ConservativeResult = ConservativeResult.intersectWith(
6145             ConstantRange::getNonEmpty(getSignedRangeMin(AddRec->getStart()),
6146                                        APInt::getSignedMinValue(BitWidth)),
6147             RangeType);
6148       else if (AllNonPos)
6149         ConservativeResult = ConservativeResult.intersectWith(
6150             ConstantRange::getNonEmpty(
6151                 APInt::getSignedMinValue(BitWidth),
6152                 getSignedRangeMax(AddRec->getStart()) + 1),
6153             RangeType);
6154     }
6155 
6156     // TODO: non-affine addrec
6157     if (AddRec->isAffine()) {
6158       const SCEV *MaxBECount = getConstantMaxBackedgeTakenCount(AddRec->getLoop());
6159       if (!isa<SCEVCouldNotCompute>(MaxBECount) &&
6160           getTypeSizeInBits(MaxBECount->getType()) <= BitWidth) {
6161         auto RangeFromAffine = getRangeForAffineAR(
6162             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6163             BitWidth);
6164         ConservativeResult =
6165             ConservativeResult.intersectWith(RangeFromAffine, RangeType);
6166 
6167         auto RangeFromFactoring = getRangeViaFactoring(
6168             AddRec->getStart(), AddRec->getStepRecurrence(*this), MaxBECount,
6169             BitWidth);
6170         ConservativeResult =
6171             ConservativeResult.intersectWith(RangeFromFactoring, RangeType);
6172       }
6173 
6174       // Now try symbolic BE count and more powerful methods.
6175       if (UseExpensiveRangeSharpening) {
6176         const SCEV *SymbolicMaxBECount =
6177             getSymbolicMaxBackedgeTakenCount(AddRec->getLoop());
6178         if (!isa<SCEVCouldNotCompute>(SymbolicMaxBECount) &&
6179             getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6180             AddRec->hasNoSelfWrap()) {
6181           auto RangeFromAffineNew = getRangeForAffineNoSelfWrappingAR(
6182               AddRec, SymbolicMaxBECount, BitWidth, SignHint);
6183           ConservativeResult =
6184               ConservativeResult.intersectWith(RangeFromAffineNew, RangeType);
6185         }
6186       }
6187     }
6188 
6189     return setRange(AddRec, SignHint, std::move(ConservativeResult));
6190   }
6191 
6192   if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
6193 
6194     // Check if the IR explicitly contains !range metadata.
6195     Optional<ConstantRange> MDRange = GetRangeFromMetadata(U->getValue());
6196     if (MDRange.hasValue())
6197       ConservativeResult = ConservativeResult.intersectWith(MDRange.getValue(),
6198                                                             RangeType);
6199 
6200     // Use facts about recurrences in the underlying IR.  Note that add
6201     // recurrences are AddRecExprs and thus don't hit this path.  This
6202     // primarily handles shift recurrences.
6203     auto CR = getRangeForUnknownRecurrence(U);
6204     ConservativeResult = ConservativeResult.intersectWith(CR);
6205 
6206     // See if ValueTracking can give us a useful range.
6207     const DataLayout &DL = getDataLayout();
6208     KnownBits Known = computeKnownBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6209     if (Known.getBitWidth() != BitWidth)
6210       Known = Known.zextOrTrunc(BitWidth);
6211 
6212     // ValueTracking may be able to compute a tighter result for the number of
6213     // sign bits than for the value of those sign bits.
6214     unsigned NS = ComputeNumSignBits(U->getValue(), DL, 0, &AC, nullptr, &DT);
6215     if (U->getType()->isPointerTy()) {
6216       // If the pointer size is larger than the index size type, this can cause
6217       // NS to be larger than BitWidth. So compensate for this.
6218       unsigned ptrSize = DL.getPointerTypeSizeInBits(U->getType());
6219       int ptrIdxDiff = ptrSize - BitWidth;
6220       if (ptrIdxDiff > 0 && ptrSize > BitWidth && NS > (unsigned)ptrIdxDiff)
6221         NS -= ptrIdxDiff;
6222     }
6223 
6224     if (NS > 1) {
6225       // If we know any of the sign bits, we know all of the sign bits.
6226       if (!Known.Zero.getHiBits(NS).isNullValue())
6227         Known.Zero.setHighBits(NS);
6228       if (!Known.One.getHiBits(NS).isNullValue())
6229         Known.One.setHighBits(NS);
6230     }
6231 
6232     if (Known.getMinValue() != Known.getMaxValue() + 1)
6233       ConservativeResult = ConservativeResult.intersectWith(
6234           ConstantRange(Known.getMinValue(), Known.getMaxValue() + 1),
6235           RangeType);
6236     if (NS > 1)
6237       ConservativeResult = ConservativeResult.intersectWith(
6238           ConstantRange(APInt::getSignedMinValue(BitWidth).ashr(NS - 1),
6239                         APInt::getSignedMaxValue(BitWidth).ashr(NS - 1) + 1),
6240           RangeType);
6241 
6242     // A range of Phi is a subset of union of all ranges of its input.
6243     if (const PHINode *Phi = dyn_cast<PHINode>(U->getValue())) {
6244       // Make sure that we do not run over cycled Phis.
6245       if (PendingPhiRanges.insert(Phi).second) {
6246         ConstantRange RangeFromOps(BitWidth, /*isFullSet=*/false);
6247         for (auto &Op : Phi->operands()) {
6248           auto OpRange = getRangeRef(getSCEV(Op), SignHint);
6249           RangeFromOps = RangeFromOps.unionWith(OpRange);
6250           // No point to continue if we already have a full set.
6251           if (RangeFromOps.isFullSet())
6252             break;
6253         }
6254         ConservativeResult =
6255             ConservativeResult.intersectWith(RangeFromOps, RangeType);
6256         bool Erased = PendingPhiRanges.erase(Phi);
6257         assert(Erased && "Failed to erase Phi properly?");
6258         (void) Erased;
6259       }
6260     }
6261 
6262     return setRange(U, SignHint, std::move(ConservativeResult));
6263   }
6264 
6265   return setRange(S, SignHint, std::move(ConservativeResult));
6266 }
6267 
6268 // Given a StartRange, Step and MaxBECount for an expression compute a range of
6269 // values that the expression can take. Initially, the expression has a value
6270 // from StartRange and then is changed by Step up to MaxBECount times. Signed
6271 // argument defines if we treat Step as signed or unsigned.
6272 static ConstantRange getRangeForAffineARHelper(APInt Step,
6273                                                const ConstantRange &StartRange,
6274                                                const APInt &MaxBECount,
6275                                                unsigned BitWidth, bool Signed) {
6276   // If either Step or MaxBECount is 0, then the expression won't change, and we
6277   // just need to return the initial range.
6278   if (Step == 0 || MaxBECount == 0)
6279     return StartRange;
6280 
6281   // If we don't know anything about the initial value (i.e. StartRange is
6282   // FullRange), then we don't know anything about the final range either.
6283   // Return FullRange.
6284   if (StartRange.isFullSet())
6285     return ConstantRange::getFull(BitWidth);
6286 
6287   // If Step is signed and negative, then we use its absolute value, but we also
6288   // note that we're moving in the opposite direction.
6289   bool Descending = Signed && Step.isNegative();
6290 
6291   if (Signed)
6292     // This is correct even for INT_SMIN. Let's look at i8 to illustrate this:
6293     // abs(INT_SMIN) = abs(-128) = abs(0x80) = -0x80 = 0x80 = 128.
6294     // This equations hold true due to the well-defined wrap-around behavior of
6295     // APInt.
6296     Step = Step.abs();
6297 
6298   // Check if Offset is more than full span of BitWidth. If it is, the
6299   // expression is guaranteed to overflow.
6300   if (APInt::getMaxValue(StartRange.getBitWidth()).udiv(Step).ult(MaxBECount))
6301     return ConstantRange::getFull(BitWidth);
6302 
6303   // Offset is by how much the expression can change. Checks above guarantee no
6304   // overflow here.
6305   APInt Offset = Step * MaxBECount;
6306 
6307   // Minimum value of the final range will match the minimal value of StartRange
6308   // if the expression is increasing and will be decreased by Offset otherwise.
6309   // Maximum value of the final range will match the maximal value of StartRange
6310   // if the expression is decreasing and will be increased by Offset otherwise.
6311   APInt StartLower = StartRange.getLower();
6312   APInt StartUpper = StartRange.getUpper() - 1;
6313   APInt MovedBoundary = Descending ? (StartLower - std::move(Offset))
6314                                    : (StartUpper + std::move(Offset));
6315 
6316   // It's possible that the new minimum/maximum value will fall into the initial
6317   // range (due to wrap around). This means that the expression can take any
6318   // value in this bitwidth, and we have to return full range.
6319   if (StartRange.contains(MovedBoundary))
6320     return ConstantRange::getFull(BitWidth);
6321 
6322   APInt NewLower =
6323       Descending ? std::move(MovedBoundary) : std::move(StartLower);
6324   APInt NewUpper =
6325       Descending ? std::move(StartUpper) : std::move(MovedBoundary);
6326   NewUpper += 1;
6327 
6328   // No overflow detected, return [StartLower, StartUpper + Offset + 1) range.
6329   return ConstantRange::getNonEmpty(std::move(NewLower), std::move(NewUpper));
6330 }
6331 
6332 ConstantRange ScalarEvolution::getRangeForAffineAR(const SCEV *Start,
6333                                                    const SCEV *Step,
6334                                                    const SCEV *MaxBECount,
6335                                                    unsigned BitWidth) {
6336   assert(!isa<SCEVCouldNotCompute>(MaxBECount) &&
6337          getTypeSizeInBits(MaxBECount->getType()) <= BitWidth &&
6338          "Precondition!");
6339 
6340   MaxBECount = getNoopOrZeroExtend(MaxBECount, Start->getType());
6341   APInt MaxBECountValue = getUnsignedRangeMax(MaxBECount);
6342 
6343   // First, consider step signed.
6344   ConstantRange StartSRange = getSignedRange(Start);
6345   ConstantRange StepSRange = getSignedRange(Step);
6346 
6347   // If Step can be both positive and negative, we need to find ranges for the
6348   // maximum absolute step values in both directions and union them.
6349   ConstantRange SR =
6350       getRangeForAffineARHelper(StepSRange.getSignedMin(), StartSRange,
6351                                 MaxBECountValue, BitWidth, /* Signed = */ true);
6352   SR = SR.unionWith(getRangeForAffineARHelper(StepSRange.getSignedMax(),
6353                                               StartSRange, MaxBECountValue,
6354                                               BitWidth, /* Signed = */ true));
6355 
6356   // Next, consider step unsigned.
6357   ConstantRange UR = getRangeForAffineARHelper(
6358       getUnsignedRangeMax(Step), getUnsignedRange(Start),
6359       MaxBECountValue, BitWidth, /* Signed = */ false);
6360 
6361   // Finally, intersect signed and unsigned ranges.
6362   return SR.intersectWith(UR, ConstantRange::Smallest);
6363 }
6364 
6365 ConstantRange ScalarEvolution::getRangeForAffineNoSelfWrappingAR(
6366     const SCEVAddRecExpr *AddRec, const SCEV *MaxBECount, unsigned BitWidth,
6367     ScalarEvolution::RangeSignHint SignHint) {
6368   assert(AddRec->isAffine() && "Non-affine AddRecs are not suppored!\n");
6369   assert(AddRec->hasNoSelfWrap() &&
6370          "This only works for non-self-wrapping AddRecs!");
6371   const bool IsSigned = SignHint == HINT_RANGE_SIGNED;
6372   const SCEV *Step = AddRec->getStepRecurrence(*this);
6373   // Only deal with constant step to save compile time.
6374   if (!isa<SCEVConstant>(Step))
6375     return ConstantRange::getFull(BitWidth);
6376   // Let's make sure that we can prove that we do not self-wrap during
6377   // MaxBECount iterations. We need this because MaxBECount is a maximum
6378   // iteration count estimate, and we might infer nw from some exit for which we
6379   // do not know max exit count (or any other side reasoning).
6380   // TODO: Turn into assert at some point.
6381   if (getTypeSizeInBits(MaxBECount->getType()) >
6382       getTypeSizeInBits(AddRec->getType()))
6383     return ConstantRange::getFull(BitWidth);
6384   MaxBECount = getNoopOrZeroExtend(MaxBECount, AddRec->getType());
6385   const SCEV *RangeWidth = getMinusOne(AddRec->getType());
6386   const SCEV *StepAbs = getUMinExpr(Step, getNegativeSCEV(Step));
6387   const SCEV *MaxItersWithoutWrap = getUDivExpr(RangeWidth, StepAbs);
6388   if (!isKnownPredicateViaConstantRanges(ICmpInst::ICMP_ULE, MaxBECount,
6389                                          MaxItersWithoutWrap))
6390     return ConstantRange::getFull(BitWidth);
6391 
6392   ICmpInst::Predicate LEPred =
6393       IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
6394   ICmpInst::Predicate GEPred =
6395       IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
6396   const SCEV *End = AddRec->evaluateAtIteration(MaxBECount, *this);
6397 
6398   // We know that there is no self-wrap. Let's take Start and End values and
6399   // look at all intermediate values V1, V2, ..., Vn that IndVar takes during
6400   // the iteration. They either lie inside the range [Min(Start, End),
6401   // Max(Start, End)] or outside it:
6402   //
6403   // Case 1:   RangeMin    ...    Start V1 ... VN End ...           RangeMax;
6404   // Case 2:   RangeMin Vk ... V1 Start    ...    End Vn ... Vk + 1 RangeMax;
6405   //
6406   // No self wrap flag guarantees that the intermediate values cannot be BOTH
6407   // outside and inside the range [Min(Start, End), Max(Start, End)]. Using that
6408   // knowledge, let's try to prove that we are dealing with Case 1. It is so if
6409   // Start <= End and step is positive, or Start >= End and step is negative.
6410   const SCEV *Start = AddRec->getStart();
6411   ConstantRange StartRange = getRangeRef(Start, SignHint);
6412   ConstantRange EndRange = getRangeRef(End, SignHint);
6413   ConstantRange RangeBetween = StartRange.unionWith(EndRange);
6414   // If they already cover full iteration space, we will know nothing useful
6415   // even if we prove what we want to prove.
6416   if (RangeBetween.isFullSet())
6417     return RangeBetween;
6418   // Only deal with ranges that do not wrap (i.e. RangeMin < RangeMax).
6419   bool IsWrappedSet = IsSigned ? RangeBetween.isSignWrappedSet()
6420                                : RangeBetween.isWrappedSet();
6421   if (IsWrappedSet)
6422     return ConstantRange::getFull(BitWidth);
6423 
6424   if (isKnownPositive(Step) &&
6425       isKnownPredicateViaConstantRanges(LEPred, Start, End))
6426     return RangeBetween;
6427   else if (isKnownNegative(Step) &&
6428            isKnownPredicateViaConstantRanges(GEPred, Start, End))
6429     return RangeBetween;
6430   return ConstantRange::getFull(BitWidth);
6431 }
6432 
6433 ConstantRange ScalarEvolution::getRangeViaFactoring(const SCEV *Start,
6434                                                     const SCEV *Step,
6435                                                     const SCEV *MaxBECount,
6436                                                     unsigned BitWidth) {
6437   //    RangeOf({C?A:B,+,C?P:Q}) == RangeOf(C?{A,+,P}:{B,+,Q})
6438   // == RangeOf({A,+,P}) union RangeOf({B,+,Q})
6439 
6440   struct SelectPattern {
6441     Value *Condition = nullptr;
6442     APInt TrueValue;
6443     APInt FalseValue;
6444 
6445     explicit SelectPattern(ScalarEvolution &SE, unsigned BitWidth,
6446                            const SCEV *S) {
6447       Optional<unsigned> CastOp;
6448       APInt Offset(BitWidth, 0);
6449 
6450       assert(SE.getTypeSizeInBits(S->getType()) == BitWidth &&
6451              "Should be!");
6452 
6453       // Peel off a constant offset:
6454       if (auto *SA = dyn_cast<SCEVAddExpr>(S)) {
6455         // In the future we could consider being smarter here and handle
6456         // {Start+Step,+,Step} too.
6457         if (SA->getNumOperands() != 2 || !isa<SCEVConstant>(SA->getOperand(0)))
6458           return;
6459 
6460         Offset = cast<SCEVConstant>(SA->getOperand(0))->getAPInt();
6461         S = SA->getOperand(1);
6462       }
6463 
6464       // Peel off a cast operation
6465       if (auto *SCast = dyn_cast<SCEVIntegralCastExpr>(S)) {
6466         CastOp = SCast->getSCEVType();
6467         S = SCast->getOperand();
6468       }
6469 
6470       using namespace llvm::PatternMatch;
6471 
6472       auto *SU = dyn_cast<SCEVUnknown>(S);
6473       const APInt *TrueVal, *FalseVal;
6474       if (!SU ||
6475           !match(SU->getValue(), m_Select(m_Value(Condition), m_APInt(TrueVal),
6476                                           m_APInt(FalseVal)))) {
6477         Condition = nullptr;
6478         return;
6479       }
6480 
6481       TrueValue = *TrueVal;
6482       FalseValue = *FalseVal;
6483 
6484       // Re-apply the cast we peeled off earlier
6485       if (CastOp.hasValue())
6486         switch (*CastOp) {
6487         default:
6488           llvm_unreachable("Unknown SCEV cast type!");
6489 
6490         case scTruncate:
6491           TrueValue = TrueValue.trunc(BitWidth);
6492           FalseValue = FalseValue.trunc(BitWidth);
6493           break;
6494         case scZeroExtend:
6495           TrueValue = TrueValue.zext(BitWidth);
6496           FalseValue = FalseValue.zext(BitWidth);
6497           break;
6498         case scSignExtend:
6499           TrueValue = TrueValue.sext(BitWidth);
6500           FalseValue = FalseValue.sext(BitWidth);
6501           break;
6502         }
6503 
6504       // Re-apply the constant offset we peeled off earlier
6505       TrueValue += Offset;
6506       FalseValue += Offset;
6507     }
6508 
6509     bool isRecognized() { return Condition != nullptr; }
6510   };
6511 
6512   SelectPattern StartPattern(*this, BitWidth, Start);
6513   if (!StartPattern.isRecognized())
6514     return ConstantRange::getFull(BitWidth);
6515 
6516   SelectPattern StepPattern(*this, BitWidth, Step);
6517   if (!StepPattern.isRecognized())
6518     return ConstantRange::getFull(BitWidth);
6519 
6520   if (StartPattern.Condition != StepPattern.Condition) {
6521     // We don't handle this case today; but we could, by considering four
6522     // possibilities below instead of two. I'm not sure if there are cases where
6523     // that will help over what getRange already does, though.
6524     return ConstantRange::getFull(BitWidth);
6525   }
6526 
6527   // NB! Calling ScalarEvolution::getConstant is fine, but we should not try to
6528   // construct arbitrary general SCEV expressions here.  This function is called
6529   // from deep in the call stack, and calling getSCEV (on a sext instruction,
6530   // say) can end up caching a suboptimal value.
6531 
6532   // FIXME: without the explicit `this` receiver below, MSVC errors out with
6533   // C2352 and C2512 (otherwise it isn't needed).
6534 
6535   const SCEV *TrueStart = this->getConstant(StartPattern.TrueValue);
6536   const SCEV *TrueStep = this->getConstant(StepPattern.TrueValue);
6537   const SCEV *FalseStart = this->getConstant(StartPattern.FalseValue);
6538   const SCEV *FalseStep = this->getConstant(StepPattern.FalseValue);
6539 
6540   ConstantRange TrueRange =
6541       this->getRangeForAffineAR(TrueStart, TrueStep, MaxBECount, BitWidth);
6542   ConstantRange FalseRange =
6543       this->getRangeForAffineAR(FalseStart, FalseStep, MaxBECount, BitWidth);
6544 
6545   return TrueRange.unionWith(FalseRange);
6546 }
6547 
6548 SCEV::NoWrapFlags ScalarEvolution::getNoWrapFlagsFromUB(const Value *V) {
6549   if (isa<ConstantExpr>(V)) return SCEV::FlagAnyWrap;
6550   const BinaryOperator *BinOp = cast<BinaryOperator>(V);
6551 
6552   // Return early if there are no flags to propagate to the SCEV.
6553   SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6554   if (BinOp->hasNoUnsignedWrap())
6555     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNUW);
6556   if (BinOp->hasNoSignedWrap())
6557     Flags = ScalarEvolution::setFlags(Flags, SCEV::FlagNSW);
6558   if (Flags == SCEV::FlagAnyWrap)
6559     return SCEV::FlagAnyWrap;
6560 
6561   return isSCEVExprNeverPoison(BinOp) ? Flags : SCEV::FlagAnyWrap;
6562 }
6563 
6564 bool ScalarEvolution::isSCEVExprNeverPoison(const Instruction *I) {
6565   // Here we check that I is in the header of the innermost loop containing I,
6566   // since we only deal with instructions in the loop header. The actual loop we
6567   // need to check later will come from an add recurrence, but getting that
6568   // requires computing the SCEV of the operands, which can be expensive. This
6569   // check we can do cheaply to rule out some cases early.
6570   Loop *InnermostContainingLoop = LI.getLoopFor(I->getParent());
6571   if (InnermostContainingLoop == nullptr ||
6572       InnermostContainingLoop->getHeader() != I->getParent())
6573     return false;
6574 
6575   // Only proceed if we can prove that I does not yield poison.
6576   if (!programUndefinedIfPoison(I))
6577     return false;
6578 
6579   // At this point we know that if I is executed, then it does not wrap
6580   // according to at least one of NSW or NUW. If I is not executed, then we do
6581   // not know if the calculation that I represents would wrap. Multiple
6582   // instructions can map to the same SCEV. If we apply NSW or NUW from I to
6583   // the SCEV, we must guarantee no wrapping for that SCEV also when it is
6584   // derived from other instructions that map to the same SCEV. We cannot make
6585   // that guarantee for cases where I is not executed. So we need to find the
6586   // loop that I is considered in relation to and prove that I is executed for
6587   // every iteration of that loop. That implies that the value that I
6588   // calculates does not wrap anywhere in the loop, so then we can apply the
6589   // flags to the SCEV.
6590   //
6591   // We check isLoopInvariant to disambiguate in case we are adding recurrences
6592   // from different loops, so that we know which loop to prove that I is
6593   // executed in.
6594   for (unsigned OpIndex = 0; OpIndex < I->getNumOperands(); ++OpIndex) {
6595     // I could be an extractvalue from a call to an overflow intrinsic.
6596     // TODO: We can do better here in some cases.
6597     if (!isSCEVable(I->getOperand(OpIndex)->getType()))
6598       return false;
6599     const SCEV *Op = getSCEV(I->getOperand(OpIndex));
6600     if (auto *AddRec = dyn_cast<SCEVAddRecExpr>(Op)) {
6601       bool AllOtherOpsLoopInvariant = true;
6602       for (unsigned OtherOpIndex = 0; OtherOpIndex < I->getNumOperands();
6603            ++OtherOpIndex) {
6604         if (OtherOpIndex != OpIndex) {
6605           const SCEV *OtherOp = getSCEV(I->getOperand(OtherOpIndex));
6606           if (!isLoopInvariant(OtherOp, AddRec->getLoop())) {
6607             AllOtherOpsLoopInvariant = false;
6608             break;
6609           }
6610         }
6611       }
6612       if (AllOtherOpsLoopInvariant &&
6613           isGuaranteedToExecuteForEveryIteration(I, AddRec->getLoop()))
6614         return true;
6615     }
6616   }
6617   return false;
6618 }
6619 
6620 bool ScalarEvolution::isAddRecNeverPoison(const Instruction *I, const Loop *L) {
6621   // If we know that \c I can never be poison period, then that's enough.
6622   if (isSCEVExprNeverPoison(I))
6623     return true;
6624 
6625   // For an add recurrence specifically, we assume that infinite loops without
6626   // side effects are undefined behavior, and then reason as follows:
6627   //
6628   // If the add recurrence is poison in any iteration, it is poison on all
6629   // future iterations (since incrementing poison yields poison). If the result
6630   // of the add recurrence is fed into the loop latch condition and the loop
6631   // does not contain any throws or exiting blocks other than the latch, we now
6632   // have the ability to "choose" whether the backedge is taken or not (by
6633   // choosing a sufficiently evil value for the poison feeding into the branch)
6634   // for every iteration including and after the one in which \p I first became
6635   // poison.  There are two possibilities (let's call the iteration in which \p
6636   // I first became poison as K):
6637   //
6638   //  1. In the set of iterations including and after K, the loop body executes
6639   //     no side effects.  In this case executing the backege an infinte number
6640   //     of times will yield undefined behavior.
6641   //
6642   //  2. In the set of iterations including and after K, the loop body executes
6643   //     at least one side effect.  In this case, that specific instance of side
6644   //     effect is control dependent on poison, which also yields undefined
6645   //     behavior.
6646 
6647   auto *ExitingBB = L->getExitingBlock();
6648   auto *LatchBB = L->getLoopLatch();
6649   if (!ExitingBB || !LatchBB || ExitingBB != LatchBB)
6650     return false;
6651 
6652   SmallPtrSet<const Instruction *, 16> Pushed;
6653   SmallVector<const Instruction *, 8> PoisonStack;
6654 
6655   // We start by assuming \c I, the post-inc add recurrence, is poison.  Only
6656   // things that are known to be poison under that assumption go on the
6657   // PoisonStack.
6658   Pushed.insert(I);
6659   PoisonStack.push_back(I);
6660 
6661   bool LatchControlDependentOnPoison = false;
6662   while (!PoisonStack.empty() && !LatchControlDependentOnPoison) {
6663     const Instruction *Poison = PoisonStack.pop_back_val();
6664 
6665     for (auto *PoisonUser : Poison->users()) {
6666       if (propagatesPoison(cast<Operator>(PoisonUser))) {
6667         if (Pushed.insert(cast<Instruction>(PoisonUser)).second)
6668           PoisonStack.push_back(cast<Instruction>(PoisonUser));
6669       } else if (auto *BI = dyn_cast<BranchInst>(PoisonUser)) {
6670         assert(BI->isConditional() && "Only possibility!");
6671         if (BI->getParent() == LatchBB) {
6672           LatchControlDependentOnPoison = true;
6673           break;
6674         }
6675       }
6676     }
6677   }
6678 
6679   return LatchControlDependentOnPoison && loopHasNoAbnormalExits(L);
6680 }
6681 
6682 ScalarEvolution::LoopProperties
6683 ScalarEvolution::getLoopProperties(const Loop *L) {
6684   using LoopProperties = ScalarEvolution::LoopProperties;
6685 
6686   auto Itr = LoopPropertiesCache.find(L);
6687   if (Itr == LoopPropertiesCache.end()) {
6688     auto HasSideEffects = [](Instruction *I) {
6689       if (auto *SI = dyn_cast<StoreInst>(I))
6690         return !SI->isSimple();
6691 
6692       return I->mayThrow() || I->mayWriteToMemory();
6693     };
6694 
6695     LoopProperties LP = {/* HasNoAbnormalExits */ true,
6696                          /*HasNoSideEffects*/ true};
6697 
6698     for (auto *BB : L->getBlocks())
6699       for (auto &I : *BB) {
6700         if (!isGuaranteedToTransferExecutionToSuccessor(&I))
6701           LP.HasNoAbnormalExits = false;
6702         if (HasSideEffects(&I))
6703           LP.HasNoSideEffects = false;
6704         if (!LP.HasNoAbnormalExits && !LP.HasNoSideEffects)
6705           break; // We're already as pessimistic as we can get.
6706       }
6707 
6708     auto InsertPair = LoopPropertiesCache.insert({L, LP});
6709     assert(InsertPair.second && "We just checked!");
6710     Itr = InsertPair.first;
6711   }
6712 
6713   return Itr->second;
6714 }
6715 
6716 bool ScalarEvolution::loopIsFiniteByAssumption(const Loop *L) {
6717   // A mustprogress loop without side effects must be finite.
6718   // TODO: The check used here is very conservative.  It's only *specific*
6719   // side effects which are well defined in infinite loops.
6720   return isMustProgress(L) && loopHasNoSideEffects(L);
6721 }
6722 
6723 const SCEV *ScalarEvolution::createSCEV(Value *V) {
6724   if (!isSCEVable(V->getType()))
6725     return getUnknown(V);
6726 
6727   if (Instruction *I = dyn_cast<Instruction>(V)) {
6728     // Don't attempt to analyze instructions in blocks that aren't
6729     // reachable. Such instructions don't matter, and they aren't required
6730     // to obey basic rules for definitions dominating uses which this
6731     // analysis depends on.
6732     if (!DT.isReachableFromEntry(I->getParent()))
6733       return getUnknown(UndefValue::get(V->getType()));
6734   } else if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
6735     return getConstant(CI);
6736   else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
6737     return GA->isInterposable() ? getUnknown(V) : getSCEV(GA->getAliasee());
6738   else if (!isa<ConstantExpr>(V))
6739     return getUnknown(V);
6740 
6741   Operator *U = cast<Operator>(V);
6742   if (auto BO = MatchBinaryOp(U, DT)) {
6743     switch (BO->Opcode) {
6744     case Instruction::Add: {
6745       // The simple thing to do would be to just call getSCEV on both operands
6746       // and call getAddExpr with the result. However if we're looking at a
6747       // bunch of things all added together, this can be quite inefficient,
6748       // because it leads to N-1 getAddExpr calls for N ultimate operands.
6749       // Instead, gather up all the operands and make a single getAddExpr call.
6750       // LLVM IR canonical form means we need only traverse the left operands.
6751       SmallVector<const SCEV *, 4> AddOps;
6752       do {
6753         if (BO->Op) {
6754           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6755             AddOps.push_back(OpSCEV);
6756             break;
6757           }
6758 
6759           // If a NUW or NSW flag can be applied to the SCEV for this
6760           // addition, then compute the SCEV for this addition by itself
6761           // with a separate call to getAddExpr. We need to do that
6762           // instead of pushing the operands of the addition onto AddOps,
6763           // since the flags are only known to apply to this particular
6764           // addition - they may not apply to other additions that can be
6765           // formed with operands from AddOps.
6766           const SCEV *RHS = getSCEV(BO->RHS);
6767           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6768           if (Flags != SCEV::FlagAnyWrap) {
6769             const SCEV *LHS = getSCEV(BO->LHS);
6770             if (BO->Opcode == Instruction::Sub)
6771               AddOps.push_back(getMinusSCEV(LHS, RHS, Flags));
6772             else
6773               AddOps.push_back(getAddExpr(LHS, RHS, Flags));
6774             break;
6775           }
6776         }
6777 
6778         if (BO->Opcode == Instruction::Sub)
6779           AddOps.push_back(getNegativeSCEV(getSCEV(BO->RHS)));
6780         else
6781           AddOps.push_back(getSCEV(BO->RHS));
6782 
6783         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6784         if (!NewBO || (NewBO->Opcode != Instruction::Add &&
6785                        NewBO->Opcode != Instruction::Sub)) {
6786           AddOps.push_back(getSCEV(BO->LHS));
6787           break;
6788         }
6789         BO = NewBO;
6790       } while (true);
6791 
6792       return getAddExpr(AddOps);
6793     }
6794 
6795     case Instruction::Mul: {
6796       SmallVector<const SCEV *, 4> MulOps;
6797       do {
6798         if (BO->Op) {
6799           if (auto *OpSCEV = getExistingSCEV(BO->Op)) {
6800             MulOps.push_back(OpSCEV);
6801             break;
6802           }
6803 
6804           SCEV::NoWrapFlags Flags = getNoWrapFlagsFromUB(BO->Op);
6805           if (Flags != SCEV::FlagAnyWrap) {
6806             MulOps.push_back(
6807                 getMulExpr(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags));
6808             break;
6809           }
6810         }
6811 
6812         MulOps.push_back(getSCEV(BO->RHS));
6813         auto NewBO = MatchBinaryOp(BO->LHS, DT);
6814         if (!NewBO || NewBO->Opcode != Instruction::Mul) {
6815           MulOps.push_back(getSCEV(BO->LHS));
6816           break;
6817         }
6818         BO = NewBO;
6819       } while (true);
6820 
6821       return getMulExpr(MulOps);
6822     }
6823     case Instruction::UDiv:
6824       return getUDivExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6825     case Instruction::URem:
6826       return getURemExpr(getSCEV(BO->LHS), getSCEV(BO->RHS));
6827     case Instruction::Sub: {
6828       SCEV::NoWrapFlags Flags = SCEV::FlagAnyWrap;
6829       if (BO->Op)
6830         Flags = getNoWrapFlagsFromUB(BO->Op);
6831       return getMinusSCEV(getSCEV(BO->LHS), getSCEV(BO->RHS), Flags);
6832     }
6833     case Instruction::And:
6834       // For an expression like x&255 that merely masks off the high bits,
6835       // use zext(trunc(x)) as the SCEV expression.
6836       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6837         if (CI->isZero())
6838           return getSCEV(BO->RHS);
6839         if (CI->isMinusOne())
6840           return getSCEV(BO->LHS);
6841         const APInt &A = CI->getValue();
6842 
6843         // Instcombine's ShrinkDemandedConstant may strip bits out of
6844         // constants, obscuring what would otherwise be a low-bits mask.
6845         // Use computeKnownBits to compute what ShrinkDemandedConstant
6846         // knew about to reconstruct a low-bits mask value.
6847         unsigned LZ = A.countLeadingZeros();
6848         unsigned TZ = A.countTrailingZeros();
6849         unsigned BitWidth = A.getBitWidth();
6850         KnownBits Known(BitWidth);
6851         computeKnownBits(BO->LHS, Known, getDataLayout(),
6852                          0, &AC, nullptr, &DT);
6853 
6854         APInt EffectiveMask =
6855             APInt::getLowBitsSet(BitWidth, BitWidth - LZ - TZ).shl(TZ);
6856         if ((LZ != 0 || TZ != 0) && !((~A & ~Known.Zero) & EffectiveMask)) {
6857           const SCEV *MulCount = getConstant(APInt::getOneBitSet(BitWidth, TZ));
6858           const SCEV *LHS = getSCEV(BO->LHS);
6859           const SCEV *ShiftedLHS = nullptr;
6860           if (auto *LHSMul = dyn_cast<SCEVMulExpr>(LHS)) {
6861             if (auto *OpC = dyn_cast<SCEVConstant>(LHSMul->getOperand(0))) {
6862               // For an expression like (x * 8) & 8, simplify the multiply.
6863               unsigned MulZeros = OpC->getAPInt().countTrailingZeros();
6864               unsigned GCD = std::min(MulZeros, TZ);
6865               APInt DivAmt = APInt::getOneBitSet(BitWidth, TZ - GCD);
6866               SmallVector<const SCEV*, 4> MulOps;
6867               MulOps.push_back(getConstant(OpC->getAPInt().lshr(GCD)));
6868               MulOps.append(LHSMul->op_begin() + 1, LHSMul->op_end());
6869               auto *NewMul = getMulExpr(MulOps, LHSMul->getNoWrapFlags());
6870               ShiftedLHS = getUDivExpr(NewMul, getConstant(DivAmt));
6871             }
6872           }
6873           if (!ShiftedLHS)
6874             ShiftedLHS = getUDivExpr(LHS, MulCount);
6875           return getMulExpr(
6876               getZeroExtendExpr(
6877                   getTruncateExpr(ShiftedLHS,
6878                       IntegerType::get(getContext(), BitWidth - LZ - TZ)),
6879                   BO->LHS->getType()),
6880               MulCount);
6881         }
6882       }
6883       break;
6884 
6885     case Instruction::Or:
6886       // If the RHS of the Or is a constant, we may have something like:
6887       // X*4+1 which got turned into X*4|1.  Handle this as an Add so loop
6888       // optimizations will transparently handle this case.
6889       //
6890       // In order for this transformation to be safe, the LHS must be of the
6891       // form X*(2^n) and the Or constant must be less than 2^n.
6892       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6893         const SCEV *LHS = getSCEV(BO->LHS);
6894         const APInt &CIVal = CI->getValue();
6895         if (GetMinTrailingZeros(LHS) >=
6896             (CIVal.getBitWidth() - CIVal.countLeadingZeros())) {
6897           // Build a plain add SCEV.
6898           return getAddExpr(LHS, getSCEV(CI),
6899                             (SCEV::NoWrapFlags)(SCEV::FlagNUW | SCEV::FlagNSW));
6900         }
6901       }
6902       break;
6903 
6904     case Instruction::Xor:
6905       if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS)) {
6906         // If the RHS of xor is -1, then this is a not operation.
6907         if (CI->isMinusOne())
6908           return getNotSCEV(getSCEV(BO->LHS));
6909 
6910         // Model xor(and(x, C), C) as and(~x, C), if C is a low-bits mask.
6911         // This is a variant of the check for xor with -1, and it handles
6912         // the case where instcombine has trimmed non-demanded bits out
6913         // of an xor with -1.
6914         if (auto *LBO = dyn_cast<BinaryOperator>(BO->LHS))
6915           if (ConstantInt *LCI = dyn_cast<ConstantInt>(LBO->getOperand(1)))
6916             if (LBO->getOpcode() == Instruction::And &&
6917                 LCI->getValue() == CI->getValue())
6918               if (const SCEVZeroExtendExpr *Z =
6919                       dyn_cast<SCEVZeroExtendExpr>(getSCEV(BO->LHS))) {
6920                 Type *UTy = BO->LHS->getType();
6921                 const SCEV *Z0 = Z->getOperand();
6922                 Type *Z0Ty = Z0->getType();
6923                 unsigned Z0TySize = getTypeSizeInBits(Z0Ty);
6924 
6925                 // If C is a low-bits mask, the zero extend is serving to
6926                 // mask off the high bits. Complement the operand and
6927                 // re-apply the zext.
6928                 if (CI->getValue().isMask(Z0TySize))
6929                   return getZeroExtendExpr(getNotSCEV(Z0), UTy);
6930 
6931                 // If C is a single bit, it may be in the sign-bit position
6932                 // before the zero-extend. In this case, represent the xor
6933                 // using an add, which is equivalent, and re-apply the zext.
6934                 APInt Trunc = CI->getValue().trunc(Z0TySize);
6935                 if (Trunc.zext(getTypeSizeInBits(UTy)) == CI->getValue() &&
6936                     Trunc.isSignMask())
6937                   return getZeroExtendExpr(getAddExpr(Z0, getConstant(Trunc)),
6938                                            UTy);
6939               }
6940       }
6941       break;
6942 
6943     case Instruction::Shl:
6944       // Turn shift left of a constant amount into a multiply.
6945       if (ConstantInt *SA = dyn_cast<ConstantInt>(BO->RHS)) {
6946         uint32_t BitWidth = cast<IntegerType>(SA->getType())->getBitWidth();
6947 
6948         // If the shift count is not less than the bitwidth, the result of
6949         // the shift is undefined. Don't try to analyze it, because the
6950         // resolution chosen here may differ from the resolution chosen in
6951         // other parts of the compiler.
6952         if (SA->getValue().uge(BitWidth))
6953           break;
6954 
6955         // We can safely preserve the nuw flag in all cases. It's also safe to
6956         // turn a nuw nsw shl into a nuw nsw mul. However, nsw in isolation
6957         // requires special handling. It can be preserved as long as we're not
6958         // left shifting by bitwidth - 1.
6959         auto Flags = SCEV::FlagAnyWrap;
6960         if (BO->Op) {
6961           auto MulFlags = getNoWrapFlagsFromUB(BO->Op);
6962           if ((MulFlags & SCEV::FlagNSW) &&
6963               ((MulFlags & SCEV::FlagNUW) || SA->getValue().ult(BitWidth - 1)))
6964             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNSW);
6965           if (MulFlags & SCEV::FlagNUW)
6966             Flags = (SCEV::NoWrapFlags)(Flags | SCEV::FlagNUW);
6967         }
6968 
6969         Constant *X = ConstantInt::get(
6970             getContext(), APInt::getOneBitSet(BitWidth, SA->getZExtValue()));
6971         return getMulExpr(getSCEV(BO->LHS), getSCEV(X), Flags);
6972       }
6973       break;
6974 
6975     case Instruction::AShr: {
6976       // AShr X, C, where C is a constant.
6977       ConstantInt *CI = dyn_cast<ConstantInt>(BO->RHS);
6978       if (!CI)
6979         break;
6980 
6981       Type *OuterTy = BO->LHS->getType();
6982       uint64_t BitWidth = getTypeSizeInBits(OuterTy);
6983       // If the shift count is not less than the bitwidth, the result of
6984       // the shift is undefined. Don't try to analyze it, because the
6985       // resolution chosen here may differ from the resolution chosen in
6986       // other parts of the compiler.
6987       if (CI->getValue().uge(BitWidth))
6988         break;
6989 
6990       if (CI->isZero())
6991         return getSCEV(BO->LHS); // shift by zero --> noop
6992 
6993       uint64_t AShrAmt = CI->getZExtValue();
6994       Type *TruncTy = IntegerType::get(getContext(), BitWidth - AShrAmt);
6995 
6996       Operator *L = dyn_cast<Operator>(BO->LHS);
6997       if (L && L->getOpcode() == Instruction::Shl) {
6998         // X = Shl A, n
6999         // Y = AShr X, m
7000         // Both n and m are constant.
7001 
7002         const SCEV *ShlOp0SCEV = getSCEV(L->getOperand(0));
7003         if (L->getOperand(1) == BO->RHS)
7004           // For a two-shift sext-inreg, i.e. n = m,
7005           // use sext(trunc(x)) as the SCEV expression.
7006           return getSignExtendExpr(
7007               getTruncateExpr(ShlOp0SCEV, TruncTy), OuterTy);
7008 
7009         ConstantInt *ShlAmtCI = dyn_cast<ConstantInt>(L->getOperand(1));
7010         if (ShlAmtCI && ShlAmtCI->getValue().ult(BitWidth)) {
7011           uint64_t ShlAmt = ShlAmtCI->getZExtValue();
7012           if (ShlAmt > AShrAmt) {
7013             // When n > m, use sext(mul(trunc(x), 2^(n-m)))) as the SCEV
7014             // expression. We already checked that ShlAmt < BitWidth, so
7015             // the multiplier, 1 << (ShlAmt - AShrAmt), fits into TruncTy as
7016             // ShlAmt - AShrAmt < Amt.
7017             APInt Mul = APInt::getOneBitSet(BitWidth - AShrAmt,
7018                                             ShlAmt - AShrAmt);
7019             return getSignExtendExpr(
7020                 getMulExpr(getTruncateExpr(ShlOp0SCEV, TruncTy),
7021                 getConstant(Mul)), OuterTy);
7022           }
7023         }
7024       }
7025       break;
7026     }
7027     }
7028   }
7029 
7030   switch (U->getOpcode()) {
7031   case Instruction::Trunc:
7032     return getTruncateExpr(getSCEV(U->getOperand(0)), U->getType());
7033 
7034   case Instruction::ZExt:
7035     return getZeroExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7036 
7037   case Instruction::SExt:
7038     if (auto BO = MatchBinaryOp(U->getOperand(0), DT)) {
7039       // The NSW flag of a subtract does not always survive the conversion to
7040       // A + (-1)*B.  By pushing sign extension onto its operands we are much
7041       // more likely to preserve NSW and allow later AddRec optimisations.
7042       //
7043       // NOTE: This is effectively duplicating this logic from getSignExtend:
7044       //   sext((A + B + ...)<nsw>) --> (sext(A) + sext(B) + ...)<nsw>
7045       // but by that point the NSW information has potentially been lost.
7046       if (BO->Opcode == Instruction::Sub && BO->IsNSW) {
7047         Type *Ty = U->getType();
7048         auto *V1 = getSignExtendExpr(getSCEV(BO->LHS), Ty);
7049         auto *V2 = getSignExtendExpr(getSCEV(BO->RHS), Ty);
7050         return getMinusSCEV(V1, V2, SCEV::FlagNSW);
7051       }
7052     }
7053     return getSignExtendExpr(getSCEV(U->getOperand(0)), U->getType());
7054 
7055   case Instruction::BitCast:
7056     // BitCasts are no-op casts so we just eliminate the cast.
7057     if (isSCEVable(U->getType()) && isSCEVable(U->getOperand(0)->getType()))
7058       return getSCEV(U->getOperand(0));
7059     break;
7060 
7061   case Instruction::PtrToInt: {
7062     // Pointer to integer cast is straight-forward, so do model it.
7063     const SCEV *Op = getSCEV(U->getOperand(0));
7064     Type *DstIntTy = U->getType();
7065     // But only if effective SCEV (integer) type is wide enough to represent
7066     // all possible pointer values.
7067     const SCEV *IntOp = getPtrToIntExpr(Op, DstIntTy);
7068     if (isa<SCEVCouldNotCompute>(IntOp))
7069       return getUnknown(V);
7070     return IntOp;
7071   }
7072   case Instruction::IntToPtr:
7073     // Just don't deal with inttoptr casts.
7074     return getUnknown(V);
7075 
7076   case Instruction::SDiv:
7077     // If both operands are non-negative, this is just an udiv.
7078     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7079         isKnownNonNegative(getSCEV(U->getOperand(1))))
7080       return getUDivExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7081     break;
7082 
7083   case Instruction::SRem:
7084     // If both operands are non-negative, this is just an urem.
7085     if (isKnownNonNegative(getSCEV(U->getOperand(0))) &&
7086         isKnownNonNegative(getSCEV(U->getOperand(1))))
7087       return getURemExpr(getSCEV(U->getOperand(0)), getSCEV(U->getOperand(1)));
7088     break;
7089 
7090   case Instruction::GetElementPtr:
7091     return createNodeForGEP(cast<GEPOperator>(U));
7092 
7093   case Instruction::PHI:
7094     return createNodeForPHI(cast<PHINode>(U));
7095 
7096   case Instruction::Select:
7097     // U can also be a select constant expr, which let fall through.  Since
7098     // createNodeForSelect only works for a condition that is an `ICmpInst`, and
7099     // constant expressions cannot have instructions as operands, we'd have
7100     // returned getUnknown for a select constant expressions anyway.
7101     if (isa<Instruction>(U))
7102       return createNodeForSelectOrPHI(cast<Instruction>(U), U->getOperand(0),
7103                                       U->getOperand(1), U->getOperand(2));
7104     break;
7105 
7106   case Instruction::Call:
7107   case Instruction::Invoke:
7108     if (Value *RV = cast<CallBase>(U)->getReturnedArgOperand())
7109       return getSCEV(RV);
7110 
7111     if (auto *II = dyn_cast<IntrinsicInst>(U)) {
7112       switch (II->getIntrinsicID()) {
7113       case Intrinsic::abs:
7114         return getAbsExpr(
7115             getSCEV(II->getArgOperand(0)),
7116             /*IsNSW=*/cast<ConstantInt>(II->getArgOperand(1))->isOne());
7117       case Intrinsic::umax:
7118         return getUMaxExpr(getSCEV(II->getArgOperand(0)),
7119                            getSCEV(II->getArgOperand(1)));
7120       case Intrinsic::umin:
7121         return getUMinExpr(getSCEV(II->getArgOperand(0)),
7122                            getSCEV(II->getArgOperand(1)));
7123       case Intrinsic::smax:
7124         return getSMaxExpr(getSCEV(II->getArgOperand(0)),
7125                            getSCEV(II->getArgOperand(1)));
7126       case Intrinsic::smin:
7127         return getSMinExpr(getSCEV(II->getArgOperand(0)),
7128                            getSCEV(II->getArgOperand(1)));
7129       case Intrinsic::usub_sat: {
7130         const SCEV *X = getSCEV(II->getArgOperand(0));
7131         const SCEV *Y = getSCEV(II->getArgOperand(1));
7132         const SCEV *ClampedY = getUMinExpr(X, Y);
7133         return getMinusSCEV(X, ClampedY, SCEV::FlagNUW);
7134       }
7135       case Intrinsic::uadd_sat: {
7136         const SCEV *X = getSCEV(II->getArgOperand(0));
7137         const SCEV *Y = getSCEV(II->getArgOperand(1));
7138         const SCEV *ClampedX = getUMinExpr(X, getNotSCEV(Y));
7139         return getAddExpr(ClampedX, Y, SCEV::FlagNUW);
7140       }
7141       case Intrinsic::start_loop_iterations:
7142         // A start_loop_iterations is just equivalent to the first operand for
7143         // SCEV purposes.
7144         return getSCEV(II->getArgOperand(0));
7145       default:
7146         break;
7147       }
7148     }
7149     break;
7150   }
7151 
7152   return getUnknown(V);
7153 }
7154 
7155 //===----------------------------------------------------------------------===//
7156 //                   Iteration Count Computation Code
7157 //
7158 
7159 const SCEV *ScalarEvolution::getTripCountFromExitCount(const SCEV *ExitCount) {
7160   // Get the trip count from the BE count by adding 1.  Overflow, results
7161   // in zero which means "unknown".
7162   return getAddExpr(ExitCount, getOne(ExitCount->getType()));
7163 }
7164 
7165 static unsigned getConstantTripCount(const SCEVConstant *ExitCount) {
7166   if (!ExitCount)
7167     return 0;
7168 
7169   ConstantInt *ExitConst = ExitCount->getValue();
7170 
7171   // Guard against huge trip counts.
7172   if (ExitConst->getValue().getActiveBits() > 32)
7173     return 0;
7174 
7175   // In case of integer overflow, this returns 0, which is correct.
7176   return ((unsigned)ExitConst->getZExtValue()) + 1;
7177 }
7178 
7179 unsigned ScalarEvolution::getSmallConstantTripCount(const Loop *L) {
7180   auto *ExitCount = dyn_cast<SCEVConstant>(getBackedgeTakenCount(L, Exact));
7181   return getConstantTripCount(ExitCount);
7182 }
7183 
7184 unsigned
7185 ScalarEvolution::getSmallConstantTripCount(const Loop *L,
7186                                            const BasicBlock *ExitingBlock) {
7187   assert(ExitingBlock && "Must pass a non-null exiting block!");
7188   assert(L->isLoopExiting(ExitingBlock) &&
7189          "Exiting block must actually branch out of the loop!");
7190   const SCEVConstant *ExitCount =
7191       dyn_cast<SCEVConstant>(getExitCount(L, ExitingBlock));
7192   return getConstantTripCount(ExitCount);
7193 }
7194 
7195 unsigned ScalarEvolution::getSmallConstantMaxTripCount(const Loop *L) {
7196   const auto *MaxExitCount =
7197       dyn_cast<SCEVConstant>(getConstantMaxBackedgeTakenCount(L));
7198   return getConstantTripCount(MaxExitCount);
7199 }
7200 
7201 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L) {
7202   SmallVector<BasicBlock *, 8> ExitingBlocks;
7203   L->getExitingBlocks(ExitingBlocks);
7204 
7205   Optional<unsigned> Res = None;
7206   for (auto *ExitingBB : ExitingBlocks) {
7207     unsigned Multiple = getSmallConstantTripMultiple(L, ExitingBB);
7208     if (!Res)
7209       Res = Multiple;
7210     Res = (unsigned)GreatestCommonDivisor64(*Res, Multiple);
7211   }
7212   return Res.getValueOr(1);
7213 }
7214 
7215 unsigned ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7216                                                        const SCEV *ExitCount) {
7217   if (ExitCount == getCouldNotCompute())
7218     return 1;
7219 
7220   // Get the trip count
7221   const SCEV *TCExpr = getTripCountFromExitCount(ExitCount);
7222 
7223   const SCEVConstant *TC = dyn_cast<SCEVConstant>(TCExpr);
7224   if (!TC)
7225     // Attempt to factor more general cases. Returns the greatest power of
7226     // two divisor. If overflow happens, the trip count expression is still
7227     // divisible by the greatest power of 2 divisor returned.
7228     return 1U << std::min((uint32_t)31,
7229                           GetMinTrailingZeros(applyLoopGuards(TCExpr, L)));
7230 
7231   ConstantInt *Result = TC->getValue();
7232 
7233   // Guard against huge trip counts (this requires checking
7234   // for zero to handle the case where the trip count == -1 and the
7235   // addition wraps).
7236   if (!Result || Result->getValue().getActiveBits() > 32 ||
7237       Result->getValue().getActiveBits() == 0)
7238     return 1;
7239 
7240   return (unsigned)Result->getZExtValue();
7241 }
7242 
7243 /// Returns the largest constant divisor of the trip count of this loop as a
7244 /// normal unsigned value, if possible. This means that the actual trip count is
7245 /// always a multiple of the returned value (don't forget the trip count could
7246 /// very well be zero as well!).
7247 ///
7248 /// Returns 1 if the trip count is unknown or not guaranteed to be the
7249 /// multiple of a constant (which is also the case if the trip count is simply
7250 /// constant, use getSmallConstantTripCount for that case), Will also return 1
7251 /// if the trip count is very large (>= 2^32).
7252 ///
7253 /// As explained in the comments for getSmallConstantTripCount, this assumes
7254 /// that control exits the loop via ExitingBlock.
7255 unsigned
7256 ScalarEvolution::getSmallConstantTripMultiple(const Loop *L,
7257                                               const BasicBlock *ExitingBlock) {
7258   assert(ExitingBlock && "Must pass a non-null exiting block!");
7259   assert(L->isLoopExiting(ExitingBlock) &&
7260          "Exiting block must actually branch out of the loop!");
7261   const SCEV *ExitCount = getExitCount(L, ExitingBlock);
7262   return getSmallConstantTripMultiple(L, ExitCount);
7263 }
7264 
7265 const SCEV *ScalarEvolution::getExitCount(const Loop *L,
7266                                           const BasicBlock *ExitingBlock,
7267                                           ExitCountKind Kind) {
7268   switch (Kind) {
7269   case Exact:
7270   case SymbolicMaximum:
7271     return getBackedgeTakenInfo(L).getExact(ExitingBlock, this);
7272   case ConstantMaximum:
7273     return getBackedgeTakenInfo(L).getConstantMax(ExitingBlock, this);
7274   };
7275   llvm_unreachable("Invalid ExitCountKind!");
7276 }
7277 
7278 const SCEV *
7279 ScalarEvolution::getPredicatedBackedgeTakenCount(const Loop *L,
7280                                                  SCEVUnionPredicate &Preds) {
7281   return getPredicatedBackedgeTakenInfo(L).getExact(L, this, &Preds);
7282 }
7283 
7284 const SCEV *ScalarEvolution::getBackedgeTakenCount(const Loop *L,
7285                                                    ExitCountKind Kind) {
7286   switch (Kind) {
7287   case Exact:
7288     return getBackedgeTakenInfo(L).getExact(L, this);
7289   case ConstantMaximum:
7290     return getBackedgeTakenInfo(L).getConstantMax(this);
7291   case SymbolicMaximum:
7292     return getBackedgeTakenInfo(L).getSymbolicMax(L, this);
7293   };
7294   llvm_unreachable("Invalid ExitCountKind!");
7295 }
7296 
7297 bool ScalarEvolution::isBackedgeTakenCountMaxOrZero(const Loop *L) {
7298   return getBackedgeTakenInfo(L).isConstantMaxOrZero(this);
7299 }
7300 
7301 /// Push PHI nodes in the header of the given loop onto the given Worklist.
7302 static void
7303 PushLoopPHIs(const Loop *L, SmallVectorImpl<Instruction *> &Worklist) {
7304   BasicBlock *Header = L->getHeader();
7305 
7306   // Push all Loop-header PHIs onto the Worklist stack.
7307   for (PHINode &PN : Header->phis())
7308     Worklist.push_back(&PN);
7309 }
7310 
7311 const ScalarEvolution::BackedgeTakenInfo &
7312 ScalarEvolution::getPredicatedBackedgeTakenInfo(const Loop *L) {
7313   auto &BTI = getBackedgeTakenInfo(L);
7314   if (BTI.hasFullInfo())
7315     return BTI;
7316 
7317   auto Pair = PredicatedBackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7318 
7319   if (!Pair.second)
7320     return Pair.first->second;
7321 
7322   BackedgeTakenInfo Result =
7323       computeBackedgeTakenCount(L, /*AllowPredicates=*/true);
7324 
7325   return PredicatedBackedgeTakenCounts.find(L)->second = std::move(Result);
7326 }
7327 
7328 ScalarEvolution::BackedgeTakenInfo &
7329 ScalarEvolution::getBackedgeTakenInfo(const Loop *L) {
7330   // Initially insert an invalid entry for this loop. If the insertion
7331   // succeeds, proceed to actually compute a backedge-taken count and
7332   // update the value. The temporary CouldNotCompute value tells SCEV
7333   // code elsewhere that it shouldn't attempt to request a new
7334   // backedge-taken count, which could result in infinite recursion.
7335   std::pair<DenseMap<const Loop *, BackedgeTakenInfo>::iterator, bool> Pair =
7336       BackedgeTakenCounts.insert({L, BackedgeTakenInfo()});
7337   if (!Pair.second)
7338     return Pair.first->second;
7339 
7340   // computeBackedgeTakenCount may allocate memory for its result. Inserting it
7341   // into the BackedgeTakenCounts map transfers ownership. Otherwise, the result
7342   // must be cleared in this scope.
7343   BackedgeTakenInfo Result = computeBackedgeTakenCount(L);
7344 
7345   // In product build, there are no usage of statistic.
7346   (void)NumTripCountsComputed;
7347   (void)NumTripCountsNotComputed;
7348 #if LLVM_ENABLE_STATS || !defined(NDEBUG)
7349   const SCEV *BEExact = Result.getExact(L, this);
7350   if (BEExact != getCouldNotCompute()) {
7351     assert(isLoopInvariant(BEExact, L) &&
7352            isLoopInvariant(Result.getConstantMax(this), L) &&
7353            "Computed backedge-taken count isn't loop invariant for loop!");
7354     ++NumTripCountsComputed;
7355   } else if (Result.getConstantMax(this) == getCouldNotCompute() &&
7356              isa<PHINode>(L->getHeader()->begin())) {
7357     // Only count loops that have phi nodes as not being computable.
7358     ++NumTripCountsNotComputed;
7359   }
7360 #endif // LLVM_ENABLE_STATS || !defined(NDEBUG)
7361 
7362   // Now that we know more about the trip count for this loop, forget any
7363   // existing SCEV values for PHI nodes in this loop since they are only
7364   // conservative estimates made without the benefit of trip count
7365   // information. This is similar to the code in forgetLoop, except that
7366   // it handles SCEVUnknown PHI nodes specially.
7367   if (Result.hasAnyInfo()) {
7368     SmallVector<Instruction *, 16> Worklist;
7369     PushLoopPHIs(L, Worklist);
7370 
7371     SmallPtrSet<Instruction *, 8> Discovered;
7372     while (!Worklist.empty()) {
7373       Instruction *I = Worklist.pop_back_val();
7374 
7375       ValueExprMapType::iterator It =
7376         ValueExprMap.find_as(static_cast<Value *>(I));
7377       if (It != ValueExprMap.end()) {
7378         const SCEV *Old = It->second;
7379 
7380         // SCEVUnknown for a PHI either means that it has an unrecognized
7381         // structure, or it's a PHI that's in the progress of being computed
7382         // by createNodeForPHI.  In the former case, additional loop trip
7383         // count information isn't going to change anything. In the later
7384         // case, createNodeForPHI will perform the necessary updates on its
7385         // own when it gets to that point.
7386         if (!isa<PHINode>(I) || !isa<SCEVUnknown>(Old)) {
7387           eraseValueFromMap(It->first);
7388           forgetMemoizedResults(Old);
7389         }
7390         if (PHINode *PN = dyn_cast<PHINode>(I))
7391           ConstantEvolutionLoopExitValue.erase(PN);
7392       }
7393 
7394       // Since we don't need to invalidate anything for correctness and we're
7395       // only invalidating to make SCEV's results more precise, we get to stop
7396       // early to avoid invalidating too much.  This is especially important in
7397       // cases like:
7398       //
7399       //   %v = f(pn0, pn1) // pn0 and pn1 used through some other phi node
7400       // loop0:
7401       //   %pn0 = phi
7402       //   ...
7403       // loop1:
7404       //   %pn1 = phi
7405       //   ...
7406       //
7407       // where both loop0 and loop1's backedge taken count uses the SCEV
7408       // expression for %v.  If we don't have the early stop below then in cases
7409       // like the above, getBackedgeTakenInfo(loop1) will clear out the trip
7410       // count for loop0 and getBackedgeTakenInfo(loop0) will clear out the trip
7411       // count for loop1, effectively nullifying SCEV's trip count cache.
7412       for (auto *U : I->users())
7413         if (auto *I = dyn_cast<Instruction>(U)) {
7414           auto *LoopForUser = LI.getLoopFor(I->getParent());
7415           if (LoopForUser && L->contains(LoopForUser) &&
7416               Discovered.insert(I).second)
7417             Worklist.push_back(I);
7418         }
7419     }
7420   }
7421 
7422   // Re-lookup the insert position, since the call to
7423   // computeBackedgeTakenCount above could result in a
7424   // recusive call to getBackedgeTakenInfo (on a different
7425   // loop), which would invalidate the iterator computed
7426   // earlier.
7427   return BackedgeTakenCounts.find(L)->second = std::move(Result);
7428 }
7429 
7430 void ScalarEvolution::forgetAllLoops() {
7431   // This method is intended to forget all info about loops. It should
7432   // invalidate caches as if the following happened:
7433   // - The trip counts of all loops have changed arbitrarily
7434   // - Every llvm::Value has been updated in place to produce a different
7435   // result.
7436   BackedgeTakenCounts.clear();
7437   PredicatedBackedgeTakenCounts.clear();
7438   LoopPropertiesCache.clear();
7439   ConstantEvolutionLoopExitValue.clear();
7440   ValueExprMap.clear();
7441   ValuesAtScopes.clear();
7442   LoopDispositions.clear();
7443   BlockDispositions.clear();
7444   UnsignedRanges.clear();
7445   SignedRanges.clear();
7446   ExprValueMap.clear();
7447   HasRecMap.clear();
7448   MinTrailingZerosCache.clear();
7449   PredicatedSCEVRewrites.clear();
7450 }
7451 
7452 void ScalarEvolution::forgetLoop(const Loop *L) {
7453   SmallVector<const Loop *, 16> LoopWorklist(1, L);
7454   SmallVector<Instruction *, 32> Worklist;
7455   SmallPtrSet<Instruction *, 16> Visited;
7456 
7457   // Iterate over all the loops and sub-loops to drop SCEV information.
7458   while (!LoopWorklist.empty()) {
7459     auto *CurrL = LoopWorklist.pop_back_val();
7460 
7461     // Drop any stored trip count value.
7462     BackedgeTakenCounts.erase(CurrL);
7463     PredicatedBackedgeTakenCounts.erase(CurrL);
7464 
7465     // Drop information about predicated SCEV rewrites for this loop.
7466     for (auto I = PredicatedSCEVRewrites.begin();
7467          I != PredicatedSCEVRewrites.end();) {
7468       std::pair<const SCEV *, const Loop *> Entry = I->first;
7469       if (Entry.second == CurrL)
7470         PredicatedSCEVRewrites.erase(I++);
7471       else
7472         ++I;
7473     }
7474 
7475     auto LoopUsersItr = LoopUsers.find(CurrL);
7476     if (LoopUsersItr != LoopUsers.end()) {
7477       for (auto *S : LoopUsersItr->second)
7478         forgetMemoizedResults(S);
7479       LoopUsers.erase(LoopUsersItr);
7480     }
7481 
7482     // Drop information about expressions based on loop-header PHIs.
7483     PushLoopPHIs(CurrL, Worklist);
7484 
7485     while (!Worklist.empty()) {
7486       Instruction *I = Worklist.pop_back_val();
7487       if (!Visited.insert(I).second)
7488         continue;
7489 
7490       ValueExprMapType::iterator It =
7491           ValueExprMap.find_as(static_cast<Value *>(I));
7492       if (It != ValueExprMap.end()) {
7493         eraseValueFromMap(It->first);
7494         forgetMemoizedResults(It->second);
7495         if (PHINode *PN = dyn_cast<PHINode>(I))
7496           ConstantEvolutionLoopExitValue.erase(PN);
7497       }
7498 
7499       PushDefUseChildren(I, Worklist);
7500     }
7501 
7502     LoopPropertiesCache.erase(CurrL);
7503     // Forget all contained loops too, to avoid dangling entries in the
7504     // ValuesAtScopes map.
7505     LoopWorklist.append(CurrL->begin(), CurrL->end());
7506   }
7507 }
7508 
7509 void ScalarEvolution::forgetTopmostLoop(const Loop *L) {
7510   while (Loop *Parent = L->getParentLoop())
7511     L = Parent;
7512   forgetLoop(L);
7513 }
7514 
7515 void ScalarEvolution::forgetValue(Value *V) {
7516   Instruction *I = dyn_cast<Instruction>(V);
7517   if (!I) return;
7518 
7519   // Drop information about expressions based on loop-header PHIs.
7520   SmallVector<Instruction *, 16> Worklist;
7521   Worklist.push_back(I);
7522 
7523   SmallPtrSet<Instruction *, 8> Visited;
7524   while (!Worklist.empty()) {
7525     I = Worklist.pop_back_val();
7526     if (!Visited.insert(I).second)
7527       continue;
7528 
7529     ValueExprMapType::iterator It =
7530       ValueExprMap.find_as(static_cast<Value *>(I));
7531     if (It != ValueExprMap.end()) {
7532       eraseValueFromMap(It->first);
7533       forgetMemoizedResults(It->second);
7534       if (PHINode *PN = dyn_cast<PHINode>(I))
7535         ConstantEvolutionLoopExitValue.erase(PN);
7536     }
7537 
7538     PushDefUseChildren(I, Worklist);
7539   }
7540 }
7541 
7542 void ScalarEvolution::forgetLoopDispositions(const Loop *L) {
7543   LoopDispositions.clear();
7544 }
7545 
7546 /// Get the exact loop backedge taken count considering all loop exits. A
7547 /// computable result can only be returned for loops with all exiting blocks
7548 /// dominating the latch. howFarToZero assumes that the limit of each loop test
7549 /// is never skipped. This is a valid assumption as long as the loop exits via
7550 /// that test. For precise results, it is the caller's responsibility to specify
7551 /// the relevant loop exiting block using getExact(ExitingBlock, SE).
7552 const SCEV *
7553 ScalarEvolution::BackedgeTakenInfo::getExact(const Loop *L, ScalarEvolution *SE,
7554                                              SCEVUnionPredicate *Preds) const {
7555   // If any exits were not computable, the loop is not computable.
7556   if (!isComplete() || ExitNotTaken.empty())
7557     return SE->getCouldNotCompute();
7558 
7559   const BasicBlock *Latch = L->getLoopLatch();
7560   // All exiting blocks we have collected must dominate the only backedge.
7561   if (!Latch)
7562     return SE->getCouldNotCompute();
7563 
7564   // All exiting blocks we have gathered dominate loop's latch, so exact trip
7565   // count is simply a minimum out of all these calculated exit counts.
7566   SmallVector<const SCEV *, 2> Ops;
7567   for (auto &ENT : ExitNotTaken) {
7568     const SCEV *BECount = ENT.ExactNotTaken;
7569     assert(BECount != SE->getCouldNotCompute() && "Bad exit SCEV!");
7570     assert(SE->DT.dominates(ENT.ExitingBlock, Latch) &&
7571            "We should only have known counts for exiting blocks that dominate "
7572            "latch!");
7573 
7574     Ops.push_back(BECount);
7575 
7576     if (Preds && !ENT.hasAlwaysTruePredicate())
7577       Preds->add(ENT.Predicate.get());
7578 
7579     assert((Preds || ENT.hasAlwaysTruePredicate()) &&
7580            "Predicate should be always true!");
7581   }
7582 
7583   return SE->getUMinFromMismatchedTypes(Ops);
7584 }
7585 
7586 /// Get the exact not taken count for this loop exit.
7587 const SCEV *
7588 ScalarEvolution::BackedgeTakenInfo::getExact(const BasicBlock *ExitingBlock,
7589                                              ScalarEvolution *SE) const {
7590   for (auto &ENT : ExitNotTaken)
7591     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7592       return ENT.ExactNotTaken;
7593 
7594   return SE->getCouldNotCompute();
7595 }
7596 
7597 const SCEV *ScalarEvolution::BackedgeTakenInfo::getConstantMax(
7598     const BasicBlock *ExitingBlock, ScalarEvolution *SE) const {
7599   for (auto &ENT : ExitNotTaken)
7600     if (ENT.ExitingBlock == ExitingBlock && ENT.hasAlwaysTruePredicate())
7601       return ENT.MaxNotTaken;
7602 
7603   return SE->getCouldNotCompute();
7604 }
7605 
7606 /// getConstantMax - Get the constant max backedge taken count for the loop.
7607 const SCEV *
7608 ScalarEvolution::BackedgeTakenInfo::getConstantMax(ScalarEvolution *SE) const {
7609   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7610     return !ENT.hasAlwaysTruePredicate();
7611   };
7612 
7613   if (any_of(ExitNotTaken, PredicateNotAlwaysTrue) || !getConstantMax())
7614     return SE->getCouldNotCompute();
7615 
7616   assert((isa<SCEVCouldNotCompute>(getConstantMax()) ||
7617           isa<SCEVConstant>(getConstantMax())) &&
7618          "No point in having a non-constant max backedge taken count!");
7619   return getConstantMax();
7620 }
7621 
7622 const SCEV *
7623 ScalarEvolution::BackedgeTakenInfo::getSymbolicMax(const Loop *L,
7624                                                    ScalarEvolution *SE) {
7625   if (!SymbolicMax)
7626     SymbolicMax = SE->computeSymbolicMaxBackedgeTakenCount(L);
7627   return SymbolicMax;
7628 }
7629 
7630 bool ScalarEvolution::BackedgeTakenInfo::isConstantMaxOrZero(
7631     ScalarEvolution *SE) const {
7632   auto PredicateNotAlwaysTrue = [](const ExitNotTakenInfo &ENT) {
7633     return !ENT.hasAlwaysTruePredicate();
7634   };
7635   return MaxOrZero && !any_of(ExitNotTaken, PredicateNotAlwaysTrue);
7636 }
7637 
7638 bool ScalarEvolution::BackedgeTakenInfo::hasOperand(const SCEV *S) const {
7639   return Operands.contains(S);
7640 }
7641 
7642 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E)
7643     : ExitLimit(E, E, false, None) {
7644 }
7645 
7646 ScalarEvolution::ExitLimit::ExitLimit(
7647     const SCEV *E, const SCEV *M, bool MaxOrZero,
7648     ArrayRef<const SmallPtrSetImpl<const SCEVPredicate *> *> PredSetList)
7649     : ExactNotTaken(E), MaxNotTaken(M), MaxOrZero(MaxOrZero) {
7650   // If we prove the max count is zero, so is the symbolic bound.  This happens
7651   // in practice due to differences in a) how context sensitive we've chosen
7652   // to be and b) how we reason about bounds impied by UB.
7653   if (MaxNotTaken->isZero())
7654     ExactNotTaken = MaxNotTaken;
7655 
7656   assert((isa<SCEVCouldNotCompute>(ExactNotTaken) ||
7657           !isa<SCEVCouldNotCompute>(MaxNotTaken)) &&
7658          "Exact is not allowed to be less precise than Max");
7659   assert((isa<SCEVCouldNotCompute>(MaxNotTaken) ||
7660           isa<SCEVConstant>(MaxNotTaken)) &&
7661          "No point in having a non-constant max backedge taken count!");
7662   for (auto *PredSet : PredSetList)
7663     for (auto *P : *PredSet)
7664       addPredicate(P);
7665   assert((isa<SCEVCouldNotCompute>(E) || !E->getType()->isPointerTy()) &&
7666          "Backedge count should be int");
7667   assert((isa<SCEVCouldNotCompute>(M) || !M->getType()->isPointerTy()) &&
7668          "Max backedge count should be int");
7669 }
7670 
7671 ScalarEvolution::ExitLimit::ExitLimit(
7672     const SCEV *E, const SCEV *M, bool MaxOrZero,
7673     const SmallPtrSetImpl<const SCEVPredicate *> &PredSet)
7674     : ExitLimit(E, M, MaxOrZero, {&PredSet}) {
7675 }
7676 
7677 ScalarEvolution::ExitLimit::ExitLimit(const SCEV *E, const SCEV *M,
7678                                       bool MaxOrZero)
7679     : ExitLimit(E, M, MaxOrZero, None) {
7680 }
7681 
7682 class SCEVRecordOperands {
7683   SmallPtrSetImpl<const SCEV *> &Operands;
7684 
7685 public:
7686   SCEVRecordOperands(SmallPtrSetImpl<const SCEV *> &Operands)
7687     : Operands(Operands) {}
7688   bool follow(const SCEV *S) {
7689     Operands.insert(S);
7690     return true;
7691   }
7692   bool isDone() { return false; }
7693 };
7694 
7695 /// Allocate memory for BackedgeTakenInfo and copy the not-taken count of each
7696 /// computable exit into a persistent ExitNotTakenInfo array.
7697 ScalarEvolution::BackedgeTakenInfo::BackedgeTakenInfo(
7698     ArrayRef<ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo> ExitCounts,
7699     bool IsComplete, const SCEV *ConstantMax, bool MaxOrZero)
7700     : ConstantMax(ConstantMax), IsComplete(IsComplete), MaxOrZero(MaxOrZero) {
7701   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7702 
7703   ExitNotTaken.reserve(ExitCounts.size());
7704   std::transform(
7705       ExitCounts.begin(), ExitCounts.end(), std::back_inserter(ExitNotTaken),
7706       [&](const EdgeExitInfo &EEI) {
7707         BasicBlock *ExitBB = EEI.first;
7708         const ExitLimit &EL = EEI.second;
7709         if (EL.Predicates.empty())
7710           return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7711                                   nullptr);
7712 
7713         std::unique_ptr<SCEVUnionPredicate> Predicate(new SCEVUnionPredicate);
7714         for (auto *Pred : EL.Predicates)
7715           Predicate->add(Pred);
7716 
7717         return ExitNotTakenInfo(ExitBB, EL.ExactNotTaken, EL.MaxNotTaken,
7718                                 std::move(Predicate));
7719       });
7720   assert((isa<SCEVCouldNotCompute>(ConstantMax) ||
7721           isa<SCEVConstant>(ConstantMax)) &&
7722          "No point in having a non-constant max backedge taken count!");
7723 
7724   SCEVRecordOperands RecordOperands(Operands);
7725   SCEVTraversal<SCEVRecordOperands> ST(RecordOperands);
7726   if (!isa<SCEVCouldNotCompute>(ConstantMax))
7727     ST.visitAll(ConstantMax);
7728   for (auto &ENT : ExitNotTaken)
7729     if (!isa<SCEVCouldNotCompute>(ENT.ExactNotTaken))
7730       ST.visitAll(ENT.ExactNotTaken);
7731 }
7732 
7733 /// Compute the number of times the backedge of the specified loop will execute.
7734 ScalarEvolution::BackedgeTakenInfo
7735 ScalarEvolution::computeBackedgeTakenCount(const Loop *L,
7736                                            bool AllowPredicates) {
7737   SmallVector<BasicBlock *, 8> ExitingBlocks;
7738   L->getExitingBlocks(ExitingBlocks);
7739 
7740   using EdgeExitInfo = ScalarEvolution::BackedgeTakenInfo::EdgeExitInfo;
7741 
7742   SmallVector<EdgeExitInfo, 4> ExitCounts;
7743   bool CouldComputeBECount = true;
7744   BasicBlock *Latch = L->getLoopLatch(); // may be NULL.
7745   const SCEV *MustExitMaxBECount = nullptr;
7746   const SCEV *MayExitMaxBECount = nullptr;
7747   bool MustExitMaxOrZero = false;
7748 
7749   // Compute the ExitLimit for each loop exit. Use this to populate ExitCounts
7750   // and compute maxBECount.
7751   // Do a union of all the predicates here.
7752   for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) {
7753     BasicBlock *ExitBB = ExitingBlocks[i];
7754 
7755     // We canonicalize untaken exits to br (constant), ignore them so that
7756     // proving an exit untaken doesn't negatively impact our ability to reason
7757     // about the loop as whole.
7758     if (auto *BI = dyn_cast<BranchInst>(ExitBB->getTerminator()))
7759       if (auto *CI = dyn_cast<ConstantInt>(BI->getCondition())) {
7760         bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7761         if ((ExitIfTrue && CI->isZero()) || (!ExitIfTrue && CI->isOne()))
7762           continue;
7763       }
7764 
7765     ExitLimit EL = computeExitLimit(L, ExitBB, AllowPredicates);
7766 
7767     assert((AllowPredicates || EL.Predicates.empty()) &&
7768            "Predicated exit limit when predicates are not allowed!");
7769 
7770     // 1. For each exit that can be computed, add an entry to ExitCounts.
7771     // CouldComputeBECount is true only if all exits can be computed.
7772     if (EL.ExactNotTaken == getCouldNotCompute())
7773       // We couldn't compute an exact value for this exit, so
7774       // we won't be able to compute an exact value for the loop.
7775       CouldComputeBECount = false;
7776     else
7777       ExitCounts.emplace_back(ExitBB, EL);
7778 
7779     // 2. Derive the loop's MaxBECount from each exit's max number of
7780     // non-exiting iterations. Partition the loop exits into two kinds:
7781     // LoopMustExits and LoopMayExits.
7782     //
7783     // If the exit dominates the loop latch, it is a LoopMustExit otherwise it
7784     // is a LoopMayExit.  If any computable LoopMustExit is found, then
7785     // MaxBECount is the minimum EL.MaxNotTaken of computable
7786     // LoopMustExits. Otherwise, MaxBECount is conservatively the maximum
7787     // EL.MaxNotTaken, where CouldNotCompute is considered greater than any
7788     // computable EL.MaxNotTaken.
7789     if (EL.MaxNotTaken != getCouldNotCompute() && Latch &&
7790         DT.dominates(ExitBB, Latch)) {
7791       if (!MustExitMaxBECount) {
7792         MustExitMaxBECount = EL.MaxNotTaken;
7793         MustExitMaxOrZero = EL.MaxOrZero;
7794       } else {
7795         MustExitMaxBECount =
7796             getUMinFromMismatchedTypes(MustExitMaxBECount, EL.MaxNotTaken);
7797       }
7798     } else if (MayExitMaxBECount != getCouldNotCompute()) {
7799       if (!MayExitMaxBECount || EL.MaxNotTaken == getCouldNotCompute())
7800         MayExitMaxBECount = EL.MaxNotTaken;
7801       else {
7802         MayExitMaxBECount =
7803             getUMaxFromMismatchedTypes(MayExitMaxBECount, EL.MaxNotTaken);
7804       }
7805     }
7806   }
7807   const SCEV *MaxBECount = MustExitMaxBECount ? MustExitMaxBECount :
7808     (MayExitMaxBECount ? MayExitMaxBECount : getCouldNotCompute());
7809   // The loop backedge will be taken the maximum or zero times if there's
7810   // a single exit that must be taken the maximum or zero times.
7811   bool MaxOrZero = (MustExitMaxOrZero && ExitingBlocks.size() == 1);
7812   return BackedgeTakenInfo(std::move(ExitCounts), CouldComputeBECount,
7813                            MaxBECount, MaxOrZero);
7814 }
7815 
7816 ScalarEvolution::ExitLimit
7817 ScalarEvolution::computeExitLimit(const Loop *L, BasicBlock *ExitingBlock,
7818                                       bool AllowPredicates) {
7819   assert(L->contains(ExitingBlock) && "Exit count for non-loop block?");
7820   // If our exiting block does not dominate the latch, then its connection with
7821   // loop's exit limit may be far from trivial.
7822   const BasicBlock *Latch = L->getLoopLatch();
7823   if (!Latch || !DT.dominates(ExitingBlock, Latch))
7824     return getCouldNotCompute();
7825 
7826   bool IsOnlyExit = (L->getExitingBlock() != nullptr);
7827   Instruction *Term = ExitingBlock->getTerminator();
7828   if (BranchInst *BI = dyn_cast<BranchInst>(Term)) {
7829     assert(BI->isConditional() && "If unconditional, it can't be in loop!");
7830     bool ExitIfTrue = !L->contains(BI->getSuccessor(0));
7831     assert(ExitIfTrue == L->contains(BI->getSuccessor(1)) &&
7832            "It should have one successor in loop and one exit block!");
7833     // Proceed to the next level to examine the exit condition expression.
7834     return computeExitLimitFromCond(
7835         L, BI->getCondition(), ExitIfTrue,
7836         /*ControlsExit=*/IsOnlyExit, AllowPredicates);
7837   }
7838 
7839   if (SwitchInst *SI = dyn_cast<SwitchInst>(Term)) {
7840     // For switch, make sure that there is a single exit from the loop.
7841     BasicBlock *Exit = nullptr;
7842     for (auto *SBB : successors(ExitingBlock))
7843       if (!L->contains(SBB)) {
7844         if (Exit) // Multiple exit successors.
7845           return getCouldNotCompute();
7846         Exit = SBB;
7847       }
7848     assert(Exit && "Exiting block must have at least one exit");
7849     return computeExitLimitFromSingleExitSwitch(L, SI, Exit,
7850                                                 /*ControlsExit=*/IsOnlyExit);
7851   }
7852 
7853   return getCouldNotCompute();
7854 }
7855 
7856 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCond(
7857     const Loop *L, Value *ExitCond, bool ExitIfTrue,
7858     bool ControlsExit, bool AllowPredicates) {
7859   ScalarEvolution::ExitLimitCacheTy Cache(L, ExitIfTrue, AllowPredicates);
7860   return computeExitLimitFromCondCached(Cache, L, ExitCond, ExitIfTrue,
7861                                         ControlsExit, AllowPredicates);
7862 }
7863 
7864 Optional<ScalarEvolution::ExitLimit>
7865 ScalarEvolution::ExitLimitCache::find(const Loop *L, Value *ExitCond,
7866                                       bool ExitIfTrue, bool ControlsExit,
7867                                       bool AllowPredicates) {
7868   (void)this->L;
7869   (void)this->ExitIfTrue;
7870   (void)this->AllowPredicates;
7871 
7872   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7873          this->AllowPredicates == AllowPredicates &&
7874          "Variance in assumed invariant key components!");
7875   auto Itr = TripCountMap.find({ExitCond, ControlsExit});
7876   if (Itr == TripCountMap.end())
7877     return None;
7878   return Itr->second;
7879 }
7880 
7881 void ScalarEvolution::ExitLimitCache::insert(const Loop *L, Value *ExitCond,
7882                                              bool ExitIfTrue,
7883                                              bool ControlsExit,
7884                                              bool AllowPredicates,
7885                                              const ExitLimit &EL) {
7886   assert(this->L == L && this->ExitIfTrue == ExitIfTrue &&
7887          this->AllowPredicates == AllowPredicates &&
7888          "Variance in assumed invariant key components!");
7889 
7890   auto InsertResult = TripCountMap.insert({{ExitCond, ControlsExit}, EL});
7891   assert(InsertResult.second && "Expected successful insertion!");
7892   (void)InsertResult;
7893   (void)ExitIfTrue;
7894 }
7895 
7896 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondCached(
7897     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7898     bool ControlsExit, bool AllowPredicates) {
7899 
7900   if (auto MaybeEL =
7901           Cache.find(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7902     return *MaybeEL;
7903 
7904   ExitLimit EL = computeExitLimitFromCondImpl(Cache, L, ExitCond, ExitIfTrue,
7905                                               ControlsExit, AllowPredicates);
7906   Cache.insert(L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates, EL);
7907   return EL;
7908 }
7909 
7910 ScalarEvolution::ExitLimit ScalarEvolution::computeExitLimitFromCondImpl(
7911     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7912     bool ControlsExit, bool AllowPredicates) {
7913   // Handle BinOp conditions (And, Or).
7914   if (auto LimitFromBinOp = computeExitLimitFromCondFromBinOp(
7915           Cache, L, ExitCond, ExitIfTrue, ControlsExit, AllowPredicates))
7916     return *LimitFromBinOp;
7917 
7918   // With an icmp, it may be feasible to compute an exact backedge-taken count.
7919   // Proceed to the next level to examine the icmp.
7920   if (ICmpInst *ExitCondICmp = dyn_cast<ICmpInst>(ExitCond)) {
7921     ExitLimit EL =
7922         computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit);
7923     if (EL.hasFullInfo() || !AllowPredicates)
7924       return EL;
7925 
7926     // Try again, but use SCEV predicates this time.
7927     return computeExitLimitFromICmp(L, ExitCondICmp, ExitIfTrue, ControlsExit,
7928                                     /*AllowPredicates=*/true);
7929   }
7930 
7931   // Check for a constant condition. These are normally stripped out by
7932   // SimplifyCFG, but ScalarEvolution may be used by a pass which wishes to
7933   // preserve the CFG and is temporarily leaving constant conditions
7934   // in place.
7935   if (ConstantInt *CI = dyn_cast<ConstantInt>(ExitCond)) {
7936     if (ExitIfTrue == !CI->getZExtValue())
7937       // The backedge is always taken.
7938       return getCouldNotCompute();
7939     else
7940       // The backedge is never taken.
7941       return getZero(CI->getType());
7942   }
7943 
7944   // If it's not an integer or pointer comparison then compute it the hard way.
7945   return computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
7946 }
7947 
7948 Optional<ScalarEvolution::ExitLimit>
7949 ScalarEvolution::computeExitLimitFromCondFromBinOp(
7950     ExitLimitCacheTy &Cache, const Loop *L, Value *ExitCond, bool ExitIfTrue,
7951     bool ControlsExit, bool AllowPredicates) {
7952   // Check if the controlling expression for this loop is an And or Or.
7953   Value *Op0, *Op1;
7954   bool IsAnd = false;
7955   if (match(ExitCond, m_LogicalAnd(m_Value(Op0), m_Value(Op1))))
7956     IsAnd = true;
7957   else if (match(ExitCond, m_LogicalOr(m_Value(Op0), m_Value(Op1))))
7958     IsAnd = false;
7959   else
7960     return None;
7961 
7962   // EitherMayExit is true in these two cases:
7963   //   br (and Op0 Op1), loop, exit
7964   //   br (or  Op0 Op1), exit, loop
7965   bool EitherMayExit = IsAnd ^ ExitIfTrue;
7966   ExitLimit EL0 = computeExitLimitFromCondCached(Cache, L, Op0, ExitIfTrue,
7967                                                  ControlsExit && !EitherMayExit,
7968                                                  AllowPredicates);
7969   ExitLimit EL1 = computeExitLimitFromCondCached(Cache, L, Op1, ExitIfTrue,
7970                                                  ControlsExit && !EitherMayExit,
7971                                                  AllowPredicates);
7972 
7973   // Be robust against unsimplified IR for the form "op i1 X, NeutralElement"
7974   const Constant *NeutralElement = ConstantInt::get(ExitCond->getType(), IsAnd);
7975   if (isa<ConstantInt>(Op1))
7976     return Op1 == NeutralElement ? EL0 : EL1;
7977   if (isa<ConstantInt>(Op0))
7978     return Op0 == NeutralElement ? EL1 : EL0;
7979 
7980   const SCEV *BECount = getCouldNotCompute();
7981   const SCEV *MaxBECount = getCouldNotCompute();
7982   if (EitherMayExit) {
7983     // Both conditions must be same for the loop to continue executing.
7984     // Choose the less conservative count.
7985     // If ExitCond is a short-circuit form (select), using
7986     // umin(EL0.ExactNotTaken, EL1.ExactNotTaken) is unsafe in general.
7987     // To see the detailed examples, please see
7988     // test/Analysis/ScalarEvolution/exit-count-select.ll
7989     bool PoisonSafe = isa<BinaryOperator>(ExitCond);
7990     if (!PoisonSafe)
7991       // Even if ExitCond is select, we can safely derive BECount using both
7992       // EL0 and EL1 in these cases:
7993       // (1) EL0.ExactNotTaken is non-zero
7994       // (2) EL1.ExactNotTaken is non-poison
7995       // (3) EL0.ExactNotTaken is zero (BECount should be simply zero and
7996       //     it cannot be umin(0, ..))
7997       // The PoisonSafe assignment below is simplified and the assertion after
7998       // BECount calculation fully guarantees the condition (3).
7999       PoisonSafe = isa<SCEVConstant>(EL0.ExactNotTaken) ||
8000                    isa<SCEVConstant>(EL1.ExactNotTaken);
8001     if (EL0.ExactNotTaken != getCouldNotCompute() &&
8002         EL1.ExactNotTaken != getCouldNotCompute() && PoisonSafe) {
8003       BECount =
8004           getUMinFromMismatchedTypes(EL0.ExactNotTaken, EL1.ExactNotTaken);
8005 
8006       // If EL0.ExactNotTaken was zero and ExitCond was a short-circuit form,
8007       // it should have been simplified to zero (see the condition (3) above)
8008       assert(!isa<BinaryOperator>(ExitCond) || !EL0.ExactNotTaken->isZero() ||
8009              BECount->isZero());
8010     }
8011     if (EL0.MaxNotTaken == getCouldNotCompute())
8012       MaxBECount = EL1.MaxNotTaken;
8013     else if (EL1.MaxNotTaken == getCouldNotCompute())
8014       MaxBECount = EL0.MaxNotTaken;
8015     else
8016       MaxBECount = getUMinFromMismatchedTypes(EL0.MaxNotTaken, EL1.MaxNotTaken);
8017   } else {
8018     // Both conditions must be same at the same time for the loop to exit.
8019     // For now, be conservative.
8020     if (EL0.ExactNotTaken == EL1.ExactNotTaken)
8021       BECount = EL0.ExactNotTaken;
8022   }
8023 
8024   // There are cases (e.g. PR26207) where computeExitLimitFromCond is able
8025   // to be more aggressive when computing BECount than when computing
8026   // MaxBECount.  In these cases it is possible for EL0.ExactNotTaken and
8027   // EL1.ExactNotTaken to match, but for EL0.MaxNotTaken and EL1.MaxNotTaken
8028   // to not.
8029   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
8030       !isa<SCEVCouldNotCompute>(BECount))
8031     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
8032 
8033   return ExitLimit(BECount, MaxBECount, false,
8034                    { &EL0.Predicates, &EL1.Predicates });
8035 }
8036 
8037 ScalarEvolution::ExitLimit
8038 ScalarEvolution::computeExitLimitFromICmp(const Loop *L,
8039                                           ICmpInst *ExitCond,
8040                                           bool ExitIfTrue,
8041                                           bool ControlsExit,
8042                                           bool AllowPredicates) {
8043   // If the condition was exit on true, convert the condition to exit on false
8044   ICmpInst::Predicate Pred;
8045   if (!ExitIfTrue)
8046     Pred = ExitCond->getPredicate();
8047   else
8048     Pred = ExitCond->getInversePredicate();
8049   const ICmpInst::Predicate OriginalPred = Pred;
8050 
8051   // Handle common loops like: for (X = "string"; *X; ++X)
8052   if (LoadInst *LI = dyn_cast<LoadInst>(ExitCond->getOperand(0)))
8053     if (Constant *RHS = dyn_cast<Constant>(ExitCond->getOperand(1))) {
8054       ExitLimit ItCnt =
8055         computeLoadConstantCompareExitLimit(LI, RHS, L, Pred);
8056       if (ItCnt.hasAnyInfo())
8057         return ItCnt;
8058     }
8059 
8060   const SCEV *LHS = getSCEV(ExitCond->getOperand(0));
8061   const SCEV *RHS = getSCEV(ExitCond->getOperand(1));
8062 
8063   // Try to evaluate any dependencies out of the loop.
8064   LHS = getSCEVAtScope(LHS, L);
8065   RHS = getSCEVAtScope(RHS, L);
8066 
8067   // At this point, we would like to compute how many iterations of the
8068   // loop the predicate will return true for these inputs.
8069   if (isLoopInvariant(LHS, L) && !isLoopInvariant(RHS, L)) {
8070     // If there is a loop-invariant, force it into the RHS.
8071     std::swap(LHS, RHS);
8072     Pred = ICmpInst::getSwappedPredicate(Pred);
8073   }
8074 
8075   // Simplify the operands before analyzing them.
8076   (void)SimplifyICmpOperands(Pred, LHS, RHS);
8077 
8078   // If we have a comparison of a chrec against a constant, try to use value
8079   // ranges to answer this query.
8080   if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS))
8081     if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(LHS))
8082       if (AddRec->getLoop() == L) {
8083         // Form the constant range.
8084         ConstantRange CompRange =
8085             ConstantRange::makeExactICmpRegion(Pred, RHSC->getAPInt());
8086 
8087         const SCEV *Ret = AddRec->getNumIterationsInRange(CompRange, *this);
8088         if (!isa<SCEVCouldNotCompute>(Ret)) return Ret;
8089       }
8090 
8091   switch (Pred) {
8092   case ICmpInst::ICMP_NE: {                     // while (X != Y)
8093     // Convert to: while (X-Y != 0)
8094     if (LHS->getType()->isPointerTy()) {
8095       LHS = getLosslessPtrToIntExpr(LHS);
8096       if (isa<SCEVCouldNotCompute>(LHS))
8097         return LHS;
8098     }
8099     if (RHS->getType()->isPointerTy()) {
8100       RHS = getLosslessPtrToIntExpr(RHS);
8101       if (isa<SCEVCouldNotCompute>(RHS))
8102         return RHS;
8103     }
8104     ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit,
8105                                 AllowPredicates);
8106     if (EL.hasAnyInfo()) return EL;
8107     break;
8108   }
8109   case ICmpInst::ICMP_EQ: {                     // while (X == Y)
8110     // Convert to: while (X-Y == 0)
8111     if (LHS->getType()->isPointerTy()) {
8112       LHS = getLosslessPtrToIntExpr(LHS);
8113       if (isa<SCEVCouldNotCompute>(LHS))
8114         return LHS;
8115     }
8116     if (RHS->getType()->isPointerTy()) {
8117       RHS = getLosslessPtrToIntExpr(RHS);
8118       if (isa<SCEVCouldNotCompute>(RHS))
8119         return RHS;
8120     }
8121     ExitLimit EL = howFarToNonZero(getMinusSCEV(LHS, RHS), L);
8122     if (EL.hasAnyInfo()) return EL;
8123     break;
8124   }
8125   case ICmpInst::ICMP_SLT:
8126   case ICmpInst::ICMP_ULT: {                    // while (X < Y)
8127     bool IsSigned = Pred == ICmpInst::ICMP_SLT;
8128     ExitLimit EL = howManyLessThans(LHS, RHS, L, IsSigned, ControlsExit,
8129                                     AllowPredicates);
8130     if (EL.hasAnyInfo()) return EL;
8131     break;
8132   }
8133   case ICmpInst::ICMP_SGT:
8134   case ICmpInst::ICMP_UGT: {                    // while (X > Y)
8135     bool IsSigned = Pred == ICmpInst::ICMP_SGT;
8136     ExitLimit EL =
8137         howManyGreaterThans(LHS, RHS, L, IsSigned, ControlsExit,
8138                             AllowPredicates);
8139     if (EL.hasAnyInfo()) return EL;
8140     break;
8141   }
8142   default:
8143     break;
8144   }
8145 
8146   auto *ExhaustiveCount =
8147       computeExitCountExhaustively(L, ExitCond, ExitIfTrue);
8148 
8149   if (!isa<SCEVCouldNotCompute>(ExhaustiveCount))
8150     return ExhaustiveCount;
8151 
8152   return computeShiftCompareExitLimit(ExitCond->getOperand(0),
8153                                       ExitCond->getOperand(1), L, OriginalPred);
8154 }
8155 
8156 ScalarEvolution::ExitLimit
8157 ScalarEvolution::computeExitLimitFromSingleExitSwitch(const Loop *L,
8158                                                       SwitchInst *Switch,
8159                                                       BasicBlock *ExitingBlock,
8160                                                       bool ControlsExit) {
8161   assert(!L->contains(ExitingBlock) && "Not an exiting block!");
8162 
8163   // Give up if the exit is the default dest of a switch.
8164   if (Switch->getDefaultDest() == ExitingBlock)
8165     return getCouldNotCompute();
8166 
8167   assert(L->contains(Switch->getDefaultDest()) &&
8168          "Default case must not exit the loop!");
8169   const SCEV *LHS = getSCEVAtScope(Switch->getCondition(), L);
8170   const SCEV *RHS = getConstant(Switch->findCaseDest(ExitingBlock));
8171 
8172   // while (X != Y) --> while (X-Y != 0)
8173   ExitLimit EL = howFarToZero(getMinusSCEV(LHS, RHS), L, ControlsExit);
8174   if (EL.hasAnyInfo())
8175     return EL;
8176 
8177   return getCouldNotCompute();
8178 }
8179 
8180 static ConstantInt *
8181 EvaluateConstantChrecAtConstant(const SCEVAddRecExpr *AddRec, ConstantInt *C,
8182                                 ScalarEvolution &SE) {
8183   const SCEV *InVal = SE.getConstant(C);
8184   const SCEV *Val = AddRec->evaluateAtIteration(InVal, SE);
8185   assert(isa<SCEVConstant>(Val) &&
8186          "Evaluation of SCEV at constant didn't fold correctly?");
8187   return cast<SCEVConstant>(Val)->getValue();
8188 }
8189 
8190 /// Given an exit condition of 'icmp op load X, cst', try to see if we can
8191 /// compute the backedge execution count.
8192 ScalarEvolution::ExitLimit
8193 ScalarEvolution::computeLoadConstantCompareExitLimit(
8194   LoadInst *LI,
8195   Constant *RHS,
8196   const Loop *L,
8197   ICmpInst::Predicate predicate) {
8198   if (LI->isVolatile()) return getCouldNotCompute();
8199 
8200   // Check to see if the loaded pointer is a getelementptr of a global.
8201   // TODO: Use SCEV instead of manually grubbing with GEPs.
8202   GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0));
8203   if (!GEP) return getCouldNotCompute();
8204 
8205   // Make sure that it is really a constant global we are gepping, with an
8206   // initializer, and make sure the first IDX is really 0.
8207   GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
8208   if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer() ||
8209       GEP->getNumOperands() < 3 || !isa<Constant>(GEP->getOperand(1)) ||
8210       !cast<Constant>(GEP->getOperand(1))->isNullValue())
8211     return getCouldNotCompute();
8212 
8213   // Okay, we allow one non-constant index into the GEP instruction.
8214   Value *VarIdx = nullptr;
8215   std::vector<Constant*> Indexes;
8216   unsigned VarIdxNum = 0;
8217   for (unsigned i = 2, e = GEP->getNumOperands(); i != e; ++i)
8218     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
8219       Indexes.push_back(CI);
8220     } else if (!isa<ConstantInt>(GEP->getOperand(i))) {
8221       if (VarIdx) return getCouldNotCompute();  // Multiple non-constant idx's.
8222       VarIdx = GEP->getOperand(i);
8223       VarIdxNum = i-2;
8224       Indexes.push_back(nullptr);
8225     }
8226 
8227   // Loop-invariant loads may be a byproduct of loop optimization. Skip them.
8228   if (!VarIdx)
8229     return getCouldNotCompute();
8230 
8231   // Okay, we know we have a (load (gep GV, 0, X)) comparison with a constant.
8232   // Check to see if X is a loop variant variable value now.
8233   const SCEV *Idx = getSCEV(VarIdx);
8234   Idx = getSCEVAtScope(Idx, L);
8235 
8236   // We can only recognize very limited forms of loop index expressions, in
8237   // particular, only affine AddRec's like {C1,+,C2}<L>.
8238   const SCEVAddRecExpr *IdxExpr = dyn_cast<SCEVAddRecExpr>(Idx);
8239   if (!IdxExpr || IdxExpr->getLoop() != L || !IdxExpr->isAffine() ||
8240       isLoopInvariant(IdxExpr, L) ||
8241       !isa<SCEVConstant>(IdxExpr->getOperand(0)) ||
8242       !isa<SCEVConstant>(IdxExpr->getOperand(1)))
8243     return getCouldNotCompute();
8244 
8245   unsigned MaxSteps = MaxBruteForceIterations;
8246   for (unsigned IterationNum = 0; IterationNum != MaxSteps; ++IterationNum) {
8247     ConstantInt *ItCst = ConstantInt::get(
8248                            cast<IntegerType>(IdxExpr->getType()), IterationNum);
8249     ConstantInt *Val = EvaluateConstantChrecAtConstant(IdxExpr, ItCst, *this);
8250 
8251     // Form the GEP offset.
8252     Indexes[VarIdxNum] = Val;
8253 
8254     Constant *Result = ConstantFoldLoadThroughGEPIndices(GV->getInitializer(),
8255                                                          Indexes);
8256     if (!Result) break;  // Cannot compute!
8257 
8258     // Evaluate the condition for this iteration.
8259     Result = ConstantExpr::getICmp(predicate, Result, RHS);
8260     if (!isa<ConstantInt>(Result)) break;  // Couldn't decide for sure
8261     if (cast<ConstantInt>(Result)->getValue().isMinValue()) {
8262       ++NumArrayLenItCounts;
8263       return getConstant(ItCst);   // Found terminating iteration!
8264     }
8265   }
8266   return getCouldNotCompute();
8267 }
8268 
8269 ScalarEvolution::ExitLimit ScalarEvolution::computeShiftCompareExitLimit(
8270     Value *LHS, Value *RHSV, const Loop *L, ICmpInst::Predicate Pred) {
8271   ConstantInt *RHS = dyn_cast<ConstantInt>(RHSV);
8272   if (!RHS)
8273     return getCouldNotCompute();
8274 
8275   const BasicBlock *Latch = L->getLoopLatch();
8276   if (!Latch)
8277     return getCouldNotCompute();
8278 
8279   const BasicBlock *Predecessor = L->getLoopPredecessor();
8280   if (!Predecessor)
8281     return getCouldNotCompute();
8282 
8283   // Return true if V is of the form "LHS `shift_op` <positive constant>".
8284   // Return LHS in OutLHS and shift_opt in OutOpCode.
8285   auto MatchPositiveShift =
8286       [](Value *V, Value *&OutLHS, Instruction::BinaryOps &OutOpCode) {
8287 
8288     using namespace PatternMatch;
8289 
8290     ConstantInt *ShiftAmt;
8291     if (match(V, m_LShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8292       OutOpCode = Instruction::LShr;
8293     else if (match(V, m_AShr(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8294       OutOpCode = Instruction::AShr;
8295     else if (match(V, m_Shl(m_Value(OutLHS), m_ConstantInt(ShiftAmt))))
8296       OutOpCode = Instruction::Shl;
8297     else
8298       return false;
8299 
8300     return ShiftAmt->getValue().isStrictlyPositive();
8301   };
8302 
8303   // Recognize a "shift recurrence" either of the form %iv or of %iv.shifted in
8304   //
8305   // loop:
8306   //   %iv = phi i32 [ %iv.shifted, %loop ], [ %val, %preheader ]
8307   //   %iv.shifted = lshr i32 %iv, <positive constant>
8308   //
8309   // Return true on a successful match.  Return the corresponding PHI node (%iv
8310   // above) in PNOut and the opcode of the shift operation in OpCodeOut.
8311   auto MatchShiftRecurrence =
8312       [&](Value *V, PHINode *&PNOut, Instruction::BinaryOps &OpCodeOut) {
8313     Optional<Instruction::BinaryOps> PostShiftOpCode;
8314 
8315     {
8316       Instruction::BinaryOps OpC;
8317       Value *V;
8318 
8319       // If we encounter a shift instruction, "peel off" the shift operation,
8320       // and remember that we did so.  Later when we inspect %iv's backedge
8321       // value, we will make sure that the backedge value uses the same
8322       // operation.
8323       //
8324       // Note: the peeled shift operation does not have to be the same
8325       // instruction as the one feeding into the PHI's backedge value.  We only
8326       // really care about it being the same *kind* of shift instruction --
8327       // that's all that is required for our later inferences to hold.
8328       if (MatchPositiveShift(LHS, V, OpC)) {
8329         PostShiftOpCode = OpC;
8330         LHS = V;
8331       }
8332     }
8333 
8334     PNOut = dyn_cast<PHINode>(LHS);
8335     if (!PNOut || PNOut->getParent() != L->getHeader())
8336       return false;
8337 
8338     Value *BEValue = PNOut->getIncomingValueForBlock(Latch);
8339     Value *OpLHS;
8340 
8341     return
8342         // The backedge value for the PHI node must be a shift by a positive
8343         // amount
8344         MatchPositiveShift(BEValue, OpLHS, OpCodeOut) &&
8345 
8346         // of the PHI node itself
8347         OpLHS == PNOut &&
8348 
8349         // and the kind of shift should be match the kind of shift we peeled
8350         // off, if any.
8351         (!PostShiftOpCode.hasValue() || *PostShiftOpCode == OpCodeOut);
8352   };
8353 
8354   PHINode *PN;
8355   Instruction::BinaryOps OpCode;
8356   if (!MatchShiftRecurrence(LHS, PN, OpCode))
8357     return getCouldNotCompute();
8358 
8359   const DataLayout &DL = getDataLayout();
8360 
8361   // The key rationale for this optimization is that for some kinds of shift
8362   // recurrences, the value of the recurrence "stabilizes" to either 0 or -1
8363   // within a finite number of iterations.  If the condition guarding the
8364   // backedge (in the sense that the backedge is taken if the condition is true)
8365   // is false for the value the shift recurrence stabilizes to, then we know
8366   // that the backedge is taken only a finite number of times.
8367 
8368   ConstantInt *StableValue = nullptr;
8369   switch (OpCode) {
8370   default:
8371     llvm_unreachable("Impossible case!");
8372 
8373   case Instruction::AShr: {
8374     // {K,ashr,<positive-constant>} stabilizes to signum(K) in at most
8375     // bitwidth(K) iterations.
8376     Value *FirstValue = PN->getIncomingValueForBlock(Predecessor);
8377     KnownBits Known = computeKnownBits(FirstValue, DL, 0, &AC,
8378                                        Predecessor->getTerminator(), &DT);
8379     auto *Ty = cast<IntegerType>(RHS->getType());
8380     if (Known.isNonNegative())
8381       StableValue = ConstantInt::get(Ty, 0);
8382     else if (Known.isNegative())
8383       StableValue = ConstantInt::get(Ty, -1, true);
8384     else
8385       return getCouldNotCompute();
8386 
8387     break;
8388   }
8389   case Instruction::LShr:
8390   case Instruction::Shl:
8391     // Both {K,lshr,<positive-constant>} and {K,shl,<positive-constant>}
8392     // stabilize to 0 in at most bitwidth(K) iterations.
8393     StableValue = ConstantInt::get(cast<IntegerType>(RHS->getType()), 0);
8394     break;
8395   }
8396 
8397   auto *Result =
8398       ConstantFoldCompareInstOperands(Pred, StableValue, RHS, DL, &TLI);
8399   assert(Result->getType()->isIntegerTy(1) &&
8400          "Otherwise cannot be an operand to a branch instruction");
8401 
8402   if (Result->isZeroValue()) {
8403     unsigned BitWidth = getTypeSizeInBits(RHS->getType());
8404     const SCEV *UpperBound =
8405         getConstant(getEffectiveSCEVType(RHS->getType()), BitWidth);
8406     return ExitLimit(getCouldNotCompute(), UpperBound, false);
8407   }
8408 
8409   return getCouldNotCompute();
8410 }
8411 
8412 /// Return true if we can constant fold an instruction of the specified type,
8413 /// assuming that all operands were constants.
8414 static bool CanConstantFold(const Instruction *I) {
8415   if (isa<BinaryOperator>(I) || isa<CmpInst>(I) ||
8416       isa<SelectInst>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
8417       isa<LoadInst>(I) || isa<ExtractValueInst>(I))
8418     return true;
8419 
8420   if (const CallInst *CI = dyn_cast<CallInst>(I))
8421     if (const Function *F = CI->getCalledFunction())
8422       return canConstantFoldCallTo(CI, F);
8423   return false;
8424 }
8425 
8426 /// Determine whether this instruction can constant evolve within this loop
8427 /// assuming its operands can all constant evolve.
8428 static bool canConstantEvolve(Instruction *I, const Loop *L) {
8429   // An instruction outside of the loop can't be derived from a loop PHI.
8430   if (!L->contains(I)) return false;
8431 
8432   if (isa<PHINode>(I)) {
8433     // We don't currently keep track of the control flow needed to evaluate
8434     // PHIs, so we cannot handle PHIs inside of loops.
8435     return L->getHeader() == I->getParent();
8436   }
8437 
8438   // If we won't be able to constant fold this expression even if the operands
8439   // are constants, bail early.
8440   return CanConstantFold(I);
8441 }
8442 
8443 /// getConstantEvolvingPHIOperands - Implement getConstantEvolvingPHI by
8444 /// recursing through each instruction operand until reaching a loop header phi.
8445 static PHINode *
8446 getConstantEvolvingPHIOperands(Instruction *UseInst, const Loop *L,
8447                                DenseMap<Instruction *, PHINode *> &PHIMap,
8448                                unsigned Depth) {
8449   if (Depth > MaxConstantEvolvingDepth)
8450     return nullptr;
8451 
8452   // Otherwise, we can evaluate this instruction if all of its operands are
8453   // constant or derived from a PHI node themselves.
8454   PHINode *PHI = nullptr;
8455   for (Value *Op : UseInst->operands()) {
8456     if (isa<Constant>(Op)) continue;
8457 
8458     Instruction *OpInst = dyn_cast<Instruction>(Op);
8459     if (!OpInst || !canConstantEvolve(OpInst, L)) return nullptr;
8460 
8461     PHINode *P = dyn_cast<PHINode>(OpInst);
8462     if (!P)
8463       // If this operand is already visited, reuse the prior result.
8464       // We may have P != PHI if this is the deepest point at which the
8465       // inconsistent paths meet.
8466       P = PHIMap.lookup(OpInst);
8467     if (!P) {
8468       // Recurse and memoize the results, whether a phi is found or not.
8469       // This recursive call invalidates pointers into PHIMap.
8470       P = getConstantEvolvingPHIOperands(OpInst, L, PHIMap, Depth + 1);
8471       PHIMap[OpInst] = P;
8472     }
8473     if (!P)
8474       return nullptr;  // Not evolving from PHI
8475     if (PHI && PHI != P)
8476       return nullptr;  // Evolving from multiple different PHIs.
8477     PHI = P;
8478   }
8479   // This is a expression evolving from a constant PHI!
8480   return PHI;
8481 }
8482 
8483 /// getConstantEvolvingPHI - Given an LLVM value and a loop, return a PHI node
8484 /// in the loop that V is derived from.  We allow arbitrary operations along the
8485 /// way, but the operands of an operation must either be constants or a value
8486 /// derived from a constant PHI.  If this expression does not fit with these
8487 /// constraints, return null.
8488 static PHINode *getConstantEvolvingPHI(Value *V, const Loop *L) {
8489   Instruction *I = dyn_cast<Instruction>(V);
8490   if (!I || !canConstantEvolve(I, L)) return nullptr;
8491 
8492   if (PHINode *PN = dyn_cast<PHINode>(I))
8493     return PN;
8494 
8495   // Record non-constant instructions contained by the loop.
8496   DenseMap<Instruction *, PHINode *> PHIMap;
8497   return getConstantEvolvingPHIOperands(I, L, PHIMap, 0);
8498 }
8499 
8500 /// EvaluateExpression - Given an expression that passes the
8501 /// getConstantEvolvingPHI predicate, evaluate its value assuming the PHI node
8502 /// in the loop has the value PHIVal.  If we can't fold this expression for some
8503 /// reason, return null.
8504 static Constant *EvaluateExpression(Value *V, const Loop *L,
8505                                     DenseMap<Instruction *, Constant *> &Vals,
8506                                     const DataLayout &DL,
8507                                     const TargetLibraryInfo *TLI) {
8508   // Convenient constant check, but redundant for recursive calls.
8509   if (Constant *C = dyn_cast<Constant>(V)) return C;
8510   Instruction *I = dyn_cast<Instruction>(V);
8511   if (!I) return nullptr;
8512 
8513   if (Constant *C = Vals.lookup(I)) return C;
8514 
8515   // An instruction inside the loop depends on a value outside the loop that we
8516   // weren't given a mapping for, or a value such as a call inside the loop.
8517   if (!canConstantEvolve(I, L)) return nullptr;
8518 
8519   // An unmapped PHI can be due to a branch or another loop inside this loop,
8520   // or due to this not being the initial iteration through a loop where we
8521   // couldn't compute the evolution of this particular PHI last time.
8522   if (isa<PHINode>(I)) return nullptr;
8523 
8524   std::vector<Constant*> Operands(I->getNumOperands());
8525 
8526   for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
8527     Instruction *Operand = dyn_cast<Instruction>(I->getOperand(i));
8528     if (!Operand) {
8529       Operands[i] = dyn_cast<Constant>(I->getOperand(i));
8530       if (!Operands[i]) return nullptr;
8531       continue;
8532     }
8533     Constant *C = EvaluateExpression(Operand, L, Vals, DL, TLI);
8534     Vals[Operand] = C;
8535     if (!C) return nullptr;
8536     Operands[i] = C;
8537   }
8538 
8539   if (CmpInst *CI = dyn_cast<CmpInst>(I))
8540     return ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8541                                            Operands[1], DL, TLI);
8542   if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8543     if (!LI->isVolatile())
8544       return ConstantFoldLoadFromConstPtr(Operands[0], LI->getType(), DL);
8545   }
8546   return ConstantFoldInstOperands(I, Operands, DL, TLI);
8547 }
8548 
8549 
8550 // If every incoming value to PN except the one for BB is a specific Constant,
8551 // return that, else return nullptr.
8552 static Constant *getOtherIncomingValue(PHINode *PN, BasicBlock *BB) {
8553   Constant *IncomingVal = nullptr;
8554 
8555   for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8556     if (PN->getIncomingBlock(i) == BB)
8557       continue;
8558 
8559     auto *CurrentVal = dyn_cast<Constant>(PN->getIncomingValue(i));
8560     if (!CurrentVal)
8561       return nullptr;
8562 
8563     if (IncomingVal != CurrentVal) {
8564       if (IncomingVal)
8565         return nullptr;
8566       IncomingVal = CurrentVal;
8567     }
8568   }
8569 
8570   return IncomingVal;
8571 }
8572 
8573 /// getConstantEvolutionLoopExitValue - If we know that the specified Phi is
8574 /// in the header of its containing loop, we know the loop executes a
8575 /// constant number of times, and the PHI node is just a recurrence
8576 /// involving constants, fold it.
8577 Constant *
8578 ScalarEvolution::getConstantEvolutionLoopExitValue(PHINode *PN,
8579                                                    const APInt &BEs,
8580                                                    const Loop *L) {
8581   auto I = ConstantEvolutionLoopExitValue.find(PN);
8582   if (I != ConstantEvolutionLoopExitValue.end())
8583     return I->second;
8584 
8585   if (BEs.ugt(MaxBruteForceIterations))
8586     return ConstantEvolutionLoopExitValue[PN] = nullptr;  // Not going to evaluate it.
8587 
8588   Constant *&RetVal = ConstantEvolutionLoopExitValue[PN];
8589 
8590   DenseMap<Instruction *, Constant *> CurrentIterVals;
8591   BasicBlock *Header = L->getHeader();
8592   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8593 
8594   BasicBlock *Latch = L->getLoopLatch();
8595   if (!Latch)
8596     return nullptr;
8597 
8598   for (PHINode &PHI : Header->phis()) {
8599     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8600       CurrentIterVals[&PHI] = StartCST;
8601   }
8602   if (!CurrentIterVals.count(PN))
8603     return RetVal = nullptr;
8604 
8605   Value *BEValue = PN->getIncomingValueForBlock(Latch);
8606 
8607   // Execute the loop symbolically to determine the exit value.
8608   assert(BEs.getActiveBits() < CHAR_BIT * sizeof(unsigned) &&
8609          "BEs is <= MaxBruteForceIterations which is an 'unsigned'!");
8610 
8611   unsigned NumIterations = BEs.getZExtValue(); // must be in range
8612   unsigned IterationNum = 0;
8613   const DataLayout &DL = getDataLayout();
8614   for (; ; ++IterationNum) {
8615     if (IterationNum == NumIterations)
8616       return RetVal = CurrentIterVals[PN];  // Got exit value!
8617 
8618     // Compute the value of the PHIs for the next iteration.
8619     // EvaluateExpression adds non-phi values to the CurrentIterVals map.
8620     DenseMap<Instruction *, Constant *> NextIterVals;
8621     Constant *NextPHI =
8622         EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8623     if (!NextPHI)
8624       return nullptr;        // Couldn't evaluate!
8625     NextIterVals[PN] = NextPHI;
8626 
8627     bool StoppedEvolving = NextPHI == CurrentIterVals[PN];
8628 
8629     // Also evaluate the other PHI nodes.  However, we don't get to stop if we
8630     // cease to be able to evaluate one of them or if they stop evolving,
8631     // because that doesn't necessarily prevent us from computing PN.
8632     SmallVector<std::pair<PHINode *, Constant *>, 8> PHIsToCompute;
8633     for (const auto &I : CurrentIterVals) {
8634       PHINode *PHI = dyn_cast<PHINode>(I.first);
8635       if (!PHI || PHI == PN || PHI->getParent() != Header) continue;
8636       PHIsToCompute.emplace_back(PHI, I.second);
8637     }
8638     // We use two distinct loops because EvaluateExpression may invalidate any
8639     // iterators into CurrentIterVals.
8640     for (const auto &I : PHIsToCompute) {
8641       PHINode *PHI = I.first;
8642       Constant *&NextPHI = NextIterVals[PHI];
8643       if (!NextPHI) {   // Not already computed.
8644         Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8645         NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8646       }
8647       if (NextPHI != I.second)
8648         StoppedEvolving = false;
8649     }
8650 
8651     // If all entries in CurrentIterVals == NextIterVals then we can stop
8652     // iterating, the loop can't continue to change.
8653     if (StoppedEvolving)
8654       return RetVal = CurrentIterVals[PN];
8655 
8656     CurrentIterVals.swap(NextIterVals);
8657   }
8658 }
8659 
8660 const SCEV *ScalarEvolution::computeExitCountExhaustively(const Loop *L,
8661                                                           Value *Cond,
8662                                                           bool ExitWhen) {
8663   PHINode *PN = getConstantEvolvingPHI(Cond, L);
8664   if (!PN) return getCouldNotCompute();
8665 
8666   // If the loop is canonicalized, the PHI will have exactly two entries.
8667   // That's the only form we support here.
8668   if (PN->getNumIncomingValues() != 2) return getCouldNotCompute();
8669 
8670   DenseMap<Instruction *, Constant *> CurrentIterVals;
8671   BasicBlock *Header = L->getHeader();
8672   assert(PN->getParent() == Header && "Can't evaluate PHI not in loop header!");
8673 
8674   BasicBlock *Latch = L->getLoopLatch();
8675   assert(Latch && "Should follow from NumIncomingValues == 2!");
8676 
8677   for (PHINode &PHI : Header->phis()) {
8678     if (auto *StartCST = getOtherIncomingValue(&PHI, Latch))
8679       CurrentIterVals[&PHI] = StartCST;
8680   }
8681   if (!CurrentIterVals.count(PN))
8682     return getCouldNotCompute();
8683 
8684   // Okay, we find a PHI node that defines the trip count of this loop.  Execute
8685   // the loop symbolically to determine when the condition gets a value of
8686   // "ExitWhen".
8687   unsigned MaxIterations = MaxBruteForceIterations;   // Limit analysis.
8688   const DataLayout &DL = getDataLayout();
8689   for (unsigned IterationNum = 0; IterationNum != MaxIterations;++IterationNum){
8690     auto *CondVal = dyn_cast_or_null<ConstantInt>(
8691         EvaluateExpression(Cond, L, CurrentIterVals, DL, &TLI));
8692 
8693     // Couldn't symbolically evaluate.
8694     if (!CondVal) return getCouldNotCompute();
8695 
8696     if (CondVal->getValue() == uint64_t(ExitWhen)) {
8697       ++NumBruteForceTripCountsComputed;
8698       return getConstant(Type::getInt32Ty(getContext()), IterationNum);
8699     }
8700 
8701     // Update all the PHI nodes for the next iteration.
8702     DenseMap<Instruction *, Constant *> NextIterVals;
8703 
8704     // Create a list of which PHIs we need to compute. We want to do this before
8705     // calling EvaluateExpression on them because that may invalidate iterators
8706     // into CurrentIterVals.
8707     SmallVector<PHINode *, 8> PHIsToCompute;
8708     for (const auto &I : CurrentIterVals) {
8709       PHINode *PHI = dyn_cast<PHINode>(I.first);
8710       if (!PHI || PHI->getParent() != Header) continue;
8711       PHIsToCompute.push_back(PHI);
8712     }
8713     for (PHINode *PHI : PHIsToCompute) {
8714       Constant *&NextPHI = NextIterVals[PHI];
8715       if (NextPHI) continue;    // Already computed!
8716 
8717       Value *BEValue = PHI->getIncomingValueForBlock(Latch);
8718       NextPHI = EvaluateExpression(BEValue, L, CurrentIterVals, DL, &TLI);
8719     }
8720     CurrentIterVals.swap(NextIterVals);
8721   }
8722 
8723   // Too many iterations were needed to evaluate.
8724   return getCouldNotCompute();
8725 }
8726 
8727 const SCEV *ScalarEvolution::getSCEVAtScope(const SCEV *V, const Loop *L) {
8728   SmallVector<std::pair<const Loop *, const SCEV *>, 2> &Values =
8729       ValuesAtScopes[V];
8730   // Check to see if we've folded this expression at this loop before.
8731   for (auto &LS : Values)
8732     if (LS.first == L)
8733       return LS.second ? LS.second : V;
8734 
8735   Values.emplace_back(L, nullptr);
8736 
8737   // Otherwise compute it.
8738   const SCEV *C = computeSCEVAtScope(V, L);
8739   for (auto &LS : reverse(ValuesAtScopes[V]))
8740     if (LS.first == L) {
8741       LS.second = C;
8742       break;
8743     }
8744   return C;
8745 }
8746 
8747 /// This builds up a Constant using the ConstantExpr interface.  That way, we
8748 /// will return Constants for objects which aren't represented by a
8749 /// SCEVConstant, because SCEVConstant is restricted to ConstantInt.
8750 /// Returns NULL if the SCEV isn't representable as a Constant.
8751 static Constant *BuildConstantFromSCEV(const SCEV *V) {
8752   switch (V->getSCEVType()) {
8753   case scCouldNotCompute:
8754   case scAddRecExpr:
8755     return nullptr;
8756   case scConstant:
8757     return cast<SCEVConstant>(V)->getValue();
8758   case scUnknown:
8759     return dyn_cast<Constant>(cast<SCEVUnknown>(V)->getValue());
8760   case scSignExtend: {
8761     const SCEVSignExtendExpr *SS = cast<SCEVSignExtendExpr>(V);
8762     if (Constant *CastOp = BuildConstantFromSCEV(SS->getOperand()))
8763       return ConstantExpr::getSExt(CastOp, SS->getType());
8764     return nullptr;
8765   }
8766   case scZeroExtend: {
8767     const SCEVZeroExtendExpr *SZ = cast<SCEVZeroExtendExpr>(V);
8768     if (Constant *CastOp = BuildConstantFromSCEV(SZ->getOperand()))
8769       return ConstantExpr::getZExt(CastOp, SZ->getType());
8770     return nullptr;
8771   }
8772   case scPtrToInt: {
8773     const SCEVPtrToIntExpr *P2I = cast<SCEVPtrToIntExpr>(V);
8774     if (Constant *CastOp = BuildConstantFromSCEV(P2I->getOperand()))
8775       return ConstantExpr::getPtrToInt(CastOp, P2I->getType());
8776 
8777     return nullptr;
8778   }
8779   case scTruncate: {
8780     const SCEVTruncateExpr *ST = cast<SCEVTruncateExpr>(V);
8781     if (Constant *CastOp = BuildConstantFromSCEV(ST->getOperand()))
8782       return ConstantExpr::getTrunc(CastOp, ST->getType());
8783     return nullptr;
8784   }
8785   case scAddExpr: {
8786     const SCEVAddExpr *SA = cast<SCEVAddExpr>(V);
8787     if (Constant *C = BuildConstantFromSCEV(SA->getOperand(0))) {
8788       if (PointerType *PTy = dyn_cast<PointerType>(C->getType())) {
8789         unsigned AS = PTy->getAddressSpace();
8790         Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8791         C = ConstantExpr::getBitCast(C, DestPtrTy);
8792       }
8793       for (unsigned i = 1, e = SA->getNumOperands(); i != e; ++i) {
8794         Constant *C2 = BuildConstantFromSCEV(SA->getOperand(i));
8795         if (!C2)
8796           return nullptr;
8797 
8798         // First pointer!
8799         if (!C->getType()->isPointerTy() && C2->getType()->isPointerTy()) {
8800           unsigned AS = C2->getType()->getPointerAddressSpace();
8801           std::swap(C, C2);
8802           Type *DestPtrTy = Type::getInt8PtrTy(C->getContext(), AS);
8803           // The offsets have been converted to bytes.  We can add bytes to an
8804           // i8* by GEP with the byte count in the first index.
8805           C = ConstantExpr::getBitCast(C, DestPtrTy);
8806         }
8807 
8808         // Don't bother trying to sum two pointers. We probably can't
8809         // statically compute a load that results from it anyway.
8810         if (C2->getType()->isPointerTy())
8811           return nullptr;
8812 
8813         if (C->getType()->isPointerTy()) {
8814           C = ConstantExpr::getGetElementPtr(Type::getInt8Ty(C->getContext()),
8815                                              C, C2);
8816         } else {
8817           C = ConstantExpr::getAdd(C, C2);
8818         }
8819       }
8820       return C;
8821     }
8822     return nullptr;
8823   }
8824   case scMulExpr: {
8825     const SCEVMulExpr *SM = cast<SCEVMulExpr>(V);
8826     if (Constant *C = BuildConstantFromSCEV(SM->getOperand(0))) {
8827       // Don't bother with pointers at all.
8828       if (C->getType()->isPointerTy())
8829         return nullptr;
8830       for (unsigned i = 1, e = SM->getNumOperands(); i != e; ++i) {
8831         Constant *C2 = BuildConstantFromSCEV(SM->getOperand(i));
8832         if (!C2 || C2->getType()->isPointerTy())
8833           return nullptr;
8834         C = ConstantExpr::getMul(C, C2);
8835       }
8836       return C;
8837     }
8838     return nullptr;
8839   }
8840   case scUDivExpr: {
8841     const SCEVUDivExpr *SU = cast<SCEVUDivExpr>(V);
8842     if (Constant *LHS = BuildConstantFromSCEV(SU->getLHS()))
8843       if (Constant *RHS = BuildConstantFromSCEV(SU->getRHS()))
8844         if (LHS->getType() == RHS->getType())
8845           return ConstantExpr::getUDiv(LHS, RHS);
8846     return nullptr;
8847   }
8848   case scSMaxExpr:
8849   case scUMaxExpr:
8850   case scSMinExpr:
8851   case scUMinExpr:
8852     return nullptr; // TODO: smax, umax, smin, umax.
8853   }
8854   llvm_unreachable("Unknown SCEV kind!");
8855 }
8856 
8857 const SCEV *ScalarEvolution::computeSCEVAtScope(const SCEV *V, const Loop *L) {
8858   if (isa<SCEVConstant>(V)) return V;
8859 
8860   // If this instruction is evolved from a constant-evolving PHI, compute the
8861   // exit value from the loop without using SCEVs.
8862   if (const SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V)) {
8863     if (Instruction *I = dyn_cast<Instruction>(SU->getValue())) {
8864       if (PHINode *PN = dyn_cast<PHINode>(I)) {
8865         const Loop *CurrLoop = this->LI[I->getParent()];
8866         // Looking for loop exit value.
8867         if (CurrLoop && CurrLoop->getParentLoop() == L &&
8868             PN->getParent() == CurrLoop->getHeader()) {
8869           // Okay, there is no closed form solution for the PHI node.  Check
8870           // to see if the loop that contains it has a known backedge-taken
8871           // count.  If so, we may be able to force computation of the exit
8872           // value.
8873           const SCEV *BackedgeTakenCount = getBackedgeTakenCount(CurrLoop);
8874           // This trivial case can show up in some degenerate cases where
8875           // the incoming IR has not yet been fully simplified.
8876           if (BackedgeTakenCount->isZero()) {
8877             Value *InitValue = nullptr;
8878             bool MultipleInitValues = false;
8879             for (unsigned i = 0; i < PN->getNumIncomingValues(); i++) {
8880               if (!CurrLoop->contains(PN->getIncomingBlock(i))) {
8881                 if (!InitValue)
8882                   InitValue = PN->getIncomingValue(i);
8883                 else if (InitValue != PN->getIncomingValue(i)) {
8884                   MultipleInitValues = true;
8885                   break;
8886                 }
8887               }
8888             }
8889             if (!MultipleInitValues && InitValue)
8890               return getSCEV(InitValue);
8891           }
8892           // Do we have a loop invariant value flowing around the backedge
8893           // for a loop which must execute the backedge?
8894           if (!isa<SCEVCouldNotCompute>(BackedgeTakenCount) &&
8895               isKnownPositive(BackedgeTakenCount) &&
8896               PN->getNumIncomingValues() == 2) {
8897 
8898             unsigned InLoopPred =
8899                 CurrLoop->contains(PN->getIncomingBlock(0)) ? 0 : 1;
8900             Value *BackedgeVal = PN->getIncomingValue(InLoopPred);
8901             if (CurrLoop->isLoopInvariant(BackedgeVal))
8902               return getSCEV(BackedgeVal);
8903           }
8904           if (auto *BTCC = dyn_cast<SCEVConstant>(BackedgeTakenCount)) {
8905             // Okay, we know how many times the containing loop executes.  If
8906             // this is a constant evolving PHI node, get the final value at
8907             // the specified iteration number.
8908             Constant *RV = getConstantEvolutionLoopExitValue(
8909                 PN, BTCC->getAPInt(), CurrLoop);
8910             if (RV) return getSCEV(RV);
8911           }
8912         }
8913 
8914         // If there is a single-input Phi, evaluate it at our scope. If we can
8915         // prove that this replacement does not break LCSSA form, use new value.
8916         if (PN->getNumOperands() == 1) {
8917           const SCEV *Input = getSCEV(PN->getOperand(0));
8918           const SCEV *InputAtScope = getSCEVAtScope(Input, L);
8919           // TODO: We can generalize it using LI.replacementPreservesLCSSAForm,
8920           // for the simplest case just support constants.
8921           if (isa<SCEVConstant>(InputAtScope)) return InputAtScope;
8922         }
8923       }
8924 
8925       // Okay, this is an expression that we cannot symbolically evaluate
8926       // into a SCEV.  Check to see if it's possible to symbolically evaluate
8927       // the arguments into constants, and if so, try to constant propagate the
8928       // result.  This is particularly useful for computing loop exit values.
8929       if (CanConstantFold(I)) {
8930         SmallVector<Constant *, 4> Operands;
8931         bool MadeImprovement = false;
8932         for (Value *Op : I->operands()) {
8933           if (Constant *C = dyn_cast<Constant>(Op)) {
8934             Operands.push_back(C);
8935             continue;
8936           }
8937 
8938           // If any of the operands is non-constant and if they are
8939           // non-integer and non-pointer, don't even try to analyze them
8940           // with scev techniques.
8941           if (!isSCEVable(Op->getType()))
8942             return V;
8943 
8944           const SCEV *OrigV = getSCEV(Op);
8945           const SCEV *OpV = getSCEVAtScope(OrigV, L);
8946           MadeImprovement |= OrigV != OpV;
8947 
8948           Constant *C = BuildConstantFromSCEV(OpV);
8949           if (!C) return V;
8950           if (C->getType() != Op->getType())
8951             C = ConstantExpr::getCast(CastInst::getCastOpcode(C, false,
8952                                                               Op->getType(),
8953                                                               false),
8954                                       C, Op->getType());
8955           Operands.push_back(C);
8956         }
8957 
8958         // Check to see if getSCEVAtScope actually made an improvement.
8959         if (MadeImprovement) {
8960           Constant *C = nullptr;
8961           const DataLayout &DL = getDataLayout();
8962           if (const CmpInst *CI = dyn_cast<CmpInst>(I))
8963             C = ConstantFoldCompareInstOperands(CI->getPredicate(), Operands[0],
8964                                                 Operands[1], DL, &TLI);
8965           else if (const LoadInst *Load = dyn_cast<LoadInst>(I)) {
8966             if (!Load->isVolatile())
8967               C = ConstantFoldLoadFromConstPtr(Operands[0], Load->getType(),
8968                                                DL);
8969           } else
8970             C = ConstantFoldInstOperands(I, Operands, DL, &TLI);
8971           if (!C) return V;
8972           return getSCEV(C);
8973         }
8974       }
8975     }
8976 
8977     // This is some other type of SCEVUnknown, just return it.
8978     return V;
8979   }
8980 
8981   if (const SCEVCommutativeExpr *Comm = dyn_cast<SCEVCommutativeExpr>(V)) {
8982     // Avoid performing the look-up in the common case where the specified
8983     // expression has no loop-variant portions.
8984     for (unsigned i = 0, e = Comm->getNumOperands(); i != e; ++i) {
8985       const SCEV *OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8986       if (OpAtScope != Comm->getOperand(i)) {
8987         // Okay, at least one of these operands is loop variant but might be
8988         // foldable.  Build a new instance of the folded commutative expression.
8989         SmallVector<const SCEV *, 8> NewOps(Comm->op_begin(),
8990                                             Comm->op_begin()+i);
8991         NewOps.push_back(OpAtScope);
8992 
8993         for (++i; i != e; ++i) {
8994           OpAtScope = getSCEVAtScope(Comm->getOperand(i), L);
8995           NewOps.push_back(OpAtScope);
8996         }
8997         if (isa<SCEVAddExpr>(Comm))
8998           return getAddExpr(NewOps, Comm->getNoWrapFlags());
8999         if (isa<SCEVMulExpr>(Comm))
9000           return getMulExpr(NewOps, Comm->getNoWrapFlags());
9001         if (isa<SCEVMinMaxExpr>(Comm))
9002           return getMinMaxExpr(Comm->getSCEVType(), NewOps);
9003         llvm_unreachable("Unknown commutative SCEV type!");
9004       }
9005     }
9006     // If we got here, all operands are loop invariant.
9007     return Comm;
9008   }
9009 
9010   if (const SCEVUDivExpr *Div = dyn_cast<SCEVUDivExpr>(V)) {
9011     const SCEV *LHS = getSCEVAtScope(Div->getLHS(), L);
9012     const SCEV *RHS = getSCEVAtScope(Div->getRHS(), L);
9013     if (LHS == Div->getLHS() && RHS == Div->getRHS())
9014       return Div;   // must be loop invariant
9015     return getUDivExpr(LHS, RHS);
9016   }
9017 
9018   // If this is a loop recurrence for a loop that does not contain L, then we
9019   // are dealing with the final value computed by the loop.
9020   if (const SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(V)) {
9021     // First, attempt to evaluate each operand.
9022     // Avoid performing the look-up in the common case where the specified
9023     // expression has no loop-variant portions.
9024     for (unsigned i = 0, e = AddRec->getNumOperands(); i != e; ++i) {
9025       const SCEV *OpAtScope = getSCEVAtScope(AddRec->getOperand(i), L);
9026       if (OpAtScope == AddRec->getOperand(i))
9027         continue;
9028 
9029       // Okay, at least one of these operands is loop variant but might be
9030       // foldable.  Build a new instance of the folded commutative expression.
9031       SmallVector<const SCEV *, 8> NewOps(AddRec->op_begin(),
9032                                           AddRec->op_begin()+i);
9033       NewOps.push_back(OpAtScope);
9034       for (++i; i != e; ++i)
9035         NewOps.push_back(getSCEVAtScope(AddRec->getOperand(i), L));
9036 
9037       const SCEV *FoldedRec =
9038         getAddRecExpr(NewOps, AddRec->getLoop(),
9039                       AddRec->getNoWrapFlags(SCEV::FlagNW));
9040       AddRec = dyn_cast<SCEVAddRecExpr>(FoldedRec);
9041       // The addrec may be folded to a nonrecurrence, for example, if the
9042       // induction variable is multiplied by zero after constant folding. Go
9043       // ahead and return the folded value.
9044       if (!AddRec)
9045         return FoldedRec;
9046       break;
9047     }
9048 
9049     // If the scope is outside the addrec's loop, evaluate it by using the
9050     // loop exit value of the addrec.
9051     if (!AddRec->getLoop()->contains(L)) {
9052       // To evaluate this recurrence, we need to know how many times the AddRec
9053       // loop iterates.  Compute this now.
9054       const SCEV *BackedgeTakenCount = getBackedgeTakenCount(AddRec->getLoop());
9055       if (BackedgeTakenCount == getCouldNotCompute()) return AddRec;
9056 
9057       // Then, evaluate the AddRec.
9058       return AddRec->evaluateAtIteration(BackedgeTakenCount, *this);
9059     }
9060 
9061     return AddRec;
9062   }
9063 
9064   if (const SCEVZeroExtendExpr *Cast = dyn_cast<SCEVZeroExtendExpr>(V)) {
9065     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9066     if (Op == Cast->getOperand())
9067       return Cast;  // must be loop invariant
9068     return getZeroExtendExpr(Op, Cast->getType());
9069   }
9070 
9071   if (const SCEVSignExtendExpr *Cast = dyn_cast<SCEVSignExtendExpr>(V)) {
9072     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9073     if (Op == Cast->getOperand())
9074       return Cast;  // must be loop invariant
9075     return getSignExtendExpr(Op, Cast->getType());
9076   }
9077 
9078   if (const SCEVTruncateExpr *Cast = dyn_cast<SCEVTruncateExpr>(V)) {
9079     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9080     if (Op == Cast->getOperand())
9081       return Cast;  // must be loop invariant
9082     return getTruncateExpr(Op, Cast->getType());
9083   }
9084 
9085   if (const SCEVPtrToIntExpr *Cast = dyn_cast<SCEVPtrToIntExpr>(V)) {
9086     const SCEV *Op = getSCEVAtScope(Cast->getOperand(), L);
9087     if (Op == Cast->getOperand())
9088       return Cast; // must be loop invariant
9089     return getPtrToIntExpr(Op, Cast->getType());
9090   }
9091 
9092   llvm_unreachable("Unknown SCEV type!");
9093 }
9094 
9095 const SCEV *ScalarEvolution::getSCEVAtScope(Value *V, const Loop *L) {
9096   return getSCEVAtScope(getSCEV(V), L);
9097 }
9098 
9099 const SCEV *ScalarEvolution::stripInjectiveFunctions(const SCEV *S) const {
9100   if (const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(S))
9101     return stripInjectiveFunctions(ZExt->getOperand());
9102   if (const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(S))
9103     return stripInjectiveFunctions(SExt->getOperand());
9104   return S;
9105 }
9106 
9107 /// Finds the minimum unsigned root of the following equation:
9108 ///
9109 ///     A * X = B (mod N)
9110 ///
9111 /// where N = 2^BW and BW is the common bit width of A and B. The signedness of
9112 /// A and B isn't important.
9113 ///
9114 /// If the equation does not have a solution, SCEVCouldNotCompute is returned.
9115 static const SCEV *SolveLinEquationWithOverflow(const APInt &A, const SCEV *B,
9116                                                ScalarEvolution &SE) {
9117   uint32_t BW = A.getBitWidth();
9118   assert(BW == SE.getTypeSizeInBits(B->getType()));
9119   assert(A != 0 && "A must be non-zero.");
9120 
9121   // 1. D = gcd(A, N)
9122   //
9123   // The gcd of A and N may have only one prime factor: 2. The number of
9124   // trailing zeros in A is its multiplicity
9125   uint32_t Mult2 = A.countTrailingZeros();
9126   // D = 2^Mult2
9127 
9128   // 2. Check if B is divisible by D.
9129   //
9130   // B is divisible by D if and only if the multiplicity of prime factor 2 for B
9131   // is not less than multiplicity of this prime factor for D.
9132   if (SE.GetMinTrailingZeros(B) < Mult2)
9133     return SE.getCouldNotCompute();
9134 
9135   // 3. Compute I: the multiplicative inverse of (A / D) in arithmetic
9136   // modulo (N / D).
9137   //
9138   // If D == 1, (N / D) == N == 2^BW, so we need one extra bit to represent
9139   // (N / D) in general. The inverse itself always fits into BW bits, though,
9140   // so we immediately truncate it.
9141   APInt AD = A.lshr(Mult2).zext(BW + 1);  // AD = A / D
9142   APInt Mod(BW + 1, 0);
9143   Mod.setBit(BW - Mult2);  // Mod = N / D
9144   APInt I = AD.multiplicativeInverse(Mod).trunc(BW);
9145 
9146   // 4. Compute the minimum unsigned root of the equation:
9147   // I * (B / D) mod (N / D)
9148   // To simplify the computation, we factor out the divide by D:
9149   // (I * B mod N) / D
9150   const SCEV *D = SE.getConstant(APInt::getOneBitSet(BW, Mult2));
9151   return SE.getUDivExactExpr(SE.getMulExpr(B, SE.getConstant(I)), D);
9152 }
9153 
9154 /// For a given quadratic addrec, generate coefficients of the corresponding
9155 /// quadratic equation, multiplied by a common value to ensure that they are
9156 /// integers.
9157 /// The returned value is a tuple { A, B, C, M, BitWidth }, where
9158 /// Ax^2 + Bx + C is the quadratic function, M is the value that A, B and C
9159 /// were multiplied by, and BitWidth is the bit width of the original addrec
9160 /// coefficients.
9161 /// This function returns None if the addrec coefficients are not compile-
9162 /// time constants.
9163 static Optional<std::tuple<APInt, APInt, APInt, APInt, unsigned>>
9164 GetQuadraticEquation(const SCEVAddRecExpr *AddRec) {
9165   assert(AddRec->getNumOperands() == 3 && "This is not a quadratic chrec!");
9166   const SCEVConstant *LC = dyn_cast<SCEVConstant>(AddRec->getOperand(0));
9167   const SCEVConstant *MC = dyn_cast<SCEVConstant>(AddRec->getOperand(1));
9168   const SCEVConstant *NC = dyn_cast<SCEVConstant>(AddRec->getOperand(2));
9169   LLVM_DEBUG(dbgs() << __func__ << ": analyzing quadratic addrec: "
9170                     << *AddRec << '\n');
9171 
9172   // We currently can only solve this if the coefficients are constants.
9173   if (!LC || !MC || !NC) {
9174     LLVM_DEBUG(dbgs() << __func__ << ": coefficients are not constant\n");
9175     return None;
9176   }
9177 
9178   APInt L = LC->getAPInt();
9179   APInt M = MC->getAPInt();
9180   APInt N = NC->getAPInt();
9181   assert(!N.isNullValue() && "This is not a quadratic addrec");
9182 
9183   unsigned BitWidth = LC->getAPInt().getBitWidth();
9184   unsigned NewWidth = BitWidth + 1;
9185   LLVM_DEBUG(dbgs() << __func__ << ": addrec coeff bw: "
9186                     << BitWidth << '\n');
9187   // The sign-extension (as opposed to a zero-extension) here matches the
9188   // extension used in SolveQuadraticEquationWrap (with the same motivation).
9189   N = N.sext(NewWidth);
9190   M = M.sext(NewWidth);
9191   L = L.sext(NewWidth);
9192 
9193   // The increments are M, M+N, M+2N, ..., so the accumulated values are
9194   //   L+M, (L+M)+(M+N), (L+M)+(M+N)+(M+2N), ..., that is,
9195   //   L+M, L+2M+N, L+3M+3N, ...
9196   // After n iterations the accumulated value Acc is L + nM + n(n-1)/2 N.
9197   //
9198   // The equation Acc = 0 is then
9199   //   L + nM + n(n-1)/2 N = 0,  or  2L + 2M n + n(n-1) N = 0.
9200   // In a quadratic form it becomes:
9201   //   N n^2 + (2M-N) n + 2L = 0.
9202 
9203   APInt A = N;
9204   APInt B = 2 * M - A;
9205   APInt C = 2 * L;
9206   APInt T = APInt(NewWidth, 2);
9207   LLVM_DEBUG(dbgs() << __func__ << ": equation " << A << "x^2 + " << B
9208                     << "x + " << C << ", coeff bw: " << NewWidth
9209                     << ", multiplied by " << T << '\n');
9210   return std::make_tuple(A, B, C, T, BitWidth);
9211 }
9212 
9213 /// Helper function to compare optional APInts:
9214 /// (a) if X and Y both exist, return min(X, Y),
9215 /// (b) if neither X nor Y exist, return None,
9216 /// (c) if exactly one of X and Y exists, return that value.
9217 static Optional<APInt> MinOptional(Optional<APInt> X, Optional<APInt> Y) {
9218   if (X.hasValue() && Y.hasValue()) {
9219     unsigned W = std::max(X->getBitWidth(), Y->getBitWidth());
9220     APInt XW = X->sextOrSelf(W);
9221     APInt YW = Y->sextOrSelf(W);
9222     return XW.slt(YW) ? *X : *Y;
9223   }
9224   if (!X.hasValue() && !Y.hasValue())
9225     return None;
9226   return X.hasValue() ? *X : *Y;
9227 }
9228 
9229 /// Helper function to truncate an optional APInt to a given BitWidth.
9230 /// When solving addrec-related equations, it is preferable to return a value
9231 /// that has the same bit width as the original addrec's coefficients. If the
9232 /// solution fits in the original bit width, truncate it (except for i1).
9233 /// Returning a value of a different bit width may inhibit some optimizations.
9234 ///
9235 /// In general, a solution to a quadratic equation generated from an addrec
9236 /// may require BW+1 bits, where BW is the bit width of the addrec's
9237 /// coefficients. The reason is that the coefficients of the quadratic
9238 /// equation are BW+1 bits wide (to avoid truncation when converting from
9239 /// the addrec to the equation).
9240 static Optional<APInt> TruncIfPossible(Optional<APInt> X, unsigned BitWidth) {
9241   if (!X.hasValue())
9242     return None;
9243   unsigned W = X->getBitWidth();
9244   if (BitWidth > 1 && BitWidth < W && X->isIntN(BitWidth))
9245     return X->trunc(BitWidth);
9246   return X;
9247 }
9248 
9249 /// Let c(n) be the value of the quadratic chrec {L,+,M,+,N} after n
9250 /// iterations. The values L, M, N are assumed to be signed, and they
9251 /// should all have the same bit widths.
9252 /// Find the least n >= 0 such that c(n) = 0 in the arithmetic modulo 2^BW,
9253 /// where BW is the bit width of the addrec's coefficients.
9254 /// If the calculated value is a BW-bit integer (for BW > 1), it will be
9255 /// returned as such, otherwise the bit width of the returned value may
9256 /// be greater than BW.
9257 ///
9258 /// This function returns None if
9259 /// (a) the addrec coefficients are not constant, or
9260 /// (b) SolveQuadraticEquationWrap was unable to find a solution. For cases
9261 ///     like x^2 = 5, no integer solutions exist, in other cases an integer
9262 ///     solution may exist, but SolveQuadraticEquationWrap may fail to find it.
9263 static Optional<APInt>
9264 SolveQuadraticAddRecExact(const SCEVAddRecExpr *AddRec, ScalarEvolution &SE) {
9265   APInt A, B, C, M;
9266   unsigned BitWidth;
9267   auto T = GetQuadraticEquation(AddRec);
9268   if (!T.hasValue())
9269     return None;
9270 
9271   std::tie(A, B, C, M, BitWidth) = *T;
9272   LLVM_DEBUG(dbgs() << __func__ << ": solving for unsigned overflow\n");
9273   Optional<APInt> X = APIntOps::SolveQuadraticEquationWrap(A, B, C, BitWidth+1);
9274   if (!X.hasValue())
9275     return None;
9276 
9277   ConstantInt *CX = ConstantInt::get(SE.getContext(), *X);
9278   ConstantInt *V = EvaluateConstantChrecAtConstant(AddRec, CX, SE);
9279   if (!V->isZero())
9280     return None;
9281 
9282   return TruncIfPossible(X, BitWidth);
9283 }
9284 
9285 /// Let c(n) be the value of the quadratic chrec {0,+,M,+,N} after n
9286 /// iterations. The values M, N are assumed to be signed, and they
9287 /// should all have the same bit widths.
9288 /// Find the least n such that c(n) does not belong to the given range,
9289 /// while c(n-1) does.
9290 ///
9291 /// This function returns None if
9292 /// (a) the addrec coefficients are not constant, or
9293 /// (b) SolveQuadraticEquationWrap was unable to find a solution for the
9294 ///     bounds of the range.
9295 static Optional<APInt>
9296 SolveQuadraticAddRecRange(const SCEVAddRecExpr *AddRec,
9297                           const ConstantRange &Range, ScalarEvolution &SE) {
9298   assert(AddRec->getOperand(0)->isZero() &&
9299          "Starting value of addrec should be 0");
9300   LLVM_DEBUG(dbgs() << __func__ << ": solving boundary crossing for range "
9301                     << Range << ", addrec " << *AddRec << '\n');
9302   // This case is handled in getNumIterationsInRange. Here we can assume that
9303   // we start in the range.
9304   assert(Range.contains(APInt(SE.getTypeSizeInBits(AddRec->getType()), 0)) &&
9305          "Addrec's initial value should be in range");
9306 
9307   APInt A, B, C, M;
9308   unsigned BitWidth;
9309   auto T = GetQuadraticEquation(AddRec);
9310   if (!T.hasValue())
9311     return None;
9312 
9313   // Be careful about the return value: there can be two reasons for not
9314   // returning an actual number. First, if no solutions to the equations
9315   // were found, and second, if the solutions don't leave the given range.
9316   // The first case means that the actual solution is "unknown", the second
9317   // means that it's known, but not valid. If the solution is unknown, we
9318   // cannot make any conclusions.
9319   // Return a pair: the optional solution and a flag indicating if the
9320   // solution was found.
9321   auto SolveForBoundary = [&](APInt Bound) -> std::pair<Optional<APInt>,bool> {
9322     // Solve for signed overflow and unsigned overflow, pick the lower
9323     // solution.
9324     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: checking boundary "
9325                       << Bound << " (before multiplying by " << M << ")\n");
9326     Bound *= M; // The quadratic equation multiplier.
9327 
9328     Optional<APInt> SO = None;
9329     if (BitWidth > 1) {
9330       LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9331                            "signed overflow\n");
9332       SO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound, BitWidth);
9333     }
9334     LLVM_DEBUG(dbgs() << "SolveQuadraticAddRecRange: solving for "
9335                          "unsigned overflow\n");
9336     Optional<APInt> UO = APIntOps::SolveQuadraticEquationWrap(A, B, -Bound,
9337                                                               BitWidth+1);
9338 
9339     auto LeavesRange = [&] (const APInt &X) {
9340       ConstantInt *C0 = ConstantInt::get(SE.getContext(), X);
9341       ConstantInt *V0 = EvaluateConstantChrecAtConstant(AddRec, C0, SE);
9342       if (Range.contains(V0->getValue()))
9343         return false;
9344       // X should be at least 1, so X-1 is non-negative.
9345       ConstantInt *C1 = ConstantInt::get(SE.getContext(), X-1);
9346       ConstantInt *V1 = EvaluateConstantChrecAtConstant(AddRec, C1, SE);
9347       if (Range.contains(V1->getValue()))
9348         return true;
9349       return false;
9350     };
9351 
9352     // If SolveQuadraticEquationWrap returns None, it means that there can
9353     // be a solution, but the function failed to find it. We cannot treat it
9354     // as "no solution".
9355     if (!SO.hasValue() || !UO.hasValue())
9356       return { None, false };
9357 
9358     // Check the smaller value first to see if it leaves the range.
9359     // At this point, both SO and UO must have values.
9360     Optional<APInt> Min = MinOptional(SO, UO);
9361     if (LeavesRange(*Min))
9362       return { Min, true };
9363     Optional<APInt> Max = Min == SO ? UO : SO;
9364     if (LeavesRange(*Max))
9365       return { Max, true };
9366 
9367     // Solutions were found, but were eliminated, hence the "true".
9368     return { None, true };
9369   };
9370 
9371   std::tie(A, B, C, M, BitWidth) = *T;
9372   // Lower bound is inclusive, subtract 1 to represent the exiting value.
9373   APInt Lower = Range.getLower().sextOrSelf(A.getBitWidth()) - 1;
9374   APInt Upper = Range.getUpper().sextOrSelf(A.getBitWidth());
9375   auto SL = SolveForBoundary(Lower);
9376   auto SU = SolveForBoundary(Upper);
9377   // If any of the solutions was unknown, no meaninigful conclusions can
9378   // be made.
9379   if (!SL.second || !SU.second)
9380     return None;
9381 
9382   // Claim: The correct solution is not some value between Min and Max.
9383   //
9384   // Justification: Assuming that Min and Max are different values, one of
9385   // them is when the first signed overflow happens, the other is when the
9386   // first unsigned overflow happens. Crossing the range boundary is only
9387   // possible via an overflow (treating 0 as a special case of it, modeling
9388   // an overflow as crossing k*2^W for some k).
9389   //
9390   // The interesting case here is when Min was eliminated as an invalid
9391   // solution, but Max was not. The argument is that if there was another
9392   // overflow between Min and Max, it would also have been eliminated if
9393   // it was considered.
9394   //
9395   // For a given boundary, it is possible to have two overflows of the same
9396   // type (signed/unsigned) without having the other type in between: this
9397   // can happen when the vertex of the parabola is between the iterations
9398   // corresponding to the overflows. This is only possible when the two
9399   // overflows cross k*2^W for the same k. In such case, if the second one
9400   // left the range (and was the first one to do so), the first overflow
9401   // would have to enter the range, which would mean that either we had left
9402   // the range before or that we started outside of it. Both of these cases
9403   // are contradictions.
9404   //
9405   // Claim: In the case where SolveForBoundary returns None, the correct
9406   // solution is not some value between the Max for this boundary and the
9407   // Min of the other boundary.
9408   //
9409   // Justification: Assume that we had such Max_A and Min_B corresponding
9410   // to range boundaries A and B and such that Max_A < Min_B. If there was
9411   // a solution between Max_A and Min_B, it would have to be caused by an
9412   // overflow corresponding to either A or B. It cannot correspond to B,
9413   // since Min_B is the first occurrence of such an overflow. If it
9414   // corresponded to A, it would have to be either a signed or an unsigned
9415   // overflow that is larger than both eliminated overflows for A. But
9416   // between the eliminated overflows and this overflow, the values would
9417   // cover the entire value space, thus crossing the other boundary, which
9418   // is a contradiction.
9419 
9420   return TruncIfPossible(MinOptional(SL.first, SU.first), BitWidth);
9421 }
9422 
9423 ScalarEvolution::ExitLimit
9424 ScalarEvolution::howFarToZero(const SCEV *V, const Loop *L, bool ControlsExit,
9425                               bool AllowPredicates) {
9426 
9427   // This is only used for loops with a "x != y" exit test. The exit condition
9428   // is now expressed as a single expression, V = x-y. So the exit test is
9429   // effectively V != 0.  We know and take advantage of the fact that this
9430   // expression only being used in a comparison by zero context.
9431 
9432   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
9433   // If the value is a constant
9434   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9435     // If the value is already zero, the branch will execute zero times.
9436     if (C->getValue()->isZero()) return C;
9437     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9438   }
9439 
9440   const SCEVAddRecExpr *AddRec =
9441       dyn_cast<SCEVAddRecExpr>(stripInjectiveFunctions(V));
9442 
9443   if (!AddRec && AllowPredicates)
9444     // Try to make this an AddRec using runtime tests, in the first X
9445     // iterations of this loop, where X is the SCEV expression found by the
9446     // algorithm below.
9447     AddRec = convertSCEVToAddRecWithPredicates(V, L, Predicates);
9448 
9449   if (!AddRec || AddRec->getLoop() != L)
9450     return getCouldNotCompute();
9451 
9452   // If this is a quadratic (3-term) AddRec {L,+,M,+,N}, find the roots of
9453   // the quadratic equation to solve it.
9454   if (AddRec->isQuadratic() && AddRec->getType()->isIntegerTy()) {
9455     // We can only use this value if the chrec ends up with an exact zero
9456     // value at this index.  When solving for "X*X != 5", for example, we
9457     // should not accept a root of 2.
9458     if (auto S = SolveQuadraticAddRecExact(AddRec, *this)) {
9459       const auto *R = cast<SCEVConstant>(getConstant(S.getValue()));
9460       return ExitLimit(R, R, false, Predicates);
9461     }
9462     return getCouldNotCompute();
9463   }
9464 
9465   // Otherwise we can only handle this if it is affine.
9466   if (!AddRec->isAffine())
9467     return getCouldNotCompute();
9468 
9469   // If this is an affine expression, the execution count of this branch is
9470   // the minimum unsigned root of the following equation:
9471   //
9472   //     Start + Step*N = 0 (mod 2^BW)
9473   //
9474   // equivalent to:
9475   //
9476   //             Step*N = -Start (mod 2^BW)
9477   //
9478   // where BW is the common bit width of Start and Step.
9479 
9480   // Get the initial value for the loop.
9481   const SCEV *Start = getSCEVAtScope(AddRec->getStart(), L->getParentLoop());
9482   const SCEV *Step = getSCEVAtScope(AddRec->getOperand(1), L->getParentLoop());
9483 
9484   // For now we handle only constant steps.
9485   //
9486   // TODO: Handle a nonconstant Step given AddRec<NUW>. If the
9487   // AddRec is NUW, then (in an unsigned sense) it cannot be counting up to wrap
9488   // to 0, it must be counting down to equal 0. Consequently, N = Start / -Step.
9489   // We have not yet seen any such cases.
9490   const SCEVConstant *StepC = dyn_cast<SCEVConstant>(Step);
9491   if (!StepC || StepC->getValue()->isZero())
9492     return getCouldNotCompute();
9493 
9494   // For positive steps (counting up until unsigned overflow):
9495   //   N = -Start/Step (as unsigned)
9496   // For negative steps (counting down to zero):
9497   //   N = Start/-Step
9498   // First compute the unsigned distance from zero in the direction of Step.
9499   bool CountDown = StepC->getAPInt().isNegative();
9500   const SCEV *Distance = CountDown ? Start : getNegativeSCEV(Start);
9501 
9502   // Handle unitary steps, which cannot wraparound.
9503   // 1*N = -Start; -1*N = Start (mod 2^BW), so:
9504   //   N = Distance (as unsigned)
9505   if (StepC->getValue()->isOne() || StepC->getValue()->isMinusOne()) {
9506     APInt MaxBECount = getUnsignedRangeMax(applyLoopGuards(Distance, L));
9507     APInt MaxBECountBase = getUnsignedRangeMax(Distance);
9508     if (MaxBECountBase.ult(MaxBECount))
9509       MaxBECount = MaxBECountBase;
9510 
9511     // When a loop like "for (int i = 0; i != n; ++i) { /* body */ }" is rotated,
9512     // we end up with a loop whose backedge-taken count is n - 1.  Detect this
9513     // case, and see if we can improve the bound.
9514     //
9515     // Explicitly handling this here is necessary because getUnsignedRange
9516     // isn't context-sensitive; it doesn't know that we only care about the
9517     // range inside the loop.
9518     const SCEV *Zero = getZero(Distance->getType());
9519     const SCEV *One = getOne(Distance->getType());
9520     const SCEV *DistancePlusOne = getAddExpr(Distance, One);
9521     if (isLoopEntryGuardedByCond(L, ICmpInst::ICMP_NE, DistancePlusOne, Zero)) {
9522       // If Distance + 1 doesn't overflow, we can compute the maximum distance
9523       // as "unsigned_max(Distance + 1) - 1".
9524       ConstantRange CR = getUnsignedRange(DistancePlusOne);
9525       MaxBECount = APIntOps::umin(MaxBECount, CR.getUnsignedMax() - 1);
9526     }
9527     return ExitLimit(Distance, getConstant(MaxBECount), false, Predicates);
9528   }
9529 
9530   // If the condition controls loop exit (the loop exits only if the expression
9531   // is true) and the addition is no-wrap we can use unsigned divide to
9532   // compute the backedge count.  In this case, the step may not divide the
9533   // distance, but we don't care because if the condition is "missed" the loop
9534   // will have undefined behavior due to wrapping.
9535   if (ControlsExit && AddRec->hasNoSelfWrap() &&
9536       loopHasNoAbnormalExits(AddRec->getLoop())) {
9537     const SCEV *Exact =
9538         getUDivExpr(Distance, CountDown ? getNegativeSCEV(Step) : Step);
9539     const SCEV *Max = getCouldNotCompute();
9540     if (Exact != getCouldNotCompute()) {
9541       APInt MaxInt = getUnsignedRangeMax(applyLoopGuards(Exact, L));
9542       APInt BaseMaxInt = getUnsignedRangeMax(Exact);
9543       if (BaseMaxInt.ult(MaxInt))
9544         Max = getConstant(BaseMaxInt);
9545       else
9546         Max = getConstant(MaxInt);
9547     }
9548     return ExitLimit(Exact, Max, false, Predicates);
9549   }
9550 
9551   // Solve the general equation.
9552   const SCEV *E = SolveLinEquationWithOverflow(StepC->getAPInt(),
9553                                                getNegativeSCEV(Start), *this);
9554   const SCEV *M = E == getCouldNotCompute()
9555                       ? E
9556                       : getConstant(getUnsignedRangeMax(E));
9557   return ExitLimit(E, M, false, Predicates);
9558 }
9559 
9560 ScalarEvolution::ExitLimit
9561 ScalarEvolution::howFarToNonZero(const SCEV *V, const Loop *L) {
9562   // Loops that look like: while (X == 0) are very strange indeed.  We don't
9563   // handle them yet except for the trivial case.  This could be expanded in the
9564   // future as needed.
9565 
9566   // If the value is a constant, check to see if it is known to be non-zero
9567   // already.  If so, the backedge will execute zero times.
9568   if (const SCEVConstant *C = dyn_cast<SCEVConstant>(V)) {
9569     if (!C->getValue()->isZero())
9570       return getZero(C->getType());
9571     return getCouldNotCompute();  // Otherwise it will loop infinitely.
9572   }
9573 
9574   // We could implement others, but I really doubt anyone writes loops like
9575   // this, and if they did, they would already be constant folded.
9576   return getCouldNotCompute();
9577 }
9578 
9579 std::pair<const BasicBlock *, const BasicBlock *>
9580 ScalarEvolution::getPredecessorWithUniqueSuccessorForBB(const BasicBlock *BB)
9581     const {
9582   // If the block has a unique predecessor, then there is no path from the
9583   // predecessor to the block that does not go through the direct edge
9584   // from the predecessor to the block.
9585   if (const BasicBlock *Pred = BB->getSinglePredecessor())
9586     return {Pred, BB};
9587 
9588   // A loop's header is defined to be a block that dominates the loop.
9589   // If the header has a unique predecessor outside the loop, it must be
9590   // a block that has exactly one successor that can reach the loop.
9591   if (const Loop *L = LI.getLoopFor(BB))
9592     return {L->getLoopPredecessor(), L->getHeader()};
9593 
9594   return {nullptr, nullptr};
9595 }
9596 
9597 /// SCEV structural equivalence is usually sufficient for testing whether two
9598 /// expressions are equal, however for the purposes of looking for a condition
9599 /// guarding a loop, it can be useful to be a little more general, since a
9600 /// front-end may have replicated the controlling expression.
9601 static bool HasSameValue(const SCEV *A, const SCEV *B) {
9602   // Quick check to see if they are the same SCEV.
9603   if (A == B) return true;
9604 
9605   auto ComputesEqualValues = [](const Instruction *A, const Instruction *B) {
9606     // Not all instructions that are "identical" compute the same value.  For
9607     // instance, two distinct alloca instructions allocating the same type are
9608     // identical and do not read memory; but compute distinct values.
9609     return A->isIdenticalTo(B) && (isa<BinaryOperator>(A) || isa<GetElementPtrInst>(A));
9610   };
9611 
9612   // Otherwise, if they're both SCEVUnknown, it's possible that they hold
9613   // two different instructions with the same value. Check for this case.
9614   if (const SCEVUnknown *AU = dyn_cast<SCEVUnknown>(A))
9615     if (const SCEVUnknown *BU = dyn_cast<SCEVUnknown>(B))
9616       if (const Instruction *AI = dyn_cast<Instruction>(AU->getValue()))
9617         if (const Instruction *BI = dyn_cast<Instruction>(BU->getValue()))
9618           if (ComputesEqualValues(AI, BI))
9619             return true;
9620 
9621   // Otherwise assume they may have a different value.
9622   return false;
9623 }
9624 
9625 bool ScalarEvolution::SimplifyICmpOperands(ICmpInst::Predicate &Pred,
9626                                            const SCEV *&LHS, const SCEV *&RHS,
9627                                            unsigned Depth) {
9628   bool Changed = false;
9629   // Simplifies ICMP to trivial true or false by turning it into '0 == 0' or
9630   // '0 != 0'.
9631   auto TrivialCase = [&](bool TriviallyTrue) {
9632     LHS = RHS = getConstant(ConstantInt::getFalse(getContext()));
9633     Pred = TriviallyTrue ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE;
9634     return true;
9635   };
9636   // If we hit the max recursion limit bail out.
9637   if (Depth >= 3)
9638     return false;
9639 
9640   // Canonicalize a constant to the right side.
9641   if (const SCEVConstant *LHSC = dyn_cast<SCEVConstant>(LHS)) {
9642     // Check for both operands constant.
9643     if (const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS)) {
9644       if (ConstantExpr::getICmp(Pred,
9645                                 LHSC->getValue(),
9646                                 RHSC->getValue())->isNullValue())
9647         return TrivialCase(false);
9648       else
9649         return TrivialCase(true);
9650     }
9651     // Otherwise swap the operands to put the constant on the right.
9652     std::swap(LHS, RHS);
9653     Pred = ICmpInst::getSwappedPredicate(Pred);
9654     Changed = true;
9655   }
9656 
9657   // If we're comparing an addrec with a value which is loop-invariant in the
9658   // addrec's loop, put the addrec on the left. Also make a dominance check,
9659   // as both operands could be addrecs loop-invariant in each other's loop.
9660   if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(RHS)) {
9661     const Loop *L = AR->getLoop();
9662     if (isLoopInvariant(LHS, L) && properlyDominates(LHS, L->getHeader())) {
9663       std::swap(LHS, RHS);
9664       Pred = ICmpInst::getSwappedPredicate(Pred);
9665       Changed = true;
9666     }
9667   }
9668 
9669   // If there's a constant operand, canonicalize comparisons with boundary
9670   // cases, and canonicalize *-or-equal comparisons to regular comparisons.
9671   if (const SCEVConstant *RC = dyn_cast<SCEVConstant>(RHS)) {
9672     const APInt &RA = RC->getAPInt();
9673 
9674     bool SimplifiedByConstantRange = false;
9675 
9676     if (!ICmpInst::isEquality(Pred)) {
9677       ConstantRange ExactCR = ConstantRange::makeExactICmpRegion(Pred, RA);
9678       if (ExactCR.isFullSet())
9679         return TrivialCase(true);
9680       else if (ExactCR.isEmptySet())
9681         return TrivialCase(false);
9682 
9683       APInt NewRHS;
9684       CmpInst::Predicate NewPred;
9685       if (ExactCR.getEquivalentICmp(NewPred, NewRHS) &&
9686           ICmpInst::isEquality(NewPred)) {
9687         // We were able to convert an inequality to an equality.
9688         Pred = NewPred;
9689         RHS = getConstant(NewRHS);
9690         Changed = SimplifiedByConstantRange = true;
9691       }
9692     }
9693 
9694     if (!SimplifiedByConstantRange) {
9695       switch (Pred) {
9696       default:
9697         break;
9698       case ICmpInst::ICMP_EQ:
9699       case ICmpInst::ICMP_NE:
9700         // Fold ((-1) * %a) + %b == 0 (equivalent to %b-%a == 0) into %a == %b.
9701         if (!RA)
9702           if (const SCEVAddExpr *AE = dyn_cast<SCEVAddExpr>(LHS))
9703             if (const SCEVMulExpr *ME =
9704                     dyn_cast<SCEVMulExpr>(AE->getOperand(0)))
9705               if (AE->getNumOperands() == 2 && ME->getNumOperands() == 2 &&
9706                   ME->getOperand(0)->isAllOnesValue()) {
9707                 RHS = AE->getOperand(1);
9708                 LHS = ME->getOperand(1);
9709                 Changed = true;
9710               }
9711         break;
9712 
9713 
9714         // The "Should have been caught earlier!" messages refer to the fact
9715         // that the ExactCR.isFullSet() or ExactCR.isEmptySet() check above
9716         // should have fired on the corresponding cases, and canonicalized the
9717         // check to trivial case.
9718 
9719       case ICmpInst::ICMP_UGE:
9720         assert(!RA.isMinValue() && "Should have been caught earlier!");
9721         Pred = ICmpInst::ICMP_UGT;
9722         RHS = getConstant(RA - 1);
9723         Changed = true;
9724         break;
9725       case ICmpInst::ICMP_ULE:
9726         assert(!RA.isMaxValue() && "Should have been caught earlier!");
9727         Pred = ICmpInst::ICMP_ULT;
9728         RHS = getConstant(RA + 1);
9729         Changed = true;
9730         break;
9731       case ICmpInst::ICMP_SGE:
9732         assert(!RA.isMinSignedValue() && "Should have been caught earlier!");
9733         Pred = ICmpInst::ICMP_SGT;
9734         RHS = getConstant(RA - 1);
9735         Changed = true;
9736         break;
9737       case ICmpInst::ICMP_SLE:
9738         assert(!RA.isMaxSignedValue() && "Should have been caught earlier!");
9739         Pred = ICmpInst::ICMP_SLT;
9740         RHS = getConstant(RA + 1);
9741         Changed = true;
9742         break;
9743       }
9744     }
9745   }
9746 
9747   // Check for obvious equality.
9748   if (HasSameValue(LHS, RHS)) {
9749     if (ICmpInst::isTrueWhenEqual(Pred))
9750       return TrivialCase(true);
9751     if (ICmpInst::isFalseWhenEqual(Pred))
9752       return TrivialCase(false);
9753   }
9754 
9755   // If possible, canonicalize GE/LE comparisons to GT/LT comparisons, by
9756   // adding or subtracting 1 from one of the operands.
9757   switch (Pred) {
9758   case ICmpInst::ICMP_SLE:
9759     if (!getSignedRangeMax(RHS).isMaxSignedValue()) {
9760       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9761                        SCEV::FlagNSW);
9762       Pred = ICmpInst::ICMP_SLT;
9763       Changed = true;
9764     } else if (!getSignedRangeMin(LHS).isMinSignedValue()) {
9765       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS,
9766                        SCEV::FlagNSW);
9767       Pred = ICmpInst::ICMP_SLT;
9768       Changed = true;
9769     }
9770     break;
9771   case ICmpInst::ICMP_SGE:
9772     if (!getSignedRangeMin(RHS).isMinSignedValue()) {
9773       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS,
9774                        SCEV::FlagNSW);
9775       Pred = ICmpInst::ICMP_SGT;
9776       Changed = true;
9777     } else if (!getSignedRangeMax(LHS).isMaxSignedValue()) {
9778       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9779                        SCEV::FlagNSW);
9780       Pred = ICmpInst::ICMP_SGT;
9781       Changed = true;
9782     }
9783     break;
9784   case ICmpInst::ICMP_ULE:
9785     if (!getUnsignedRangeMax(RHS).isMaxValue()) {
9786       RHS = getAddExpr(getConstant(RHS->getType(), 1, true), RHS,
9787                        SCEV::FlagNUW);
9788       Pred = ICmpInst::ICMP_ULT;
9789       Changed = true;
9790     } else if (!getUnsignedRangeMin(LHS).isMinValue()) {
9791       LHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), LHS);
9792       Pred = ICmpInst::ICMP_ULT;
9793       Changed = true;
9794     }
9795     break;
9796   case ICmpInst::ICMP_UGE:
9797     if (!getUnsignedRangeMin(RHS).isMinValue()) {
9798       RHS = getAddExpr(getConstant(RHS->getType(), (uint64_t)-1, true), RHS);
9799       Pred = ICmpInst::ICMP_UGT;
9800       Changed = true;
9801     } else if (!getUnsignedRangeMax(LHS).isMaxValue()) {
9802       LHS = getAddExpr(getConstant(RHS->getType(), 1, true), LHS,
9803                        SCEV::FlagNUW);
9804       Pred = ICmpInst::ICMP_UGT;
9805       Changed = true;
9806     }
9807     break;
9808   default:
9809     break;
9810   }
9811 
9812   // TODO: More simplifications are possible here.
9813 
9814   // Recursively simplify until we either hit a recursion limit or nothing
9815   // changes.
9816   if (Changed)
9817     return SimplifyICmpOperands(Pred, LHS, RHS, Depth+1);
9818 
9819   return Changed;
9820 }
9821 
9822 bool ScalarEvolution::isKnownNegative(const SCEV *S) {
9823   return getSignedRangeMax(S).isNegative();
9824 }
9825 
9826 bool ScalarEvolution::isKnownPositive(const SCEV *S) {
9827   return getSignedRangeMin(S).isStrictlyPositive();
9828 }
9829 
9830 bool ScalarEvolution::isKnownNonNegative(const SCEV *S) {
9831   return !getSignedRangeMin(S).isNegative();
9832 }
9833 
9834 bool ScalarEvolution::isKnownNonPositive(const SCEV *S) {
9835   return !getSignedRangeMax(S).isStrictlyPositive();
9836 }
9837 
9838 bool ScalarEvolution::isKnownNonZero(const SCEV *S) {
9839   return getUnsignedRangeMin(S) != 0;
9840 }
9841 
9842 std::pair<const SCEV *, const SCEV *>
9843 ScalarEvolution::SplitIntoInitAndPostInc(const Loop *L, const SCEV *S) {
9844   // Compute SCEV on entry of loop L.
9845   const SCEV *Start = SCEVInitRewriter::rewrite(S, L, *this);
9846   if (Start == getCouldNotCompute())
9847     return { Start, Start };
9848   // Compute post increment SCEV for loop L.
9849   const SCEV *PostInc = SCEVPostIncRewriter::rewrite(S, L, *this);
9850   assert(PostInc != getCouldNotCompute() && "Unexpected could not compute");
9851   return { Start, PostInc };
9852 }
9853 
9854 bool ScalarEvolution::isKnownViaInduction(ICmpInst::Predicate Pred,
9855                                           const SCEV *LHS, const SCEV *RHS) {
9856   // First collect all loops.
9857   SmallPtrSet<const Loop *, 8> LoopsUsed;
9858   getUsedLoops(LHS, LoopsUsed);
9859   getUsedLoops(RHS, LoopsUsed);
9860 
9861   if (LoopsUsed.empty())
9862     return false;
9863 
9864   // Domination relationship must be a linear order on collected loops.
9865 #ifndef NDEBUG
9866   for (auto *L1 : LoopsUsed)
9867     for (auto *L2 : LoopsUsed)
9868       assert((DT.dominates(L1->getHeader(), L2->getHeader()) ||
9869               DT.dominates(L2->getHeader(), L1->getHeader())) &&
9870              "Domination relationship is not a linear order");
9871 #endif
9872 
9873   const Loop *MDL =
9874       *std::max_element(LoopsUsed.begin(), LoopsUsed.end(),
9875                         [&](const Loop *L1, const Loop *L2) {
9876          return DT.properlyDominates(L1->getHeader(), L2->getHeader());
9877        });
9878 
9879   // Get init and post increment value for LHS.
9880   auto SplitLHS = SplitIntoInitAndPostInc(MDL, LHS);
9881   // if LHS contains unknown non-invariant SCEV then bail out.
9882   if (SplitLHS.first == getCouldNotCompute())
9883     return false;
9884   assert (SplitLHS.second != getCouldNotCompute() && "Unexpected CNC");
9885   // Get init and post increment value for RHS.
9886   auto SplitRHS = SplitIntoInitAndPostInc(MDL, RHS);
9887   // if RHS contains unknown non-invariant SCEV then bail out.
9888   if (SplitRHS.first == getCouldNotCompute())
9889     return false;
9890   assert (SplitRHS.second != getCouldNotCompute() && "Unexpected CNC");
9891   // It is possible that init SCEV contains an invariant load but it does
9892   // not dominate MDL and is not available at MDL loop entry, so we should
9893   // check it here.
9894   if (!isAvailableAtLoopEntry(SplitLHS.first, MDL) ||
9895       !isAvailableAtLoopEntry(SplitRHS.first, MDL))
9896     return false;
9897 
9898   // It seems backedge guard check is faster than entry one so in some cases
9899   // it can speed up whole estimation by short circuit
9900   return isLoopBackedgeGuardedByCond(MDL, Pred, SplitLHS.second,
9901                                      SplitRHS.second) &&
9902          isLoopEntryGuardedByCond(MDL, Pred, SplitLHS.first, SplitRHS.first);
9903 }
9904 
9905 bool ScalarEvolution::isKnownPredicate(ICmpInst::Predicate Pred,
9906                                        const SCEV *LHS, const SCEV *RHS) {
9907   // Canonicalize the inputs first.
9908   (void)SimplifyICmpOperands(Pred, LHS, RHS);
9909 
9910   if (isKnownViaInduction(Pred, LHS, RHS))
9911     return true;
9912 
9913   if (isKnownPredicateViaSplitting(Pred, LHS, RHS))
9914     return true;
9915 
9916   // Otherwise see what can be done with some simple reasoning.
9917   return isKnownViaNonRecursiveReasoning(Pred, LHS, RHS);
9918 }
9919 
9920 Optional<bool> ScalarEvolution::evaluatePredicate(ICmpInst::Predicate Pred,
9921                                                   const SCEV *LHS,
9922                                                   const SCEV *RHS) {
9923   if (isKnownPredicate(Pred, LHS, RHS))
9924     return true;
9925   else if (isKnownPredicate(ICmpInst::getInversePredicate(Pred), LHS, RHS))
9926     return false;
9927   return None;
9928 }
9929 
9930 bool ScalarEvolution::isKnownPredicateAt(ICmpInst::Predicate Pred,
9931                                          const SCEV *LHS, const SCEV *RHS,
9932                                          const Instruction *CtxI) {
9933   // TODO: Analyze guards and assumes from Context's block.
9934   return isKnownPredicate(Pred, LHS, RHS) ||
9935          isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS);
9936 }
9937 
9938 Optional<bool> ScalarEvolution::evaluatePredicateAt(ICmpInst::Predicate Pred,
9939                                                     const SCEV *LHS,
9940                                                     const SCEV *RHS,
9941                                                     const Instruction *CtxI) {
9942   Optional<bool> KnownWithoutContext = evaluatePredicate(Pred, LHS, RHS);
9943   if (KnownWithoutContext)
9944     return KnownWithoutContext;
9945 
9946   if (isBasicBlockEntryGuardedByCond(CtxI->getParent(), Pred, LHS, RHS))
9947     return true;
9948   else if (isBasicBlockEntryGuardedByCond(CtxI->getParent(),
9949                                           ICmpInst::getInversePredicate(Pred),
9950                                           LHS, RHS))
9951     return false;
9952   return None;
9953 }
9954 
9955 bool ScalarEvolution::isKnownOnEveryIteration(ICmpInst::Predicate Pred,
9956                                               const SCEVAddRecExpr *LHS,
9957                                               const SCEV *RHS) {
9958   const Loop *L = LHS->getLoop();
9959   return isLoopEntryGuardedByCond(L, Pred, LHS->getStart(), RHS) &&
9960          isLoopBackedgeGuardedByCond(L, Pred, LHS->getPostIncExpr(*this), RHS);
9961 }
9962 
9963 Optional<ScalarEvolution::MonotonicPredicateType>
9964 ScalarEvolution::getMonotonicPredicateType(const SCEVAddRecExpr *LHS,
9965                                            ICmpInst::Predicate Pred) {
9966   auto Result = getMonotonicPredicateTypeImpl(LHS, Pred);
9967 
9968 #ifndef NDEBUG
9969   // Verify an invariant: inverting the predicate should turn a monotonically
9970   // increasing change to a monotonically decreasing one, and vice versa.
9971   if (Result) {
9972     auto ResultSwapped =
9973         getMonotonicPredicateTypeImpl(LHS, ICmpInst::getSwappedPredicate(Pred));
9974 
9975     assert(ResultSwapped.hasValue() && "should be able to analyze both!");
9976     assert(ResultSwapped.getValue() != Result.getValue() &&
9977            "monotonicity should flip as we flip the predicate");
9978   }
9979 #endif
9980 
9981   return Result;
9982 }
9983 
9984 Optional<ScalarEvolution::MonotonicPredicateType>
9985 ScalarEvolution::getMonotonicPredicateTypeImpl(const SCEVAddRecExpr *LHS,
9986                                                ICmpInst::Predicate Pred) {
9987   // A zero step value for LHS means the induction variable is essentially a
9988   // loop invariant value. We don't really depend on the predicate actually
9989   // flipping from false to true (for increasing predicates, and the other way
9990   // around for decreasing predicates), all we care about is that *if* the
9991   // predicate changes then it only changes from false to true.
9992   //
9993   // A zero step value in itself is not very useful, but there may be places
9994   // where SCEV can prove X >= 0 but not prove X > 0, so it is helpful to be
9995   // as general as possible.
9996 
9997   // Only handle LE/LT/GE/GT predicates.
9998   if (!ICmpInst::isRelational(Pred))
9999     return None;
10000 
10001   bool IsGreater = ICmpInst::isGE(Pred) || ICmpInst::isGT(Pred);
10002   assert((IsGreater || ICmpInst::isLE(Pred) || ICmpInst::isLT(Pred)) &&
10003          "Should be greater or less!");
10004 
10005   // Check that AR does not wrap.
10006   if (ICmpInst::isUnsigned(Pred)) {
10007     if (!LHS->hasNoUnsignedWrap())
10008       return None;
10009     return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10010   } else {
10011     assert(ICmpInst::isSigned(Pred) &&
10012            "Relational predicate is either signed or unsigned!");
10013     if (!LHS->hasNoSignedWrap())
10014       return None;
10015 
10016     const SCEV *Step = LHS->getStepRecurrence(*this);
10017 
10018     if (isKnownNonNegative(Step))
10019       return IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10020 
10021     if (isKnownNonPositive(Step))
10022       return !IsGreater ? MonotonicallyIncreasing : MonotonicallyDecreasing;
10023 
10024     return None;
10025   }
10026 }
10027 
10028 Optional<ScalarEvolution::LoopInvariantPredicate>
10029 ScalarEvolution::getLoopInvariantPredicate(ICmpInst::Predicate Pred,
10030                                            const SCEV *LHS, const SCEV *RHS,
10031                                            const Loop *L) {
10032 
10033   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10034   if (!isLoopInvariant(RHS, L)) {
10035     if (!isLoopInvariant(LHS, L))
10036       return None;
10037 
10038     std::swap(LHS, RHS);
10039     Pred = ICmpInst::getSwappedPredicate(Pred);
10040   }
10041 
10042   const SCEVAddRecExpr *ArLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10043   if (!ArLHS || ArLHS->getLoop() != L)
10044     return None;
10045 
10046   auto MonotonicType = getMonotonicPredicateType(ArLHS, Pred);
10047   if (!MonotonicType)
10048     return None;
10049   // If the predicate "ArLHS `Pred` RHS" monotonically increases from false to
10050   // true as the loop iterates, and the backedge is control dependent on
10051   // "ArLHS `Pred` RHS" == true then we can reason as follows:
10052   //
10053   //   * if the predicate was false in the first iteration then the predicate
10054   //     is never evaluated again, since the loop exits without taking the
10055   //     backedge.
10056   //   * if the predicate was true in the first iteration then it will
10057   //     continue to be true for all future iterations since it is
10058   //     monotonically increasing.
10059   //
10060   // For both the above possibilities, we can replace the loop varying
10061   // predicate with its value on the first iteration of the loop (which is
10062   // loop invariant).
10063   //
10064   // A similar reasoning applies for a monotonically decreasing predicate, by
10065   // replacing true with false and false with true in the above two bullets.
10066   bool Increasing = *MonotonicType == ScalarEvolution::MonotonicallyIncreasing;
10067   auto P = Increasing ? Pred : ICmpInst::getInversePredicate(Pred);
10068 
10069   if (!isLoopBackedgeGuardedByCond(L, P, LHS, RHS))
10070     return None;
10071 
10072   return ScalarEvolution::LoopInvariantPredicate(Pred, ArLHS->getStart(), RHS);
10073 }
10074 
10075 Optional<ScalarEvolution::LoopInvariantPredicate>
10076 ScalarEvolution::getLoopInvariantExitCondDuringFirstIterations(
10077     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS, const Loop *L,
10078     const Instruction *CtxI, const SCEV *MaxIter) {
10079   // Try to prove the following set of facts:
10080   // - The predicate is monotonic in the iteration space.
10081   // - If the check does not fail on the 1st iteration:
10082   //   - No overflow will happen during first MaxIter iterations;
10083   //   - It will not fail on the MaxIter'th iteration.
10084   // If the check does fail on the 1st iteration, we leave the loop and no
10085   // other checks matter.
10086 
10087   // If there is a loop-invariant, force it into the RHS, otherwise bail out.
10088   if (!isLoopInvariant(RHS, L)) {
10089     if (!isLoopInvariant(LHS, L))
10090       return None;
10091 
10092     std::swap(LHS, RHS);
10093     Pred = ICmpInst::getSwappedPredicate(Pred);
10094   }
10095 
10096   auto *AR = dyn_cast<SCEVAddRecExpr>(LHS);
10097   if (!AR || AR->getLoop() != L)
10098     return None;
10099 
10100   // The predicate must be relational (i.e. <, <=, >=, >).
10101   if (!ICmpInst::isRelational(Pred))
10102     return None;
10103 
10104   // TODO: Support steps other than +/- 1.
10105   const SCEV *Step = AR->getStepRecurrence(*this);
10106   auto *One = getOne(Step->getType());
10107   auto *MinusOne = getNegativeSCEV(One);
10108   if (Step != One && Step != MinusOne)
10109     return None;
10110 
10111   // Type mismatch here means that MaxIter is potentially larger than max
10112   // unsigned value in start type, which mean we cannot prove no wrap for the
10113   // indvar.
10114   if (AR->getType() != MaxIter->getType())
10115     return None;
10116 
10117   // Value of IV on suggested last iteration.
10118   const SCEV *Last = AR->evaluateAtIteration(MaxIter, *this);
10119   // Does it still meet the requirement?
10120   if (!isLoopBackedgeGuardedByCond(L, Pred, Last, RHS))
10121     return None;
10122   // Because step is +/- 1 and MaxIter has same type as Start (i.e. it does
10123   // not exceed max unsigned value of this type), this effectively proves
10124   // that there is no wrap during the iteration. To prove that there is no
10125   // signed/unsigned wrap, we need to check that
10126   // Start <= Last for step = 1 or Start >= Last for step = -1.
10127   ICmpInst::Predicate NoOverflowPred =
10128       CmpInst::isSigned(Pred) ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
10129   if (Step == MinusOne)
10130     NoOverflowPred = CmpInst::getSwappedPredicate(NoOverflowPred);
10131   const SCEV *Start = AR->getStart();
10132   if (!isKnownPredicateAt(NoOverflowPred, Start, Last, CtxI))
10133     return None;
10134 
10135   // Everything is fine.
10136   return ScalarEvolution::LoopInvariantPredicate(Pred, Start, RHS);
10137 }
10138 
10139 bool ScalarEvolution::isKnownPredicateViaConstantRanges(
10140     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS) {
10141   if (HasSameValue(LHS, RHS))
10142     return ICmpInst::isTrueWhenEqual(Pred);
10143 
10144   // This code is split out from isKnownPredicate because it is called from
10145   // within isLoopEntryGuardedByCond.
10146 
10147   auto CheckRanges = [&](const ConstantRange &RangeLHS,
10148                          const ConstantRange &RangeRHS) {
10149     return RangeLHS.icmp(Pred, RangeRHS);
10150   };
10151 
10152   // The check at the top of the function catches the case where the values are
10153   // known to be equal.
10154   if (Pred == CmpInst::ICMP_EQ)
10155     return false;
10156 
10157   if (Pred == CmpInst::ICMP_NE) {
10158     if (CheckRanges(getSignedRange(LHS), getSignedRange(RHS)) ||
10159         CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS)))
10160       return true;
10161     auto *Diff = getMinusSCEV(LHS, RHS);
10162     return !isa<SCEVCouldNotCompute>(Diff) && isKnownNonZero(Diff);
10163   }
10164 
10165   if (CmpInst::isSigned(Pred))
10166     return CheckRanges(getSignedRange(LHS), getSignedRange(RHS));
10167 
10168   return CheckRanges(getUnsignedRange(LHS), getUnsignedRange(RHS));
10169 }
10170 
10171 bool ScalarEvolution::isKnownPredicateViaNoOverflow(ICmpInst::Predicate Pred,
10172                                                     const SCEV *LHS,
10173                                                     const SCEV *RHS) {
10174   // Match X to (A + C1)<ExpectedFlags> and Y to (A + C2)<ExpectedFlags>, where
10175   // C1 and C2 are constant integers. If either X or Y are not add expressions,
10176   // consider them as X + 0 and Y + 0 respectively. C1 and C2 are returned via
10177   // OutC1 and OutC2.
10178   auto MatchBinaryAddToConst = [this](const SCEV *X, const SCEV *Y,
10179                                       APInt &OutC1, APInt &OutC2,
10180                                       SCEV::NoWrapFlags ExpectedFlags) {
10181     const SCEV *XNonConstOp, *XConstOp;
10182     const SCEV *YNonConstOp, *YConstOp;
10183     SCEV::NoWrapFlags XFlagsPresent;
10184     SCEV::NoWrapFlags YFlagsPresent;
10185 
10186     if (!splitBinaryAdd(X, XConstOp, XNonConstOp, XFlagsPresent)) {
10187       XConstOp = getZero(X->getType());
10188       XNonConstOp = X;
10189       XFlagsPresent = ExpectedFlags;
10190     }
10191     if (!isa<SCEVConstant>(XConstOp) ||
10192         (XFlagsPresent & ExpectedFlags) != ExpectedFlags)
10193       return false;
10194 
10195     if (!splitBinaryAdd(Y, YConstOp, YNonConstOp, YFlagsPresent)) {
10196       YConstOp = getZero(Y->getType());
10197       YNonConstOp = Y;
10198       YFlagsPresent = ExpectedFlags;
10199     }
10200 
10201     if (!isa<SCEVConstant>(YConstOp) ||
10202         (YFlagsPresent & ExpectedFlags) != ExpectedFlags)
10203       return false;
10204 
10205     if (YNonConstOp != XNonConstOp)
10206       return false;
10207 
10208     OutC1 = cast<SCEVConstant>(XConstOp)->getAPInt();
10209     OutC2 = cast<SCEVConstant>(YConstOp)->getAPInt();
10210 
10211     return true;
10212   };
10213 
10214   APInt C1;
10215   APInt C2;
10216 
10217   switch (Pred) {
10218   default:
10219     break;
10220 
10221   case ICmpInst::ICMP_SGE:
10222     std::swap(LHS, RHS);
10223     LLVM_FALLTHROUGH;
10224   case ICmpInst::ICMP_SLE:
10225     // (X + C1)<nsw> s<= (X + C2)<nsw> if C1 s<= C2.
10226     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.sle(C2))
10227       return true;
10228 
10229     break;
10230 
10231   case ICmpInst::ICMP_SGT:
10232     std::swap(LHS, RHS);
10233     LLVM_FALLTHROUGH;
10234   case ICmpInst::ICMP_SLT:
10235     // (X + C1)<nsw> s< (X + C2)<nsw> if C1 s< C2.
10236     if (MatchBinaryAddToConst(LHS, RHS, C1, C2, SCEV::FlagNSW) && C1.slt(C2))
10237       return true;
10238 
10239     break;
10240 
10241   case ICmpInst::ICMP_UGE:
10242     std::swap(LHS, RHS);
10243     LLVM_FALLTHROUGH;
10244   case ICmpInst::ICMP_ULE:
10245     // (X + C1)<nuw> u<= (X + C2)<nuw> for C1 u<= C2.
10246     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ule(C2))
10247       return true;
10248 
10249     break;
10250 
10251   case ICmpInst::ICMP_UGT:
10252     std::swap(LHS, RHS);
10253     LLVM_FALLTHROUGH;
10254   case ICmpInst::ICMP_ULT:
10255     // (X + C1)<nuw> u< (X + C2)<nuw> if C1 u< C2.
10256     if (MatchBinaryAddToConst(RHS, LHS, C2, C1, SCEV::FlagNUW) && C1.ult(C2))
10257       return true;
10258     break;
10259   }
10260 
10261   return false;
10262 }
10263 
10264 bool ScalarEvolution::isKnownPredicateViaSplitting(ICmpInst::Predicate Pred,
10265                                                    const SCEV *LHS,
10266                                                    const SCEV *RHS) {
10267   if (Pred != ICmpInst::ICMP_ULT || ProvingSplitPredicate)
10268     return false;
10269 
10270   // Allowing arbitrary number of activations of isKnownPredicateViaSplitting on
10271   // the stack can result in exponential time complexity.
10272   SaveAndRestore<bool> Restore(ProvingSplitPredicate, true);
10273 
10274   // If L >= 0 then I `ult` L <=> I >= 0 && I `slt` L
10275   //
10276   // To prove L >= 0 we use isKnownNonNegative whereas to prove I >= 0 we use
10277   // isKnownPredicate.  isKnownPredicate is more powerful, but also more
10278   // expensive; and using isKnownNonNegative(RHS) is sufficient for most of the
10279   // interesting cases seen in practice.  We can consider "upgrading" L >= 0 to
10280   // use isKnownPredicate later if needed.
10281   return isKnownNonNegative(RHS) &&
10282          isKnownPredicate(CmpInst::ICMP_SGE, LHS, getZero(LHS->getType())) &&
10283          isKnownPredicate(CmpInst::ICMP_SLT, LHS, RHS);
10284 }
10285 
10286 bool ScalarEvolution::isImpliedViaGuard(const BasicBlock *BB,
10287                                         ICmpInst::Predicate Pred,
10288                                         const SCEV *LHS, const SCEV *RHS) {
10289   // No need to even try if we know the module has no guards.
10290   if (!HasGuards)
10291     return false;
10292 
10293   return any_of(*BB, [&](const Instruction &I) {
10294     using namespace llvm::PatternMatch;
10295 
10296     Value *Condition;
10297     return match(&I, m_Intrinsic<Intrinsic::experimental_guard>(
10298                          m_Value(Condition))) &&
10299            isImpliedCond(Pred, LHS, RHS, Condition, false);
10300   });
10301 }
10302 
10303 /// isLoopBackedgeGuardedByCond - Test whether the backedge of the loop is
10304 /// protected by a conditional between LHS and RHS.  This is used to
10305 /// to eliminate casts.
10306 bool
10307 ScalarEvolution::isLoopBackedgeGuardedByCond(const Loop *L,
10308                                              ICmpInst::Predicate Pred,
10309                                              const SCEV *LHS, const SCEV *RHS) {
10310   // Interpret a null as meaning no loop, where there is obviously no guard
10311   // (interprocedural conditions notwithstanding).
10312   if (!L) return true;
10313 
10314   if (VerifyIR)
10315     assert(!verifyFunction(*L->getHeader()->getParent(), &dbgs()) &&
10316            "This cannot be done on broken IR!");
10317 
10318 
10319   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10320     return true;
10321 
10322   BasicBlock *Latch = L->getLoopLatch();
10323   if (!Latch)
10324     return false;
10325 
10326   BranchInst *LoopContinuePredicate =
10327     dyn_cast<BranchInst>(Latch->getTerminator());
10328   if (LoopContinuePredicate && LoopContinuePredicate->isConditional() &&
10329       isImpliedCond(Pred, LHS, RHS,
10330                     LoopContinuePredicate->getCondition(),
10331                     LoopContinuePredicate->getSuccessor(0) != L->getHeader()))
10332     return true;
10333 
10334   // We don't want more than one activation of the following loops on the stack
10335   // -- that can lead to O(n!) time complexity.
10336   if (WalkingBEDominatingConds)
10337     return false;
10338 
10339   SaveAndRestore<bool> ClearOnExit(WalkingBEDominatingConds, true);
10340 
10341   // See if we can exploit a trip count to prove the predicate.
10342   const auto &BETakenInfo = getBackedgeTakenInfo(L);
10343   const SCEV *LatchBECount = BETakenInfo.getExact(Latch, this);
10344   if (LatchBECount != getCouldNotCompute()) {
10345     // We know that Latch branches back to the loop header exactly
10346     // LatchBECount times.  This means the backdege condition at Latch is
10347     // equivalent to  "{0,+,1} u< LatchBECount".
10348     Type *Ty = LatchBECount->getType();
10349     auto NoWrapFlags = SCEV::NoWrapFlags(SCEV::FlagNUW | SCEV::FlagNW);
10350     const SCEV *LoopCounter =
10351       getAddRecExpr(getZero(Ty), getOne(Ty), L, NoWrapFlags);
10352     if (isImpliedCond(Pred, LHS, RHS, ICmpInst::ICMP_ULT, LoopCounter,
10353                       LatchBECount))
10354       return true;
10355   }
10356 
10357   // Check conditions due to any @llvm.assume intrinsics.
10358   for (auto &AssumeVH : AC.assumptions()) {
10359     if (!AssumeVH)
10360       continue;
10361     auto *CI = cast<CallInst>(AssumeVH);
10362     if (!DT.dominates(CI, Latch->getTerminator()))
10363       continue;
10364 
10365     if (isImpliedCond(Pred, LHS, RHS, CI->getArgOperand(0), false))
10366       return true;
10367   }
10368 
10369   // If the loop is not reachable from the entry block, we risk running into an
10370   // infinite loop as we walk up into the dom tree.  These loops do not matter
10371   // anyway, so we just return a conservative answer when we see them.
10372   if (!DT.isReachableFromEntry(L->getHeader()))
10373     return false;
10374 
10375   if (isImpliedViaGuard(Latch, Pred, LHS, RHS))
10376     return true;
10377 
10378   for (DomTreeNode *DTN = DT[Latch], *HeaderDTN = DT[L->getHeader()];
10379        DTN != HeaderDTN; DTN = DTN->getIDom()) {
10380     assert(DTN && "should reach the loop header before reaching the root!");
10381 
10382     BasicBlock *BB = DTN->getBlock();
10383     if (isImpliedViaGuard(BB, Pred, LHS, RHS))
10384       return true;
10385 
10386     BasicBlock *PBB = BB->getSinglePredecessor();
10387     if (!PBB)
10388       continue;
10389 
10390     BranchInst *ContinuePredicate = dyn_cast<BranchInst>(PBB->getTerminator());
10391     if (!ContinuePredicate || !ContinuePredicate->isConditional())
10392       continue;
10393 
10394     Value *Condition = ContinuePredicate->getCondition();
10395 
10396     // If we have an edge `E` within the loop body that dominates the only
10397     // latch, the condition guarding `E` also guards the backedge.  This
10398     // reasoning works only for loops with a single latch.
10399 
10400     BasicBlockEdge DominatingEdge(PBB, BB);
10401     if (DominatingEdge.isSingleEdge()) {
10402       // We're constructively (and conservatively) enumerating edges within the
10403       // loop body that dominate the latch.  The dominator tree better agree
10404       // with us on this:
10405       assert(DT.dominates(DominatingEdge, Latch) && "should be!");
10406 
10407       if (isImpliedCond(Pred, LHS, RHS, Condition,
10408                         BB != ContinuePredicate->getSuccessor(0)))
10409         return true;
10410     }
10411   }
10412 
10413   return false;
10414 }
10415 
10416 bool ScalarEvolution::isBasicBlockEntryGuardedByCond(const BasicBlock *BB,
10417                                                      ICmpInst::Predicate Pred,
10418                                                      const SCEV *LHS,
10419                                                      const SCEV *RHS) {
10420   if (VerifyIR)
10421     assert(!verifyFunction(*BB->getParent(), &dbgs()) &&
10422            "This cannot be done on broken IR!");
10423 
10424   // If we cannot prove strict comparison (e.g. a > b), maybe we can prove
10425   // the facts (a >= b && a != b) separately. A typical situation is when the
10426   // non-strict comparison is known from ranges and non-equality is known from
10427   // dominating predicates. If we are proving strict comparison, we always try
10428   // to prove non-equality and non-strict comparison separately.
10429   auto NonStrictPredicate = ICmpInst::getNonStrictPredicate(Pred);
10430   const bool ProvingStrictComparison = (Pred != NonStrictPredicate);
10431   bool ProvedNonStrictComparison = false;
10432   bool ProvedNonEquality = false;
10433 
10434   auto SplitAndProve =
10435     [&](std::function<bool(ICmpInst::Predicate)> Fn) -> bool {
10436     if (!ProvedNonStrictComparison)
10437       ProvedNonStrictComparison = Fn(NonStrictPredicate);
10438     if (!ProvedNonEquality)
10439       ProvedNonEquality = Fn(ICmpInst::ICMP_NE);
10440     if (ProvedNonStrictComparison && ProvedNonEquality)
10441       return true;
10442     return false;
10443   };
10444 
10445   if (ProvingStrictComparison) {
10446     auto ProofFn = [&](ICmpInst::Predicate P) {
10447       return isKnownViaNonRecursiveReasoning(P, LHS, RHS);
10448     };
10449     if (SplitAndProve(ProofFn))
10450       return true;
10451   }
10452 
10453   // Try to prove (Pred, LHS, RHS) using isImpliedViaGuard.
10454   auto ProveViaGuard = [&](const BasicBlock *Block) {
10455     if (isImpliedViaGuard(Block, Pred, LHS, RHS))
10456       return true;
10457     if (ProvingStrictComparison) {
10458       auto ProofFn = [&](ICmpInst::Predicate P) {
10459         return isImpliedViaGuard(Block, P, LHS, RHS);
10460       };
10461       if (SplitAndProve(ProofFn))
10462         return true;
10463     }
10464     return false;
10465   };
10466 
10467   // Try to prove (Pred, LHS, RHS) using isImpliedCond.
10468   auto ProveViaCond = [&](const Value *Condition, bool Inverse) {
10469     const Instruction *CtxI = &BB->front();
10470     if (isImpliedCond(Pred, LHS, RHS, Condition, Inverse, CtxI))
10471       return true;
10472     if (ProvingStrictComparison) {
10473       auto ProofFn = [&](ICmpInst::Predicate P) {
10474         return isImpliedCond(P, LHS, RHS, Condition, Inverse, CtxI);
10475       };
10476       if (SplitAndProve(ProofFn))
10477         return true;
10478     }
10479     return false;
10480   };
10481 
10482   // Starting at the block's predecessor, climb up the predecessor chain, as long
10483   // as there are predecessors that can be found that have unique successors
10484   // leading to the original block.
10485   const Loop *ContainingLoop = LI.getLoopFor(BB);
10486   const BasicBlock *PredBB;
10487   if (ContainingLoop && ContainingLoop->getHeader() == BB)
10488     PredBB = ContainingLoop->getLoopPredecessor();
10489   else
10490     PredBB = BB->getSinglePredecessor();
10491   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(PredBB, BB);
10492        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
10493     if (ProveViaGuard(Pair.first))
10494       return true;
10495 
10496     const BranchInst *LoopEntryPredicate =
10497         dyn_cast<BranchInst>(Pair.first->getTerminator());
10498     if (!LoopEntryPredicate ||
10499         LoopEntryPredicate->isUnconditional())
10500       continue;
10501 
10502     if (ProveViaCond(LoopEntryPredicate->getCondition(),
10503                      LoopEntryPredicate->getSuccessor(0) != Pair.second))
10504       return true;
10505   }
10506 
10507   // Check conditions due to any @llvm.assume intrinsics.
10508   for (auto &AssumeVH : AC.assumptions()) {
10509     if (!AssumeVH)
10510       continue;
10511     auto *CI = cast<CallInst>(AssumeVH);
10512     if (!DT.dominates(CI, BB))
10513       continue;
10514 
10515     if (ProveViaCond(CI->getArgOperand(0), false))
10516       return true;
10517   }
10518 
10519   return false;
10520 }
10521 
10522 bool ScalarEvolution::isLoopEntryGuardedByCond(const Loop *L,
10523                                                ICmpInst::Predicate Pred,
10524                                                const SCEV *LHS,
10525                                                const SCEV *RHS) {
10526   // Interpret a null as meaning no loop, where there is obviously no guard
10527   // (interprocedural conditions notwithstanding).
10528   if (!L)
10529     return false;
10530 
10531   // Both LHS and RHS must be available at loop entry.
10532   assert(isAvailableAtLoopEntry(LHS, L) &&
10533          "LHS is not available at Loop Entry");
10534   assert(isAvailableAtLoopEntry(RHS, L) &&
10535          "RHS is not available at Loop Entry");
10536 
10537   if (isKnownViaNonRecursiveReasoning(Pred, LHS, RHS))
10538     return true;
10539 
10540   return isBasicBlockEntryGuardedByCond(L->getHeader(), Pred, LHS, RHS);
10541 }
10542 
10543 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10544                                     const SCEV *RHS,
10545                                     const Value *FoundCondValue, bool Inverse,
10546                                     const Instruction *CtxI) {
10547   // False conditions implies anything. Do not bother analyzing it further.
10548   if (FoundCondValue ==
10549       ConstantInt::getBool(FoundCondValue->getContext(), Inverse))
10550     return true;
10551 
10552   if (!PendingLoopPredicates.insert(FoundCondValue).second)
10553     return false;
10554 
10555   auto ClearOnExit =
10556       make_scope_exit([&]() { PendingLoopPredicates.erase(FoundCondValue); });
10557 
10558   // Recursively handle And and Or conditions.
10559   const Value *Op0, *Op1;
10560   if (match(FoundCondValue, m_LogicalAnd(m_Value(Op0), m_Value(Op1)))) {
10561     if (!Inverse)
10562       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10563              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10564   } else if (match(FoundCondValue, m_LogicalOr(m_Value(Op0), m_Value(Op1)))) {
10565     if (Inverse)
10566       return isImpliedCond(Pred, LHS, RHS, Op0, Inverse, CtxI) ||
10567              isImpliedCond(Pred, LHS, RHS, Op1, Inverse, CtxI);
10568   }
10569 
10570   const ICmpInst *ICI = dyn_cast<ICmpInst>(FoundCondValue);
10571   if (!ICI) return false;
10572 
10573   // Now that we found a conditional branch that dominates the loop or controls
10574   // the loop latch. Check to see if it is the comparison we are looking for.
10575   ICmpInst::Predicate FoundPred;
10576   if (Inverse)
10577     FoundPred = ICI->getInversePredicate();
10578   else
10579     FoundPred = ICI->getPredicate();
10580 
10581   const SCEV *FoundLHS = getSCEV(ICI->getOperand(0));
10582   const SCEV *FoundRHS = getSCEV(ICI->getOperand(1));
10583 
10584   return isImpliedCond(Pred, LHS, RHS, FoundPred, FoundLHS, FoundRHS, CtxI);
10585 }
10586 
10587 bool ScalarEvolution::isImpliedCond(ICmpInst::Predicate Pred, const SCEV *LHS,
10588                                     const SCEV *RHS,
10589                                     ICmpInst::Predicate FoundPred,
10590                                     const SCEV *FoundLHS, const SCEV *FoundRHS,
10591                                     const Instruction *CtxI) {
10592   // Balance the types.
10593   if (getTypeSizeInBits(LHS->getType()) <
10594       getTypeSizeInBits(FoundLHS->getType())) {
10595     // For unsigned and equality predicates, try to prove that both found
10596     // operands fit into narrow unsigned range. If so, try to prove facts in
10597     // narrow types.
10598     if (!CmpInst::isSigned(FoundPred) && !FoundLHS->getType()->isPointerTy()) {
10599       auto *NarrowType = LHS->getType();
10600       auto *WideType = FoundLHS->getType();
10601       auto BitWidth = getTypeSizeInBits(NarrowType);
10602       const SCEV *MaxValue = getZeroExtendExpr(
10603           getConstant(APInt::getMaxValue(BitWidth)), WideType);
10604       if (isKnownPredicate(ICmpInst::ICMP_ULE, FoundLHS, MaxValue) &&
10605           isKnownPredicate(ICmpInst::ICMP_ULE, FoundRHS, MaxValue)) {
10606         const SCEV *TruncFoundLHS = getTruncateExpr(FoundLHS, NarrowType);
10607         const SCEV *TruncFoundRHS = getTruncateExpr(FoundRHS, NarrowType);
10608         if (isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, TruncFoundLHS,
10609                                        TruncFoundRHS, CtxI))
10610           return true;
10611       }
10612     }
10613 
10614     if (LHS->getType()->isPointerTy())
10615       return false;
10616     if (CmpInst::isSigned(Pred)) {
10617       LHS = getSignExtendExpr(LHS, FoundLHS->getType());
10618       RHS = getSignExtendExpr(RHS, FoundLHS->getType());
10619     } else {
10620       LHS = getZeroExtendExpr(LHS, FoundLHS->getType());
10621       RHS = getZeroExtendExpr(RHS, FoundLHS->getType());
10622     }
10623   } else if (getTypeSizeInBits(LHS->getType()) >
10624       getTypeSizeInBits(FoundLHS->getType())) {
10625     if (FoundLHS->getType()->isPointerTy())
10626       return false;
10627     if (CmpInst::isSigned(FoundPred)) {
10628       FoundLHS = getSignExtendExpr(FoundLHS, LHS->getType());
10629       FoundRHS = getSignExtendExpr(FoundRHS, LHS->getType());
10630     } else {
10631       FoundLHS = getZeroExtendExpr(FoundLHS, LHS->getType());
10632       FoundRHS = getZeroExtendExpr(FoundRHS, LHS->getType());
10633     }
10634   }
10635   return isImpliedCondBalancedTypes(Pred, LHS, RHS, FoundPred, FoundLHS,
10636                                     FoundRHS, CtxI);
10637 }
10638 
10639 bool ScalarEvolution::isImpliedCondBalancedTypes(
10640     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10641     ICmpInst::Predicate FoundPred, const SCEV *FoundLHS, const SCEV *FoundRHS,
10642     const Instruction *CtxI) {
10643   assert(getTypeSizeInBits(LHS->getType()) ==
10644              getTypeSizeInBits(FoundLHS->getType()) &&
10645          "Types should be balanced!");
10646   // Canonicalize the query to match the way instcombine will have
10647   // canonicalized the comparison.
10648   if (SimplifyICmpOperands(Pred, LHS, RHS))
10649     if (LHS == RHS)
10650       return CmpInst::isTrueWhenEqual(Pred);
10651   if (SimplifyICmpOperands(FoundPred, FoundLHS, FoundRHS))
10652     if (FoundLHS == FoundRHS)
10653       return CmpInst::isFalseWhenEqual(FoundPred);
10654 
10655   // Check to see if we can make the LHS or RHS match.
10656   if (LHS == FoundRHS || RHS == FoundLHS) {
10657     if (isa<SCEVConstant>(RHS)) {
10658       std::swap(FoundLHS, FoundRHS);
10659       FoundPred = ICmpInst::getSwappedPredicate(FoundPred);
10660     } else {
10661       std::swap(LHS, RHS);
10662       Pred = ICmpInst::getSwappedPredicate(Pred);
10663     }
10664   }
10665 
10666   // Check whether the found predicate is the same as the desired predicate.
10667   if (FoundPred == Pred)
10668     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10669 
10670   // Check whether swapping the found predicate makes it the same as the
10671   // desired predicate.
10672   if (ICmpInst::getSwappedPredicate(FoundPred) == Pred) {
10673     // We can write the implication
10674     // 0.  LHS Pred      RHS  <-   FoundLHS SwapPred  FoundRHS
10675     // using one of the following ways:
10676     // 1.  LHS Pred      RHS  <-   FoundRHS Pred      FoundLHS
10677     // 2.  RHS SwapPred  LHS  <-   FoundLHS SwapPred  FoundRHS
10678     // 3.  LHS Pred      RHS  <-  ~FoundLHS Pred     ~FoundRHS
10679     // 4. ~LHS SwapPred ~RHS  <-   FoundLHS SwapPred  FoundRHS
10680     // Forms 1. and 2. require swapping the operands of one condition. Don't
10681     // do this if it would break canonical constant/addrec ordering.
10682     if (!isa<SCEVConstant>(RHS) && !isa<SCEVAddRecExpr>(LHS))
10683       return isImpliedCondOperands(FoundPred, RHS, LHS, FoundLHS, FoundRHS,
10684                                    CtxI);
10685     if (!isa<SCEVConstant>(FoundRHS) && !isa<SCEVAddRecExpr>(FoundLHS))
10686       return isImpliedCondOperands(Pred, LHS, RHS, FoundRHS, FoundLHS, CtxI);
10687 
10688     // There's no clear preference between forms 3. and 4., try both.  Avoid
10689     // forming getNotSCEV of pointer values as the resulting subtract is
10690     // not legal.
10691     if (!LHS->getType()->isPointerTy() && !RHS->getType()->isPointerTy() &&
10692         isImpliedCondOperands(FoundPred, getNotSCEV(LHS), getNotSCEV(RHS),
10693                               FoundLHS, FoundRHS, CtxI))
10694       return true;
10695 
10696     if (!FoundLHS->getType()->isPointerTy() &&
10697         !FoundRHS->getType()->isPointerTy() &&
10698         isImpliedCondOperands(Pred, LHS, RHS, getNotSCEV(FoundLHS),
10699                               getNotSCEV(FoundRHS), CtxI))
10700       return true;
10701 
10702     return false;
10703   }
10704 
10705   // Unsigned comparison is the same as signed comparison when both the operands
10706   // are non-negative or negative.
10707   auto IsSignFlippedPredicate = [](CmpInst::Predicate P1,
10708                                    CmpInst::Predicate P2) {
10709     assert(P1 != P2 && "Handled earlier!");
10710     return CmpInst::isRelational(P2) &&
10711            P1 == CmpInst::getFlippedSignednessPredicate(P2);
10712   };
10713   if (IsSignFlippedPredicate(Pred, FoundPred) &&
10714       ((isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) ||
10715        (isKnownNegative(FoundLHS) && isKnownNegative(FoundRHS))))
10716     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI);
10717 
10718   // Check if we can make progress by sharpening ranges.
10719   if (FoundPred == ICmpInst::ICMP_NE &&
10720       (isa<SCEVConstant>(FoundLHS) || isa<SCEVConstant>(FoundRHS))) {
10721 
10722     const SCEVConstant *C = nullptr;
10723     const SCEV *V = nullptr;
10724 
10725     if (isa<SCEVConstant>(FoundLHS)) {
10726       C = cast<SCEVConstant>(FoundLHS);
10727       V = FoundRHS;
10728     } else {
10729       C = cast<SCEVConstant>(FoundRHS);
10730       V = FoundLHS;
10731     }
10732 
10733     // The guarding predicate tells us that C != V. If the known range
10734     // of V is [C, t), we can sharpen the range to [C + 1, t).  The
10735     // range we consider has to correspond to same signedness as the
10736     // predicate we're interested in folding.
10737 
10738     APInt Min = ICmpInst::isSigned(Pred) ?
10739         getSignedRangeMin(V) : getUnsignedRangeMin(V);
10740 
10741     if (Min == C->getAPInt()) {
10742       // Given (V >= Min && V != Min) we conclude V >= (Min + 1).
10743       // This is true even if (Min + 1) wraps around -- in case of
10744       // wraparound, (Min + 1) < Min, so (V >= Min => V >= (Min + 1)).
10745 
10746       APInt SharperMin = Min + 1;
10747 
10748       switch (Pred) {
10749         case ICmpInst::ICMP_SGE:
10750         case ICmpInst::ICMP_UGE:
10751           // We know V `Pred` SharperMin.  If this implies LHS `Pred`
10752           // RHS, we're done.
10753           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(SharperMin),
10754                                     CtxI))
10755             return true;
10756           LLVM_FALLTHROUGH;
10757 
10758         case ICmpInst::ICMP_SGT:
10759         case ICmpInst::ICMP_UGT:
10760           // We know from the range information that (V `Pred` Min ||
10761           // V == Min).  We know from the guarding condition that !(V
10762           // == Min).  This gives us
10763           //
10764           //       V `Pred` Min || V == Min && !(V == Min)
10765           //   =>  V `Pred` Min
10766           //
10767           // If V `Pred` Min implies LHS `Pred` RHS, we're done.
10768 
10769           if (isImpliedCondOperands(Pred, LHS, RHS, V, getConstant(Min), CtxI))
10770             return true;
10771           break;
10772 
10773         // `LHS < RHS` and `LHS <= RHS` are handled in the same way as `RHS > LHS` and `RHS >= LHS` respectively.
10774         case ICmpInst::ICMP_SLE:
10775         case ICmpInst::ICMP_ULE:
10776           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10777                                     LHS, V, getConstant(SharperMin), CtxI))
10778             return true;
10779           LLVM_FALLTHROUGH;
10780 
10781         case ICmpInst::ICMP_SLT:
10782         case ICmpInst::ICMP_ULT:
10783           if (isImpliedCondOperands(CmpInst::getSwappedPredicate(Pred), RHS,
10784                                     LHS, V, getConstant(Min), CtxI))
10785             return true;
10786           break;
10787 
10788         default:
10789           // No change
10790           break;
10791       }
10792     }
10793   }
10794 
10795   // Check whether the actual condition is beyond sufficient.
10796   if (FoundPred == ICmpInst::ICMP_EQ)
10797     if (ICmpInst::isTrueWhenEqual(Pred))
10798       if (isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10799         return true;
10800   if (Pred == ICmpInst::ICMP_NE)
10801     if (!ICmpInst::isTrueWhenEqual(FoundPred))
10802       if (isImpliedCondOperands(FoundPred, LHS, RHS, FoundLHS, FoundRHS, CtxI))
10803         return true;
10804 
10805   // Otherwise assume the worst.
10806   return false;
10807 }
10808 
10809 bool ScalarEvolution::splitBinaryAdd(const SCEV *Expr,
10810                                      const SCEV *&L, const SCEV *&R,
10811                                      SCEV::NoWrapFlags &Flags) {
10812   const auto *AE = dyn_cast<SCEVAddExpr>(Expr);
10813   if (!AE || AE->getNumOperands() != 2)
10814     return false;
10815 
10816   L = AE->getOperand(0);
10817   R = AE->getOperand(1);
10818   Flags = AE->getNoWrapFlags();
10819   return true;
10820 }
10821 
10822 Optional<APInt> ScalarEvolution::computeConstantDifference(const SCEV *More,
10823                                                            const SCEV *Less) {
10824   // We avoid subtracting expressions here because this function is usually
10825   // fairly deep in the call stack (i.e. is called many times).
10826 
10827   // X - X = 0.
10828   if (More == Less)
10829     return APInt(getTypeSizeInBits(More->getType()), 0);
10830 
10831   if (isa<SCEVAddRecExpr>(Less) && isa<SCEVAddRecExpr>(More)) {
10832     const auto *LAR = cast<SCEVAddRecExpr>(Less);
10833     const auto *MAR = cast<SCEVAddRecExpr>(More);
10834 
10835     if (LAR->getLoop() != MAR->getLoop())
10836       return None;
10837 
10838     // We look at affine expressions only; not for correctness but to keep
10839     // getStepRecurrence cheap.
10840     if (!LAR->isAffine() || !MAR->isAffine())
10841       return None;
10842 
10843     if (LAR->getStepRecurrence(*this) != MAR->getStepRecurrence(*this))
10844       return None;
10845 
10846     Less = LAR->getStart();
10847     More = MAR->getStart();
10848 
10849     // fall through
10850   }
10851 
10852   if (isa<SCEVConstant>(Less) && isa<SCEVConstant>(More)) {
10853     const auto &M = cast<SCEVConstant>(More)->getAPInt();
10854     const auto &L = cast<SCEVConstant>(Less)->getAPInt();
10855     return M - L;
10856   }
10857 
10858   SCEV::NoWrapFlags Flags;
10859   const SCEV *LLess = nullptr, *RLess = nullptr;
10860   const SCEV *LMore = nullptr, *RMore = nullptr;
10861   const SCEVConstant *C1 = nullptr, *C2 = nullptr;
10862   // Compare (X + C1) vs X.
10863   if (splitBinaryAdd(Less, LLess, RLess, Flags))
10864     if ((C1 = dyn_cast<SCEVConstant>(LLess)))
10865       if (RLess == More)
10866         return -(C1->getAPInt());
10867 
10868   // Compare X vs (X + C2).
10869   if (splitBinaryAdd(More, LMore, RMore, Flags))
10870     if ((C2 = dyn_cast<SCEVConstant>(LMore)))
10871       if (RMore == Less)
10872         return C2->getAPInt();
10873 
10874   // Compare (X + C1) vs (X + C2).
10875   if (C1 && C2 && RLess == RMore)
10876     return C2->getAPInt() - C1->getAPInt();
10877 
10878   return None;
10879 }
10880 
10881 bool ScalarEvolution::isImpliedCondOperandsViaAddRecStart(
10882     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10883     const SCEV *FoundLHS, const SCEV *FoundRHS, const Instruction *CtxI) {
10884   // Try to recognize the following pattern:
10885   //
10886   //   FoundRHS = ...
10887   // ...
10888   // loop:
10889   //   FoundLHS = {Start,+,W}
10890   // context_bb: // Basic block from the same loop
10891   //   known(Pred, FoundLHS, FoundRHS)
10892   //
10893   // If some predicate is known in the context of a loop, it is also known on
10894   // each iteration of this loop, including the first iteration. Therefore, in
10895   // this case, `FoundLHS Pred FoundRHS` implies `Start Pred FoundRHS`. Try to
10896   // prove the original pred using this fact.
10897   if (!CtxI)
10898     return false;
10899   const BasicBlock *ContextBB = CtxI->getParent();
10900   // Make sure AR varies in the context block.
10901   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundLHS)) {
10902     const Loop *L = AR->getLoop();
10903     // Make sure that context belongs to the loop and executes on 1st iteration
10904     // (if it ever executes at all).
10905     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10906       return false;
10907     if (!isAvailableAtLoopEntry(FoundRHS, AR->getLoop()))
10908       return false;
10909     return isImpliedCondOperands(Pred, LHS, RHS, AR->getStart(), FoundRHS);
10910   }
10911 
10912   if (auto *AR = dyn_cast<SCEVAddRecExpr>(FoundRHS)) {
10913     const Loop *L = AR->getLoop();
10914     // Make sure that context belongs to the loop and executes on 1st iteration
10915     // (if it ever executes at all).
10916     if (!L->contains(ContextBB) || !DT.dominates(ContextBB, L->getLoopLatch()))
10917       return false;
10918     if (!isAvailableAtLoopEntry(FoundLHS, AR->getLoop()))
10919       return false;
10920     return isImpliedCondOperands(Pred, LHS, RHS, FoundLHS, AR->getStart());
10921   }
10922 
10923   return false;
10924 }
10925 
10926 bool ScalarEvolution::isImpliedCondOperandsViaNoOverflow(
10927     ICmpInst::Predicate Pred, const SCEV *LHS, const SCEV *RHS,
10928     const SCEV *FoundLHS, const SCEV *FoundRHS) {
10929   if (Pred != CmpInst::ICMP_SLT && Pred != CmpInst::ICMP_ULT)
10930     return false;
10931 
10932   const auto *AddRecLHS = dyn_cast<SCEVAddRecExpr>(LHS);
10933   if (!AddRecLHS)
10934     return false;
10935 
10936   const auto *AddRecFoundLHS = dyn_cast<SCEVAddRecExpr>(FoundLHS);
10937   if (!AddRecFoundLHS)
10938     return false;
10939 
10940   // We'd like to let SCEV reason about control dependencies, so we constrain
10941   // both the inequalities to be about add recurrences on the same loop.  This
10942   // way we can use isLoopEntryGuardedByCond later.
10943 
10944   const Loop *L = AddRecFoundLHS->getLoop();
10945   if (L != AddRecLHS->getLoop())
10946     return false;
10947 
10948   //  FoundLHS u< FoundRHS u< -C =>  (FoundLHS + C) u< (FoundRHS + C) ... (1)
10949   //
10950   //  FoundLHS s< FoundRHS s< INT_MIN - C => (FoundLHS + C) s< (FoundRHS + C)
10951   //                                                                  ... (2)
10952   //
10953   // Informal proof for (2), assuming (1) [*]:
10954   //
10955   // We'll also assume (A s< B) <=> ((A + INT_MIN) u< (B + INT_MIN)) ... (3)[**]
10956   //
10957   // Then
10958   //
10959   //       FoundLHS s< FoundRHS s< INT_MIN - C
10960   // <=>  (FoundLHS + INT_MIN) u< (FoundRHS + INT_MIN) u< -C   [ using (3) ]
10961   // <=>  (FoundLHS + INT_MIN + C) u< (FoundRHS + INT_MIN + C) [ using (1) ]
10962   // <=>  (FoundLHS + INT_MIN + C + INT_MIN) s<
10963   //                        (FoundRHS + INT_MIN + C + INT_MIN) [ using (3) ]
10964   // <=>  FoundLHS + C s< FoundRHS + C
10965   //
10966   // [*]: (1) can be proved by ruling out overflow.
10967   //
10968   // [**]: This can be proved by analyzing all the four possibilities:
10969   //    (A s< 0, B s< 0), (A s< 0, B s>= 0), (A s>= 0, B s< 0) and
10970   //    (A s>= 0, B s>= 0).
10971   //
10972   // Note:
10973   // Despite (2), "FoundRHS s< INT_MIN - C" does not mean that "FoundRHS + C"
10974   // will not sign underflow.  For instance, say FoundLHS = (i8 -128), FoundRHS
10975   // = (i8 -127) and C = (i8 -100).  Then INT_MIN - C = (i8 -28), and FoundRHS
10976   // s< (INT_MIN - C).  Lack of sign overflow / underflow in "FoundRHS + C" is
10977   // neither necessary nor sufficient to prove "(FoundLHS + C) s< (FoundRHS +
10978   // C)".
10979 
10980   Optional<APInt> LDiff = computeConstantDifference(LHS, FoundLHS);
10981   Optional<APInt> RDiff = computeConstantDifference(RHS, FoundRHS);
10982   if (!LDiff || !RDiff || *LDiff != *RDiff)
10983     return false;
10984 
10985   if (LDiff->isMinValue())
10986     return true;
10987 
10988   APInt FoundRHSLimit;
10989 
10990   if (Pred == CmpInst::ICMP_ULT) {
10991     FoundRHSLimit = -(*RDiff);
10992   } else {
10993     assert(Pred == CmpInst::ICMP_SLT && "Checked above!");
10994     FoundRHSLimit = APInt::getSignedMinValue(getTypeSizeInBits(RHS->getType())) - *RDiff;
10995   }
10996 
10997   // Try to prove (1) or (2), as needed.
10998   return isAvailableAtLoopEntry(FoundRHS, L) &&
10999          isLoopEntryGuardedByCond(L, Pred, FoundRHS,
11000                                   getConstant(FoundRHSLimit));
11001 }
11002 
11003 bool ScalarEvolution::isImpliedViaMerge(ICmpInst::Predicate Pred,
11004                                         const SCEV *LHS, const SCEV *RHS,
11005                                         const SCEV *FoundLHS,
11006                                         const SCEV *FoundRHS, unsigned Depth) {
11007   const PHINode *LPhi = nullptr, *RPhi = nullptr;
11008 
11009   auto ClearOnExit = make_scope_exit([&]() {
11010     if (LPhi) {
11011       bool Erased = PendingMerges.erase(LPhi);
11012       assert(Erased && "Failed to erase LPhi!");
11013       (void)Erased;
11014     }
11015     if (RPhi) {
11016       bool Erased = PendingMerges.erase(RPhi);
11017       assert(Erased && "Failed to erase RPhi!");
11018       (void)Erased;
11019     }
11020   });
11021 
11022   // Find respective Phis and check that they are not being pending.
11023   if (const SCEVUnknown *LU = dyn_cast<SCEVUnknown>(LHS))
11024     if (auto *Phi = dyn_cast<PHINode>(LU->getValue())) {
11025       if (!PendingMerges.insert(Phi).second)
11026         return false;
11027       LPhi = Phi;
11028     }
11029   if (const SCEVUnknown *RU = dyn_cast<SCEVUnknown>(RHS))
11030     if (auto *Phi = dyn_cast<PHINode>(RU->getValue())) {
11031       // If we detect a loop of Phi nodes being processed by this method, for
11032       // example:
11033       //
11034       //   %a = phi i32 [ %some1, %preheader ], [ %b, %latch ]
11035       //   %b = phi i32 [ %some2, %preheader ], [ %a, %latch ]
11036       //
11037       // we don't want to deal with a case that complex, so return conservative
11038       // answer false.
11039       if (!PendingMerges.insert(Phi).second)
11040         return false;
11041       RPhi = Phi;
11042     }
11043 
11044   // If none of LHS, RHS is a Phi, nothing to do here.
11045   if (!LPhi && !RPhi)
11046     return false;
11047 
11048   // If there is a SCEVUnknown Phi we are interested in, make it left.
11049   if (!LPhi) {
11050     std::swap(LHS, RHS);
11051     std::swap(FoundLHS, FoundRHS);
11052     std::swap(LPhi, RPhi);
11053     Pred = ICmpInst::getSwappedPredicate(Pred);
11054   }
11055 
11056   assert(LPhi && "LPhi should definitely be a SCEVUnknown Phi!");
11057   const BasicBlock *LBB = LPhi->getParent();
11058   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11059 
11060   auto ProvedEasily = [&](const SCEV *S1, const SCEV *S2) {
11061     return isKnownViaNonRecursiveReasoning(Pred, S1, S2) ||
11062            isImpliedCondOperandsViaRanges(Pred, S1, S2, FoundLHS, FoundRHS) ||
11063            isImpliedViaOperations(Pred, S1, S2, FoundLHS, FoundRHS, Depth);
11064   };
11065 
11066   if (RPhi && RPhi->getParent() == LBB) {
11067     // Case one: RHS is also a SCEVUnknown Phi from the same basic block.
11068     // If we compare two Phis from the same block, and for each entry block
11069     // the predicate is true for incoming values from this block, then the
11070     // predicate is also true for the Phis.
11071     for (const BasicBlock *IncBB : predecessors(LBB)) {
11072       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11073       const SCEV *R = getSCEV(RPhi->getIncomingValueForBlock(IncBB));
11074       if (!ProvedEasily(L, R))
11075         return false;
11076     }
11077   } else if (RAR && RAR->getLoop()->getHeader() == LBB) {
11078     // Case two: RHS is also a Phi from the same basic block, and it is an
11079     // AddRec. It means that there is a loop which has both AddRec and Unknown
11080     // PHIs, for it we can compare incoming values of AddRec from above the loop
11081     // and latch with their respective incoming values of LPhi.
11082     // TODO: Generalize to handle loops with many inputs in a header.
11083     if (LPhi->getNumIncomingValues() != 2) return false;
11084 
11085     auto *RLoop = RAR->getLoop();
11086     auto *Predecessor = RLoop->getLoopPredecessor();
11087     assert(Predecessor && "Loop with AddRec with no predecessor?");
11088     const SCEV *L1 = getSCEV(LPhi->getIncomingValueForBlock(Predecessor));
11089     if (!ProvedEasily(L1, RAR->getStart()))
11090       return false;
11091     auto *Latch = RLoop->getLoopLatch();
11092     assert(Latch && "Loop with AddRec with no latch?");
11093     const SCEV *L2 = getSCEV(LPhi->getIncomingValueForBlock(Latch));
11094     if (!ProvedEasily(L2, RAR->getPostIncExpr(*this)))
11095       return false;
11096   } else {
11097     // In all other cases go over inputs of LHS and compare each of them to RHS,
11098     // the predicate is true for (LHS, RHS) if it is true for all such pairs.
11099     // At this point RHS is either a non-Phi, or it is a Phi from some block
11100     // different from LBB.
11101     for (const BasicBlock *IncBB : predecessors(LBB)) {
11102       // Check that RHS is available in this block.
11103       if (!dominates(RHS, IncBB))
11104         return false;
11105       const SCEV *L = getSCEV(LPhi->getIncomingValueForBlock(IncBB));
11106       // Make sure L does not refer to a value from a potentially previous
11107       // iteration of a loop.
11108       if (!properlyDominates(L, IncBB))
11109         return false;
11110       if (!ProvedEasily(L, RHS))
11111         return false;
11112     }
11113   }
11114   return true;
11115 }
11116 
11117 bool ScalarEvolution::isImpliedCondOperands(ICmpInst::Predicate Pred,
11118                                             const SCEV *LHS, const SCEV *RHS,
11119                                             const SCEV *FoundLHS,
11120                                             const SCEV *FoundRHS,
11121                                             const Instruction *CtxI) {
11122   if (isImpliedCondOperandsViaRanges(Pred, LHS, RHS, FoundLHS, FoundRHS))
11123     return true;
11124 
11125   if (isImpliedCondOperandsViaNoOverflow(Pred, LHS, RHS, FoundLHS, FoundRHS))
11126     return true;
11127 
11128   if (isImpliedCondOperandsViaAddRecStart(Pred, LHS, RHS, FoundLHS, FoundRHS,
11129                                           CtxI))
11130     return true;
11131 
11132   return isImpliedCondOperandsHelper(Pred, LHS, RHS,
11133                                      FoundLHS, FoundRHS);
11134 }
11135 
11136 /// Is MaybeMinMaxExpr an (U|S)(Min|Max) of Candidate and some other values?
11137 template <typename MinMaxExprType>
11138 static bool IsMinMaxConsistingOf(const SCEV *MaybeMinMaxExpr,
11139                                  const SCEV *Candidate) {
11140   const MinMaxExprType *MinMaxExpr = dyn_cast<MinMaxExprType>(MaybeMinMaxExpr);
11141   if (!MinMaxExpr)
11142     return false;
11143 
11144   return is_contained(MinMaxExpr->operands(), Candidate);
11145 }
11146 
11147 static bool IsKnownPredicateViaAddRecStart(ScalarEvolution &SE,
11148                                            ICmpInst::Predicate Pred,
11149                                            const SCEV *LHS, const SCEV *RHS) {
11150   // If both sides are affine addrecs for the same loop, with equal
11151   // steps, and we know the recurrences don't wrap, then we only
11152   // need to check the predicate on the starting values.
11153 
11154   if (!ICmpInst::isRelational(Pred))
11155     return false;
11156 
11157   const SCEVAddRecExpr *LAR = dyn_cast<SCEVAddRecExpr>(LHS);
11158   if (!LAR)
11159     return false;
11160   const SCEVAddRecExpr *RAR = dyn_cast<SCEVAddRecExpr>(RHS);
11161   if (!RAR)
11162     return false;
11163   if (LAR->getLoop() != RAR->getLoop())
11164     return false;
11165   if (!LAR->isAffine() || !RAR->isAffine())
11166     return false;
11167 
11168   if (LAR->getStepRecurrence(SE) != RAR->getStepRecurrence(SE))
11169     return false;
11170 
11171   SCEV::NoWrapFlags NW = ICmpInst::isSigned(Pred) ?
11172                          SCEV::FlagNSW : SCEV::FlagNUW;
11173   if (!LAR->getNoWrapFlags(NW) || !RAR->getNoWrapFlags(NW))
11174     return false;
11175 
11176   return SE.isKnownPredicate(Pred, LAR->getStart(), RAR->getStart());
11177 }
11178 
11179 /// Is LHS `Pred` RHS true on the virtue of LHS or RHS being a Min or Max
11180 /// expression?
11181 static bool IsKnownPredicateViaMinOrMax(ScalarEvolution &SE,
11182                                         ICmpInst::Predicate Pred,
11183                                         const SCEV *LHS, const SCEV *RHS) {
11184   switch (Pred) {
11185   default:
11186     return false;
11187 
11188   case ICmpInst::ICMP_SGE:
11189     std::swap(LHS, RHS);
11190     LLVM_FALLTHROUGH;
11191   case ICmpInst::ICMP_SLE:
11192     return
11193         // min(A, ...) <= A
11194         IsMinMaxConsistingOf<SCEVSMinExpr>(LHS, RHS) ||
11195         // A <= max(A, ...)
11196         IsMinMaxConsistingOf<SCEVSMaxExpr>(RHS, LHS);
11197 
11198   case ICmpInst::ICMP_UGE:
11199     std::swap(LHS, RHS);
11200     LLVM_FALLTHROUGH;
11201   case ICmpInst::ICMP_ULE:
11202     return
11203         // min(A, ...) <= A
11204         IsMinMaxConsistingOf<SCEVUMinExpr>(LHS, RHS) ||
11205         // A <= max(A, ...)
11206         IsMinMaxConsistingOf<SCEVUMaxExpr>(RHS, LHS);
11207   }
11208 
11209   llvm_unreachable("covered switch fell through?!");
11210 }
11211 
11212 bool ScalarEvolution::isImpliedViaOperations(ICmpInst::Predicate Pred,
11213                                              const SCEV *LHS, const SCEV *RHS,
11214                                              const SCEV *FoundLHS,
11215                                              const SCEV *FoundRHS,
11216                                              unsigned Depth) {
11217   assert(getTypeSizeInBits(LHS->getType()) ==
11218              getTypeSizeInBits(RHS->getType()) &&
11219          "LHS and RHS have different sizes?");
11220   assert(getTypeSizeInBits(FoundLHS->getType()) ==
11221              getTypeSizeInBits(FoundRHS->getType()) &&
11222          "FoundLHS and FoundRHS have different sizes?");
11223   // We want to avoid hurting the compile time with analysis of too big trees.
11224   if (Depth > MaxSCEVOperationsImplicationDepth)
11225     return false;
11226 
11227   // We only want to work with GT comparison so far.
11228   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_SLT) {
11229     Pred = CmpInst::getSwappedPredicate(Pred);
11230     std::swap(LHS, RHS);
11231     std::swap(FoundLHS, FoundRHS);
11232   }
11233 
11234   // For unsigned, try to reduce it to corresponding signed comparison.
11235   if (Pred == ICmpInst::ICMP_UGT)
11236     // We can replace unsigned predicate with its signed counterpart if all
11237     // involved values are non-negative.
11238     // TODO: We could have better support for unsigned.
11239     if (isKnownNonNegative(FoundLHS) && isKnownNonNegative(FoundRHS)) {
11240       // Knowing that both FoundLHS and FoundRHS are non-negative, and knowing
11241       // FoundLHS >u FoundRHS, we also know that FoundLHS >s FoundRHS. Let us
11242       // use this fact to prove that LHS and RHS are non-negative.
11243       const SCEV *MinusOne = getMinusOne(LHS->getType());
11244       if (isImpliedCondOperands(ICmpInst::ICMP_SGT, LHS, MinusOne, FoundLHS,
11245                                 FoundRHS) &&
11246           isImpliedCondOperands(ICmpInst::ICMP_SGT, RHS, MinusOne, FoundLHS,
11247                                 FoundRHS))
11248         Pred = ICmpInst::ICMP_SGT;
11249     }
11250 
11251   if (Pred != ICmpInst::ICMP_SGT)
11252     return false;
11253 
11254   auto GetOpFromSExt = [&](const SCEV *S) {
11255     if (auto *Ext = dyn_cast<SCEVSignExtendExpr>(S))
11256       return Ext->getOperand();
11257     // TODO: If S is a SCEVConstant then you can cheaply "strip" the sext off
11258     // the constant in some cases.
11259     return S;
11260   };
11261 
11262   // Acquire values from extensions.
11263   auto *OrigLHS = LHS;
11264   auto *OrigFoundLHS = FoundLHS;
11265   LHS = GetOpFromSExt(LHS);
11266   FoundLHS = GetOpFromSExt(FoundLHS);
11267 
11268   // Is the SGT predicate can be proved trivially or using the found context.
11269   auto IsSGTViaContext = [&](const SCEV *S1, const SCEV *S2) {
11270     return isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGT, S1, S2) ||
11271            isImpliedViaOperations(ICmpInst::ICMP_SGT, S1, S2, OrigFoundLHS,
11272                                   FoundRHS, Depth + 1);
11273   };
11274 
11275   if (auto *LHSAddExpr = dyn_cast<SCEVAddExpr>(LHS)) {
11276     // We want to avoid creation of any new non-constant SCEV. Since we are
11277     // going to compare the operands to RHS, we should be certain that we don't
11278     // need any size extensions for this. So let's decline all cases when the
11279     // sizes of types of LHS and RHS do not match.
11280     // TODO: Maybe try to get RHS from sext to catch more cases?
11281     if (getTypeSizeInBits(LHS->getType()) != getTypeSizeInBits(RHS->getType()))
11282       return false;
11283 
11284     // Should not overflow.
11285     if (!LHSAddExpr->hasNoSignedWrap())
11286       return false;
11287 
11288     auto *LL = LHSAddExpr->getOperand(0);
11289     auto *LR = LHSAddExpr->getOperand(1);
11290     auto *MinusOne = getMinusOne(RHS->getType());
11291 
11292     // Checks that S1 >= 0 && S2 > RHS, trivially or using the found context.
11293     auto IsSumGreaterThanRHS = [&](const SCEV *S1, const SCEV *S2) {
11294       return IsSGTViaContext(S1, MinusOne) && IsSGTViaContext(S2, RHS);
11295     };
11296     // Try to prove the following rule:
11297     // (LHS = LL + LR) && (LL >= 0) && (LR > RHS) => (LHS > RHS).
11298     // (LHS = LL + LR) && (LR >= 0) && (LL > RHS) => (LHS > RHS).
11299     if (IsSumGreaterThanRHS(LL, LR) || IsSumGreaterThanRHS(LR, LL))
11300       return true;
11301   } else if (auto *LHSUnknownExpr = dyn_cast<SCEVUnknown>(LHS)) {
11302     Value *LL, *LR;
11303     // FIXME: Once we have SDiv implemented, we can get rid of this matching.
11304 
11305     using namespace llvm::PatternMatch;
11306 
11307     if (match(LHSUnknownExpr->getValue(), m_SDiv(m_Value(LL), m_Value(LR)))) {
11308       // Rules for division.
11309       // We are going to perform some comparisons with Denominator and its
11310       // derivative expressions. In general case, creating a SCEV for it may
11311       // lead to a complex analysis of the entire graph, and in particular it
11312       // can request trip count recalculation for the same loop. This would
11313       // cache as SCEVCouldNotCompute to avoid the infinite recursion. To avoid
11314       // this, we only want to create SCEVs that are constants in this section.
11315       // So we bail if Denominator is not a constant.
11316       if (!isa<ConstantInt>(LR))
11317         return false;
11318 
11319       auto *Denominator = cast<SCEVConstant>(getSCEV(LR));
11320 
11321       // We want to make sure that LHS = FoundLHS / Denominator. If it is so,
11322       // then a SCEV for the numerator already exists and matches with FoundLHS.
11323       auto *Numerator = getExistingSCEV(LL);
11324       if (!Numerator || Numerator->getType() != FoundLHS->getType())
11325         return false;
11326 
11327       // Make sure that the numerator matches with FoundLHS and the denominator
11328       // is positive.
11329       if (!HasSameValue(Numerator, FoundLHS) || !isKnownPositive(Denominator))
11330         return false;
11331 
11332       auto *DTy = Denominator->getType();
11333       auto *FRHSTy = FoundRHS->getType();
11334       if (DTy->isPointerTy() != FRHSTy->isPointerTy())
11335         // One of types is a pointer and another one is not. We cannot extend
11336         // them properly to a wider type, so let us just reject this case.
11337         // TODO: Usage of getEffectiveSCEVType for DTy, FRHSTy etc should help
11338         // to avoid this check.
11339         return false;
11340 
11341       // Given that:
11342       // FoundLHS > FoundRHS, LHS = FoundLHS / Denominator, Denominator > 0.
11343       auto *WTy = getWiderType(DTy, FRHSTy);
11344       auto *DenominatorExt = getNoopOrSignExtend(Denominator, WTy);
11345       auto *FoundRHSExt = getNoopOrSignExtend(FoundRHS, WTy);
11346 
11347       // Try to prove the following rule:
11348       // (FoundRHS > Denominator - 2) && (RHS <= 0) => (LHS > RHS).
11349       // For example, given that FoundLHS > 2. It means that FoundLHS is at
11350       // least 3. If we divide it by Denominator < 4, we will have at least 1.
11351       auto *DenomMinusTwo = getMinusSCEV(DenominatorExt, getConstant(WTy, 2));
11352       if (isKnownNonPositive(RHS) &&
11353           IsSGTViaContext(FoundRHSExt, DenomMinusTwo))
11354         return true;
11355 
11356       // Try to prove the following rule:
11357       // (FoundRHS > -1 - Denominator) && (RHS < 0) => (LHS > RHS).
11358       // For example, given that FoundLHS > -3. Then FoundLHS is at least -2.
11359       // If we divide it by Denominator > 2, then:
11360       // 1. If FoundLHS is negative, then the result is 0.
11361       // 2. If FoundLHS is non-negative, then the result is non-negative.
11362       // Anyways, the result is non-negative.
11363       auto *MinusOne = getMinusOne(WTy);
11364       auto *NegDenomMinusOne = getMinusSCEV(MinusOne, DenominatorExt);
11365       if (isKnownNegative(RHS) &&
11366           IsSGTViaContext(FoundRHSExt, NegDenomMinusOne))
11367         return true;
11368     }
11369   }
11370 
11371   // If our expression contained SCEVUnknown Phis, and we split it down and now
11372   // need to prove something for them, try to prove the predicate for every
11373   // possible incoming values of those Phis.
11374   if (isImpliedViaMerge(Pred, OrigLHS, RHS, OrigFoundLHS, FoundRHS, Depth + 1))
11375     return true;
11376 
11377   return false;
11378 }
11379 
11380 static bool isKnownPredicateExtendIdiom(ICmpInst::Predicate Pred,
11381                                         const SCEV *LHS, const SCEV *RHS) {
11382   // zext x u<= sext x, sext x s<= zext x
11383   switch (Pred) {
11384   case ICmpInst::ICMP_SGE:
11385     std::swap(LHS, RHS);
11386     LLVM_FALLTHROUGH;
11387   case ICmpInst::ICMP_SLE: {
11388     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then SExt <s ZExt.
11389     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(LHS);
11390     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(RHS);
11391     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11392       return true;
11393     break;
11394   }
11395   case ICmpInst::ICMP_UGE:
11396     std::swap(LHS, RHS);
11397     LLVM_FALLTHROUGH;
11398   case ICmpInst::ICMP_ULE: {
11399     // If operand >=s 0 then ZExt == SExt.  If operand <s 0 then ZExt <u SExt.
11400     const SCEVZeroExtendExpr *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS);
11401     const SCEVSignExtendExpr *SExt = dyn_cast<SCEVSignExtendExpr>(RHS);
11402     if (SExt && ZExt && SExt->getOperand() == ZExt->getOperand())
11403       return true;
11404     break;
11405   }
11406   default:
11407     break;
11408   };
11409   return false;
11410 }
11411 
11412 bool
11413 ScalarEvolution::isKnownViaNonRecursiveReasoning(ICmpInst::Predicate Pred,
11414                                            const SCEV *LHS, const SCEV *RHS) {
11415   return isKnownPredicateExtendIdiom(Pred, LHS, RHS) ||
11416          isKnownPredicateViaConstantRanges(Pred, LHS, RHS) ||
11417          IsKnownPredicateViaMinOrMax(*this, Pred, LHS, RHS) ||
11418          IsKnownPredicateViaAddRecStart(*this, Pred, LHS, RHS) ||
11419          isKnownPredicateViaNoOverflow(Pred, LHS, RHS);
11420 }
11421 
11422 bool
11423 ScalarEvolution::isImpliedCondOperandsHelper(ICmpInst::Predicate Pred,
11424                                              const SCEV *LHS, const SCEV *RHS,
11425                                              const SCEV *FoundLHS,
11426                                              const SCEV *FoundRHS) {
11427   switch (Pred) {
11428   default: llvm_unreachable("Unexpected ICmpInst::Predicate value!");
11429   case ICmpInst::ICMP_EQ:
11430   case ICmpInst::ICMP_NE:
11431     if (HasSameValue(LHS, FoundLHS) && HasSameValue(RHS, FoundRHS))
11432       return true;
11433     break;
11434   case ICmpInst::ICMP_SLT:
11435   case ICmpInst::ICMP_SLE:
11436     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, LHS, FoundLHS) &&
11437         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, RHS, FoundRHS))
11438       return true;
11439     break;
11440   case ICmpInst::ICMP_SGT:
11441   case ICmpInst::ICMP_SGE:
11442     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SGE, LHS, FoundLHS) &&
11443         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_SLE, RHS, FoundRHS))
11444       return true;
11445     break;
11446   case ICmpInst::ICMP_ULT:
11447   case ICmpInst::ICMP_ULE:
11448     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, LHS, FoundLHS) &&
11449         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, RHS, FoundRHS))
11450       return true;
11451     break;
11452   case ICmpInst::ICMP_UGT:
11453   case ICmpInst::ICMP_UGE:
11454     if (isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_UGE, LHS, FoundLHS) &&
11455         isKnownViaNonRecursiveReasoning(ICmpInst::ICMP_ULE, RHS, FoundRHS))
11456       return true;
11457     break;
11458   }
11459 
11460   // Maybe it can be proved via operations?
11461   if (isImpliedViaOperations(Pred, LHS, RHS, FoundLHS, FoundRHS))
11462     return true;
11463 
11464   return false;
11465 }
11466 
11467 bool ScalarEvolution::isImpliedCondOperandsViaRanges(ICmpInst::Predicate Pred,
11468                                                      const SCEV *LHS,
11469                                                      const SCEV *RHS,
11470                                                      const SCEV *FoundLHS,
11471                                                      const SCEV *FoundRHS) {
11472   if (!isa<SCEVConstant>(RHS) || !isa<SCEVConstant>(FoundRHS))
11473     // The restriction on `FoundRHS` be lifted easily -- it exists only to
11474     // reduce the compile time impact of this optimization.
11475     return false;
11476 
11477   Optional<APInt> Addend = computeConstantDifference(LHS, FoundLHS);
11478   if (!Addend)
11479     return false;
11480 
11481   const APInt &ConstFoundRHS = cast<SCEVConstant>(FoundRHS)->getAPInt();
11482 
11483   // `FoundLHSRange` is the range we know `FoundLHS` to be in by virtue of the
11484   // antecedent "`FoundLHS` `Pred` `FoundRHS`".
11485   ConstantRange FoundLHSRange =
11486       ConstantRange::makeExactICmpRegion(Pred, ConstFoundRHS);
11487 
11488   // Since `LHS` is `FoundLHS` + `Addend`, we can compute a range for `LHS`:
11489   ConstantRange LHSRange = FoundLHSRange.add(ConstantRange(*Addend));
11490 
11491   // We can also compute the range of values for `LHS` that satisfy the
11492   // consequent, "`LHS` `Pred` `RHS`":
11493   const APInt &ConstRHS = cast<SCEVConstant>(RHS)->getAPInt();
11494   // The antecedent implies the consequent if every value of `LHS` that
11495   // satisfies the antecedent also satisfies the consequent.
11496   return LHSRange.icmp(Pred, ConstRHS);
11497 }
11498 
11499 bool ScalarEvolution::canIVOverflowOnLT(const SCEV *RHS, const SCEV *Stride,
11500                                         bool IsSigned) {
11501   assert(isKnownPositive(Stride) && "Positive stride expected!");
11502 
11503   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11504   const SCEV *One = getOne(Stride->getType());
11505 
11506   if (IsSigned) {
11507     APInt MaxRHS = getSignedRangeMax(RHS);
11508     APInt MaxValue = APInt::getSignedMaxValue(BitWidth);
11509     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11510 
11511     // SMaxRHS + SMaxStrideMinusOne > SMaxValue => overflow!
11512     return (std::move(MaxValue) - MaxStrideMinusOne).slt(MaxRHS);
11513   }
11514 
11515   APInt MaxRHS = getUnsignedRangeMax(RHS);
11516   APInt MaxValue = APInt::getMaxValue(BitWidth);
11517   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11518 
11519   // UMaxRHS + UMaxStrideMinusOne > UMaxValue => overflow!
11520   return (std::move(MaxValue) - MaxStrideMinusOne).ult(MaxRHS);
11521 }
11522 
11523 bool ScalarEvolution::canIVOverflowOnGT(const SCEV *RHS, const SCEV *Stride,
11524                                         bool IsSigned) {
11525 
11526   unsigned BitWidth = getTypeSizeInBits(RHS->getType());
11527   const SCEV *One = getOne(Stride->getType());
11528 
11529   if (IsSigned) {
11530     APInt MinRHS = getSignedRangeMin(RHS);
11531     APInt MinValue = APInt::getSignedMinValue(BitWidth);
11532     APInt MaxStrideMinusOne = getSignedRangeMax(getMinusSCEV(Stride, One));
11533 
11534     // SMinRHS - SMaxStrideMinusOne < SMinValue => overflow!
11535     return (std::move(MinValue) + MaxStrideMinusOne).sgt(MinRHS);
11536   }
11537 
11538   APInt MinRHS = getUnsignedRangeMin(RHS);
11539   APInt MinValue = APInt::getMinValue(BitWidth);
11540   APInt MaxStrideMinusOne = getUnsignedRangeMax(getMinusSCEV(Stride, One));
11541 
11542   // UMinRHS - UMaxStrideMinusOne < UMinValue => overflow!
11543   return (std::move(MinValue) + MaxStrideMinusOne).ugt(MinRHS);
11544 }
11545 
11546 const SCEV *ScalarEvolution::getUDivCeilSCEV(const SCEV *N, const SCEV *D) {
11547   // umin(N, 1) + floor((N - umin(N, 1)) / D)
11548   // This is equivalent to "1 + floor((N - 1) / D)" for N != 0. The umin
11549   // expression fixes the case of N=0.
11550   const SCEV *MinNOne = getUMinExpr(N, getOne(N->getType()));
11551   const SCEV *NMinusOne = getMinusSCEV(N, MinNOne);
11552   return getAddExpr(MinNOne, getUDivExpr(NMinusOne, D));
11553 }
11554 
11555 const SCEV *ScalarEvolution::computeMaxBECountForLT(const SCEV *Start,
11556                                                     const SCEV *Stride,
11557                                                     const SCEV *End,
11558                                                     unsigned BitWidth,
11559                                                     bool IsSigned) {
11560   // The logic in this function assumes we can represent a positive stride.
11561   // If we can't, the backedge-taken count must be zero.
11562   if (IsSigned && BitWidth == 1)
11563     return getZero(Stride->getType());
11564 
11565   // This code has only been closely audited for negative strides in the
11566   // unsigned comparison case, it may be correct for signed comparison, but
11567   // that needs to be established.
11568   assert((!IsSigned || !isKnownNonPositive(Stride)) &&
11569          "Stride is expected strictly positive for signed case!");
11570 
11571   // Calculate the maximum backedge count based on the range of values
11572   // permitted by Start, End, and Stride.
11573   APInt MinStart =
11574       IsSigned ? getSignedRangeMin(Start) : getUnsignedRangeMin(Start);
11575 
11576   APInt MinStride =
11577       IsSigned ? getSignedRangeMin(Stride) : getUnsignedRangeMin(Stride);
11578 
11579   // We assume either the stride is positive, or the backedge-taken count
11580   // is zero. So force StrideForMaxBECount to be at least one.
11581   APInt One(BitWidth, 1);
11582   APInt StrideForMaxBECount = IsSigned ? APIntOps::smax(One, MinStride)
11583                                        : APIntOps::umax(One, MinStride);
11584 
11585   APInt MaxValue = IsSigned ? APInt::getSignedMaxValue(BitWidth)
11586                             : APInt::getMaxValue(BitWidth);
11587   APInt Limit = MaxValue - (StrideForMaxBECount - 1);
11588 
11589   // Although End can be a MAX expression we estimate MaxEnd considering only
11590   // the case End = RHS of the loop termination condition. This is safe because
11591   // in the other case (End - Start) is zero, leading to a zero maximum backedge
11592   // taken count.
11593   APInt MaxEnd = IsSigned ? APIntOps::smin(getSignedRangeMax(End), Limit)
11594                           : APIntOps::umin(getUnsignedRangeMax(End), Limit);
11595 
11596   // MaxBECount = ceil((max(MaxEnd, MinStart) - MinStart) / Stride)
11597   MaxEnd = IsSigned ? APIntOps::smax(MaxEnd, MinStart)
11598                     : APIntOps::umax(MaxEnd, MinStart);
11599 
11600   return getUDivCeilSCEV(getConstant(MaxEnd - MinStart) /* Delta */,
11601                          getConstant(StrideForMaxBECount) /* Step */);
11602 }
11603 
11604 ScalarEvolution::ExitLimit
11605 ScalarEvolution::howManyLessThans(const SCEV *LHS, const SCEV *RHS,
11606                                   const Loop *L, bool IsSigned,
11607                                   bool ControlsExit, bool AllowPredicates) {
11608   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
11609 
11610   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
11611   bool PredicatedIV = false;
11612 
11613   auto canAssumeNoSelfWrap = [&](const SCEVAddRecExpr *AR) {
11614     // Can we prove this loop *must* be UB if overflow of IV occurs?
11615     // Reasoning goes as follows:
11616     // * Suppose the IV did self wrap.
11617     // * If Stride evenly divides the iteration space, then once wrap
11618     //   occurs, the loop must revisit the same values.
11619     // * We know that RHS is invariant, and that none of those values
11620     //   caused this exit to be taken previously.  Thus, this exit is
11621     //   dynamically dead.
11622     // * If this is the sole exit, then a dead exit implies the loop
11623     //   must be infinite if there are no abnormal exits.
11624     // * If the loop were infinite, then it must either not be mustprogress
11625     //   or have side effects. Otherwise, it must be UB.
11626     // * It can't (by assumption), be UB so we have contradicted our
11627     //   premise and can conclude the IV did not in fact self-wrap.
11628     if (!isLoopInvariant(RHS, L))
11629       return false;
11630 
11631     auto *StrideC = dyn_cast<SCEVConstant>(AR->getStepRecurrence(*this));
11632     if (!StrideC || !StrideC->getAPInt().isPowerOf2())
11633       return false;
11634 
11635     if (!ControlsExit || !loopHasNoAbnormalExits(L))
11636       return false;
11637 
11638     return loopIsFiniteByAssumption(L);
11639   };
11640 
11641   if (!IV) {
11642     if (auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(LHS)) {
11643       const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(ZExt->getOperand());
11644       if (AR && AR->getLoop() == L && AR->isAffine()) {
11645         auto Flags = AR->getNoWrapFlags();
11646         if (!hasFlags(Flags, SCEV::FlagNW) && canAssumeNoSelfWrap(AR)) {
11647           Flags = setFlags(Flags, SCEV::FlagNW);
11648 
11649           SmallVector<const SCEV*> Operands{AR->operands()};
11650           Flags = StrengthenNoWrapFlags(this, scAddRecExpr, Operands, Flags);
11651 
11652           setNoWrapFlags(const_cast<SCEVAddRecExpr *>(AR), Flags);
11653         }
11654         if (AR->hasNoUnsignedWrap()) {
11655           // Emulate what getZeroExtendExpr would have done during construction
11656           // if we'd been able to infer the fact just above at that time.
11657           const SCEV *Step = AR->getStepRecurrence(*this);
11658           Type *Ty = ZExt->getType();
11659           auto *S = getAddRecExpr(
11660             getExtendAddRecStart<SCEVZeroExtendExpr>(AR, Ty, this, 0),
11661             getZeroExtendExpr(Step, Ty, 0), L, AR->getNoWrapFlags());
11662           IV = dyn_cast<SCEVAddRecExpr>(S);
11663         }
11664       }
11665     }
11666   }
11667 
11668 
11669   if (!IV && AllowPredicates) {
11670     // Try to make this an AddRec using runtime tests, in the first X
11671     // iterations of this loop, where X is the SCEV expression found by the
11672     // algorithm below.
11673     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
11674     PredicatedIV = true;
11675   }
11676 
11677   // Avoid weird loops
11678   if (!IV || IV->getLoop() != L || !IV->isAffine())
11679     return getCouldNotCompute();
11680 
11681   // A precondition of this method is that the condition being analyzed
11682   // reaches an exiting branch which dominates the latch.  Given that, we can
11683   // assume that an increment which violates the nowrap specification and
11684   // produces poison must cause undefined behavior when the resulting poison
11685   // value is branched upon and thus we can conclude that the backedge is
11686   // taken no more often than would be required to produce that poison value.
11687   // Note that a well defined loop can exit on the iteration which violates
11688   // the nowrap specification if there is another exit (either explicit or
11689   // implicit/exceptional) which causes the loop to execute before the
11690   // exiting instruction we're analyzing would trigger UB.
11691   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
11692   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
11693   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
11694 
11695   const SCEV *Stride = IV->getStepRecurrence(*this);
11696 
11697   bool PositiveStride = isKnownPositive(Stride);
11698 
11699   // Avoid negative or zero stride values.
11700   if (!PositiveStride) {
11701     // We can compute the correct backedge taken count for loops with unknown
11702     // strides if we can prove that the loop is not an infinite loop with side
11703     // effects. Here's the loop structure we are trying to handle -
11704     //
11705     // i = start
11706     // do {
11707     //   A[i] = i;
11708     //   i += s;
11709     // } while (i < end);
11710     //
11711     // The backedge taken count for such loops is evaluated as -
11712     // (max(end, start + stride) - start - 1) /u stride
11713     //
11714     // The additional preconditions that we need to check to prove correctness
11715     // of the above formula is as follows -
11716     //
11717     // a) IV is either nuw or nsw depending upon signedness (indicated by the
11718     //    NoWrap flag).
11719     // b) the loop is guaranteed to be finite (e.g. is mustprogress and has
11720     //    no side effects within the loop)
11721     // c) loop has a single static exit (with no abnormal exits)
11722     //
11723     // Precondition a) implies that if the stride is negative, this is a single
11724     // trip loop. The backedge taken count formula reduces to zero in this case.
11725     //
11726     // Precondition b) and c) combine to imply that if rhs is invariant in L,
11727     // then a zero stride means the backedge can't be taken without executing
11728     // undefined behavior.
11729     //
11730     // The positive stride case is the same as isKnownPositive(Stride) returning
11731     // true (original behavior of the function).
11732     //
11733     if (PredicatedIV || !NoWrap || !loopIsFiniteByAssumption(L) ||
11734         !loopHasNoAbnormalExits(L))
11735       return getCouldNotCompute();
11736 
11737     // This bailout is protecting the logic in computeMaxBECountForLT which
11738     // has not yet been sufficiently auditted or tested with negative strides.
11739     // We used to filter out all known-non-positive cases here, we're in the
11740     // process of being less restrictive bit by bit.
11741     if (IsSigned && isKnownNonPositive(Stride))
11742       return getCouldNotCompute();
11743 
11744     if (!isKnownNonZero(Stride)) {
11745       // If we have a step of zero, and RHS isn't invariant in L, we don't know
11746       // if it might eventually be greater than start and if so, on which
11747       // iteration.  We can't even produce a useful upper bound.
11748       if (!isLoopInvariant(RHS, L))
11749         return getCouldNotCompute();
11750 
11751       // We allow a potentially zero stride, but we need to divide by stride
11752       // below.  Since the loop can't be infinite and this check must control
11753       // the sole exit, we can infer the exit must be taken on the first
11754       // iteration (e.g. backedge count = 0) if the stride is zero.  Given that,
11755       // we know the numerator in the divides below must be zero, so we can
11756       // pick an arbitrary non-zero value for the denominator (e.g. stride)
11757       // and produce the right result.
11758       // FIXME: Handle the case where Stride is poison?
11759       auto wouldZeroStrideBeUB = [&]() {
11760         // Proof by contradiction.  Suppose the stride were zero.  If we can
11761         // prove that the backedge *is* taken on the first iteration, then since
11762         // we know this condition controls the sole exit, we must have an
11763         // infinite loop.  We can't have a (well defined) infinite loop per
11764         // check just above.
11765         // Note: The (Start - Stride) term is used to get the start' term from
11766         // (start' + stride,+,stride). Remember that we only care about the
11767         // result of this expression when stride == 0 at runtime.
11768         auto *StartIfZero = getMinusSCEV(IV->getStart(), Stride);
11769         return isLoopEntryGuardedByCond(L, Cond, StartIfZero, RHS);
11770       };
11771       if (!wouldZeroStrideBeUB()) {
11772         Stride = getUMaxExpr(Stride, getOne(Stride->getType()));
11773       }
11774     }
11775   } else if (!Stride->isOne() && !NoWrap) {
11776     auto isUBOnWrap = [&]() {
11777       // From no-self-wrap, we need to then prove no-(un)signed-wrap.  This
11778       // follows trivially from the fact that every (un)signed-wrapped, but
11779       // not self-wrapped value must be LT than the last value before
11780       // (un)signed wrap.  Since we know that last value didn't exit, nor
11781       // will any smaller one.
11782       return canAssumeNoSelfWrap(IV);
11783     };
11784 
11785     // Avoid proven overflow cases: this will ensure that the backedge taken
11786     // count will not generate any unsigned overflow. Relaxed no-overflow
11787     // conditions exploit NoWrapFlags, allowing to optimize in presence of
11788     // undefined behaviors like the case of C language.
11789     if (canIVOverflowOnLT(RHS, Stride, IsSigned) && !isUBOnWrap())
11790       return getCouldNotCompute();
11791   }
11792 
11793   // On all paths just preceeding, we established the following invariant:
11794   //   IV can be assumed not to overflow up to and including the exiting
11795   //   iteration.  We proved this in one of two ways:
11796   //   1) We can show overflow doesn't occur before the exiting iteration
11797   //      1a) canIVOverflowOnLT, and b) step of one
11798   //   2) We can show that if overflow occurs, the loop must execute UB
11799   //      before any possible exit.
11800   // Note that we have not yet proved RHS invariant (in general).
11801 
11802   const SCEV *Start = IV->getStart();
11803 
11804   // Preserve pointer-typed Start/RHS to pass to isLoopEntryGuardedByCond.
11805   // If we convert to integers, isLoopEntryGuardedByCond will miss some cases.
11806   // Use integer-typed versions for actual computation; we can't subtract
11807   // pointers in general.
11808   const SCEV *OrigStart = Start;
11809   const SCEV *OrigRHS = RHS;
11810   if (Start->getType()->isPointerTy()) {
11811     Start = getLosslessPtrToIntExpr(Start);
11812     if (isa<SCEVCouldNotCompute>(Start))
11813       return Start;
11814   }
11815   if (RHS->getType()->isPointerTy()) {
11816     RHS = getLosslessPtrToIntExpr(RHS);
11817     if (isa<SCEVCouldNotCompute>(RHS))
11818       return RHS;
11819   }
11820 
11821   // When the RHS is not invariant, we do not know the end bound of the loop and
11822   // cannot calculate the ExactBECount needed by ExitLimit. However, we can
11823   // calculate the MaxBECount, given the start, stride and max value for the end
11824   // bound of the loop (RHS), and the fact that IV does not overflow (which is
11825   // checked above).
11826   if (!isLoopInvariant(RHS, L)) {
11827     const SCEV *MaxBECount = computeMaxBECountForLT(
11828         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
11829     return ExitLimit(getCouldNotCompute() /* ExactNotTaken */, MaxBECount,
11830                      false /*MaxOrZero*/, Predicates);
11831   }
11832 
11833   // We use the expression (max(End,Start)-Start)/Stride to describe the
11834   // backedge count, as if the backedge is taken at least once max(End,Start)
11835   // is End and so the result is as above, and if not max(End,Start) is Start
11836   // so we get a backedge count of zero.
11837   const SCEV *BECount = nullptr;
11838   auto *OrigStartMinusStride = getMinusSCEV(OrigStart, Stride);
11839   assert(isAvailableAtLoopEntry(OrigStartMinusStride, L) && "Must be!");
11840   assert(isAvailableAtLoopEntry(OrigStart, L) && "Must be!");
11841   assert(isAvailableAtLoopEntry(OrigRHS, L) && "Must be!");
11842   // Can we prove (max(RHS,Start) > Start - Stride?
11843   if (isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigStart) &&
11844       isLoopEntryGuardedByCond(L, Cond, OrigStartMinusStride, OrigRHS)) {
11845     // In this case, we can use a refined formula for computing backedge taken
11846     // count.  The general formula remains:
11847     //   "End-Start /uceiling Stride" where "End = max(RHS,Start)"
11848     // We want to use the alternate formula:
11849     //   "((End - 1) - (Start - Stride)) /u Stride"
11850     // Let's do a quick case analysis to show these are equivalent under
11851     // our precondition that max(RHS,Start) > Start - Stride.
11852     // * For RHS <= Start, the backedge-taken count must be zero.
11853     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11854     //   "((Start - 1) - (Start - Stride)) /u Stride" which simplies to
11855     //   "Stride - 1 /u Stride" which is indeed zero for all non-zero values
11856     //     of Stride.  For 0 stride, we've use umin(1,Stride) above, reducing
11857     //     this to the stride of 1 case.
11858     // * For RHS >= Start, the backedge count must be "RHS-Start /uceil Stride".
11859     //   "((End - 1) - (Start - Stride)) /u Stride" reduces to
11860     //   "((RHS - 1) - (Start - Stride)) /u Stride" reassociates to
11861     //   "((RHS - (Start - Stride) - 1) /u Stride".
11862     //   Our preconditions trivially imply no overflow in that form.
11863     const SCEV *MinusOne = getMinusOne(Stride->getType());
11864     const SCEV *Numerator =
11865         getMinusSCEV(getAddExpr(RHS, MinusOne), getMinusSCEV(Start, Stride));
11866     BECount = getUDivExpr(Numerator, Stride);
11867   }
11868 
11869   const SCEV *BECountIfBackedgeTaken = nullptr;
11870   if (!BECount) {
11871     auto canProveRHSGreaterThanEqualStart = [&]() {
11872       auto CondGE = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
11873       if (isLoopEntryGuardedByCond(L, CondGE, OrigRHS, OrigStart))
11874         return true;
11875 
11876       // (RHS > Start - 1) implies RHS >= Start.
11877       // * "RHS >= Start" is trivially equivalent to "RHS > Start - 1" if
11878       //   "Start - 1" doesn't overflow.
11879       // * For signed comparison, if Start - 1 does overflow, it's equal
11880       //   to INT_MAX, and "RHS >s INT_MAX" is trivially false.
11881       // * For unsigned comparison, if Start - 1 does overflow, it's equal
11882       //   to UINT_MAX, and "RHS >u UINT_MAX" is trivially false.
11883       //
11884       // FIXME: Should isLoopEntryGuardedByCond do this for us?
11885       auto CondGT = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
11886       auto *StartMinusOne = getAddExpr(OrigStart,
11887                                        getMinusOne(OrigStart->getType()));
11888       return isLoopEntryGuardedByCond(L, CondGT, OrigRHS, StartMinusOne);
11889     };
11890 
11891     // If we know that RHS >= Start in the context of loop, then we know that
11892     // max(RHS, Start) = RHS at this point.
11893     const SCEV *End;
11894     if (canProveRHSGreaterThanEqualStart()) {
11895       End = RHS;
11896     } else {
11897       // If RHS < Start, the backedge will be taken zero times.  So in
11898       // general, we can write the backedge-taken count as:
11899       //
11900       //     RHS >= Start ? ceil(RHS - Start) / Stride : 0
11901       //
11902       // We convert it to the following to make it more convenient for SCEV:
11903       //
11904       //     ceil(max(RHS, Start) - Start) / Stride
11905       End = IsSigned ? getSMaxExpr(RHS, Start) : getUMaxExpr(RHS, Start);
11906 
11907       // See what would happen if we assume the backedge is taken. This is
11908       // used to compute MaxBECount.
11909       BECountIfBackedgeTaken = getUDivCeilSCEV(getMinusSCEV(RHS, Start), Stride);
11910     }
11911 
11912     // At this point, we know:
11913     //
11914     // 1. If IsSigned, Start <=s End; otherwise, Start <=u End
11915     // 2. The index variable doesn't overflow.
11916     //
11917     // Therefore, we know N exists such that
11918     // (Start + Stride * N) >= End, and computing "(Start + Stride * N)"
11919     // doesn't overflow.
11920     //
11921     // Using this information, try to prove whether the addition in
11922     // "(Start - End) + (Stride - 1)" has unsigned overflow.
11923     const SCEV *One = getOne(Stride->getType());
11924     bool MayAddOverflow = [&] {
11925       if (auto *StrideC = dyn_cast<SCEVConstant>(Stride)) {
11926         if (StrideC->getAPInt().isPowerOf2()) {
11927           // Suppose Stride is a power of two, and Start/End are unsigned
11928           // integers.  Let UMAX be the largest representable unsigned
11929           // integer.
11930           //
11931           // By the preconditions of this function, we know
11932           // "(Start + Stride * N) >= End", and this doesn't overflow.
11933           // As a formula:
11934           //
11935           //   End <= (Start + Stride * N) <= UMAX
11936           //
11937           // Subtracting Start from all the terms:
11938           //
11939           //   End - Start <= Stride * N <= UMAX - Start
11940           //
11941           // Since Start is unsigned, UMAX - Start <= UMAX.  Therefore:
11942           //
11943           //   End - Start <= Stride * N <= UMAX
11944           //
11945           // Stride * N is a multiple of Stride. Therefore,
11946           //
11947           //   End - Start <= Stride * N <= UMAX - (UMAX mod Stride)
11948           //
11949           // Since Stride is a power of two, UMAX + 1 is divisible by Stride.
11950           // Therefore, UMAX mod Stride == Stride - 1.  So we can write:
11951           //
11952           //   End - Start <= Stride * N <= UMAX - Stride - 1
11953           //
11954           // Dropping the middle term:
11955           //
11956           //   End - Start <= UMAX - Stride - 1
11957           //
11958           // Adding Stride - 1 to both sides:
11959           //
11960           //   (End - Start) + (Stride - 1) <= UMAX
11961           //
11962           // In other words, the addition doesn't have unsigned overflow.
11963           //
11964           // A similar proof works if we treat Start/End as signed values.
11965           // Just rewrite steps before "End - Start <= Stride * N <= UMAX" to
11966           // use signed max instead of unsigned max. Note that we're trying
11967           // to prove a lack of unsigned overflow in either case.
11968           return false;
11969         }
11970       }
11971       if (Start == Stride || Start == getMinusSCEV(Stride, One)) {
11972         // If Start is equal to Stride, (End - Start) + (Stride - 1) == End - 1.
11973         // If !IsSigned, 0 <u Stride == Start <=u End; so 0 <u End - 1 <u End.
11974         // If IsSigned, 0 <s Stride == Start <=s End; so 0 <s End - 1 <s End.
11975         //
11976         // If Start is equal to Stride - 1, (End - Start) + Stride - 1 == End.
11977         return false;
11978       }
11979       return true;
11980     }();
11981 
11982     const SCEV *Delta = getMinusSCEV(End, Start);
11983     if (!MayAddOverflow) {
11984       // floor((D + (S - 1)) / S)
11985       // We prefer this formulation if it's legal because it's fewer operations.
11986       BECount =
11987           getUDivExpr(getAddExpr(Delta, getMinusSCEV(Stride, One)), Stride);
11988     } else {
11989       BECount = getUDivCeilSCEV(Delta, Stride);
11990     }
11991   }
11992 
11993   const SCEV *MaxBECount;
11994   bool MaxOrZero = false;
11995   if (isa<SCEVConstant>(BECount)) {
11996     MaxBECount = BECount;
11997   } else if (BECountIfBackedgeTaken &&
11998              isa<SCEVConstant>(BECountIfBackedgeTaken)) {
11999     // If we know exactly how many times the backedge will be taken if it's
12000     // taken at least once, then the backedge count will either be that or
12001     // zero.
12002     MaxBECount = BECountIfBackedgeTaken;
12003     MaxOrZero = true;
12004   } else {
12005     MaxBECount = computeMaxBECountForLT(
12006         Start, Stride, RHS, getTypeSizeInBits(LHS->getType()), IsSigned);
12007   }
12008 
12009   if (isa<SCEVCouldNotCompute>(MaxBECount) &&
12010       !isa<SCEVCouldNotCompute>(BECount))
12011     MaxBECount = getConstant(getUnsignedRangeMax(BECount));
12012 
12013   return ExitLimit(BECount, MaxBECount, MaxOrZero, Predicates);
12014 }
12015 
12016 ScalarEvolution::ExitLimit
12017 ScalarEvolution::howManyGreaterThans(const SCEV *LHS, const SCEV *RHS,
12018                                      const Loop *L, bool IsSigned,
12019                                      bool ControlsExit, bool AllowPredicates) {
12020   SmallPtrSet<const SCEVPredicate *, 4> Predicates;
12021   // We handle only IV > Invariant
12022   if (!isLoopInvariant(RHS, L))
12023     return getCouldNotCompute();
12024 
12025   const SCEVAddRecExpr *IV = dyn_cast<SCEVAddRecExpr>(LHS);
12026   if (!IV && AllowPredicates)
12027     // Try to make this an AddRec using runtime tests, in the first X
12028     // iterations of this loop, where X is the SCEV expression found by the
12029     // algorithm below.
12030     IV = convertSCEVToAddRecWithPredicates(LHS, L, Predicates);
12031 
12032   // Avoid weird loops
12033   if (!IV || IV->getLoop() != L || !IV->isAffine())
12034     return getCouldNotCompute();
12035 
12036   auto WrapType = IsSigned ? SCEV::FlagNSW : SCEV::FlagNUW;
12037   bool NoWrap = ControlsExit && IV->getNoWrapFlags(WrapType);
12038   ICmpInst::Predicate Cond = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
12039 
12040   const SCEV *Stride = getNegativeSCEV(IV->getStepRecurrence(*this));
12041 
12042   // Avoid negative or zero stride values
12043   if (!isKnownPositive(Stride))
12044     return getCouldNotCompute();
12045 
12046   // Avoid proven overflow cases: this will ensure that the backedge taken count
12047   // will not generate any unsigned overflow. Relaxed no-overflow conditions
12048   // exploit NoWrapFlags, allowing to optimize in presence of undefined
12049   // behaviors like the case of C language.
12050   if (!Stride->isOne() && !NoWrap)
12051     if (canIVOverflowOnGT(RHS, Stride, IsSigned))
12052       return getCouldNotCompute();
12053 
12054   const SCEV *Start = IV->getStart();
12055   const SCEV *End = RHS;
12056   if (!isLoopEntryGuardedByCond(L, Cond, getAddExpr(Start, Stride), RHS)) {
12057     // If we know that Start >= RHS in the context of loop, then we know that
12058     // min(RHS, Start) = RHS at this point.
12059     if (isLoopEntryGuardedByCond(
12060             L, IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE, Start, RHS))
12061       End = RHS;
12062     else
12063       End = IsSigned ? getSMinExpr(RHS, Start) : getUMinExpr(RHS, Start);
12064   }
12065 
12066   if (Start->getType()->isPointerTy()) {
12067     Start = getLosslessPtrToIntExpr(Start);
12068     if (isa<SCEVCouldNotCompute>(Start))
12069       return Start;
12070   }
12071   if (End->getType()->isPointerTy()) {
12072     End = getLosslessPtrToIntExpr(End);
12073     if (isa<SCEVCouldNotCompute>(End))
12074       return End;
12075   }
12076 
12077   // Compute ((Start - End) + (Stride - 1)) / Stride.
12078   // FIXME: This can overflow. Holding off on fixing this for now;
12079   // howManyGreaterThans will hopefully be gone soon.
12080   const SCEV *One = getOne(Stride->getType());
12081   const SCEV *BECount = getUDivExpr(
12082       getAddExpr(getMinusSCEV(Start, End), getMinusSCEV(Stride, One)), Stride);
12083 
12084   APInt MaxStart = IsSigned ? getSignedRangeMax(Start)
12085                             : getUnsignedRangeMax(Start);
12086 
12087   APInt MinStride = IsSigned ? getSignedRangeMin(Stride)
12088                              : getUnsignedRangeMin(Stride);
12089 
12090   unsigned BitWidth = getTypeSizeInBits(LHS->getType());
12091   APInt Limit = IsSigned ? APInt::getSignedMinValue(BitWidth) + (MinStride - 1)
12092                          : APInt::getMinValue(BitWidth) + (MinStride - 1);
12093 
12094   // Although End can be a MIN expression we estimate MinEnd considering only
12095   // the case End = RHS. This is safe because in the other case (Start - End)
12096   // is zero, leading to a zero maximum backedge taken count.
12097   APInt MinEnd =
12098     IsSigned ? APIntOps::smax(getSignedRangeMin(RHS), Limit)
12099              : APIntOps::umax(getUnsignedRangeMin(RHS), Limit);
12100 
12101   const SCEV *MaxBECount = isa<SCEVConstant>(BECount)
12102                                ? BECount
12103                                : getUDivCeilSCEV(getConstant(MaxStart - MinEnd),
12104                                                  getConstant(MinStride));
12105 
12106   if (isa<SCEVCouldNotCompute>(MaxBECount))
12107     MaxBECount = BECount;
12108 
12109   return ExitLimit(BECount, MaxBECount, false, Predicates);
12110 }
12111 
12112 const SCEV *SCEVAddRecExpr::getNumIterationsInRange(const ConstantRange &Range,
12113                                                     ScalarEvolution &SE) const {
12114   if (Range.isFullSet())  // Infinite loop.
12115     return SE.getCouldNotCompute();
12116 
12117   // If the start is a non-zero constant, shift the range to simplify things.
12118   if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(getStart()))
12119     if (!SC->getValue()->isZero()) {
12120       SmallVector<const SCEV *, 4> Operands(operands());
12121       Operands[0] = SE.getZero(SC->getType());
12122       const SCEV *Shifted = SE.getAddRecExpr(Operands, getLoop(),
12123                                              getNoWrapFlags(FlagNW));
12124       if (const auto *ShiftedAddRec = dyn_cast<SCEVAddRecExpr>(Shifted))
12125         return ShiftedAddRec->getNumIterationsInRange(
12126             Range.subtract(SC->getAPInt()), SE);
12127       // This is strange and shouldn't happen.
12128       return SE.getCouldNotCompute();
12129     }
12130 
12131   // The only time we can solve this is when we have all constant indices.
12132   // Otherwise, we cannot determine the overflow conditions.
12133   if (any_of(operands(), [](const SCEV *Op) { return !isa<SCEVConstant>(Op); }))
12134     return SE.getCouldNotCompute();
12135 
12136   // Okay at this point we know that all elements of the chrec are constants and
12137   // that the start element is zero.
12138 
12139   // First check to see if the range contains zero.  If not, the first
12140   // iteration exits.
12141   unsigned BitWidth = SE.getTypeSizeInBits(getType());
12142   if (!Range.contains(APInt(BitWidth, 0)))
12143     return SE.getZero(getType());
12144 
12145   if (isAffine()) {
12146     // If this is an affine expression then we have this situation:
12147     //   Solve {0,+,A} in Range  ===  Ax in Range
12148 
12149     // We know that zero is in the range.  If A is positive then we know that
12150     // the upper value of the range must be the first possible exit value.
12151     // If A is negative then the lower of the range is the last possible loop
12152     // value.  Also note that we already checked for a full range.
12153     APInt A = cast<SCEVConstant>(getOperand(1))->getAPInt();
12154     APInt End = A.sge(1) ? (Range.getUpper() - 1) : Range.getLower();
12155 
12156     // The exit value should be (End+A)/A.
12157     APInt ExitVal = (End + A).udiv(A);
12158     ConstantInt *ExitValue = ConstantInt::get(SE.getContext(), ExitVal);
12159 
12160     // Evaluate at the exit value.  If we really did fall out of the valid
12161     // range, then we computed our trip count, otherwise wrap around or other
12162     // things must have happened.
12163     ConstantInt *Val = EvaluateConstantChrecAtConstant(this, ExitValue, SE);
12164     if (Range.contains(Val->getValue()))
12165       return SE.getCouldNotCompute();  // Something strange happened
12166 
12167     // Ensure that the previous value is in the range.  This is a sanity check.
12168     assert(Range.contains(
12169            EvaluateConstantChrecAtConstant(this,
12170            ConstantInt::get(SE.getContext(), ExitVal - 1), SE)->getValue()) &&
12171            "Linear scev computation is off in a bad way!");
12172     return SE.getConstant(ExitValue);
12173   }
12174 
12175   if (isQuadratic()) {
12176     if (auto S = SolveQuadraticAddRecRange(this, Range, SE))
12177       return SE.getConstant(S.getValue());
12178   }
12179 
12180   return SE.getCouldNotCompute();
12181 }
12182 
12183 const SCEVAddRecExpr *
12184 SCEVAddRecExpr::getPostIncExpr(ScalarEvolution &SE) const {
12185   assert(getNumOperands() > 1 && "AddRec with zero step?");
12186   // There is a temptation to just call getAddExpr(this, getStepRecurrence(SE)),
12187   // but in this case we cannot guarantee that the value returned will be an
12188   // AddRec because SCEV does not have a fixed point where it stops
12189   // simplification: it is legal to return ({rec1} + {rec2}). For example, it
12190   // may happen if we reach arithmetic depth limit while simplifying. So we
12191   // construct the returned value explicitly.
12192   SmallVector<const SCEV *, 3> Ops;
12193   // If this is {A,+,B,+,C,...,+,N}, then its step is {B,+,C,+,...,+,N}, and
12194   // (this + Step) is {A+B,+,B+C,+...,+,N}.
12195   for (unsigned i = 0, e = getNumOperands() - 1; i < e; ++i)
12196     Ops.push_back(SE.getAddExpr(getOperand(i), getOperand(i + 1)));
12197   // We know that the last operand is not a constant zero (otherwise it would
12198   // have been popped out earlier). This guarantees us that if the result has
12199   // the same last operand, then it will also not be popped out, meaning that
12200   // the returned value will be an AddRec.
12201   const SCEV *Last = getOperand(getNumOperands() - 1);
12202   assert(!Last->isZero() && "Recurrency with zero step?");
12203   Ops.push_back(Last);
12204   return cast<SCEVAddRecExpr>(SE.getAddRecExpr(Ops, getLoop(),
12205                                                SCEV::FlagAnyWrap));
12206 }
12207 
12208 // Return true when S contains at least an undef value.
12209 static inline bool containsUndefs(const SCEV *S) {
12210   return SCEVExprContains(S, [](const SCEV *S) {
12211     if (const auto *SU = dyn_cast<SCEVUnknown>(S))
12212       return isa<UndefValue>(SU->getValue());
12213     return false;
12214   });
12215 }
12216 
12217 /// Return the size of an element read or written by Inst.
12218 const SCEV *ScalarEvolution::getElementSize(Instruction *Inst) {
12219   Type *Ty;
12220   if (StoreInst *Store = dyn_cast<StoreInst>(Inst))
12221     Ty = Store->getValueOperand()->getType();
12222   else if (LoadInst *Load = dyn_cast<LoadInst>(Inst))
12223     Ty = Load->getType();
12224   else
12225     return nullptr;
12226 
12227   Type *ETy = getEffectiveSCEVType(PointerType::getUnqual(Ty));
12228   return getSizeOfExpr(ETy, Ty);
12229 }
12230 
12231 //===----------------------------------------------------------------------===//
12232 //                   SCEVCallbackVH Class Implementation
12233 //===----------------------------------------------------------------------===//
12234 
12235 void ScalarEvolution::SCEVCallbackVH::deleted() {
12236   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12237   if (PHINode *PN = dyn_cast<PHINode>(getValPtr()))
12238     SE->ConstantEvolutionLoopExitValue.erase(PN);
12239   SE->eraseValueFromMap(getValPtr());
12240   // this now dangles!
12241 }
12242 
12243 void ScalarEvolution::SCEVCallbackVH::allUsesReplacedWith(Value *V) {
12244   assert(SE && "SCEVCallbackVH called with a null ScalarEvolution!");
12245 
12246   // Forget all the expressions associated with users of the old value,
12247   // so that future queries will recompute the expressions using the new
12248   // value.
12249   Value *Old = getValPtr();
12250   SmallVector<User *, 16> Worklist(Old->users());
12251   SmallPtrSet<User *, 8> Visited;
12252   while (!Worklist.empty()) {
12253     User *U = Worklist.pop_back_val();
12254     // Deleting the Old value will cause this to dangle. Postpone
12255     // that until everything else is done.
12256     if (U == Old)
12257       continue;
12258     if (!Visited.insert(U).second)
12259       continue;
12260     if (PHINode *PN = dyn_cast<PHINode>(U))
12261       SE->ConstantEvolutionLoopExitValue.erase(PN);
12262     SE->eraseValueFromMap(U);
12263     llvm::append_range(Worklist, U->users());
12264   }
12265   // Delete the Old value.
12266   if (PHINode *PN = dyn_cast<PHINode>(Old))
12267     SE->ConstantEvolutionLoopExitValue.erase(PN);
12268   SE->eraseValueFromMap(Old);
12269   // this now dangles!
12270 }
12271 
12272 ScalarEvolution::SCEVCallbackVH::SCEVCallbackVH(Value *V, ScalarEvolution *se)
12273   : CallbackVH(V), SE(se) {}
12274 
12275 //===----------------------------------------------------------------------===//
12276 //                   ScalarEvolution Class Implementation
12277 //===----------------------------------------------------------------------===//
12278 
12279 ScalarEvolution::ScalarEvolution(Function &F, TargetLibraryInfo &TLI,
12280                                  AssumptionCache &AC, DominatorTree &DT,
12281                                  LoopInfo &LI)
12282     : F(F), TLI(TLI), AC(AC), DT(DT), LI(LI),
12283       CouldNotCompute(new SCEVCouldNotCompute()), ValuesAtScopes(64),
12284       LoopDispositions(64), BlockDispositions(64) {
12285   // To use guards for proving predicates, we need to scan every instruction in
12286   // relevant basic blocks, and not just terminators.  Doing this is a waste of
12287   // time if the IR does not actually contain any calls to
12288   // @llvm.experimental.guard, so do a quick check and remember this beforehand.
12289   //
12290   // This pessimizes the case where a pass that preserves ScalarEvolution wants
12291   // to _add_ guards to the module when there weren't any before, and wants
12292   // ScalarEvolution to optimize based on those guards.  For now we prefer to be
12293   // efficient in lieu of being smart in that rather obscure case.
12294 
12295   auto *GuardDecl = F.getParent()->getFunction(
12296       Intrinsic::getName(Intrinsic::experimental_guard));
12297   HasGuards = GuardDecl && !GuardDecl->use_empty();
12298 }
12299 
12300 ScalarEvolution::ScalarEvolution(ScalarEvolution &&Arg)
12301     : F(Arg.F), HasGuards(Arg.HasGuards), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
12302       LI(Arg.LI), CouldNotCompute(std::move(Arg.CouldNotCompute)),
12303       ValueExprMap(std::move(Arg.ValueExprMap)),
12304       PendingLoopPredicates(std::move(Arg.PendingLoopPredicates)),
12305       PendingPhiRanges(std::move(Arg.PendingPhiRanges)),
12306       PendingMerges(std::move(Arg.PendingMerges)),
12307       MinTrailingZerosCache(std::move(Arg.MinTrailingZerosCache)),
12308       BackedgeTakenCounts(std::move(Arg.BackedgeTakenCounts)),
12309       PredicatedBackedgeTakenCounts(
12310           std::move(Arg.PredicatedBackedgeTakenCounts)),
12311       ConstantEvolutionLoopExitValue(
12312           std::move(Arg.ConstantEvolutionLoopExitValue)),
12313       ValuesAtScopes(std::move(Arg.ValuesAtScopes)),
12314       LoopDispositions(std::move(Arg.LoopDispositions)),
12315       LoopPropertiesCache(std::move(Arg.LoopPropertiesCache)),
12316       BlockDispositions(std::move(Arg.BlockDispositions)),
12317       UnsignedRanges(std::move(Arg.UnsignedRanges)),
12318       SignedRanges(std::move(Arg.SignedRanges)),
12319       UniqueSCEVs(std::move(Arg.UniqueSCEVs)),
12320       UniquePreds(std::move(Arg.UniquePreds)),
12321       SCEVAllocator(std::move(Arg.SCEVAllocator)),
12322       LoopUsers(std::move(Arg.LoopUsers)),
12323       PredicatedSCEVRewrites(std::move(Arg.PredicatedSCEVRewrites)),
12324       FirstUnknown(Arg.FirstUnknown) {
12325   Arg.FirstUnknown = nullptr;
12326 }
12327 
12328 ScalarEvolution::~ScalarEvolution() {
12329   // Iterate through all the SCEVUnknown instances and call their
12330   // destructors, so that they release their references to their values.
12331   for (SCEVUnknown *U = FirstUnknown; U;) {
12332     SCEVUnknown *Tmp = U;
12333     U = U->Next;
12334     Tmp->~SCEVUnknown();
12335   }
12336   FirstUnknown = nullptr;
12337 
12338   ExprValueMap.clear();
12339   ValueExprMap.clear();
12340   HasRecMap.clear();
12341   BackedgeTakenCounts.clear();
12342   PredicatedBackedgeTakenCounts.clear();
12343 
12344   assert(PendingLoopPredicates.empty() && "isImpliedCond garbage");
12345   assert(PendingPhiRanges.empty() && "getRangeRef garbage");
12346   assert(PendingMerges.empty() && "isImpliedViaMerge garbage");
12347   assert(!WalkingBEDominatingConds && "isLoopBackedgeGuardedByCond garbage!");
12348   assert(!ProvingSplitPredicate && "ProvingSplitPredicate garbage!");
12349 }
12350 
12351 bool ScalarEvolution::hasLoopInvariantBackedgeTakenCount(const Loop *L) {
12352   return !isa<SCEVCouldNotCompute>(getBackedgeTakenCount(L));
12353 }
12354 
12355 static void PrintLoopInfo(raw_ostream &OS, ScalarEvolution *SE,
12356                           const Loop *L) {
12357   // Print all inner loops first
12358   for (Loop *I : *L)
12359     PrintLoopInfo(OS, SE, I);
12360 
12361   OS << "Loop ";
12362   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12363   OS << ": ";
12364 
12365   SmallVector<BasicBlock *, 8> ExitingBlocks;
12366   L->getExitingBlocks(ExitingBlocks);
12367   if (ExitingBlocks.size() != 1)
12368     OS << "<multiple exits> ";
12369 
12370   if (SE->hasLoopInvariantBackedgeTakenCount(L))
12371     OS << "backedge-taken count is " << *SE->getBackedgeTakenCount(L) << "\n";
12372   else
12373     OS << "Unpredictable backedge-taken count.\n";
12374 
12375   if (ExitingBlocks.size() > 1)
12376     for (BasicBlock *ExitingBlock : ExitingBlocks) {
12377       OS << "  exit count for " << ExitingBlock->getName() << ": "
12378          << *SE->getExitCount(L, ExitingBlock) << "\n";
12379     }
12380 
12381   OS << "Loop ";
12382   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12383   OS << ": ";
12384 
12385   if (!isa<SCEVCouldNotCompute>(SE->getConstantMaxBackedgeTakenCount(L))) {
12386     OS << "max backedge-taken count is " << *SE->getConstantMaxBackedgeTakenCount(L);
12387     if (SE->isBackedgeTakenCountMaxOrZero(L))
12388       OS << ", actual taken count either this or zero.";
12389   } else {
12390     OS << "Unpredictable max backedge-taken count. ";
12391   }
12392 
12393   OS << "\n"
12394         "Loop ";
12395   L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12396   OS << ": ";
12397 
12398   SCEVUnionPredicate Pred;
12399   auto PBT = SE->getPredicatedBackedgeTakenCount(L, Pred);
12400   if (!isa<SCEVCouldNotCompute>(PBT)) {
12401     OS << "Predicated backedge-taken count is " << *PBT << "\n";
12402     OS << " Predicates:\n";
12403     Pred.print(OS, 4);
12404   } else {
12405     OS << "Unpredictable predicated backedge-taken count. ";
12406   }
12407   OS << "\n";
12408 
12409   if (SE->hasLoopInvariantBackedgeTakenCount(L)) {
12410     OS << "Loop ";
12411     L->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12412     OS << ": ";
12413     OS << "Trip multiple is " << SE->getSmallConstantTripMultiple(L) << "\n";
12414   }
12415 }
12416 
12417 static StringRef loopDispositionToStr(ScalarEvolution::LoopDisposition LD) {
12418   switch (LD) {
12419   case ScalarEvolution::LoopVariant:
12420     return "Variant";
12421   case ScalarEvolution::LoopInvariant:
12422     return "Invariant";
12423   case ScalarEvolution::LoopComputable:
12424     return "Computable";
12425   }
12426   llvm_unreachable("Unknown ScalarEvolution::LoopDisposition kind!");
12427 }
12428 
12429 void ScalarEvolution::print(raw_ostream &OS) const {
12430   // ScalarEvolution's implementation of the print method is to print
12431   // out SCEV values of all instructions that are interesting. Doing
12432   // this potentially causes it to create new SCEV objects though,
12433   // which technically conflicts with the const qualifier. This isn't
12434   // observable from outside the class though, so casting away the
12435   // const isn't dangerous.
12436   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12437 
12438   if (ClassifyExpressions) {
12439     OS << "Classifying expressions for: ";
12440     F.printAsOperand(OS, /*PrintType=*/false);
12441     OS << "\n";
12442     for (Instruction &I : instructions(F))
12443       if (isSCEVable(I.getType()) && !isa<CmpInst>(I)) {
12444         OS << I << '\n';
12445         OS << "  -->  ";
12446         const SCEV *SV = SE.getSCEV(&I);
12447         SV->print(OS);
12448         if (!isa<SCEVCouldNotCompute>(SV)) {
12449           OS << " U: ";
12450           SE.getUnsignedRange(SV).print(OS);
12451           OS << " S: ";
12452           SE.getSignedRange(SV).print(OS);
12453         }
12454 
12455         const Loop *L = LI.getLoopFor(I.getParent());
12456 
12457         const SCEV *AtUse = SE.getSCEVAtScope(SV, L);
12458         if (AtUse != SV) {
12459           OS << "  -->  ";
12460           AtUse->print(OS);
12461           if (!isa<SCEVCouldNotCompute>(AtUse)) {
12462             OS << " U: ";
12463             SE.getUnsignedRange(AtUse).print(OS);
12464             OS << " S: ";
12465             SE.getSignedRange(AtUse).print(OS);
12466           }
12467         }
12468 
12469         if (L) {
12470           OS << "\t\t" "Exits: ";
12471           const SCEV *ExitValue = SE.getSCEVAtScope(SV, L->getParentLoop());
12472           if (!SE.isLoopInvariant(ExitValue, L)) {
12473             OS << "<<Unknown>>";
12474           } else {
12475             OS << *ExitValue;
12476           }
12477 
12478           bool First = true;
12479           for (auto *Iter = L; Iter; Iter = Iter->getParentLoop()) {
12480             if (First) {
12481               OS << "\t\t" "LoopDispositions: { ";
12482               First = false;
12483             } else {
12484               OS << ", ";
12485             }
12486 
12487             Iter->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12488             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, Iter));
12489           }
12490 
12491           for (auto *InnerL : depth_first(L)) {
12492             if (InnerL == L)
12493               continue;
12494             if (First) {
12495               OS << "\t\t" "LoopDispositions: { ";
12496               First = false;
12497             } else {
12498               OS << ", ";
12499             }
12500 
12501             InnerL->getHeader()->printAsOperand(OS, /*PrintType=*/false);
12502             OS << ": " << loopDispositionToStr(SE.getLoopDisposition(SV, InnerL));
12503           }
12504 
12505           OS << " }";
12506         }
12507 
12508         OS << "\n";
12509       }
12510   }
12511 
12512   OS << "Determining loop execution counts for: ";
12513   F.printAsOperand(OS, /*PrintType=*/false);
12514   OS << "\n";
12515   for (Loop *I : LI)
12516     PrintLoopInfo(OS, &SE, I);
12517 }
12518 
12519 ScalarEvolution::LoopDisposition
12520 ScalarEvolution::getLoopDisposition(const SCEV *S, const Loop *L) {
12521   auto &Values = LoopDispositions[S];
12522   for (auto &V : Values) {
12523     if (V.getPointer() == L)
12524       return V.getInt();
12525   }
12526   Values.emplace_back(L, LoopVariant);
12527   LoopDisposition D = computeLoopDisposition(S, L);
12528   auto &Values2 = LoopDispositions[S];
12529   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12530     if (V.getPointer() == L) {
12531       V.setInt(D);
12532       break;
12533     }
12534   }
12535   return D;
12536 }
12537 
12538 ScalarEvolution::LoopDisposition
12539 ScalarEvolution::computeLoopDisposition(const SCEV *S, const Loop *L) {
12540   switch (S->getSCEVType()) {
12541   case scConstant:
12542     return LoopInvariant;
12543   case scPtrToInt:
12544   case scTruncate:
12545   case scZeroExtend:
12546   case scSignExtend:
12547     return getLoopDisposition(cast<SCEVCastExpr>(S)->getOperand(), L);
12548   case scAddRecExpr: {
12549     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12550 
12551     // If L is the addrec's loop, it's computable.
12552     if (AR->getLoop() == L)
12553       return LoopComputable;
12554 
12555     // Add recurrences are never invariant in the function-body (null loop).
12556     if (!L)
12557       return LoopVariant;
12558 
12559     // Everything that is not defined at loop entry is variant.
12560     if (DT.dominates(L->getHeader(), AR->getLoop()->getHeader()))
12561       return LoopVariant;
12562     assert(!L->contains(AR->getLoop()) && "Containing loop's header does not"
12563            " dominate the contained loop's header?");
12564 
12565     // This recurrence is invariant w.r.t. L if AR's loop contains L.
12566     if (AR->getLoop()->contains(L))
12567       return LoopInvariant;
12568 
12569     // This recurrence is variant w.r.t. L if any of its operands
12570     // are variant.
12571     for (auto *Op : AR->operands())
12572       if (!isLoopInvariant(Op, L))
12573         return LoopVariant;
12574 
12575     // Otherwise it's loop-invariant.
12576     return LoopInvariant;
12577   }
12578   case scAddExpr:
12579   case scMulExpr:
12580   case scUMaxExpr:
12581   case scSMaxExpr:
12582   case scUMinExpr:
12583   case scSMinExpr: {
12584     bool HasVarying = false;
12585     for (auto *Op : cast<SCEVNAryExpr>(S)->operands()) {
12586       LoopDisposition D = getLoopDisposition(Op, L);
12587       if (D == LoopVariant)
12588         return LoopVariant;
12589       if (D == LoopComputable)
12590         HasVarying = true;
12591     }
12592     return HasVarying ? LoopComputable : LoopInvariant;
12593   }
12594   case scUDivExpr: {
12595     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12596     LoopDisposition LD = getLoopDisposition(UDiv->getLHS(), L);
12597     if (LD == LoopVariant)
12598       return LoopVariant;
12599     LoopDisposition RD = getLoopDisposition(UDiv->getRHS(), L);
12600     if (RD == LoopVariant)
12601       return LoopVariant;
12602     return (LD == LoopInvariant && RD == LoopInvariant) ?
12603            LoopInvariant : LoopComputable;
12604   }
12605   case scUnknown:
12606     // All non-instruction values are loop invariant.  All instructions are loop
12607     // invariant if they are not contained in the specified loop.
12608     // Instructions are never considered invariant in the function body
12609     // (null loop) because they are defined within the "loop".
12610     if (auto *I = dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue()))
12611       return (L && !L->contains(I)) ? LoopInvariant : LoopVariant;
12612     return LoopInvariant;
12613   case scCouldNotCompute:
12614     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12615   }
12616   llvm_unreachable("Unknown SCEV kind!");
12617 }
12618 
12619 bool ScalarEvolution::isLoopInvariant(const SCEV *S, const Loop *L) {
12620   return getLoopDisposition(S, L) == LoopInvariant;
12621 }
12622 
12623 bool ScalarEvolution::hasComputableLoopEvolution(const SCEV *S, const Loop *L) {
12624   return getLoopDisposition(S, L) == LoopComputable;
12625 }
12626 
12627 ScalarEvolution::BlockDisposition
12628 ScalarEvolution::getBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12629   auto &Values = BlockDispositions[S];
12630   for (auto &V : Values) {
12631     if (V.getPointer() == BB)
12632       return V.getInt();
12633   }
12634   Values.emplace_back(BB, DoesNotDominateBlock);
12635   BlockDisposition D = computeBlockDisposition(S, BB);
12636   auto &Values2 = BlockDispositions[S];
12637   for (auto &V : make_range(Values2.rbegin(), Values2.rend())) {
12638     if (V.getPointer() == BB) {
12639       V.setInt(D);
12640       break;
12641     }
12642   }
12643   return D;
12644 }
12645 
12646 ScalarEvolution::BlockDisposition
12647 ScalarEvolution::computeBlockDisposition(const SCEV *S, const BasicBlock *BB) {
12648   switch (S->getSCEVType()) {
12649   case scConstant:
12650     return ProperlyDominatesBlock;
12651   case scPtrToInt:
12652   case scTruncate:
12653   case scZeroExtend:
12654   case scSignExtend:
12655     return getBlockDisposition(cast<SCEVCastExpr>(S)->getOperand(), BB);
12656   case scAddRecExpr: {
12657     // This uses a "dominates" query instead of "properly dominates" query
12658     // to test for proper dominance too, because the instruction which
12659     // produces the addrec's value is a PHI, and a PHI effectively properly
12660     // dominates its entire containing block.
12661     const SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(S);
12662     if (!DT.dominates(AR->getLoop()->getHeader(), BB))
12663       return DoesNotDominateBlock;
12664 
12665     // Fall through into SCEVNAryExpr handling.
12666     LLVM_FALLTHROUGH;
12667   }
12668   case scAddExpr:
12669   case scMulExpr:
12670   case scUMaxExpr:
12671   case scSMaxExpr:
12672   case scUMinExpr:
12673   case scSMinExpr: {
12674     const SCEVNAryExpr *NAry = cast<SCEVNAryExpr>(S);
12675     bool Proper = true;
12676     for (const SCEV *NAryOp : NAry->operands()) {
12677       BlockDisposition D = getBlockDisposition(NAryOp, BB);
12678       if (D == DoesNotDominateBlock)
12679         return DoesNotDominateBlock;
12680       if (D == DominatesBlock)
12681         Proper = false;
12682     }
12683     return Proper ? ProperlyDominatesBlock : DominatesBlock;
12684   }
12685   case scUDivExpr: {
12686     const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
12687     const SCEV *LHS = UDiv->getLHS(), *RHS = UDiv->getRHS();
12688     BlockDisposition LD = getBlockDisposition(LHS, BB);
12689     if (LD == DoesNotDominateBlock)
12690       return DoesNotDominateBlock;
12691     BlockDisposition RD = getBlockDisposition(RHS, BB);
12692     if (RD == DoesNotDominateBlock)
12693       return DoesNotDominateBlock;
12694     return (LD == ProperlyDominatesBlock && RD == ProperlyDominatesBlock) ?
12695       ProperlyDominatesBlock : DominatesBlock;
12696   }
12697   case scUnknown:
12698     if (Instruction *I =
12699           dyn_cast<Instruction>(cast<SCEVUnknown>(S)->getValue())) {
12700       if (I->getParent() == BB)
12701         return DominatesBlock;
12702       if (DT.properlyDominates(I->getParent(), BB))
12703         return ProperlyDominatesBlock;
12704       return DoesNotDominateBlock;
12705     }
12706     return ProperlyDominatesBlock;
12707   case scCouldNotCompute:
12708     llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
12709   }
12710   llvm_unreachable("Unknown SCEV kind!");
12711 }
12712 
12713 bool ScalarEvolution::dominates(const SCEV *S, const BasicBlock *BB) {
12714   return getBlockDisposition(S, BB) >= DominatesBlock;
12715 }
12716 
12717 bool ScalarEvolution::properlyDominates(const SCEV *S, const BasicBlock *BB) {
12718   return getBlockDisposition(S, BB) == ProperlyDominatesBlock;
12719 }
12720 
12721 bool ScalarEvolution::hasOperand(const SCEV *S, const SCEV *Op) const {
12722   return SCEVExprContains(S, [&](const SCEV *Expr) { return Expr == Op; });
12723 }
12724 
12725 void
12726 ScalarEvolution::forgetMemoizedResults(const SCEV *S) {
12727   ValuesAtScopes.erase(S);
12728   LoopDispositions.erase(S);
12729   BlockDispositions.erase(S);
12730   UnsignedRanges.erase(S);
12731   SignedRanges.erase(S);
12732   ExprValueMap.erase(S);
12733   HasRecMap.erase(S);
12734   MinTrailingZerosCache.erase(S);
12735 
12736   for (auto I = PredicatedSCEVRewrites.begin();
12737        I != PredicatedSCEVRewrites.end();) {
12738     std::pair<const SCEV *, const Loop *> Entry = I->first;
12739     if (Entry.first == S)
12740       PredicatedSCEVRewrites.erase(I++);
12741     else
12742       ++I;
12743   }
12744 
12745   auto RemoveSCEVFromBackedgeMap =
12746       [S](DenseMap<const Loop *, BackedgeTakenInfo> &Map) {
12747         for (auto I = Map.begin(), E = Map.end(); I != E;) {
12748           BackedgeTakenInfo &BEInfo = I->second;
12749           if (BEInfo.hasOperand(S))
12750             Map.erase(I++);
12751           else
12752             ++I;
12753         }
12754       };
12755 
12756   RemoveSCEVFromBackedgeMap(BackedgeTakenCounts);
12757   RemoveSCEVFromBackedgeMap(PredicatedBackedgeTakenCounts);
12758 }
12759 
12760 void
12761 ScalarEvolution::getUsedLoops(const SCEV *S,
12762                               SmallPtrSetImpl<const Loop *> &LoopsUsed) {
12763   struct FindUsedLoops {
12764     FindUsedLoops(SmallPtrSetImpl<const Loop *> &LoopsUsed)
12765         : LoopsUsed(LoopsUsed) {}
12766     SmallPtrSetImpl<const Loop *> &LoopsUsed;
12767     bool follow(const SCEV *S) {
12768       if (auto *AR = dyn_cast<SCEVAddRecExpr>(S))
12769         LoopsUsed.insert(AR->getLoop());
12770       return true;
12771     }
12772 
12773     bool isDone() const { return false; }
12774   };
12775 
12776   FindUsedLoops F(LoopsUsed);
12777   SCEVTraversal<FindUsedLoops>(F).visitAll(S);
12778 }
12779 
12780 void ScalarEvolution::addToLoopUseLists(const SCEV *S) {
12781   SmallPtrSet<const Loop *, 8> LoopsUsed;
12782   getUsedLoops(S, LoopsUsed);
12783   for (auto *L : LoopsUsed)
12784     LoopUsers[L].push_back(S);
12785 }
12786 
12787 void ScalarEvolution::verify() const {
12788   ScalarEvolution &SE = *const_cast<ScalarEvolution *>(this);
12789   ScalarEvolution SE2(F, TLI, AC, DT, LI);
12790 
12791   SmallVector<Loop *, 8> LoopStack(LI.begin(), LI.end());
12792 
12793   // Map's SCEV expressions from one ScalarEvolution "universe" to another.
12794   struct SCEVMapper : public SCEVRewriteVisitor<SCEVMapper> {
12795     SCEVMapper(ScalarEvolution &SE) : SCEVRewriteVisitor<SCEVMapper>(SE) {}
12796 
12797     const SCEV *visitConstant(const SCEVConstant *Constant) {
12798       return SE.getConstant(Constant->getAPInt());
12799     }
12800 
12801     const SCEV *visitUnknown(const SCEVUnknown *Expr) {
12802       return SE.getUnknown(Expr->getValue());
12803     }
12804 
12805     const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
12806       return SE.getCouldNotCompute();
12807     }
12808   };
12809 
12810   SCEVMapper SCM(SE2);
12811 
12812   while (!LoopStack.empty()) {
12813     auto *L = LoopStack.pop_back_val();
12814     llvm::append_range(LoopStack, *L);
12815 
12816     auto *CurBECount = SCM.visit(
12817         const_cast<ScalarEvolution *>(this)->getBackedgeTakenCount(L));
12818     auto *NewBECount = SE2.getBackedgeTakenCount(L);
12819 
12820     if (CurBECount == SE2.getCouldNotCompute() ||
12821         NewBECount == SE2.getCouldNotCompute()) {
12822       // NB! This situation is legal, but is very suspicious -- whatever pass
12823       // change the loop to make a trip count go from could not compute to
12824       // computable or vice-versa *should have* invalidated SCEV.  However, we
12825       // choose not to assert here (for now) since we don't want false
12826       // positives.
12827       continue;
12828     }
12829 
12830     if (containsUndefs(CurBECount) || containsUndefs(NewBECount)) {
12831       // SCEV treats "undef" as an unknown but consistent value (i.e. it does
12832       // not propagate undef aggressively).  This means we can (and do) fail
12833       // verification in cases where a transform makes the trip count of a loop
12834       // go from "undef" to "undef+1" (say).  The transform is fine, since in
12835       // both cases the loop iterates "undef" times, but SCEV thinks we
12836       // increased the trip count of the loop by 1 incorrectly.
12837       continue;
12838     }
12839 
12840     if (SE.getTypeSizeInBits(CurBECount->getType()) >
12841         SE.getTypeSizeInBits(NewBECount->getType()))
12842       NewBECount = SE2.getZeroExtendExpr(NewBECount, CurBECount->getType());
12843     else if (SE.getTypeSizeInBits(CurBECount->getType()) <
12844              SE.getTypeSizeInBits(NewBECount->getType()))
12845       CurBECount = SE2.getZeroExtendExpr(CurBECount, NewBECount->getType());
12846 
12847     const SCEV *Delta = SE2.getMinusSCEV(CurBECount, NewBECount);
12848 
12849     // Unless VerifySCEVStrict is set, we only compare constant deltas.
12850     if ((VerifySCEVStrict || isa<SCEVConstant>(Delta)) && !Delta->isZero()) {
12851       dbgs() << "Trip Count for " << *L << " Changed!\n";
12852       dbgs() << "Old: " << *CurBECount << "\n";
12853       dbgs() << "New: " << *NewBECount << "\n";
12854       dbgs() << "Delta: " << *Delta << "\n";
12855       std::abort();
12856     }
12857   }
12858 
12859   // Collect all valid loops currently in LoopInfo.
12860   SmallPtrSet<Loop *, 32> ValidLoops;
12861   SmallVector<Loop *, 32> Worklist(LI.begin(), LI.end());
12862   while (!Worklist.empty()) {
12863     Loop *L = Worklist.pop_back_val();
12864     if (ValidLoops.contains(L))
12865       continue;
12866     ValidLoops.insert(L);
12867     Worklist.append(L->begin(), L->end());
12868   }
12869   // Check for SCEV expressions referencing invalid/deleted loops.
12870   for (auto &KV : ValueExprMap) {
12871     auto *AR = dyn_cast<SCEVAddRecExpr>(KV.second);
12872     if (!AR)
12873       continue;
12874     assert(ValidLoops.contains(AR->getLoop()) &&
12875            "AddRec references invalid loop");
12876   }
12877 }
12878 
12879 bool ScalarEvolution::invalidate(
12880     Function &F, const PreservedAnalyses &PA,
12881     FunctionAnalysisManager::Invalidator &Inv) {
12882   // Invalidate the ScalarEvolution object whenever it isn't preserved or one
12883   // of its dependencies is invalidated.
12884   auto PAC = PA.getChecker<ScalarEvolutionAnalysis>();
12885   return !(PAC.preserved() || PAC.preservedSet<AllAnalysesOn<Function>>()) ||
12886          Inv.invalidate<AssumptionAnalysis>(F, PA) ||
12887          Inv.invalidate<DominatorTreeAnalysis>(F, PA) ||
12888          Inv.invalidate<LoopAnalysis>(F, PA);
12889 }
12890 
12891 AnalysisKey ScalarEvolutionAnalysis::Key;
12892 
12893 ScalarEvolution ScalarEvolutionAnalysis::run(Function &F,
12894                                              FunctionAnalysisManager &AM) {
12895   return ScalarEvolution(F, AM.getResult<TargetLibraryAnalysis>(F),
12896                          AM.getResult<AssumptionAnalysis>(F),
12897                          AM.getResult<DominatorTreeAnalysis>(F),
12898                          AM.getResult<LoopAnalysis>(F));
12899 }
12900 
12901 PreservedAnalyses
12902 ScalarEvolutionVerifierPass::run(Function &F, FunctionAnalysisManager &AM) {
12903   AM.getResult<ScalarEvolutionAnalysis>(F).verify();
12904   return PreservedAnalyses::all();
12905 }
12906 
12907 PreservedAnalyses
12908 ScalarEvolutionPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
12909   // For compatibility with opt's -analyze feature under legacy pass manager
12910   // which was not ported to NPM. This keeps tests using
12911   // update_analyze_test_checks.py working.
12912   OS << "Printing analysis 'Scalar Evolution Analysis' for function '"
12913      << F.getName() << "':\n";
12914   AM.getResult<ScalarEvolutionAnalysis>(F).print(OS);
12915   return PreservedAnalyses::all();
12916 }
12917 
12918 INITIALIZE_PASS_BEGIN(ScalarEvolutionWrapperPass, "scalar-evolution",
12919                       "Scalar Evolution Analysis", false, true)
12920 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
12921 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
12922 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
12923 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
12924 INITIALIZE_PASS_END(ScalarEvolutionWrapperPass, "scalar-evolution",
12925                     "Scalar Evolution Analysis", false, true)
12926 
12927 char ScalarEvolutionWrapperPass::ID = 0;
12928 
12929 ScalarEvolutionWrapperPass::ScalarEvolutionWrapperPass() : FunctionPass(ID) {
12930   initializeScalarEvolutionWrapperPassPass(*PassRegistry::getPassRegistry());
12931 }
12932 
12933 bool ScalarEvolutionWrapperPass::runOnFunction(Function &F) {
12934   SE.reset(new ScalarEvolution(
12935       F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F),
12936       getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F),
12937       getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
12938       getAnalysis<LoopInfoWrapperPass>().getLoopInfo()));
12939   return false;
12940 }
12941 
12942 void ScalarEvolutionWrapperPass::releaseMemory() { SE.reset(); }
12943 
12944 void ScalarEvolutionWrapperPass::print(raw_ostream &OS, const Module *) const {
12945   SE->print(OS);
12946 }
12947 
12948 void ScalarEvolutionWrapperPass::verifyAnalysis() const {
12949   if (!VerifySCEV)
12950     return;
12951 
12952   SE->verify();
12953 }
12954 
12955 void ScalarEvolutionWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
12956   AU.setPreservesAll();
12957   AU.addRequiredTransitive<AssumptionCacheTracker>();
12958   AU.addRequiredTransitive<LoopInfoWrapperPass>();
12959   AU.addRequiredTransitive<DominatorTreeWrapperPass>();
12960   AU.addRequiredTransitive<TargetLibraryInfoWrapperPass>();
12961 }
12962 
12963 const SCEVPredicate *ScalarEvolution::getEqualPredicate(const SCEV *LHS,
12964                                                         const SCEV *RHS) {
12965   FoldingSetNodeID ID;
12966   assert(LHS->getType() == RHS->getType() &&
12967          "Type mismatch between LHS and RHS");
12968   // Unique this node based on the arguments
12969   ID.AddInteger(SCEVPredicate::P_Equal);
12970   ID.AddPointer(LHS);
12971   ID.AddPointer(RHS);
12972   void *IP = nullptr;
12973   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12974     return S;
12975   SCEVEqualPredicate *Eq = new (SCEVAllocator)
12976       SCEVEqualPredicate(ID.Intern(SCEVAllocator), LHS, RHS);
12977   UniquePreds.InsertNode(Eq, IP);
12978   return Eq;
12979 }
12980 
12981 const SCEVPredicate *ScalarEvolution::getWrapPredicate(
12982     const SCEVAddRecExpr *AR,
12983     SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
12984   FoldingSetNodeID ID;
12985   // Unique this node based on the arguments
12986   ID.AddInteger(SCEVPredicate::P_Wrap);
12987   ID.AddPointer(AR);
12988   ID.AddInteger(AddedFlags);
12989   void *IP = nullptr;
12990   if (const auto *S = UniquePreds.FindNodeOrInsertPos(ID, IP))
12991     return S;
12992   auto *OF = new (SCEVAllocator)
12993       SCEVWrapPredicate(ID.Intern(SCEVAllocator), AR, AddedFlags);
12994   UniquePreds.InsertNode(OF, IP);
12995   return OF;
12996 }
12997 
12998 namespace {
12999 
13000 class SCEVPredicateRewriter : public SCEVRewriteVisitor<SCEVPredicateRewriter> {
13001 public:
13002 
13003   /// Rewrites \p S in the context of a loop L and the SCEV predication
13004   /// infrastructure.
13005   ///
13006   /// If \p Pred is non-null, the SCEV expression is rewritten to respect the
13007   /// equivalences present in \p Pred.
13008   ///
13009   /// If \p NewPreds is non-null, rewrite is free to add further predicates to
13010   /// \p NewPreds such that the result will be an AddRecExpr.
13011   static const SCEV *rewrite(const SCEV *S, const Loop *L, ScalarEvolution &SE,
13012                              SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13013                              SCEVUnionPredicate *Pred) {
13014     SCEVPredicateRewriter Rewriter(L, SE, NewPreds, Pred);
13015     return Rewriter.visit(S);
13016   }
13017 
13018   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13019     if (Pred) {
13020       auto ExprPreds = Pred->getPredicatesForExpr(Expr);
13021       for (auto *Pred : ExprPreds)
13022         if (const auto *IPred = dyn_cast<SCEVEqualPredicate>(Pred))
13023           if (IPred->getLHS() == Expr)
13024             return IPred->getRHS();
13025     }
13026     return convertToAddRecWithPreds(Expr);
13027   }
13028 
13029   const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
13030     const SCEV *Operand = visit(Expr->getOperand());
13031     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13032     if (AR && AR->getLoop() == L && AR->isAffine()) {
13033       // This couldn't be folded because the operand didn't have the nuw
13034       // flag. Add the nusw flag as an assumption that we could make.
13035       const SCEV *Step = AR->getStepRecurrence(SE);
13036       Type *Ty = Expr->getType();
13037       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNUSW))
13038         return SE.getAddRecExpr(SE.getZeroExtendExpr(AR->getStart(), Ty),
13039                                 SE.getSignExtendExpr(Step, Ty), L,
13040                                 AR->getNoWrapFlags());
13041     }
13042     return SE.getZeroExtendExpr(Operand, Expr->getType());
13043   }
13044 
13045   const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
13046     const SCEV *Operand = visit(Expr->getOperand());
13047     const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Operand);
13048     if (AR && AR->getLoop() == L && AR->isAffine()) {
13049       // This couldn't be folded because the operand didn't have the nsw
13050       // flag. Add the nssw flag as an assumption that we could make.
13051       const SCEV *Step = AR->getStepRecurrence(SE);
13052       Type *Ty = Expr->getType();
13053       if (addOverflowAssumption(AR, SCEVWrapPredicate::IncrementNSSW))
13054         return SE.getAddRecExpr(SE.getSignExtendExpr(AR->getStart(), Ty),
13055                                 SE.getSignExtendExpr(Step, Ty), L,
13056                                 AR->getNoWrapFlags());
13057     }
13058     return SE.getSignExtendExpr(Operand, Expr->getType());
13059   }
13060 
13061 private:
13062   explicit SCEVPredicateRewriter(const Loop *L, ScalarEvolution &SE,
13063                         SmallPtrSetImpl<const SCEVPredicate *> *NewPreds,
13064                         SCEVUnionPredicate *Pred)
13065       : SCEVRewriteVisitor(SE), NewPreds(NewPreds), Pred(Pred), L(L) {}
13066 
13067   bool addOverflowAssumption(const SCEVPredicate *P) {
13068     if (!NewPreds) {
13069       // Check if we've already made this assumption.
13070       return Pred && Pred->implies(P);
13071     }
13072     NewPreds->insert(P);
13073     return true;
13074   }
13075 
13076   bool addOverflowAssumption(const SCEVAddRecExpr *AR,
13077                              SCEVWrapPredicate::IncrementWrapFlags AddedFlags) {
13078     auto *A = SE.getWrapPredicate(AR, AddedFlags);
13079     return addOverflowAssumption(A);
13080   }
13081 
13082   // If \p Expr represents a PHINode, we try to see if it can be represented
13083   // as an AddRec, possibly under a predicate (PHISCEVPred). If it is possible
13084   // to add this predicate as a runtime overflow check, we return the AddRec.
13085   // If \p Expr does not meet these conditions (is not a PHI node, or we
13086   // couldn't create an AddRec for it, or couldn't add the predicate), we just
13087   // return \p Expr.
13088   const SCEV *convertToAddRecWithPreds(const SCEVUnknown *Expr) {
13089     if (!isa<PHINode>(Expr->getValue()))
13090       return Expr;
13091     Optional<std::pair<const SCEV *, SmallVector<const SCEVPredicate *, 3>>>
13092     PredicatedRewrite = SE.createAddRecFromPHIWithCasts(Expr);
13093     if (!PredicatedRewrite)
13094       return Expr;
13095     for (auto *P : PredicatedRewrite->second){
13096       // Wrap predicates from outer loops are not supported.
13097       if (auto *WP = dyn_cast<const SCEVWrapPredicate>(P)) {
13098         auto *AR = cast<const SCEVAddRecExpr>(WP->getExpr());
13099         if (L != AR->getLoop())
13100           return Expr;
13101       }
13102       if (!addOverflowAssumption(P))
13103         return Expr;
13104     }
13105     return PredicatedRewrite->first;
13106   }
13107 
13108   SmallPtrSetImpl<const SCEVPredicate *> *NewPreds;
13109   SCEVUnionPredicate *Pred;
13110   const Loop *L;
13111 };
13112 
13113 } // end anonymous namespace
13114 
13115 const SCEV *ScalarEvolution::rewriteUsingPredicate(const SCEV *S, const Loop *L,
13116                                                    SCEVUnionPredicate &Preds) {
13117   return SCEVPredicateRewriter::rewrite(S, L, *this, nullptr, &Preds);
13118 }
13119 
13120 const SCEVAddRecExpr *ScalarEvolution::convertSCEVToAddRecWithPredicates(
13121     const SCEV *S, const Loop *L,
13122     SmallPtrSetImpl<const SCEVPredicate *> &Preds) {
13123   SmallPtrSet<const SCEVPredicate *, 4> TransformPreds;
13124   S = SCEVPredicateRewriter::rewrite(S, L, *this, &TransformPreds, nullptr);
13125   auto *AddRec = dyn_cast<SCEVAddRecExpr>(S);
13126 
13127   if (!AddRec)
13128     return nullptr;
13129 
13130   // Since the transformation was successful, we can now transfer the SCEV
13131   // predicates.
13132   for (auto *P : TransformPreds)
13133     Preds.insert(P);
13134 
13135   return AddRec;
13136 }
13137 
13138 /// SCEV predicates
13139 SCEVPredicate::SCEVPredicate(const FoldingSetNodeIDRef ID,
13140                              SCEVPredicateKind Kind)
13141     : FastID(ID), Kind(Kind) {}
13142 
13143 SCEVEqualPredicate::SCEVEqualPredicate(const FoldingSetNodeIDRef ID,
13144                                        const SCEV *LHS, const SCEV *RHS)
13145     : SCEVPredicate(ID, P_Equal), LHS(LHS), RHS(RHS) {
13146   assert(LHS->getType() == RHS->getType() && "LHS and RHS types don't match");
13147   assert(LHS != RHS && "LHS and RHS are the same SCEV");
13148 }
13149 
13150 bool SCEVEqualPredicate::implies(const SCEVPredicate *N) const {
13151   const auto *Op = dyn_cast<SCEVEqualPredicate>(N);
13152 
13153   if (!Op)
13154     return false;
13155 
13156   return Op->LHS == LHS && Op->RHS == RHS;
13157 }
13158 
13159 bool SCEVEqualPredicate::isAlwaysTrue() const { return false; }
13160 
13161 const SCEV *SCEVEqualPredicate::getExpr() const { return LHS; }
13162 
13163 void SCEVEqualPredicate::print(raw_ostream &OS, unsigned Depth) const {
13164   OS.indent(Depth) << "Equal predicate: " << *LHS << " == " << *RHS << "\n";
13165 }
13166 
13167 SCEVWrapPredicate::SCEVWrapPredicate(const FoldingSetNodeIDRef ID,
13168                                      const SCEVAddRecExpr *AR,
13169                                      IncrementWrapFlags Flags)
13170     : SCEVPredicate(ID, P_Wrap), AR(AR), Flags(Flags) {}
13171 
13172 const SCEV *SCEVWrapPredicate::getExpr() const { return AR; }
13173 
13174 bool SCEVWrapPredicate::implies(const SCEVPredicate *N) const {
13175   const auto *Op = dyn_cast<SCEVWrapPredicate>(N);
13176 
13177   return Op && Op->AR == AR && setFlags(Flags, Op->Flags) == Flags;
13178 }
13179 
13180 bool SCEVWrapPredicate::isAlwaysTrue() const {
13181   SCEV::NoWrapFlags ScevFlags = AR->getNoWrapFlags();
13182   IncrementWrapFlags IFlags = Flags;
13183 
13184   if (ScalarEvolution::setFlags(ScevFlags, SCEV::FlagNSW) == ScevFlags)
13185     IFlags = clearFlags(IFlags, IncrementNSSW);
13186 
13187   return IFlags == IncrementAnyWrap;
13188 }
13189 
13190 void SCEVWrapPredicate::print(raw_ostream &OS, unsigned Depth) const {
13191   OS.indent(Depth) << *getExpr() << " Added Flags: ";
13192   if (SCEVWrapPredicate::IncrementNUSW & getFlags())
13193     OS << "<nusw>";
13194   if (SCEVWrapPredicate::IncrementNSSW & getFlags())
13195     OS << "<nssw>";
13196   OS << "\n";
13197 }
13198 
13199 SCEVWrapPredicate::IncrementWrapFlags
13200 SCEVWrapPredicate::getImpliedFlags(const SCEVAddRecExpr *AR,
13201                                    ScalarEvolution &SE) {
13202   IncrementWrapFlags ImpliedFlags = IncrementAnyWrap;
13203   SCEV::NoWrapFlags StaticFlags = AR->getNoWrapFlags();
13204 
13205   // We can safely transfer the NSW flag as NSSW.
13206   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNSW) == StaticFlags)
13207     ImpliedFlags = IncrementNSSW;
13208 
13209   if (ScalarEvolution::setFlags(StaticFlags, SCEV::FlagNUW) == StaticFlags) {
13210     // If the increment is positive, the SCEV NUW flag will also imply the
13211     // WrapPredicate NUSW flag.
13212     if (const auto *Step = dyn_cast<SCEVConstant>(AR->getStepRecurrence(SE)))
13213       if (Step->getValue()->getValue().isNonNegative())
13214         ImpliedFlags = setFlags(ImpliedFlags, IncrementNUSW);
13215   }
13216 
13217   return ImpliedFlags;
13218 }
13219 
13220 /// Union predicates don't get cached so create a dummy set ID for it.
13221 SCEVUnionPredicate::SCEVUnionPredicate()
13222     : SCEVPredicate(FoldingSetNodeIDRef(nullptr, 0), P_Union) {}
13223 
13224 bool SCEVUnionPredicate::isAlwaysTrue() const {
13225   return all_of(Preds,
13226                 [](const SCEVPredicate *I) { return I->isAlwaysTrue(); });
13227 }
13228 
13229 ArrayRef<const SCEVPredicate *>
13230 SCEVUnionPredicate::getPredicatesForExpr(const SCEV *Expr) {
13231   auto I = SCEVToPreds.find(Expr);
13232   if (I == SCEVToPreds.end())
13233     return ArrayRef<const SCEVPredicate *>();
13234   return I->second;
13235 }
13236 
13237 bool SCEVUnionPredicate::implies(const SCEVPredicate *N) const {
13238   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N))
13239     return all_of(Set->Preds,
13240                   [this](const SCEVPredicate *I) { return this->implies(I); });
13241 
13242   auto ScevPredsIt = SCEVToPreds.find(N->getExpr());
13243   if (ScevPredsIt == SCEVToPreds.end())
13244     return false;
13245   auto &SCEVPreds = ScevPredsIt->second;
13246 
13247   return any_of(SCEVPreds,
13248                 [N](const SCEVPredicate *I) { return I->implies(N); });
13249 }
13250 
13251 const SCEV *SCEVUnionPredicate::getExpr() const { return nullptr; }
13252 
13253 void SCEVUnionPredicate::print(raw_ostream &OS, unsigned Depth) const {
13254   for (auto Pred : Preds)
13255     Pred->print(OS, Depth);
13256 }
13257 
13258 void SCEVUnionPredicate::add(const SCEVPredicate *N) {
13259   if (const auto *Set = dyn_cast<SCEVUnionPredicate>(N)) {
13260     for (auto Pred : Set->Preds)
13261       add(Pred);
13262     return;
13263   }
13264 
13265   if (implies(N))
13266     return;
13267 
13268   const SCEV *Key = N->getExpr();
13269   assert(Key && "Only SCEVUnionPredicate doesn't have an "
13270                 " associated expression!");
13271 
13272   SCEVToPreds[Key].push_back(N);
13273   Preds.push_back(N);
13274 }
13275 
13276 PredicatedScalarEvolution::PredicatedScalarEvolution(ScalarEvolution &SE,
13277                                                      Loop &L)
13278     : SE(SE), L(L) {}
13279 
13280 const SCEV *PredicatedScalarEvolution::getSCEV(Value *V) {
13281   const SCEV *Expr = SE.getSCEV(V);
13282   RewriteEntry &Entry = RewriteMap[Expr];
13283 
13284   // If we already have an entry and the version matches, return it.
13285   if (Entry.second && Generation == Entry.first)
13286     return Entry.second;
13287 
13288   // We found an entry but it's stale. Rewrite the stale entry
13289   // according to the current predicate.
13290   if (Entry.second)
13291     Expr = Entry.second;
13292 
13293   const SCEV *NewSCEV = SE.rewriteUsingPredicate(Expr, &L, Preds);
13294   Entry = {Generation, NewSCEV};
13295 
13296   return NewSCEV;
13297 }
13298 
13299 const SCEV *PredicatedScalarEvolution::getBackedgeTakenCount() {
13300   if (!BackedgeCount) {
13301     SCEVUnionPredicate BackedgePred;
13302     BackedgeCount = SE.getPredicatedBackedgeTakenCount(&L, BackedgePred);
13303     addPredicate(BackedgePred);
13304   }
13305   return BackedgeCount;
13306 }
13307 
13308 void PredicatedScalarEvolution::addPredicate(const SCEVPredicate &Pred) {
13309   if (Preds.implies(&Pred))
13310     return;
13311   Preds.add(&Pred);
13312   updateGeneration();
13313 }
13314 
13315 const SCEVUnionPredicate &PredicatedScalarEvolution::getUnionPredicate() const {
13316   return Preds;
13317 }
13318 
13319 void PredicatedScalarEvolution::updateGeneration() {
13320   // If the generation number wrapped recompute everything.
13321   if (++Generation == 0) {
13322     for (auto &II : RewriteMap) {
13323       const SCEV *Rewritten = II.second.second;
13324       II.second = {Generation, SE.rewriteUsingPredicate(Rewritten, &L, Preds)};
13325     }
13326   }
13327 }
13328 
13329 void PredicatedScalarEvolution::setNoOverflow(
13330     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13331   const SCEV *Expr = getSCEV(V);
13332   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13333 
13334   auto ImpliedFlags = SCEVWrapPredicate::getImpliedFlags(AR, SE);
13335 
13336   // Clear the statically implied flags.
13337   Flags = SCEVWrapPredicate::clearFlags(Flags, ImpliedFlags);
13338   addPredicate(*SE.getWrapPredicate(AR, Flags));
13339 
13340   auto II = FlagsMap.insert({V, Flags});
13341   if (!II.second)
13342     II.first->second = SCEVWrapPredicate::setFlags(Flags, II.first->second);
13343 }
13344 
13345 bool PredicatedScalarEvolution::hasNoOverflow(
13346     Value *V, SCEVWrapPredicate::IncrementWrapFlags Flags) {
13347   const SCEV *Expr = getSCEV(V);
13348   const auto *AR = cast<SCEVAddRecExpr>(Expr);
13349 
13350   Flags = SCEVWrapPredicate::clearFlags(
13351       Flags, SCEVWrapPredicate::getImpliedFlags(AR, SE));
13352 
13353   auto II = FlagsMap.find(V);
13354 
13355   if (II != FlagsMap.end())
13356     Flags = SCEVWrapPredicate::clearFlags(Flags, II->second);
13357 
13358   return Flags == SCEVWrapPredicate::IncrementAnyWrap;
13359 }
13360 
13361 const SCEVAddRecExpr *PredicatedScalarEvolution::getAsAddRec(Value *V) {
13362   const SCEV *Expr = this->getSCEV(V);
13363   SmallPtrSet<const SCEVPredicate *, 4> NewPreds;
13364   auto *New = SE.convertSCEVToAddRecWithPredicates(Expr, &L, NewPreds);
13365 
13366   if (!New)
13367     return nullptr;
13368 
13369   for (auto *P : NewPreds)
13370     Preds.add(P);
13371 
13372   updateGeneration();
13373   RewriteMap[SE.getSCEV(V)] = {Generation, New};
13374   return New;
13375 }
13376 
13377 PredicatedScalarEvolution::PredicatedScalarEvolution(
13378     const PredicatedScalarEvolution &Init)
13379     : RewriteMap(Init.RewriteMap), SE(Init.SE), L(Init.L), Preds(Init.Preds),
13380       Generation(Init.Generation), BackedgeCount(Init.BackedgeCount) {
13381   for (auto I : Init.FlagsMap)
13382     FlagsMap.insert(I);
13383 }
13384 
13385 void PredicatedScalarEvolution::print(raw_ostream &OS, unsigned Depth) const {
13386   // For each block.
13387   for (auto *BB : L.getBlocks())
13388     for (auto &I : *BB) {
13389       if (!SE.isSCEVable(I.getType()))
13390         continue;
13391 
13392       auto *Expr = SE.getSCEV(&I);
13393       auto II = RewriteMap.find(Expr);
13394 
13395       if (II == RewriteMap.end())
13396         continue;
13397 
13398       // Don't print things that are not interesting.
13399       if (II->second.second == Expr)
13400         continue;
13401 
13402       OS.indent(Depth) << "[PSE]" << I << ":\n";
13403       OS.indent(Depth + 2) << *Expr << "\n";
13404       OS.indent(Depth + 2) << "--> " << *II->second.second << "\n";
13405     }
13406 }
13407 
13408 // Match the mathematical pattern A - (A / B) * B, where A and B can be
13409 // arbitrary expressions. Also match zext (trunc A to iB) to iY, which is used
13410 // for URem with constant power-of-2 second operands.
13411 // It's not always easy, as A and B can be folded (imagine A is X / 2, and B is
13412 // 4, A / B becomes X / 8).
13413 bool ScalarEvolution::matchURem(const SCEV *Expr, const SCEV *&LHS,
13414                                 const SCEV *&RHS) {
13415   // Try to match 'zext (trunc A to iB) to iY', which is used
13416   // for URem with constant power-of-2 second operands. Make sure the size of
13417   // the operand A matches the size of the whole expressions.
13418   if (const auto *ZExt = dyn_cast<SCEVZeroExtendExpr>(Expr))
13419     if (const auto *Trunc = dyn_cast<SCEVTruncateExpr>(ZExt->getOperand(0))) {
13420       LHS = Trunc->getOperand();
13421       // Bail out if the type of the LHS is larger than the type of the
13422       // expression for now.
13423       if (getTypeSizeInBits(LHS->getType()) >
13424           getTypeSizeInBits(Expr->getType()))
13425         return false;
13426       if (LHS->getType() != Expr->getType())
13427         LHS = getZeroExtendExpr(LHS, Expr->getType());
13428       RHS = getConstant(APInt(getTypeSizeInBits(Expr->getType()), 1)
13429                         << getTypeSizeInBits(Trunc->getType()));
13430       return true;
13431     }
13432   const auto *Add = dyn_cast<SCEVAddExpr>(Expr);
13433   if (Add == nullptr || Add->getNumOperands() != 2)
13434     return false;
13435 
13436   const SCEV *A = Add->getOperand(1);
13437   const auto *Mul = dyn_cast<SCEVMulExpr>(Add->getOperand(0));
13438 
13439   if (Mul == nullptr)
13440     return false;
13441 
13442   const auto MatchURemWithDivisor = [&](const SCEV *B) {
13443     // (SomeExpr + (-(SomeExpr / B) * B)).
13444     if (Expr == getURemExpr(A, B)) {
13445       LHS = A;
13446       RHS = B;
13447       return true;
13448     }
13449     return false;
13450   };
13451 
13452   // (SomeExpr + (-1 * (SomeExpr / B) * B)).
13453   if (Mul->getNumOperands() == 3 && isa<SCEVConstant>(Mul->getOperand(0)))
13454     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13455            MatchURemWithDivisor(Mul->getOperand(2));
13456 
13457   // (SomeExpr + ((-SomeExpr / B) * B)) or (SomeExpr + ((SomeExpr / B) * -B)).
13458   if (Mul->getNumOperands() == 2)
13459     return MatchURemWithDivisor(Mul->getOperand(1)) ||
13460            MatchURemWithDivisor(Mul->getOperand(0)) ||
13461            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(1))) ||
13462            MatchURemWithDivisor(getNegativeSCEV(Mul->getOperand(0)));
13463   return false;
13464 }
13465 
13466 const SCEV *
13467 ScalarEvolution::computeSymbolicMaxBackedgeTakenCount(const Loop *L) {
13468   SmallVector<BasicBlock*, 16> ExitingBlocks;
13469   L->getExitingBlocks(ExitingBlocks);
13470 
13471   // Form an expression for the maximum exit count possible for this loop. We
13472   // merge the max and exact information to approximate a version of
13473   // getConstantMaxBackedgeTakenCount which isn't restricted to just constants.
13474   SmallVector<const SCEV*, 4> ExitCounts;
13475   for (BasicBlock *ExitingBB : ExitingBlocks) {
13476     const SCEV *ExitCount = getExitCount(L, ExitingBB);
13477     if (isa<SCEVCouldNotCompute>(ExitCount))
13478       ExitCount = getExitCount(L, ExitingBB,
13479                                   ScalarEvolution::ConstantMaximum);
13480     if (!isa<SCEVCouldNotCompute>(ExitCount)) {
13481       assert(DT.dominates(ExitingBB, L->getLoopLatch()) &&
13482              "We should only have known counts for exiting blocks that "
13483              "dominate latch!");
13484       ExitCounts.push_back(ExitCount);
13485     }
13486   }
13487   if (ExitCounts.empty())
13488     return getCouldNotCompute();
13489   return getUMinFromMismatchedTypes(ExitCounts);
13490 }
13491 
13492 /// This rewriter is similar to SCEVParameterRewriter (it replaces SCEVUnknown
13493 /// components following the Map (Value -> SCEV)), but skips AddRecExpr because
13494 /// we cannot guarantee that the replacement is loop invariant in the loop of
13495 /// the AddRec.
13496 class SCEVLoopGuardRewriter : public SCEVRewriteVisitor<SCEVLoopGuardRewriter> {
13497   ValueToSCEVMapTy &Map;
13498 
13499 public:
13500   SCEVLoopGuardRewriter(ScalarEvolution &SE, ValueToSCEVMapTy &M)
13501       : SCEVRewriteVisitor(SE), Map(M) {}
13502 
13503   const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) { return Expr; }
13504 
13505   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
13506     auto I = Map.find(Expr->getValue());
13507     if (I == Map.end())
13508       return Expr;
13509     return I->second;
13510   }
13511 };
13512 
13513 const SCEV *ScalarEvolution::applyLoopGuards(const SCEV *Expr, const Loop *L) {
13514   auto CollectCondition = [&](ICmpInst::Predicate Predicate, const SCEV *LHS,
13515                               const SCEV *RHS, ValueToSCEVMapTy &RewriteMap) {
13516     // WARNING: It is generally unsound to apply any wrap flags to the proposed
13517     // replacement SCEV which isn't directly implied by the structure of that
13518     // SCEV.  In particular, using contextual facts to imply flags is *NOT*
13519     // legal.  See the scoping rules for flags in the header to understand why.
13520 
13521     // If we have LHS == 0, check if LHS is computing a property of some unknown
13522     // SCEV %v which we can rewrite %v to express explicitly.
13523     const SCEVConstant *RHSC = dyn_cast<SCEVConstant>(RHS);
13524     if (Predicate == CmpInst::ICMP_EQ && RHSC &&
13525         RHSC->getValue()->isNullValue()) {
13526       // If LHS is A % B, i.e. A % B == 0, rewrite A to (A /u B) * B to
13527       // explicitly express that.
13528       const SCEV *URemLHS = nullptr;
13529       const SCEV *URemRHS = nullptr;
13530       if (matchURem(LHS, URemLHS, URemRHS)) {
13531         if (const SCEVUnknown *LHSUnknown = dyn_cast<SCEVUnknown>(URemLHS)) {
13532           Value *V = LHSUnknown->getValue();
13533           RewriteMap[V] = getMulExpr(getUDivExpr(URemLHS, URemRHS), URemRHS);
13534           return;
13535         }
13536       }
13537     }
13538 
13539     if (!isa<SCEVUnknown>(LHS) && isa<SCEVUnknown>(RHS)) {
13540       std::swap(LHS, RHS);
13541       Predicate = CmpInst::getSwappedPredicate(Predicate);
13542     }
13543 
13544     // Check for a condition of the form (-C1 + X < C2).  InstCombine will
13545     // create this form when combining two checks of the form (X u< C2 + C1) and
13546     // (X >=u C1).
13547     auto MatchRangeCheckIdiom = [this, Predicate, LHS, RHS, &RewriteMap]() {
13548       auto *AddExpr = dyn_cast<SCEVAddExpr>(LHS);
13549       if (!AddExpr || AddExpr->getNumOperands() != 2)
13550         return false;
13551 
13552       auto *C1 = dyn_cast<SCEVConstant>(AddExpr->getOperand(0));
13553       auto *LHSUnknown = dyn_cast<SCEVUnknown>(AddExpr->getOperand(1));
13554       auto *C2 = dyn_cast<SCEVConstant>(RHS);
13555       if (!C1 || !C2 || !LHSUnknown)
13556         return false;
13557 
13558       auto ExactRegion =
13559           ConstantRange::makeExactICmpRegion(Predicate, C2->getAPInt())
13560               .sub(C1->getAPInt());
13561 
13562       // Bail out, unless we have a non-wrapping, monotonic range.
13563       if (ExactRegion.isWrappedSet() || ExactRegion.isFullSet())
13564         return false;
13565       auto I = RewriteMap.find(LHSUnknown->getValue());
13566       const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHSUnknown;
13567       RewriteMap[LHSUnknown->getValue()] = getUMaxExpr(
13568           getConstant(ExactRegion.getUnsignedMin()),
13569           getUMinExpr(RewrittenLHS, getConstant(ExactRegion.getUnsignedMax())));
13570       return true;
13571     };
13572     if (MatchRangeCheckIdiom())
13573       return;
13574 
13575     // For now, limit to conditions that provide information about unknown
13576     // expressions. RHS also cannot contain add recurrences.
13577     auto *LHSUnknown = dyn_cast<SCEVUnknown>(LHS);
13578     if (!LHSUnknown || containsAddRecurrence(RHS))
13579       return;
13580 
13581     // Check whether LHS has already been rewritten. In that case we want to
13582     // chain further rewrites onto the already rewritten value.
13583     auto I = RewriteMap.find(LHSUnknown->getValue());
13584     const SCEV *RewrittenLHS = I != RewriteMap.end() ? I->second : LHS;
13585     const SCEV *RewrittenRHS = nullptr;
13586     switch (Predicate) {
13587     case CmpInst::ICMP_ULT:
13588       RewrittenRHS =
13589           getUMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13590       break;
13591     case CmpInst::ICMP_SLT:
13592       RewrittenRHS =
13593           getSMinExpr(RewrittenLHS, getMinusSCEV(RHS, getOne(RHS->getType())));
13594       break;
13595     case CmpInst::ICMP_ULE:
13596       RewrittenRHS = getUMinExpr(RewrittenLHS, RHS);
13597       break;
13598     case CmpInst::ICMP_SLE:
13599       RewrittenRHS = getSMinExpr(RewrittenLHS, RHS);
13600       break;
13601     case CmpInst::ICMP_UGT:
13602       RewrittenRHS =
13603           getUMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13604       break;
13605     case CmpInst::ICMP_SGT:
13606       RewrittenRHS =
13607           getSMaxExpr(RewrittenLHS, getAddExpr(RHS, getOne(RHS->getType())));
13608       break;
13609     case CmpInst::ICMP_UGE:
13610       RewrittenRHS = getUMaxExpr(RewrittenLHS, RHS);
13611       break;
13612     case CmpInst::ICMP_SGE:
13613       RewrittenRHS = getSMaxExpr(RewrittenLHS, RHS);
13614       break;
13615     case CmpInst::ICMP_EQ:
13616       if (isa<SCEVConstant>(RHS))
13617         RewrittenRHS = RHS;
13618       break;
13619     case CmpInst::ICMP_NE:
13620       if (isa<SCEVConstant>(RHS) &&
13621           cast<SCEVConstant>(RHS)->getValue()->isNullValue())
13622         RewrittenRHS = getUMaxExpr(RewrittenLHS, getOne(RHS->getType()));
13623       break;
13624     default:
13625       break;
13626     }
13627 
13628     if (RewrittenRHS)
13629       RewriteMap[LHSUnknown->getValue()] = RewrittenRHS;
13630   };
13631   // Starting at the loop predecessor, climb up the predecessor chain, as long
13632   // as there are predecessors that can be found that have unique successors
13633   // leading to the original header.
13634   // TODO: share this logic with isLoopEntryGuardedByCond.
13635   ValueToSCEVMapTy RewriteMap;
13636   for (std::pair<const BasicBlock *, const BasicBlock *> Pair(
13637            L->getLoopPredecessor(), L->getHeader());
13638        Pair.first; Pair = getPredecessorWithUniqueSuccessorForBB(Pair.first)) {
13639 
13640     const BranchInst *LoopEntryPredicate =
13641         dyn_cast<BranchInst>(Pair.first->getTerminator());
13642     if (!LoopEntryPredicate || LoopEntryPredicate->isUnconditional())
13643       continue;
13644 
13645     bool EnterIfTrue = LoopEntryPredicate->getSuccessor(0) == Pair.second;
13646     SmallVector<Value *, 8> Worklist;
13647     SmallPtrSet<Value *, 8> Visited;
13648     Worklist.push_back(LoopEntryPredicate->getCondition());
13649     while (!Worklist.empty()) {
13650       Value *Cond = Worklist.pop_back_val();
13651       if (!Visited.insert(Cond).second)
13652         continue;
13653 
13654       if (auto *Cmp = dyn_cast<ICmpInst>(Cond)) {
13655         auto Predicate =
13656             EnterIfTrue ? Cmp->getPredicate() : Cmp->getInversePredicate();
13657         CollectCondition(Predicate, getSCEV(Cmp->getOperand(0)),
13658                          getSCEV(Cmp->getOperand(1)), RewriteMap);
13659         continue;
13660       }
13661 
13662       Value *L, *R;
13663       if (EnterIfTrue ? match(Cond, m_LogicalAnd(m_Value(L), m_Value(R)))
13664                       : match(Cond, m_LogicalOr(m_Value(L), m_Value(R)))) {
13665         Worklist.push_back(L);
13666         Worklist.push_back(R);
13667       }
13668     }
13669   }
13670 
13671   // Also collect information from assumptions dominating the loop.
13672   for (auto &AssumeVH : AC.assumptions()) {
13673     if (!AssumeVH)
13674       continue;
13675     auto *AssumeI = cast<CallInst>(AssumeVH);
13676     auto *Cmp = dyn_cast<ICmpInst>(AssumeI->getOperand(0));
13677     if (!Cmp || !DT.dominates(AssumeI, L->getHeader()))
13678       continue;
13679     CollectCondition(Cmp->getPredicate(), getSCEV(Cmp->getOperand(0)),
13680                      getSCEV(Cmp->getOperand(1)), RewriteMap);
13681   }
13682 
13683   if (RewriteMap.empty())
13684     return Expr;
13685   SCEVLoopGuardRewriter Rewriter(*this, RewriteMap);
13686   return Rewriter.visit(Expr);
13687 }
13688